National Library of Energy BETA

Sample records for iron works fw

  1. Oregon Iron Works Inc | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Oregon Iron Works Inc Region: United States Sector: Marine and Hydrokinetic Website: http: This company is listed in the Marine and Hydrokinetic...

  2. {In Archive} Fw: NEPA for German Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fw: NEPA for German Fuel Maxcine Maxted to: lsaraka 11/14/2014 08:14 AM Cc: Drew Grainger Archive: This message is being viewed in an archive. I got this late yesterday. Thanks, Maxcine Maxted (803) 208-0506 pager 20767 ----- Forwarded by Maxcine Maxted/DOE/Srs on 11/14/2014 08:14 AM ----- From: Herbert Crapse/DOE/Srs To: Jean Ridley/DOE/Srs@Srs, Maxcine Maxted/DOE/Srs@SRS, Date: 11/13/2014 02:25 PM Subject: Fw: NEPA for German Fuel As requested. I have reviewed their input for accuracy and find

  3. 550 FW 3 Documenting and Implementing Decisions | Open Energy...

    Open Energy Info (EERE)

    550 FW 3 Documenting and Implementing Decisions Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: 550 FW 3 Documenting and Implementing...

  4. DOE - Office of Legacy Management -- Rogers Iron Works Co - MO 10

    Office of Legacy Management (LM)

    Rogers Iron Works Co - MO 10 FUSRAP Considered Sites Site: ROGERS IRON WORKS CO. (MO.10 ) Elimination from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Rogers Iron Co. MO.10-1 Location: Joplin , Missouri MO.10-1 Evaluation Year: 1990 MO.10-2 MO.10-3 Site Operations: Tested C-liner crushing methods. MO.10-1 Site Disposition: Eliminated - Potential for contamination considered remote based on limited quantities of material handled MO.10-3 MO.10-4 Radioactive Materials

  5. The Fish and Wildlife Service Manual, Part 603 FW 2 | Open Energy...

    Open Energy Info (EERE)

    Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: The Fish and Wildlife Service Manual, Part 603 FW 2PermittingRegulatory GuidanceGuideHandbook...

  6. The Fish and Wildlife Service Manual, Part 340 FW 3: Rights-of...

    Open Energy Info (EERE)

    Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: The Fish and Wildlife Service Manual, Part 340 FW 3: Rights-of-Way and Road ClosingsPermitting...

  7. Iron Supplements Help Microbes Working Together to Thrive When Oxygen Is

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scarce | U.S. DOE Office of Science (SC) Iron Supplements Help Microbes Working Together to Thrive When Oxygen Is Scarce Biological and Environmental Research (BER) BER Home About Research Facilities Science Highlights Searchable Archive of BER Highlights External link Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) Community Resources Contact Information Biological and Environmental Research U.S. Department of Energy SC-23/Germantown

  8. Blast furnace gas fired boiler for Eregli Iron and Steel Works (Erdemir), Turkey

    SciTech Connect (OSTI)

    Green, J.; Strickland, A.; Kimsesiz, E.; Temucin, I.

    1996-11-01

    Eregli Demir ve Celik Fabriklari T.A.S. (Eregli Iron and Steel Works Inc.), known as Erdemir, is a modern integrated iron and steel works on the Black Sea coast of Turkey, producing flat steel plate. Facilities include two blast furnaces, coke ovens, and hot and cold rolling mills, with a full supporting infrastructure. Four oil- and gas-fired steam boilers provide steam for electric power generation, and to drive steam turbine driven fans for Blast Furnace process air. Two of these boilers (Babcock and Wilcox Type FH) were first put into operation in 1965, and still reliably produce 100 tons/hour of steam at a pressure of 44 bar and a temperature of 410 C. In 1989 Erdemir initiated a Capacity Increase and Modernization Project to increase the steel production capability from two million to three million tons annually. This project also incorporates technology to improve the product quality. Its goals include a reduction in energy expenses to improve Erdemir`s competitiveness. The project`s scheduled completion is in late 1995. The by-product gases of the blast furnaces, coke ovens, and basic oxygen furnaces represent a considerable share of the consumed energy in an integrated iron and steel works. Efficient use of these fuels is an important factor in improving the overall efficiency of the operation.

  9. Coke oven gas treatment and by-product plant of Magnitogorsk Integrated Iron and Steel Works

    SciTech Connect (OSTI)

    Egorov, V.N.; Anikin, G.J.; Gross, M.

    1995-12-01

    Magnitogorsk Integrated Iron and Steel Works, Russia, decided to erect a new coke oven gas treatment and by-product plant to replace the existing obsolete units and to improve the environmental conditions of the area. The paper deals with the technological concept and the design requirements. Commissioning is scheduled at the beginning of 1996. The paper describes H{sub 2}S and NH{sub 3} removal, sulfur recovery and ammonia destruction, primary gas cooling and electrostatic tar precipitation, and the distributed control system that will be installed.

  10. Automatic mesh adaptivity for CADIS and FW-CADIS neutronics modeling of difficult shielding problems

    SciTech Connect (OSTI)

    Ibrahim, A. M.; Peplow, D. E.; Mosher, S. W.; Wagner, J. C.; Evans, T. M.; Wilson, P. P.; Sawan, M. E.

    2013-07-01

    The CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques dramatically increase the efficiency of neutronics modeling, but their use in the accurate design analysis of very large and geometrically complex nuclear systems has been limited by the large number of processors and memory requirements for their preliminary deterministic calculations and final Monte Carlo calculation. Three mesh adaptivity algorithms were developed to reduce the memory requirements of CADIS and FW-CADIS without sacrificing their efficiency improvement. First, a macro-material approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as much geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm de-couples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility. Using these algorithms resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation and, additionally, increased the efficiency of the Monte Carlo simulation by a factor of at least 3.4. The three algorithms enabled this difficult calculation to be accurately solved using an FW-CADIS simulation on a regular computer cluster, obviating the need for a world-class super computer. (authors)

  11. Calibration of SIOM-5FW film in the range of 0.1-4 keV

    SciTech Connect (OSTI)

    Chenais-Popovics, C.; Reverdin, C.; Ioannou, I.

    2006-06-15

    The SIOM-5FW film produced for the sub-keV x-ray detection range was calibrated here in a wide energy range (0.1-4 keV). A single set of parameters valid in the whole measured energy range was determined for the calibration of the Shangai 5F (SIOM-5FW) film from a parametric fit of the data. The sensitivity of the SIOM-5FW film was measured to be four times lower than that of the Kodak DEF film at 2.5 keV photon energy. Modeling of the DEF and SIOM-5FW films provides a good comparison of their sensitivity in the 0.1-10 keV range.

  12. Complete genome sequence of Anaeromyxobacter sp. Fw109-5, an Anaerobic, Metal-Reducing Bacterium Isolated from a Contaminated Subsurface Environment

    SciTech Connect (OSTI)

    Hwang, C.; Copeland, A.; Lucas, Susan; Lapidus, Alla; Barry, Kerrie W.; Glavina del Rio, T.; Dalin, Eileen; Tice, Hope; Pitluck, S.; Sims, David R.; Brettin, T.; Bruce, David; Detter, J. C.; Han, Cliff F.; Schmutz, Jeremy; Larimer, F.; Land, M.; Hauser, L.; Kyrpides, Nikos C.; Lykidis, Athanasios; Richardson, P. M.; Beliaev, Alex S.; Sanford, Robert A.; Loeffler, Frank E.; Fields, Matthew W.

    2015-01-22

    We report the genome sequence of Anaeromyxobacter sp. Fw109-5, isolated from nitrate- and uranium-contaminated subsurface sediment of the Oak Ridge Integrated Field-Scale Subsurface Research Challenge (IFC) site, Oak Ridge Reservation, TN. The bacteriums genome sequence will elucidate its physiological potential in subsurface sediments undergoing in situ uranium bioremediation and natural attenuation.

  13. Complete genome sequence of Anaeromyxobacter sp. Fw109-5, an Anaerobic, Metal-Reducing Bacterium Isolated from a Contaminated Subsurface Environment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hwang, C.; Copeland, A.; Lucas, Susan; Lapidus, Alla; Barry, Kerrie W.; Glavina del Rio, T.; Dalin, Eileen; Tice, Hope; Pitluck, S.; Sims, David R.; et al

    2015-01-22

    We report the genome sequence of Anaeromyxobacter sp. Fw109-5, isolated from nitrate- and uranium-contaminated subsurface sediment of the Oak Ridge Integrated Field-Scale Subsurface Research Challenge (IFC) site, Oak Ridge Reservation, TN. The bacterium’s genome sequence will elucidate its physiological potential in subsurface sediments undergoing in situ uranium bioremediation and natural attenuation.

  14. Complete genome sequence of Anaeromyxobacter sp. Fw109-5, an anaerobic, metal-reducing bacterium isolated from a contaminated subsurface environment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hwang, C.; Copeland, A.; Lucas, S.; Lapidus, A.; Barry, K.; Glavina del Rio, T.; Dalin, E.; Tice, H.; Pitluck, S.; Sims, D.; et al

    2015-01-22

    We report the genome sequence of Anaeromyxobacter sp. Fw109-5, isolated from nitrate- and uranium-contaminated subsurface sediment of the Oak Ridge Integrated Field-Scale Subsurface Research Challenge (IFC) site, Oak Ridge Reservation, TN. The bacteriums genome sequence will elucidate its physiological potential in subsurface sediments undergoing in situ uranium bioremediation and natural attenuation.

  15. High-Quality Draft Genome Sequence of Desulfovibrio carbinoliphilus FW-101-2B, an Organic Acid-Oxidizing Sulfate-Reducing Bacterium Isolated from Uranium(VI)-Contaminated Groundwater

    SciTech Connect (OSTI)

    Ramsay, Bradley D.; Hwang, Chiachi; Woo, Hannah L.; Carroll, Sue L.; Lucas, Susan; Han, James; Lapidus, Alla L.; Cheng, Jan-Fang; Goodwin, Lynne A.; Pitluck, Samuel; Peters, Lin; Chertkov, Olga; Held, Brittany; Detter, John C.; Han, Cliff S.; Tapia, Roxanne; Land, Miriam L.; Hauser, Loren J.; Kyrpides, Nikos C.; Ivanova, Natalia N.; Mikhailova, Natalia; Pagani, Loanna; Woyke, Tanja; Arkin, Adam P.; Dehal, Paramvir; Chivian, Dylan; Criddle, Craig S.; Wu, Weimin; Chakraborty, Romy; Hazen, Terry C.; Fields, Matthew W.

    2015-03-12

    Desulfovibrio carbinoliphilus subsp. oakridgensis FW-101-2B is an anaerobic, organic acid/alcohol-oxidizing, sulfate-reducing ?-proteobacterium. FW-101-2B was isolated from contaminated groundwater at The Field Research Center at Oak Ridge National Lab after in situ stimulation for heavy metal-reducing conditions. The genome will help elucidate the metabolic potential of sulfate-reducing bacteria during uranium reduction.

