Sample records for iron-oxide coated coal

  1. Arsenic remediation of drinking water using iron-oxide coated coal bottom ash

    E-Print Network [OSTI]

    MATHIEU, JOHANNA L.

    2010-01-01T23:59:59.000Z

    using Iron-oxide Coated Coal Ash. In Arsenic Contaminationwater using  iron?oxide coated coal bottom ash  Johanna L.  using iron-oxide coated coal bottom ash JOHANNA L. MATHIEU

  2. Arsenic remediation of drinking water using iron-oxide coated coal bottom ash

    SciTech Connect (OSTI)

    MATHIEU, JOHANNA L.; GADGIL, ASHOK J.; ADDY, SUSAN E.A.; KOWOLIK, KRISTIN

    2010-06-01T23:59:59.000Z

    We describe laboratory and field results of a novel arsenic removal adsorbent called 'Arsenic Removal Using Bottom Ash' (ARUBA). ARUBA is prepared by coating particles of coal bottom ash, a waste material from coal fired power plants, with iron (hydr)oxide. The coating process is simple and conducted at room temperature and atmospheric pressure. Material costs for ARUBA are estimated to be low (~;;$0.08 per kg) and arsenic remediation with ARUBA has the potential to be affordable to resource-constrained communities. ARUBA is used for removing arsenic via a dispersal-and-removal process, and we envision that ARUBA would be used in community-scale water treatment centers. We show that ARUBA is able to reduce arsenic concentrations in contaminated Bangladesh groundwater to below the Bangladesh standard of 50 ppb. Using the Langmuir isotherm (R2 = 0.77) ARUBA's adsorption capacity in treating real groundwater is 2.6x10-6 mol/g (0.20 mg/g). Time-to-90percent (defined as the time interval for ARUBA to remove 90percent of the total amount of arsenic that is removed at equilibrium) is less than one hour. Reaction rates (pseudo-second-order kinetic model, R2>_ 0.99) increase from 2.4x105 to 7.2x105 g mol-1 min-1 as the groundwater arsenic concentration decreases from 560 to 170 ppb. We show that ARUBA's arsenic adsorption density (AAD), defined as the milligrams of arsenic removed at equilibrium per gram of ARUBA added, is linearly dependent on the initial arsenic concentration of the groundwater sample, for initial arsenic concentrations of up to 1600 ppb and an ARUBA dose of 4.0 g/L. This makes it easy to determine the amount of ARUBA required to treat a groundwater source when its arsenic concentration is known and less than 1600 ppb. Storing contaminated groundwater for two to three days before treatment is seen to significantly increase ARUBA's AAD. ARUBA can be separated from treated water by coagulation and clarification, which is expected to be less expensive than filtration of micron-scale particles, further contributing to the affordability of a community-scale water treatment center.

  3. Versatile ferrofluids based on polyethylene glycol coated iron oxide nanoparticles

    E-Print Network [OSTI]

    Versatile ferrofluids based on polyethylene glycol coated iron oxide nanoparticles W. Brullot a coated iron oxide nanoparticles were obtained by a facile protocol and thoroughly characterized to chemical treatments and biocompatible [12]. An impression of an iron oxide nanoparticle coated with a PEG

  4. Polymer-coated iron oxide nanoparticles for medical imaging

    E-Print Network [OSTI]

    Chen, Suelin, Ph.D. Massachusetts Institute of Technology

    2010-01-01T23:59:59.000Z

    One of the most versatile and safe materials used in medicine are polymer-coated iron oxide nanoparticles. This dissertation describes several formulations for in vivo imaging applications. The paramagnetic polymer-coated ...

  5. Recovery of iron oxide from coal fly ash

    DOE Patents [OSTI]

    Dobbins, Michael S. (Ames, IA); Murtha, Marlyn J. (Ames, IA)

    1983-05-31T23:59:59.000Z

    A high quality iron oxide concentrate, suitable as a feed for blast and electric reduction furnaces is recovered from pulverized coal fly ash. The magnetic portion of the fly ash is separated and treated with a hot strong alkali solution which dissolves most of the silica and alumina in the fly ash, leaving a solid residue and forming a precipitate which is an acid soluble salt of aluminosilicate hydrate. The residue and precipitate are then treated with a strong mineral acid to dissolve the precipitate leaving a solid residue containing at least 90 weight percent iron oxide.

  6. Decaking of coal or oil shale during pyrolysis in the presence of iron oxides

    DOE Patents [OSTI]

    Khan, M. Rashid (Morgantown, WV)

    1989-01-01T23:59:59.000Z

    A method for producing a fuel from the pyrolysis of coal or oil shale in the presence of iron oxide in an inert gas atmosphere. The method includes the steps of pulverizing feed coal or oil shale, pulverizing iron oxide, mixing the pulverized feed and iron oxide, and heating the mixture in a gas atmosphere which is substantially inert to the mixture so as to form a product fuel, which may be gaseous, liquid and/or solid. The method of the invention reduces the swelling of coals, such as bituminous coal and the like, which are otherwise known to swell during pyrolysis.

  7. Decaking of coal or oil shale during pyrolysis in the presence of iron oxides

    DOE Patents [OSTI]

    Rashid Khan, M.

    1988-05-05T23:59:59.000Z

    A method for producing a fuel from the pyrolysis of coal or oil shale in the presence of iron oxide in an inert gas atmosphere is described. The method includes the steps of pulverizing feed coal or oil shale, pulverizing iron oxide, mixing the pulverized feed and iron oxide, and heating the mixture in a gas atmosphere which is substantially inert to the mixture so as to form a product fuel, which may be gaseous, liquid and/or solid. The method of the invention reduces the swelling of coals, such as bituminous coal and the like, which are otherwise known to swell during pyrolysis. 4 figs., 8 tabs.

  8. Reduction of Sintering during Annealing of FePt Nanoparticles Coated with Iron Oxide

    E-Print Network [OSTI]

    Laughlin, David E.

    Reduction of Sintering during Annealing of FePt Nanoparticles Coated with Iron Oxide Chao Liu °C for 30 min at which 2.6-nm FePt nanoparticles without oxide shell coating start to sinter. LowVised Manuscript ReceiVed October 12, 2004 FePt/iron oxide core/shell nanoparticles are synthesized by a two step

  9. Synthesis and Characterization of Silica-Coated Iron Oxide Nanoparticles in Microemulsion: The Effect of Nonionic

    E-Print Network [OSTI]

    Tan, Weihong

    in magnetic disk drive spindles, optical memory devices, magnetic inks for bank checks, magnetic refrigeration, crystallinity, and the magnetic properties have been studied. The iron oxide nanoparticles are formed to study both uncoated and silica-coated iron oxide nanoparticles. All these particles show magnetic

  10. Synthesis of Monodisperse Biotinylated p(NIPAAm)-Coated Iron Oxide Magnetic Nanoparticles and their Bioconjugation to Streptavidin

    E-Print Network [OSTI]

    Krishnan, Kannan M.

    Synthesis of Monodisperse Biotinylated p(NIPAAm)-Coated Iron Oxide Magnetic Nanoparticles here the synthesis of 10 nm, monodisperse, iron oxide nanoparticles that we have coated with a mixture of PNIPAAm and b-PNIPAAm at 60 °C. The b-PNIPAAm-coated magnetic nanoparticles were found to have

  11. In Situ Groundwater Arsenic Removal Using Iron Oxide-Coated Sand 

    E-Print Network [OSTI]

    Yu, Hongxu

    2010-10-12T23:59:59.000Z

    environment for in situ removal of arsenic. A sand filter with a fresh iron oxide coating can treat thousands of pore volumes of water contaminated with dozens of ppb arsenic before the coating needs to be regenerated. Arsenic breakthrough curves through...

  12. Preparation of Polymer-Coated Functionalized Ferrimagnetic Iron Oxide Nanoparticles*

    E-Print Network [OSTI]

    Yu, Shi

    A simple chemical method to synthesize PMAA coated maghemite nanoparticles is described. Monomer methacrylic acid molecules were absorbed onto the synthesized ferrimagnetic nanoparticles followed by polymerization. The ...

  13. The role of the coating and aggregation state in the interactions between iron oxide nanoparticles and 3T3 fibroblasts

    E-Print Network [OSTI]

    Safi, Malak; 10.1016/j.phpro.2010.11.059

    2011-01-01T23:59:59.000Z

    Recent nanotoxicity studies revealed that the physico-chemical characteristics of engineered nanomaterials play an important role in the interactions with living cells. Here, we report on the toxicity and uptake of the iron oxide sub-10 nm nanoparticles by NIH/3T3 mouse fibroblasts. Coating strategies include low-molecular weight ligands (citric acid) and polymers (poly(acrylic acid), MW = 2000 g mol-1). We find that most particles were biocompatible, as exposed cells remained 100% viable relative to controls. The strong uptake shown by the citrate-coated particles is related to the destabilization of the dispersions in the cell culture medium and their sedimentation down to the cell membranes.

  14. Arsenic remediation of drinking water using iron-oxide coated coal bottom ash

    E-Print Network [OSTI]

    MATHIEU, JOHANNA L.

    2010-01-01T23:59:59.000Z

    liter PETE or HDPE plastic bottles. The time between watera plastic funnel positioned over a clean 250 mL bottle. The

  15. Synthesis and development of hydrophilic iron oxide nanoparticles for biomedical applications

    E-Print Network [OSTI]

    Wei, He, Ph.D. Massachusetts Institute of Technology

    2014-01-01T23:59:59.000Z

    Uniformly sized superparamagnetic iron oxide nanoparticles (SPIONs) with inorganic diameters of 3-35 nm were synthesized. New surface ligand coatings were designed and synthesized, and the resulting hydrophilic SPIONs in ...

  16. Differential proteomics analysis of the surface heterogeneity of dextran iron oxide nanoparticles and the implications for their in vivo clearance

    E-Print Network [OSTI]

    Bhatia, Sangeeta

    Differential proteomics analysis of the surface heterogeneity of dextran iron oxide nanoparticles: Received 21 January 2009 Accepted 26 March 2009 Available online 26 April 2009 Keywords: Nanoparticle proteins in the rapid liver clearance of dextran-coated superparamagnetic iron oxide (SPIO) in vivo, we

  17. Development of an Iron-Oxide Coated Ceramic Filter for Removal of As(III) and As(V) in Developing Nations

    E-Print Network [OSTI]

    Robbins, Emily C.

    2011-08-31T23:59:59.000Z

    -oxide-coated sand (IOCS). A 1.8-cm ID column was packed with 250-mL of IOCS-2. The influent flow rate was 125 mL/min, yielding an empty bed contact time (EBCT) of 2 min. The media was regenerated using a solution near pH 2.0. The IOCS was effective... ……………………………………………..…..10 Figure 5: Predominance diagram for As(III) and As(V) as a function of pH ……………........19 Figure 6: Eh-pH diagram for As-O2-S-H2O system …………………………………………....20 Figure 7: Sorption of [A] arsenite and [B] arsenate (pH 7.5; arsenic...

  18. N-Alkyl-polyethylenimine 2 kDastabilized superparamagnetic iron oxide nanoparticles for MRI cell tracking

    E-Print Network [OSTI]

    Levin, Judith G.

    nanoparticles need to be coated with organic polymers or other materials for efficient cell labeling. This surface coating increases the stability of SPIO nanoparticles and allows further chemical modificationsN-Alkyl-polyethylenimine 2 kDa­stabilized superparamagnetic iron oxide nanoparticles for MRI cell

  19. Thiol-modified poly(ethylene glycol)-conjugated gold/ superparamagnetic iron oxide nanoparticles

    E-Print Network [OSTI]

    Levin, Judith G.

    by their sizes with coating material (~20­ 3,500 nm in diameter) as large SPIO (LSPIO) nanoparticles, standard a strong Au-S bond. Kojima et al. (3) coated the Au/SPIO nanoparticles with a thiol- modified PEG (PEGThiol-modified poly(ethylene glycol)-conjugated gold/ superparamagnetic iron oxide nanoparticles

  20. DIFFUSION COATINGS FOR CORROSION RESISTANT COMPONENTS IN COAL GASIFICATION SYSTEMS

    SciTech Connect (OSTI)

    Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Angel Sanjurjo

    2005-01-01T23:59:59.000Z

    Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low cost alloy may improve is resistance to such sulfidation attack and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this reporting period we coated coupons of selected alloy steels with diffusion coatings of Cr and Al, as well as with titanium and tantalum nitrides. The coated samples were analyzed for their surface composition. In several instances, the samples were also cut to determine the depth profile of the coating. Several of the early runs did not yield uniform or deep enough coatings and hence a significant portion of the effort in this period was devoted fixing the problems with our fluidized bed reactor. Before the end of the quarter we had prepared a number of samples, many of them in duplicates, and sent one set to Wabash River Energy Laboratory for them to install in their gasifier. The gasifier was undergoing a scheduled maintenance and thus presented an opportunity to place some of our coupons in the stream of an operating gasifier. The samples submitted included coated and uncoated pairs of different alloys.

  1. Diffusion Coatings for Corrosion Resistant Components in Coal Gasification Systems

    SciTech Connect (OSTI)

    Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Angel Sanjurjo

    2005-01-01T23:59:59.000Z

    Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low cost alloy may improve its resistance to such sulfidation attack and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this reporting period we focused on getting a bench-scale test system to expose alloy coupons to simulated gasifier environment. The test facility was designed to allow about 20 specimen coupons to be exposed simultaneously for an extend period to a simulated coal gas stream at temperatures up to 1000 C. The simulated gas stream contained about 26%H{sub 2}, 39%CO, 17%CO{sub 2}, 1.4% H{sub 2}S and balance steam. We successfully ran a 100+h test with coated and uncoated stainless steel coupons. The tested alloys include SS304, SS316, SS405, SS409, SS410, and IN800. The main finding is that Ti/Ta coating provides excellent protection to SS405 under conditions where uncoated austenitic and ferritic stainless steel alloy coupons are badly corroded. Cr coatings also appear to afford some protection against corrosion.

  2. Steam reforming utilizing iron oxide catalyst

    SciTech Connect (OSTI)

    Setzer, H. T.; Bett, J. A. S.

    1985-06-11T23:59:59.000Z

    High activity steam reforming iron oxide catalysts are described. Such catalysts can be unsupported utilizing at least 90% by weight iron oxide and various modifiers (Ai/sub 2/O/sub 3/, K/sub 2/O, CaO, SiO/sub 2/) or unmodified and supported on such things as alumina, CaO impregnated alumina, and lanthanum stabilized alumina. When used in steam reformers such as autothermal and tubular steam reformers, these catalysts demonstrate much improved resistance to carbon plugging.

  3. Hydrogen production from steam reforming of coke oven gas and its utility for indirect reduction of iron oxides in blast

    E-Print Network [OSTI]

    Leu, Tzong-Shyng "Jeremy"

    of coal and coke are consumed for heating and reducing iron oxides [2,3]. As a result, BFs have becomeHydrogen production from steam reforming of coke oven gas and its utility for indirect reduction 2012 Available online 18 June 2012 Keywords: Steam reforming Hydrogen and syngas production Coke oven

  4. Method for preparing hydrous iron oxide gels and spherules

    DOE Patents [OSTI]

    Collins, Jack L.; Lauf, Robert J.; Anderson, Kimberly K.

    2003-07-29T23:59:59.000Z

    The present invention is directed to methods for preparing hydrous iron oxide spherules, hydrous iron oxide gels such as gel slabs, films, capillary and electrophoresis gels, iron monohydrogen phosphate spherules, hydrous iron oxide spherules having suspendable particles homogeneously embedded within to form composite sorbents and catalysts, iron monohydrogen phosphate spherules having suspendable particles of at least one different sorbent homogeneously embedded within to form a composite sorbent, iron oxide spherules having suspendable particles homogeneously embedded within to form a composite of hydrous iron oxide fiber materials, iron oxide fiber materials, hydrous iron oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, iron oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, dielectric spherules of barium, strontium, and lead ferrites and mixtures thereof, and composite catalytic spherules of barium or strontium ferrite embedded with oxides of Mg, Zn, Pb, Ce and mixtures thereof. These variations of hydrous iron oxide spherules and gel forms prepared by the gel-sphere, internal gelation process offer more useful forms of inorganic ion exchangers, catalysts, getters, dielectrics, and ceramics.

  5. Catalytic iron oxide for lime regeneration in carbonaceous fuel combustion

    SciTech Connect (OSTI)

    Shen, M.; Yang, R.T.

    1980-09-30T23:59:59.000Z

    Lime utilization for sulfurous oxides absorption in fluidized combustion of carbonaceous fuels is improved by impregnation of porous lime particulates with iron oxide. The impregnation is achieved by spraying an aqueous solution of mixed iron sulfate and sulfite on the limestone before transfer to the fluidized bed combustor, whereby the iron compounds react with the limestone substrate to form iron oxide at the limestone surface. It is found that iron oxide present in the spent limestone acts as a catalyst to regenerate the spent limestone in a reducing environment. With only small quantities of iron oxide the calcium can be recycled at a significantly increased rate.

  6. Suspension Hydrogen Reduction of Iron Oxide Concentrates

    SciTech Connect (OSTI)

    H.Y. Sohn

    2008-03-31T23:59:59.000Z

    The objective of the project is to develop a new ironmaking technology based on hydrogen and fine iron oxide concentrates in a suspension reduction process. The ultimate objective of the new technology is to replace the blast furnace and to drastically reduce CO2 emissions in the steel industry. The goals of this phase of development are; the performance of detailed material and energy balances, thermochemical and equilibrium calculations for sulfur and phosphorus impurities, the determination of the complete kinetics of hydrogen reduction and bench-scale testing of the suspension reduction process using a large laboratory flash reactor.

  7. Complement receptor type 2conjugated superparamagnetic iron oxide nanoparticles

    E-Print Network [OSTI]

    Levin, Judith G.

    Complement receptor type 2­conjugated superparamagnetic iron oxide nanoparticles [CR2-Fc-SPIO] Kam: Complement receptor type 2­conjugated gold/superparamagnetic iron oxide nanoparticles Abbreviated name: CR2, and oligodendroglial cells. SPIO nanoparticles are sometimes modified with dextran, poly(ethylene glycol) (PEG

  8. Electrodeposition of hybrid organicinorganic films containing iron oxide

    E-Print Network [OSTI]

    Niewczas, Marek

    Electrodeposition of hybrid organic­inorganic films containing iron oxide I. Zhitomirsky *, M has been developed for the preparation of hybrid organic­inorganic films containing iron oxide properties could be varied. Magnetic measurements revealed that the nanocomposite films are superparamagnetic

  9. Superparamagnetic iron oxide nanoparticles as radiosensitizer via enhanced reactive oxygen species formation

    SciTech Connect (OSTI)

    Klein, Stefanie; Sommer, Anja [Department of Chemistry and Pharmacy, Physical Chemistry I and ICMM, Friedrich-Alexander University of Erlangen-Nuremberg, Egerlandstr. 3, D-91058 Erlangen (Germany)] [Department of Chemistry and Pharmacy, Physical Chemistry I and ICMM, Friedrich-Alexander University of Erlangen-Nuremberg, Egerlandstr. 3, D-91058 Erlangen (Germany); Distel, Luitpold V.R. [Department of Radiation Oncology, Friedrich Alexander University Erlangen-Nuremberg, Universitaetsstrasse 27, D-91054 Erlangen (Germany)] [Department of Radiation Oncology, Friedrich Alexander University Erlangen-Nuremberg, Universitaetsstrasse 27, D-91054 Erlangen (Germany); Neuhuber, Winfried [Department of Anatomy, Chair of Anatomy I, Friedrich Alexander University Erlangen-Nuremberg, Krankenhausstr. 9, D-91054 Erlangen (Germany)] [Department of Anatomy, Chair of Anatomy I, Friedrich Alexander University Erlangen-Nuremberg, Krankenhausstr. 9, D-91054 Erlangen (Germany); Kryschi, Carola, E-mail: kryschi@chemie.uni-erlangen.de [Department of Chemistry and Pharmacy, Physical Chemistry I and ICMM, Friedrich-Alexander University of Erlangen-Nuremberg, Egerlandstr. 3, D-91058 Erlangen (Germany)] [Department of Chemistry and Pharmacy, Physical Chemistry I and ICMM, Friedrich-Alexander University of Erlangen-Nuremberg, Egerlandstr. 3, D-91058 Erlangen (Germany)

    2012-08-24T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Ultrasmall citrate-coated SPIONs with {gamma}Fe{sub 2}O{sub 3} and Fe{sub 3}O{sub 4} structure were prepared. Black-Right-Pointing-Pointer SPIONs uptaken by MCF-7 cells increase the ROS production for about 240%. Black-Right-Pointing-Pointer The SPION induced ROS production is due to released iron ions and catalytically active surfaces. Black-Right-Pointing-Pointer Released iron ions and SPION surfaces initiate the Fenton and Haber-Weiss reaction. Black-Right-Pointing-Pointer X-ray irradiation of internalized SPIONs leads to an increase of catalytically active surfaces. -- Abstract: Internalization of citrate-coated and uncoated superparamagnetic iron oxide nanoparticles by human breast cancer (MCF-7) cells was verified by transmission electron microscopy imaging. Cytotoxicity studies employing metabolic and trypan blue assays manifested their excellent biocompatibility. The production of reactive oxygen species in iron oxide nanoparticle loaded MCF-7 cells was explained to originate from both, the release of iron ions and their catalytically active surfaces. Both initiate the Fenton and Haber-Weiss reaction. Additional oxidative stress caused by X-ray irradiation of MCF-7 cells was attributed to the increase of catalytically active iron oxide nanoparticle surfaces.

  10. Multiple hearth furnace for reducing iron oxide

    DOE Patents [OSTI]

    Brandon, Mark M. (Charlotte, NC); True, Bradford G. (Charlotte, NC)

    2012-03-13T23:59:59.000Z

    A multiple moving hearth furnace (10) having a furnace housing (11) with at least two moving hearths (20) positioned laterally within the furnace housing, the hearths moving in opposite directions and each moving hearth (20) capable of being charged with at least one layer of iron oxide and carbon bearing material at one end, and being capable of discharging reduced material at the other end. A heat insulating partition (92) is positioned between adjacent moving hearths of at least portions of the conversion zones (13), and is capable of communicating gases between the atmospheres of the conversion zones of adjacent moving hearths. A drying/preheat zone (12), a conversion zone (13), and optionally a cooling zone (15) are sequentially positioned along each moving hearth (30) in the furnace housing (11).

  11. Reduction of iron-oxide-carbon composites: part I. Estimation of the rate constants

    SciTech Connect (OSTI)

    Halder, S.; Fruehan, R.J. [Praxair Inc., Tonawanda, NY (United States). Technological Center

    2008-12-15T23:59:59.000Z

    A new ironmaking concept using iron-oxide-carbon composite pellets has been proposed, which involves the combination of a rotary hearth furnace (RHF) and an iron bath smelter. This part of the research focuses on studying the two primary chemical kinetic steps. Efforts have been made to experimentally measure the kinetics of the carbon gasification by CO{sub 2} and wustite reduction by CO by isolating them from the influence of heat- and mass-transport steps. A combined reaction model was used to interpret the experimental data and determine the rate constants. Results showed that the reduction is likely to be influenced by the chemical kinetics of both carbon oxidation and wustite reduction at the temperatures of interest. Devolatilized wood-charcoal was observed to be a far more reactive form of carbon in comparison to coal-char. Sintering of the iron-oxide at the high temperatures of interest was found to exert a considerable influence on the reactivity of wustite by virtue of altering the internal pore surface area available for the reaction. Sintering was found to be predominant for highly porous oxides and less of an influence on the denser ores. It was found using an indirect measurement technique that the rate constants for wustite reduction were higher for the porous iron-oxide than dense hematite ore at higher temperatures (> 1423 K). Such an indirect mode of measurement was used to minimize the influence of sintering of the porous oxide at these temperatures.

  12. In Situ Iron Oxide Emplacement for Groundwater Arsenic Remediation 

    E-Print Network [OSTI]

    Abia, Thomas Sunday

    2012-02-14T23:59:59.000Z

    Iron oxide-bearing minerals have long been recognized as an effective reactive media for arsenic-contaminated groundwater remediation. This research aimed to develop a technique that could facilitate in situ oxidative precipitation of Fe3+ in a soil...

  13. Surface modifications of iron oxide nanoparticles for biological applications

    E-Print Network [OSTI]

    Insin, Numpon

    2011-01-01T23:59:59.000Z

    Iron oxides magnetic nanoparticles (MPs) of high crystallinity, high magnetization, and size-monodispersity were synthesized with oleic acid as their native ligands. These hydrophobic and non-functionalized MPs have magnetic ...

  14. Iron-oxide catalyzed silicon photoanode for water splitting

    E-Print Network [OSTI]

    Jun, Kimin

    2011-01-01T23:59:59.000Z

    This thesis presents an integrated study of high efficiency photoanodes for water splitting using silicon and iron-oxide. The fundamental limitations of silicon to water splitting applications were overcome by an ultrathin ...

  15. Superparamagnetic iron oxide polyacrylic acid coated {\\gamma}-Fe2O3 nanoparticles does not affect kidney function but causes acute effect on the cardiovascular function in healthy mice

    E-Print Network [OSTI]

    Iversen, Nina K; Thomsen, Karen; Laustsen, Christoffer; Pedersen, Michael; Hansen, Pernille B L; Bie, Peter; Fresnais, Jérome; Berret, Jean-Francois; Baatrup, Erik; Wang, Tobias

    2014-01-01T23:59:59.000Z

    This study describes the distribution of intravenously injected polyacrylic acid (PAA) coated {\\gamma}-Fe2O3 NPs (10 mg kg-1) at the organ, cellular and subcellular levels in healthy BALB/cJ mice and in parallel addresses the effects of NP injection on kidney function, blood pressure and vascular contractility. Magnetic resonance imaging (MRI) and transmission electron microscopy (TEM) showed accumulation of NPs in the liver within 1h after intravenous infusion, accommodated by intracellular uptake in endothelial and Kupffer cells with subsequent intracellular uptake in renal cells, particularly the cytoplasm of the proximal tubule, in podocytes and mesangial cells. The renofunctional effects of NPs were evaluated by arterial acid-base status and measurements of glomerular filtration rate (GFR) after instrumentation with chronically indwelling catheters. Arterial pH was 7.46 and 7.41 in mice 0.5 h after injections of saline or NP, and did not change over the next 12h. In addition, the injections of NP did not...

  16. Large enhanced dielectric permittivity in polyaniline passivated core-shell nano magnetic iron oxide by plasma polymerization

    SciTech Connect (OSTI)

    Joy, Lija K.; Sooraj, V.; Sethulakshmi, N.; Anantharaman, M. R., E-mail: mraiyer@yahoo.com [Department of Physics, Cochin University of Science and Technology, Cochin-682022, Kerala (India); Sajeev, U. S. [Department of Physics, Government College, Kottayam-686613, Kerala (India); Nair, Swapna S. [Department of Physics, School of Mathematical and Physical Sciences, Central University of Kerala, Kasargode-671123, Kerala (India); Narayanan, T. N. [CSIR-Central Electrochemical Research Institute, Karaikkudi-630006, Tamil Nadu (India); Ajayan, P. M. [Department of Material Science and Nano Engineering, Rice University, 6100 Main Street, Houston, Texas 7700 (United States)

    2014-03-24T23:59:59.000Z

    Commercial samples of Magnetite with size ranging from 25–30?nm were coated with polyaniline by using radio frequency plasma polymerization to achieve a core shell structure of magnetic nanoparticle (core)–Polyaniline (shell). High resolution transmission electron microscopy images confirm the core shell architecture of polyaniline coated iron oxide. The dielectric properties of the material were studied before and after plasma treatment. The polymer coated magnetite particles exhibited a large dielectric permittivity with respect to uncoated samples. The dielectric behavior was modeled using a Maxwell–Wagner capacitor model. A plausible mechanism for the enhancement of dielectric permittivity is proposed.

  17. Corrosion protection mechanism of polyaniline blended organic coating on steel

    SciTech Connect (OSTI)

    Sathiyanarayanan, S.; Jeyaram, R.; Muthukrishnan, S.; Venkatachari, G. [Central Electrochemical Research Institute, Karaikkudi (India)

    2009-07-01T23:59:59.000Z

    Epoxy-coal tar coatings are widely used to protect steel structures exposed to marine atmosphere due to their good barrier property. However, the presence of micropores and microcracks formed during the coating formation leads to failure of the coating due to permeation of corrosive ions. In recent years, it has been established that the coatings containing polyaniline (PANI) is able to protect pinholes and defects due to its passivating ability. Hence, a study has been made on the effect of polyaniline content (1 and 3%) in epoxy-coal tar coating on the corrosion protection of steel in 3% NaCl solution by electrochemical impedance spectroscopy (EIS) studies. Both phosphate- and chloride-doped polyanilines were prepared by a chemical oxidative polymerization method. From EIS studies, it has been found that the resistance value of the coatings containing 1 and 3% phosphate-doped polyaniline and 3% chloride-doped polyaniline pigmented coatings are similar to 10{sup 9} {Omega} cm{sup 2} even after 90 days exposure to NaCl solution, which are two orders high in comparison to that of conventional coal tar epoxy coatings. Besides, the conducting state of polyaniline has been found to be decreased after exposure to NaCl solution due to redox property of PANI. X-ray photoelectron spectroscopy studies have shown that polyaniline forms a complex layer with iron beneath the coating along with iron oxide.

  18. Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems

    SciTech Connect (OSTI)

    Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Angel Sanjurjo

    2005-12-01T23:59:59.000Z

    Heat exchangers, particle filters, turbines, and other components in an integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high-temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high-alloy materials are used. Deposition of a suitable coating on a low-cost alloy may improve its resistance to such sulfidation attack, and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this reporting period, we conducted a simulated gasifier test primarily with TiN-coated steel samples. Although the test showed these coatings to offer significant protection against corrosion, they also revealed a lack of uniformity in the coatings. We spent a considerable amount of effort improving our coatings procedure as well as the fluidized bed reactor and its heater. Based on the results collected thus far, we selected 12 samples and sent them to ConocoPhillips for testing in their gasifier at the Wabash River Energy plant.

  19. Reduction of iron-oxide-carbon composites: part III. Shrinkage of composite pellets during reduction

    SciTech Connect (OSTI)

    Halder, S.; Fruehan, R.J. [Praxair Inc., Tonawanda, NY (United States). Praxair Technological Center

    2008-12-15T23:59:59.000Z

    This article involves the evaluation of the volume change of iron-oxide-carbon composite pellets and its implications on reduction kinetics under conditions prevalent in a rotary hearth furnace (RHF) that were simulated in the laboratory. The pellets, in general, were found to shrink considerably during the reduction due to the loss of carbon and oxygen from the system, sintering of the iron-oxide, and formation of a molten slag phase at localized regions inside the pellets due to the presence of binder and coal/wood-charcoal ash at the reduction temperatures. One of the shortcomings of the RHF ironmaking process has been the inability to use multiple layers of composite pellets because of the impediment in heat transport to the lower layers of a multilayer bed. However, pellet shrinkage was found to have a strong effect on the reduction kinetics by virtue of enhancing the external heat transport to the lower layers. The volume change of the different kinds of composite pellets was studied as a function of reduction temperature and time. The estimation of the change in the amount of external heat transport with varying pellet sizes for a particular layer of a multilayer bed was obtained by conducting heat-transfer tests using inert low-carbon steel spheres. It was found that if the pellets of the top layer of the bed shrink by 30 pct, the external heat transfer to the second layer increases by nearly 6 times.

  20. Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems

    SciTech Connect (OSTI)

    Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Angel Sanjurjo

    2006-01-01T23:59:59.000Z

    Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high-temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low-cost alloy may improve its resistance to such sulfidation attack, and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this period we tested coated alloy coupons under conditions designed to mimic the conditions in the filter unit after the high-temperature heat recovery unit (HTHRU). The filter unit is another important area where corrosion has caused unscheduled downtime, and the remedy has been the use of sintered metal tubes made of expensive alloys such as inconel. The objective of our test was to determine if those coatings on 400-series steel that were not able to withstand the harsher conditions of the HTHRU, may be sufficiently resistant for use in the filter unit, at the reduced temperatures. Indeed, most of our coatings survived well; the exceptions were the coated porous samples of SS316. We continued making improvements to our coatings apparatus and the procedure began during the last quarter. As a result of these modifications, the coupons we are now producing are uniform. We describe the improved procedure for preparing diffusion coatings. Finally, because porous samples of steel in grades other than SS316 are not readily available, we also decided to procure SS409 powder and fabricate our own sintered porous coupons.

  1. Electronic and Magnetization Dynamics of Cobalt Substituted Iron Oxide Nanocrystals 

    E-Print Network [OSTI]

    Chen, Tai-Yen

    2011-02-22T23:59:59.000Z

    of photoexcited colloidal cobalt substituted iron oxide nanocrystals, CoxFe3-xO4, were investigated through transient absorption and pump-probe Faraday rotation measurements. In this dissertation, linearly polarized femtosecond optical pulses at 780 nm were used...

  2. Method for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier

    DOE Patents [OSTI]

    Grindley, Thomas (Morgantown, WV)

    1989-01-01T23:59:59.000Z

    A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600.degree. to 1800.degree. F. and are partially quenched with water to 1000.degree. to 1200.degree. F. before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime/limestone.

  3. Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems

    SciTech Connect (OSTI)

    Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Angel Sanjurjo

    2006-06-01T23:59:59.000Z

    Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high-temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low-cost alloy may improve its resistance to such sulfidation attack, and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. In previous tests, we had frequently encountered problems with our steam generator that were exacerbated by the very low flow rates that we needed. During this period we installed a new computer-controlled system for injecting water into the steam generator that eliminated this problem. We also tested alloy coupons coated by using the improved procedures described in our last quarterly report. Most of these coatings were nitrided Ti and Ta coatings, either by themselves, or sometimes with barrier layers of Al and Si nitrides. The samples were tested for 300 h at 900 C in a gas stream designed to mimic the environment in the high temperature heat recovery unit (HTHRU). Three samples that showed least corrosion were exposed for an additional 100 h.

  4. Zinc sorption by iron oxides and soil samples

    E-Print Network [OSTI]

    Yli-Halla, Markku Juhani

    1989-01-01T23:59:59.000Z

    (Head of Department) May 1989 ABSTRACT Zinc Sorption by Iron Oxides and Soil Samples. (May 1989) Markku Juhani Yli-Halla, M. S. University of Helsinki, Finland Chair of Advisory Committee: Dr. Richard H. Loeppert Zn sorption by synthetic Fe oxide... and soil samples was studied. The purpose was to examine the effect of crystallinity and adsorbed silica on Zn adsorption by synthetic Fe oxide using goethite and ferrihydrite as test materials. Zn sorption by acid soil samples from Finland and a...

  5. Molten thermite teeming into an iron oxide particle bed

    SciTech Connect (OSTI)

    Tarbell, W.W.; Blose, R.E.; Arellano, F.E.

    1984-03-01T23:59:59.000Z

    The two particle bed tests employed 10-kg thermite melts (2700/sup 0/K) teemed into a bed of iron oxide particles. Objective was to investigate bed penetration, particle flotation and fracture, and heat flux partitioning. The results show that the hydraulic forces exerted by the melt did not immediately displace the bed. Bed penetration was by melting and absorbing of the particles with the major portion of the displaced iron oxide terminating in the alumina phase of the melt. The movement of the penetration front suggests the movement to be a series of melt/freeze/remelt processes. The large grain structure of the iron phase indicates that the cooling was slow and continuous. A coherent 1-cm-thick layer of iron oxide in contact with the melt was created by sintering of the particles. The particle size of the unaffected portions of the bed showed very little fracturing due to thermal stress and slightly over 7% particle growth due to sintering. The calculated heat flux values to the surrounding crucible structure suggest that the bed is effective in delaying and reducing the magnitude of the peak heat flux values.

  6. Method and apparatus for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier

    DOE Patents [OSTI]

    Grindley, T.

    1988-04-05T23:59:59.000Z

    A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier is described. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600 to 1800 F and are partially quenched with water to 1000 to 1200 F before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime /limestone. 1 fig.

  7. Iron catalyzed coal liquefaction process

    DOE Patents [OSTI]

    Garg, Diwakar (Macungie, PA); Givens, Edwin N. (Bethlehem, PA)

    1983-01-01T23:59:59.000Z

    A process is described for the solvent refining of coal into a gas product, a liquid product and a normally solid dissolved product. Particulate coal and a unique co-catalyst system are suspended in a coal solvent and processed in a coal liquefaction reactor, preferably an ebullated bed reactor. The co-catalyst system comprises a combination of a stoichiometric excess of iron oxide and pyrite which reduce predominantly to active iron sulfide catalysts in the reaction zone. This catalyst system results in increased catalytic activity with attendant improved coal conversion and enhanced oil product distribution as well as reduced sulfide effluent. Iron oxide is used in a stoichiometric excess of that required to react with sulfur indigenous to the feed coal and that produced during reduction of the pyrite catalyst to iron sulfide.

  8. Synergetic effects of mixed copper-iron oxides oxygen carriers in chemical looping combustion

    SciTech Connect (OSTI)

    Siriwardane, Ranjani; Tian, Hanjing; Simonyi, Thomas; Poston, James

    2013-06-01T23:59:59.000Z

    Chemical looping combustion (CLC) is an emerging technology for clean energy production from fuels. CLC produces sequestration-ready CO{sub 2}-streams without a significant energy penalty. Development of efficient oxygen carriers is essential to successfully operate a CLC system. Copper and iron oxides are promising candidates for CLC. Copper oxide possesses high reactivity but it has issues with particle agglomeration due to its low melting point. Even though iron oxide is an inexpensive oxygen carrier it has a slower reactivity. In this study, mixed metal oxide carriers containing iron and copper oxides were evaluated for coal and methane CLC. The components of CuO and Fe{sub 2}O{sub 3} were optimized to obtain good reactivity while maintaining physical and chemical stability during cyclic reactions for methane-CLC and solid-fuel CLC. Compared with single metal oxygen carriers, the optimized Cu–Fe mixed oxide oxygen carriers demonstrated high reaction rate, better combustion conversion, greater oxygen usage and improved physical stability. Thermodynamic calculations, XRD, TGA, flow reactor studies and TPR experiments suggested that there is a strong interaction between CuO and Fe{sub 2}O{sub 3} contributing to a synergistic effect during CLC reactions. The amount of oxygen release of the mixed oxide carrier in the absence of a fuel was similar to that of the single metal oxides. However, in the presence of fuels, the oxygen consumption and the reaction profiles of the mixed oxide carriers were significantly better than that of the single metal oxides. The nature of the fuel not only influenced the reactivity, but also the final reduction status of the oxygen carriers during chemical looping combustion. Cu oxide of the mixed oxide was fully reduced metallic copper with both coal and methane. Fe oxide of the mixed oxide was fully reduced Fe metal with methane but it was reduced to only FeO with coal. Possible mechanisms of how the presence of CuO enhances the reduction of Fe{sub 2}O{sub 3} are discussed.

  9. Study of nanocomposites based on iron oxides and pectin

    SciTech Connect (OSTI)

    Chistyakova, Nataliya I., E-mail: nchistyakova@yandex.ru; Shapkin, Alexey A., E-mail: nchistyakova@yandex.ru; Sirazhdinov, Ruslan R., E-mail: nchistyakova@yandex.ru; Gubaidulina, Tatiana V., E-mail: nchistyakova@yandex.ru; Kiseleva, Tatiana Yu., E-mail: nchistyakova@yandex.ru; Kazakov, Alexander P., E-mail: nchistyakova@yandex.ru; Rusakov, Vyacheslav S., E-mail: nchistyakova@yandex.ru [M. V. Lomonosov Moscow State University, Faculty of Physics, Leninskie gory, 119991 Moscow (Russian Federation)

    2014-10-27T23:59:59.000Z

    Mössbauer and X-ray diffraction study of nanocomposites based on iron oxides and pectin (PC) was carried out involving magnetization measurements. The concentrations of PC in nanocomposites varied from 0 to 10%. Mössbauer investigations of nanocomposites were carried out in the temperature range from 5 to 300 K. Many-state superparamagnetic relaxation model was used for spectra fitting. The magnetization, M(T,H), was measured in the temperature interval of 80-300 K and magnetic field up to 10 kOe. Formation of the 'iron-polymer' interface was not observed. Particle sizes were estimated using the Mössbauer and X-ray powder diffraction data.

  10. A novel strategy for surface modification of superparamagnetic iron oxide nanoparticles for lung cancer imaging

    E-Print Network [OSTI]

    Gao, Jinming

    A novel strategy for surface modification of superparamagnetic iron oxide nanoparticles for lung Superparamagnetic iron oxide (SPIO) nanoparticles are widely used in magnetic resonance imaging (MRI) as versatile-step procedure for the surface functionalization of SPIO nanoparticles with a lung cancer-targeting peptide

  11. Interactions of Fe(II) with the iron oxidizing bacterium Rhodopseudomonas palustris TIE-1

    E-Print Network [OSTI]

    Bird, Lina J. (Lina Joana)

    2013-01-01T23:59:59.000Z

    Microbial anaerobic iron oxidation has long been of interest to biologists and geologists, both as a possible mechanism for the creation of banded iron formations before the rise of oxygen, and as a model system for organisms ...

  12. High gradient magnetic separation of iron oxide minerals from soil clays

    E-Print Network [OSTI]

    Schulze, Darrell Gene

    1977-01-01T23:59:59.000Z

    HIGH GRADIENT MAGNETIC SEPARATION OF IRON OXIDE MINERALS FROM SOIL CLAYS A Thesis by DARRELL GENE SCHULZE Submitted to the Graduate College of Texas AIM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE... December 1977 Major Subject: Soil Science HIGH GRADIENT MAGNETIC SEPARATION OF IRON OXIDE MINERALS FROM SOIL CLAYS A Thesis DARRELL GENE SCHULZE Approved as to style and content by: (Chairman of C ittee) epartm t) j (Member) (Membe December 1977...

  13. Kinetics of dissolution and bio-availability of iron in amorphous siliceous iron oxides 

    E-Print Network [OSTI]

    Seaman, John C.

    1990-01-01T23:59:59.000Z

    KINETICS OF DISSOLUTION AND BIO-AVAILABILITY OF IRON IN AMORPHOUS SILICEOUS IRON OXIDES A Thesis By John C. Seaman Submitted to the Graduate College of Texas AIIM University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE December 1990 Major Subject: Soil Science KINETICS OF DISSOLUTION AND BIO-AVAILABILITY OF IRON IN AMORPHOUS SILICEOUS IRON OXIDES A Thesis By John C. Seaman Approved as to style and content by: Richard H. Loeppert (Chair of Committee...

  14. Spin transition in a four-coordinate iron oxide

    SciTech Connect (OSTI)

    Kawakami, T. [Nihon University, Tokyo; Sutou, S. [Nihon University, Tokyo; Hirama, H. [Nihon University, Tokyo; Sekiya, Y. [Nihon University, Tokyo; Makino, T. [Nihon University, Tokyo; Tsujimoto, Y. [Kyoto University, Japan; Kitada, A. [Kyoto University, Japan; Tassel, C. [Kyoto University, Japan; Kageyama, H. [Kyoto University, Japan; Yoshimura, K. [Kyoto University, Japan; Chen, Xingqiu [ORNL; Fu, Chong Long [ORNL; Okada, T. [University of Tokyo, Tokyo, Japan; Yagi, T. [University of Tokyo, Tokyo, Japan; Hayashi, N. [Kyoto University, Japan; Nasu, S. [Osaka University; Podloucky, R. [Institut fur Physikalische Chemie der RWTH; Takano, M. [Kyoto University, Japan

    2009-01-01T23:59:59.000Z

    The spin transition, or spin crossover, is a manifestation of electronic instability induced by external constraints such as pressure1. Among known examples that exhibit spin transition, 3d ions with d6 electron configurations represent the vast majority, but the spin transition observed thus far has been almost exclusively limited to that between high-spin (S = 2) and low-spin (S = 0) states2-9. Here we report a novel high-spin to intermediate-spin (S = 1) state transition at 33 GPa induced by pressurization of an antiferromagnetic insulator SrFeO2 with a square planar coordination10. The change in spin multiplicity brings to ferromagnetism as well as metallicity, yet keeping the ordering temperature far above ambient. First-principles calculations attribute the origin of the transition to the strong inlayer hybridization between Fe dx 2 -y 2 O p , leading to a pressure-induced electronic instability toward the depopulation of Fe dx 2 -y 2 O p antibonding states. Furthermore, the ferromagnetic S = 1 state is half-metallic due to the inception of half-occupied spin-down (dxz, dyz) degenerate states upon spin transition. These results highlight the square-planar coordinated iron oxides as a new class of magnetic and electric materials and provide new avenues toward realizing multi-functional sensors and data-storage devices.

  15. Vapour phase approach for iron oxide nanoparticle synthesis from solid precursors

    SciTech Connect (OSTI)

    Singh, Mandeep; Ulbrich, Pavel; Prokopec, Vadym [Institute of Chemical Technology Prague, Technicka 5, 166 28 Prague 6 (Czech Republic); Svoboda, Pavel [Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 120 00 Prague 2 (Czech Republic); Šantavá, Eva [Institute of Physics ASCR, Na Slovance 2, 182 21 Prague 8 (Czech Republic); Št?pánek, František, E-mail: Frantisek.Stepanek@vscht.cz [Institute of Chemical Technology Prague, Technicka 5, 166 28 Prague 6 (Czech Republic)

    2013-04-15T23:59:59.000Z

    A new non-solution mediated approach to the synthesis of iron oxide nanoparticles directly from solid FeCl{sub 2} salt precursors has been developed. The method is rapid, simple and scalable. The structural properties and the phase of the resulting iron oxide particles has been determined by a range of methods including XRD, FT-IR and Mössbauer spectroscopy, and the phase is shown to be maghemite (?-Fe{sub 2}O{sub 3}). The magnetic properties of the iron oxide particles have been measured using SQUID, confirming superparamagnetic behaviour of the powder and a saturation magnetization of 53.0 emu g{sup ?1} at 300 K. Aqueous dispersions at increasing concentrations were prepared and their heating rate under a 400 kHz alternating magnetic field measured. The specific absorption rate (SAR) of the iron oxide was found to be 84.8 W g{sup ?1}, which makes the material suitable for the formulation of ferrofluids or ferrogels with RF heating properties. - Graphical Abstract: Superparamagnetic iron oxide nanoparticles obtained by a novel vapour phase approach. Highlights: ? Novel vapour phase (non-solvent) approach for iron oxide nanoparticle synthesis. ? Attractive alternative approach to the present co-precipitation method. ? Better magnetic properties with high coercivity of nanoparticles. ? A high specific absorption rate (SAR) for hyperthermia applications.

  16. Millimeter wave ferromagnetic resonance in gallium-substituted ?-iron oxide

    SciTech Connect (OSTI)

    Chao, Liu, E-mail: liu.chao@tufts.edu; Afsar, Mohammed N. [Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155 (United States); Ohkoshi, Shin-ichi [Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2014-05-07T23:59:59.000Z

    In millimeter wave frequency range, hexagonal ferrites with high uniaxial anisotropic magnetic fields are used as absorbers. These ferrites include M-type barium ferrite (BaFe{sub 12}O{sub 19}) and strontium ferrite (SrFe{sub 12}O{sub 19}), which have natural ferromagnetic resonant frequency range from 40 GHz to 60?GHz. However, the higher frequency range lacks suitable materials that support the higher frequency ferromagnetic resonance. A new series of gallium-substituted ?-iron oxides (?-Ga{sub x}Fe{sub 2?x}O{sub 3}) are synthesized which have ferromagnetic resonant frequencies appearing over the frequency range 30 GHz–150 GHz. The ?-Ga{sub x}Fe{sub 2?x}O{sub 3} is synthesized by the combination of reverse micelle and sol-gel techniques or the sol-gel method only. The particle sizes are observed to be smaller than 100 nm. In this paper, the free space magneto-optical approach has been employed to study these newly developed ?-Ga{sub x}Fe{sub 2?x}O{sub 3} particles in millimeter waves. This technique enables to obtain precise transmission spectra to determine the dielectric and magnetic properties of both isotropic and anisotropic ferrites in the millimeter wave frequency range from a single set of direct measurements. The transmittance and absorbance spectra of ?-Ga{sub x}Fe{sub 2?x}O{sub 3} are shown in this paper. Strong ferromagnetic resonances at different frequencies determined by the x parameter are found.

  17. 57106 Federal Register / Vol. 78, No. 180 / Tuesday, September 17, 2013 / Proposed Rules for lead in synthetic iron oxide for

    E-Print Network [OSTI]

    proposes to lower the specification limit for lead in synthetic iron oxide for human food use from 1057106 Federal Register / Vol. 78, No. 180 / Tuesday, September 17, 2013 / Proposed Rules for lead in synthetic iron oxide for human food use. DATES: The color additive petition was filed on July 16, 2013

  18. Fractal Iron Oxide Single-Crystal Dendritic Micro-Pines of Magnetic

    E-Print Network [OSTI]

    Wang, Zhong L.

    Fractal Iron Oxide Single-Crystal Dendritic Micro-Pines of Magnetic a-Fe2O3: Large-Scale Synthesis,2] Fractal structures are common in nature across all length scales, from self-assembled molecules. On the nanoscale, dendritic fractals are one type of hyperbranched structure which are generally formed

  19. Fabrication and characterization of iron oxide nanoparticles reinforced vinyl-ester resin nanocomposites

    E-Print Network [OSTI]

    Guo, John Zhanhu

    reinforced with iron oxide (Fe2O3) nanoparticles were fabricated. The particle func- tionalization with a bi-functional-stability in the functionalized nanoparticles filled vinyl ester resin nanocomposites as compared to the unmodified nanoparticle acid or base. Furthermore, the functional groups of the polymer surrounding the nano- particles enable

  20. Production of Oxygen Gas and Liquid Metal by Electrochemical Decomposition of Molten Iron Oxide

    E-Print Network [OSTI]

    Sadoway, Donald Robert

    on the moon and on Mars for the generation of oxygen along with the production of structural metalsProduction of Oxygen Gas and Liquid Metal by Electrochemical Decomposition of Molten Iron Oxide) is the electrolytic decomposition of a metal oxide, most preferably into liquid metal and oxygen gas. The successful

  1. Structure and Site Evolution of Iron Oxide Catalyst Precursors during the Fischer-Tropsch Synthesis

    E-Print Network [OSTI]

    Iglesia, Enrique

    Structure and Site Evolution of Iron Oxide Catalyst Precursors during the Fischer-Tropsch Synthesis required for the Fischer-Tropsch synthesis (FTS). The local structure and oxidation state of the starting steady-state FTS turnover rates. Introduction The Fischer-Tropsch synthesis (FTS) is an attractive route

  2. Mid-infrared reflectance spectra and optical constants of six iron oxide/oxyhydroxide phases

    E-Print Network [OSTI]

    Glotch, Timothy D.

    iron oxide/oxyhydrox- ide phases--magnetite, maghemite, goethite, lepidocrocite, akaganéite). Synthetic nano- crystalline samples of maghemite, goethite, lepidocrocite, akaganéite, and ferrihydrite were are all derived from nanocystalline synthetic powders and include maghemite (c-Fe2O3), goethite (a

  3. In Situ Groundwater Arsenic Removal Using Iron Oxide-Coated Sand

    E-Print Network [OSTI]

    Yu, Hongxu

    2010-10-12T23:59:59.000Z

    the sand filter suggest that both reversible adsorption and irreversible precipitation are responsible for removing arsenic from the water. Unlike conventional excavate-and-fill permeable reactive barriers, the treatment capacity of our in situ created...

  4. Iron-oxide Aerogel and Xerogel Catalyst Formulations: Characterization by 57Fe Mössbauer and XAFS Spectroscopies

    SciTech Connect (OSTI)

    Huggins, F.; Bali, S; Huffman, G; Eyring, E

    2010-01-01T23:59:59.000Z

    Iron in various iron-oxide aerogel and xerogel catalyst formulations ({ge}85% Fe{sub 2}O{sub 3}; {le}10% K, Co, Cu, or Pd) developed for possible use in Fischer-Tropsch synthesis (FTS) or the water-gas-shift (WGS) reaction has been examined by {sup 57}Fe Moessbauer spectroscopy. The seventeen samples consisted of both as-prepared and calcined aerogels and xerogels and their products after use as catalysts for FTS or the WGS reaction. Complementary XAFS spectra were obtained on the occurrence of the secondary elements in some of the same materials. A broad, slightly asymmetric, two-peak Moessbauer spectrum was obtained from the different as-prepared and calcined catalyst formulations in the majority of cases. Such spectra could only be satisfactorily fit with three quadrupole doublet components, but no systematic trends in the isomer shift and quadrupole splitting parameters and area ratios of the individual components could be discerned that reflected variations in the composition or preparation of the aerogel or xerogel materials. However, significant reductions were noted in the Moessbauer effective thickness (recoilless absorption effect per unit mass of iron) parameter, {chi}{sub eff}/g, determined at room temperature, for aerogels and xerogels compared to bulk iron oxides, reflecting the openness and lack of rigidity of the aerogel and xerogel structures. Moessbauer measurements for two aerogels over the range from 15 to 292 K confirmed the greatly diminished nature of this parameter at room temperature. Major increases in the effective thickness parameter were observed when the open structure of the aerogel or xerogel collapsed during calcination resulting in the formation of iron oxides (hematite, spinel ferrite). Similar structural changes were indicated by increases in this parameter after use of iron-oxide aerogels as catalysts for FTS or the WGS reaction, during which the iron-oxide aerogel was converted to a mixture of nonstoichiometric magnetite and the Haegg carbide, {chi}-Fe{sub 5}C{sub 2}, or nonstoichiometric magnetite, respectively.

  5. Coating of Amorphous Iron Nanoparticles by Long-Chain G. Kataby, A. Ulman, R. Prozorov, and A. Gedanken*,

    E-Print Network [OSTI]

    Prozorov, Ruslan

    Coating of Amorphous Iron Nanoparticles by Long-Chain Alcohols G. Kataby, A. Ulman, R. Prozorov measurements. The superparamagnetic nature of the small coated nanoparticles is detected in the magnetization iron oxide14,15 nanoparticles as substrates for self-assembled coatings with sodium dodecyl sulfate

  6. Evaluation of coal minerals and metal residues as coal-liquefaction catalysts. Final report

    SciTech Connect (OSTI)

    Garg, D.; Givens, E. N.; Schweighardt, F. K.; Tarrer, A. R.; Guin, J. A.; Curtis, C. W.; Huang, W. J.; Shridharani, K.; Clinton, J. H.

    1982-02-01T23:59:59.000Z

    The catalytic activity of various minerals, metallic wastes, and transition metals was investigated in the liquefaction of various coals. The effects of coal type, process variables, coal cleaning, catalyst addition mode, solvent quality, and solvent modification on coal conversion and oil production were also studied. Coal conversion and oil production improved significantly by the addition of pyrite, reduced pyrite, speculite, red mud, flue dust, zinc sulfide, and various transition metal compounds. Impregnation and molecular dispersion of iron gave higher oil production than particulate incorporation of iron. However, the mode of molybdenum addition was inconsequential. Oil production increased considerably both by adding a stoichiometric mixture of iron oxide and pyrite and by simultaneous impregnation of coal with iron and molybdenum. Hydrogenation activity of disposable catalysts decreased sharply in the presence of nitrogen compounds. The removal of heteroatoms from process solvent improved thermal as well as catalytic coal liquefaction. The improvement in oil production was very dramatic with a catalyst.

  7. Cermet composite thermal spray coatings for erosion and corrosion protection in combustion environments of advanced coal-fired boilers. Semiannual technical report, January 14, 1997--August 14, 1997

    SciTech Connect (OSTI)

    Schorr, B.S.; Levin, B.F.; DuPont, J.N.; Marder, A.R.

    1997-08-31T23:59:59.000Z

    Research is presently being conducted to determine the optimum ceramic/metal combination in thermally sprayed metal matrix composite coatings for erosion and corrosion resistance in new coal-fired boilers. The research will be accomplished by producing model cermet composites using powder metallurgy and electrodeposition methods in which the effect of ceramic/metal combination for the erosion and corrosion resistance will be determined. These results will provide the basis for determining the optimum hard phase constituent size and volume percent in thermal spray coatings. Thermal spray coatings will be applied by our industrial sponsor and tested in our erosion and corrosion laboratories. Bulk powder processed Ni-Al{sub 2}O{sub 3} composites were produced at Idaho National Engineering Laboratory. The composite samples contained 0, 21, 27, 37, and 45 volume percent Al{sub 2}O{sub 3} with an average particle size of 12 um. Also, to deposit model Ni-Al{sub 2}O{sub 3} coatings, an electrodeposition technique was developed and coatings with various volume fractions (0-35%) of Al{sub 2}O{sub 3} were produced. The powder and electrodeposition processing of Ni-Al{sub 2}O{sub 3} Composites provide the ability to produce two phase microstructure without changing the microstructure of the matrix material. Therefore, the effect of hard second phase particles size and volume fraction on erosion resistance could be analyzed.

  8. Reduction phases of thin iron-oxide nanowires upon thermal treatment and Li exposure

    SciTech Connect (OSTI)

    Angelucci, Marco, E-mail: marco.angelucci@gmail.com; Frau, Eleonora; Grazia Betti, Maria [Dipartimento di Fisica, Università di Roma La Sapienza, Piazzale Aldo Moro 2, I-00185 Roma (Italy); Hassoun, Jusef; Hong, Inchul; Panero, Stefania [Dipartimento di Chimica, Università di Roma La Sapienza, Piazzale Aldo Moro 2, I-00185 Roma (Italy); Scrosati, Bruno [IIT, Istituto Italiano di Tecnologia, Genova (Italy); Mariani, Carlo, E-mail: carlo.mariani@uniroma1.it [Dipartimento di Fisica, CNISM, CNIS, Università di Roma La Sapienza, Piazzale Aldo Moro 2, I-00185 Roma (Italy)

    2014-04-28T23:59:59.000Z

    Iron oxide nanostructures, a promising alternative to carbon-based anode in lithium-ion batteries, can be produced using a hard template route. This procedure guarantees the formation of Fe{sub 2}O{sub 3} nanowires with comparable diameter and size (average diameter 8?nm) with a dominant cubic ?-phase at the surface. Lithium exposure of the iron oxide nanowires in ultra-high-vacuum (UHV) conditions induces reduction of the Fe ion, leading to a Fe{sub 3}O{sub 4} and then to a Fe{sup 2+} phase, as determined by means of core-level photoemission spectroscopy. Mild annealing of Fe{sub 2}O{sub 3} in UHV determines an oxygen content reduction for the nanowires at lower temperature with respect to the bulk phase. The morphology and the evolution of the electronic properties upon reduction have been compared to those of micro-sized bulk-like grains, to unravel the role of the reduced size and surface-volume ratio.

  9. Reduction of iron-oxide-carbon composites: part II. Rates of reduction of composite pellets in a rotary hearth furnace simulator

    SciTech Connect (OSTI)

    Halder, S.; Fruehan, R.J. [Praxair Inc., Tonawanda, NY (United States). Praxair Technological Center

    2008-12-15T23:59:59.000Z

    A new ironmaking concept is being proposed that involves the combination of a rotary hearth furnace (RHF) with an iron-bath smelter. The RHF makes use of iron-oxide-carbon composite pellets as the charge material and the final product is direct-reduced iron (DRI) in the solid or molten state. This part of the research includes the development of a reactor that simulated the heat transfer in an RHF. The external heat-transport and high heating rates were simulated by means of infrared (IR) emitting lamps. The reaction rates were measured by analyzing the off-gas and computing both the amount of CO and CO{sub 2} generated and the degree of reduction. The reduction times were found to be comparable to the residence times observed in industrial RHFs. Both artificial ferric oxide (PAH) and naturally occurring hematite and taconite ores were used as the sources of iron oxide. Coal char and devolatilized wood charcoal were the reductants. Wood charcoal appeared to be a faster reductant than coal char. However, in the PAH-containing pellets, the reverse was found to be true because of heat-transfer limitations. For the same type of reductant, hematite-containing pellets were observed to reduce faster than taconite-containing pellets because of the development of internal porosity due to cracking and fissure formation during the Fe2O{sub 3}-to-Fe3O{sub 4} transition. This is, however, absent during the reduction of taconite, which is primarily Fe3O{sub 4}. The PAH-wood-charcoal pellets were found to undergo a significant amount of swelling at low-temperature conditions, which impeded the external heat transport to the lower layers. If the average degree of reduction targeted in an RHF is reduced from 95 to approximately 70 pct by coupling the RHF with a bath smelter, the productivity of the RHF can be enhanced 1.5 to 2 times. The use of a two- or three-layer bed was found to be superior to that of a single layer, for higher productivities.

  10. Fabrication and Performance of Ni-YSZ Anode Supported Cell for Coal Derived Syngas Application by Tape Casting and Spin Coating

    SciTech Connect (OSTI)

    Gong, Mingyang (West Virginia U., Morgantown WV); Jiang, Yinglu (West Virginia U., Morgantown WV); Johnson, C.D.; Xingbo, Liu (West Virginia U., Morgantown WV)

    2007-10-01T23:59:59.000Z

    Ni-YSZ anode supported cell has been developed for direct utilization of coal derived syngas as fuel in the temperature range of 700-850° C. The porous Ni-YSZ anode substrate was prepared based on processes of slip casting and lamination of anode tape. Then thin-film YSZ electrolyte was deposited on pre-sintered anode substrate via a colloidal spin coating technique and an optimized final sintering route. Dense and crackfree YSZ electrolyte was successfully obtained after sintering at 1440C for 4hrs. Processing factors like pre-sintering of anode, solvent, coating cycles and sintering route on the final properties of YSZ film was studied. A power density of 0.62W/cm2 has been achieved for the anode supported cell tested in 97%H2/3%H2O at 800°C. EIS test results indicated the cell performance was essentially influenced by interfacial resistance and charge transfer process.

  11. Plant responses to phosphorus-deficiency stress: the role of organic acids in P mobilization from iron oxide and P acquisition by sorghum

    E-Print Network [OSTI]

    Johnson, Sarah Elizabeth

    1999-01-01T23:59:59.000Z

    -deficiency stress are organic-acid exudation from the roots and increased phosphatase activity. Organic-acid-induced P release from iron-oxide surfaces was studied using synthetic iron oxides. The amounts of P released and Fe dissolved from ferrihydrite and goethite...

  12. Selective dissolution of magnetic iron oxides in the acidammonium oxalate/ferrous iron extraction method--I. Synthetic samples

    E-Print Network [OSTI]

    Utrecht, Universiteit

    for specific dissolution of magnetic minerals from soils and sediments. To prevent changes in the extractionSelective dissolution of magnetic iron oxides in the acid­ammonium oxalate/ferrous iron extraction the pedogenic magnetic fractions. Sequential extraction techniques have therefore been incorporated

  13. Efficient recovery of nano-sized iron oxide particles from synthetic acid-mine drainage (AMD) water using fuel cell

    E-Print Network [OSTI]

    - particles of iron oxide that, upon drying, are transformed to goethite (a-FeOOH). This approach therefore (50e1000 mg/L). The most efficient production of goethite and power occurred with pH ¼ 6.3 and Fe

  14. Durable zinc ferrite sorbent pellets for hot coal gas desulfurization

    DOE Patents [OSTI]

    Jha, Mahesh C. (Arvada, CO); Blandon, Antonio E. (Thornton, CO); Hepworth, Malcolm T. (Edina, MN)

    1988-01-01T23:59:59.000Z

    Durable, porous sulfur sorbents useful in removing hydrogen sulfide from hot coal gas are prepared by water pelletizing a mixture of fine zinc oxide and fine iron oxide with inorganic and organic binders and small amounts of activators such as sodium carbonate and molybdenite; the pellets are dried and then indurated at a high temperature, e.g., 1800.degree. C., for a time sufficient to produce crush-resistant pellets.

  15. Exchange bias in Core-Shell Iron-Iron Oxide Nanoclusters

    SciTech Connect (OSTI)

    Kaur, Maninder; McCloy, John S.; Qiang, You

    2013-04-03T23:59:59.000Z

    An exchange bias study has been performed on core-shell iron-iron oxide (Fe-Fe3O4) nanoclusters (NCs) of size 11 nm and 14 nm carrying a different core to shell ratio. NCs show complicated behaviors due to competition between interfacial exchange and Zeeman energy in the presence of magnetic field during cooling. These behaviors are accompanied by the evolution of size- dependent cluster structures in the ferromagnetic-core/ferri- or antiferro-magnetic-shell. Smaller clusters have larger coercive field, exchange bias field, and vertical magnetization shift due to the greater contribution from frozen spins of shell/interfaces. These smaller clusters thus also show more dramatic changes with the training effect. Both sizes of clusters display an additional anomaly of the upper part of the hysteresis loop at 10 K under low cooling field (0.1 kOe). This anomaly decreases with number of loop cycles with same field, and disappear with large cooling field (> 0.1 kOe). It may be caused by the competition between the magnetization reversal and the magnetostatic interactions.

  16. WATER-GAS SHIFT KINETICS OVER IRON OXIDE CATALYSTS AT MEMBRANE REACTOR CONDITIONS

    SciTech Connect (OSTI)

    Carl R.F. Lund

    2001-08-10T23:59:59.000Z

    This report covers the second year of a project investigating water-gas shift catalysts for use in membrane reactors. It has been established that a simple iron high temperature shift catalyst becomes ineffective in a membrane reactor because the reaction rate is severely inhibited by the build-up of the product CO{sub 2}. During the past year, an improved microkinetic model for water-gas shift over iron oxide was developed. Its principal advantage over prior models is that it displays the correct asymptotic behavior at all temperatures and pressures as the composition approaches equilibrium. This model has been used to explore whether it might be possible to improve the performance of iron high temperature shift catalysts under conditions of high CO{sub 2} partial pressure. The model predicts that weakening the surface oxygen bond strength by less than 5% should lead to higher catalytic activity as well as resistance to rate inhibition at higher CO{sub 2} partial pressures. Two promoted iron high temperature shift catalysts were studied. Ceria and copper were each studied as promoters since there were indications in the literature that they might weaken the surface oxygen bond strength. Ceria was found to be ineffective as a promoter, but preliminary results with copper promoted FeCr high temperature shift catalyst show it to be much more resistant to rate inhibition by high levels of CO{sub 2}. Finally, the performance of sulfided CoMo/Al{sub 2}O{sub 3} catalysts under conditions of high CO{sub 2} partial pressure was simulated using an available microkinetic model for water-gas shift over this catalyst. The model suggests that this catalyst might be quite effective in a medium temperature water-gas shift membrane reactor, provided that the membrane was resistant to the H{sub 2}S that is required in the feed.

  17. Final Report: The Impact of Carbonate on Surface Protonation, Electron Transfer and Crystallization Reactions in Iron Oxide Nanoparticles and Colloids

    SciTech Connect (OSTI)

    Dixon, David Adams [The University of Alabama

    2013-07-02T23:59:59.000Z

    This project addresses key issues of importance in the geochemical behavior of iron oxides and in the geochemical cycling of carbon and iron. For Fe, we are specifically studying the influence of carbonate on electron transfer reactions, solid phase transformations, and the binding of carbonate to reactive sites on the edges of particles. The emphasis on carbonate arises because it is widely present in the natural environment, is known to bind strongly to oxide surfaces, is reactive on the time scales of interest, and has a speciation driven by acid-base reactions. The geochemical behavior of carbonate strongly influences global climate change and CO{sub 2} sequestration technologies. Our goal is to answer key questions with regards to specific site binding, electron transfer reactions, and crystallization reactions of iron oxides that impact both the geochemical cycling of iron and CO{sub 2} species. Our work is focused on the molecular level description of carbonate chemistry in solution including the prediction of isotope fractionation factors. We have also done work on critical atmospheric species.

  18. Synthesis of high intrinsic loss power aqueous ferrofluids of iron oxide nanoparticles by citric acid-assisted hydrothermal-reduction route

    SciTech Connect (OSTI)

    Behdadfar, Behshid, E-mail: bbehdadfar@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Kermanpur, Ahmad [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Sadeghi-Aliabadi, Hojjat [School of Pharmacy, Isfahan Pharmaceutical Research Center, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Morales, Maria del Puerto [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco 28049, Madrid (Spain); Mozaffari, Morteza [Department of Physics, Razi University, Kermanshah (Iran, Islamic Republic of)

    2012-03-15T23:59:59.000Z

    Monodispersed aqueous ferrofluids of iron oxide nanoparticle were synthesized by hydrothermal-reduction route. They were characterized by X-ray diffraction analysis, Fourier transform infrared spectroscopy, scanning and transmission electron microscopy and dynamic light scattering. The results showed that certain concentrations of citric acid (CA) are required to obtain only magnetic iron oxides with mean particle sizes around 8 nm. CA acts as a modulator and reducing agent in iron oxide formation which controls nanoparticle size. The XRD, magnetic and heating measurements showed that the temperature and time of hydrothermal reaction can affect the magnetic properties of obtained ferrofluids. The synthesized ferrofluids were stable at pH 7. Their mean hydrodynamic size was around 80 nm with polydispersity index (PDI) of 0.158. The calculated intrinsic loss power (ILP) was 9.4 nHm{sup 2}/kg. So this clean and cheap route is an efficient way to synthesize high ILP aqueous ferrofluids applicable in magnetic hyperthermia. - Graphical abstract: Monodispersed aqueous ferrofluids of iron oxide nanoparticles were synthesized by hydrothermal-reduction method with citric acid as reductant which is an efficient way to synthesize aqueous ferrofluids applicable in magnetic hyperthermia. Highlights: Black-Right-Pointing-Pointer Aqueous iron oxide ferrofluids were synthesized by hydrothermal-reduction route. Black-Right-Pointing-Pointer Citric acid acted as reducing agent and surfactant in the route. Black-Right-Pointing-Pointer This is a facile, low energy and environmental friendly route. Black-Right-Pointing-Pointer The aqueous iron oxide ferrofluids were monodispersed and stable at pH of 7. Black-Right-Pointing-Pointer The calculated intrinsic loss power of the synthesized ferrofluids was very high.

  19. Cermet composite thermal spray coatings for erosion and corrosion protection in combustion environments of advanced coal-fired boilers. Semi-annual technical progress report, February 1996--July 1996

    SciTech Connect (OSTI)

    Banovic, S.W.; Levin, B.F.; DuPont, J.N.; Marder, A.R.

    1996-08-01T23:59:59.000Z

    Present coal-fired boiler environments remain hostile to the materials of choice since corrosion and erosion can be a serious problem in certain regions of the boiler. Recently, the Clean Air Act Amendment is requiring electric power plants to reduce NO{sub x}, emissions to the environment. To reduce NO{sub x}, emissions, new low NO{sub x}, combustors are utilized which burn fuel with a substoichiometric amount of oxygen (i.e., low oxygen partial pressure). In these low NO{sub x} environments, H{sub 2}S gas is a major source of sulfur. Due to the sulfidation process, corrosion rates in reducing parts of boilers have increased significantly and existing boiler tube materials do not always provide adequate corrosion resistance. Combined attack due to corrosion and erosion is a concern because of the significantly increased operating costs which result in material failures. One method to combat corrosion and erosion in coal-fired boilers is to apply coatings to the components subjected to aggressive environments. Thermal spray coatings, a cermet composite comprised of hard ceramic phases of oxide and/or carbide in a metal binder, have been used with some success as a solution to the corrosion and erosion problems in boilers. However, little is known on the effect of the volume fraction, size, and shape of the hard ceramic phase on the erosion and corrosion resistance of the thermally sprayed coatings. It is the objective of this research to investigate metal matrix composite (cermet) coatings in order to determine the optimum ceramic/metal combination that will give the best erosion and corrosion resistance in new advanced coal-fired boilers.

  20. DOI: 10.1002/cmdc.200800091 Superparamagnetic Iron Oxide NanoparticleAptamer Bioconjugates for

    E-Print Network [OSTI]

    Zhang, Liangfang

    cells.[25,26] Additionally, we have shown that the A10 aptamer can be used to deliver doxorubi- cin (Dox), a chemotherapeutic agent, by intercalation of Dox into the CG sequence in the aptamer.[23,27,28] By combining, and acting as a carrier for Dox; b) TCL-SPION coated with a carboxylic acid-PEG-derived, anti-biofouling poly

  1. Synthesis of Functionalized Superparamagnetic Iron Oxide Nanoparticles from a Common Precursor and their Application as Heavy Metal and Actinide Sorbents

    SciTech Connect (OSTI)

    Warner, Marvin G.; Warner, Cynthia L.; Addleman, Raymond S.; Droubay, Timothy C.; Engelhard, Mark H.; Davidson, Joseph D.; Cinson, Anthony D.; Nash, Michael A.; Yantasee, Wassana

    2009-10-12T23:59:59.000Z

    We describe the use of a simple and versatile technique to generate a series of ligand stabilized iron oxide nanoparticles containing different ? functionalities with specificities toward heavy metals and actinides at the periphery of the stabilizing ligand shell from a common, easy to synthesize precursor nanoparticle. The resulting nanoparticles are designed to contain affinity ligands that make them excellent sorbent materials for a variety of heavy metals from contaminated aqueous systems such as river water and ground water as well as actinides from clinical samples such as blood and urine. Functionalized superparamagnetic nanoparticles make ideal reagents for extraction of heavy metal and actinide contaminants from environmental and clinical samples since they are easily removed from the media once bound to the contaminant by simply applying a magnetic field. In addition, these engineered nanomaterials have an inherently high active surface area (often > 100 m2/g) making them ideal sorbent materials for these types of applications

  2. Cermet composite thermal spray coatings for erosion and corrosion protection in combustion environments of advanced coal-fired boilers. Semiannual technical progress report, August 14, 1996--January 14, 1997

    SciTech Connect (OSTI)

    Levin, B.F.; DuPont, J.N.; Marder, A.R.

    1997-02-01T23:59:59.000Z

    Research is presently being conducted to determine the optimum ceramic/metal combination in thermally sprayed metal matrix composite coatings for erosion and corrosion resistance in new coal-fired boilers. The research will be accomplished by producing model cermet composites using powder metallurgy and electrodeposition methods in which the effect of ceramic/metal combination for the erosion and corrosion resistance will be determined. These results will provide the basis for determining the optimum hard phase constituent size and volume percent in thermal spray coatings. Thermal spray coatings will be applied by our industrial sponsor and tested in our erosion and corrosion laboratories. In the first six months of this project, bulk powder processed Ni-Al{sub 2}O{sub 3} composites were produced at Idaho National Engineering Laboratory. The results of microstructural characterization of these alloys were presented in the first semiannual report. The composite samples contained 0, 21, 27, 37, and 45 volume percent Al{sub 2}O{sub 3} with an average particle size of 12 um. An increase in the volume fraction of alumina in the nickel matrix from 0 to 45% led to a significant increase in hardness of these composites.

  3. Air/water oxydesulfurization of coal: laboratory investigation

    SciTech Connect (OSTI)

    Warzinski, R. P.; Friedman, S.; Ruether, J. A.; LaCount, R. B.

    1980-08-01T23:59:59.000Z

    Air/water oxidative desulfurization has been demonstrated in autoclave experiments at the Pittsburgh Energy Technology Center for various coals representative of the major US coal basins. This experimentation has shown that the reaction proceeds effectively for pulverized coals at temperatures of 150 to 200/sup 0/C with air at a total system pressure of 500 to 1500 psig. Above 200/sup 0/C, the loss of coal and product heating value increases due to oxidative consumption of carbon and hydrogen. The pyritic sulfur solubilization reactions are typically complete (95 percent removal) within 15 to 40 minutes at temperature; however, significant apparent organic sulfur removal requires residence times of up to 60 minutes at the higher temperatures. The principal products of the reaction are sulfuric acid, which can be neutralized with limestone, and iron oxide. Under certain conditions, especially for high pyritic sulfur coals, the precipitation of sulfur-containing compounds from the products of the pyrite reaction may cause anomalous variations in the sulfur form data. The influence of various parameters on the efficiency of sulfur removal from coal by air/water oxydesulfurization has been studied.

  4. The growth of epitaxial iron oxides on platinum (111) as studied by X-ray photoelectron diffraction, scanning tunneling microscopy, and low energy electron diffraction

    SciTech Connect (OSTI)

    Kim, Y.J.

    1995-05-01T23:59:59.000Z

    Three complementary surface structure probes, x-ray photoelectron diffraction (XPD), scanning tunneling microscopy (STM), and low-energy electron diffraction (LEED) have been combined in a single instrument. This experimental system has been utilized to study the structure and growth mechanisms of iron oxide films on Pt(111); these films were formed by first depositing a single overlayer of Fe with a certain coverage in monolayers (ML`s), and then thermally oxidizing it in an oxygen atmosphere. For films up to {approximately}1 ML in thickness, a bilayer of Fe and O similar to those in FeO(111) is found to form. In agreement with prior studies, STM and LEED show this to be an incommensurate oxide film forming a lateral superlattice with short- and long-range periodicities of {approximately}3.1 {Angstrom} and {approximately}26.0 {Angstrom}. XPD in addition shows a topmost oxygen layer to be relaxed inward by -0.6 {Angstrom} compared to bulk FeO(111), and these are new structural conclusions. The oxygen stacking in the FeO(111) bilayer is dominated by one of two possible binding sites. For thicker iron oxide films from 1.25 ML to 3.0 ML, the growth mode is essentially Stranski-Krastanov: iron oxide islands form on top of the FeO(111) bilayer mentioned above. For iron oxide films of 3.0 ML thickness, x-ray photoelectron spectroscopy (XPS) yields an Fe 2p{sub 3/2} binding energy and an Fe:O stoichiometry consistent with the presence of Fe{sub 3}O{sub 4}. Our XPD data further prove this overlayer to be Fe{sub 3}O{sub 4}(111)-magnetite in two almost equally populated domains with a 180{degrees} rotation between them. The structural parameters for this Fe{sub 3}O{sub 4} overlayer generally agree with those of a previous LEED study, except that we find a significant difference in the first Fe-O interplanar spacing. This work demonstrates the considerable benefits to be derived by using this set of complementary surface structure probes in such epitaxial growth studies.

  5. Coal pump

    DOE Patents [OSTI]

    Bonin, John H. (Sunnyvale, CA); Meyer, John W. (Palo Alto, CA); Daniel, Jr., Arnold D. (Alameda County, CA)

    1983-01-01T23:59:59.000Z

    A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

  6. NETL: Coal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Major Demonstrations Major Demonstrations Since 1985, we have helped fund commercial-scale clean coal technology demonstration projects. ICCS | CCPI | PPII | CCTDP | FutureGen...

  7. Uranium oxide--iron oxide mixed aerosol experiments in steam--air atmospheres: NSPP Tests 611, 612, 613, and 631, Data record report

    SciTech Connect (OSTI)

    Tobias, M.L.; Adams, R.E.

    1988-01-01T23:59:59.000Z

    This data record report summarizes the results from three tests involving mixed aerosols of uranium oxide and iron oxide in a steam-air environment and one test in a dry environment. This research, sponsored by the US Nuclear Regulatory Commission, was conducted in the Nuclear Safety Pilot Plant at the Oak Ridge National Laboratory. The purpose of this project is to provide a data base on the behavior of aerosols in containment under conditions assumed to occur in postulated LWR accident sequences;this data base will provide experimental validation of aerosol behavioral codes under development. In the report, a brief description is given of each test together with the results in the form of tables and graphs. Included are data on aerosol mass concentration, aerosol fallout and plateout rates, total mass fallout and plateout, aerosol particle size, vessel atmosphere pressure, vessel atmosphere temperatures, temperature gradients near the vessel wall, and steam condensation rates on the vessel wall.