  16. High-Quality Draft Genome Sequence of Desulfovibrio carbinoliphilus FW-101-2B, an Organic Acid-Oxidizing Sulfate-Reducing Bacterium Isolated from Uranium(VI)-Contaminated Groundwater

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ramsay, Bradley D.; Hwang, Chiachi; Woo, Hannah L.; Carroll, Sue L.; Lucas, Susan; Han, James; Lapidus, Alla L.; Cheng, Jan-Fang; Goodwin, Lynne A.; Pitluck, Samuel; et al

    2015-03-12

    Desulfovibrio carbinoliphilus subsp. oakridgensis FW-101-2B is an anaerobic, organic acid/alcohol-oxidizing, sulfate-reducing δ-proteobacterium. FW-101-2B was isolated from contaminated groundwater at The Field Research Center at Oak Ridge National Lab after in situ stimulation for heavy metal-reducing conditions. The genome will help elucidate the metabolic potential of sulfate-reducing bacteria during uranium reduction.

  17. Understanding the Factors Affecting the Formation of Carbonyl Iron Electrodes in Rechargeable Alkaline Iron Batteries

    SciTech Connect (OSTI)

    Manohar, AK; Yang, CG; Malkhandi, S; Yang, B; Prakash, GKS; Narayanan, SR

    2012-01-01

    Rechargeable iron-based alkaline batteries such as iron - air and nickel - iron batteries are attractive for large-scale electrical energy storage because iron is inexpensive, globally-abundant and environmentally-friendly. Further, the iron electrode is known for its robustness to repeated charge/discharge cycling. During manufacturing these batteries are charged and discharged 20 to 50 times during which the discharge capacity of the iron electrode increases gradually and attains a stable value. This process of achieving stable capacity is called formation. In this study we have focused our efforts on understanding the effect of electrode design on formation. We have investigated the role of wetting agent, pore-former additive, and sulfide additive on the formation of carbonyl iron electrodes. The wetting agent increased the rate of formation while the pore-former additive increased the final capacity. Sodium sulfide added to the electrolyte worked as a de-passivation agent and increased the final discharge capacity. We have proposed a phenomenological model for the formation process that predicts the rate of formation and final discharge capacity given the design parameters for the electrode. The understanding gained here will be useful in reducing the time lost in formation and in maximizing the utilization of the iron electrode. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.021301jes] All rights reserved.

  18. Plea for Iron Astrochemistry

    SciTech Connect (OSTI)

    Mostefaoui, T. A.; Benmerad, B.; Kerkar, M.

    2010-10-31

    Iron is a key element and compound in living bodies. It is the most abundant refractory element and has the most stable nucleus in the Universe. Also, elemental Iron has a relevant abundance in the interstellar medium and dense clouds, it can be in gas phase or included in dust particles. During this talk, I shall explain why this special interest in Iron and shall give a brief explanation about its origin and the interstellar nucleosynthesis. After this I'll detail the rich chemistry that Iron can be involved in the interstellar medium, dense clouds with several species.

  19. Electrical and thermal transport properties of iron and iron...

    Office of Scientific and Technical Information (OSTI)

    Electrical and thermal transport properties of iron and iron-silicon alloy at high pressure Citation Details In-Document Search Title: Electrical and thermal transport properties ...

  20. Thin Wall Iron Castings

    SciTech Connect (OSTI)

    J.F. Cuttino; D.M. Stefanescu; T.S. Piwonka

    2001-10-31

    Results of an investigation made to develop methods of making iron castings having wall thicknesses as small as 2.5 mm in green sand molds are presented. It was found that thin wall ductile and compacted graphite iron castings can be made and have properties consistent with heavier castings. Green sand molding variables that affect casting dimensions were also identified.

  1. Iron-Air Rechargeable Battery: A Robust and Inexpensive Iron-Air Rechargeable Battery for Grid-Scale Energy Storage

    SciTech Connect (OSTI)

    2010-10-01

    GRIDS Project: USC is developing an iron-air rechargeable battery for large-scale energy storage that could help integrate renewable energy sources into the electric grid. Iron-air batteries have the potential to store large amounts of energy at low cost—iron is inexpensive and abundant, while oxygen is freely obtained from the air we breathe. However, current iron-air battery technologies have suffered from low efficiency and short life spans. USC is working to dramatically increase the efficiency of the battery by placing chemical additives on the battery’s iron-based electrode and restructuring the catalysts at the molecular level on the battery’s air-based electrode. This can help the battery resist degradation and increase life span. The goal of the project is to develop a prototype iron-air battery at significantly cost lower than today’s best commercial batteries.

  2. Electronic effects on iron porphyrins

    SciTech Connect (OSTI)

    Rosa, M. De La; Lopez, M.A.

    1995-12-31

    We have inserted iron into a series of substituted iron tetraphenylporphyrins for the purposes of investigating electronic effects on properties of the iron porphyrins. The properties of interest are the CO stretching frequencies of the ferrous porphyrins, the rates of CO dissociation from the ferrous porphyrins, and the UV-visible spectra of the iron porphyrins. We will present our results to date.

  3. Controlled Phase and Tunable Magnetism in Ordered Iron Oxide...

    Office of Scientific and Technical Information (OSTI)

    Finally, the ALD deposition of iron oxide with well-controlled phase and tunable magnetism demonstrated in this work provides a promising opportunity for the fabrication of 3D nano...

  4. Steelmaking with iron carbide

    SciTech Connect (OSTI)

    Geiger, G.H.; Stephens, F.A. )

    1993-01-01

    The concept of using iron carbide in steelmaking is not new. Tests were run several decades ago, using carbide made from ore, in steelmaking furnaces. The problem was that at that time, the need for the product was not clear and the economics of production were not favorable. In the early 1970's Frank M. Stephens, Jr., conceived the basis for the present process, and considerable development work has been done during the past decade to bring the carbide production process to its present state, with the first commercial unit now under construction. The process utilizes the following overall reaction to produce Fe[sub 3]C from ore: 3Fe[sub 2]O[sub 3] + 5H[sub 2] + 2 CH[sub 4][equals]2 Fe[sub 3]C + 9 H[sub 2]O. Hydrogen gas from a natural gas reformer is blended with natural gas to form the process gas that is recirculated through the fluid bed reactor, the cooling tower, to remove reaction product water, and back through the reactor again, after reheating. The closed loop nature of the process means that virtually 100% of the process reagents are utilized by the process. The only exception is that a small stream of the process gas is burned as fuel in the reheating step, in order to maintain the level of inerts in the process gas at an acceptable level. The quantity of the bleed stream is entirely dependent on the concentration of inert gases in the fuel supply.

  5. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in point. The complex chemistry associated with the iron-based catalyst has made even the identity of the active catalyst at work an unsolved mystery. At the ALS, de Smit et al....

  6. Electrochemical Deposition of Iron Nanoneedles on Titanium Oxide Nanotubes

    SciTech Connect (OSTI)

    Gan Y. X.; Zhang L.; Gan B.J.

    2011-10-01

    Iron as a catalyst has wide applications for hydrogen generation from ammonia, photodecomposition of organics, and carbon nanotube growth. Tuning the size and shape of iron is meaningful for improving the catalysis efficiency. It is the objective of this work to prepare nanostructured iron with high surface area via electrochemical deposition. Iron nanoneedles were successfully electrodeposited on Ti supported TiO2 nanotube arrays in a chlorine-based electrolyte containing 0.15 M FeCl2 {center_dot} 4H2O and 2.0 M HCl. Transmission electron microscopic analysis reveals that the average length of the nanoneedles is about 200 nm and the thickness is about 10 nm. It has been found that a high overpotential at the cathode made of Ti/TiO2 nanotube arrays is necessary for the formation of the nanoneedles. Cyclic voltammetry test indicates that the electrodeposition of iron nanoneedles is a concentration-limited process.

  7. Weldability of iron aluminides

    SciTech Connect (OSTI)

    David, S.A.; Zacharia, T.; Reed, R.W.

    1990-01-01

    A preliminary investigation was carried out to determine the weldability of a class of advanced iron aluminides. Thin sheets of iron aluminides were gas tungsten arc (GTA) and electron beam (EB) welded at different travel speeds and power levels. The results indicate that the weldability of these alloys is very sensitive to the welding conditions and compositions, producing good welds sometimes and severely cracked welds at other times. Alloys containing TiB{sub 2} additions for improved strength and ductility cracked severely upon welding. Alloys without boron and zirconium, in particular alloy FA-129, was found to show more promise for welding than most of the other iron aluminides. 4 refs., 3 figs., 2 tabs.

  8. Iron dominated magnets

    SciTech Connect (OSTI)

    Fischer, G.E.

    1985-07-01

    These two lectures on iron dominated magnets are meant for the student of accelerator science and contain general treatments of the subjects design and construction. The material is arranged in the categories: General Concepts and Cost Considerations, Profile Configuration and Harmonics, Magnetic Measurements, a few examples of ''special magnets'' and Materials and Practices. Extensive literature is provided.

  9. Thin Wall Cast Iron: Phase II

    SciTech Connect (OSTI)

    Doru M. Stefanescu

    2005-07-21

    The development of thin-wall technology allows the designers of energy consuming equipment to select the most appropriate material based on cost/material properties considerations, and not solely on density. The technology developed in this research project will permit the designers working for the automotive industry to make a better informed choice between competing materials and thin wall cast iron, thus decreasing the overall cost of the automobile.

  10. The Iron Spin Transition in the Earth's Lower Mantle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Iran Deal is Working The Iran Deal is Working Addthis Topic Nuclear Security & Safety Since the Iran Deal came into effect in October 2015, the International Atomic Energy Agency (IAEA) verified that Iran undertook critical steps to ensure its four pathways to a nuclear bomb are blocked. Watch to see how the Iran Deal is working

    The Iron Spin Transition in the Earth's Lower Mantle Print It is now known that the iron present in minerals of the lower mantle of the Earth undergoes a

  11. How it works

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How it works MINERvA is a particle physics experiment, located at Fermi National Accelerator Laboratory in Batavia, Illinois. MINERvA was designed to perform high-precision measurements of neutrino interactions on a wide variety of materials, including water, helium, carbon, iron, lead, and plastic. MINERvA is located 100 meters underground, and sits directly in front of the MINOS near detector. The source of MINERvA's neutrino beam is the Neutrinos at the Main Injector beamline, or NuMI. NuMI

  12. Microbial reduction of iron ore

    DOE Patents [OSTI]

    Hoffmann, M.R.; Arnold, R.G.; Stephanopoulos, G.

    1989-11-14

    A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry. 11 figs.

  13. Microbial reduction of iron ore

    DOE Patents [OSTI]

    Hoffmann, Michael R.; Arnold, Robert G.; Stephanopoulos, Gregory

    1989-01-01

    A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry.

  14. Voronoi analysis of the short–range atomic structure in iron and iron–carbon melts

    SciTech Connect (OSTI)

    Sobolev, Andrey; Mirzoev, Alexander

    2015-08-17

    In this work, we simulated the atomic structure of liquid iron and iron–carbon alloys by means of ab initio molecular dynamics. Voronoi analysis was used to highlight changes in the close environments of Fe atoms as carbon concentration in the melt increases. We have found, that even high concentrations of carbon do not affect short–range atomic order of iron atoms — it remains effectively the same as in pure iron melts.

  15. MECS 2006- Iron and Steel

    Office of Energy Efficiency and Renewable Energy (EERE)

    Manufacturing Energy and Carbon Footprint for Iron and Steel Sector (NAICS 3311, 3312) with Total Energy Input, October 2012 (MECS 2006)

  16. Work Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work Plan NSSAB Members Vote on Work Plan Tasks; The Nevada Site Specific Advisory Board operates on a fiscal year basis and conducts work according to a NSSAB generated and U.S. Department of Energy (DOE) approved work plan. FY 2016 Work Plan Work plan items focus on providing recommendations to the DOE regarding the following subjects: soil contamination from historic atmospheric nuclear testing, remediation of contaminated facilities used to support historic testing, groundwater studies

  17. Weldability of iron aluminides

    SciTech Connect (OSTI)

    Goodwin, G.M.; McKamey, C.J.; Maziasz, P.J.; Sikka, V.K.

    1993-12-31

    Corrosion-resistant, weldable iron-aluminide alloys with improved high-temperature strength are being developed for structural applications, and for weld overlay cladding of conventional structural steels and alloys. The weld hot cracking of iron-aluminide alloys is highly variable to over a wide range of aluminum content. In general, the higher aluminum content alloys are somewhat more resistant to hot cracking, and by careful choice of alloying additions (and balancing of multiple additions), cracking resistance equivalent to commercial austenitic stainless steels can be achieved. Improved weldability, however, often comes at the expense of high-temperature strength. Delayed cold cracking, presumed to be hydrogen-related, is also an important consideration in welding these alloys, either as monolithic materials, or as weld overlay cladding on stainless or low alloy steel substrates. The authors are employing various combinations of preheat and postweld stress relief heat treatments to assess the severity of this problem, and have determined that heat treatment in excess of 400 C following welding will be required to avoid delayed cracking. Due to the difficulties encountered in fabricating some of the alloy compositions into wire or rod, they are also pursuing the formulation of coated electrodes for use in shielded metal-arc (SMA) welding. Initial attempts have shown very high aluminum losses in the welding arc, and additional batches of electrodes are being formulated and produced.

  18. Weldability of iron aluminides

    SciTech Connect (OSTI)

    Zacharia, T.; David, S.A.

    1991-01-01

    Improvements in the ductility of iron aluminide alloys, achieved through control of composition and microstructure, has led to growing interest in using these materials for structural applications. weldability is a key issues in the utilization of these alloys for structural components. This paper describes the welding and welding behavior of an Fe{sub 3}Al alloy (FA-129) containing niobium and carbon. Weldability of this alloy has been found to be a strong function of composition, welding process and processing conditions. Crack free welds were made on both sheet and plate material using the electron beam (EB) welding process. Gas tungsten arc (GTA) welds, on the other hand, exhibited a tendency for delayed cold cracking. However, the study clearly demonstrated that successful welds can be made using matching filler metal and proper choice of processing conditions. 15 ref., 5 figs.

  19. Snapshot of iron response in Shewanella oneidensis by gene network reconstruction

    SciTech Connect (OSTI)

    Yang, Yunfeng; Harris, Daniel P.; Luo, Feng; Xiong, Wenlu; Joachimiak, Marcin; Wu, Liyou; Dehal, Paramvir; Jacobsen, Janet; Yang, Zamin; Palumbo, Anthony V.; Arkin, Adam P.; Zhou, Jizhong

    2008-10-09

    Background: Iron homeostasis of Shewanella oneidensis, a gamma-proteobacterium possessing high iron content, is regulated by a global transcription factor Fur. However, knowledge is incomplete about other biological pathways that respond to changes in iron concentration, as well as details of the responses. In this work, we integrate physiological, transcriptomics and genetic approaches to delineate the iron response of S. oneidensis. Results: We show that the iron response in S. oneidensis is a rapid process. Temporal gene expression profiles were examined for iron depletion and repletion, and a gene co-expression network was reconstructed. Modules of iron acquisition systems, anaerobic energy metabolism and protein degradation were the most noteworthy in the gene network. Bioinformatics analyses suggested that genes in each of the modules might be regulated by DNA-binding proteins Fur, CRP and RpoH, respectively. Closer inspection of these modules revealed a transcriptional regulator (SO2426) involved in iron acquisition and ten transcriptional factors involved in anaerobic energy metabolism. Selected genes in the network were analyzed by genetic studies. Disruption of genes encoding a putative alcaligin biosynthesis protein (SO3032) and a gene previously implicated in protein degradation (SO2017) led to severe growth deficiency under iron depletion conditions. Disruption of a novel transcriptional factor (SO1415) caused deficiency in both anaerobic iron reduction and growth with thiosulfate or TMAO as an electronic acceptor, suggesting that SO1415 is required for specific branches of anaerobic energy metabolism pathways. Conclusions: Using a reconstructed gene network, we identified major biological pathways that were differentially expressed during iron depletion and repletion. Genetic studies not only demonstrated the importance of iron acquisition and protein degradation for iron depletion, but also characterized a novel transcriptional factor (SO1415) with a

  20. Method for reducing iron losses in an iron smelting process

    DOE Patents [OSTI]

    Sarma, B.; Downing, K.B.

    1999-03-23

    A process of smelting iron that comprises the steps of: (a) introducing a source of iron oxide, oxygen, nitrogen, and a source of carbonaceous fuel to a smelting reactor, at least some of said oxygen being continuously introduced through an overhead lance; (b) maintaining conditions in said reactor to cause (1) at least some of the iron oxide to be chemically reduced, (2) a bath of molten iron to be created and stirred in the bottom of the reactor, surmounted by a layer of slag, and (3) carbon monoxide gas to rise through the slag; (c) causing at least some of said carbon monoxide to react in the reactor with the incoming oxygen, thereby generating heat for reactions taking place in the reactor; and (d) releasing from the reactor an offgas effluent, is run in a way that keeps iron losses in the offgas relatively low. After start-up of the process is complete, steps (a) and (b) are controlled so as to: (1) keep the temperature of the molten iron at or below about 1550 C and (2) keep the slag weight at or above about 0.8 ton per square meter. 13 figs.

  1. Method for reducing iron losses in an iron smelting process

    DOE Patents [OSTI]

    Sarma, Balu; Downing, Kenneth B.

    1999-01-01

    A process of smelting iron that comprises the steps of: a) introducing a source of iron oxide, oxygen, nitrogen, and a source of carbonaceous fuel to a smelting reactor, at least some of said oxygen being continuously introduced through an overhead lance; b) maintaining conditions in said reactor to cause (i) at least some of the iron oxide to be chemically reduced, (ii) a bath of molten iron to be created and stirred in the bottom of the reactor, surmounted by a layer of slag, and (iii) carbon monoxide gas to rise through the slag; c) causing at least some of said carbon monoxide to react in the reactor with the incoming oxygen, thereby generating heat for reactions taking place in the reactor; and d) releasing from the reactor an offgas effluent, is run in a way that keeps iron losses in the offgas relatively low. After start-up of the process is complete, steps (a) and (b) are controlled so as to: e) keep the temperature of the molten iron at or below about 1550.degree. C. and f) keep the slag weight at or above about 0.8 tonne per square meter.

  2. A study of kinetics and mechanisms of iron ore reduction in ore/coal composites

    SciTech Connect (OSTI)

    Sun, S.; Lu, W.K.

    1996-12-31

    Blast furnace ironmaking technology, by far the most important ironmaking process, is based on coke and iron ore pellets (or sinter) to produce liquid iron. However, there has been a worldwide effort searching for a more economical and environmental friendly alternative process for the production of liquid iron. The essential requirement is that it should be minimized in the usage of metallurgical coke and agglomerate of iron ore concentrates. With iron ore concentrate and coal as raw materials, there are two approaches: (a) Smelting reduction; melting the ore before reduction; (b) Reduction of the ore in solid state followed by melting. The present work is on the fundamentals of the latter. It consists of a better designed experimental study including pressure gradient measurement, and a more rigorous non-isothermal and non-isobaric mathematical model. Results of this work may be applied to carbothermic processes, such as FASTMET and LB processes, as well as recycling of fines in steel plants.

  3. Working Copy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    At DOE Working At DOE Working At DOE Only Here...Will you Define the Future of Energy The people of DOE are engaged in a wide range of challenging and innovative work - from participating in groundbreaking international initiatives like the Global Nuclear Partnership, to solar power demonstration projects, to projects that convert captured carbon dioxide (CO2) emissions from industrial sources into fuel, plastics, and fertilizers. Only here can the diversity of activities throughout our

  4. It is ironic: many immigrants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is ironic: many immigrants fleeing Adolf Hitler's and Benito Mussolini's fascist governments in the 1930s and 1940s played critical roles in the development of Los Alamos National ...

  5. Iron catalyzed coal liquefaction process

    DOE Patents [OSTI]

    Garg, Diwakar; Givens, Edwin N.

    1983-01-01

    A process is described for the solvent refining of coal into a gas product, a liquid product and a normally solid dissolved product. Particulate coal and a unique co-catalyst system are suspended in a coal solvent and processed in a coal liquefaction reactor, preferably an ebullated bed reactor. The co-catalyst system comprises a combination of a stoichiometric excess of iron oxide and pyrite which reduce predominantly to active iron sulfide catalysts in the reaction zone. This catalyst system results in increased catalytic activity with attendant improved coal conversion and enhanced oil product distribution as well as reduced sulfide effluent. Iron oxide is used in a stoichiometric excess of that required to react with sulfur indigenous to the feed coal and that produced during reduction of the pyrite catalyst to iron sulfide.

  6. Process for the synthesis of iron powder

    DOE Patents [OSTI]

    Welbon, W.W.

    1983-11-08

    A process for preparing iron powder suitable for use in preparing the iron-potassium perchlorate heat-powder fuel mixture used in thermal batteries, comprises preparing a homogeneous, dense iron oxide hydroxide precipitate by homogeneous precipitation from an aqueous mixture of a ferric salt, formic or sulfuric acid, ammonium hydroxide and urea as precipitating agent; and then reducing the dense iron oxide hydroxide by treatment with hydrogen to prepare the iron powder. 2 figs.

  7. Process for the synthesis of iron powder

    DOE Patents [OSTI]

    Welbon, William W.

    1983-01-01

    A process for preparing iron powder suitable for use in preparing the iron-potassium perchlorate heat-powder fuel mixture used in thermal batteries, comprises preparing a homogeneous, dense iron oxide hydroxide precipitate by homogeneous precipitation from an aqueous mixture of a ferric salt, formic or sulfuric acid, ammonium hydroxide and urea as precipitating agent; and then reducing the dense iron oxide hydroxide by treatment with hydrogen to prepare the iron powder.

  8. Process for the synthesis of iron powder

    DOE Patents [OSTI]

    Not Available

    1982-03-06

    A process for preparing iron powder suitable for use in preparing the iron-potassium perchlorate heat-powder fuel mixture used in thermal batteries, comprises preparing a homogeneous, dense iron oxide hydroxide precipitate by homogeneous precipitation from an aqueous mixture of a ferric salt, formic or sulfuric acid, ammonium hydroxide and urea as precipitating agent; and then reducing the dense iron oxide hydroxide by treatment with hydrogen to prepare the iron powder.

  9. Reaction of iron and steel slags with refractories

    SciTech Connect (OSTI)

    Banerjee, S.; Anderson, M.W.

    1993-04-01

    Slag corrosion and erosion has been a major wear factor for refractories wear in contact with molten iron and steel. In blast furnace ironmaking, the slag/iron interface plays a more important role than does the slag/refractory interface. On the other hand in steelmaking, the slag in the ladles and tundish predominantly affect refractory wear. This paper presents the results of a detailed microstructural evaluation of (a) slag and slag/iron interactions with A1{sub 2}O{sub 3}-SiC-C refractories for ironmaking in blast furnaces, (b) basic oxygen furnace and ladle slag interactions with alumina spinel refractories for steelmaking, and (c) slag interactions with working refractory lining for continuous casting tundishes. Results will also be presented on refractory wear/failure due to simultaneous corrosion and penetration by the slag.