  8. Electrosteric enhanced stability of functional sub-10 nm cerium and iron oxide particles in cell culture medium

    E-Print Network [OSTI]

    B. Chanteau; J. Fresnais; J. -F. Berret

    2009-07-06T23:59:59.000Z

    Applications of nanoparticles in biology require that the nanoparticles remain stable in solutions containing high concentrations of proteins and salts, as well as in cell culture media. In this work, we developed simple protocols for the coating of sub-10 nm nanoparticles and evaluated the colloidal stability of dispersions in various environments. Ligands (citric acid), oligomers (phosphonate-terminated poly(ethylene oxide)) and polymers (poly(acrylic acid)) were used as nanometer-thick adlayers for cerium (CeO2) and iron (gamma-Fe2O3) oxide nanoparticles. The organic functionalities were adsorbed on the particle surfaces via physical (electrostatic) forces. Stability assays at high ionic strength and in cell culture media were performed by static and dynamic light scattering. Among the three coating examined, we found that only poly(acrylic acid) fully preserved the dispersion stability on the long term (> weeks). The improved stability was explained by the multi-point attachments of the chains onto the particle surface, and by the adlayer-mediated electrosteric interactions. These results suggest that anionically charged polymers represent an effective alternative to conventional coating agents.

  9. Iron distribution among phases in high- and low-sulfur coal fly ash

    SciTech Connect (OSTI)

    Hower, J.C.; Graham, U.M.; Rathbone, R.F. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research; Dyar, M.D.; Taylor, M.E. [West Chester Univ., PA (United States). Dept. of Geology and Astronomy

    1995-12-31T23:59:59.000Z

    Moessbauer spectroscopy, reflected-light optical microscopy, scanning-electron microscopy, wet chemical, and X-ray diffraction studies were conducted on six fly ash samples. The fly ashes, representing the combustion by-products of coals with total sulfur contents of less than 2% to greater than 4%, ranged from 17.6 to 32.0% Fe{sub 2}O{sub 3} by XRF analysis. Wet chemical analysis was used to determine the Fe{sup 3+}/{summation}Fe content of the ashes, which ranged from 72% to 83%. Optical analysis of the ashes indicated that the spinel, encompassing iron oxides of various compositions, ranges from 4.0 to 12.6% (vol.). Moessbauer analyses confirmed the presence of three Fe-bearing phases: magnetite, hematite (possibly of two different compositions), and glass. The variation in the Fe-oxidation state follows the variation in the sulfur, consequently pyrite, content of the feed coal.

  10. The Wilsonville Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama

    SciTech Connect (OSTI)

    Not Available

    1990-05-01T23:59:59.000Z

    The investigation of various Two-Stage Liquefaction (TSL) process configurations was conducted at the Wilsonville Advanced Coal Liquefaction R D Facility between July 1982 and September 1986. The facility combines three process units. There are the liquefaction unit, either thermal (TLU) or catalytic, for the dissolution of coal, the Critical Solvent Deashing unit (CSD) for the separation of ash and undissolved coal, and a catalytic hydrogenation unit (HTR) for product upgrading and recycle process solvent replenishment. The various TSL process configurations were created by changing the process sequence of these three units and by recycling hydrotreated solvents between the units. This report presents a description of the TSL configurations investigated and an analysis of the operating and performance data from the period of study. Illinois No. 6 Burning Star Mine coal Wyodak Clovis Point Mine coal were processed. Cobalt-molybdenum and disposable iron-oxide catalysts were used to improve coal liquefaction reactions and nickel-molybdenum catalysts were used in the hydrotreater. 28 refs., 31 figs., 13 tabs.

  11. Coal industry annual 1994

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    This report presents data on coal consumption, distribution, coal stocks, quality, prices, coal production information, and emissions for a wide audience.

  12. An investigation of reaction parameters on geochemical storage of non-pure CO2 streams in iron oxides-bearing formations

    SciTech Connect (OSTI)

    Garcia, Susana; Liu, Q.; Bacon, Diana H.; Maroto-Valer, M. M.

    2014-08-26T23:59:59.000Z

    Hematite deposit that is the main FeIII-bearing mineral in sedimentary red beds was proposed as a potential host repository for converting CO2 into carbonate minerals such as siderite (FeCO3), when CO2–SO2 gas mixtures are co-injected. This work investigated CO2 mineral trapping using hematite and sensitivity of the reactive systems to different parameters, including particle size, gas composition, temperature, pressure, and solid-to-liquid ratio. Experimental and modelling studies of hydrothermal experiments were conducted, which emulated a CO2 sequestration scenario by injecting CO2-SO2 gas streams into a NaCl-NaOH brine hosted in iron oxide-containing aquifer. This study provides novel information on the mineralogical changes and fluid chemistry derived from the co-injection of CO2-SO2 gas mixtures in hematite deposit. It can be concluded that the amount of siderite precipitate depends primarily on the SO2 content of the gas stream. Increasing SO2 content in the system could promote the reduction of Fe3+ from the hematite sample to Fe2+, which will be further available for its precipitation as siderite. Moreover, siderite precipitation is enhanced at low temperatures and high pressures. The influence of the solid to liquid ratio on the overall carbonation reaction suggests that the conversion increases if the system becomes more diluted.

  13. Aluminide coatings

    DOE Patents [OSTI]

    Henager, Jr; Charles, H [Kennewick, WA; Shin, Yongsoon [Richland, WA; Samuels, William D [Richland, WA

    2009-08-18T23:59:59.000Z

    Disclosed herein are aluminide coatings. In one embodiment coatings are used as a barrier coating to protect a metal substrate, such as a steel or a superalloy, from various chemical environments, including oxidizing, reducing and/or sulfidizing conditions. In addition, the disclosed coatings can be used, for example, to prevent the substantial diffusion of various elements, such as chromium, at elevated service temperatures. Related methods for preparing protective coatings on metal substrates are also described.

  14. DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS

    E-Print Network [OSTI]

    Wrathall, James Anthony

    2011-01-01T23:59:59.000Z

    Pollutants Associated With Coal Combustion. • E.P.A.Control Guidelines for Coal-Derived Pollutants .Forms of Sulfur in Coal • . . . . Coal Desulfurization

  15. Coal industry annual 1997

    SciTech Connect (OSTI)

    NONE

    1998-12-01T23:59:59.000Z

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  16. Coal Industry Annual 1995

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  17. Coal industry annual 1996

    SciTech Connect (OSTI)

    NONE

    1997-11-01T23:59:59.000Z

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  18. Microbial solubilization of coal

    DOE Patents [OSTI]

    Strandberg, G.W.; Lewis, S.N.

    1988-01-21T23:59:59.000Z

    The present invention relates to a cell-free preparation and process for the microbial solubilization of coal into solubilized coal products. More specifically, the present invention relates to bacterial solubilization of coal into solubilized coal products and a cell-free bacterial byproduct useful for solubilizing coal. 5 tabs.

  19. Efficient laser-induced 6-8 keV x-ray production from iron oxide aerogel and foil-lined cavity targets

    SciTech Connect (OSTI)

    Perez, F.; Kay, J. J.; Patterson, J. R.; Kane, J.; May, M.; Emig, J.; Colvin, J.; Gammon, S.; Satcher, J. H. Jr.; Fournier, K. B. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Villette, B.; Girard, F.; Reverdin, C. [CEA DAM DIF, F-91297 Arpajon (France); Sorce, C. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); University of Rochester - Laboratory for Laser Energetics, 250 E. River Rd, Rochester, New York 14623-1299 (United States); Jaquez, J. [General Atomics, San Diego, California 92121 (United States)

    2012-08-15T23:59:59.000Z

    The performance of new iron-based laser-driven x-ray sources has been tested at the OMEGA laser facility for production of x rays in the 6.5-8.5 keV range. Two types of targets were experimentally investigated: low-density iron oxide aerogels (density 6-16 mg/cm{sup 3}) and stainless steel foil-lined cavity targets (steel thickness 1-5 {mu}m). The targets were irradiated by 40 beams of the OMEGA laser (500 J/beam, 1 ns pulse, wavelength 351 nm). All targets showed good coupling with the laser, with <5% of the incident laser light backscattered by the resulting plasma in all cases (typically <2.5%). The aerogel targets produced T{sub e}=2 to 3 keV, n{sub e}=0.12-0.2 critical density plasmas yielding a 40%-60% laser-to-x-ray total conversion efficiency (CE) (1.2%-3% in the Fe K-shell range). The foil cavity targets produced T{sub e}{approx} 2 keV, n{sub e}{approx} 0.15 critical density plasmas yielding a 60%-75% conversion efficiency (1.6%-2.2% in the Fe K-shell range). Time-resolved images illustrate that the volumetric heating of low-density aerogels allow them to emit a higher K-shell x-ray yield even though they contain fewer Fe atoms. However, their challenging fabrication process leads to a larger shot-to-shot variation than cavity targets.

  20. Clean coal

    SciTech Connect (OSTI)

    Liang-Shih Fan; Fanxing Li [Ohio State University, OH (United States). Dept. of Chemical and Biomolecular Engineering

    2006-07-15T23:59:59.000Z

    The article describes the physics-based techniques that are helping in clean coal conversion processes. The major challenge is to find a cost- effective way to remove carbon dioxide from the flue gas of power plants. One industrially proven method is to dissolve CO{sub 2} in the solvent monoethanolamine (MEA) at a temperature of 38{sup o}C and then release it from the solvent in another unit when heated to 150{sup o}C. This produces CO{sub 2} ready for sequestration. Research is in progress with alternative solvents that require less energy. Another technique is to use enriched oxygen in place of air in the combustion process which produces CO{sub 2} ready for sequestration. A process that is more attractive from an energy management viewpoint is to gasify coal so that it is partially oxidized, producing a fuel while consuming significantly less oxygen. Several IGCC schemes are in operation which produce syngas for use as a feedstock, in addition to electricity and hydrogen. These schemes are costly as they require an air separation unit. Novel approaches to coal gasification based on 'membrane separation' or chemical looping could reduce the costs significantly while effectively capturing carbon dioxide. 1 ref., 2 figs., 1 photo.

  1. DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS

    E-Print Network [OSTI]

    Wrathall, James Anthony

    2011-01-01T23:59:59.000Z

    flow sheet of a K-T coal gasification complex for producingslag or bottom ash, coal gasification, or coal liquefactionCoal (Ref. 46). COAL PREPARATION GASIFICATION 3 K·T GASI FI

  2. Coal liquefaction and hydrogenation

    DOE Patents [OSTI]

    Schindler, Harvey D. (Fair Lawn, NJ); Chen, James M. (Edison, NJ)

    1985-01-01T23:59:59.000Z

    Disclosed is a coal liquefaction process using two stages. The first stage liquefies the coal and maximizes the product while the second stage hydrocracks the remainder of the coal liquid to produce solvent.

  3. Coal industry annual 1993

    SciTech Connect (OSTI)

    Not Available

    1994-12-06T23:59:59.000Z

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  4. Coal combustion science

    SciTech Connect (OSTI)

    Hardesty, D.R. (ed.); Baxter, L.L.; Fletcher, T.H.; Mitchell, R.E.

    1990-11-01T23:59:59.000Z

    The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: coal devolatilization, coal char combustion, and fate of mineral matter during coal combustion. 91 refs., 40 figs., 9 tabs.

  5. Coal Mining (Iowa)

    Broader source: Energy.gov [DOE]

    These sections describe procedures for coal exploration and extraction, as well as permitting requirements relating to surface and underground coal mining. These sections also address land...

  6. NETL: Coal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry'sMcGuireNETLCareersCoal

  7. Formulations for iron oxides dissolution

    DOE Patents [OSTI]

    Horwitz, Earl P. (Argonne, IL); Chiarizia, Renato (Argonne, IL)

    1992-01-01T23:59:59.000Z

    A mixture of a di- or polyphosphonic acid and a reductant wherein each is present in a sufficient amount to provide a synergistic effect with respect to the dissolution of metal oxides and optionally containing corrosion inhibitors and pH adjusting agents.

  8. Coal systems analysis

    SciTech Connect (OSTI)

    Warwick, P.D. (ed.)

    2005-07-01T23:59:59.000Z

    This collection of papers provides an introduction to the concept of coal systems analysis and contains examples of how coal systems analysis can be used to understand, characterize, and evaluate coal and coal gas resources. Chapter are: Coal systems analysis: A new approach to the understanding of coal formation, coal quality and environmental considerations, and coal as a source rock for hydrocarbons by Peter D. Warwick. Appalachian coal assessment: Defining the coal systems of the Appalachian Basin by Robert C. Milici. Subtle structural influences on coal thickness and distribution: Examples from the Lower Broas-Stockton coal (Middle Pennsylvanian), Eastern Kentucky Coal Field, USA by Stephen F. Greb, Cortland F. Eble, and J.C. Hower. Palynology in coal systems analysis The key to floras, climate, and stratigraphy of coal-forming environments by Douglas J. Nichols. A comparison of late Paleocene and late Eocene lignite depositional systems using palynology, upper Wilcox and upper Jackson Groups, east-central Texas by Jennifer M.K. O'Keefe, Recep H. Sancay, Anne L. Raymond, and Thomas E. Yancey. New insights on the hydrocarbon system of the Fruitland Formation coal beds, northern San Juan Basin, Colorado and New Mexico, USA by W.C. Riese, William L. Pelzmann, and Glen T. Snyder.

  9. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01T23:59:59.000Z

    is produced via coal gasification, then, depending on thenot be amenable to coal gasification and, thus, Eastern coalto represent a coal-to- hydrogen gasification process that

  10. Coal data: A reference

    SciTech Connect (OSTI)

    Not Available

    1995-02-01T23:59:59.000Z

    This report, Coal Data: A Reference, summarizes basic information on the mining and use of coal, an important source of energy in the US. This report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Supplemental Figures and Tables`` contains statistics, graphs, maps, and other illustrations that show trends, patterns, geographic locations, and similar coal-related information. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces some new terms. The last edition of Coal Data: A Reference was published in 1991. The present edition contains updated data as well as expanded reviews and additional information. Added to the text are discussions of coal quality, coal prices, unions, and strikes. The appendix has been expanded to provide statistics on a variety of additional topics, such as: trends in coal production and royalties from Federal and Indian coal leases, hours worked and earnings for coal mine employment, railroad coal shipments and revenues, waterborne coal traffic, coal export loading terminals, utility coal combustion byproducts, and trace elements in coal. The information in this report has been gleaned mainly from the sources in the bibliography. The reader interested in going beyond the scope of this report should consult these sources. The statistics are largely from reports published by the Energy Information Administration.

  11. COAL DESULFURIZATION PRIOR TO COMBUSTION

    E-Print Network [OSTI]

    Wrathall, J.

    2013-01-01T23:59:59.000Z

    90e COAL DESULFURIZATION PRIOR TO COMBUSTION J. Wrathall, T.of coal during combustion. The process involves the additionCOAL DESULFURIZATION PRIOR TO COMBUSTION Lawrence Berkeley

  12. coal | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commercial Technologies for Coal Storage and Feed Preparation AlternativesSupplements to Coal - Feedstock Flexibility DOE Supported R&D for CoalBiomass Feed and Gasification...

  13. DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS

    E-Print Network [OSTI]

    Wrathall, James Anthony

    2011-01-01T23:59:59.000Z

    Coal Cleaning Costs Process Clean Coal Produced, * T/D (DryMM$ Net Operating Cost, $/T (Clean Coal Basis) Net OperatingCost, $/T (Clean Coal Bases) Case NA Hazen KVB Battelle

  14. Upgraded Coal Interest Group

    SciTech Connect (OSTI)

    Evan Hughes

    2009-01-08T23:59:59.000Z

    The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

  15. Coal Severance Tax (North Dakota)

    Broader source: Energy.gov [DOE]

    The Coal Severance Tax is imposed on all coal severed for sale or industrial purposes, except coal used for heating buildings in the state, coal used by the state or any political subdivision of...

  16. Utilization ROLE OF COAL COMBUSTION

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    , materials left after combustion of coal in conventional and/ or advanced clean-coal technology combustors and advanced clean-coal technology combustors. This paper describes various coal combustion products produced (FGD) products from pulverized coal and advanced clean-coal technology combustors. Over 70% of the CCPs

  17. International perspectives on coal preparation

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    The report consists of the vugraphs from the presentations which covered the following topics: Summaries of the US Department of Energy`s coal preparation research programs; Preparation trends in Russia; South African coal preparation developments; Trends in hard coal preparation in Germany; Application of coal preparation technology to oil sands extraction; Developments in coal preparation in China; and Coal preparation in Australia.

  18. Indonesian coal mining

    SciTech Connect (OSTI)

    NONE

    2008-11-15T23:59:59.000Z

    The article examines the opportunities and challenges facing the Indonesian coal mining industry and how the coal producers, government and wider Indonesian society are working to overcome them. 2 figs., 1 tab.

  19. Microbial solubilization of coal

    DOE Patents [OSTI]

    Strandberg, Gerald W. (Farragut, TN); Lewis, Susan N. (Knoxville, TN)

    1990-01-01T23:59:59.000Z

    This invention deals with the solubilization of coal using species of Streptomyces. Also disclosed is an extracellular component from a species of Streptomyces, said component being able to solubilize coal.

  20. Coal Production 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-29T23:59:59.000Z

    Coal Production 1992 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. In 1992, there were 3,439 active coal mining operations made up of all mines, preparation plants, and refuse operations. The data in Table 1 cover the 2,746 mines that produced coal, regardless of the amount of production, except for bituminous refuse mines. Tables 2 through 33 include data from the 2,852 mining operations that produced, processed, or prepared 10 thousand or more short tons of coal during the period, except for bituminous refuse, and includes preparation plants with 5 thousand or more employee hours. These mining operations accounted for over 99 percent of total US coal production and represented 83 percent of all US coal mining operations in 1992.

  1. Novel Magnetically Fluidized Bed Reactor Development for the Looping Process: Coal to Hydrogen Production R&D

    SciTech Connect (OSTI)

    Mei, Renwei; Hahn, David; Klausner, James; Petrasch, Jorg; Mehdizadeh, Ayyoub; Allen, Kyle; Rahmatian, Nima; Stehle, Richard; Bobek, Mike; Al-Raqom, Fotouh; Greek, Ben; Li, Like; Chen, Chen; Singh, Abhishek; Takagi, Midori; Barde, Amey; Nili, Saman

    2013-09-30T23:59:59.000Z

    The coal to hydrogen project utilizes the iron/iron oxide looping process to produce high purity hydrogen. The input energy for the process is provided by syngas coming from gasification process of coal. The reaction pathways for this process have been studied and favorable conditions for energy efficient operation have been identified. The Magnetically Stabilized Porous Structure (MSPS) is invented. It is fabricated from iron and silica particles and its repeatable high performance has been demonstrated through many experiments under various conditions in thermogravimetric analyzer, a lab-scale reactor, and a large scale reactor. The chemical reaction kinetics for both oxidation and reduction steps has been investigated thoroughly inside MSPS as well as on the surface of very smooth iron rod. Hydrogen, CO, and syngas have been tested individually as the reducing agent in reduction step and their performance is compared. Syngas is found to be the most pragmatic reducing agent for the two-step water splitting process. The transport properties of MSPS including porosity, permeability, and effective thermal conductivity are determined based on high resolution 3D CT x-ray images obtained at Argonne National Laboratory and pore-level simulations using a lattice Boltzmann Equation (LBE)-based mesoscopic model developed during this investigation. The results of those measurements and simulations provide necessary inputs to the development of a reliable volume-averaging-based continuum model that is used to simulate the dynamics of the redox process in MSPS. Extensive efforts have been devoted to simulate the redox process in MSPS by developing a continuum model consist of various modules for conductive and radiative heat transfer, fluid flow, species transport, and reaction kinetics. Both the Lagrangian and Eulerian approaches for species transport of chemically reacting flow in porous media have been investigated and verified numerically. Both approaches lead to correct prediction of hydrogen production rates over a large range of experimental conditions in the laboratory scale reactor and the bench-scale reactor. In the economic analysis, a comparison of the hydrogen production plants using iron/iron oxide looping cycle and the conventional process has been presented. Plant configurations are developed for the iron/iron oxide looping cycle. The study suggests a higher electric power generation but a lower hydrogen production efficiency comparing with the conventional process. Additionally, it was shown that the price of H{sub 2} obtained from our reactor can be as low as $1.7/kg, which is 22% lower than the current price of the H{sub 2} obtained from reforming plants.

  2. Coal gasification apparatus

    DOE Patents [OSTI]

    Nagy, Charles K. (Monaca, PA)

    1982-01-01T23:59:59.000Z

    Coal hydrogenation vessel has hydrogen heating passages extending vertically through its wall and opening into its interior.

  3. Autothermal coal gasification

    SciTech Connect (OSTI)

    Konkol. W.; Ruprecht, P.; Cornils, B.; Duerrfeld, R.; Langhoff, J.

    1982-03-01T23:59:59.000Z

    Test data from the Ruhrchemie/Ruhrkohle Texaco coal gasification demonstration plant at Oberhausen are reported. (5 refs.)

  4. Coal production 1989

    SciTech Connect (OSTI)

    Not Available

    1990-11-29T23:59:59.000Z

    Coal Production 1989 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, reserves, and stocks to a wide audience including Congress, federal and state agencies, the coal industry, and the general public. 7 figs., 43 tabs.

  5. Nanoscale Reinforced, Polymer Derived Ceramic Matrix Coatings

    SciTech Connect (OSTI)

    Rajendra Bordia

    2009-07-31T23:59:59.000Z

    The goal of this project was to explore and develop a novel class of nanoscale reinforced ceramic coatings for high temperature (600-1000 C) corrosion protection of metallic components in a coal-fired environment. It was focused on developing coatings that are easy to process and low cost. The approach was to use high-yield preceramic polymers loaded with nano-size fillers. The complex interplay of the particles in the polymer, their role in controlling shrinkage and phase evolution during thermal treatment, resulting densification and microstructural evolution, mechanical properties and effectiveness as corrosion protection coatings were investigated. Fe-and Ni-based alloys currently used in coal-fired environments do not possess the requisite corrosion and oxidation resistance for next generation of advanced power systems. One example of this is the power plants that use ultra supercritical steam as the working fluid. The increase in thermal efficiency of the plant and decrease in pollutant emissions are only possible by changing the properties of steam from supercritical to ultra supercritical. However, the conditions, 650 C and 34.5 MPa, are too severe and result in higher rate of corrosion due to higher metal temperatures. Coating the metallic components with ceramics that are resistant to corrosion, oxidation and erosion, is an economical and immediate solution to this problem. Good high temperature corrosion protection ceramic coatings for metallic structures must have a set of properties that are difficult to achieve using established processing techniques. The required properties include ease of coating complex shapes, low processing temperatures, thermal expansion match with metallic structures and good mechanical and chemical properties. Nanoscale reinforced composite coatings in which the matrix is derived from preceramic polymers have the potential to meet these requirements. The research was focused on developing suitable material systems and processing techniques for these coatings. In addition, we investigated the effect of microstructure on the mechanical properties and oxidation protection ability of the coatings. Coatings were developed to provide oxidation protection to both ferritic and austentic alloys and Ni-based alloys. The coatings that we developed are based on low viscosity pre-ceramic polymers. Thus they can be easily applied to any shape by using a variety of techniques including dip-coating, spray-coating and painting. The polymers are loaded with a variety of nanoparticles. The nanoparticles have two primary roles: control of the final composition and phases (and hence the properties); and control of the shrinkage during thermal decomposition of the polymer. Thus the selection of the nanoparticles was the most critical aspect of this project. Based on the results of the processing studies, the performance of selected coatings in oxidizing conditions (both static and cyclic) was investigated.

  6. Coal recovery process

    DOE Patents [OSTI]

    Good, Robert J. (Grand Island, NY); Badgujar, Mohan (Williamsville, NY)

    1992-01-01T23:59:59.000Z

    A method for the beneficiation of coal by selective agglomeration and the beneficiated coal product thereof is disclosed wherein coal, comprising impurities, is comminuted to a particle size sufficient to allow impurities contained therein to disperse in water, an aqueous slurry is formed with the comminuted coal particles, treated with a compound, such as a polysaccharide and/or disaccharide, to increase the relative hydrophilicity of hydrophilic components, and thereafter the slurry is treated with sufficient liquid agglomerant to form a coagulum comprising reduced impurity coal.

  7. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01T23:59:59.000Z

    anthracite, lignite and brown coal. While bituminous coal isproduction of lignite and brown coal, which also increasedtonnes. Whereas lignite and brown coal accounted for 4% of

  8. Coal: the new black

    SciTech Connect (OSTI)

    Tullo, A.H.; Tremblay, J.-F.

    2008-03-15T23:59:59.000Z

    Long eclipsed by oil and natural gas as a raw material for high-volume chemicals, coal is making a comeback, with oil priced at more than $100 per barrel. It is relatively cheap feedstock for chemicals such as methanol and China is building plants to convert coal to polyolefins on a large scale and interest is spreading worldwide. Over the years several companies in the US and China have made fertilizers via the gasification of coal. Eastman in Tennessee gasifies coal to make methanol which is then converted to acetic acid, acetic anhydride and acetate fiber. The future vision is to convert methanol to olefins. UOP and Lurgi are the major vendors of this technology. These companies are the respective chemical engineering arms of Honeywell and Air Liquide. The article reports developments in China, USA and India on coal-to-chemicals via coal gasification or coal liquefaction. 2 figs., 2 photo.

  9. Protective Coatings for Turbomachinery

    E-Print Network [OSTI]

    McCune, B.; Hilty, L.

    of these coatings has lead to the development of tailored coatings for different applications. In addition, coatings now offer multiple benefits. The most advanced compressor coatings restore surface finish, resist erosion, and provide protection from corrosion....

  10. Coal sector profile

    SciTech Connect (OSTI)

    Not Available

    1990-06-05T23:59:59.000Z

    Coal is our largest domestic energy resource with recoverable reserves estimated at 268 billion short tons or 5.896 quads Btu equivalent. This is approximately 95 percent of US fossil energy resources. It is relatively inexpensive to mine, and on a per Btu basis it is generally much less costly to produce than other energy sources. Its chief drawbacks are the environmental, health and safety concerns that must be addressed in its production and consumption. Historically, coal has played a major role in US energy markets. Coal fueled the railroads, heated the homes, powered the factories. and provided the raw materials for steel-making. In 1920, coal supplied over three times the amount of energy of oil, gas, and hydro combined. From 1920 until the mid 1970s, coal production remained fairly constant at 400 to 600 million short tons a year. Rapid increases in overall energy demands, which began during and after World War II were mostly met by oil and gas. By the mid 1940s, coal represented only half of total energy consumption in the US. In fact, post-war coal production, which had risen in support of the war effort and the postwar Marshall plan, decreased approximately 25 percent between 1945 and 1960. Coal demand in the post-war era up until the 1970s was characterized by increasing coal use by the electric utilities but decreasing coal use in many other markets (e.g., rail transportation). The oil price shocks of the 1970s, combined with natural gas shortages and problems with nuclear power, returned coal to a position of prominence. The greatly expanded use of coal was seen as a key building block in US energy strategies of the 1970s. Coal production increased from 613 million short tons per year in 1970 to 950 million short tons in 1988, up over 50 percent.

  11. DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS

    E-Print Network [OSTI]

    Wrathall, James Anthony

    2011-01-01T23:59:59.000Z

    ~ - - - - - ' Gri~ing Feed Coal Slurry Feed Pump Filterused to heat a coal-solvent slurry up to the tempera- turePULVERIZED COAL DISSOLVER PRODUCT SLURRY L-. 5 TJ'OON , ~ (

  12. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01T23:59:59.000Z

    a particular type of coal, each of which is inherentlyThere are four classes of coal: bituminous, sub-bituminous,minerals Metallic ores Coal Crude petroleum Gasoline Fuel

  13. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01T23:59:59.000Z

    coal-to-hydrogen plant capital costs .Capital cost of pulverized coal plant ($/kW) Capital cost ofIGCC coal plant ($/kW) Capital cost of repowering PC plant

  14. DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS

    E-Print Network [OSTI]

    Wrathall, James Anthony

    2011-01-01T23:59:59.000Z

    Clean Coal Produced, * T/D (Dry Basis) Installed Plant Cost,Plant Cost, MM$ Net Operating Cost, $/T (Clean Coal Basis)Cost increments fora 25246 ton coal per day SRC plant are

  15. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01T23:59:59.000Z

    5 Figure 1: Map of U.S. coal plants and generating1: Map of U.S. coal plants and generating units (GED, 2006a)of an electric generating coal power plant that would be

  16. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01T23:59:59.000Z

    Council (NCC), 2006, “Coal: America’s Energy Future”, VolumeAssessments to Inform Energy Policy, “Coal: Research andOF RAIL TRANSPORTATION OF COAL The Federal Energy Regulatory

  17. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01T23:59:59.000Z

    OF RAIL TRANSPORTATION OF COAL The Federal Energy RegulatoryPlants Due to Coal Shortages”, Federal Energy RegulatoryCouncil (NCC), 2006, “Coal: America’s Energy Future”, Volume

  18. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01T23:59:59.000Z

    of total electricity generation is because coal plants haveplants come to play an important role in the electricity generationplants will be built in the years around 2020, thereby increasing coal’s share of electricity generation

  19. Pulverized coal fuel injector

    DOE Patents [OSTI]

    Rini, Michael J. (Hebron, CT); Towle, David P. (Windsor, CT)

    1992-01-01T23:59:59.000Z

    A pulverized coal fuel injector contains an acceleration section to improve the uniformity of a coal-air mixture to be burned. An integral splitter is provided which divides the coal-air mixture into a number separate streams or jets, and a center body directs the streams at a controlled angle into the primary zone of a burner. The injector provides for flame shaping and the control of NO/NO.sub.2 formation.

  20. Coal Mining Regulations (Kentucky)

    Broader source: Energy.gov [DOE]

    Kentucky Administrative Regulation Title 405 chapters 1, 2, 3, 5, 7, 8, 10, 12, 16, 18 and 20 establish the laws governing coal mining in the state.

  1. Coal Development (Nebraska)

    Broader source: Energy.gov [DOE]

    This section provides for the development of newly-discovered coal veins in the state, and county aid for such development.

  2. Coal Market Module This

    Gasoline and Diesel Fuel Update (EIA)

    on fossil energy technologies. This includes 800 million to fund projects under the Clean Coal Power Initiative (CCPI) program, focusing on projects that capture and sequester...

  3. Coal Market Module

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    on fossil energy technologies. This includes 800 million to fund projects under the Clean Coal Power Initiative (CCPI) program, focusing on projects that capture and sequester...

  4. Coal liquefaction quenching process

    DOE Patents [OSTI]

    Thorogood, Robert M. (Macungie, PA); Yeh, Chung-Liang (Bethlehem, PA); Donath, Ernest E. (St. Croix, VI)

    1983-01-01T23:59:59.000Z

    There is described an improved coal liquefaction quenching process which prevents the formation of coke with a minimum reduction of thermal efficiency of the coal liquefaction process. In the process, the rapid cooling of the liquid/solid products of the coal liquefaction reaction is performed without the cooling of the associated vapor stream to thereby prevent formation of coke and the occurrence of retrograde reactions. The rapid cooling is achieved by recycling a subcooled portion of the liquid/solid mixture to the lower section of a phase separator that separates the vapor from the liquid/solid products leaving the coal reactor.

  5. Clean Coal Projects (Virginia)

    Broader source: Energy.gov [DOE]

    This legislation directs the Virginia Air Pollution Control Board to facilitate the construction and implementation of clean coal projects by expediting the permitting process for such projects.

  6. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01T23:59:59.000Z

    coal (PC) or integrated gasification combined cycle ( IGCC)coal (PC) or integrated gasification combined cycle (IGCC)will be integrated gasification combined cycle (IGCC) (Same

  7. Coal Mining Tax Credit (Arkansas)

    Broader source: Energy.gov [DOE]

    The Coal Mining Tax Credit provides an income or insurance premium tax credit of $2.00 per ton of coal mined, produced or extracted on each ton of coal mined in Arkansas in a tax year. An...

  8. COAL DESULFURIZATION PRIOR TO COMBUSTION

    E-Print Network [OSTI]

    Wrathall, J.

    2013-01-01T23:59:59.000Z

    Corporation, 5-25~79. on Coal Liquefaction at ChevronHamersma, et a L, "Meyers Process for Coal Desulfurization,"in Wheelock, Coal Desulfurization, ACS Symp. Ser 64 (1977(.

  9. Illinois Coal Revival Program (Illinois)

    Broader source: Energy.gov [DOE]

    The Illinois Coal Revival Program is a grants program providing partial funding to assist with the development of new, coal-fueled electric generation capacity and coal gasification or IGCC units...

  10. Sandia National Laboratories: Clean Coal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ManagementClean Coal Clean Coal The term clean coal refers to a number of initiatives that seek to reduce or eliminate the hazardous emission or byproducts that result from using...

  11. PressurePressure Indiana Coal Characteristics

    E-Print Network [OSTI]

    Fernández-Juricic, Esteban

    TimeTime PressurePressure · Indiana Coal Characteristics · Indiana Coals for Coke · CoalTransportation in Indiana · Coal Slurry Ponds Evaluation · Site Selection for Coal Gasification · Coal-To-Liquids Study, CTL · Indiana Coal Forecasting · Under-Ground Coal Gasification · Benefits of Oxyfuel Combustion · Economic

  12. Fuel blending with PRB coal

    SciTech Connect (OSTI)

    McCartney, R.H.; Williams, R.L. Jr. [Roberts and Schaefer, Chicago, IL (United States)

    2009-03-15T23:59:59.000Z

    Many methods exist to accomplish coal blending at a new or existing power plant. These range from a basic use of the secondary (emergency) stockout/reclaim system to totally automated coal handling facilities with segregated areas for two or more coals. Suitable choices for different sized coal plant are discussed, along with the major components of the coal handling facility affected by Powder River Basin coal. 2 figs.

  13. Coal resources of Kyrgyzstan

    SciTech Connect (OSTI)

    Landis, E.R.; Bostick, N.H.; Gluskoter, H.J.; Johnson, E.A. [Geological Survey, Denver, CO (United States); Harrison, C.D. [CQ Inc., Homer City, PA (United States); Huber, D.W.

    1995-12-31T23:59:59.000Z

    The rugged, mountainous country of Kyrgyzstan contains about one-half of the known coal resources of central Asia (a geographic and economic region that also includes Uzbekistan, Tadjikistan and Turkmenistan). Coal of Jurassic age is present in eight regions in Kyrgyzstan in at least 64 different named localities. Significant coal occurrences of about the same age are present in the central Asian countries of Kazakhstan, China, and Russia. Separation of the coal-bearing rocks into individual deposits results more than earth movements before and during formation of the present-day mountains and basins of the country than from deposition in separate basins.Separation was further abetted by deep erosion and removal of the coal-bearing rocks from many areas, followed by covering of the remaining coal-bearing rocks by sands and gravels of Cenozoic age. The total resources of coal in Kyrgyzstan have been reported as about 30 billion tons. In some of the reported localities, the coal resources are known and adequately explored. In other parts of the republic, the coal resources are inadequately understood or largely unexplored. The resource and reserve inventory of Kyrgyzstan is at best incomplete; for some purposes, such as short-term local and long-range national planning, it may be inadequate. Less than 8% of the total estimated resources are categorized as recoverable reserves, and the amount that is economically recoverable is unknown. The coal is largely of subbituminous and high-volatile C bituminous rank, most has low and medium ash and sulfur contents, and coals of higher rank (some with coking qualities) are present in one region. It is recommended that appropriate analyses and tests be made during planning for utilization.

  14. Search for: "coal" | DOE PAGES

    Office of Scientific and Technical Information (OSTI)

    coal" Find + Advanced Search Advanced Search All Fields: "coal" Title: Full Text: Bibliographic Data: Creator Author: Name Name ORCID Search Authors Type: All Accepted...

  15. Illinois Coal Development Program (Illinois)

    Broader source: Energy.gov [DOE]

    The Illinois Coal Development Program seeks to advance promising clean coal technologies beyond research and towards commercialization. The program provides a 50/50 match with private industry...

  16. Clean coal technologies market potential

    SciTech Connect (OSTI)

    Drazga, B. (ed.)

    2007-01-30T23:59:59.000Z

    Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

  17. Method for coal liquefaction

    DOE Patents [OSTI]

    Wiser, Wendell H. (Kaysville, UT); Oblad, Alex G. (Salt Lake City, UT); Shabtai, Joseph S. (Salt Lake City, UT)

    1994-01-01T23:59:59.000Z

    A process is disclosed for coal liquefaction in which minute particles of coal in intimate contact with a hydrogenation catalyst and hydrogen arc reacted for a very short time at a temperature in excess of 400.degree. C. at a pressure of at least 1500 psi to yield over 50% liquids with a liquid to gaseous hydrocarbon ratio in excess of 8:1.

  18. Coal liquefaction process

    DOE Patents [OSTI]

    Carr, Norman L. (Allison Park, PA); Moon, William G. (Cheswick, PA); Prudich, Michael E. (Pittsburgh, PA)

    1983-01-01T23:59:59.000Z

    A C.sub.5 -900.degree. F. (C.sub.5 -482.degree. C.) liquid yield greater than 50 weight percent MAF feed coal is obtained in a coal liquefaction process wherein a selected combination of higher hydrogen partial pressure, longer slurry residence time and increased recycle ash content of the feed slurry are controlled within defined ranges.

  19. Coal in China

    SciTech Connect (OSTI)

    Minchener, A.J. [IEA Clean Coal Centre, London (United Kingdom)

    2005-07-01T23:59:59.000Z

    The article gives an overview of the production and use of coal in China, for power generation and in other sectors. Coal use for power generation was 850 million tonnes in 2003 and 800 million tonnes in the non-power sector. The majority of power will continue to be produced from coal, with a trend towards new larger pulverised coal fired units and introduction of circulating fluidised bed combustors. Stricter regulations are forcing introduction of improved pollution control technologies. It seems likely that China will need international finance to supplement private and state investment to carry out a programme to develop and apply clean coal technologies. The author concludes that there is evidence of a market economy being established but there is a need to resolve inconsistencies with the planned aspects of the economy and that additional policies are needed in certain sectors to achieve sustainable development. 1 ref., 2 figs., 2 tabs.

  20. State coal profiles, January 1994

    SciTech Connect (OSTI)

    Not Available

    1994-02-02T23:59:59.000Z

    The purpose of State Coal Profiles is to provide basic information about the deposits, production, and use of coal in each of the 27 States with coal production in 1992. Although considerable information on coal has been published on a national level, there is a lack of a uniform overview for the individual States. This report is intended to help fill that gap and also to serve as a framework for more detailed studies. While focusing on coal output, State Coal Profiles shows that the coal-producing States are major users of coal, together accounting for about three-fourths of total US coal consumption in 1992. Each coal-producing State is profiled with a description of its coal deposits and a discussion of the development of its coal industry. Estimates of coal reserves in 1992 are categorized by mining method and sulfur content. Trends, patterns, and other information concerning production, number of mines, miners, productivity, mine price of coal, disposition, and consumption of coal are detailed in statistical tables for selected years from 1980 through 1992. In addition, coal`s contribution to the State`s estimated total energy consumption is given for 1991, the latest year for which data are available. A US summary of all data is provided for comparing individual States with the Nation as a whole. Sources of information are given at the end of the tables.

  1. Corrosion resistant coating

    DOE Patents [OSTI]

    Wrobleski, Debra A. (Los Alamos, NM); Benicewicz, Brian C. (Los Alamos, NM); Thompson, Karen G. (Orlando, FL); Bryan, Coleman J. (Merritt Island, FL)

    1997-01-01T23:59:59.000Z

    A method of protecting a metal substrate from corrosion including coating a metal substrate of, e.g., steel, iron or aluminum, with a conductive polymer layer of, e.g., polyaniline, coating upon said metal substrate, and coating the conductive polymer-coated metal substrate with a layer of a topcoat upon the conductive polymer coating layer, is provided, together with the resultant coated article from said method.