  10. TECHNOLOGY DEVELOPMENT FOR IRON FISCHER-TROPSCH CATALYSTS

    SciTech Connect (OSTI)

    Davis, B.H.

    1998-07-22

    The goal of the proposed work described in this Final Report was the development of iron-based Fischer-Tropsch catalysts that combined high activity, selectivity and life with physical robustness for slurry phase reactors that will produce either low-alpha or high-alpha products. The work described here has optimized the catalyst composition and pretreatment operation for a low-alpha catalyst. In parallel, work has been conducted to design a high-alpha iron catalyst that is suitable for slurry phase synthesis. Studies have been conducted to define the chemical phases present at various stages of the pretreatment and synthesis stages and to define the course of these changes. The oxidation/reduction cycles that are anticipated to occur in large, commercial reactors have been studied at the laboratory scale. Catalyst performance has been determined for catalysts synthesized in this program for activity, selectivity and aging characteristics.

  11. Kumba Iron Ore | Open Energy Information

    Open Energy Info (EERE)

    can help OpenEI by expanding it. Kumba Iron Ore is a company located in Pretoria, South Africa . References "Kumba Iron Ore" Retrieved from "http:en.openei.orgw...

  12. Iron Edison Battery Company | Open Energy Information

    Open Energy Info (EERE)

    is a company based in Lakewood, Colorado. Iron Edison is redefining off-grid energy storage using advanced Nickel-iron (Ni-Fe) battery technology. Vastly out-lasting the 7...

  13. From: Nussdorf, Benjamin To: Subject: FW: FLNG Date:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    So I think describing it as the IFM Global Infrastructure Fund will tell people it is an investment fund. (The capital infusion to the project will be generated from the Cayman ...

  14. 550 FW 3 NEPA Decision Documents | Open Energy Information

    Open Energy Info (EERE)

    Handbook Abstract Outlines required NEPA documents for FWS NEPA process. Author Fish and Wildlife Service Published Fish and Wildlife Service, 1996 DOI Not Provided Check...

  15. AMI FW UPGRADEABILITY TEST PROCEDURE AND SECURITY ASSESSMENT

    SciTech Connect (OSTI)

    Snyder, Isabelle B

    2014-01-01

    The National Institute of Standards and Technology (NIST) is producing NISTIR 7823 to define test requirements for Smart Meter upgradability. The term Smart Meter refers specifically to advanced electric meters being deployed to enhance management of electricity distribution for residential and industrial consumers. The underlying functional and security requirements for Smart Meter upgradability are specified in NEMA standard SG-AMI 1-2009. The purpose of NISTIR 7823 is to describe conformance test requirements that may be used voluntarily by testers and/or test laboratories to determine whether Smart Meters and Upgrade Management Systems conform to the requirements of NEMA SG-AMI 1-2009.

  16. GLASSES CONTAINING IRON (II III) OXIDES FOR IMMOBILIZATION OF RADIOACTIVE TECHNETIUM

    SciTech Connect (OSTI)

    KRUGER AA; HEO J; XU K; CHOI JK; HRMA PR; UM W

    2011-11-07

    Technetium-99 (Tc-99) has posed serious environmental threats as US Department of Energy's high-level waste. This work reports the vitrification of Re, as surrogate for Tc-99, by iron-borosilicate and iron-phosphate glasses, respectively. Iron-phosphate glasses can dissolve Re as high as {approx} 1.2 wt. %, which can become candidate waste forms for Tc-99 disposal, while borosilicate glasses can retain less than 0.1 wt. % of Re due to high melting temperature and long melting duration. Vitrification of Re as Tc-99's mimic was investigated using iron-borosilicate and iron-phosphate glasses. The retention of Re in borosilicate glasses was less than 0.1 wt. % and more than 99 wt. % of Re were volatilized due to high melting temperature and long melting duration. Because the retention of Re in iron-phosphate glasses is as high as 1.2 wt. % and the volatilization is reduced down to {approx}50 wt. %, iron-phosphate glasses can be one of the glass waste form candidates for Tc (or Re) disposal. The investigations of chemical durability and leaching test of iron-phosphate glasses containing Re are now underway to test the performance of the waste form.

  17. Working Copy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Effective Date: 02/03/14 WP 12-IS.01-6 Revision 11 Industrial Safety Program - Visitor, Vendor, User, Tenant, and Subcontractor Safety Controls Cognizant Section: Industrial Safety/Industrial Hygiene Approved By: Tom Ferguson Working Copy Industrial Safety Program - Visitor, Vendor, User, Tenant, and Subcontractor Safety Controls WP 12-IS.01-6, Rev. 11 2 TABLE OF CONTENTS CHANGE HISTORY SUMMARY ..................................................................................... 7 ACRONYMS AND

  18. Working Copy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE/WIPP-99-2286 Waste Isolation Pilot Plant Environmental Notification or Reporting Implementation Plan Revision 7 U.S. Department of Energy December 2013 This document supersedes DOE/WIPP-99-2286, Rev. 6. Working Copy Waste Isolation Pilot Plant Environmental Notification or Reporting Implementation Plan DOE/WIPP-99-2286, Rev. 7 2 TABLE OF CONTENTSCHANGE HISTORY SUMMARY .............................................. 3 ACRONYMS AND ABBREVIATIONS

  19. Ligand iron catalysts for selective hydrogenation

    DOE Patents [OSTI]

    Casey, Charles P.; Guan, Hairong

    2010-11-16

    Disclosed are iron ligand catalysts for selective hydrogenation of aldehydes, ketones and imines. A catalyst such as dicarbonyl iron hydride hydroxycyclopentadiene) complex uses the OH on the five member ring and hydrogen linked to the iron to facilitate hydrogenation reactions, particularly in the presence of hydrogen gas.

  20. ODS iron aluminides

    SciTech Connect (OSTI)

    Wright, I.G.; Pint, B.A.; Tortorelli, P.F.; Ohriner, E.K.

    1996-06-01

    Interest in advanced cycles that involve indirectly-fired gas turbines, in which coal- or gas-fired high-temperature heat exchangers are used to heat a working fluid in a closed system, has led to investigation of materials for heat exchangers capable of operation at temperatures of the order of 1200 to 1300{degrees}C. The candidate materials are ceramics and, possibly, oxide dispersion-strengthened (ODS) alloys. An ODS FeCrAl alloy was found to meet the strength requirements for such an application, in which the working fluid at 0.9 MPa was to be heated from 800 to 1100{degrees}C over a tube length of 4 m. The oxidation life of ODS FeCrAl alloys is determined by their ability to form or reform a protective alumina scale, and can be related to the time for the aluminum content of the alloy to be depleted to some minimum level. As a result, the service life is a function of the available aluminum content of the alloys and the minimum aluminum level at which breakaway oxidation occurs, hence there is a limit on the minimum cross section which can be safely employed at temperatures above 1200{degrees}C. Because of their significantly higher aluminum content ({ge}28 atom %/{ge}16 wt. percent compared to {approx}9 atom %15 wt. percent), alloys based on Fe{sub 3}Al afford a potentially larger reservoir of aluminum to sustain oxidation resistance at higher temperatures and, therefore, offer a possible improvement over the currently-available ODS FeCrAl alloys, providing they can be strengthened in a similar manner.

  1. Technology development for iron F-T catalysts. Final report

    SciTech Connect (OSTI)

    Frame, R.R.; Gala, H.B.

    1994-08-01

    The objectives of this work were twofold. The first objective was to design and construct a pilot plant for preparing precipitated iron oxide F-T precursors and demonstrate that the rate of production from this plant is equivalent to 100 lbs/day of dried metal oxide. Secondly, these precipitates were to be used to prepare catalysts capable of achieving 88% CO + H{sub 2} conversion with {le} 5 mole percent selectivity to methane + ethane.

  2. Effects of titanium and zirconium on iron aluminide weldments

    SciTech Connect (OSTI)

    Mulac, B.L.; Edwards, G.R.; Burt, R.P.; David, S.A.

    1997-12-01

    When gas-tungsten arc welded, iron aluminides form a coarse fusion zone microstructure which is susceptible to hydrogen embrittlement. Titanium inoculation effectively refined the fusion zone microstructure in iron aluminide weldments, but the inoculated weldments had a reduced fracture strength despite the presence of a finer microstructure. The weldments fractured by transgranular cleavage which nucleated at cracked second phase particles. With titanium inoculation, second phase particles in the fusion zone changed shape and also became more concentrated at the grain boundaries, which increased the particle spacing in the fusion zone. The observed decrease in fracture strength with titanium inoculation was attributed to increased spacing of second phase particles in the fusion zone. Current research has focused on the weldability of zirconium- and carbon-alloyed iron aluminides. Preliminary work performed at Oak Ridge National Laboratory has shown that zirconium and carbon additions affect the weldability of the alloy as well as the mechanical properties and fracture behavior of the weldments. A sigmajig hot cracking test apparatus has been constructed and tested at Colorado School of Mines. Preliminary characterization of hot cracking of three zirconium- and carbon-alloyed iron aluminides, each containing a different total concentration of zirconium at a constant zirconium/carbon ratio of ten, is in progress. Future testing will include low zirconium alloys at zirconium/carbon ratios of five and one, as well as high zirconium alloys (1.5 to 2.0 atomic percent) at zirconium/carbon ratios of ten to forty.

  3. Iron production maintenance effectiveness system

    SciTech Connect (OSTI)

    Augstman, J.J.

    1996-12-31

    In 1989, an internal study in the Coke and Iron Maintenance Department identified the opportunities available to increase production, by decreasing unscheduled maintenance delays from 4.6%. A five year front loaded plan was developed, and presented to the company president. The plan required an initial investment of $1.4 million and a conservative break-even point was calculated to be 2.5 years. Due to budget restraints, it would have to be self-funded, i.e., generate additional production or savings, to pay for the program. The program began in 1991 at number 2 coke plant and the blast furnaces. This paper will describe the Iron Production Maintenance Effectiveness System (ME), which began with the mechanical and pipefitting trades.

  4. Ancient Blacksmiths, The Iron Age, Damascus Steels, and Modern Metallurgy

    SciTech Connect (OSTI)

    Sherby, O.D.; Wadsworth, J.

    2000-09-11

    The history of iron and Damascus steels is described through the eyes of ancient blacksmiths. For example, evidence is presented that questions why the Iron Age could not have begun at about the same time as the early Bronze Age (i.e. approximately 7000 B.C.). It is also clear that ancient blacksmiths had enough information from their forging work, together with their observation of color changes during heating and their estimate of hardness by scratch tests, to have determined some key parts of the present-day iron-carbon phase diagram. The blacksmiths' greatest artistic accomplishments were the Damascus and Japanese steel swords. The Damascus sword was famous not only for its exceptional cutting edge and toughness, but also for its beautiful surface markings. Damascus steels are ultrahigh carbon steels (UHCSs) that contain from 1.0 to 2.1%. carbon. The modern metallurgical understanding of UHCSs has revealed that remarkable properties can be obtained in these hypereutectoid steels. The results achieved in UHCSs are attributed to the ability to place the carbon, in excess of the eutectoid composition, to do useful work that enhances the high temperature processing of carbon steels and that improves the low and intermediate temperature mechanical properties.

  5. Method for the manufacture of iron-containing sintered electrodes

    SciTech Connect (OSTI)

    Buhl, H.; Gutjahr, M.