  2. Corrosion resistant coating

    DOE Patents [OSTI]

    Wrobleski, D.A.; Benicewicz, B.C.; Thompson, K.G.; Bryan, C.J.

    1997-08-19T23:59:59.000Z

    A method of protecting a metal substrate from corrosion including coating a metal substrate of, e.g., steel, iron or aluminum, with a conductive polymer layer of, e.g., polyaniline, coating upon said metal substrate, and coating the conductive polymer-coated metal substrate with a layer of a topcoat upon the conductive polymer coating layer, is provided, together with the resultant coated article from said method.

  3. Consensus Coal Production Forecast for

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Consensus Coal Production Forecast for West Virginia 2009-2030 Prepared for the West Virginia Summary 1 Recent Developments 2 Consensus Coal Production Forecast for West Virginia 10 Risks References 27 #12;W.Va. Consensus Coal Forecast Update 2009 iii List of Tables 1. W.Va. Coal Production

  4. Clean coal technology: The new coal era

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    The Clean Coal Technology Program is a government and industry cofunded effort to demonstrate a new generation of innovative coal processes in a series of full-scale showcase`` facilities built across the country. Begun in 1986 and expanded in 1987, the program is expected to finance more than $6.8 billion of projects. Nearly two-thirds of the funding will come from the private sector, well above the 50 percent industry co-funding expected when the program began. The original recommendation for a multi-billion dollar clean coal demonstration program came from the US and Canadian Special Envoys on Acid Rain. In January 1986, Special Envoys Lewis and Davis presented their recommendations. Included was the call for a 5-year, $5-billion program in the US to demonstrate, at commercial scale, innovative clean coal technologies that were beginning to emerge from research programs both in the US and elsewhere in the world. As the Envoys said: if the menu of control options was expanded, and if the new options were significantly cheaper, yet highly efficient, it would be easier to formulate an acid rain control plan that would have broader public appeal.

  5. Recent advances in coal geochemistry

    SciTech Connect (OSTI)

    Chyi, L.L. (Dept. of Geology, Univ. of Akron, Akron, OH (US)); Chou, C.-L. (Illinois State Geological Survey, 615 E. Peabody Drive, Champaign, IL (US))

    1990-01-01T23:59:59.000Z

    Chapters in this collection reflect the recent emphasis both on basic research in coal geochemistry and on applied aspects related to coal utilization. Geochemical research on peat and coal generates compositional data that are required for the following reasons. First, many studies in coal geology require chemical data to aid in interpretation for better understanding of the origin and evolution of peat and coal. Second, coal quality assessment is based largely on composition data, and these data generate useful insights into the geologic factors that control the quality of coal. Third, compositional data are needed for effective utilization of coal resources and to reflect the recent emphasis on both basic research in coal geochemistry and environmental aspects related to coal utilization.

  6. Coal liquefaction process

    DOE Patents [OSTI]

    Wright, C.H.

    1986-02-11T23:59:59.000Z

    A process is described for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range. 1 fig.

  7. Coal liquefaction process

    DOE Patents [OSTI]

    Wright, Charles H. (Overland Park, KS)

    1986-01-01T23:59:59.000Z

    A process for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range.

  8. Clean coal today

    SciTech Connect (OSTI)

    none,

    1990-01-01T23:59:59.000Z

    This is the first issue of the Clean Coal Today publication. Each issue will provide project status reports, feature articles about certain projects and highlight key events concerning the US Clean Coal Technology Demonstration Program. Projects described in this publication include: Colorado-Ute Electric Association Circulating Fluidized Bed Combustor Project at Nucla, Colorado; Babcock and Wilcox coolside and limestone injection multistage burner process (dry sorbent injection); Coal Tech's Advanced Cyclone Combustor Project; and the TIDD pressurized fluidized bed combustor combined cycle facility in Brilliant, Ohio. The status of other projects is included.

  9. Coal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuildingCoal Combustion Products Coal Combustion ProductsCoal to

  10. Coal | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010 1AAcquisitionDevelopmentChooseCoal Coal Coal

  11. Coal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDatasetCityFundCo-benefits EvaluationCoalCoalCoal

  12. Corrosion resistant coatings for SiC and Si{sub 3}N{sub 4} ceramics

    SciTech Connect (OSTI)

    Nguyen Thierry; Shaokai Yang; J.J. Brown

    1998-09-01T23:59:59.000Z

    It is the goal of this program to (1) develop coatings for SiC and Si{sub 3}N{sub 4} that will enhance their performance as heat exchangers under coal combustion conditions and (2) to conduct an in-depth evaluation of the cause and severity of ceramic heat exchanger deterioration and failure under coal combustion conditions.

  13. Opportunities in underground coal gasification

    SciTech Connect (OSTI)

    Bloomstran, M.A.; Davis, B.E.

    1984-06-01T23:59:59.000Z

    A review is presented of the results obtained on DOE-sponsored field tests of underground coal gasification in steeply-dipping beds at Rawlins, Wyoming. The coal gas composition, process parameters, and process economics are described. Steeply-dipping coal resources, which are not economically mineable using conventional coal mining methods, are identified and potential markets for underground coal gasification products are discussed. It is concluded that in-situ gasification in steeply-dipping deposits should be considered for commercialization.

  14. High performance materials in coal conversion utilization. Technical progress report, April 1, 1996--June 30, 1996

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    Object is to test, analyze, and improve the heat and coal-slag corrosion resistance of a SiC(p)/Al{sub 2}O{sub 3} ceramic composite tubular material. The material will be evaluated for resistance to pressures, temperatures, and corrosion within a coal-fired high- temperature, high-pressure air heater. Microstructures and some mechanical properties of composite tubes were studied. Other studies include corrosion thermodynamic analysis of Al oxide coated composite.

  15. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01T23:59:59.000Z

    of deploying advanced coal power in the Chinese context,”12 2.6. International coal prices and12 III. Chinese Coal

  16. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    of Figures Figure ES-1. Advanced Coal Wind Hybrid: Basicviii Figure 1. Advanced-Coal Wind Hybrid: Basic29 Figure 9. Sensitivity to Coal

  17. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    farms with advanced coal generation facilities and operatingfarms with advanced coal generation facilities and operatingin the stand-alone coal generation option (IGCC+CCS plant)

  18. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01T23:59:59.000Z

    services. Power generation Coal increasingly dominates28 Thermal coal electricity generation efficiency alsostudy examines four coal-thermal generation technology types

  19. Coal-Biomass Feed and Gasification

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal-Biomass Feed and Gasification The Coal-Biomass Feed and Gasification Key Technology is advancing scientific knowledge of the production of liquid hydrocarbon fuels from coal...

  20. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01T23:59:59.000Z

    generation systems. Coal energy density could be increasedfuel reserves were coal by energy content; 19% were oil, andConsumption, 2007 coal/primary energy consumption Source: BP

  1. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01T23:59:59.000Z

    19 3.4. Coking coal for iron & steels FOB export value for coking coal was relatively stables FOB export value for coking coal significantly increased

  2. Clean Coal Power Initiative | Department of Energy

    Office of Environmental Management (EM)

    Clean Coal Power Initiative Clean Coal Power Initiative "Clean coal technology" describes a new generation of energy processes that sharply reduce air emissions and other...

  3. Aqueous coal slurry

    DOE Patents [OSTI]

    Berggren, Mark H.; Smit, Francis J.; Swanson, Wilbur W.

    1993-04-06T23:59:59.000Z

    An aqueous slurry containing coal and dextrin as a dispersant. The slurry, in addition to containing dextrin, may contain a conventional dispersant or, alternatively, a pH controlling reagent.

  4. Aqueous coal slurry

    DOE Patents [OSTI]

    Berggren, Mark H. (Golden, CO); Smit, Francis J. (Arvada, CO); Swanson, Wilbur W. (Golden, CO)

    1993-01-01T23:59:59.000Z

    An aqueous slurry containing coal and dextrin as a dispersant. The slurry, in addition to containing dextrin, may contain a conventional dispersant or, alternatively, a pH controlling reagent.

  5. Quarterly coal report

    SciTech Connect (OSTI)

    Young, P.

    1996-05-01T23:59:59.000Z

    The Quarterly Coal Report (QCR) provides comprehensive information about U.S. coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for October through December 1995 and aggregated quarterly historical data for 1987 through the third quarter of 1995. Appendix A displays, from 1987 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

  6. Clean Coal Research

    Broader source: Energy.gov [DOE]

    DOE's clean coal R&D is focused on developing and demonstrating advanced power generation and carbon capture, utilization and storage technologies for existing facilities and new fossil-fueled...

  7. Clean Coal Technology (Indiana)

    Broader source: Energy.gov [DOE]

    A public utility may not use clean coal technology at a new or existing electric generating facility without first applying for and obtaining from the Utility Regulatory Commission a certificate...

  8. Coal Liquefaction desulfurization process

    DOE Patents [OSTI]

    Givens, Edwin N. (Bethlehem, PA)

    1983-01-01T23:59:59.000Z

    In a solvent refined coal liquefaction process, more effective desulfurization of the high boiling point components is effected by first stripping the solvent-coal reacted slurry of lower boiling point components, particularly including hydrogen sulfide and low molecular weight sulfur compounds, and then reacting the slurry with a solid sulfur getter material, such as iron. The sulfur getter compound, with reacted sulfur included, is then removed with other solids in the slurry.

  9. Coal liquefaction process

    DOE Patents [OSTI]

    Skinner, Ronald W. (Allentown, PA); Tao, John C. (Perkiomenville, PA); Znaimer, Samuel (Vancouver, CA)

    1985-01-01T23:59:59.000Z

    This invention relates to an improved process for the production of liquid carbonaceous fuels and solvents from carbonaceous solid fuels, especially coal. The claimed improved process includes the hydrocracking of the light SRC mixed with a suitable hydrocracker solvent. The recycle of the resulting hydrocracked product, after separation and distillation, is used to produce a solvent for the hydrocracking of the light solvent refined coal.

  10. Method for coal liquefaction

    DOE Patents [OSTI]

    Wiser, W.H.; Oblad, A.G.; Shabtai, J.S.

    1994-05-03T23:59:59.000Z

    A process is disclosed for coal liquefaction in which minute particles of coal in intimate contact with a hydrogenation catalyst and hydrogen arc reacted for a very short time at a temperature in excess of 400 C at a pressure of at least 1500 psi to yield over 50% liquids with a liquid to gaseous hydrocarbon ratio in excess of 8:1. 1 figures.

  11. Electrocurtain coating process for coating solar mirrors

    DOE Patents [OSTI]

    Kabagambe, Benjamin; Boyd, Donald W.; Buchanan, Michael J.; Kelly, Patrick; Kutilek, Luke A.; McCamy, James W.; McPheron, Douglas A.; Orosz, Gary R.; Limbacher, Raymond D.

    2013-10-15T23:59:59.000Z

    An electrically conductive protective coating or film is provided over the surface of a reflective coating of a solar mirror by flowing or directing a cation containing liquid and an anion containing liquid onto the conductive surface. The cation and the anion containing liquids are spaced from, and preferably out of contact with one another on the surface of the reflective coating as an electric current is moved through the anion containing liquid, the conductive surface between the liquids and the cation containing liquid to coat the conductive surface with the electrically conductive coating.

  12. Effect of Temperature Gradient on Industrial Coal Slag Infiltration into Porous Refractory Materials in Slagging Gasifiers

    SciTech Connect (OSTI)

    Kaneko, Tetsuya Kenneth; Bennett, James P.; Dridhar, Seetharaman

    2011-12-01T23:59:59.000Z

    Infiltration characteristics of industrial coal slag into alumina (Al{sub 2}O{sub 3}) refractory material with a temperature gradient induced along the slag's penetration direction are compared to those obtained under near-isothermal conditions. Experiments were conducted with a hot-face temperature of 1450°C and a CO/CO{sub 2} ratio of 1.8, which corresponds to an oxygen partial pressure of ~10{sup ?8} atm. The refractory under the near-isothermal temperature profile, with higher average temperatures, demonstrated a greater penetration depth than its counterpart that was under the steeper temperature gradient. Slag that did not infiltrate into the refractory due to the induced temperature gradient, pooled and solidified on the top of the sample. Within the pool, a conglomerated mass of troilite (FeS) formed separately from the surrounding slag. Microscopy of the cross-sectioned infiltrated refractories revealed that the slag preferentially corroded the matrix regions closer to the top surface. Furthermore, the formation of a thick layer of hercynite (FeAl{sub 2}O{sub 4}) at the top of refractory/slag interface significantly depleted the slag of its iron-oxide content with respect to its virgin composition. A qualitative description of the penetration process is provided in this article.

  13. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    located in Wyoming using PRB coal. These costs take intolocated in Wyoming using PRB coal and take into account the2007 forecast for coal prices for PRB coal. Transmission We

  14. Coal Problems 1. Name two examples of clean coal technology and in what manner do they clean the coal?

    E-Print Network [OSTI]

    Bowen, James D.

    Coal Problems 1. Name two examples of clean coal technology and in what manner do they clean the coal? a. Coal Washing- Crushing coal then mixing it with a liquid to allow the impurities to settle. b burning coal altogether. With integrated gasification combined cycle (IGCC) systems, steam and hot

  15. Electrocurtain coating process for coating solar mirrors | OSTI...

    Office of Scientific and Technical Information (OSTI)

    Electrocurtain coating process for coating solar mirrors Re-direct Destination: An electrically conductive protective coating or film is provided over the surface of a reflective...

  16. Method of extracting coal from a coal refuse pile

    DOE Patents [OSTI]

    Yavorsky, Paul M. (Monongahela, PA)

    1991-01-01T23:59:59.000Z

    A method of extracting coal from a coal refuse pile comprises soaking the coal refuse pile with an aqueous alkali solution and distributing an oxygen-containing gas throughout the coal refuse pile for a time period sufficient to effect oxidation of coal contained in the coal refuse pile. The method further comprises leaching the coal refuse pile with an aqueous alkali solution to solubilize and extract the oxidized coal as alkali salts of humic acids and collecting the resulting solution containing the alkali salts of humic acids. Calcium hydroxide may be added to the solution of alkali salts of humic acid to form precipitated humates useable as a low-ash, low-sulfur solid fuel.

  17. DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS

    E-Print Network [OSTI]

    Wrathall, James Anthony

    2011-01-01T23:59:59.000Z

    of coal sulfur K-T gasification process SRC I process U. S.flow sheet of a K-T coal gasification complex for producingProduction via K-T Gasification" © CEP Aug. 78. Feed

  18. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    application of new clean coal technologies with near zeroapplication of new clean coal technologies with near zero

  19. Composition and properties of coals from the Yurty coal occurrence

    SciTech Connect (OSTI)

    N.G. Vyazova; L.N. Belonogova; V.P. Latyshev; E.A. Pisar'kova [Irkutsk State University, Irkutsk (Russia). Research Institute of Oil and Coal Chemistry and Synthesis

    2008-10-15T23:59:59.000Z

    Coals from the Yurty coal occurrence were studied. It was found that the samples were brown non-coking coals with low sulfur contents (to 1%) and high yields of volatile substances. The high heat value of coals was 20.6-27.7 MJ/kg. The humic acid content varied from 5.45 to 77.62%. The mineral matter mainly consisted of kaolinite, a-quartz, and microcline. The concentration of toxic elements did not reach hazardous values.

  20. Coal combustion system

    DOE Patents [OSTI]

    Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN); Tramm, Peter C. (Indianapolis, IN)

    1988-01-01T23:59:59.000Z

    In a coal combustion system suitable for a gas turbine engine, pulverized coal is transported to a rich zone combustor and burned at an equivalence ratio exceeding 1 at a temperature above the slagging temperature of the coal so that combustible hot gas and molten slag issue from the rich zone combustor. A coolant screen of water stretches across a throat of a quench stage and cools the combustible gas and molten slag to below the slagging temperature of the coal so that the slag freezes and shatters into small pellets. The pelletized slag is separated from the combustible gas in a first inertia separator. Residual ash is separated from the combustible gas in a second inertia separator. The combustible gas is mixed with secondary air in a lean zone combustor and burned at an equivalence ratio of less than 1 to produce hot gas motive at temperature above the coal slagging temperature. The motive fluid is cooled in a dilution stage to an acceptable turbine inlet temperature before being transported to the turbine.

  1. (Basic properties of coals and other solids)

    SciTech Connect (OSTI)

    Not Available

    1991-11-25T23:59:59.000Z

    This report discusses basic properties of bituminous, subbituminous, and lignite coals. Properties of coal liquids are also investigated. Heats of immersion in strong acids are found for Pittsburgh {number sign}8, Illinois {number sign}6, and Wyodak coals. Production of coal liquids by distillation is discussed. Heats of titration of coal liquids and coal slurries are reported. (VC)

  2. Flow coating apparatus and method of coating

    DOE Patents [OSTI]

    Hanumanthu, Ramasubrahmaniam; Neyman, Patrick; MacDonald, Niles; Brophy, Brenor; Kopczynski, Kevin; Nair, Wood

    2014-03-11T23:59:59.000Z

    Disclosed is a flow coating apparatus, comprising a slot that can dispense a coating material in an approximately uniform manner along a distribution blade that increases uniformity by means of surface tension and transfers the uniform flow of coating material onto an inclined substrate such as for example glass, solar panels, windows or part of an electronic display. Also disclosed is a method of flow coating a substrate using the apparatus such that the substrate is positioned correctly relative to the distribution blade, a pre-wetting step is completed where both the blade and substrate are completed wetted with a pre-wet solution prior to dispensing of the coating material onto the distribution blade from the slot and hence onto the substrate. Thereafter the substrate is removed from the distribution blade and allowed to dry, thereby forming a coating.

  3. EERE Desal using Superhydrophobic Coatings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    coating's surface; preventing salt creep, and thus virtually eliminates salt induced corrosion on any surface coated. 2. These coatings consist primarily of diatomaceous earth as...

  4. Heat Recovery from Coal Gasifiers

    E-Print Network [OSTI]

    Wen, H.; Lou, S. C.

    1981-01-01T23:59:59.000Z

    This paper deals with heat recovery from pressurized entrained and fixed bed coal gasifiers for steam generation. High temperature waste heat, from slagging entrained flow coal gasifier, can be recovered effectively in a series of radiant...

  5. The Caterpillar Coal Gasification Facility 

    E-Print Network [OSTI]

    Welsh, J.; Coffeen, W. G., III

    1983-01-01T23:59:59.000Z

    This paper is a review of one of America's premier coal gasification installations. The caterpillar coal gasification facility located in York, Pennsylvania is an award winning facility. The plant was recognized as the 'pace setter plant of the year...

  6. Surface Coal Mining Regulations (Mississippi)

    Broader source: Energy.gov [DOE]

    The Surface Coal Mining Regulations are a combination of permitting requirements and environmental regulations that limit how, where and when coal can be mined. It protects lands that are under...

  7. The world price of coal

    E-Print Network [OSTI]

    Ellerman, A. Denny

    1994-01-01T23:59:59.000Z

    A significant increase in the seaborne trade for coal over the past twenty years has unified formerly separate coal markets into a world market in which prices move in tandem. Due to its large domestic market, the United ...

  8. Low-rank coal research

    SciTech Connect (OSTI)

    Weber, G. F.; Laudal, D. L.

    1989-01-01T23:59:59.000Z

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  9. Hydrogen from Coal Edward Schmetz

    E-Print Network [OSTI]

    Turbines Carbon Capture & Sequestration Carbon Capture & Sequestration The Hydrogen from Coal Program Cells, Turbines, and Carbon Capture & Sequestration #12;Production Goal for Hydrogen from Coal Central Separation System PSA Membrane Membrane Carbon Sequestration Yes (87%) Yes (100%) Yes (100%) Hydrogen

  10. Montana Coal Mining Code (Montana)

    Broader source: Energy.gov [DOE]

    The Department of Labor and Industry is authorized to adopt rules pertaining to safety standards for all coal mines in the state. The Code requires coal mine operators to make an accurate map or...

  11. 2009 Coal Age Buyers Guide

    SciTech Connect (OSTI)

    NONE

    2009-07-15T23:59:59.000Z

    The buyers guide lists more than 1200 companies mainly based in the USA, that provide equipment and services to US coal mines and coal preparation plants. The guide is subdivided by product categories.

  12. Hydroliquefaction of coal

    DOE Patents [OSTI]

    Sze, Morgan C. (Upper Montclair, NJ); Schindler, Harvey D. (Fairlawn, NJ)

    1982-01-01T23:59:59.000Z

    Coal is catalytically hydroliquefied by passing coal dispersed in a liquefaction solvent and hydrogen upwardly through a plurality of parallel expanded catalyst beds, in a single reactor, in separate streams, each having a cross-sectional flow area of no greater than 255 inches square, with each of the streams through each of the catalyst beds having a length and a liquid and gas superficial velocity to maintain an expanded catalyst bed and provide a Peclet Number of at least 3. If recycle is employed, the ratio of recycle to total feed (coal and liquefaction solvent) is no greater than 2:1, based on volume. Such conditions provide for improved selectivity to liquid product to thereby reduce hydrogen consumption. The plurality of beds are formed by partitions in the reactor.

  13. Healy Clean Coal Project

    SciTech Connect (OSTI)

    None

    1997-12-31T23:59:59.000Z

    The Healy Clean Coal Project, selected by the U.S. Department of Energy under Round 111 of the Clean Coal Technology Program, has been constructed and is currently in the Phase 111 Demonstration Testing. The project is owned and financed by the Alaska Industrial Development and Export Authority (AIDEA), and is cofunded by the U.S. Department of Energy. Construction was 100% completed in mid-November of 1997, with coal firing trials starting in early 1998. Demonstration testing and reporting of the results will take place in 1998, followed by commercial operation of the facility. The emission levels of nitrogen oxides (NOx), sulfur dioxide (S02), and particulate from this 50-megawatt plant are expected to be significantly lower than current standards.

  14. Pyrolysis of coal

    DOE Patents [OSTI]

    Babu, Suresh P. (Willow Springs, IL); Bair, Wilford G. (Morton Grove, IL)

    1992-01-01T23:59:59.000Z

    A method for mild gasification of crushed coal in a single vertical elongated reaction vessel providing a fluidized bed reaction zone, a freeboard reaction zone, and an entrained reaction zone within the single vessel. Feed coal and gas may be fed separately to each of these reaction zones to provide different reaction temperatures and conditions in each reaction zone. The reactor and process of this invention provides for the complete utilization of a coal supply for gasification including utilization of caking and non-caking or agglomerating feeds in the same reactor. The products may be adjusted to provide significantly greater product economic value, especially with respect to desired production of char having high surface area.

  15. Sustainable development with clean coal

    SciTech Connect (OSTI)

    NONE

    1997-08-01T23:59:59.000Z

    This paper discusses the opportunities available with clean coal technologies. Applications include new power plants, retrofitting and repowering of existing power plants, steelmaking, cement making, paper manufacturing, cogeneration facilities, and district heating plants. An appendix describes the clean coal technologies. These include coal preparation (physical cleaning, low-rank upgrading, bituminous coal preparation); combustion technologies (fluidized-bed combustion and NOx control); post-combustion cleaning (particulate control, sulfur dioxide control, nitrogen oxide control); and conversion with the integrated gasification combined cycle.

  16. Ashing properties of coal blends

    SciTech Connect (OSTI)

    Biggs, D.L.

    1982-03-01T23:59:59.000Z

    The fusion properties of sulfur materials present in coals were investigated. The treatment of the samples of eleven different coals is described. Thermal treatment of low temperature ashing (LTA) concentrates of eight of the coals was performed, and raw and wash ashing curves were examined to determine what quantitative correlations, if any, exist between ashing parameters and rank of coal. The actual form of the function which describes the ashing curve is derived.

  17. CONSORTIUM FOR CLEAN COAL UTILIZATION

    E-Print Network [OSTI]

    Subramanian, Venkat

    CONSORTIUM FOR CLEAN COAL UTILIZATION Call for Proposals Date of Issue: July 29, 2013 The Consortium for Clean Coal Utilization (CCCU) at Washington University in St. Louis was established in January of Clean Coal Utilization. The format may be a conference or workshop, or a seminar given by a leading

  18. Clean Coal Power Initiative

    SciTech Connect (OSTI)

    Doug Bartlett; Rob James; John McDermott; Neel Parikh; Sanjay Patnaik; Camilla Podowski

    2006-03-31T23:59:59.000Z

    This report is the fifth quarterly Technical Progress Report submitted by NeuCo, Incorporated, under Award Identification Number, DE-FC26-04NT41768. This award is part of the Clean Coal Power Initiative (''CCPI''), the ten-year, $2B initiative to demonstrate new clean coal technologies in the field. This report is one of the required reports listed in Attachment B Federal Assistance Reporting Checklist, part of the Cooperative Agreement. The report covers the award period January 1, 2006 - March 31, 2006 and NeuCo's efforts within design, development, and deployment of on-line optimization systems during that period.

  19. PNNL Coal Gasification Research

    SciTech Connect (OSTI)

    Reid, Douglas J.; Cabe, James E.; Bearden, Mark D.

    2010-07-28T23:59:59.000Z

    This report explains the goals of PNNL in relation to coal gasification research. The long-term intent of this effort is to produce a syngas product for use by internal Pacific Northwest National Laboratory (PNNL) researchers in materials, catalysts, and instrumentation development. Future work on the project will focus on improving the reliability and performance of the gasifier, with a goal of continuous operation for 4 hours using coal feedstock. In addition, system modifications to increase operational flexibility and reliability or accommodate other fuel sources that can be used for syngas production could be useful.

  20. Underground coal gasification. Presentations

    SciTech Connect (OSTI)

    NONE

    2007-07-01T23:59:59.000Z

    The 8 presentations are: underground coal gasification (UCG) and the possibilities for carbon management (J. Friedmann); comparing the economics of UCG with surface gasification technologies (E. Redman); Eskom develops UCG technology project (C. Gross); development and future of UCG in the Asian region (L. Walker); economically developing vast deep Powder River Basin coals with UCG (S. Morzenti); effectively managing UCG environmental issues (E. Burton); demonstrating modelling complexity of environmental risk management; and UCG research at the University of Queensland, Australia (A.Y. Klimenko).

  1. EIA - Coal Distribution

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877 951,322 1,381,127byForms What'sAnnual Coal

  2. Coal-Producing Region

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamosCharacterization2Climate, OceanPublicationandCoal Coal.

  3. Fluorine in coal and coal by-products

    SciTech Connect (OSTI)

    Robertson, J.D.; Wong, A.S.; Hower, J.C. [Univ. of Kentucky, Lexington, KY (United States)

    1994-12-31T23:59:59.000Z

    Fluorine occurs in awe amounts in most coals. It is typically associated with minerals of the apatite group, principally fluorapatite and clays, and with fluorite, tourmaline, topaz, amphiboles and micas. The average fluorine content of US coal is, according to the tabulation of Swanson, 74 {mu}g/g. In the United States, the lowest average fluorine concentration of 30 {mu}g/g is found in coals from Eastern Kentucky and the highest average value of 160 {mu}g/g is found in coals from Wyoming and New Mexico. The concentration range of fluorine in European coals is similar to that found in the US while the average fluorine content of Australian coals ranges from 15 to 500 {mu}g/g. We have determined the fluorine content in coal and fly ash standards by proton-induced gamma ray emission analysis (PIGE).

  4. High performance materials in coal conversion utilization. Technical progress report, January 1, 1996--March 31, 1996

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    This is the tenth quarterly report on a three year grant regarding ``High Performance Materials in Coal Conversion Utilization.`` The grant is for a joint university/industry effort under the US Department of Energy (DOE) University Coal Research Program. The University of Tennessee Space Institute (UTSI) is the prime contractor and The University of Pennsylvania and Lanxide Corporation are subcontractors. The object of this grant is to test, analyze, and improve the heat and coal-slag corrosion resistance of a SiC{sub (p)}/Al{sub 2}O{sub 3} ceramic composite tubular material. The material will be evaluated for its ability to withstand the pressures, temperatures and corrosion attack which would be encountered within a coal-fired high-temperature, high pressure air heater. The evaluation includes strength testing at elevated temperatures of production tubes as well as one tube manufactured with an innovative new technology. The feasibility of several joining and coating techniques will also be investigated. UTSI has completed all the initially planned laboratory exposure tests involving pulverized coal slag on the production Lanxide DIMOX{trademark} ceramic composite material. In addition, the strength testing (at temperature) and analysis of C-ring sections of the exposed production composite is complete. The evaluation of a laser-induced coating to laser coat the material has been the major activity this quarter while awaiting an innovatively produced new DIMOX{trademark} test sample.

  5. Biochemical transformation of coals

    DOE Patents [OSTI]

    Lin, M.S.; Premuzic, E.T.

    1999-03-23T23:59:59.000Z

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed. 7 figs.

  6. Catalytic coal liquefaction process

    DOE Patents [OSTI]

    Garg, D.; Sunder, S.

    1986-12-02T23:59:59.000Z

    An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids. 1 fig.

  7. SH Coatings LP

    Broader source: Energy.gov [DOE]

    SH Coatings, based in Dallas, Texas, employs Super Hydrophobic Coating (SHC) technology that protects power systems by preventing ice accumulation on power lines in ice storm threatened areas and contamination of power lines from salt on the coasts. In order to successfully utilize and commercialize the SHC technology for this application, tools to apply the coating onto new and existing lines must be developed. SH Coatings is developing these tools with the help of technology from Oak Ridge National Laboratory.

  8. Underground Coal Thermal Treatment

    SciTech Connect (OSTI)

    P. Smith; M. Deo; E. Eddings; A. Sarofim; K. Gueishen; M. Hradisky; K. Kelly; P. Mandalaparty; H. Zhang

    2011-10-30T23:59:59.000Z

    The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coalâ??s carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO{sub 2} sequestration. Efforts focused on: â?¢ Constructing a suite of three different coal pyrolysis reactors. These reactors offer the ability to gather heat transfer, mass transfer and kinetic data during coal pyrolysis under conditions that mimic in situ conditions (Subtask 6.1). â?¢ Studying the operational parameters for various underground thermal treatment processes for oil shale and coal and completing a design matrix analysis for the underground coal thermal treatment (UCTT). This analysis yielded recommendations for terms of targeted coal rank, well orientation, rubblization, presence of oxygen, temperature, pressure, and heating sources (Subtask 6.2). â?¢ Developing capabilities for simulating UCTT, including modifying the geometry as well as the solution algorithm to achieve long simulation times in a rubblized coal bed by resolving the convective channels occurring in the representative domain (Subtask 6.3). â?¢ Studying the reactive behavior of carbon dioxide (CO{sub 2}) with limestone, sandstone, arkose (a more complex sandstone) and peridotite, including mineralogical changes and brine chemistry for the different initial rock compositions (Subtask 6.4). Arkose exhibited the highest tendency of participating in mineral reactions, which can be attributed to the geochemical complexity of its initial mineral assemblage. In experiments with limestone, continuous dissolution was observed with the release of CO{sub 2} gas, indicated by the increasing pressure in the reactor (formation of a gas chamber). This occurred due to the lack of any source of alkali to buffer the solution. Arkose has the geochemical complexity for permanent sequestration of CO{sub 2} as carbonates and is also relatively abundant. The effect of including NH{sub 3} in the injected gas stream was also investigated in this study. Precipitation of calcite and trace amounts of ammonium zeolites was observed. A batch geochemical model was developed using Geochemists Workbench (GWB). Degassing effect in the experiments was corrected using the sliding fugacity model in GWB. Experimental and simulation results were compared and a reasonable agreement between the two was observed.

  9. National Coal Quality Inventory (NACQI)

    SciTech Connect (OSTI)

    Robert Finkelman

    2005-09-30T23:59:59.000Z

    The U.S. Geological Survey (USGS) conducted the National Coal Quality Inventory (NaCQI) between 1999 and 2005 to address a need for quality information on coals that will be mined during the next 20-30 years. Collaboration between the USGS, State geological surveys, universities, coal burning utilities, and the coal mining industry plus funding support from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) permitted collection and submittal of coal samples for analysis. The chemical data (proximate and ultimate analyses; major, minor and trace element concentrations) for 729 samples of raw or prepared coal, coal associated shale, and coal combustion products (fly ash, hopper ash, bottom ash and gypsum) from nine coal producing States are included. In addition, the project identified a new coal reference analytical standard, to be designated CWE-1 (West Elk Mine, Gunnison County, Colorado) that is a high-volatile-B or high-volatile-A bituminous coal with low contents of ash yield and sulfur, and very low, but detectable contents of chlorine, mercury and other trace elements.

  10. assessing coal combustion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from pulverized coal pulverized-coal-fired furnaces, cyclone furnaces, or advanced clean-coal technology furnaces. The ash collected from pulverized-coal-fired furnaces is fly...

  11. advanced coal combustion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from pulverized coal pulverized-coal-fired furnaces, cyclone furnaces, or advanced clean-coal technology furnaces. The ash collected from pulverized-coal-fired furnaces is fly...

  12. apec coal flow: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from pulverized coal pulverized-coal-fired furnaces, cyclone furnaces, or advanced clean-coal technology furnaces. The ash collected from pulverized-coal-fired furnaces is fly...

  13. alkaline coal ash: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from pulverized coal pulverized-coal-fired furnaces, cyclone furnaces, or advanced clean-coal technology furnaces. The ash collected from pulverized-coal-fired furnaces is fly...

  14. advanced slagging coal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from pulverized coal pulverized-coal-fired furnaces, cyclone furnaces, or advanced clean-coal technology furnaces. The ash collected from pulverized-coal-fired furnaces is fly...

  15. Coal-oil slurry preparation

    DOE Patents [OSTI]

    Tao, John C. (Perkiomenville, PA)

    1983-01-01T23:59:59.000Z

    A pumpable slurry of pulverized coal in a coal-derived hydrocarbon oil carrier which slurry is useful as a low-ash, low-sulfur clean fuel, is produced from a high sulfur-containing coal. The initial pulverized coal is separated by gravity differentiation into (1) a high density refuse fraction containing the major portion of non-coal mineral products and sulfur, (2) a lowest density fraction of low sulfur content and (3) a middlings fraction of intermediate sulfur and ash content. The refuse fraction (1) is gasified by partial combustion producing a crude gas product from which a hydrogen stream is separated for use in hydrogenative liquefaction of the middlings fraction (3). The lowest density fraction (2) is mixed with the liquefied coal product to provide the desired fuel slurry. Preferably there is also separately recovered from the coal liquefaction LPG and pipeline gas.

  16. Spin coating of electrolytes

    DOE Patents [OSTI]

    Stetter, Joseph R. (Naperville, IL); Maclay, G. Jordan (Maywood, IL)

    1989-01-01T23:59:59.000Z

    Methods for spin coating electrolytic materials onto substrates are disclosed. More particularly, methods for depositing solid coatings of ion-conducting material onto planar substrates and onto electrodes are disclosed. These spin coating methods are employed to fabricate electrochemical sensors for use in measuring, detecting and quantifying gases and liquids.

  17. Corrosion in coal-fired boilers

    SciTech Connect (OSTI)

    Vausher, A.L.

    1982-01-01T23:59:59.000Z

    The corrosive effect of the flue gas and the fly ash from burning coal on combustion and pollution control equipment has led to extensive research efforts aimed at solving this problem. A wide variety of chemical additives are offered by suppliers to perform corrosion reduction functions when added to the solid or liquid fuel. Protection of equipment by the use of corrosion resistant coatings and improved designs to prevent or reduce slag formation are also well known corrosion reduction techniques. However, the problem facing management is to evaluate the many different alternatives and to define the most effective one for their particular facility. Information gained from previous corrosion reduction attempts, and knowledge of factors which increase the SO/sub 3//SO/sub 2/ ratio in the flue gas have resulted in the investigation of methods of controlling the dew point and therefore, reducing the condensation of sulfuric acid. Various methods of avoiding the formation of acid are being evaluated.

  18. Rare Iron Oxide in Ancient Chinese Pottery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnicalPurchase, Delivery,AssistanceRare Earth Metals

  19. Metallic coating of microspheres

    SciTech Connect (OSTI)

    Meyer, S.F.

    1980-08-15T23:59:59.000Z

    Extremely smooth, uniform metal coatings of micrometer thicknesses on microscopic glass spheres (microspheres) are often needed as targets for inertial confinement fusion (ICF) experiments. The first part of this paper reviews those methods used successfully to provide metal coated microspheres for ICF targets, including magnetron sputtering, electro- and electroless plating, and chemical vapor pyrolysis. The second part of this paper discusses some of the critical aspects of magnetron sputter coating of microspheres, including substrate requirements, the sticking of microspheres during coating (preventing a uniform coating), and the difficulties in growing the desired dense, smooth, uniform microstructure on continuously moving spherical substrates.

  20. Eight Advanced Coal Projects Chosen for Further Development by DOE's University Coal Research Program

    Broader source: Energy.gov [DOE]

    DOE has selected eight new projects to further advanced coal research under the University Coal Research Program. The selected projects will improve coal conversion and use and will help propel technologies for future advanced coal power systems.

  1. Oxide Dispersion Strengthened Iron Aluminide by CVD Coated Powders

    SciTech Connect (OSTI)

    Asit Biswas Andrew J. Sherman

    2006-09-25T23:59:59.000Z

    This I &I Category2 program developed chemical vapor deposition (CVD) of iron, aluminum and aluminum oxide coated iron powders and the availability of high temperature oxidation, corrosion and erosion resistant coating for future power generation equipment and can be used for retrofitting existing fossil-fired power plant equipment. This coating will provide enhanced life and performance of Coal-Fired Boilers components such as fire side corrosion on the outer diameter (OD) of the water wall and superheater tubing as well as on the inner diameter (ID) and OD of larger diameter headers. The program also developed a manufacturing route for readily available thermal spray powders for iron aluminide coating and fabrication of net shape component by powder metallurgy route using this CVD coated powders. This coating can also be applid on jet engine compressor blade and housing, industrial heat treating furnace fixtures, magnetic electronic parts, heating element, piping and tubing for fossil energy application and automotive application, chemical processing equipment , heat exchanger, and structural member of aircraft. The program also resulted in developing a new fabrication route of thermal spray coating and oxide dispersion strengthened (ODS) iron aluminide composites enabling more precise control over material microstructures.

  2. Moist caustic leaching of coal

    DOE Patents [OSTI]

    Nowak, Michael A. (Elizabeth, PA)

    1994-01-01T23:59:59.000Z

    A process for reducing the sulfur and ash content of coal. Particulate coal is introduced into a closed heated reaction chamber having an inert atmosphere to which is added 50 mole percent NaOH and 50 mole percent KOH moist caustic having a water content in the range of from about 15% by weight to about 35% by weight and in a caustic to coal weight ratio of about 5 to 1. The coal and moist caustic are kept at a temperature of about 300.degree. C. Then, water is added to the coal and caustic mixture to form an aqueous slurry, which is washed with water to remove caustic from the coal and to produce an aqueous caustic solution. Water is evaporated from the aqueous caustic solution until the water is in the range of from about 15% by weight to about 35% by weight and is reintroduced to the closed reaction chamber. Sufficient acid is added to the washed coal slurry to neutralize any remaining caustic present on the coal, which is thereafter dried to produce desulfurized coal having not less than about 90% by weight of the sulfur present in the coal feed removed and having an ash content of less than about 2% by weight.

  3. Coal slurries: An environmental bonus

    SciTech Connect (OSTI)

    Basta, N.; Moore, S.; Ondrey, G.

    1994-05-01T23:59:59.000Z

    Developers and promoters of coal-water slurries and similar CWF (coal-water fuel) technologies have had a hard time winning converts since they unveiled their first commercial processes in the 1970s. The economic appeal of such processes, marginal at best, varies with the price of oil. Nevertheless, the technology is percolating, as geopolitics and environmental pressures drive new processes. Such fuels are becoming increasingly important to coal-rich, oil-poor nations such as China, as they attempt to build an onshore fuel supply. Meanwhile, improvements are changing the way coal-fired processes are viewed. Where air pollution regulations once discouraged the use of coal fuels, new coal processes have been developed that cut nitrous oxides (NOx) emissions and provide a use for coal fines, previously viewed as waste. The latest developments in the field were all on display at the 19th International Technical Conference on Coal Utilization and Fuel Systems, held in Clearwater, Fla., on March 21--24. At this annual meeting, sponsored by the Coal and Slurry Technology Association, (Washington, D.C.) and the Pittsburgh Energy Technology Center of the US Dept. of Energy (PETC), some 200 visitors from around the work gathered to discuss the latest developments in coal slurry utilization--new and improved processes, and onstream plants. This paper presents highlights from the conference.

  4. Process for changing caking coals to noncaking coals

    DOE Patents [OSTI]

    Beeson, Justin L. (Woodridge, IL)

    1980-01-01T23:59:59.000Z

    Caking coals are treated in a slurry including alkaline earth metal hydroxides at moderate pressures and temperatures in air to form noncaking carbonaceous material. Hydroxides such as calcium hydroxide, magnesium hydroxide or barium hydroxide are contemplated for slurrying with the coal to interact with the agglomerating constituents. The slurry is subsequently dewatered and dried in air at atmospheric pressure to produce a nonagglomerating carbonaceous material that can be conveniently handled in various coal conversion and combustion processes.

  5. High-sulfur coals in the eastern Kentucky coal field

    SciTech Connect (OSTI)

    Hower, J.C.; Graham, U.M. (Univ. of Kentucky Center for Applied Energy Research, Lexington, KY (United States)); Eble, C.F. (Kentucky Geological Survey, Lexington, KY (United States))

    1993-08-01T23:59:59.000Z

    The Eastern Kentucky coal field is notable for relatively low-sulfur, [open quotes]compliance[close quotes] coals. Virtually all of the major coals in this area do have regions in which higher sulfur lithotypes are common, if not dominant, within the lithologic profile. Three Middle Pennsylvanian coals, each representing a major resource, exemplify this. The Clintwood coal bed is the stratigraphically lowest coal bed mined throughout the coal field. In Whitley County, the sulfur content increase from 0.6% at the base to nearly 12% in the top lithotype. Pyrite in the high-sulfur lithotype is a complex mixture of sub- to few-micron syngenetic forms and massive epigenetic growths. The stratigraphically higher Pond Creek coal bed is extensively mined in portions of the coal field. Although generally low in sulfur, in northern Pike and southern Martin counties the top one-third can have up to 6% sulfur. Uniformly low-sulfur profiles can occur within a few hundred meters of high-sulfur coal. Pyrite occurs as 10-50 [mu]m euhedra and coarser massive forms. In this case, sulfur distribution may have been controlled by sandstone channels in the overlying sediments. High-sulfur zones in the lower bench of the Fire Clay coal bed, the stratigraphically highest coal bed considered here, are more problematical. The lower bench, which is of highly variable thickness and quality, generally is overlain by a kaolinitic flint clay, the consequence of a volcanic ash fall into the peat swamp. In southern Perry and Letcher counties, a black, illite-chlorite clay directly overlies the lower bench. General lack of lateral continuity of lithotypes in the lower bench suggests that the precursor swamp consisted of discontinuous peat-forming environments that were spatially variable and regularly inundated by sediments. Some of the peat-forming areas may have been marshlike in character.

  6. Western Coal/Great Lakes Alternative export-coal conference

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    This conference dealt with using the Great Lakes/St. Lawrence Seaway as an alternative to the East and Gulf Coasts for the exporting of coal to Europe and the potential for a piece of the European market for the subbituminous coals of Montana and Wyoming. The topics discussed included: government policies on coal exports; the coal reserves of Montana; cost of rail transport from Western mines to Lake Superior; the planning, design, and operation of the Superior Midwest Energy Terminal at Superior, Wisconsin; direct transfer of coal from self-unloading lakers to large ocean vessels; concept of total transportation from mines to users; disadvantage of a nine month season on the Great Lakes; costs of maritime transport of coal through the Great Lakes to Europe; facilities at the ice-free, deep water port at Sept Iles; the use of Western coals from an environmental and economic viewpoint; the properties of Western coal and factors affecting its use; the feasibility of a slurry pipeline from the Powder River Basin to Lake Superior; a systems analysis of the complete hydraulic transport of coal from the mine to users in Europe; the performance of the COJA mill-burner for the combustion of superfine coal; demand for steam coal in Western Europe; and the effect the New Source Performance Standards will have on the production and use of Western coal. A separate abstract was prepared for each of the 19 papers for the Energy Data Base (EDB); 17 will appear in Energy Research Abstracts (ERA) and 11 in Energy Abstracts for Policy Analysis (EAPA). (CKK)

  7. Autothermal coal gasification

    SciTech Connect (OSTI)

    Konkol, W.; Ruprecht, P.; Cornils, B.; Duerrfeld, R.; Langhoff, J.

    1982-03-01T23:59:59.000Z

    This paper presents test results of a pilot plant study of coal gasification system based on the process developed by Texaco. This process has been improved by the project partners Ruhrchenie A.G. and Ruhrkohle A.C. in West Germany and tested in a demonstration plant that operated for more than 10,000 hours, converting over 50,000 tons of coal into gas. The aim was to develop a process that would be sufficiently flexible when used at the commercial level to incorporate all of the advantages inherent in the diverse processes of the 'first generation' - fixed bed, fluidized bed and entrained bed processes - but would be free of the disadvantages of these processes. Extensive test results are tabulated and evaluated. Forecast for future development is included. 5 refs.

  8. Flotation and flocculation chemistry of coal and oxidized coals

    SciTech Connect (OSTI)

    Somasundaran, P.

    1990-01-01T23:59:59.000Z

    The objective of this research project is to understand the fundamentals involved in the flotation and flocculation of coal and oxidized coals and elucidate mechanisms by which surface interactions between coal and various reagents enhance coal beneficiation. An understanding of the nature of the heterogeneity of coal surfaces arising from the intrinsic distribution of chemical moieties is fundamental to the elucidation of mechanism of coal surface modification and its role in interfacial processes such as flotation, flocculation and agglomeration. A new approach for determining the distribution in surface properties of coal particles was developed in this study and various techniques capable of providing such information were identified. Distributions in surface energy, contact angle and wettability were obtained using novel techniques such as centrifugal immersion and film flotation. Changes in these distributions upon oxidation and surface modifications were monitored and discussed. An approach to the modelling of coal surface site distributions based on thermodynamic information obtained from gas adsorption and immersion calorimetry is proposed. Polyacrylamide and dodecane was used to alter the coal surface. Methanol adsorption was also studied. 62 figs.

  9. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01T23:59:59.000Z

    21 Figure 6: Map of PRB coal mines serviced by the BNSF-UPPRB.of the Powder River Basin (PRB) in Wyoming. Although traffic

  10. Coal Bed Methane Primer

    SciTech Connect (OSTI)

    Dan Arthur; Bruce Langhus; Jon Seekins

    2005-05-25T23:59:59.000Z

    During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of stakeholders to present a consistent and complete synopsis of the key issues involved with CBM. In light of the numerous CBM NEPA documents under development this Primer could be used to support various public scoping meetings and required public hearings throughout the Western States in the coming years.

  11. Exploration for deep coal

    SciTech Connect (OSTI)

    NONE

    2008-12-15T23:59:59.000Z

    The most important factor in safe mining is the quality of the roof. The article explains how the Rosebud Mining Co. conducts drilling and exploration in 11 deep coal mine throughout Pennsylvania and Ohio. Rosebud uses two Atlas Copco CS10 core drilling rigs mounted on 4-wheel drive trucks. The article first appeared in Atlas Copco's in-house magazine, Deep Hole Driller. 3 photos.

  12. Zero emission coal

    SciTech Connect (OSTI)

    Ziock, H.; Lackner, K.

    2000-08-01T23:59:59.000Z

    We discuss a novel, emission-free process for producing hydrogen or electricity from coal. Even though we focus on coal, the basic design is compatible with any carbonaceous fuel. The process uses cyclical carbonation of calcium oxide to promote the production of hydrogen from carbon and water. The carbonation of the calcium oxide removes carbon dioxide from the reaction products and provides the additional energy necessary to complete hydrogen production without additional combustion of carbon. The calcination of the resulting calcium carbonate is accomplished using the high temperature waste heat from solid oxide fuel cells (SOFC), which generate electricity from hydrogen fuel. Converting waste heat back to useful chemical energy allows the process to achieve very high conversion efficiency from fuel energy to electrical energy. As the process is essentially closed-loop, the process is able to achieve zero emissions if the concentrated exhaust stream of CO{sub 2} is sequestered. Carbon dioxide disposal is accomplished by the production of magnesium carbonate from ultramafic rock. The end products of the sequestration process are stable naturally occurring minerals. Sufficient rich ultramafic deposits exist to easily handle all the world's coal.

  13. Assessment of underground coal gasification in bituminous coals: catalog of bituminous coals and site selection. Appendix A. National coal resource data system: Ecoal, Wcoal, and Bmalyt. Final report, Phase I. [Bituminous coal; by state; coal seam depth and thickness; identification

    SciTech Connect (OSTI)

    None

    1982-01-31T23:59:59.000Z

    Appendix A is a catalog of the bituminous coal in 29 states of the contiguous United States which contain identified bituminous coal resources.

  14. COAL CLEANING BY GAS AGGLOMERATION

    SciTech Connect (OSTI)

    MEIYU SHEN; ROYCE ABBOTT; T.D. WHEELOCK

    1998-09-30T23:59:59.000Z

    The agglomeration of ultrafine-size coal particles in an aqueous suspension by means of microscopic gas bubbles was demonstrated in numerous experiments with a scale model mixing system. Coal samples from both the Pittsburgh No. 8 Seam and the Upper Freeport Seam were used for these experiments. A small amount of i-octane was added to facilitate the process. Microscopic gas bubbles were generated by saturating the water used for suspending coal particles with gas under pressure and then reducing the pressure. Microagglomerates were produced which appeared to consist of gas bubbles encapsulated in coal particles. Since dilute particle suspensions were employed, it was possible to monitor the progress of agglomeration by observing changes in turbidity. By such means it became apparent that the rate of agglomeration depends on the concentration of microscopic gas bubbles and to a lesser extent on the concentration of i-octane. Similar results were obtained with both Pittsburgh No. 8 coal and Upper Freeport coal.

  15. Transporting export coal from Appalachia

    SciTech Connect (OSTI)

    Not Available

    1982-11-01T23:59:59.000Z

    This publication is part of a series titled Market Guide for Steam Coal Exports from Appalachia. It focuses on the transportation link in the steam-coal supply chain, enabling producers to further assess their transportation options and their ability to compete in the export-coal marketplace. Transportation alternatives and handling procedures are discussed, and information is provided on the costs associated with each element in the transportation network.

  16. Liquid chromatographic analysis of coal surface properties

    SciTech Connect (OSTI)

    Kwon, K.C.

    1991-01-01T23:59:59.000Z

    The main objectives of this proposed research are to refine further the inverse liquid chromatography technique for the study of surface properties of raw coals, treated coals and coal minerals in water, to evaluate relatively surface properties of raw coals, treated coals and coal minerals by inverse liquid chromatography, and to evaluate floatability of various treated coals in conjunction with surface properties of coals. Alcohols such as methanol, ethanol, isopropanol, isobutanol, tert-butanol, heptanol, 1-hexadecanol, 2-methyl-pentanol, 4-methyl-2-penthanol (methylisobutyl carbinol), n-octanol, s-octanol, and cyclohexanol as probe compounds are utilized to evaluate hydrophilicity of coals and coal minerals. N-alkanes such as hexane, heptane and octane, and stearic acid are employed as probe compounds to evaluate hydrophobicity of coals and coal minerals. Aromatic compounds such as benzene and toluene as probe compounds are used to examine aromaticity of coal surface. Aromatic acids such as o-cresol, m-cresol, p-cresol, phenol and B-naphthol are used to detect aromatic acidic sites of coal surface. Hydrophilicity, hydrophobicity and aromaticity of surfaces for either raw coals or treated coals in water are relatively determined by evaluating both equilibrium physical/chemical adsorption and dynamic adsorption of probe compounds on various raw coals and treated coals to compare affinities of coals for water.

  17. Coal Mine Safety Act (Virginia)

    Broader source: Energy.gov [DOE]

    This Act is the primary legislation pertaining to coal mine safety in Virginia. It contains information on safety rules, safety standards and required certifications for mine workers, prohibited...

  18. ENCOAL Mild Coal Gasification Project

    SciTech Connect (OSTI)

    Not Available

    1992-02-01T23:59:59.000Z

    ENCOAL Corporation, a wholly-owned subsidiary of Shell Mining Company, is constructing a mild gasification demonstration plant at Triton Coal Company's Buckskin Mine near Gillette, Wyoming. The process, using Liquids From Coal (LFC) technology developed by Shell and SGI International, utilizes low-sulfur Powder River Basin Coal to produce two new fuels, Process Derived Fuel (PDF) and Coal Derived Liquids (CDL). The products, as alternative fuels sources, are expected to significantly reduce current sulfur emissions at industrial and utility boiler sites throughout the nation, thereby reducing pollutants causing acid rain.

  19. Process for electrochemically gasifying coal

    DOE Patents [OSTI]

    Botts, T.E.; Powell, J.R.

    1985-10-25T23:59:59.000Z

    A process is claimed for electrochemically gasifying coal by establishing a flowing stream of coal particulate slurry, electrolyte and electrode members through a transverse magnetic field that has sufficient strength to polarize the electrode members, thereby causing them to operate in combination with the electrolyte to electrochemically reduce the coal particulate in the slurry. Such electrochemical reduction of the coal produces hydrogen and carbon dioxide at opposite ends of the polarized electrode members. Gas collection means are operated in conjunction with the process to collect the evolved gases as they rise from the slurry and electrolyte solution. 7 figs.

  20. Carbon Dioxide Emission Factors for Coal

    Reports and Publications (EIA)

    1994-01-01T23:59:59.000Z

    The Energy Information Administration (EIA) has developed factors for estimating the amount of carbon dioxide emitted, accounting for differences among coals, to reflect the changing "mix" of coal in U.S. coal consumption.

  1. Low-rank coal oil agglomeration

    DOE Patents [OSTI]

    Knudson, Curtis L. (Grand Forks, ND); Timpe, Ronald C. (Grand Forks, ND)

    1991-01-01T23:59:59.000Z

    A low-rank coal oil agglomeration process. High mineral content, a high ash content subbituminous coals are effectively agglomerated with a bridging oil which is partially water soluble and capable of entering the pore structure, and usually coal derived.

  2. Coal Bed Methane Protection Act (Montana)

    Broader source: Energy.gov [DOE]

    The Coal Bed Methane Protection Act establishes a long-term coal bed methane protection account and a coal bed methane protection program for the purpose of compensating private landowners and...

  3. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    Alone IGCC+CCS Coal Plant The levelized cost of electricitythan advanced coal plants and hence their cost estimates areestimates of the costs of an advanced coal plant, since they

  4. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01T23:59:59.000Z

    coal electricity generation efficiency also varies by plantplants. The unit water requirement of coal-fired electricity generationelectricity generation is comparatively low in China due to the prevalence of small, outdated coal-fired power plants.

  5. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    ACWH consists of a 3,000 MW coal gasification combined cycleconsists of a 3,000 MW coal gasification, combined cycleless expensive in a coal gasification, combined cycle power

  6. Solar selective absorption coatings

    DOE Patents [OSTI]

    Mahoney, Alan R. (Albuquerque, NM); Reed, Scott T. (Albuquerque, NM); Ashley, Carol S. (Albuquerque, NM); Martinez, F. Edward (Horseheads, NY)

    2004-08-31T23:59:59.000Z

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  7. Solar selective absorption coatings

    DOE Patents [OSTI]

    Mahoney, Alan R. (Albuquerque, NM); Reed, Scott T. (Albuquerque, NM); Ashley, Carol S. (Albuquerque, NM); Martinez, F. Edward (Horseheads, NY)

    2003-10-14T23:59:59.000Z

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  8. Zinc phosphate conversion coatings

    DOE Patents [OSTI]

    Sugama, Toshifumi (Wading River, NY)

    1997-01-01T23:59:59.000Z

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  9. Zinc phosphate conversion coatings

    DOE Patents [OSTI]

    Sugama, T.

    1997-02-18T23:59:59.000Z

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.

  10. Superhard Coating Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine Applications," International Conference on Metallurgical Coatings and Thin Films, San Diego, CA, April 23-27, 2007. - A. Erdemir, O. L. Eryilmaz., M. Urgen, K....

  11. Arkansas Surface Coal Mining Reclamation Act (Arkansas)

    Broader source: Energy.gov [DOE]

    The Arkansas Surface Coal Mining Reclamation Act authorizes the state to develop, adopt, issue and amend rules and regulations pertaining to surface coal mining and reclamation operations. These...

  12. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01T23:59:59.000Z

    raising transportation oil demand. Growing internationalcoal by wire could reduce oil demand by stemming coal roadEastern oil production. The rapid growth of coal demand

  13. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    Renewable Energy and Energy Efficiency, DOE. LBNL 275-E Advanced Coal Wind Hybrid:Renewable Energy Laboratory), and Ryan Wiser ( LBNL). i Advanced Coal Wind Hybrid:

  14. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    Coal Wind Hybrid: Economic Analysis additional cost of fuelWind Hybrid: Economic Analysis Levelized Generation CostCoal Wind Hybrid: Economic Analysis Notes: All Cost are in

  15. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    of Figures Figure ES-1. Advanced Coal Wind Hybrid: Basicviii Figure 1. Advanced-Coal Wind Hybrid: Basic21 Figure 6. Comparison of ACWH and CCGT-Wind

  16. Utility Generation and Clean Coal Technology (Indiana)

    Broader source: Energy.gov [DOE]

    This statute establishes the state's support and incentives for the development of new energy production and generating facilities implementing advanced clean coal technology, such as coal...

  17. Coal Gasification and Transportation Fuels Magazine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gasification and Transportation Fuels Magazine Current Edition: Coal Gasification and Transportation Fuels Quarterly News, Vol.1, Issue 3 (Apr 2015) Archived Editions: Coal...

  18. University Coal Research | Department of Energy

    Energy Savers [EERE]

    Research University Coal Research University Coal Research Universities frequently win Fossil Energy research competitions or join with private companies to submit successful...

  19. Great Lakes ports coal handling capacity and export coal potential

    SciTech Connect (OSTI)

    Ames, A.H. Jr.

    1981-02-01T23:59:59.000Z

    This study was developed to determine the competitive position of the Great Lakes Region coal-loading ports in relation to other US coastal ranges. Due to the congestion at some US Atlantic coastal ports US coal producers have indicated a need for alternative export routes, including the Great Lakes-St. Lawrence Seaway System. The study assesses the regions coal handling capacity and price competitiveness along with the opportunity for increased US flag vessel service. A number of appendices are included showing major coal producers, railroad marketing representatives, US vessel operators, and port handling capacities and throughput. A rate analysis is provided including coal price at the mine, rail rate to port, port handling charges, water transportation rates to western Europe, Great Lakes route versus the US Atlantic Coast ports.

  20. Apparatus for depositing hard coating in a nozzle orifice

    DOE Patents [OSTI]

    Flynn, P.L.; Giammarise, A.W.

    1995-02-21T23:59:59.000Z

    The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance to erosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice`s interior surfaces by the vapor deposited coating formed from the reaction gas. 2 figs.

  1. Process for depositing hard coating in a nozzle orifice

    DOE Patents [OSTI]

    Flynn, Paul L. (5139 Fox Park Dr., Fairview, PA 16415); Giammarise, Anthony W. (527 Lincoln Ave., Erie, PA 16505)

    1991-01-01T23:59:59.000Z

    The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance toerosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice's interior surfaces by the vapor deposited coating formed from the reaction gas.

  2. Process for depositing hard coating in a nozzle orifice

    DOE Patents [OSTI]

    Flynn, P.L.; Giammarise, A.W.

    1991-10-29T23:59:59.000Z

    The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance to erosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice's interior surfaces by the vapor deposited coating formed from the reaction gas. 2 figures.

  3. Apparatus for depositing hard coating in a nozzle orifice

    DOE Patents [OSTI]

    Flynn, Paul L. (Fairview, PA); Giammarise, Anthony W. (Erie, PA)

    1995-01-01T23:59:59.000Z

    The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance to erosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice's interior surfaces by the vapor deposited coating formed from the reaction gas.

  4. Rail Coal Transportation Rates

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubic Feet) Yeara 436 EnergyAssemblyOrderCoal

  5. By Coal Destination State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0Proved Reserves (Billion0.060 U.S. Energy

  6. By Coal Destination State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0Proved Reserves (Billion0.060 U.S. Energy0

  7. By Coal Destination State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0Proved Reserves (Billion0.060 U.S. Energy00

  8. By Coal Destination State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0Proved Reserves (Billion0.060 U.S.

  9. By Coal Destination State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0Proved Reserves (Billion0.060 U.S.1 U.S.

  10. By Coal Destination State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0Proved Reserves (Billion0.060 U.S.1 U.S.1

  11. By Coal Destination State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0Proved Reserves (Billion0.060 U.S.1 U.S.11

  12. By Coal Destination State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0Proved Reserves (Billion0.060 U.S.1 U.S.111

  13. By Coal Destination State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0Proved Reserves (Billion0.060 U.S.1

  14. By Coal Origin State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0Proved Reserves (Billion0.060 U.S.10 U.S.

  15. By Coal Origin State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0Proved Reserves (Billion0.060 U.S.10 U.S.0

  16. By Coal Origin State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0Proved Reserves (Billion0.060 U.S.10 U.S.00

  17. By Coal Origin State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0Proved Reserves (Billion0.060 U.S.10

  18. By Coal Origin State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0Proved Reserves (Billion0.060 U.S.101 U.S.

  19. By Coal Origin State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0Proved Reserves (Billion0.060 U.S.101 U.S.1

  20. By Coal Origin State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0Proved Reserves (Billion0.060 U.S.101

  1. By Coal Origin State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0Proved Reserves (Billion0.060 U.S.1011 U.S.

  2. By Coal Origin State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0Proved Reserves (Billion0.060 U.S.1011

  3. Coal Distribution Database, 2008

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear JanDecade Year-0 Year-1EIA3Q 2009

  4. Coal Distribution Database, 2008

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear JanDecade Year-0 Year-1EIA3Q 20093Q

  5. Coal Distribution Database, 2008

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear JanDecade Year-0 Year-1EIA3Q 20093Q4Q

  6. Coal Distribution Database, 2008

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear JanDecade Year-0 Year-1EIA3Q

  7. Coal Supply Region

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear JanDecade Year-0c. Real average12

  8. Annual Coal Distribution Tables

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14 Dec-14 Jan-1538,469 39,194Dry4,645

  9. Annual Coal Distribution Tables

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14 Dec-14 Jan-1538,469 39,194Dry4,645Domestic

  10. Annual Coal Distribution Tables

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14 Dec-14 Jan-1538,469

  11. By Coal Destination State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14SalesSameCommercial(Million OverviewAnnual

  12. By Coal Origin State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14SalesSameCommercial(Million

  13. Coal Distribution Database, 2006

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (Million Cubic 1.Year Jan Feb Mar Apr

  14. Coal Distribution Database, 2006

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (Million Cubic 1.Year Jan Feb Mar Apr

  15. Coal Distribution Database, 2006

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (Million Cubic 1.Year Jan Feb Mar

  16. Annual Coal Distribution Report

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1 Year-2Cubic

  17. Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S. OffshoreOilAnnual Coal Report

  18. COAL & POWER SYSTEMS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r k CCLEAN9AugustCNSS PapersCOAL &

  19. WCI Case for Coal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1 -VisualizingVote For the# *Coal The role of as

  20. Comparison of coal tars generated by pyrolysis of Hanna coal and UCG (underground coal gasification) Hanna IVB coal tars

    SciTech Connect (OSTI)

    Barbour, F.A.; Cummings, R.E.

    1986-04-01T23:59:59.000Z

    The compositions of coal tars produced by laboratory and pilot scale apparatus have been compared to those produced during underground coal gasification (UCG) experiments at Hanna, Wyoming. Four coal tars were generated by pyrolysis using the block reactor and the laboratory reference retort, and a fifth coal tar was composited from products produced by UCG. Coal tars were separated into chemically defined fractions and were characterized by gas chromatography. Specific compounds were not identified, but rather fingerprinting or compound-type profiling was used for identifying similarities and differences in the product tars. This permitted the evaluation of the different methods of tar production with respect to one another. The UCG coal tars appeared to have undergone more secondary cracking than the pyrolytic products. The coal tar products from the laboratory reference retort appear to be more indicative of the coal's chemical structure. Products from the block reactor contained lesser amounts of the lighter boiling material. In addition there is organic sulfur contamination as indicated by the large amount of sulfur present in the product tar from the block reactor. 11 refs., 16 figs., 11 tabs.

  1. Coal: Energy for the future

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    This report was prepared in response to a request by the US Department of energy (DOE). The principal objectives of the study were to assess the current DOE coal program vis-a-vis the provisions of the Energy Policy Act of 1992 (EPACT), and to recommend the emphasis and priorities that DOE should consider in updating its strategic plan for coal. A strategic plan for research, development, demonstration, and commercialization (RDD and C) activities for coal should be based on assumptions regarding the future supply and price of competing energy sources, the demand for products manufactured from these sources, technological opportunities, and the need to control the environmental impact of waste streams. These factors change with time. Accordingly, the committee generated strategic planning scenarios for three time periods: near-term, 1995--2005; mid-term, 2006--2020; and, long-term, 2021--2040. The report is divided into the following chapters: executive summary; introduction and scope of the study; overview of US DOE programs and planning; trends and issues for future coal use; the strategic planning framework; coal preparation, coal liquid mixtures, and coal bed methane recovery; clean fuels and specialty products from coal; electric power generation; technology demonstration and commercialization; advanced research programs; conclusions and recommendations; appendices; and glossary. 174 refs.

  2. Centrifuge treatment of coal tar

    SciTech Connect (OSTI)

    L.A. Kazak; V.Z. Kaidalov; L.F. Syrova; O.S. Miroshnichenko; A.S. Minakov [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

    2009-07-15T23:59:59.000Z

    New technology is required for the removal of water and heavy fractions from regular coal tar. Centrifuges offer the best option. Purification of coal tar by means of centrifuges at OAO NLMK permits the production of pitch coke or electrode pitch that complies with current standards.

  3. Commercialization of clean coal technologies

    SciTech Connect (OSTI)

    Bharucha, N. [Dept. of Primary Industries and Energy, Canberra (Australia)

    1994-12-31T23:59:59.000Z

    The steps to commercialization are reviewed in respect of their relative costs, the roles of the government and business sectors, and the need for scientific, technological, and economic viability. The status of commercialization of selected clean coal technologies is discussed. Case studies related to a clean coal technology are reviewed and conclusions are drawn on the factors that determine commercialization.

  4. Thermal barrier coating

    DOE Patents [OSTI]

    Bowker, Jeffrey Charles (Gibsonia, PA); Sabol, Stephen M. (Orlando, FL); Goedjen, John G. (Oviedo, FL)

    2001-01-01T23:59:59.000Z

    A thermal barrier coating for hot gas path components of a combustion turbine based on a zirconia-scandia system. A layer of zirconium scandate having the hexagonal Zr.sub.3 Sc.sub.4 O.sub.12 structure is formed directly on a superalloy substrate or on a bond coat formed on the substrate.

  5. Coated ceramic breeder materials

    DOE Patents [OSTI]

    Tam, Shiu-Wing (Downers Grove, IL); Johnson, Carl E. (Elk Grove, IL)

    1987-01-01T23:59:59.000Z

    A breeder material for use in a breeder blanket of a nuclear reactor is disclosed. The breeder material comprises a core material of lithium containing ceramic particles which has been coated with a neutron multiplier such as Be or BeO, which coating has a higher thermal conductivity than the core material.

  6. Coal pile leachate treatment

    SciTech Connect (OSTI)

    Davis, E C; Kimmitt, R R

    1982-09-01T23:59:59.000Z

    The steam plant located at the Oak Ridge National Laboratory was converted from oil- to coal-fired boilers. In the process, a diked, 1.6-ha coal storage yard was constructed. The purpose of this report is to describe the treatment system designed to neutralize the estimated 18,000 m/sup 3/ of acidic runoff that will be produced each year. A literature review and laboratory treatability study were conducted which identified two treatment systems that will be employed to neutralize the acidic runoff. The first, a manually operated system, will be constructed at a cost of $200,000 and will operate for an interim period of four years. This system will provide for leachate neutralization until a more automated system can be brought on-line. The second, a fully automated system, is described and will be constructed at an estimated cost of $650,000. This automated runoff treatment system will ensure that drainage from the storage yard meets current National Pollutant Discharge Elimination System Standards for pH and total suspended solids, as well as future standards, which are likely to include several metals along with selected trace elements.

  7. Coals and coal requirements for the COREX process

    SciTech Connect (OSTI)

    Heckmann, H. [Deutsche Voest-Alpine Industrieanlagenbau GmbH, Duesseldorf (Germany)

    1996-12-31T23:59:59.000Z

    The utilization of non met coals for production of liquid hot metal was the motivation for the development of the COREX Process by VAI/DVAI during the 70`s. Like the conventional ironmaking route (coke oven/blast furnace) it is based on coal as source of energy and reduction medium. However, in difference to blast furnace, coal can be used directly without the necessary prestep of cokemaking. Coking ability of coals therefore is no prerequisite of suitability. Meanwhile the COREX Process is on its way to become established in ironmaking industry. COREX Plants at ISCOR, Pretoria/South Africa and POSCO Pohang/Korea, being in operation and those which will be started up during the next years comprise already an annual coal consumption capacity of approx. 5 Mio. tonnes mtr., which is a magnitude attracting the interest of industrial coal suppliers. The increasing importance of COREX as a comparable new technology forms also a demand for information regarding process requirements for raw material, especially coal, which is intended to be met here.

  8. Coal surface control for advanced fine coal flotation

    SciTech Connect (OSTI)

    Fuerstenau, D.W.; Sastry, K.V.S.; Hanson, J.S.; Harris, G.; Sotillo, F.; Diao, J. (California Univ., Berkeley, CA (USA)); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. (Columbia Univ., New York, NY (USA)); Hu, Weibai; Zou, Y.; Chen, W. (Utah Univ., Salt Lake City, UT (USA)); Choudhry, V.; Sehgal, R.; Ghosh, A. (Praxis Engineers, Inc., Milpitas, CA (USA))

    1990-08-15T23:59:59.000Z

    The primary objective of this research project is to develop advanced flotation methods for coal cleaning in order to achieve near total pyritic-sulfur removal at 90% Btu recovery, using coal samples procured from six major US coal seams. Concomitantly, the ash content of these coals is to be reduced to 6% or less. Work this quarter concentrated on the following: washability studies, which included particle size distribution of the washability samples, and chemical analysis of washability test samples; characterization studies of induction time measurements, correlation between yield, combustible-material recovery (CMR), and heating-value recovery (HVR), and QA/QC for standard flotation tests and coal analyses; surface modification and control including testing of surface-modifying reagents, restoration of hydrophobicity to lab-oxidized coals, pH effects on coal flotation, and depression of pyritic sulfur in which pyrite depression with calcium cyanide and pyrite depression with xanthated reagents was investigated; flotation optimization and circuitry included staged reagent addition, cleaning and scavenging, and scavenging and middling recycling. Weathering studies are also discussed. 19 figs., 28 tabs.

  9. Catalytic thermal barrier coatings

    DOE Patents [OSTI]

    Kulkarni, Anand A. (Orlando, FL); Campbell, Christian X. (Orlando, FL); Subramanian, Ramesh (Oviedo, FL)

    2009-06-02T23:59:59.000Z

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  10. Thermal barrier coatings

    DOE Patents [OSTI]

    Alvin, Mary Anne (Pittsburg, PA)

    2010-06-22T23:59:59.000Z

    This disclosure addresses the issue of providing a metallic-ceramic overlay coating that potentially serves as an interface or bond coat layer to provide enhanced oxidation resistance to the underlying superalloy substrate via the formation of a diffusion barrier regime within the supporting base material. Furthermore, the metallic-ceramic coating is expected to limit the growth of a continuous thermally grown oxide (TGO) layer that has been primarily considered to be the principal cause for failure of existing TBC systems. Compositional compatibility of the metallic-ceramic with traditional yttria-stabilized zirconia (YSZ) top coats is provided to further limit debond or spallation of the coating during operational use. A metallic-ceramic architecture is disclosed wherein enhanced oxidation resistance is imparted to the surface of nickel-based superalloy or single crystal metal substrate, with simultaneous integration of the yttria stabilized zirconia (YSZ) within the metallic-ceramic overlayer.

  11. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. [Coal pyrite electrodes

    SciTech Connect (OSTI)

    Doyle, F.M.

    1992-01-01T23:59:59.000Z

    The objective of this research is to develop a mechanistic understanding of the oxidation of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with those surface properties that influence the behavior in physical cleaning processes. The results will provide fundamental insight into oxidation, in terms of the bulk and surface chemistry, the microstructure, and the semiconductor properties of the pyrite. During the eighth quarter, wet chemical and dry oxidation tests were done on Upper Freeport coal from the Troutville [number sign]2 Mine, Clearfield County, Pennsylvania. In addition electrochemical experiments were done on electrodes prepared from Upper Freeport coal pyrite and Pittsburgh coal pyrite samples provided by the US Bureau of Mines, Pittsburgh Research Center, Pennsylvania.

  12. Coal surface control for advanced fine coal flotation

    SciTech Connect (OSTI)

    Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F. (California Univ., Berkeley, CA (United States)); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. (Columbia Univ., New York, NY (United States)); Hu, W.; Zou, Y.; Chen, W. (Utah Univ., Salt Lake City, UT (United States)); Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R. (Praxis Engineers, Inc., Milpitas, CA (United States))

    1992-03-01T23:59:59.000Z

    The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal's emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

  13. Evaluation of improved materials for stationary diesel engines operating on residual and coal based fuels. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    Experimental results to date from an on-going research program on improved materials for stationary diesel engines using residual or coal-based fuels are presented with little discussion of conclusions about these results. Information is included on ring and liner wear, fuel oil qualities, ceramic materials, coatings, test procedures and equipment, and tribology test results. (LCL)

  14. ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE

    E-Print Network [OSTI]

    Ferrell, G.C.

    2010-01-01T23:59:59.000Z

    Costs References . . Coal-Electric Generation Technologyon coal preparation, coal-electric generation and emissionson coal preparation, coal-electric generation and emissions

  15. ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE

    E-Print Network [OSTI]

    Ferrell, G.C.

    2010-01-01T23:59:59.000Z

    74. Any coal application (coal gasification, coal combustionFixed-Bed Low-Btu Coal Gasification Systems for RetrofittingPower Plants Employing Coal Gasification," Bergman, P. D. ,

  16. Carbon Dioxide Capture from Coal-Fired

    E-Print Network [OSTI]

    Carbon Dioxide Capture from Coal-Fired Power Plants: A Real Options Analysis May 2005 MIT LFEE 2005. LFEE 2005-002 Report #12;#12;i ABSTRACT Investments in three coal-fired power generation technologies environment. The technologies evaluated are pulverized coal (PC), integrated coal gasification combined cycle

  17. Low temperature aqueous desulfurization of coal

    DOE Patents [OSTI]

    Slegeir, W.A.; Healy, F.E.; Sapienza, R.S.

    1985-04-18T23:59:59.000Z

    This invention describes a chemical process for desulfurizing coal, especially adaptable to the treatment of coal-water slurries, at temperatures as low as ambient, comprising treating the coal with aqueous titanous chloride whereby hydrogen sulfide is liberated and the desulfurized coal is separated with the conversion of titanous chloride to titanium oxides.

  18. Formation and retention of methane in coal

    SciTech Connect (OSTI)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15T23:59:59.000Z

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  19. Synthetic fuel production by indirect coal liquefaction

    E-Print Network [OSTI]

    and dimethyl ether) by indirect coal liquefaction (ICL). Gasification of coal pro- duces a synthesis gas by coal gasification. The principal con- stituents of ``syngas'' are carbon monoxide and hydrogen, which modern coal gasification facilities in operation to make hydrogen for ammonia production. Also

  20. Coal ash utilization in India

    SciTech Connect (OSTI)

    Michalski, S.R.; Brendel, G.F.; Gray, R.E. [GAI Consultants, Inc., Pittsburgh, PA (United States)

    1998-12-31T23:59:59.000Z

    This paper describes methods of coal combustion product (CCP) management successfully employed in the US and considers their potential application in India. India produces about 66 million tons per year (mty) of coal ash from the combustion of 220 mty of domestically produced coal, the average ash content being about 30--40 percent as opposed to an average ash content of less than 10 percent in the US In other words, India produces coal ash at about triple the rate of the US. Currently, 95 percent of this ash is sluiced into slurry ponds, many located near urban centers and consuming vast areas of premium land. Indian coal-fired generating capacity is expected to triple in the next ten years, which will dramatically increase ash production. Advanced coal cleaning technology may help reduce this amount, but not significantly. Currently India utilizes two percent of the CCP`s produced with the remainder being disposed of primarily in large impoundments. The US utilizes about 25 percent of its coal ash with the remainder primarily being disposed of in nearly equal amounts between dry landfills and impoundments. There is an urgent need for India to improve its ash management practice and to develop efficient and environmentally sound disposal procedures as well as high volume ash uses in ash haulback to the coalfields. In addition, utilization should include: reclamation, structural fill, flowable backfill and road base.

  1. Clean coal technologies: A business report

    SciTech Connect (OSTI)

    Not Available

    1993-01-01T23:59:59.000Z

    The book contains four sections as follows: (1) Industry trends: US energy supply and demand; The clean coal industry; Opportunities in clean coal technologies; International market for clean coal technologies; and Clean Coal Technology Program, US Energy Department; (2) Environmental policy: Clean Air Act; Midwestern states' coal policy; European Community policy; and R D in the United Kingdom; (3) Clean coal technologies: Pre-combustion technologies; Combustion technologies; and Post-combustion technologies; (4) Clean coal companies. Separate abstracts have been prepared for several sections or subsections for inclusion on the data base.

  2. Coal Mining on Pitching Seams

    E-Print Network [OSTI]

    Brown, George MacMillan

    1915-01-01T23:59:59.000Z

    . 1915* App r ov e d: Department of Mining Engineering* COAL MUTING ON PITCHING SEAMS A THESIS SUBMITTED TO THE FACULTY OP THE SCHOOL OP ENGINEERING OF THE UNIVERSITY OP KANSAS for THE DEGREE OF ENGINEER OF MINES BY GEORGE MACMILLAN BROWN 1915... PREFACE In the following dissertation on the subject of "Coal Mining in Pitching Beams" the writer desires to describe more particularly those methods of mining peculiar to coal mines in Oklahoma, with which he has been more or less familiar during...

  3. Coal conversion siting on coal mined lands: water quality issues

    SciTech Connect (OSTI)

    Triegel, E.K.

    1980-01-01T23:59:59.000Z

    The siting of new technology coal conversion facilities on land disturbed by coal mining results in both environmental benefits and unique water quality issues. Proximity to mining reduces transportation requirements and restores disrupted land to productive use. Uncertainties may exist, however, in both understanding the existing site environment and assessing the impact of the new technology. Oak Ridge National Laboratory is currently assessing the water-related impacts of proposed coal conversion facilities located in areas disturbed by surface and underground coal mining. Past mining practices, leaving highly permeable and unstable fill, may affect the design and quality of data from monitoring programs. Current mining and dewatering, or past underground mining may alter groundwater or surface water flow patterns or affect solid waste disposal stability. Potential acid-forming material influences the siting of waste disposal areas and the design of grading operations. These and other problems are considered in relation to the uncertainties and potentially unique problems inherent in developing new technologies.