    1980-12-02

    A method is described for manufacturing an iron-containing sintered electrode for alkaline accumulators as well as the product obtained by such method, in which iron powder and at least one reducible iron compound are intimately mixed with each other; the powder mixture is sintered into a stable body and the reducible iron compound is reduced to highly active iron.

  6. Weldability and hot ductility of iron aluminides

    SciTech Connect (OSTI)

    Ash, D.I.; Edwards, G.R. . Center for Welding and Joining Research); David, S.A. )

    1991-05-01

    The weldability of iron aluminide alloys is discussed. Although readily welded with electron beam (EB) and gas-tungsten arc (GTA) techniques, iron aluminides are sometimes susceptible to cracking during cooling when welded with the GTA welding process. Taken into account are the effects of microstructural instability (grain growth), weld heat input (cooling rate) and environment on the hot ductility of an iron aluminide alloy designated FA-129. 64 refs., 59 figs., 3 tabs.

  7. Surface modification of high temperature iron alloys

    DOE Patents [OSTI]

    Park, J.H.

    1995-06-06

    A method and article of manufacture of a coated iron based alloy are disclosed. The method includes providing an iron based alloy substrate, depositing a silicon containing layer on the alloy surface while maintaining the alloy at a temperature of about 700--1200 C to diffuse silicon into the alloy surface and exposing the alloy surface to an ammonia atmosphere to form a silicon/oxygen/nitrogen containing protective layer on the iron based alloy. 13 figs.

  8. Electron Correlation in Iron-Based Superconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Correlation in Iron-Based Superconductors Electron Correlation in Iron-Based Superconductors Print Wednesday, 24 February 2010 00:00 In 2008, the discovery of iron-based superconductors stimulated a worldwide burst of activity, leading to about two preprints per day ever since. With a maximum superconducting transition temperature (so far) of 55 K, it is natural to wonder if studying the new materials will help uncover one of the deepest mysteries in modern physics-the mechanism of

  9. Energy Saving Melting and Revert Reduction Technology: Aging of Graphitic Cast Irons and Machinability

    SciTech Connect (OSTI)

    Von L. Richards

    2012-09-19

    The objective of this task was to determine whether ductile iron and compacted graphite iron exhibit age strengthening to a statistically significant extent. Further, this effort identified the mechanism by which gray iron age strengthens and the mechanism by which age-strengthening improves the machinability of gray cast iron. These results were then used to determine whether age strengthening improves the machinability of ductile iron and compacted graphite iron alloys in order to develop a predictive model of alloy factor effects on age strengthening. The results of this work will lead to reduced section sizes, and corresponding weight and energy savings. Improved machinability will reduce scrap and enhance casting marketability. Technical Conclusions: ???¢???????¢ Age strengthening was demonstrated to occur in gray iron ductile iron and compacted graphite iron. ???¢???????¢ Machinability was demonstrated to be improved by age strengthening when free ferrite was present in the microstructure, but not in a fully pearlitic microstructure. ???¢???????¢ Age strengthening only occurs when there is residual nitrogen in solid solution in the Ferrite, whether the ferrite is free ferrite or the ferrite lamellae within pearlite. ???¢???????¢ Age strengthening can be accelerated by Mn at about 0.5% in excess of the Mn/S balance Estimated energy savings over ten years is 13.05 trillion BTU, based primarily on yield improvement and size reduction of castings for equivalent service. Also it is estimated that the heavy truck end use of lighter castings for equivalent service requirement will result in a diesel fuel energy savings of 131 trillion BTU over ten years.

  10. Method for producing iron-based catalysts

    DOE Patents [OSTI]

    Farcasiu, Malvina; Kaufman, Phillip B.; Diehl, J. Rodney; Kathrein, Hendrik

    1999-01-01

    A method for preparing an acid catalyst having a long shelf-life is provided comprising doping crystalline iron oxides with lattice-compatible metals and heating the now-doped oxide with halogen compounds at elevated temperatures. The invention also provides for a catalyst comprising an iron oxide particle having a predetermined lattice structure, one or more metal dopants for said iron oxide, said dopants having an ionic radius compatible with said lattice structure; and a halogen bound with the iron and the metal dopants on the surface of the particle.

  11. Iron Availability in the Southern Ocean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    At bottom left, the kinds of iron species found in two transects of the Southern Ocean are ... (ACC stands for Antarctic Circumpolar Current.) The map shows chlorophyll ...

  12. Iron oxyhydroxide mineralization on microbial extracellular polysaccha...

    Office of Scientific and Technical Information (OSTI)

    a creek and abandoned mine; these samples are dominated by iron oxyhydroxide-coated structures with sheath, stalk, and filament morphologies. In addition, we characterized the...

  13. Electron Correlation in Iron-Based Superconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    between different theoretical models and experimental data indicated that, instead of localized states due to strong electron interactions, electrons in iron pnictides prefer...

  14. Iron oxyhydroxide mineralization on microbial extracellular polysaccharides

    SciTech Connect (OSTI)

    Chan, Clara S.; Fakra, Sirine C.; Edwards, David C.; Emerson, David; Banfield, Jillian F.

    2010-06-22

    Iron biominerals can form in neutral pH microaerophilic environments where microbes both catalyze iron oxidation and create polymers that localize mineral precipitation. In order to classify the microbial polymers that influence FeOOH mineralogy, we studied the organic and mineral components of biominerals using scanning transmission X-ray microscopy (STXM), micro X-ray fluorescence ({mu}XRF) microscopy, and high-resolution transmission electron microscopy (HRTEM). We focused on iron microbial mat samples from a creek and abandoned mine; these samples are dominated by iron oxyhydroxide-coated structures with sheath, stalk, and filament morphologies. In addition, we characterized the mineralized products of an iron-oxidizing, stalk-forming bacterial culture isolated from the mine. In both natural and cultured samples, microbial polymers were found to be acidic polysaccharides with carboxyl functional groups, strongly spatially correlated with iron oxyhydroxide distribution patterns. Organic fibrils collect FeOOH and control its recrystallization, in some cases resulting in oriented crystals with high aspect ratios. The impact of polymers is particularly pronounced as the materials age. Synthesis experiments designed to mimic the biomineralization processes show that the polysaccharide carboxyl groups bind dissolved iron strongly but release it as mineralization proceeds. Our results suggest that carboxyl groups of acidic polysaccharides are produced by different microorganisms to create a wide range of iron oxyhydroxide biomineral structures. The intimate and potentially long-term association controls the crystal growth, phase, and reactivity of iron oxyhydroxide nanoparticles in natural systems.

  15. Method for heat treating iron-nickel-chromium alloy

    DOE Patents [OSTI]

    Korenko, Michael K.

    1980-01-01

    A method for heat treating an age-hardenable iron-nickel-chromium alloy to obtain a morphology of the gamma-double prime phase enveloping the gamma-prime phase, the alloy consisting essentially of about 40 to 50% nickel, 7.5 to 14% chromium, 1.5 to 4% niobium, 0.3 to 0.75% silicon, 1 to 3% titanium, 0.1 to 0.5% aluminum, 0.02 to 1% carbon, 0.002 to 0.0015% boron and the remain substantially all iron. To obtain optimal results, the alloy is cold-worked 20 to 60% followed by heating at 1050.degree. C. for 1/2 hour with an air-cool plus heating at 800.degree. C. for 2 hours with a furnace cool to 625.degree. C. The alloy is then held at 625.degree. C. for 12 hours, followed by an air-cool.

  16. Method for heat treating iron-nickel-chromium alloy

    DOE Patents [OSTI]

    Merrick, Howard F.; Korenko, Michael K.

    1982-01-01

    A method for heat treating an age-hardenable iron-nickel-chromium alloy to obtain a bimodal distribution of gamma prime phase within a network of dislocations, the alloy consisting essentially of about 25% to 45% nickel, 10% to 16% chromium, 1.5% to 3% of an element selected from the group consisting of molybdenum and niobium, about 2% titanium, about 3% aluminum, and the remainder substantially all iron. To obtain optimum results, the alloy is heated to a temperature of 1025.degree. C. to 1075.degree. C. for 2-5 minutes, cold-worked about 20% to 60%, aged at a temperature of about 775.degree. C. for 8 hours followed by an air-cool, and then heated to a temperature in the range of 650.degree. C. to 700.degree. C. for 2 hours followed by an air-cool.

  17. Method for heat treating iron-nickel-chromium alloy

    DOE Patents [OSTI]

    Not Available

    1980-04-03

    A method is described for heat treating an age-hardenable iron-nickel-chromium alloy to obtain a morphology of the gamma-double prime phase enveloping the gamma-prime, the alloy consisting essentially of about 25 to 45% nickel, 10 to 16% chromium, 1.5 to 3% of an element selected from the group consisting of molybdenum and niobium, about 2% titanium, about 3% aluminum, and the remainder substantially all iron. To obtain optimum results, the alloy is heated to a temperature of 1025 to 1075/sup 0/C for 2 to 5 minutes, cold-worked about 20 to 60%, aged at a temperature of about 775/sup 0/C for 8 hours followed by an air-cool, and then heated to a temperature in the range of 650 to 700/sup 0/C for 2 hours followed by an air-cool.

  18. FEASIBILITY OF MEASURING IRON IN VIVO USING FAST 14 MEV NEUTRONS.

    SciTech Connect (OSTI)

    WIELOPOLSKI, L.

    2005-05-01

    In this short report, I reassess the feasibility of measuring iron in vivo in the liver and heart of thalassemia patients undergoing chelation therapy. Despite the multiplicity of analytical methods for analyzing iron, only two, magnetic resonance imaging, and magnetic susceptibility, are suitable for in vivo applications, and these are limited to the liver because of the heart's beat. Previously, a nuclear method, gamma-resonance scattering, offered a quantitative measure of iron in these organs; however, it was abandoned because it necessitated a nuclear reactor to produce the radioactive source. I reviewed and reassessed the status of two alternative nuclear methods, based on iron spectroscopy of gamma rays induced by fast neutron inelastic scattering and delayed activation in iron. Both are quantitative methods with high specificity for iron and adequate penetrating power to measure it in organs sited deep within the human body. My experiments demonstrated that both modalities met the stated qualitative objectives to measure iron. However, neutron dosimetry revealed that the intensity of the neutron radiation field was too weak to reliably assess the minimum detection limits, and to allow quantitative extrapolations to measurements in people. A review of the literature, included in this report, showed that these findings agree qualitatively with the published results, although the doses reported were about three orders-of-magnitude higher than those I used. Reviewing the limitations of the present work, steps were outlined for overcoming some of the shortcomings. Due to a dearth of valid quantitative alternatives for determining iron in vivo, I conclude that nuclear methods remain the only viable option. However, from the lessons learned, further systematic work is required before embarking on clinical studies.

  19. The production of iron carbide

    SciTech Connect (OSTI)

    Anderson, K.M.; Scheel, J.

    1997-12-31

    From start-up in 1994 to present, Nucor`s Iron Carbide plant has overcome many obstacles in achieving design production. Many of these impediments were due to flaws in equipment design. With the integration existing within the plant, limitations in any one system reduced the operating capacity of others. For this reason, as modifications were made and system capacities were increased, the need for additional modifications became apparent. Subsequently, operating practices, maintenance scheduling, employee incentives, and production objectives were continually adapted. This paper discusses equipment and design corrections and the quality issues that contributed to achieving the plant`s production capacity.

  20. The Iron Spin Transition in the Earth's Lower Mantle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Iron Spin Transition in the Earth's Lower Mantle The Iron Spin Transition in the Earth's Lower Mantle Print Wednesday, 30 April 2008 00:00 It is now known that the iron present...

  1. Microbial reduction of iron ore (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a...

  2. Ordered iron aluminide alloys having an improved room-temperature ductility and method thereof

    DOE Patents [OSTI]

    Sikka, Vinod K.

    1992-01-01

    A process is disclosed for improving the room temperature ductility and strength of iron aluminide intermetallic alloys. The process involves thermomechanically working an iron aluminide alloy by means which produce an elongated grain structure. The worked alloy is then heated at a temperature in the range of about 650.degree. C. to about 800.degree. C. to produce a B2-type crystal structure. The alloy is rapidly cooled in a moisture free atmosphere to retain the B2-type crystal structure at room temperature, thus providing an alloy having improved room temperature ductility and strength.

  3. Iron and Steel (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Iron and Steel (2010 MECS) Iron and Steel (2010 MECS) Manufacturing Energy and Carbon Footprint for Iron and Steel Sector (NAICS 3311, 3312) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint Iron and Steel (125.81 KB) More Documents & Publications MECS 2006 - Iron and Steel Manufacturing Energy and Carbon Footprint - Sector: Iron and Steel (NAICS 3311, 3312), October

  4. Iron is the Key to Preserving Dinosaur Soft Tissue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron and Steel (2010 MECS) Iron and Steel (2010 MECS) Manufacturing Energy and Carbon Footprint for Iron and Steel Sector (NAICS 3311, 3312) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint Iron and Steel (125.81 KB) More Documents & Publications MECS 2006 - Iron and Steel Manufacturing Energy and Carbon Footprint - Sector: Iron and Steel (NAICS 3311, 3312), October

  5. Production of iron from metallurgical waste

    SciTech Connect (OSTI)

    Hendrickson, David W; Iwasaki, Iwao

    2013-09-17

    A method of recovering metallic iron from iron-bearing metallurgical waste in steelmaking comprising steps of providing an iron-bearing metallurgical waste containing more than 55% by weight FeO and FeO equivalent and a particle size of at least 80% less than 10 mesh, mixing the iron-bearing metallurgical waste with a carbonaceous material to form a reducible mixture where the carbonaceous material is between 80 and 110% of the stoichiometric amount needed to reduce the iron-bearing waste to metallic iron, and as needed additions to provide a silica content between 0.8 and 8% by weight and a ratio of CaO/SiO.sub.2 between 1.4 and 1.8, forming agglomerates of the reducible mixture over a hearth material layer to protect the hearth, heating the agglomerates to a higher temperature above the melting point of iron to form nodules of metallic iron and slag material from the agglomerates by melting.

  6. Removal of metallic iron on oxide slags

    SciTech Connect (OSTI)

    Shannon, G.N.; Fruehan, R.J.; Sridhar, S.

    2009-10-15

    It is possible, in some cases, for ground coal particles to react with gasifier gas during combustion, allowing the ash material in the coal to form phases besides the expected slag phase. One of these phases is metallic iron, because some gasifiers are designed to operate under a reducing atmosphere (pO{sub 2}) of approximately 10{sup -4} atm). Metallic iron can become entrained in the gas stream and deposit on, and foul, downstream equipment. To improve the understanding of the reaction between different metallic iron particles and gas, which eventually oxidizes them, and the slag that the resulting oxide dissolves in, the kinetics of iron reaction on slag were predicted using gas-phase mass-transfer limitations for the reaction and were compared with diffusion in the slag; the reaction itself was observed under confocal scanning laser microscopy. The expected rates for iron droplet removal are provided based on the size and effective partial pressure of oxygen, and it is found that decarburization occurs before iron reaction, leading to an extra 30- to 100-second delay for carbon-saturated particles vs pure iron particles. A pure metallic iron particle of 0.5 mg should be removed in about 220 seconds at 1400{sup o}C and in 160 seconds at 1600{sup o}C.

  7. IRON COATED URANIUM AND ITS PRODUCTION

    DOE Patents [OSTI]

    Gray, A.G.

    1960-03-15

    A method of applying a protective coating to a metallic uranium article is given. The method comprises etching the surface of the article with an etchant solution containlng chloride ions, such as a solution of phosphoric acid and hydrochloric acid, cleaning the etched surface, electroplating iron thereon from a ferrous ammonium sulfate electroplating bath, and soldering an aluminum sheath to the resultant iron layer.

  8. Dechlorination of TCE with palladized iron

    DOE Patents [OSTI]

    Fernando, Quintus; Muftikian, Rosy; Korte, Nic

    1997-01-01

    The present invention relates to various methods, such as an above-ground method and an in-ground method, of using a palladized iron bimetallic system for the dechlorination of chlorinated organic compounds from various effluents or contaminated soil containing the same. The use of palladized iron bimetallic system results in the dechlorination of the chlorinated organic compound into environmentally safe reaction products.

  9. Technology Development for Iron Fischer-Tropsch Catalysis.

    SciTech Connect (OSTI)

    Davis, B.H.

    1997-12-16

    The goal of the proposed work is the development of iron-based Fischer-Tropsch catalysts that combined high activity, selectivity and life with physical robustness for slurry phase reactors that will produce either low-alpha or high-alpha products. The catalyst that is developed will be suitable for testing at the Advanced Fuels Development Facility at LaPorte, Texas or similar sized plant. Previous work by the offeror has produced a catalyst formulation that is 1.5 times as active as the `standard-catalyst` developed by German workers for slurry phase synthesis. The proposed work will optimize the catalyst composition and pretreatment operation for this low-alpha catalyst. In parallel, work will be conducted to design a high-alpha iron catalyst that is suitable for slurry phase synthesis. Studies will be conducted to define the chemical phases present at various stages of the pretreatment and synthesis stages and to define the course of these changes. The oxidation/reduction cycles that are anticipated to occur in large, commercial reactors will be studied at the laboratory scale. Catalyst performance will be determined for catalysts synthesized in this program for activity, selectivity and aging characteristics.

  10. Thermo-Mechanical Processing and Properties of a Ductile Iron

    SciTech Connect (OSTI)

    Syn, C.K.; Lesuer, R.R.; Sherby, O.D.

    1997-07-14

    Thermo-mechanical processing of ductile irons is a potential method for enhancing their mechanical properties. A ductile cast iron containing 3.6% C, 2.6% Si and 0.045% Mg was continuously hot-and-warm rolled or one-step press-forged from a temperature in the austenite range (900{degrees}C-1100{degrees}C) to a temperature below the A, temperature. Various amounts of reduction were used (from 60% to more than 90%) followed by a short heat ent at 600`C. The heat ent lead to a structure of fine graphite in a matrix of ferrite and carbides. The hot-and- warm worked materials developed a pearlitic microstructure while the press-forged material developed a spheroidite-like carbide microstructure in the matrix. Cementite-denuded ferrite zones were developed around graphite stringers in the hot-and-warm worked materials, but such zones were absent in the press-forged material. Tensile properties including tensile strength and total elongation were measured along the direction parallel and transverse to the rolling direction and along the direction transverse to the press-forging direction. The tensile ductility and strength both increased with a decrease in the amount of hot-and-warm working. The press- forged materials showed higher strength (645 MPa) than the hot-and-warrn worked materials (575 MPa) when compared at the same ductility level (22% elongation).

  11. Technology development for iron fisher-tropsch catalysis

    SciTech Connect (OSTI)

    Davis, B.H.

    1997-07-15

    The goal of the proposed work is the development of iron-based Fischer-Tropsch catalysts that combined high activity, selectivity and life with physical robustness for slurry phase reactors that will produce either low-alpha or high-alpha products. the catalyst that is developed will be suitable for testing at the Advanced Fuels Development Facility at LaPorte, Texas or similar sized plant. Previous work by the offeror has produced a catalyst formulation that is 1.5 times as active as the standard-catalyst developed by German workers for slurry phase synthesis, The proposed work will optimize the catalyst composition and pretreatment operation for this low-alpha catalyst. In parallel, work will be conducted to design a high-alpha iron catalyst that is suitable for slurry phase synthesis. Studies will be conducted to define the chemical phases present at various stages of the pretreatment and synthesis stages and to define the course of these changes. the oxidation/reduction cycles that are anticipated to occur in large, commercial reactors will be studies at the laboratory scale. Catalyst performance will be determined for catalysts synthesized in this program for activity, selectivity, and aging characteristics.

  12. Iron is the Key to Preserving Dinosaur Soft Tissue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the ALS. Researchers hypothesized that the iron had come from dinosaurs' blood and muscle cells during decay, and were able to identify iron-facilitated reactions that...

  13. Pressure-Driven Quantum Criticality in Iron-Selenide Superconductors...

    Office of Scientific and Technical Information (OSTI)

    Pressure-Driven Quantum Criticality in Iron-Selenide Superconductors Title: Pressure-Driven Quantum Criticality in Iron-Selenide Superconductors Authors: Guo, Jing ; Chen, Xiao-Jia ...

  14. Preparations of rare earth-iron alloys by thermite reduction

    DOE Patents [OSTI]

    Schmidt, Frederick A.; Peterson, David T.; Wheelock, John T.

    1986-09-16

    An improved method for the preparation of high-purity rare earth-iron alloys by the aluminothermic reduction of a mixture of rare earth and iron fluorides.

  15. Neutron scattering of iron-based superconductors (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Neutron scattering of iron-based superconductors Citation Details In-Document Search Title: Neutron scattering of iron-based superconductors Low-energy spin excitations have been...

  16. Iron is the Key to Preserving Dinosaur Soft Tissue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mechanism for this unexpected preservation-iron nanoparticles associated with dinosaur blood vessels were identified at the ALS. Researchers hypothesized that the iron had come...

  17. Phase Discrimination through Oxidant Selection for Iron Oxide...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phase Discrimination through Oxidant Selection for Iron Oxide Ultrathin Films Home > Research > ANSER Research Highlights > Phase Discrimination through Oxidant Selection for Iron...

  18. Manufacturing Energy and Carbon Footprint - Sector: Iron and...

    Office of Environmental Management (EM)

    - Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006) Manufacturing Energy and Carbon Footprint - Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS ...

  19. COLLOQUIUM: How Trenton Iron and Steel Innovations Reshaped America...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MBG Auditorium COLLOQUIUM: How Trenton Iron and Steel Innovations Reshaped America Mr. Clifford Zink Independent Historian Iron and steel innovations in Trenton helped transform ...

  20. Laboratory Shock Experiments on Basalt - Iron Sulfate Mixes at...

    Office of Scientific and Technical Information (OSTI)

    Laboratory Shock Experiments on Basalt - Iron Sulfate Mixes at 40 - 50 GPa and their ... Title: Laboratory Shock Experiments on Basalt - Iron Sulfate Mixes at 40 - 50 GPa and ...