  4. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01T23:59:59.000Z

    EIA), 2007, Coal Transportation Rate Database, http://The EIA then organizes this information into a databaseEIA ratios to go into the BASE CASE Waybill forecast database

  5. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01T23:59:59.000Z

    Data from Forms FERC 423 and EIA 423, “Cost and Quality ofInformation Administration (EIA) projects that the U.S. willyear. In addition, while EIA’s estimates do not take coal-

  6. Clean coal technology. Coal utilisation by-products

    SciTech Connect (OSTI)

    NONE

    2006-08-15T23:59:59.000Z

    The need to remove the bulk of ash contained in flue gas from coal-fired power plants coupled with increasingly strict environmental regulations in the USA result in increased generation of solid materials referred to as coal utilisation by-products, or CUBs. More than 40% of CUBs were sold or reused in the USA in 2004 compared to less than 25% in 1996. A goal of 50% utilization has been established for 2010. The American Coal Ash Association (ACCA) together with the US Department of Energy's Power Plant Improvement Initiative (PPPI) and Clean Coal Power Initiative (CCPI) sponsor a number of projects that promote CUB utilization. Several are mentioned in this report. Report sections are: Executive summary; Introduction; Where do CUBs come from?; Market analysis; DOE-sponsored CUB demonstrations; Examples of best-practice utilization of CUB materials; Factors limiting the use of CUBs; and Conclusions. 14 refs., 1 fig., 5 tabs., 14 photos.

  7. Healy clean coal project

    SciTech Connect (OSTI)

    Not Available

    1992-08-01T23:59:59.000Z

    The objective of the Healy Clean Coal Project is to demonstrate the integration of an advanced combustor and a heat recovery system with both high and low temperature emission control processes. Resulting emission levels of SO[sub 2], NO[sub x], and particulates are expected to be significantly better than the federal New source Performance standards. During this past quarter, engineering and design continued on the boiler, combustion flue gas desulfurization (FGD), and turbine/generator systems. Balance of plant equipment procurement specifications continue to be prepared. Construction activities commenced as the access road construction got under way. Temporary ash pond construction and drilling of the supply well will be completed during the next quarter.

  8. Coal gasification vessel

    DOE Patents [OSTI]

    Loo, Billy W. (Oakland, CA)

    1982-01-01T23:59:59.000Z

    A vessel system (10) comprises an outer shell (14) of carbon fibers held in a binder, a coolant circulation mechanism (16) and control mechanism (42) and an inner shell (46) comprised of a refractory material and is of light weight and capable of withstanding the extreme temperature and pressure environment of, for example, a coal gasification process. The control mechanism (42) can be computer controlled and can be used to monitor and modulate the coolant which is provided through the circulation mechanism (16) for cooling and protecting the carbon fiber and outer shell (14). The control mechanism (42) is also used to locate any isolated hot spots which may occur through the local disintegration of the inner refractory shell (46).

  9. Coal competition: prospects for the 1980s

    SciTech Connect (OSTI)

    Not Available

    1981-03-01T23:59:59.000Z

    This report consists of 10 chapters which present an historical overview of coal and the part it has played as an energy source in the economic growth of the United States from prior to World War II through 1978. Chapter titles are: definition of coals, coal mining; types of coal mines; mining methods; mining work force; development of coal; mine ownership; production; consumption; prices; exports; and imports. (DMC)

  10. U.S. coal outlook in Asia

    SciTech Connect (OSTI)

    Johnson, C.J.

    1997-02-01T23:59:59.000Z

    Coal exports from the US to Asia are declining over time as a result of (1) increased competition from coal suppliers within the Asia-Pacific region, (2) changing steel making technologies, (3) decreased emphasis on security of coal supplies, and (4) deregulation of the energy industry--particularly electric utilities. There are no major changes on the horizon that are likely to alter the role of the US as a modest coal supplier to the Asia-Pacific region. The downward trend in US coal exports to Asia is expected to continue over the 1997--2010 period. But economic and policy changes underway in Asia are likely to result in periodic coal shortages, lasting a few months to a year, and short term increased export opportunities for US coal. US coal exports to Asia are projected to fluctuate within the following ranges over the 2000--2010 period: 10--17 million tons in total exports, 6--12 million tons in thermal coal exports, and 4--9 million tons in coking coal exports. The most important role for US coal, from the perspective of Asian coal importing countries, is to ensure a major alternative source of coal supplies that can be turned to in the event of unforeseen disruptions in coal supplies from the Asia-Pacific region or South Africa. However, the willingness of consumers to pay a premium to ensure US export capacity is declining, with increased emphasis on obtaining the lowest cost coal supplies.

  11. Seca Coal-Based Systems Program

    SciTech Connect (OSTI)

    Matthew Alinger

    2008-05-31T23:59:59.000Z

    This report summarizes the progress made during the August 1, 2006 - May 31, 2008 award period under Cooperative Agreement DE-FC26-05NT42614 for the U. S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled 'SECA Coal Based Systems'. The initial overall objective of this program was to design, develop, and demonstrate multi-MW integrated gasification fuel cell (IGFC) power plants with >50% overall efficiency from coal (HHV) to AC power. The focus of the program was to develop low-cost, high performance, modular solid oxide fuel cell (SOFC) technology to support coal gas IGFC power systems. After a detailed GE internal review of the SOFC technology, the program was de-scoped at GE's request. The primary objective of this program was then focused on developing a performance degradation mitigation path for high performing, cost-effective solid oxide fuel cells (SOFCs). There were two initial major objectives in this program. These were: (1) Develop and optimize a design of a >100 MWe integrated gasification fuel cell (IGFC) power plant; (2) Resolve identified barrier issues concerning the long-term economic performance of SOFC. The program focused on designing and cost estimating the IGFC system and resolving technical and economic barrier issues relating to SOFC. In doing so, manufacturing options for SOFC cells were evaluated, options for constructing stacks based upon various cell configurations identified, and key performance characteristics were identified. Key factors affecting SOFC performance degradation for cells in contact with metallic interconnects were be studied and a fundamental understanding of associated mechanisms was developed using a fixed materials set. Experiments and modeling were carried out to identify key processes/steps affecting cell performance degradation under SOFC operating conditions. Interfacial microstructural and elemental changes were characterized, and their relationships to observed degradation identified. Mitigation strategies, including innovative coatings and bond layers, were developed, evaluated and down-selected to improve degradation rates. Focus was on microstructural stabilization and minimization of the ASR contribution from Cr{sub 2}O{sub 3} scale growth and other interactions at electrode/interconnect interfaces evaluated during electrochemical testing and advanced microstructural characterization. Novel long-term and accelerated testing techniques were developed and conducted under standard operating conditions to demonstrate capability to meet targeted degradation rates.

  12. PARAMETRIC STUDY OF SUBMICRON PARTICULATES FROM PULVERIZED COAL COMBUSTION

    E-Print Network [OSTI]

    Pennucci, J.

    2014-01-01T23:59:59.000Z

    Chemistry of Coal during Combustion and the Emissions fromParticulates Generated by Combustion of Pulverized Coal,Particles from Coal Combustion, presented at the Eighteenth

  13. National Coal Council Presentation/Prepared Remarks | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Coal Council PresentationPrepared Remarks National Coal Council PresentationPrepared Remarks National Coal Council PresentationPrepared Remarks More Documents &...

  14. COMBUSTION OF COAL IN AN OPPOSED FLOW DIFFUSION BURNER

    E-Print Network [OSTI]

    Chin, W.K.

    2010-01-01T23:59:59.000Z

    TABLE 1. Pittsburgh seam coal properties, Grosshandler (content of the Pittsburgh seam coal. As the ash layer beginsfrom Pittsburgh seam pulverized coal, screened through a 35

  15. MULTIPHASE REACTOR MODELING FOR ZINC CHLORIDE CATALYZED COAL LIQUEFACTION

    E-Print Network [OSTI]

    Joyce, Peter James

    2011-01-01T23:59:59.000Z

    ix Introduction. A. Coal Liquefaction Overview B.L ZnCl 2-catalyzed Coal Liquefaction . . . . . . . . . • ,Results. . . • . ZnC1 2/MeOH Coal liquefaction Process

  16. Southern Coal finds value in the met market

    SciTech Connect (OSTI)

    Fiscor, S.

    2009-11-15T23:59:59.000Z

    The Justice family launches a new coal company (Southern Coal Corp.) to serve metallurgical and steam coal markets. 1 tab., 3 photos.

  17. Process for low mercury coal

    DOE Patents [OSTI]

    Merriam, Norman W. (Laramie, WY); Grimes, R. William (Laramie, WY); Tweed, Robert E. (Laramie, WY)

    1995-01-01T23:59:59.000Z

    A process for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal.

  18. Coal beneficiation by gas agglomeration

    DOE Patents [OSTI]

    Wheelock, Thomas D.; Meiyu, Shen

    2003-10-14T23:59:59.000Z

    Coal beneficiation is achieved by suspending coal fines in a colloidal suspension of microscopic gas bubbles in water under atmospheric conditions to form small agglomerates of the fines adhered by the gas bubbles. The agglomerates are separated, recovered and resuspended in water. Thereafter, the pressure on the suspension is increased above atmospheric to deagglomerate, since the gas bubbles are then re-dissolved in the water. During the deagglomeration step, the mineral matter is dispersed, and when the pressure is released, the coal portion of the deagglomerated gas-saturated water mixture reagglomerates, with the small bubbles now coming out of the solution. The reagglomerate can then be separated to provide purified coal fines without the mineral matter.

  19. Surface Coal Mining Law (Missouri)

    Broader source: Energy.gov [DOE]

    This law aims to provide for the regulation of coal mining in order to minimize or prevent its adverse effects, protect the environment to the extent possible, protect landowner rights, and...

  20. Coal Mining Reclamation (North Dakota)

    Broader source: Energy.gov [DOE]

    The Reclamation Division of the Public Service Commission is tasked with administering the regulation of surface coal mining and reclamation. Specific regulations can be found in article 69-05.2 of...

  1. MS_Coal_Studyguide.indd

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    atmosphere. Many of these technologies belong to a family of energy systems called "clean coal technologies." Since the mid-1980s, the U.S. Government has invested more than 3...

  2. Coal Beneficiation by Gas Agglomeration

    SciTech Connect (OSTI)

    Thomas D. Wheelock; Meiyu Shen

    2000-03-15T23:59:59.000Z

    Coal beneficiation is achieved by suspending coal fines in a colloidal suspension of microscopic gas bubbles in water under atmospheric conditions to form small agglomerates of the fines adhered by the gas bubbles. The agglomerates are separated, recovered and resuspended in water. Thereafter, the pressure on the suspension is increased above atmospheric to deagglomerate, since the gas bubbles are then re-dissolved in the water. During the deagglomeration step, the mineral matter is dispersed, and when the pressure is released, the coal portion of the deagglomerated gas-saturated water mixture reagglomerates, with the small bubbles now coming out of the solution. The reagglomerate can then be separated to provide purified coal fines without the mineral matter.

  3. The Caterpillar Coal Gasification Facility

    E-Print Network [OSTI]

    Welsh, J.; Coffeen, W. G., III

    1983-01-01T23:59:59.000Z

    ' in 1981 and won the 'energy conservation award' for 1983. The decision to install and operate a coal gasification plant was based on severe natural gas curtailments at York with continuing supply interruptions. This paper will present a detailed...

  4. Clean Coal Diesel Demonstration Project

    SciTech Connect (OSTI)

    Robert Wilson

    2006-10-31T23:59:59.000Z

    A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

  5. Process for low mercury coal

    DOE Patents [OSTI]

    Merriam, N.W.; Grimes, R.W.; Tweed, R.E.

    1995-04-04T23:59:59.000Z

    A process is described for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal. 4 figures.

  6. Steam Coal Import Costs - EIA

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Steam Coal Import Costs for Selected Countries U.S. Dollars per Metric Ton1 (Average Unit Value, CIF2) Country 2001 2002 2003 2004 2005 2006 2007 2008 2009 Belgium 46.96 39.34...

  7. Friction surfaced Stellite6 coatings

    SciTech Connect (OSTI)

    Rao, K. Prasad; Damodaram, R. [Department of Metallurgical and Materials Engineering - Indian Institute of Technology Madras, Chennai 600 036 (India); Rafi, H. Khalid, E-mail: khalidrafi@gmail.com [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India); Ram, G.D. Janaki [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India); Reddy, G. Madhusudhan [Metal Joining Group, Defence Metallurgical Research Laboratory (DMRL) Kanchanbagh, Hyderabad 500 058 (India); Nagalakshmi, R. [Welding Research Institute, Bharat Heavy Electricals Limited, Tiruchirappalli 620 014 (India)

    2012-08-15T23:59:59.000Z

    Solid state Stellite6 coatings were deposited on steel substrate by friction surfacing and compared with Stellite6 cast rod and coatings deposited by gas tungsten arc and plasma transferred arc welding processes. Friction surfaced coatings exhibited finer and uniformly distributed carbides and were characterized by the absence of solidification structure and compositional homogeneity compared to cast rod, gas tungsten arc and plasma transferred coatings. Friction surfaced coating showed relatively higher hardness. X-ray diffraction of samples showed only face centered cubic Co peaks while cold worked coating showed hexagonally close packed Co also. - Highlights: Black-Right-Pointing-Pointer Stellite6 used as coating material for friction surfacing. Black-Right-Pointing-Pointer Friction surfaced (FS) coatings compared with casting, GTA and PTA processes. Black-Right-Pointing-Pointer Finer and uniformly distributed carbides in friction surfaced coatings. Black-Right-Pointing-Pointer Absence of melting results compositional homogeneity in FS Stellite6 coatings.

  8. Aluminum phosphate coatings

    DOE Patents [OSTI]

    Sambasivan, Sankar (Chicago, IL); Steiner, Kimberly A. (Chicago, IL); Rangan, Krishnaswamy K. (Evanston, IL)

    2007-12-25T23:59:59.000Z

    Aluminophosphate compounds and compositions as can be used for substrate or composite films and coating to provide or enhance, without limitation, planarization, anti-biofouling and/or anti-microbial properties.

  9. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics

    SciTech Connect (OSTI)

    Doyle, F.M.

    1992-01-01T23:59:59.000Z

    During the ninth quarter, electrochemical experiments were done on electrodes prepared from Upper Freeport coal pyrite and Pittsburgh coal pyrite samples provided by the US Bureau of Mines, Pittsburgh Research Center, Pennsylvania. Scanning electron microscopy and energy dispersive X-ray analysis were done to characterize the morphology and composition of the surface of as-received coal, oxidized coal and coal pyrite. In addition, electrokinetic tests were done on Upper Freeport coal pyrite.

  10. Streamline coal slurry letdown valve

    DOE Patents [OSTI]

    Platt, Robert J. (Dover, NJ); Shadbolt, Edward A. (Basking Ridge, NJ)

    1983-01-01T23:59:59.000Z

    A streamlined coal slurry letdown valve is featured which has a two-piece throat comprised of a seat and seat retainer. The two-piece design allows for easy assembly and disassembly of the valve. A novel cage holds the two-piece throat together during the high pressure letdown. The coal slurry letdown valve has long operating life as a result of its streamlined and erosion-resistance surfaces.

  11. Streamline coal slurry letdown valve

    SciTech Connect (OSTI)

    Platt, R.J.; Shadbolt, E.A.

    1983-11-08T23:59:59.000Z

    A streamlined coal slurry letdown valve is featured which has a two-piece throat comprised of a seat and seat retainer. The two-piece design allows for easy assembly and disassembly of the valve. A novel cage holds the two-piece throat together during the high pressure letdown. The coal slurry letdown valve has long operating life as a result of its streamlined and erosion-resistance surfaces. 5 figs.

  12. Corrosion and mechanical behavior of materials for coal gasification applications

    SciTech Connect (OSTI)

    Natesan, K.

    1980-05-01T23:59:59.000Z

    A state-of-the-art review is presented on the corrosion and mechanical behavior of materials at elevated temperatures in coal-gasification environments. The gas atmosphere in coal-conversion processes are, in general, complex mixtures which contain sulfur-bearing components (H/sub 2/S, SO/sub 2/, and COS) as well as oxidants (CO/sub 2//CO and H/sub 2/O/H/sub 2/). The information developed over the last five years clearly shows sulfidation to be the major mode of material degradation in these environments. The corrosion behavior of structural materials in complex gas environments is examined to evaluate the interrelationships between gas chemistry, alloy chemistry, temperature, and pressure. Thermodynamic aspects of high-temperature corrosion processes that pertain to coal conversion are discussed, and kinetic data are used to compare the behavior of different commercial materials of interest. The influence of complex gas environments on the mechanical properties such as tensile, stress-rupture, and impact on selected alloys is presented. The data have been analyzed, wherever possible, to examine the role of environment on the property variation. The results from ongoing programs on char effects on corrosion and on alloy protection via coatings, cladding, and weld overlay are presented. Areas of additional research with particular emphasis on the development of a better understanding of corrosion processes in complex environments and on alloy design for improved corrosion resistance are discussed. 54 references, 65 figures, 24 tables.

  13. Process development for production of coal/sorbent agglomerates

    SciTech Connect (OSTI)

    Rapp, D.M.

    1991-01-01T23:59:59.000Z

    The goal of this work was to develop a process flow diagram to economically produce a clean-burning fuel from fine Illinois coal. To accomplish this, the process of pelletizing fine coal with calcium hydroxide, a sulfur capturing sorbent, was investigated. Carbonation, which is the reaction of calcium hydroxide with carbon dioxide (in the presence of moisture) to produce a bonding matrix of calcium carbonate, was investigated as a method for improving pellet quality and reducing binder costs. Proper moisture level is critical to allow the reaction to occur. If too much moisture is present in a pellet, the pore spaces are filled and carbon dioxide must diffuse through the water to reach the calcium hydroxide and react. This severely slows or stops the reaction. The ideal situation is when there is just enough moisture to coat the calcium hydroxide allowing for the reaction to proceed. The process has been successfully demonstrated on a pilot-scale as a method of hardening iron ore pellets (Imperato, 1966). Two potential combustion options are being considered for the coal/calcium hydroxide pellets: fluidized bed combustors and industrial stoker boilers.

  14. Spin coating apparatus

    DOE Patents [OSTI]

    Torczynski, John R. (Albuquerque, NM)

    2000-01-01T23:59:59.000Z

    A spin coating apparatus requires less cleanroom air flow than prior spin coating apparatus to minimize cleanroom contamination. A shaped exhaust duct from the spin coater maintains process quality while requiring reduced cleanroom air flow. The exhaust duct can decrease in cross section as it extends from the wafer, minimizing eddy formation. The exhaust duct can conform to entrainment streamlines to minimize eddy formation and reduce interprocess contamination at minimal cleanroom air flow rates.

  15. Multilayer thermal barrier coating systems

    DOE Patents [OSTI]

    Vance, Steven J. (Orlando, FL); Goedjen, John G. (Oviedo, FL); Sabol, Stephen M. (Orlando, FL); Sloan, Kelly M. (Longwood, FL)

    2000-01-01T23:59:59.000Z

    The present invention generally describes multilayer thermal barrier coating systems and methods of making the multilayer thermal barrier coating systems. The thermal barrier coating systems comprise a first ceramic layer, a second ceramic layer, a thermally grown oxide layer, a metallic bond coating layer and a substrate. The thermal barrier coating systems have improved high temperature thermal and chemical stability for use in gas turbine applications.

  16. COAL CLEANING BY GAS AGGLOMERATION

    SciTech Connect (OSTI)

    T.D. Wheelock

    1999-03-01T23:59:59.000Z

    The technical feasibility of a gas agglomeration method for cleaning coal was demonstrated by means of bench-scale tests conducted with a mixing system which enabled the treatment of ultra-fine coal particles with a colloidal suspension of microscopic gas bubbles in water. A suitable suspension of microbubbles was prepared by first saturating water with air or carbon dioxide under pressure then reducing the pressure to release the dissolved gas. The formation of microbubbles was facilitated by agitation and a small amount of i-octane. When the suspension of microbubbles and coal particles was mixed, agglomeration was rapid and small spherical agglomerates were produced. Since the agglomerates floated, they were separated from the nonfloating tailings in a settling chamber. By employing this process in numerous agglomeration tests of moderately hydrophobic coals with 26 wt.% ash, it was shown that the ash content would be reduced to 6--7 wt.% while achieving a coal recovery of 75 to 85% on a dry, ash-free basis. This was accomplished by employing a solids concentration of 3 to 5 w/w%, an air saturation pressure of 136 to 205 kPa (5 to 15 psig), and an i-octane concentration of 1.0 v/w% based on the weight of coal.

  17. Geology in coal resource utilization

    SciTech Connect (OSTI)

    Peters, D.C. (ed.)

    1991-01-01T23:59:59.000Z

    The 37 papers in this book were compiled with an overriding theme in mind: to provide the coal industry with a comprehensive source of information on how geology and geologic concepts can be applied to the many facets of coal resource location, extraction, and utilization. The chapters have been arranged to address the major coal geology subfields of Exploration and Reserve Definition, Reserve Estimation, Coalbed Methane, Underground Coal Gasification, Mining, Coal Quality Concerns, and Environmental Impacts, with papers distributed on the basis of their primary emphasis. To help guide one through the collection, the author has included prefaces at the beginning of each chapter. They are intended as a brief lead-in to the subject of the chapter and an acknowledgement of the papers' connections to the subject and contributions to the chapter. In addition, a brief cross-reference section has been included in each preface to help one find papers of interest in other chapters. The subfields of coal geology are intimately intertwined, and investigations in one area may impact problems in another area. Some subfields tend to blur at their edges, such as with reserve definition and reserve estimation. Papers have been processed separately for inclusion on the data base.

  18. High performance materials in coal conversion utilization. Technical progress report, October 1, 1995--December 31, 1995

    SciTech Connect (OSTI)

    NONE

    1996-01-01T23:59:59.000Z

    This is the ninth quarterly report on a three year grant regarding {open_quotes}High Performance Materials in Coal Conversion Utilization.{close_quotes} The grant is for a joint university/industry effort under the U.S. Department of Energy (DOE) University Coal Research Program. The University of Tennessee Space Institute (UTSI) is the prime contractor and The University of Pennsylvania and Lanxide Corporation are subcontractors. UTSI has completed all the initially planned laboratory exposure tests involving pulverized coal slag on the production Lanxide DIMOX{trademark} ceramic composite material. In addition, the strength testing (at temperature) and analysis of C-ring sections of the exposed production composite is complete. The development of a technique to laser coat the material has been the major activity while awaiting an innovatively produced new test sample. This sample will be tested and compared to the production tubes tested at UTSI.

  19. Oxy-coal Combustion Studies

    SciTech Connect (OSTI)

    J. Wendt; E. Eddings; J. Lighty; T. Ring; P. Smith; J. Thornock; Y. Jia, W. Morris; J. Pedel; D. Rezeai; L. Wang; J. Zhang; K. Kelly

    2012-01-01T23:59:59.000Z

    The objective of this project is to move toward the development of a predictive capability with quantified uncertainty bounds for pilot-scale, single-burner, oxy-coal operation. This validation research brings together multi-scale experimental measurements and computer simulations. The combination of simulation development and validation experiments is designed to lead to predictive tools for the performance of existing air fired pulverized coal boilers that have been retrofitted to various oxy-firing configurations. In addition, this report also describes novel research results related to oxy-combustion in circulating fluidized beds. For pulverized coal combustion configurations, particular attention is focused on the effect of oxy-firing on ignition and coal-flame stability, and on the subsequent partitioning mechanisms of the ash aerosol. To these ends, the project has focused on the following: â?¢ The development of reliable Large Eddy Simulations (LES) of oxy-coal flames using the Direct Quadrature Method of Moments (DQMOM) (Subtask 3.1). The simulations were validated for both non-reacting particle-laden jets and oxy-coal flames. â?¢ The modifications of an existing oxy-coal combustor to allow operation with high levels of input oxygen to enable in-situ laser diagnostic measurements as well as the development of strategies for directed oxygen injection (Subtask 3.2). Flame stability was quantified for various burner configurations. One configuration that was explored was to inject all the oxygen as a pure gas within an annular oxygen lance, with burner aerodynamics controlling the subsequent mixing. â?¢ The development of Particle Image Velocimetry (PIV) for identification of velocity fields in turbulent oxy-coal flames in order to provide high-fidelity data for the validation of oxy-coal simulation models (Subtask 3.3). Initial efforts utilized a laboratory diffusion flame, first using gas-fuel and later a pulverized-coal flame to ensure the methodology was properly implemented and that all necessary data and image-processing techniques were fully developed. Success at this stage of development led to application of the diagnostics in a large-scale oxy-fuel combustor (OFC). â?¢ The impact of oxy-coal-fired vs. air-fired environments on SO{sub x} (SO{sub 2}, SO{sub 3}) emissions during coal combustion in a pilot-scale circulating fluidized-bed (CFB) (Subtask 3.4). Profiles of species concentration and temperature were obtained for both conditions, and profiles of temperature over a wide range of O{sub 2} concentration were studied for oxy-firing conditions. The effect of limestone addition on SO{sub 2} and SO{sub 3} emissions were also examined for both air- and oxy- firing conditions. â?¢ The investigation of O{sub 2}/CO{sub 2} and O{sub 2}/N{sub 2} environments on SO{sub 2 emissions during coal combustion in a bench-scale single-particle fluidized-bed reactor (Subtask 3.5). Moreover, the sulfation mechanisms of limestone in O{sub 2}/CO{sub 2} and O{sub 2}/N{sub 2} environments were studied, and a generalized gassolid and diffusion-reaction single-particle model was developed to study the effect of major operating variables. â?¢ The investigation of the effect of oxy-coal combustion on ash formation, particle size distributions (PSD), and size-segregated elemental composition in a drop-tube furnace and the 100 kW OFC (Subtask 3.6). In particular, the effect of coal type and flue gas recycle (FGR, OFC only) was investigated.

  20. Making coal burnable: preparation and use

    SciTech Connect (OSTI)

    Rittenhouse, R.C.

    1985-06-01T23:59:59.000Z

    This paper offers several different views on the tools available to boost the burnability of coal. One view of making coal burnable and for better emissions control lies in the combustion process. One approach is fluidized bed combustion and the two choices within this technology are atmospheric (AFBC) and pressurized (PFBC). Several tests are being conducted to develop the slagging combustor technology for direct conversion from oil to coal. Some advantages listed for this method are a simple retrofit, low particulate, NO/sub x/ and SO/sub 2/ emissions, no modification for burning pulverized coal or coal/water slurry, no ash and no moving parts. Another method discussed is coal blending. The industrial and utility coal burning demand, combined with vacillating regulatory situations, reveals a need for coal users to be ever more alert to fuel price and availability. Technologies in the three areas of application -- coal preparation/cleaning, combustion, and emissions control -- offer an endless array of combinations.

  1. Beluga Coal Gasification - ISER

    SciTech Connect (OSTI)

    Steve Colt

    2008-12-31T23:59:59.000Z

    ISER was requested to conduct an economic analysis of a possible 'Cook Inlet Syngas Pipeline'. The economic analysis was incorporated as section 7.4 of the larger report titled: 'Beluga Coal Gasification Feasibility Study, DOE/NETL-2006/1248, Phase 2 Final Report, October 2006, for Subtask 41817.333.01.01'. The pipeline would carry CO{sub 2} and N{sub 2}-H{sub 2} from a synthetic gas plant on the western side of Cook Inlet to Agrium's facility. The economic analysis determined that the net present value of the total capital and operating lifecycle costs for the pipeline ranges from $318 to $588 million. The greatest contributor to this spread is the cost of electricity, which ranges from $0.05 to $0.10/kWh in this analysis. The financial analysis shows that the delivery cost of gas may range from $0.33 to $0.55/Mcf in the first year depending primarily on the price for electricity.

  2. Enhancement of surface properties for coal beneficiation

    SciTech Connect (OSTI)

    Chander, S.; Aplan, F.F.

    1992-01-30T23:59:59.000Z

    This report will focus on means of pyrite removal from coal using surface-based coal cleaning technologies. The major subjects being addressed in this study are the natural and modulated surface properties of coal and pyrite and how they may best be utilized to facilitate their separation using advanced surface-based coal cleaning technology. Emphasis is based on modified flotation and oil agglomerative processes and the basic principles involved. The four areas being addressed are: (1) Collectorless flotation of pyrite; (2) Modulation of pyrite and coal hydrophobicity; (3) Emulsion processes and principles; (4) Evaluation of coal hydrophobicity.

  3. Coal Transportation Issues (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01T23:59:59.000Z

    Most of the coal delivered to U.S. consumers is transported by railroads, which accounted for 64% of total domestic coal shipments in 2004. Trucks transported approximately 12% of the coal consumed in the United States in 2004, mainly in short hauls from mines in the East to nearby coal-fired electricity and industrial plants. A number of minemouth power plants in the West also use trucks to haul coal from adjacent mining operations. Other significant modes of coal transportation in 2004 included conveyor belt and slurry pipeline (12%) and water transport on inland waterways, the Great Lakes, and tidewater areas (9%).

  4. Description of Wyoming coal fields and seam analyses

    SciTech Connect (OSTI)

    Glass, G.B.

    1983-01-01T23:59:59.000Z

    Introductory material describe coal-bearing areas, coal-bearing rocks, and the structural geology of coal-bearing areas, discussing coal rank, proximate analyses, sulfur content, heat value, trace elements, carbonizing properties, coking coal, coking operations, in-situ gasification, coal mining, and production. The paper then gives descriptions of the coal seams with proximate analyses, where available, located in the following areas: Powder River coal basin, Green River region, Hanna field, Hams Fork coal region, and Bighorn coal basin. Very brief descriptions are given of the Wind River coal basin, Jackson Hole coal field, Black Hills coal region, Rock Creek coal field, and Goshen Hole coal field. Finally coal resources, production, and reserves are discussed. 76 references.

  5. Coal combustion by wet oxidation

    SciTech Connect (OSTI)

    Bettinger, J.A.; Lamparter, R.A.; McDowell, D.C.

    1980-11-15T23:59:59.000Z

    The combustion of coal by wet oxidation was studied by the Center for Waste Management Programs, of Michigan Technological University. In wet oxidation a combustible material, such as coal, is reacted with oxygen in the presence of liquid water. The reaction is typically carried out in the range of 204/sup 0/C (400/sup 0/F) to 353/sup 0/C (650/sup 0/F) with sufficient pressure to maintain the water present in the liquid state, and provide the partial pressure of oxygen in the gas phase necessary to carry out the reaction. Experimental studies to explore the key reaction parameters of temperature, time, oxidant, catalyst, coal type, and mesh size were conducted by running batch tests in a one-gallon stirred autoclave. The factors exhibiting the greatest effect on the extent of reaction were temperature and residence time. The effect of temperature was studied from 204/sup 0/C (400/sup 0/F) to 260/sup 0/C (500/sup 0/F) with a residence time from 600 to 3600 seconds. From this data, the reaction activation energy of 2.7 x 10/sup 4/ calories per mole was determined for a high-volatile-A-Bituminous type coal. The reaction rate constant may be determined at any temperature from the activation energy using the Arrhenius equation. Additional data were generated on the effect of mesh size and different coal types. A sample of peat was also tested. Two catalysts were evaluated, and their effects on reaction rate presented in the report. In addition to the high temperature combustion, low temperature desulfurization is discussed. Desulfurization can improve low grade coal to be used in conventional combustion methods. It was found that 90% of the sulfur can be removed from the coal by wet oxidation with the carbon untouched. Further desulfurization studies are indicated.

  6. Metallic coatings: autocatalytic (electroless) nickel-phosphorus alloy coatings: specification and test methods

    E-Print Network [OSTI]

    International Organization for Standardization. Geneva

    2003-01-01T23:59:59.000Z

    Metallic coatings: autocatalytic (electroless) nickel-phosphorus alloy coatings: specification and test methods

  7. Revêtements métalliques : Dépôts électrolytiques de nickel Metallic coatings : Electrodeposited coatings of nickel

    E-Print Network [OSTI]

    International Organization for Standardization. Geneva

    2002-01-01T23:59:59.000Z

    Revêtements métalliques : Dépôts électrolytiques de nickel Metallic coatings : Electrodeposited coatings of nickel

  8. Chemical composition and some trace element contents in coals and coal ash from Tamnava-Zapadno Polje Coal Field, Serbia

    SciTech Connect (OSTI)

    Vukasinovic-Pesic, V.; Rajakovic, L.J. [University of Montenegro, Podgorica (Montenegro)

    2009-07-01T23:59:59.000Z

    The chemical compositions and trace element contents (Zn, Cu, Co, Cr, Ni, Pb, Cd, As, B, Hg, Sr, Se, Be, Ba, Mn, Th, V, U) in coal and coal ash samples from Tamnava-Zapadno Polje coal field in Serbia were studied. The coal from this field belongs to lignite. This high volatility coal has high moisture and low S contents, moderate ash yield, and high calorific value. The coal ash is abundant in alumosilicates. Many trace elements such as Ni > Cd > Cr > B > As > Cu > Co > Pb > V > Zn > Mn in the coal and Ni > Cr > As > B > Cu > Co = Pb > V > Zn > Mn in the coal ash are enriched in comparison with Clarke concentrations.

  9. COMBUSTION OF COAL IN AN OPPOSED FLOW DIFFUSION BURNER

    E-Print Network [OSTI]

    Chin, W.K.

    2010-01-01T23:59:59.000Z

    of Methanol and a Methanol/Coal Slurry," Lawrence Berkeleyweight polymer of glucose. A coal slurry consisting of 80%

  10. ADVANCED THERMAL BARRIER COATINGS FOR OPERATION IN HIGH HYDROGEN CONTENT FUELED GAS TURBINES

    SciTech Connect (OSTI)

    Sampath, Sanjay

    2014-12-31T23:59:59.000Z

    The Center for Thermal Spray Research (CTSR) at Stony Brook University in partnership with its industrial Consortium for Thermal Spray Technology is investigating science and technology related to advanced metallic alloy bond coats and ceramic thermal barrier coatings for applications in the hot section of gasified coal-based high hydrogen turbine power systems. In conjunction with our OEM partners (GE and Siemens) and through strategic partnership with Oak Ridge National Laboratory (ORNL) (materials degradation group and high temperature materials laboratory), a systems approach, considering all components of the TBC (multilayer ceramic top coat, metallic bond coat & superalloy substrate) is being taken during multi-layered coating design, process development and subsequent environmental testing. Recent advances in process science and advanced in situ thermal spray coating property measurement enabled within CTSR has been incorporated for full-field enhancement of coating and process reliability. The development of bond coat processing during this program explored various aspects of processing and microstructure and linked them to performance. The determination of the bond coat material was carried out during the initial stages of the program. Based on tests conducted both at Stony Brook University as well as those carried out at ORNL it was determined that the NiCoCrAlYHfSi (Amdry) bond coats had considerable benefits over NiCoCrAlY bond coats. Since the studies were also conducted at different cycling frequencies, thereby addressing an associated need for performance under different loading conditions, the Amdry bond coat was selected as the material of choice going forward in the program. With initial investigations focused on the fabrication of HVOF bond coats and the performance of TBC under furnace cycle tests , several processing strategies were developed. Two-layered HVOF bond coats were developed to render optimal balance of density and surface roughness and resulted in improved TBC lifetimes. Processing based approaches of identifying optimal processing regimes deploying advanced in-situ coating property measurements and in-flight diagnostic tools were used to develop process maps for bond coats. Having established a framework for the bond coat processing using the HVOF process, effort were channeled towards fabrication of APS and VPS bond coats with the same material composition. Comparative evaluation of the three deposition processes with regard to their microstrcuture , surface profiles and TBC performance were carried out and provided valuable insights into factors that require concurrent consideration for the development of bond coats for advanced TBC systems. Over the course of this program several advancements were made on the development of durable thermal barrier coatings. Process optimization techniques were utilized to identify processing regimes for both conventional YSZ as well as other TBC compositions such as Gadolinium Zirconate and other Co-doped materials. Measurement of critical properties for these formed the initial stages of the program to identify potential challenges in their implementation as part of a TBC system. High temperature thermal conductivity measurements as well as sintering behavior of both YSZ and GDZ coatings were evaluated as part of initial efforts to undersand the influence of processing on coating properties. By effectively linking fundamental coating properties of fracture toughness and elastic modulus to the cyclic performance of 6 DE-FE0004771, Final Report, April 2015: Stony Brook University coatings, a durability strategy for APS YSZ coatings was developed. In order to meet the goals of fabricating a multimaterial TBC system further research was carried out on the development of a gradient thermal conductivity model and the evaluation of sintering behavior of multimaterial coatings. Layer optimization for desired properties in the multimaterial TBC was achieved by an iterative feedback approach utilizing process maps and in-situ and ex-situ coating property senso

  11. Repowering with clean coal technologies

    SciTech Connect (OSTI)

    Freier, M.D. [USDOE Morgantown Energy Technology Center, WV (United States); Buchanan, T.L.; DeLallo, M.L.; Goldstein, H.N. [Parsons Power Group, Inc., Reading, PA (United States)

    1996-02-01T23:59:59.000Z

    Repowering with clean coal technology can offer significant advantages, including lower heat rates and production costs, environmental compliance, incremental capacity increases, and life extension of existing facilities. Significant savings of capital costs can result by refurbishing and reusing existing sites and infrastructure relative to a greenfield siting approach. This paper summarizes some key results of a study performed by Parsons Power Group, Inc., under a contract with DOE/METC, which investigates many of the promising advanced power generation technologies in a repowering application. The purpose of this study was to evaluate the technical and economic results of applying each of a menu of Clean Coal Technologies in a repowering of a hypothetical representative fossil fueled power station. Pittsburgh No. 8 coal is used as the fuel for most of the cases evaluated herein, as well as serving as the fuel for the original unrepowered station. The steam turbine-generator, condenser, and circulating water system are refurbished and reused in this study, as is most of the existing site infrastructure such as transmission lines, railroad, coal yard and coal handling equipment, etc. The technologies evaluated in this study consisted of an atmospheric fluidized bed combustor, several varieties of pressurized fluid bed combustors, several types of gasifiers, a refueling with a process derived fuel, and, for reference, a natural gas fired combustion turbine-combined cycle.

  12. Clean Coal Program Research Activities

    SciTech Connect (OSTI)

    Larry Baxter; Eric Eddings; Thomas Fletcher; Kerry Kelly; JoAnn Lighty; Ronald Pugmire; Adel Sarofim; Geoffrey Silcox; Phillip Smith; Jeremy Thornock; Jost Wendt; Kevin Whitty

    2009-03-31T23:59:59.000Z

    Although remarkable progress has been made in developing technologies for the clean and efficient utilization of coal, the biggest challenge in the utilization of coal is still the protection of the environment. Specifically, electric utilities face increasingly stringent restriction on the emissions of NO{sub x} and SO{sub x}, new mercury emission standards, and mounting pressure for the mitigation of CO{sub 2} emissions, an environmental challenge that is greater than any they have previously faced. The Utah Clean Coal Program addressed issues related to innovations for existing power plants including retrofit technologies for carbon capture and sequestration (CCS) or green field plants with CCS. The Program focused on the following areas: simulation, mercury control, oxycoal combustion, gasification, sequestration, chemical looping combustion, materials investigations and student research experiences. The goal of this program was to begin to integrate the experimental and simulation activities and to partner with NETL researchers to integrate the Program's results with those at NETL, using simulation as the vehicle for integration and innovation. The investigators also committed to training students in coal utilization technology tuned to the environmental constraints that we face in the future; to this end the Program supported approximately 12 graduate students toward the completion of their graduate degree in addition to numerous undergraduate students. With the increased importance of coal for energy independence, training of graduate and undergraduate students in the development of new technologies is critical.