  1. Solid-solid phase transition measurements in iron

    SciTech Connect (OSTI)

    Schwartz, Cynthia Louise

    2010-01-01

    Previously, dynamic experiments on iron have observed a non-zero transition time and width in the solid-solid {alpha}-{var_epsilon} phase transition. Using Proton Radiography at the Los Alamos Neutron Science Center, we have performed plate impact experiments on iron to further study the {alpha}-{var_epsilon} phase transition which occurs at 13GPa. A 40mm bore powder gun was coupled to a proton radiography beam line and imaging system and synchronized to the impact of the projectile on the target sample with the proton beam pattern. A typical experimental configuration for the iron study, as shown below in 3 color-enhanced radiographs, is a 40mm diameter aluminum sabot impacting a 40mm diameter of polycrystalline ARMCO iron. The iron is backed by a sapphire optical window for velocimetry measurements. The aluminum flyer on the left of the iron is barely visible for visual display purposes. Direct density jumps were measured which corresponded to calculations to within 1% using a Wondy mUlti-phase equation of state model. In addition, shock velocities were measured using an edge fitting technique and followed that edge movement from radiograph to radiograph, where radiographs are separated in time by 500 ns. Preliminary measurements give a shock velocity (P1 wave) of 5.251 km/s. The projectile velocity was 0.725 km/s which translate to a peak stress of 17.5 GPa. Assuming the P1 wave is instantaneous, we are able to calibrate the chromatic, motion, object and camera blur by measuring the width of the P1 wave. This approximation works in this case since each of the two density jumps are small compared to the density of the object. Subtracting the measured width of the P1 wave in quadrature from the width of the P2 wave gives a preliminary measurement of the transition length of 265 {mu}m. Therefore, a preliminary measured phase transition relaxation time {tau} = transition length/u{sub s} = 265 {mu}m/5.251 km/s = 50 ns. Both Boettger and Jensen conclude that the

  2. Kinetics of Solid-Solid Phase Transition in Iron (u)

    SciTech Connect (OSTI)

    Schwartz, Cynthia, L

    2011-01-27

    Previously, dynamic experiments on iron have observed a non-zero transition time and width in the solid-solid {alpha}-{var_epsilon} phase transition. Using Proton Radiography at the los Alamos Neutron Science Center, we have performed plate impact experiments on iron to further study the {alpha}-{var_epsilon} phase transition which occurs at 13GPa. A 40mm bore powder gun was coupled to a proton radiography beam line and imaging system and synchronized to the impact of the projectile on the target sample with the proton beam pattern. A typical experimental configuration for the iron study, as shown below in 3 color-enhanced radiographs, is a 40mm diameter aluminum sabot impacting a 40mm diameter of polycrystalline ARMCO iron. The iron is backed by a sapphire optical window for velocimetry measurements. The aluminum flyer on the left of the iron is barely visible for visual display purposes. Direct density jumps were measured which corresponded to calculations to within 1% using a Wondy multi-phase equation of state model. In addition, shock velocities were measured using an edge fitting technique and followed that edge movement from radiograph to radiograph, where rad iographs are separated in time by 500 ns. Preliminary measurements give a shock velocity (P1 wave) of 5.251 km/s. The projectile velocity was 0.725 km/s which translate to a peak stress of 17.5 GPa. Assuming the P1 wave is instantaneous, we are able to calibrate the chromatic, motion, object and camera blur by measuring the width of the P1 wave. This approximation works in this case since each of the two density jumps are small compared to the density of the object. Subtracting the measured width of the P1 wave in quadrature from the width of the P2 wave gives a preliminary measurement of the transition length of 265 {micro}m. Therefore, a preliminary measured phase transition relaxation time {tau} = transition length/u{sub s} = 265 {micro}m/5.251 km/s = 50 ns. Both Boettger1 & Jensen2 conclude that

  3. Kinetics of fatigue cracks in iron in electrolytic hydrogen impregnation

    SciTech Connect (OSTI)

    Pokhmurskii, V.I.; Bilyi, L.M.

    1985-05-01

    Fatigue failure of metals is localized in the zone of plastic deformation at the tip of the developing crack. Crack development depends to a large extent upon the parameters of the deformed volume, the loading conditions, and features of the material microstructure. It may be assumed that the medium, especially a hydrogen-impregnating medium, leads to a change in the zone of plastic deformation and thereby influences the rate of fatigue crack growth. This work is devoted to a study of cyclic crack resistance and determination of the zone of plastic deformation of failure specimens of Armco iron under conditions of the action of a hydrogen-impregnating medium.

  4. Co-Production of Electricity and Hydrogen Using a Novel Iron-based Catalyst

    SciTech Connect (OSTI)

    Hilaly, Ahmad; Georgas, Adam; Leboreiro, Jose; Arora, Salil; Head, Megann; Trembly, Jason; Turk, Brian; Gupta, Raghubir

    2011-09-30

    The primary objective of this project was to develop a hydrogen production technology for gasification applications based on a circulating fluid-bed reactor and an attrition resistant iron catalyst. The work towards achieving this objective consisted of three key activities: • Development of an iron-based catalyst suitable for a circulating fluid-bed reactor • Design, construction, and operation of a bench-scale circulating fluid-bed reactor system for hydrogen production • Techno-economic analysis of the steam-iron and the pressure swing adsorption hydrogen production processes. This report describes the work completed in each of these activities during this project. The catalyst development and testing program prepared and iron-based catalysts using different support and promoters to identify catalysts that had sufficient activity for cyclic reduction with syngas and steam oxidation and attrition resistance to enable use in a circulating fluid-bed reactor system. The best performing catalyst from this catalyst development program was produced by a commercial catalyst toll manufacturer to support the bench-scale testing activities. The reactor testing systems used during material development evaluated catalysts in a single fluid-bed reactor by cycling between reduction with syngas and oxidation with steam. The prototype SIP reactor system (PSRS) consisted of two circulating fluid-bed reactors with the iron catalyst being transferred between the two reactors. This design enabled demonstration of the technical feasibility of the combination of the circulating fluid-bed reactor system and the iron-based catalyst for commercial hydrogen production. The specific activities associated with this bench-scale circulating fluid-bed reactor systems that were completed in this project included design, construction, commissioning, and operation. The experimental portion of this project focused on technical demonstration of the performance of an iron-based catalyst and a

  5. Evaluation of the fabricability of advanced iron aluminide-clad austenitic stainless steel tubing

    SciTech Connect (OSTI)

    Mohn, W.R.; Topolski, M.J.

    1993-07-01

    Researchers at Babcock & Wilcox Alliance Research Center have investigated methods to produce bimetallic tubing consisting of iron aluminide-clad austenitic stainless steel for practical use in fossil fueled energy equipment. In the course of this work, the compatibility of iron aluminide with four candidate austenitic stainless steel substrates was first evaluated using diffusion couples. Based on these results, a combination of iron aluminide and 304 stainless steel was selected for further development. Two composite billets of this combination were then prepared and extruded in separate trails at 2200F and 2000F. Both extrusions yielded 2-inch OD clad tubes, each approximately 18 feet long. Results of the evaluation show that the tube extruded at 2000F had a sound, integrally bonded clad layer throughout its entire length. However, the tube extruded at 2200F exhibited regions of disbonding between the clad layer and the substrate. In supplement to this work, an assessment of the technical and economic merits of iron aluminide-clad austenitic stainless steel components in power generation systems was conducted by B&W Fossil Power Division. Future activities should include an investigation of lower extrusion processing temperatures to optimize the fabrication of high quality iron-aluminide clad tubing.

  6. Dechlorination of TCE with palladized iron

    DOE Patents [OSTI]

    Fernando, Q.; Muftikian, R.; Korte, N.

    1997-03-18

    The present invention relates to various methods, such as an above-ground method and an in-ground method, of using a palladized iron bimetallic system for the dechlorination of chlorinated organic compounds from effluents containing the same. The use of palladized iron bimetallic system results in the dechlorination of the chlorinated organic compound into environmentally safe reaction products. The present invention also provides kits, devices, and other instruments that use the above-mentioned palladized iron bimetallic system for the dechlorination of chlorinated organic compounds. 10 figs.

  7. Dechlorination of TCE with palladized iron

    DOE Patents [OSTI]

    Fernando, Q.; Muftikian, R.; Korte, N.

    1998-06-02

    The present invention relates to various methods, such as an above-ground method and an in-ground method, of using a palladized iron bimetallic system for the dechlorination of chlorinated organic compounds from effluents containing the same. The use of palladized iron bimetallic system results in the dechlorination of the chlorinated organic compound into environmentally safe reaction products. The present invention also provides kits, devices, and other instruments that use the above-mentioned palladized iron bimetallic system for the dechlorination of chlorinated organic compounds. 10 figs.

  8. Dechlorination of TCE with palladized iron

    DOE Patents [OSTI]

    Fernando, Quintus; Muftikian, Rosy; Korte, Nic

    1997-01-01

    The present invention relates to various methods, such as an above-ground method and an in-ground method, of using a palladized iron bimetallic system for the dechlorination of chlorinated organic compounds from effluents containing the same. The use of palladized iron bimetallic system results in the dechlorination of the chlorinated organic compound into environmentally safe reaction products. The present invention also provides kits, devices, and other instruments that use the above-mentioned palladized iron bimetallic system for the dechlorination of chlorinated organic compounds.

  9. Dechlorination of TCE with palladized iron

    DOE Patents [OSTI]

    Fernando, Quintus; Muftikian, Rosy; Korte, Nic

    1998-01-01

    The present invention relates to various methods, such as an above-ground method and an in-ground method, of using a palladized iron bimetallic system for the dechlorination of chlorinated organic compounds from effluents containing the same. The use of palladized iron bimetallic system results in the dechlorination of the chlorinated organic compound into environmentally safe reaction products. The present invention also provides kits, devices, and other instruments that use the above-mentioned palladized iron bimetallic system for the dechlorination of chlorinated organic compounds.

  10. Iron Availability in the Southern Ocean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron Availability in the Southern Ocean Iron Availability in the Southern Ocean Print Friday, 21 June 2013 10:08 The Southern Ocean, circling the Earth between Antarctica and the southernmost regions of Africa, South America, and Australia, is notorious for its high-nutrient, low-chlorophyll areas, which are rich in nutrients-but poor in essential iron. Sea life is less abundant in these regions because the growth of phytoplankton-the marine plants that form the base of the food chain-is

  11. Synthesis of iron based hydrocracking catalysts

    DOE Patents [OSTI]

    Farcasiu, Malvina (Pittsburgh, PA); Eldredge, Patricia A. (Barboursville, VA); Ladner, Edward P. (Pittsburgh, PA)

    1993-01-01

    A method of preparing a fine particle iron based hydrocracking catalyst and the catalyst prepared thereby. An iron (III) oxide powder and elemental sulfur are reacted with a liquid hydrogen donor having a hydroaromatic structure present in the range of from about 5 to about 50 times the weight of iron (III) oxide at a temperature in the range of from about 180.degree. C. to about 240.degree. C. for a time in the range of from about 0 to about 8 hours. Various specific hydrogen donors are disclosed. The catalysts are active at low temperature (<350.degree. C.) and low pressure.

  12. Electrochemical polishing of thread fastener test specimens of nickel-chromium iron alloys

    DOE Patents [OSTI]

    Kephart, Alan R.

    1991-01-01

    An electrochemical polishing device and method for selective anodic dissolution of the surface of test specimens comprised, for example, of nickel-chromium-iron alloys, which provides for uniform dissolution at the localized sites to remove metal through the use of a coiled wire electrode (cathode) placed in the immediate proximity of the working, surface resulting in a polished and uniform grain boundary.

  13. Alteration of Iron-Rich Lacustrine Sediments by Dissimilatory Iron-Reducing Bacteria

    SciTech Connect (OSTI)

    Crowe,S.; Roberts, J.; Weisener, C.; Fowle, D.