  13. Hydrogen Permeation Resistant Coatings

    SciTech Connect (OSTI)

    KORINKO, PAUL; ADAMS, THAD; CREECH, GREGGORY

    2005-06-15T23:59:59.000Z

    As the National Hydrogen Economy continues to develop and evolve the need for structural materials that can resist hydrogen assisted degradation will become critical. To date austenitic stainless steel materials have been shown to be mildly susceptible to hydrogen attack which results in lower mechanical and fracture strengths. As a result, hydrogen permeation barrier coatings may be applied to these ferrous alloys to retard hydrogen ingress. Hydrogen is known to be very mobile in materials of construction. In this study, the permeation resistance of bare stainless steel samples and coated stainless steel samples was tested. The permeation resistance was measured using a modular permeation rig using a pressure rise technique. The coating microstructure and permeation results will be discussed in this document as will some additional testing.

  14. DECKER COALFIELD, POWDER RIVER BASIN, MONTANA: GEOLOGY, COAL QUALITY, AND COAL

    E-Print Network [OSTI]

    Chapter PD DECKER COALFIELD, POWDER RIVER BASIN, MONTANA: GEOLOGY, COAL QUALITY, AND COAL RESOURCES Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

  15. Arrowhead Center: Coal Production and Regional Economic Growth Report Title: Coal Production and Regional Economic Growth

    E-Print Network [OSTI]

    Johnson, Eric E.

    Arrowhead Center: Coal Production and Regional Economic Growth Report Title: Coal Production@nmsu.edu #12;Arrowhead Center: Coal Production and Regional Economic Growth i Disclaimer This report States Government or any agency thereof. #12;Arrowhead Center: Coal Production and Regional Economic

  16. SHERIDAN COALFIELD, POWDER RIVER BASIN: GEOLOGY, COAL QUALITY, AND COAL RESOURCES

    E-Print Network [OSTI]

    Chapter PH SHERIDAN COALFIELD, POWDER RIVER BASIN: GEOLOGY, COAL QUALITY, AND COAL RESOURCES By M assessment of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great

  17. Argonne Premium Coal Sample Bank The Argonne Premium Coal (APC) Sample Bank can supply

    E-Print Network [OSTI]

    Maranas, Costas

    Argonne Premium Coal Sample Bank Background Overview T The Argonne Premium Coal (APC) Sample Bank can supply researchers with highly uniform, well-protected coal samples unexposed to oxygen. Researchers investigating coal structure, properties, and behavior can benefit greatly from these samples

  18. EFFECT OF COAL DUST ONEFFECT OF COAL DUST ON RAILROAD BALLAST STRENGTHRAILROAD BALLAST STRENGTH

    E-Print Network [OSTI]

    Barkan, Christopher P.L.

    1 EFFECT OF COAL DUST ONEFFECT OF COAL DUST ON RAILROAD BALLAST STRENGTHRAILROAD BALLAST STRENGTH for Laboratory StudyFouling Mechanism / Need for Laboratory Study Mechanical Properties of Coal DustMechanical Properties of Coal Dust Grain Size AnalysisGrain Size Analysis AtterbergAtterberg LimitsLimits Specific

  19. ASHLAND COALFIELD, POWDER RIVER BASIN, MONTANA: GEOLOGY, COAL QUALITY, AND COAL

    E-Print Network [OSTI]

    Chapter PA ASHLAND COALFIELD, POWDER RIVER BASIN, MONTANA: GEOLOGY, COAL QUALITY, AND COAL of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great

  20. Color Removal from Pulp Mill Effluent Using Coal Ash Produced from Georgia Coal Combustion Power Plants

    E-Print Network [OSTI]

    Hutcheon, James M.

    permits. To improve the aesthetic qualities of the effluent, coal ash (from local power plants_mill_discharge.jpg 2. Coal Power Plant http://www.csmonitor.com/var/ezflow_site/storage/images/media/images/2008Color Removal from Pulp Mill Effluent Using Coal Ash Produced from Georgia Coal Combustion Power

  1. Climate VISION: Events - Advanced Clean Coal Workshop

    Office of Scientific and Technical Information (OSTI)

    Secretary Kyle McSlarrow, DOE, and Jim Rogers, CEO Chairman, Cinergy 10:15 Break 10:30 Case Studies on Clean Coal Projects Case StudiesLessons Learned on Clean Coal Plants (to...

  2. February 21 -22, 2014 Coast Coal Harbour

    E-Print Network [OSTI]

    Handy, Todd C.

    February 21 - 22, 2014 Coast Coal Harbour 1180 W Hastings St Vancouver, BC Healthy Mothers contact by phone: +1 604-822- 7708 or by e-mail: melissa.ipce@ubc.ca. Location The Coast Coal Harbour

  3. Integrated coal cleaning, liquefaction, and gasification process

    DOE Patents [OSTI]

    Chervenak, Michael C. (Pennington, NJ)

    1980-01-01T23:59:59.000Z

    Coal is finely ground and cleaned so as to preferentially remove denser ash-containing particles along with some coal. The resulting cleaned coal portion having reduced ash content is then fed to a coal hydrogenation system for the production of desirable hydrocarbon gases and liquid products. The remaining ash-enriched coal portion is gasified to produce a synthesis gas, the ash is removed from the gasifier usually as slag, and the synthesis gas is shift converted with steam and purified to produce the high purity hydrogen needed in the coal hydrogenation system. This overall process increases the utilization of as-mined coal, reduces the problems associated with ash in the liquefaction-hydrogenation system, and permits a desirable simplification of a liquids-solids separation step otherwise required in the coal hydrogenation system.

  4. Ohio Coal Research and Development Program (Ohio)

    Broader source: Energy.gov [DOE]

    The Ohio Coal Development Office invests in the development and implementation of technologies that can use Ohio's vast reserves of coal in an economical, environmentally sound manner. Projects are...

  5. Integrated Coal Gasification Power Plant Credit (Kansas)

    Broader source: Energy.gov [DOE]

    Integrated Coal Gasification Power Plant Credit states that an income taxpayer that makes a qualified investment in a new integrated coal gasification power plant or in the expansion of an existing...

  6. Respiratory disease in Utah coal miners

    SciTech Connect (OSTI)

    Rom, W.N.; Kanner, R.E.; Renzetti, A.D. Jr.; Shigeoka, J.W.; Barkman, H.W.; Nichols, M.; Turner, W.A.; Coleman, M.; Wright, W.E.

    1981-04-01T23:59:59.000Z

    Two hundred forty-two Utah underground coal miners volunteered to participate in a respiratory disease study. They were an older group (mean, 56 years of age) and had spent a mean of 29 years in the coal-mining industry. The prevalence of chronic bronchitis was 57%, and that of coal worker's pneumoconiosis, 25%; only one worker had progressive massive fibrosis. Significant impairment of pulmonary function was found among those with a history of cigarette smoking. Chronic bronchitis or coal worker's penumoconiosis among nonsmokers did not impair pulmonary function. There was a significant association among the nonsmokers between increasing exposure to coal dust and coal worker's pneumoconiosis, but not for changes in pulmonary function. Coal mine dust had a significant influence in causing the symptom complex of chronic cough and sputum production, and coal worker's pneumoconiosis.

  7. Respiratory disease in Utah coal miners

    SciTech Connect (OSTI)

    Rom, W.N.; Kanner, R.E.; Renzetti, A.D. Jr.; Shigeoka, J.W.; Barkman, H.W.; Nichols, M.; Turner, W.A.; Coleman, M.; Wright, W.E.

    1981-04-01T23:59:59.000Z

    Two hundred forty-two Utah underground coal miners volunteered to participate in a respiratory disease study. They were an older group (mean, 56 years of age) and had spent a mean of 29 years in the coal-mining industry. The prevalence of chronic bronchitis was 57%, and that of coal worker's pneumoconiosis, 25%; only one worker had progressive massive fibrosis. Significant impairment of pulmonary function was found among those with a history of cigarette smoking. Chronic bronchitis or coal worker's pneumoconiosis among nonsmokers did not impair pulmonary function. There was a significant association among the nonsmokers between increasing exposure to coal dust and coal worker's pneumoconiosis, but not for changes in pulmonary function. Coal mine dust had a significant influence in causing the symptom complex of chronic cough and sputum production, and coal worker's pneumoconiosis.

  8. China's Coal: Demand, Constraints, and Externalities

    SciTech Connect (OSTI)

    Aden, Nathaniel; Fridley, David; Zheng, Nina

    2009-07-01T23:59:59.000Z

    This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. If coal to chemicals capacity reaches 70 million tonnes and coal-to-liquids capacity reaches 60 million tonnes, coal feedstock requirements would add an additional 450 million tonnes by 2025. Even with more efficient growth among these drivers, China's annual coal demand is expected to reach 3.9 to 4.3 billion tonnes by 2025. Central government support for nuclear and renewable energy has not reversed China's growing dependence on coal for primary energy. Substitution is a matter of scale: offsetting one year of recent coal demand growth of 200 million tonnes would require 107 billion cubic meters of natural gas (compared to 2007 growth of 13 BCM), 48 GW of nuclear (compared to 2007 growth of 2 GW), or 86 GW of hydropower capacity (compared to 2007 growth of 16 GW). Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on a high growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China has a low proportion of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport capacity. Furthermore, transporting coal to users has overloaded the train system and dramatically increased truck use, raising transportation oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 million tonnes by 2025, significantly impacting regional markets.

  9. Clean Coal Incentive Tax Credit (Kentucky)

    Broader source: Energy.gov [DOE]

    Clean Coal Incentive Tax Credit provides for a property tax credit for new clean coal facilities constructed at a cost exceeding $150 million and used for the purposes of generating electricity....

  10. coal feeding | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Supported R&D for CoalBiomass Feed and Gasification Gasification Systems Program R&D The Department of Energy is currently developing technology for high pressure dry coal...

  11. Tribology and coatings

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    The future use of fuel-efficient, low-emission, advanced transportation systems (for example, those using low-heat-rejection diesel engines or advanced gas turbines) presents new challenges to tribologists and materials scientists. High service temperatures, corrosive environments, and extreme contact pressures are among the concerns that make necessary new tribological designs, novel materials, and effective lubrication concepts. Argonne is working on methods to reduce friction, wear and corrosion, such as soft metal coatings on ceramics, layered compounds, diamond coatings, and hard surfaces.

  12. Fiber coating method

    DOE Patents [OSTI]

    Corman, Gregory Scot (Ballston Lake, NY)

    2001-01-01T23:59:59.000Z

    A coating is applied to reinforcing fibers arranged into a tow by coaxially aligning the tow with an adjacent separation layer and winding or wrapping the tow and separation layer onto a support structure in an interleaved manner so that the separation layer separates a wrap of the tow from an adjacent wrap of the tow. A coating can then be uniformly applied to the reinforcing fibers without defects caused by fiber tow to fiber tow contact. The separation layer can be a carbon fiber veil.

  13. 4th Annual Clean Coal

    E-Print Network [OSTI]

    Ferriter John P

    Proceedings he emphasis of the Fourth Clean Coal Technology Conference wm the marketability of clean coal projects both domestically and abroad. The success rate of clean coal projects in the U.S. for coalfired electricity generation is a beacon to foreign governments that are working toward effectively using advanced NO, and SO2 technology to substantially reduce flue-gas emissions for a cleaner environment. There is a continuing dialogue between U.S. Government, North American private industry, and the electricity producing governmental ministries and the private sector abroad. The international community was well represented at this conference. The Administration is determined to move promising, near-term technologies from the public to the private sector a ~ well a8 into the international marketplace.

  14. TOXIC SUBSTANCES FROM COAL COMBUSTION

    SciTech Connect (OSTI)

    A KOLKER; AF SAROFIM; CL SENIOR; FE HUGGINS; GP HUFFMAN; I OLMEZ; J LIGHTY; JOL WENDT; JOSEPH J HELBLE; MR AMES; N YAP; R FINKELMAN; T PANAGIOTOU; W SEAMES

    1998-12-08T23:59:59.000Z

    The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the Federal Energy Technology Center (FETC), the Electric Power Research Institute, the Lignite Research Council, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UK), the University of Connecticut (UC), the University of Utah (UU) and the University of North Dakota Energy and Environmental Research Center (EERC) to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NO combustion systems, and new power generation x plants. Development of ToPEM will be based on PSI's existing Engineering Model for Ash Formation (EMAF). This report covers the reporting period from 1 July 1998 through 30 September 1998. During this period distribution of all three Phase II coals was completed. Standard analyses for the whole coal samples were also completed. Mössbauer analysis of all project coals and fractions received to date has been completed in order to obtain details of the iron mineralogy. The analyses of arsenic XAFS data for two of the project coals and for some high arsenic coals have been completed. Duplicate splits of the Ohio 5,6,7 and North Dakota lignite samples were taken through all four steps of the selective leaching procedure. Leaching analysis of the Wyodak coal has recently commenced. Preparation of polished coal/epoxy pellets for probe/SEM studies is underway. Some exploratory mercury LIII XAFS work was carried out during August at the Advanced Photon Source (APS), the new synchrotron facility at Argonne National Laboratory, Chicago, IL. Further analysis of small-scale combustion experiments conducted at PSI in Phase I was completed this quarter. The results of these experiments for the first time suggest almost complete vaporization of certain trace elements (Se, Zn) from coal combustion in the flame zone, in accordance with theoretical equilibrium predictions. Other elements (As, Sb, Cr) appeared considerably less volatile and may react with constituents in the bulk ash at combustion temperatures. The combustion section of the University of Arizona's Downflow Combustor was completely rebuilt. The University of Utah worked on setting up EPA Method 26A to give the capability to measure chlorine in flue gas. The chlorine kinetic calculations performed as part of the Phase I program were found to have an error in the initial conditions. Therefore, the calculations were re-done this quarter with the correct starting conditions. Development of a quasi-empirical emissions model based on reported emissions of particulate matter from field measurements was continued this quarter. As a first step in developing the ToPEM, we developed a sub-model that calculates the evaporation of major elements (Na, K, Fe, Si, Al, Ca and Mg) from both inherent and extraneous minerals of coal. During this quarter, this sub-model was included into EMAF, which formed the ToPEM. Experimental data from the Phase I program were used to test and modify the sub-model and the ToPEM.

  15. Thermal barrier coating for alloy systems

    DOE Patents [OSTI]

    Seals, Roland D. (Oak Ridge, TN); White, Rickey L. (Harriman, TN); Dinwiddie, Ralph B. (Knoxville, TN)

    2000-01-01T23:59:59.000Z

    An alloy substrate is protected by a thermal barrier coating formed from a layer of metallic bond coat and a top coat formed from generally hollow ceramic particles dispersed in a matrix bonded to the bond coat.

  16. Canada's coal industry: full swing ahead

    SciTech Connect (OSTI)

    Stone, K. [Natural Resources Canada (Canada). Minerals and Metals Sector

    2007-03-15T23:59:59.000Z

    The article presents facts and figures about Canada's coal industry in 2006 including production, exports, imports, mines in operation, the Genesee 3 coal-fired generation unit, the Dodds-Roundhill Gasification Project, and new coal mine development plans. The outlook for 2007 is positive, with coal production expected to increase from 67 Mt in 2006 to 70 Mt in 2007 and exports expected to increase from 28 Mt in 2006 to 30 Mt in 2007.

  17. Cokemaking from coals of Kuzbas and Donbas

    SciTech Connect (OSTI)

    Umansky, R.Z. [Resourcecomplect, Donetsk (Ukraine); Kovalev, E.T.; Drozdnik, I.D. [UKHIN, Kharkov (Ukraine)

    1997-12-31T23:59:59.000Z

    The paper discusses features of Donetsk and Kuznetsk coals, the export capability of Ukraine coking industry, the selection of coal blends involving coals from different basins, and practical recommendations and techno-economic considerations. It is concluded that by raising the share of low-sulfur Kuznetsk coal in the blend to 50%, coke produced will meet all the requirements of European and American consumers.

  18. National Coal celebrates its fifth anniversary

    SciTech Connect (OSTI)

    Fiscor, S.

    2008-06-15T23:59:59.000Z

    The growth and activities of the National Coal Corp since its formation in 2003 are described. 5 photos.

  19. Estimating coal production peak and trends of coal imports in China

    SciTech Connect (OSTI)

    Bo-qiang Lin; Jiang-hua Liu [Xiamen University, Xiamen (China). China Center for Energy Economics Research (CCEER)

    2010-01-15T23:59:59.000Z

    More than 20 countries in the world have already reached a maximum capacity in their coal production (peak coal production) such as Japan, the United Kingdom and Germany. China, home to the third largest coal reserves in the world, is the world's largest coal producer and consumer, making it part of the Big Six. At present, however, China's coal production has not yet reached its peak. In this article, logistic curves and Gaussian curves are used to predict China's coal peak and the results show that it will be between the late 2020s and the early 2030s. Based on the predictions of coal production and consumption, China's net coal import could be estimated for coming years. This article also analyzes the impact of China's net coal import on the international coal market, especially the Asian market, and on China's economic development and energy security. 16 refs., 5 figs., 6 tabs.

  20. Large Area Vacuum Deposited Coatings

    SciTech Connect (OSTI)

    Martin, Peter M.

    2003-04-30T23:59:59.000Z

    It's easy to make the myriad of types of large area and decorative coatings for granted. We probably don't even think about most of them; the low-e and heat mirror coatings on our windows and car windows, the mirrors in displays, antireflection coatings on windows and displays, protective coatings on aircraft windows, heater coatings on windshields and aircraft windows, solar reflectors, thin film solar cells, telescope mirrors, Hubble mirrors, transparent conductive coatings, and the list goes on. All these products require large deposition systems and chambers. Also, don't forget that large batches of small substrates or parts are coated in large chambers. In order to be cost effective hundreds of ophthalmic lenses, automobile reflectors, display screens, lamp reflectors, cell phone windows, laser reflectors, DWDM filters, are coated in batches.

  1. High performance materials in coal conversion utilization. Technical progress report, July 1, 1995--September 30, 1995

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    This is the eighth quarterly report on a three year grant regarding ``High Performance Materials in Coal Conversion Utilization.`` The grant is for a joint university/industry effort under the US Department of Energy (DOE) University Coal Research Program. The University of Tennessee Space Institute (UTSI) is the prime contractor and the University of Pennsylvania and Lanxide Corporation are subcontractors. The object of this grant is to test, analyze, and improve the heat and coal-slag corrosion resistance of a SiC{sub (p)}/Al{sub 2}O{sub 3} ceramic composite tubular material. The material will be evaluated for its ability to withstand the pressures, temperatures and corrosion attack which would be encountered within a coal-fired high-temperature, high pressure air heater. The evaluation includes strength testing at elevated temperatures of production tubes as well as one manufactured with an innovative new technology. The feasibility of several joining and coating techniques are also being investigated. UTSI has completed all the initially planned laboratory exposure tests involving pulverized coal slag on the production Lanxide DIMOX{trademark} ceramic composite material. In addition, the strength testing (at temperature) and analysis of C- ring sections of the exposed production composite are complete.

  2. Outlook and Challenges for Chinese Coal

    SciTech Connect (OSTI)

    Aden, Nathaniel T.; Fridley, David G.; Zheng, Nina

    2008-06-20T23:59:59.000Z

    China has been, is, and will continue to be a coal-powered economy. The rapid growth of coal demand since 2001 has created deepening strains and bottlenecks that raise questions about supply security. Although China's coal is 'plentiful,' published academic and policy analyses indicate that peak production will likely occur between 2016 and 2029. Given the current economic growth trajectory, domestic production constraints will lead to a coal gap that is not likely to be filled with imports. Urbanization, heavy industry growth, and increasing per-capita consumption are the primary drivers of rising coal usage. In 2006, the power sector, iron and steel, and cement accounted for 71% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units could save only 14% of projected 2025 coal demand. If China follows Japan, steel production would peak by 2015; cement is likely to follow a similar trajectory. A fourth wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. New demand from coal-to-liquids and coal-to-chemicals may add 450 million tonnes of coal demand by 2025. Efficient growth among these drivers indicates that China's annual coal demand will reach 4.2 to 4.7 billion tonnes by 2025. Central government support for nuclear and renewable energy has not been able to reduce China's growing dependence on coal for primary energy. Few substitution options exist: offsetting one year of recent coal demand growth would require over 107 billion cubic meters of natural gas, 48 GW of nuclear, or 86 GW of hydropower capacity. While these alternatives will continue to grow, the scale of development using existing technologies will be insufficient to substitute significant coal demand before 2025. The central role of heavy industry in GDP growth and the difficulty of substituting other fuels suggest that coal consumption is inextricably entwined with China's economy in its current mode of growth. Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on its current growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Broadening awareness of the environmental costs of coal mining, transport, and combustion is raising the pressure on Chinese policy makers to find alternative energy sources. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China is short of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport. Transporting coal to users has overloaded the train system and dramatically increased truck use, raising transport oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 mt by 2025, significantly impacting regional markets. The looming coal gap threatens to derail China's growth path, possibly undermining political, economic, and social stability. High coal prices and domestic shortages will have regional and global effects. Regarding China's role as a global manufacturing center, a domestic coal gap will increase prices and constrain growth. Within the Asia-Pacific region, China's coal gap is likely to bring about increased competition with other coal-importing countries including Japan, South Korea, Taiwan, and India. As with petroleum, China may respond with a government-supported 'going-out' strategy of resource acquisition and vertical integration. Given its population and growing resource constraints, China may favor energy security, competitiveness, and local environmental protection over global climate change mitigation. The possibility of a large coal gap suggests that Chinese and international policy makers should maximize institutional and financial support

  3. Steam Plant Conversion Eliminating Campus Coal Use

    E-Print Network [OSTI]

    Dai, Pengcheng

    Steam Plant Conversion Eliminating Campus Coal Use at the Steam Plant #12;· Flagship campus region produce 14% of US coal (TN only 0.2%) Knoxville and the TN Valley #12;· UT is one of about 70 U.S. colleges and universities w/ steam plant that burns coal · Constructed in 1964, provides steam for

  4. Supersonic coal water slurry fuel atomizer

    DOE Patents [OSTI]

    Becker, Frederick E. (Reading, MA); Smolensky, Leo A. (Concord, MA); Balsavich, John (Foxborough, MA)

    1991-01-01T23:59:59.000Z

    A supersonic coal water slurry atomizer utilizing supersonic gas velocities to atomize coal water slurry is provided wherein atomization occurs externally of the atomizer. The atomizer has a central tube defining a coal water slurry passageway surrounded by an annular sleeve defining an annular passageway for gas. A converging/diverging section is provided for accelerating gas in the annular passageway to supersonic velocities.

  5. Low-rank coal oil agglomeration

    DOE Patents [OSTI]

    Knudson, C.L.; Timpe, R.C.

    1991-07-16T23:59:59.000Z

    A low-rank coal oil agglomeration process is described. High mineral content, a high ash content subbituminous coals are effectively agglomerated with a bridging oil which is partially water soluble and capable of entering the pore structure, and is usually coal-derived.

  6. Consensus Coal Production And Price Forecast For

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Consensus Coal Production And Price Forecast For West Virginia: 2011 Update Prepared for the West December 2011 © Copyright 2011 WVU Research Corporation #12;#12;W.Va. Consensus Coal Forecast Update 2011 i Table of Contents Executive Summary 1 Recent Developments 3 Consensus Coal Production And Price Forecast

  7. Firing of pulverized solvent refined coal

    DOE Patents [OSTI]

    Derbidge, T. Craig (Sunnyvale, CA); Mulholland, James A. (Chapel Hill, NC); Foster, Edward P. (Macungie, PA)

    1986-01-01T23:59:59.000Z

    An air-purged burner for the firing of pulverized solvent refined coal is constructed and operated such that the solvent refined coal can be fired without the coking thereof on the burner components. The air-purged burner is designed for the firing of pulverized solvent refined coal in a tangentially fired boiler.

  8. Energy Systems Engineering 1 Clean Coal Technologies

    E-Print Network [OSTI]

    Banerjee, Rangan

    Energy Systems Engineering 1 Clean Coal Technologies Presentation at BARC 4th December 2007 #12/kWh) 0.14 0.03 0.6 #12;Energy Systems Engineering 9 Status of Advanced Coal Technologies Types of advanced coal technologies Supercritical Pulverised Combustion Circulating Fluidised Bed Combustion (CFBC

  9. Energy Center Center for Coal Technology Research

    E-Print Network [OSTI]

    Fernández-Juricic, Esteban

    Energy Center Center for Coal Technology Research http://www.purdue.edu/dp/energy/CCTR/ Consumption Production Gasification Power Plants Coking Liquid Fuels Environment Oxyfuels Byproducts Legislation, 500 Central Drive West Lafayette, IN 47907-2022 #12;INDIANA COAL REPORT 2009 Center for Coal

  10. Review of a Proposed Quarterly Coal Publication

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    This Review of a Proposed Quartery Coal Publication contains findings and recommendations regarding the content of a new summary Energy Information Administration (EIA) coal and coke publication entitled The Quarterly Coal Review (QCR). It is divided into five sections: results of interviews with selected EIA data users; identification of major functions of the coal and coke industries; analysis of coal and coke data collection activities; evaluation of issues conerning data presentation including recommendations for the content of the proposed QCR; and comparison of the proposed QCR with other EIA publications. Major findings and recommendations are as follows: (1) User interviews indicate a definite need for a compehensive publication that would support analyses and examine economic, supply and demand trends in the coal industry; (2) the organization of the publication should reflect the natural order of activities of the coal and coke industries. Based on an analysis of the industries, these functions are: production, stocks, imports, exports, distribution, and consumption; (3) current EIA coal and coke surveys collect sufficient data to provide a summary of the coal and coke industries on a quarterly basis; (4) coal and coke data should be presented separately. Coke data could be presented as an appendix; (5) three geographic aggregations are recommended in the QCR. These are: US total, coal producing districts, and state; (6) coal consumption data should be consolidated into four major consumer categories: electric utilities, coke plants, other industrial, and residential commercial; (7) several EIA publications could be eliminated by the proposed QCR.

  11. Selective flotation of inorganic sulfides from coal

    DOE Patents [OSTI]

    Miller, Kenneth J. (Floreffe, PA); Wen, Wu-Wey (Murrysville, PA)

    1989-01-01T23:59:59.000Z

    Pyritic sulfur is removed from coal or other carbonaceous material through the use of humic acid as a coal flotation depressant. Following the removal of coarse pyrite, the carbonaceous material is blended with humic acid, a pyrite flotation collector and a frothing agent within a flotation cell to selectively float pyritic sulfur leaving clean coal as an underflow.

  12. Selective flotation of inorganic sulfides from coal

    DOE Patents [OSTI]

    Miller, K.J.; Wen, Wu-Wey

    1988-05-31T23:59:59.000Z

    Pyritic sulfur is removed from coal or other carbonaceous material through the use of humic acid as a coal flotation depressant. Following the removal of coarse pyrite, the carbonaceous material is blended with humic acid, a pyrite flotation collector and a frothing agent within a flotation cell to selectively float pyritic sulfur leaving clean coal as an underflow. 1 fig., 2 tabs.

  13. Chlorine in coal and boiler corrosion

    SciTech Connect (OSTI)

    Chou, M.I.M.; Lytle, J.M. [Illinois State Geological Survey, Champaign, IL (United States); Pan, W.P.; Liu, L. [Western Kentucky Univ., Bowling Green, KY (United States); Huggins, F.E.; Huffman, G.P. [Univ. of Kentucky, Lexington, KY (United States); Ho, K.K. [Illinois Clean Coal Inst., Carbondale, IL (United States)

    1994-12-31T23:59:59.000Z

    Corrosion of superheaters in the United Kingdom has been attributed to the high level of chlorine (Cl) in British coals. On the other hand, similar high-Cl Illinois coals have not caused boiler corrosion. This suggests that the extent of boiler corrosion due to Cl may not be directly related to the amount of Cl in the coal but to how the Cl occurs in the coal or to other factors. In this study, both destructive temperature-programmed Thermogravimetry with Fourier transform infrared (TGA-FTIR) and non-destructive X-ray absorption near-edge structure (XANES) techniques were used to examine the thermal evolution characteristics and the forms of Cl in four Illinois and four British coals. The TGA-FTIR results indicate that under oxidizing conditions, both British and Illinois coals release hydrogen chloride (HCl) gas. Maximum evolution of HCl gas from Illinois coals occurs near 425 C, whereas, the temperature of maximum HCl release from British coals occurs between 210 and 280 C. The XANES results indicate that Cl in coal exists in ionic forms including a solid salt form. The HCl evolution profiles of the Illinois and British coals suggests that the way in which Cl ions are associated in Illinois coals is of different from the way they are associated in British coals.

  14. 2011 International Pittsburgh Coal Conference Pittsburgh, PA

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    and simultaneous carbon dioxide sequestration in an unmineable coal seam in the Northern Appalachian Basin collaboration. Introduction This paper reports on continued activities at the CONSOL Energy carbon sequestration Sequestration in Unmineable Coal with Enhanced Coal Bed Methane Recovery: The Marshall County Project James E

  15. Coal liquefaction with preasphaltene recycle

    DOE Patents [OSTI]

    Weimer, Robert F. (Allentown, PA); Miller, Robert N. (Allentown, PA)

    1986-01-01T23:59:59.000Z

    A coal liquefaction system is disclosed with a novel preasphaltene recycle from a supercritical extraction unit to the slurry mix tank wherein the recycle stream contains at least 90% preasphaltenes (benzene insoluble, pyridine soluble organics) with other residual materials such as unconverted coal and ash. This subject process results in the production of asphaltene materials which can be subjected to hydrotreating to acquire a substitute for No. 6 fuel oil. The preasphaltene-predominant recycle reduces the hydrogen consumption for a process where asphaltene material is being sought.

  16. Graphene Coating Coupled Emission

    E-Print Network [OSTI]

    Shyamasundar, R.K.

    Graphene Coating Coupled Emission A COMSET, A single sheet of sp2-hybridized carbon atoms, called of graphene and its unique properties, I will present amplification of surface graphene-Ag hybrid films which when graphene is used as the spacer layer in a conventional Ag- harnessed the nonlinear properties

  17. Low friction and galling resistant coatings and processes for coating

    DOE Patents [OSTI]

    Johnson, Roger N. (Richland, WA)

    1987-01-01T23:59:59.000Z

    The present invention describes coating processes and the resultant coated articles for use in high temperature sodium environments, such as those found in liquid metal fast breeder reactors and their associated systems. The substrate to which the coating is applied may be either an iron base or nickel base alloy. The coating itself is applied to the substrate by electro-spark deposition techniques which result in metallurgical bonding between the coating and the substrate. One coating according to the present invention involves electro-spark depositing material from a cemented chromium carbide electrode and an aluminum electrode. Another coating according to the present invention involves electro-spark depositing material from a cemented chromium carbide electrode and a nickel-base hardfacing alloy electrode.

  18. HYDROGENOLYSIS OF A SUB-BITUMINOUS COAL WITH MOLTEN ZINC CHLORIDE SOLUTIONS

    E-Print Network [OSTI]

    Holten, R.R.

    2010-01-01T23:59:59.000Z

    or gaseous fuels, coal gasification has advanced furthestrapidly. While coal gasification may reach commercializa-5272 (1976). COal Processing - Gasification, Liguefaction,

  19. Process for selective grinding of coal

    DOE Patents [OSTI]

    Venkatachari, Mukund K. (San Francisco, CA); Benz, August D. (Hillsborough, CA); Huettenhain, Horst (Benicia, CA)

    1991-01-01T23:59:59.000Z

    A process for preparing coal for use as a fuel. Forming a coal-water slurry having solid coal particles with a particle size not exceeding about 80 microns, transferring the coal-water slurry to a solid bowl centrifuge, and operating same to classify the ground coal-water slurry to provide a centrate containing solid particles with a particle size distribution of from about 5 microns to about 20 microns and a centrifuge cake of solids having a particle size distribution of from about 10 microns to about 80 microns. The classifer cake is reground and mixed with fresh feed to the solid bowl centrifuge for additional classification.

  20. Quarterly coal report, January--March 1998

    SciTech Connect (OSTI)

    Young, P.

    1998-08-01T23:59:59.000Z

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for January through March 1998 and aggregated quarterly historical data for 1992 through the fourth quarter of 1997. Appendix A displays, from 1992 on, detailed quarterly historical coal imports data. To provide a complete picture of coal supply and demand in the United States, historical information has been integrated in this report. 58 tabs.

  1. Quarterly coal report, October--December 1996

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for October through December 1996 and aggregated quarterly historical data for 1990 through the third quarter of 1996. Appendix A displays, from 1988 on, detailed quarterly historical coal imports data. To provide a complete picture of coal supply and demand in the US, historical information has been integrated in this report. 8 figs., 72 tabs.

  2. Potential applications of microscopy for steam coal

    SciTech Connect (OSTI)

    DeVanney, K.F.; Clarkson, R.J.

    1995-08-01T23:59:59.000Z

    Optical microscopy has been an extremely useful tool for many industrial sectors in the past. This paper introduces some of the potential applications of using coal and fly ash carbon microscopy for the combustion process and steam coal industry. Coal and fly ash carbon microscopic classification criteria are described. Plant sample data are presented which demonstrate that these techniques can be useful for coal selection and for problem solving in the coal-fired power plant environment. Practical recommendations for further study are proposed.

  3. Coal taking it on the chin

    SciTech Connect (OSTI)

    Price, J.

    1982-09-01T23:59:59.000Z

    A personal view of the short-term energy market with the emphasis firmly on coal. The demand for coal is considered likely to fall as consumption falls and stockpiles continue to grow. The low price of coal, and increasing transport costs are likely to reduce the number of coal operations. The relative abundance of alternative energy sources is considered unlikely to encourage the growth of industrial coal markets, nuclear power is far too costly as a competitor, however. The current tidewater port facilities are believed to be adequate, and the shelving of many existing plans is thought likely.

  4. Underground coal gasification: environmental update

    SciTech Connect (OSTI)

    Dockter, L.; Mcternan, E.M.

    1985-01-01T23:59:59.000Z

    To evaluate the potential for ground water contamination by underground coal gasification, extensive postburn groundwater monitoring programs are being continued at two test sites in Wyoming. An overview of the environmental concerns related to UCG and some results to date on the two field sites are presented in this report.

  5. Coal-fired diesel generator

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    The objective of the proposed project is to test the technical, environmental, and economic viability of a coal-fired diesel generator for producing electric power in small power generating markets. Coal for the diesel generator would be provided from existing supplies transported for use in the University`s power plant. A cleanup system would be installed for limiting gaseous and particulate emissions. Electricity and steam produced by the diesel generator would be used to supply the needs of the University. The proposed diesel generator and supporting facilities would occupy approximately 2 acres of land adjacent to existing coal- and oil-fired power plant and research laboratory buildings at the University of Alaska, Fairbanks. The environmental analysis identified that the most notable changes to result from the proposed project would occur in the following areas: power plant configuration at the University of Alaska, Fairbanks; air emissions, water use and discharge, and the quantity of solid waste for disposal; noise levels at the power plant site; and transportation of coal to the power plant. No substantive adverse impacts or environmental concerns were identified in analyzing the effects of these changes.

  6. Coke from coal and petroleum

    DOE Patents [OSTI]

    Wynne, Jr., Francis E. (Allison Park, PA); Lopez, Jaime (Pittsburgh, PA); Zaborowsky, Edward J. (Harwick, PA)

    1981-01-01T23:59:59.000Z

    A carbonaceous coke is manufactured by the delayed coking of a slurry mixture of from about 10 to about 30 weight percent of caking or non-caking coal and the remainder a petroleum resid blended at below 50.degree. C.

  7. Configurational diffusion of coal macromolecules

    SciTech Connect (OSTI)

    Guin, J.A.; Curtis, C.W.; Tarrer, A.R.; Kim, S.; Hwang, D.; Chen, C.C.; Chiou, Z.

    1991-01-01T23:59:59.000Z

    The objective of our research was to obtain fundamental information regarding the functional dependence of the diffusion coefficient of coal molecules on the ratio of molecule to pore diameter. That is, the objective of our study was to examine the effect of molecule size and configuration on hindered diffusion of coal macromolecules through as porous medium. To best accomplish this task, we circumvented the complexities of an actual porous catalyst by using a well defined porous matrix with uniform capillaric pores, i.e., a track-etched membrane. In this way, useful information was obtained regarding the relationship of molecular size and configuration on the diffusion rate of coal derived macromolecules through a pore structure with known geometry. Similar studies were performed using a pellet formed of porous alumina, to provide a link between the idealized membranes and the actual complex pore structure of real catalyst extrudates. The fundamental information from our study will be useful toward the tailoring of catalysts to minimize diffusional influences and thereby increase coal conversion and selectivity for desirable products. (VC)

  8. Catalysts for coal liquefaction processes

    DOE Patents [OSTI]

    Garg, D.

    1986-10-14T23:59:59.000Z

    Improved catalysts for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprise a combination of zinc or copper, or a compound thereof, and a Group VI or non-ferrous Group VIII metal, or a compound thereof.

  9. Cooperative research in coal liquefaction

    SciTech Connect (OSTI)

    Huffman, G.P.; Sendlein, L.V.A. (eds.)

    1991-05-28T23:59:59.000Z

    Significant progress was made in the May 1990--May 1991 contract period in three primary coal liquefaction research areas: catalysis, structure-reactivity studies, and novel liquefaction processes. A brief summary of the accomplishments in the past year in each of these areas is given.

  10. Mechanical properties of reconstituted Australian black coal

    SciTech Connect (OSTI)

    Jasinge, D.; Ranjith, P.G.; Choi, S.K.; Kodikara, J.; Arthur, M.; Li, H. [Monash University, Clayton, Vic. (Australia). Dept. of Civil Engineering

    2009-07-15T23:59:59.000Z

    Coal is usually highly heterogeneous. Great variation in properties can exist among samples obtained even at close proximity within the same seam or within the same core sample. This makes it difficult to establish a correlation between uniaxial compressive strength (UCS) and point load index for coal. To overcome this problem, a method for making reconstituted samples for laboratory tests was developed. Samples were made by compacting particles of crushed coal mixed with cement and water. These samples were allowed to cure for four days. UCS and point load tests were performed to measure the geomechanical properties of the reconstituted coal. After four days curing, the average UCS was found to be approximately 4 MPa. This technical note outlines some experimental results and correlations that were developed to predict the mechanical properties of the reconstituted black coal samples. By reconstituting the samples from crushed coal, it is hoped that the samples will retain the important mechanical and physicochemical properties of coal, including the swelling, fluid transport, and gas sorption properties of coal. The aim is to be able to produce samples that are homogeneous with properties that are highly reproducible, and the reconstituted coal samples can be used for a number of research areas related to coal, including the long-term safe storage of CO{sub 2} in coal seams.

  11. Quarterly Coal Report, July--September 1994

    SciTech Connect (OSTI)

    Not Available

    1995-02-01T23:59:59.000Z

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for July through September 1994 and aggregated quarterly historical data for 1986 through the second quarter of 1994. Appendix A displays, from 1986 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons. To provide a complete picture of coal supply and demand in the United States, historical information has been integrated in this report. Additional historical data can also be found in the following EIA publications : Annual Energy Review 1993 (DOE/EIA-0384(93)), Monthly Energy Review (DOE/EIA-0035), and Coal Data: A Reference (DOE/EIA-0064(90)). The historical data in this report are collected by the EIA in three quarterly coal surveys (coal consumption at manufacturing plants, coal distribution, and coal consumption at coke plants), one annual coal production survey, and two monthly surveys of electric utilities. All data shown for 1993 and previous years are final. Data for 1994 are preliminary.

  12. A study of coal production in Nigeria

    SciTech Connect (OSTI)

    Akarakiri, J.B.; Afonja, A.A.; Okejiri, E.C. (Obafemi Awolowo Univ., Lle-Lfe (Nigeria))

    1991-01-01T23:59:59.000Z

    The Nigerian coal industry was studied. The focus was on the problems which have caused low production output of coal. More specifically, the study examined the present techniques of coal production, the causes of low production of coal, the coal production policy as it affected this study, and proposed policy measures to address the findings. It was discovered that some of the limiting factors to coal production in Nigeria could be attributed to the lack of the following: (i) clear and specific production-demand targets set for coal in Nigeria; (ii) adequate technological capability to mechanize coal mining operations in Nigeria; (iii) venture capital to invest in coal production; (iv) poor infrastructural facilities for coal production such as mining, storage, transportation, etc. It was also discovered that the dissatisfaction of the miners with their conditions of service influenced production capacity negatively. These findings point to the reality that coal is unlikely to play a major role in the country's energy equation in the near future unless serious efforts are made to address the above issues.

  13. Assessment of coal bed gas prospects

    SciTech Connect (OSTI)

    Moore, T.R. [Phillips Petroleum Co., Bartlesville, OK (United States)

    1996-12-31T23:59:59.000Z

    Coal bed gas is an often overlooked source of clean, methane-rich, H{sub 2}S-free natural gas. The economic development of coal bed gas requires a knowledge of coal gas reservoir characteristics and certain necessary departures from conventional evaluation, drilling, completion, and production practices. In many ways coal seam reservoirs are truly unconventional. Most coals sufficient rank have generated large volumes of gas that may be retained depth in varying amounts through adsorption. Coal gas production can take place only when the reservoir pressure is reduced sufficiently to allow the gas to desorb. Gas flow to the well bore takes place through a hierarchy of natural fractures, not the relatively impermeable coal matrix. Economic production is dependent upon critical factors intrinsic to the reservoir, including coal petrology, gas content, internal formation stratigraphy, fracture distribution, hydrogeology, in situ stress conditions, initial reservoir pressure and pressure regime, and the presence or absence of a {open_quote}free{close_quotes} gas saturation. Further, the coal bed reservoir is readily subject to formation damage through improper drilling, completion, or production techniques. This presentation will review the data types critical to the assessment of any coal seam gas prospect, suggest an outline method for screening such prospects, and point out some possible pitfalls to be considered in any coal bed gas development project.

  14. advanced coal-combustion technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from pulverized coal pulverized-coal-fired furnaces, cyclone furnaces, or advanced clean-coal technology furnaces. The ash collected from pulverized-coal-fired furnaces is fly...

  15. advanced coal-combustion technologies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from pulverized coal pulverized-coal-fired furnaces, cyclone furnaces, or advanced clean-coal technology furnaces. The ash collected from pulverized-coal-fired furnaces is fly...

  16. Directory of coal production ownership, 1979

    SciTech Connect (OSTI)

    Thompson, B.

    1981-10-01T23:59:59.000Z

    Ownership patterns in the coal industry are highly complex. Many producers are diversified into other lines of activity. The pattern and extent of this diversification has varied through time. In the past, steel and nonferrous metals companies had major coal industry involvement. This is still true today. However, other types of enterprises have entered the industry de novo or through merger. Those of greatest significance in recent times have involved petroleum and particularly public utility companies. This report attempts to identify, as accurately as possible, production ownership patterns in the coal industry. The audience for this Directory is anyone who is interested in accurately tracing the ownership of coal companies to parent companies, or who is concerned about the structure of ownership in the US coal industry. This audience includes coal industry specialists, coal industry policy analysts, economists, financial analysts, and members of the investment community.

  17. Coal Gasification for Power Generation, 3. edition

    SciTech Connect (OSTI)

    NONE

    2007-11-15T23:59:59.000Z

    The report provides a concise look at the challenges faced by coal-fired generation, the ability of coal gasification to address these challenges, and the current state of IGCC power generation. Topics covered include: an overview of Coal Generation including its history, the current market environment, and the status of coal gasification; a description of gasification technology including processes and systems; an analysis of the key business factors that are driving increased interest in coal gasification; an analysis of the barriers that are hindering the implementation of coal gasification projects; a discussion of Integrated Gasification Combined Cycle (IGCC) technology; an evaluation of IGCC versus other generation technologies; a discussion of IGCC project development options; a discussion of the key government initiatives supporting IGCC development; profiles of the key gasification technology companies participating in the IGCC market; and, a detailed description of existing and planned coal IGCC projects.

  18. Zero Emissions Coal Syngas Oxygen Turbo Machinery

    SciTech Connect (OSTI)

    Dennis Horazak

    2010-12-31T23:59:59.000Z

    Siemens Energy, Inc. (formerly Siemens Westinghouse Power Corporation) worked with Clean Energy Systems and Florida Turbine Technologies to demonstrate the commercial feasibility of advanced turbines for oxy-fuel based power systems that discharge negligible CO{sub 2} into the atmosphere. The approach builds upon ultra supercritical steam turbine and advanced gas turbine technology with the goal of attaining plant efficiencies above 50% in the 2015 timeframe. Conceptual designs were developed for baseline, near term, and long term oxy-fuel turbine cycles, representing commercial introductions of increasingly advanced thermal conditions and increasing exposure to steam-CO{sub 2} mixtures. An economic analysis and market demand study was performed by Science Applications International Corp. (SAIC), and indicated that long-term oxy-fuel turbine cycles start to look attractive in 2025 when the CO{sub 2} tax is assumed to reach $40/ ton, and by 2030 it has a clear advantage over both IGCC with sequestration and pulverized coal with sequestration. A separate risk analysis of the oxy-fuel combustor, HP turbine, re-heater, and IP turbine of the long-term cycle identified and categorized risks and proposed mitigation measures. In 2007 the program began to focus on a potential oxy-fuel turbine power generation demonstration project in the 2012 -13 time period while still maintaining a link to the requirements of the long-term oxy-syngas cycle. The SGT-900 turbine was identified as the best fit for modification into an intermediate pressure turbine (IPT) for this application. The base metals, bond coats, thermal barrier coatings (TBCs), and rotor materials used in the SGT-900 were tested for their ability to operate in the steam- CO{sub 2} environment of the oxy-fuel OFT-900. Test results indicated that these same materials would operate satisfactorily, and the plan, is to use SGT-900materials for the OFT-900. Follow-on programs for corrosion testing and evaluation of crack growth rates in oxy-fuel environments have been proposed to build on these results and provide quantifiable assessments of the effects of oxy-fuel environments on the service lives of turbine components.

  19. Proceedings, twenty-five annual international Pittsburgh coal conference

    SciTech Connect (OSTI)

    NONE

    2008-07-01T23:59:59.000Z

    The conference theme was 'coal - energy, environment and sustainable development'. The topics covered energy and environmental issues, and technologies related to coal and its byproducts. These included: gasification, hydrogen from coal, combustion technologies, coal production and preparation, synthesis of liquid fuels, gas turbines and fuel cells for synthesis gas and hydrogen applications, coal chemistry and geosciences, global climate change, underground coal gasification, environmental control technologies, and coal utilization byproducts.

  20. Thermal barrier and overlay coating systems comprising composite metal/metal oxide bond coating layers

    DOE Patents [OSTI]

    Goedjen, John G. (Oviedo, FL); Sabol, Stephen M. (Orlando, FL); Sloan, Kelly M. (Longwood, FL); Vance, Steven J. (Orlando, FL)

    2001-01-01T23:59:59.000Z

    The present invention generally describes multilayer coating systems comprising a composite metal/metal oxide bond coat layer. The coating systems may be used in gas turbines.

  1. Hydrothermally treated coals for pulverized coal injection. Technical progress report, April 1995--June 1995

    SciTech Connect (OSTI)

    Walsh, D.E.; Rao, P.D.; Ogunsola, O.; Lin, H.K.

    1995-07-01T23:59:59.000Z

    This project is investigating the suitability of hydrothermally dried low-rank coals for pulverized fuel injection into blast furnaces in order to reduce coke consumption. Coal samples from the Beluga coal field and Usibelli Coal Mine, Alaska, are being used for the study. Crushed coal samples were hydrothermally treated at three temperatures, 275, 300 and 325{degrees}C, for residence times ranging from 10 to 120 minutes. Products have been characterized to determine their suitability for pulverized coal injection. Characterization includes proximate and ultimate analyses, vitrinite reflectance, TGA reactivity and thermochemical modeling. A literature survey has been conducted.

  2. Antithrombogenic Polymer Coating.

    DOE Patents [OSTI]

    Huang, Zhi Heng (San Ramon, CA); McDonald, William F. (Utica, OH); Wright, Stacy C. (Flint, MI); Taylor, Andrew C. (Ann Arbor, MI)

    2003-01-21T23:59:59.000Z

    An article having a non-thrombogenic surface and a process for making the article are disclosed. The article is formed by (i) coating a polymeric substrate with a crosslinked chemical combination of a polymer having at least two amino substituted side chains, a crosslinking agent containing at least two crosslinking functional groups which react with amino groups on the polymer, and a linking agent containing a first functional group which reacts with a third functional group of the crosslinking agent, and (ii) contacting the coating on the substrate with an antithrombogenic agent which covalently bonds to a second functional group of the linking agent. In one example embodiment, the polymer is a polyamide having amino substituted alkyl chains on one side of the polyamide backbone, the crosslinking agent is a phosphine having the general formula (A).sub.3 P wherein A is hydroxyalkyl, the linking agent is a polyhydrazide and the antithrombogenic agent is heparin.

  3. Coal slurry pipeline based midwest fuel hub

    SciTech Connect (OSTI)

    Huettenhain, H. [Bechtel Technology & Consulting San Francisco, CA (United States)

    1998-12-31T23:59:59.000Z

    Low sulfur Powder River Basin (PRB) coal is a sought after fuel to comply with the year 2000 emission regulation for utility boilers. PRB coal is presently not competitive East of the Mississippi mainly because of railroad switching requirements and boiler designs not compatible with the PRB fuel characteristics. The use of the Lakes for transportation is an exception. The Lakes shipping lanes however, are only open part of the year. It is proposed to construct a coal slurry pipeline from the center of Wyoming coalfields to a hub near Detroit with access to low cost waste energy from power generation stations. The coal slurry pipeline will transport up to 25 million tons per year of fine PRB coal which has been removed from the conventionally transported coal, namely coal transported by rail. The rail delivered coal will have less dust. The system fits the DOE Vision 21 concept to mine and utilize coal in highly efficient systems and with the least environmental impact. The PRB coal is of subbituminous rank and not directly compatible with the boilers in Michigan/Indiana/Ohio area, which are designed to burn bituminous coal. Upgrading of the PRB coal using the hydrothermal slurry upgrading process can transform the PRB coal into a higher Btu content fuel by removing a large portion of the inherent moisture. Such upgraded PRB coal has proven an excellent reactive fuel when burned conventionally as PC fuel, or even when burned in slurry form as Coal Water Fuel (CWF). The cost of the process can be recovered when the process is combined with a coal slurry pipeline transport system. The result is an upgraded competitive fuel or fuels, which can be used for co-firing or re-burning applications to reduce SO{sub 2} and NOx emissions of utility boilers. The fuels can be powdered for direct fuel injection into boilers or blast furnaces as well as CWF. Depending on the stability of the upgraded PRB coal, the pipeline product could also be dewatered and prepared for export. This paper describes the concept and preliminary cost information. It also reports on reactions of the industries, which could be involved in the complex system, namely, coal mining companies, railroads, pipeline operators, fuel suppliers, and utilities.

  4. Quarterly coal report, April--June 1993

    SciTech Connect (OSTI)

    Not Available

    1993-11-26T23:59:59.000Z

    In the second quarter of 1993, the United States produced 235 million short tons of coal. This brought the total for the first half of 1993 to 477 million short tons, a decrease of 4 percent (21 million short tons) from the amount produced during the first half of 1992. The decrease was due to a 26-million-short-ton decline in production east of the Mississippi River, which was partially offset by a 5-million-short-ton increase in coal production west of the Mississippi River. Compared with the first 6 months of 1992, all States east of the Mississippi River had lower coal production levels, led by West Virginia and Illinois, which produced 9 million short tons and 7 million short tons less coal, respectively. The principal reasons for the drop in coal output for the first 6 months of 1993 compared to a year earlier were: a decrease in demand for US coal in foreign markets, particularly the steam coal markets; a draw-down of electric utility coal stocks to meet the increase in demand for coal-fired electricity generation; and a lower producer/distributor stock build-up. Distribution of US coal in the first half of 1993 was 15 million short tons lower than in the first half of 1992, with 13 million short tons less distributed to overseas markets and 2 million short tons less distributed to domestic markets.

  5. Environmental data energy technology characterizations: coal

    SciTech Connect (OSTI)

    Not Available

    1980-04-01T23:59:59.000Z

    This document describes the activities leading to the conversion of coal to electricity. Specifically, the activities consist of coal mining and beneficiation, coal transport, electric power generation, and power transmission. To enhance the usefulness of the material presented, resource requirements, energy products, and residuals for each activity area are normalized in terms of 10/sup 12/ Btus of energy produced. Thus, the total effect of producing electricity from coal can be determined by combining the residuals associated with the appropriate activity areas. Emissions from the coal cycle are highly dependent upon the type of coal consumed as well as the control technology assigned to the activity area. Each area is assumed to be equipped with currently available control technologies that meet environmental regulations. The conventional boiler, for example, has an electrostatic precipitator and a flue gas desulfurization scrubber. While this results in the removal of most of the particulate matter and sulfur dioxide in the flue gas stream, it creates other new environmental residuals -- solid waste, sludge, and ash. There are many different types of mined coal. For informational purposes, two types from two major producing regions, the East and the West, are characterized here. The eastern coal is typical of the Northern Appalachian coal district with a high sulfur and heat content. The western coal, from the Powder River Basin, has much less sulfur, but also has a substantially lower heating value.

  6. Chemical comminution and deashing of low-rank coals

    DOE Patents [OSTI]

    Quigley, David R.

    1992-12-01T23:59:59.000Z

    A method of chemically comminuting a low-rank coal while at the same time increasing the heating value of the coal. A strong alkali solution is added to a low-rank coal to solubilize the carbonaceous portion of the coal, leaving behind the noncarbonaceous mineral matter portion. The solubilized coal is precipitated from solution by a multivalent cation, preferably calcium.

  7. Adsorption and Strain: The CO2-Induced Swelling of Coal

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Adsorption and Strain: The CO2-Induced Swelling of Coal M. Vandamme1 , L. Brochard2 , B. Lecampion3.07.014 #12;Abstract Enhanced coal bed methane recovery (ECBM) consists in injecting carbon dioxide in coal gets adsorbed at the surface of the coal pores, which causes the coal to swell. This swelling

  8. Chemical comminution and deashing of low-rank coals

    DOE Patents [OSTI]

    Quigley, David R. (Idaho Falls, ID)

    1992-01-01T23:59:59.000Z

    A method of chemically comminuting a low-rank coal while at the same time increasing the heating value of the coal. A strong alkali solution is added to a low-rank coal to solubilize the carbonaceous portion of the coal, leaving behind the noncarbonaceous mineral matter portion. The solubilized coal is precipitated from solution by a multivalent cation, preferably calcium.

  9. Catalyst for coal liquefaction process

    DOE Patents [OSTI]

    Huibers, Derk T. A. (Pennington, NJ); Kang, Chia-Chen C. (Princeton, NJ)

    1984-01-01T23:59:59.000Z

    An improved catalyst for a coal liquefaction process; e.g., the H-Coal Process, for converting coal into liquid fuels, and where the conversion is carried out in an ebullated-catalyst-bed reactor wherein the coal contacts catalyst particles and is converted, in addition to liquid fuels, to gas and residual oil which includes preasphaltenes and asphaltenes. The improvement comprises a catalyst selected from the group consisting of the oxides of nickel molybdenum, cobalt molybdenum, cobalt tungsten, and nickel tungsten on a carrier of alumina, silica, or a combination of alumina and silica. The catalyst has a total pore volume of about 0.500 to about 0.900 cc/g and the pore volume comprises micropores, intermediate pores and macropores, the surface of the intermediate pores being sufficiently large to convert the preasphaltenes to asphaltenes and lighter molecules. The conversion of the asphaltenes takes place on the surface of micropores. The macropores are for metal deposition and to prevent catalyst agglomeration. The micropores have diameters between about 50 and about 200 angstroms (.ANG.) and comprise from about 50 to about 80% of the pore volume, whereas the intermediate pores have diameters between about 200 and 2000 angstroms (.ANG.) and comprise from about 10 to about 25% of the pore volume, and the macropores have diameters between about 2000 and about 10,000 angstroms (.ANG.) and comprise from about 10 to about 25% of the pore volume. The catalysts are further improved where they contain promoters. Such promoters include the oxides of vanadium, tungsten, copper, iron and barium, tin chloride, tin fluoride and rare earth metals.

  10. Coal liquefaction co-processing

    SciTech Connect (OSTI)

    Nafis, D.A.; Humbach, M.J. (UOP, Inc., Des Plaines, IL (USA)); Gatsis, J.G. (Allied-Signal, Inc., Des Plaines, IL (USA). Engineered Materials Research Center)

    1988-09-19T23:59:59.000Z

    The UOP Co-Processing scheme is a single-stage slurry catalyzed process in which petroleum vacuum resid and coal are simultaneously upgraded to a high quality synthetic oil. A highly active dispersed V{sub 2}O{sub 5} catalyst is used to enhance operations at moderate reaction conditions. A three-year research program has been completed to study the feasibility of this technology. Results are discussed. 7 refs., 14 figs., 21 tabs.

  11. PNNL Coal Gasifier Transportation Logistics

    SciTech Connect (OSTI)

    Reid, Douglas J.; Guzman, Anthony D.

    2011-04-13T23:59:59.000Z

    This report provides Pacific Northwest National laboratory (PNNL) craftspeople with the necessary information and suggested configurations to transport PNNL’s coal gasifier from its current location at the InEnTec facility in Richland, Washington, to PNNL’s Laboratory Support Warehouse (LSW) for short-term storage. A method of securing the gasifier equipment is provided that complies with the tie-down requirements of the Federal Motor Carrier Safety Administration’s Cargo Securement Rules.

  12. High performance materials in coal conversion utilization. Final report, October 1, 1993--September 30, 1996

    SciTech Connect (OSTI)

    McCay, T.D.; Boss, W.H. [ed.; Dahotre, N. [and others

    1996-12-01T23:59:59.000Z

    This report describes the research conducted at the University of Tennessee Space Institute on high performance materials for use in corrosive environments. The work was supported by a US Department of Energy University Coal Research grant. Particular attention was given to the silicon carbide particulate reinforced alumina matrix ceramic composite manufactured by Lanxide Corporation as a potential tubular component in a coal-fired recuperative high-temperature air heater. Extensive testing was performed to determine the high temperature corrosion effects on the strength of the material. A computer modeling of the corrosion process was attempted but the problem proved to be too complex and was not successful. To simplify the situation, a computer model was successfully produced showing the corrosion thermodynamics involved on a monolithic ceramic under the High Performance Power System (HIPPS) conditions (see Appendix A). To seal the material surface and thus protect the silicon carbide particulate from corrosive attack, a dense non porous alumina coating was applied to the material surface. The coating was induced by a defocused carbon dioxide laser beam. High temperature corrosion and strength tests proved the effectiveness of the coating. The carbon dioxide laser was also used to successfully join two pieces of the Lanxide material, however, resources did not allow for the testing of the resulting joint.

  13. Impacts of new coal-using technologies on coal markets and electric utilities

    SciTech Connect (OSTI)

    Stauffer, C.H.

    1982-06-01T23:59:59.000Z

    ICF's Coal and Electric Utilities Model (CEUM) was used to make forecasts on the impact of new coal technologies and markets and utilities. The new technologies include the gasifier/ combined cycle (GCC), the atmospheric fluidized bed combustor (AFBC), and the retrofit of synthetic coal-fluids on advanced combined cycle capacity. National production by the year 2000 will increase slightly. Impact of technology will be negligible due to the offsetting effects of GCC (it uses less coal) and synthetic coal fluids. Regional production will increase in synthetic coal fluid regions, decrease in sulphur coal regions. In utilities, coal additions by GCC are favored in the east, by AFBC in the west. SO/sub 2/ emissions will start to decline in 1995, NOx emissions will continue to rise, but not as sharply. Overall costs of utilities are expected to fall slightly by the year 2010.

  14. Method for desulfurization of coal

    DOE Patents [OSTI]

    Kelland, David R. (Lexington, MA)

    1987-01-01T23:59:59.000Z

    A process and apparatus for desulfurizing coal which removes sulfur in the inorganic and organic form by preferentially heating the inorganic iron sulfides in coal in a flowing gas to convert some of the inorganic iron sulfides from a pyrite form FeS.sub.2 to a troilite FeS form or a pyrrhotite form Fe.sub.1-x S and release some of the sulfur as a gaseous compound. The troilite and pyrrhotite forms are convenient catalyst for removing the organic sulfur in the next step, which is to react the coal with chemical agents such as alcohol, thus removing the organic sulfur as a liquid or a gas such as H.sub.2 S. The remaining inorganic sulfur is left in the predominantly higher magnetic form of pyrrhotite and is then removed by magnetic separation techniques. Optionally, an organic flocculant may be added after the organic sulfur has been removed and before magnetic separation. The flocculant attaches non-pyrite minerals with the pyrrhotite for removal by magnetic separation to reduce the ash-forming contents.

  15. Coal bunkers in underground mines

    SciTech Connect (OSTI)

    Polak, J.; Zegzulka, J. [VSB-Technical Univ., Ostrava (Czech Republic)

    1996-12-31T23:59:59.000Z

    In spite of the technical progress in the application of face technological equipment, the fluctuation of its output has been still considerable. A coal clearance system can be on one hand overloaded by production peaks and on the other hand its stoppages unfavorably influence production of faces. It has been proved that the most effective coal conveying system incorporates surge bunkers to eliminate the above mentioned problems. The surge bunkers have been used in the Czech mines since the middle of the sixties. There were 17 bunkers with an average capacity of 200 m{sup 3} in the biggest Czech coal mine basin OKD in 1967. Presently the number of bunkers has increased to 66 with a total capacity of 40,000 m{sup 3}. It represents the possibility of storing 56% of the daily OKD running of mine output. Two thirds of the number are gate bunkers with an average capacity of 540 m{sup 3} and the rest are skip ones with an average capacity of 740 m{sup 3}, situated at the shaft side.

  16. Apparatus for solar coal gasification

    DOE Patents [OSTI]

    Gregg, D.W.

    1980-08-04T23:59:59.000Z

    Apparatus for using focused solar radiation to gasify coal and other carbonaceous materials is described. Incident solar radiation is focused from an array of heliostats through a window onto the surface of a moving bed of coal, contained within a gasification reactor. The reactor is designed to minimize contact between the window and solids in the reactor. Steam introduced into the gasification reactor reacts with the heated coal to produce gas consisting mainly of carbon monoxide and hydrogen, commonly called synthesis gas, which can be converted to methane, methanol, gasoline, and other useful products. One of the novel features of the invention is the generation of process steam in one embodiment at the rear surface of a secondary mirror used to redirect the focused sunlight. Another novel feature of the invention is the location and arrangement of the array of mirrors on an inclined surface (e.g., a hillside) to provide for direct optical communication of said mirrors and the carbonaceous feed without a secondary redirecting mirror.

  17. Method for desulfurization of coal

    DOE Patents [OSTI]

    Kelland, D.R.

    1987-07-07T23:59:59.000Z

    A process and apparatus are disclosed for desulfurizing coal which removes sulfur in the inorganic and organic form by preferentially heating the inorganic iron sulfides in coal in a flowing gas to convert some of the inorganic iron sulfides from a pyrite form FeS[sub 2] to a troilite FeS form or a pyrrhotite form Fe[sub 1[minus]x]S and release some of the sulfur as a gaseous compound. The troilite and pyrrhotite forms are convenient catalyst for removing the organic sulfur in the next step, which is to react the coal with chemical agents such as alcohol, thus removing the organic sulfur as a liquid or a gas such as H[sub 2]S. The remaining inorganic sulfur is left in the predominantly higher magnetic form of pyrrhotite and is then removed by magnetic separation techniques. Optionally, an organic flocculant may be added after the organic sulfur has been removed and before magnetic separation. The flocculant attaches non-pyrite minerals with the pyrrhotite for removal by magnetic separation to reduce the ash-forming contents. 2 figs.

  18. TOXIC SUBSTANCES FROM COAL COMBUSTION

    SciTech Connect (OSTI)

    Kolker, A.; Sarofim, A.F.; Palmer, C.A.; Huggins, F.E.; Huffman, G.P.; Lighty, J.; Veranth, J.; Helble, J.J.; Wendt, J.O.L.; Ames, M.R.; Finkelman, R.; Mamani-Paco, M.; Sterling, R.; Mroczkowsky, S.J.; Panagiotou, T.; Seames, W.

    1999-05-10T23:59:59.000Z

    The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the Federal Energy Technology Center (FETC), the Electric Power Research Institute, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UK), the University of Connecticut (UC), the University of Utah (UU) and the University of North Dakota Energy and Environ-mental Research Center (EERC) to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NOx combustion systems, and new power generation plants. Development of ToPEM will be based on PSI's existing Engineering Model for Ash Formation (EMAF). This report covers the reporting period from 1 January 1999 to 31 March 1999. During this period, a full Program Review Meeting was held at the University of Arizona. At this meeting, the progress of each group was reviewed, plans for the following 9 month period were discussed, and action items (principally associated with the transfer of samples and reports among the various investigators) were identified.

  19. Reintroduction of Native FishReintroduction of Native Fish Species to Coal CreekSpecies to Coal Creek

    E-Print Network [OSTI]

    Gray, Matthew

    1 Reintroduction of Native FishReintroduction of Native Fish Species to Coal CreekSpecies to Coal Control and Reclamation ActSurface Mining Control and Reclamation Act of 1977of 1977 Coal Creek Watershed Foundation (2000)Coal Creek Watershed Foundation (2000) BackgroundBackground Fish populations in Coal Creek

  20. CO2 Sequestration in Unminable Coal with ECBMR -2010 Reprint -Proceedings 2010 International Pittsburgh Coal Conference, Istanbul, Turkey 1

    E-Print Network [OSTI]

    Wilson, Thomas H.

    CO2 Sequestration in Unminable Coal with ECBMR - 2010 Reprint - Proceedings 2010 International Pittsburgh Coal Conference, Istanbul, Turkey 1 CO2 SEQUESTRATION IN UNMINABLE COAL WITH ENHANCED COAL BED conducted in Marshall County, West Virginia, USA, to evaluate enhanced coal bed methane recovery

  1. Rheological properties of water-coal slurries based on brown coal in the presence of sodium lignosulfonates and alkali

    SciTech Connect (OSTI)

    D.P. Savitskii; A.S. Makarov; V.A. Zavgorodnii [National Academy of Sciences of Ukraine, Kiev (Ukraine). Dumanskii Institute of Colloid and Water Chemistry

    2009-07-01T23:59:59.000Z

    The effect of the oxidized surface of brown coal on the structural and rheological properties of water-coal slurries was found. The kinetics of structure formation processes in water-coal slurries based on as-received and oxidized brown coal was studied. The effect of lignosulfonate and alkali additives on the samples of brown coal was considered.

  2. Coal distribution, January--June 1991

    SciTech Connect (OSTI)

    Not Available

    1991-10-21T23:59:59.000Z

    The Coal Distribution report provides information on coal production, distribution, and stocks in the United States to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. The data in this report are collected and published by the Energy Information Administration (EIA) to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275, Sections 5 and 13, as amended). This issue presents information for January through June 1991. Coal distribution data are shown (in Tables 1--34) by coal-producing Sate of origin, consumer use, method of transportation, and State of destination. All data in this report were collected by the EIA on Form EIA-6, Coal Distribution Report.'' A copy of the form and the instructions for filing appear in Appendix B. All data in this report for 1991 are preliminary. Data for previous years are final. 6 figs., 34 tabs.

  3. Clean Coal Technology Programs: Program Update 2009

    SciTech Connect (OSTI)

    None

    2009-10-01T23:59:59.000Z

    The purpose of the Clean Coal Technology Programs: Program Update 2009 is to provide an updated status of the U.S. Department of Energy (DOE) commercial-scale demonstrations of clean coal technologies (CCT). These demonstrations have been performed under the Clean Coal Technology Demonstration Program (CCTDP), the Power Plant Improvement Initiative (PPII), and the Clean Coal Power Initiative (CCPI). Program Update 2009 provides: (1) a discussion of the role of clean coal technology demonstrations in improving the nation’s energy security and reliability, while protecting the environment using the nation’s most abundant energy resource—coal; (2) a summary of the funding and costs of the demonstrations; and (3) an overview of the technologies being demonstrated, along with fact sheets for projects that are active, recently completed, or recently discontinued.

  4. Novel Fuel Cells for Coal Based Systems

    SciTech Connect (OSTI)

    Thomas Tao

    2011-12-31T23:59:59.000Z

    The goal of this project was to acquire experimental data required to assess the feasibility of a Direct Coal power plant based upon an Electrochemical Looping (ECL) of Liquid Tin Anode Solid Oxide Fuel Cell (LTA-SOFC). The objective of Phase 1 was to experimentally characterize the interaction between the tin anode, coal fuel and cell component electrolyte, the fate of coal contaminants in a molten tin reactor (via chemistry) and their impact upon the YSZ electrolyte (via electrochemistry). The results of this work will provided the basis for further study in Phase 2. The objective of Phase 2 was to extend the study of coal impurities impact on fuel cell components other than electrolyte, more specifically to the anode current collector which is made of an electrically conducting ceramic jacket and broad based coal tin reduction. This work provided a basic proof-of-concept feasibility demonstration of the direct coal concept.

  5. Clean coal technology programs: program update 2006

    SciTech Connect (OSTI)

    NONE

    2006-09-15T23:59:59.000Z

    The purpose of the Clean Coal Technology Programs: Program Update 2006 is to provide an updated status of the DOE commercial-scale demonstrations of clean coal technologies (CCTs). These demonstrations are performed under the Clean Coal Technology Demonstration Program (CCTDP), the Power Plant Improvement Initiative (PPII) and the Clean Coal Power Initiative (CCPI). Program Update 2006 provides 1) a discussion of the role of clean coal technology demonstrations in improving the nation's energy security and reliability, while protecting the environment using the nation's most abundant energy resource - coal; 2) a summary of the funding and costs of the demonstrations; and 3) an overview of the technologies being demonstrated, with fact sheets for demonstration projects that are active, recently completed, withdrawn or ended, including status as of June 30 2006. 4 apps.

  6. Ceramic electrolyte coating and methods

    DOE Patents [OSTI]

    Seabaugh, Matthew M. (Columbus, OH); Swartz, Scott L. (Columbus, OH); Dawson, William J. (Dublin, OH); McCormick, Buddy E. (Dublin, OH)

    2007-08-28T23:59:59.000Z

    Aqueous coating slurries useful in depositing a dense coating of a ceramic electrolyte material (e.g., yttrium-stabilized zirconia) onto a porous substrate of a ceramic electrode material (e.g., lanthanum strontium manganite or nickel/zirconia) and processes for preparing an aqueous suspension of a ceramic electrolyte material and an aqueous spray coating slurry including a ceramic electrolyte material. The invention also includes processes for depositing an aqueous spray coating slurry including a ceramic electrolyte material onto pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.

  7. Statistical review of coal in Canada, 1997

    SciTech Connect (OSTI)

    Not Available

    1999-01-01T23:59:59.000Z

    The paper presents an annual review of the coal industry, including production, exports and imports, and consumption. An overview is given, followed by more detailed statistical data for the current year and preceding decade (supply and demand, value and volume of supply by province, coal production by class or province, exports by destination, coal consumed in power generation by province, electrical energy production by fuel type, domestic demand for primary energy by type).

  8. Fired heater for coal liquefaction process

    DOE Patents [OSTI]

    Ying, David H. S. (Macungie, PA); McDermott, Wayne T. (Allentown, PA); Givens, Edwin N. (Bethlehem, PA)

    1985-01-01T23:59:59.000Z

    A fired heater for a coal liquefaction process is operated under conditions to maximize the slurry slug frequency and thereby improve the heat transfer efficiency. The operating conditions controlled are (1) the pipe diameter and pipe arrangement, (2) the minimum coal/solvent slurry velocity, (3) the maximum gas superficial velocity, and (4) the range of the volumetric flow velocity ratio of gas to coal/solvent slurry.

  9. Quarterly coal report, July--September 1997

    SciTech Connect (OSTI)

    NONE

    1998-02-01T23:59:59.000Z

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks. Coke production consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for July through September 1997 and aggregated quarterly historical data for 1991 through the second quarter of 1997. Appendix A displays, from 1991 on, detailed quarterly historical coal imports data. 72 tabs.

  10. Quarterly coal report, July--September 1998

    SciTech Connect (OSTI)

    NONE

    1999-02-01T23:59:59.000Z

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for July through September 1998 and aggregated quarterly historical data for 1992 through the second quarter of 1998. 58 tabs.

  11. Railroads and shippers clash over coal dust

    SciTech Connect (OSTI)

    Buchsbaum, L.

    2007-11-15T23:59:59.000Z

    In an effort to reduce coal spillage from railcars, mines in the Powder River Basin (PRB) now load coal with a loaf profile but, reportedly, beginning in 2008, Burlington Northern Santa Fe (BNSF) will announce guidelines requiring all PRB coal loads to be sprayed with a chemical surfactant. If this does not fix the problem, greater measures will be taken. At the time of going to press, the details of how this would be implemented and regulated were unresolved. 1 photo.

  12. Process for treating moisture laden coal fines

    DOE Patents [OSTI]

    Davis, Burl E. (New Kensington, PA); Henry, Raymond M. (Gibsonia, PA); Trivett, Gordon S. (South Surrey, CA); Albaugh, Edgar W. (Birmingham, AL)

    1993-01-01T23:59:59.000Z

    A process is provided for making a free flowing granular product from moisture laden caked coal fines, such as wet cake, by mixing a water immiscible substance, such as oil, with the caked coal, preferably under low shear forces for a period of time sufficient to produce a plurality of free flowing granules. Each granule is preferably comprised of a dry appearing admixture of one or more coal particle, 2-50% by weight water and the water immiscible substance.

  13. Investigation of coal structure. Final report

    SciTech Connect (OSTI)

    Nishioka, Masaharu

    1994-03-01T23:59:59.000Z

    A better understanding of coal structure is the first step toward more effective utilization of the most abundant hydrocarbon resource. Detailed characterization of coal structure is very difficult, even with today`s highly developed analytical techniques. This is primarily due to the amorphous nature of these high-molecular-weight mixtures. Coal has a polymeric character and has been popularly represented as a three-dimensional cross-linked network. There is, however, little or no information which positively verifies this model. The principal objective of this research was to further investigate the physical structure of coal and to determine the extent to which coal molecules may be covalently cross-linked and/or physically associated. Two common characterization methods, swellability and extractability, were used. A technique modifying the conventional swelling procedure was established to better determine network or associated model conformation. A new method for evaluating coal swelling involving laser scattering has also been developed. The charge-transfer interaction is relatively strong in high-volatile bituminous coal. Soaking in the presence of electron donors and acceptors proved effective for solubilizing the coal, but temperatures in excess of 200 C were required. More than 70 wt% of the coal was readily extracted with pyridine after soaking. Associative/dissociative equilibria of coal molecules were observed during soaking. From these results, the associated model has gained credibility over the network model as the representative structure of coal. Significant portions of coal molecules are unquestionably physically associated, but the overall extent is not known at this time.

  14. A study of the interfacial chemistry of pyrite and coal in fine coal cleaning using flotation

    SciTech Connect (OSTI)

    Jiang, C.

    1993-12-31T23:59:59.000Z

    Surface oxidation, surface charge, and flotation properties have been systematically studied for coal, coal-pyrite and ore-pyrite. Electrochemical studies show that coal-pyrite exhibits much higher and more complex surface oxidation than ore-pyrite and its oxidation rate depends strongly on the carbon/coal content. Flotation studies indicate that pyrites have no self-induced floatability. Fuel oil significantly improves the floatability of coal and induces considerable flotation for coal-pyrite due to the hydrophobic interaction of fuel oil with the carbon/coal inclusions on the pyrite surface. Xanthate is a good collector for ore-pyrite but a poor collector for coal and coal-pyrite. The results from thermodynamic calculations, flotation and zeta potential measurements show that iron ions greatly affect the flotation of pyrite with xanthate and fuel oil. Various organic and inorganic chemicals have been examined for depressing coal-pyrite. It was found, for the first time, that sodium pyrophosphate is an effective depressant for coal-pyrite. Solution chemistry shows that pyrophosphate reacts with iron ions to form stable iron pyrophosphate complexes. Using pyrophosphate, the complete separation of pyrite from coal can be realized over a wide pH range at relatively low dosage.

  15. Process for electrochemically gasifying coal using electromagnetism

    DOE Patents [OSTI]

    Botts, Thomas E. (Markham, VA); Powell, James R. (Shoreham, NY)

    1987-01-01T23:59:59.000Z

    A process for electrochemically gasifying coal by establishing a flowing stream of coal particulate slurry, electrolyte and electrode members through a transverse magnetic field that has sufficient strength to polarize the electrode members, thereby causing them to operate in combination with the electrolyte to electrochemically reduce the coal particulate in the slurry. Such electrochemical reduction of the coal produces hydrogen and carbon dioxide at opposite ends of the polarized electrode members. Gas collection means are operated in conjunction with the process to collect the evolved gases as they rise from the slurry and electrolyte solution.

  16. Apparatus for fixed bed coal gasification

    DOE Patents [OSTI]

    Sadowski, Richard S. (Greenville, SC)

    1992-01-01T23:59:59.000Z

    An apparatus for fixed-bed coal gasification is described in which coal such as caking coal is continuously pyrolyzed with clump formation inhibited, by combining the coal with a combustible gas and an oxidant, and then continually feeding the pyrolyzed coal under pressure and elevated temperature into the gasification region of a pressure vessel. The materials in the pressure vessel are allowed to react with the gasifying agents in order to allow the carbon contents of the pyrolyzed coal to be completely oxidized. The combustion of gas produced from the combination of coal pyrolysis and gasification involves combining a combustible gas coal and an oxidant in a pyrolysis chamber and heating the components to a temperature of at least 1600.degree. F. The products of coal pyrolysis are dispersed from the pyrolyzer directly into the high temperature gasification region of a pressure vessel. Steam and air needed for gasification are introduced in the pressure vessel and the materials exiting the pyrolyzer flow down through the pressure vessel by gravity with sufficient residence time to allow any carbon to form carbon monoxide. Gas produced from these reactions are then released from the pressure vessel and ash is disposed of.

  17. Integrated two-stage coal liquefaction process

    DOE Patents [OSTI]

    Bronfenbrenner, James C. (Allentown, PA); Skinner, Ronald W. (Allentown, PA); Znaimer, Samuel (Vancouver, CA)

    1985-01-01T23:59:59.000Z

    This invention relates to an improved two-stage process for the production of liquid carbonaceous fuels and solvents from carbonaceous solid fuels, especially coal.

  18. Today's high coal prices: correction or crisis?

    SciTech Connect (OSTI)

    Platt, J. [EPRI (US)

    2005-06-01T23:59:59.000Z

    Eastern spot prices for coal have risen 25% since the start of 2004, reaching their highest levels in more than 25 years. This spike represents the second time in four years that coal prices have risen to more than double their pre-2000 price levels. Years of famine (from a coal producer's point of view) have been replaced by periods of plenty, with increasing consequences for coal's customers. How long will this spike last? This article, based on studies carried out by EPRI, attempts to answer this question. 3 figs., 1 tab.

  19. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01T23:59:59.000Z

    and Reserves Circular. Beijing: MLR, cited in IEA. 2009.Cleaner Coal in China. Paris: IEA. Ghee Peh, Wei Ouyang. (London: WEC Press. IEA. (2007) World Energy Outlook 2007.

  20. Quarterly coal report, April--June, 1998

    SciTech Connect (OSTI)

    NONE

    1998-11-01T23:59:59.000Z

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for April through June 1998 and aggregated quarterly historical data for 1992 through the first quarter of 1998. Appendix A displays, from 1992 on, detailed quarterly historical coal imports data. 58 tabs.