    2007-01-01

    The reduction of Fe during bacterial anaerobic respiration in sediments and soils not only causes the degradation of organic matter but also results in changes in mineralogy and the redistribution of many nutrients and trace metals. Understanding trace metal patterns in sedimentary rocks and predicting the fate of contaminants in the environment requires a detailed understanding of the mechanisms through which they are redistributed during Fe reduction. In this work, lacustrine sediments from Lake Matano in Indonesia were incubated in a minimal media with the dissimilatory iron reducing (DIR) bacterium Shewanella putrefaciens 200R. These sediments were reductively dissolved at rates slower than pure synthetic goethite despite the presence of an 'easily reducible' component, as defined by selective extractions. DIR of the lacustrine sediments resulted in the substrate-dependent production of abundant quantities of extracellular polymeric substances. Trace elements, including Ni, Co, P, Si, and As, were released from the sediments with progressive Fe reduction while Cr was sequestered. Much of the initial trace metal mobility can be attributed to the rapid reduction of a Mn-rich oxyhydroxide phase. The production of organo-Fe(III) reveals that DIR bacteria can generate significant metal complexation capacity. This work demonstrates that DIR induces the release of many elements associated with Fe-Mn oxyhydroxides, despite secondary mineralization.

  14. Iron Availability in the Southern Ocean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Animal, Vegetable or Mineral? Iron is a limiting nutrient in many parts of the oceans, nowhere more so than in the Southern Ocean's photic zone, which receives enough sunlight for...

  15. System and method for producing metallic iron

    DOE Patents [OSTI]

    Englund, David J.; Schlichting, Mark; Meehan, John; Crouch, Jeremiah; Wilson, Logan

    2014-07-29

    A method of production of metallic iron nodules comprises assembling a hearth furnace having a moveable hearth comprising refractory material and having a conversion zone and a fusion zone, providing a hearth material layer comprising carbonaceous material on the refractory material, providing a layer of reducible material comprising and iron bearing material arranged in discrete portions over at least a portion of the hearth material layer, delivering oxygen gas into the hearth furnace to a ratio of at least 0.8:1 ponds of oxygen to pounds of iron in the reducible material to heat the conversion zone to a temperature sufficient to at least partially reduce the reducible material and to heat the fusion zone to a temperature sufficient to at least partially reduce the reducible material, and heating the reducible material to form one or more metallic iron nodules and slag.

  16. Electron Correlation in Iron-Based Superconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    which prevents two electrons from occupying the same site, resulting in a so-called Mott insulator. The lack of information on the strength of electron correlation in the iron...

  17. Electron Correlation in Iron-Based Superconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Correlation in Iron-Based Superconductors Print In 2008, the discovery of iron-based superconductors stimulated a worldwide burst of activity, leading to about two preprints per day ever since. With a maximum superconducting transition temperature (so far) of 55 K, it is natural to wonder if studying the new materials will help uncover one of the deepest mysteries in modern physics-the mechanism of superconductivity in the copper-based "high-temperature superconductors." One

  18. Electron Correlation in Iron-Based Superconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Correlation in Iron-Based Superconductors Print In 2008, the discovery of iron-based superconductors stimulated a worldwide burst of activity, leading to about two preprints per day ever since. With a maximum superconducting transition temperature (so far) of 55 K, it is natural to wonder if studying the new materials will help uncover one of the deepest mysteries in modern physics-the mechanism of superconductivity in the copper-based "high-temperature superconductors." One

  19. Dechlorination of TCE with palladized iron

    DOE Patents [OSTI]

    Fernando, Q.; Muftikian, R.; Korte, N.

    1997-04-01

    The present invention relates to various methods, such as an above-ground method and an in-ground method, of using a palladized iron bimetallic system for the dechlorination of chlorinated organic compounds from various effluents or contaminated soil containing the same. The use of palladized iron bimetallic system results in the dechlorination of the chlorinated organic compound into environmentally safe reaction products. 10 figs.

  20. Electron Correlation in Iron-Based Superconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Correlation in Iron-Based Superconductors Print In 2008, the discovery of iron-based superconductors stimulated a worldwide burst of activity, leading to about two preprints per day ever since. With a maximum superconducting transition temperature (so far) of 55 K, it is natural to wonder if studying the new materials will help uncover one of the deepest mysteries in modern physics-the mechanism of superconductivity in the copper-based "high-temperature superconductors." One

  1. Electron Correlation in Iron-Based Superconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Correlation in Iron-Based Superconductors Print In 2008, the discovery of iron-based superconductors stimulated a worldwide burst of activity, leading to about two preprints per day ever since. With a maximum superconducting transition temperature (so far) of 55 K, it is natural to wonder if studying the new materials will help uncover one of the deepest mysteries in modern physics-the mechanism of superconductivity in the copper-based "high-temperature superconductors." One

  2. Electron Correlation in Iron-Based Superconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Correlation in Iron-Based Superconductors Print In 2008, the discovery of iron-based superconductors stimulated a worldwide burst of activity, leading to about two preprints per day ever since. With a maximum superconducting transition temperature (so far) of 55 K, it is natural to wonder if studying the new materials will help uncover one of the deepest mysteries in modern physics-the mechanism of superconductivity in the copper-based "high-temperature superconductors." One

  3. Electron Correlation in Iron-Based Superconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Correlation in Iron-Based Superconductors Print In 2008, the discovery of iron-based superconductors stimulated a worldwide burst of activity, leading to about two preprints per day ever since. With a maximum superconducting transition temperature (so far) of 55 K, it is natural to wonder if studying the new materials will help uncover one of the deepest mysteries in modern physics-the mechanism of superconductivity in the copper-based "high-temperature superconductors." One

  4. Electron Correlation in Iron-Based Superconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Correlation in Iron-Based Superconductors Print In 2008, the discovery of iron-based superconductors stimulated a worldwide burst of activity, leading to about two preprints per day ever since. With a maximum superconducting transition temperature (so far) of 55 K, it is natural to wonder if studying the new materials will help uncover one of the deepest mysteries in modern physics-the mechanism of superconductivity in the copper-based "high-temperature superconductors." One

  5. Iron Availability in the Southern Ocean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron Availability in the Southern Ocean Print The Southern Ocean, circling the Earth between Antarctica and the southernmost regions of Africa, South America, and Australia, is notorious for its high-nutrient, low-chlorophyll areas, which are rich in nutrients-but poor in essential iron. Sea life is less abundant in these regions because the growth of phytoplankton-the marine plants that form the base of the food chain-is suppressed. A study by scientists from South Africa's Stellenbosch

  6. Iron Availability in the Southern Ocean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron Availability in the Southern Ocean Print The Southern Ocean, circling the Earth between Antarctica and the southernmost regions of Africa, South America, and Australia, is notorious for its high-nutrient, low-chlorophyll areas, which are rich in nutrients-but poor in essential iron. Sea life is less abundant in these regions because the growth of phytoplankton-the marine plants that form the base of the food chain-is suppressed. A study by scientists from South Africa's Stellenbosch

  7. Iron Availability in the Southern Ocean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron Availability in the Southern Ocean Print The Southern Ocean, circling the Earth between Antarctica and the southernmost regions of Africa, South America, and Australia, is notorious for its high-nutrient, low-chlorophyll areas, which are rich in nutrients-but poor in essential iron. Sea life is less abundant in these regions because the growth of phytoplankton-the marine plants that form the base of the food chain-is suppressed. A study by scientists from South Africa's Stellenbosch

  8. Iron Availability in the Southern Ocean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron Availability in the Southern Ocean Print The Southern Ocean, circling the Earth between Antarctica and the southernmost regions of Africa, South America, and Australia, is notorious for its high-nutrient, low-chlorophyll areas, which are rich in nutrients-but poor in essential iron. Sea life is less abundant in these regions because the growth of phytoplankton-the marine plants that form the base of the food chain-is suppressed. A study by scientists from South Africa's Stellenbosch

  9. Iron Availability in the Southern Ocean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron Availability in the Southern Ocean Print The Southern Ocean, circling the Earth between Antarctica and the southernmost regions of Africa, South America, and Australia, is notorious for its high-nutrient, low-chlorophyll areas, which are rich in nutrients-but poor in essential iron. Sea life is less abundant in these regions because the growth of phytoplankton-the marine plants that form the base of the food chain-is suppressed. A study by scientists from South Africa's Stellenbosch

  10. Temperature and melting of laser-shocked iron releasing into an LiF window

    SciTech Connect (OSTI)

    Huser, G.; Koenig, M.; Benuzzi-Mounaix, A.; Henry, E.; Vinci, T.; Faral, B.; Tomasini, M.; Telaro, B.; Batani, D.

    2005-06-15

    Absolute reflectivity and self-emission diagnostics are used to determine the gray-body equivalent temperature of laser-shocked iron partially releasing into a lithium fluoride window. Pressure and reflectivity are measured simultaneously by means of velocity interferometer system for any reflector interferometers. In the temperature-pressure plane, a temperature plateau in the release is observed which is attributed to iron's melting line. Extrapolation of data leads to a melting temperature at Earth's inner-outer core boundary of 7800{+-}1200 K, in good agreement with previous works based on dynamic compression. Shock temperatures were calculated and found to be in the liquid phase.

  11. DOE - Office of Legacy Management -- Armco-Rustless Iron and Steel - MD 03

    Office of Legacy Management (LM)

    Armco-Rustless Iron and Steel - MD 03 FUSRAP Considered Sites Site: Armco-Rustless Iron & Steel (MD.03 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: ARMCO Baltimore Works MD.03-1 Location: Baltimore , Maryland MD.03-2 Evaluation Year: 1987 MD.03-1 Site Operations: Test rolling of uranium billets. MD.03-2 MD.03-3 Site Disposition: Eliminated - Potential for contamination remote due to limited quantity of material and duration of test MD.03-1

  12. Microstructural Characterization of Nodular Ductile Iron

    SciTech Connect (OSTI)

    Springer, H K

    2012-01-03

    The objective of this study is to quantify the graphite particle phase in nodular ductile iron (NDI). This study provides the basis for initializing microstructure in direct numerical simulations, as part of developing microstructure-fracture response models. The work presented here is a subset of a PhD dissertation on spall fracture in NDI. NDI is an ideal material for studying the influence of microstructure on ductile fracture because it contains a readily identifiable second-phase particle population, embedded in a ductile metallic matrix, which serves as primary void nucleation sites. Nucleated voids grow and coalesce under continued tensile loading, as part of the micromechanisms of ductile fracture, and lead to macroscopic failure. For this study, we used 2D optical microscopy and quantitative metallography relationships to characterize the volume fraction, size distribution, nearest-neighbor distance, and other higher-order metrics of the graphite particle phase. We found that the volume fraction was {Phi} = 0.115, the average particle diameter was d{sub avg} = 25.9 {mu}m, the Weibull shape and scaling parameters were {beta} = 1.8 and {eta} = 29.1 {mu}m, respectively, the (first) nearest neighbor distance was L{sub nn} = 32.4 {mu}m, the exponential coefficients for volume fraction fluctuations was A{sub {Phi}} = 1.89 and B{sub {Phi}} = -0.59, respectively. Based on reaching a coefficient-of-variation (COV) of 0.01, the representative volume element (RVE) size was determined to be 8.9L{sub nn} (288 {mu}m).

  13. Following iron speciation in the early stages of magnetite magnetosome biomineralization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Firlar, Emre; Perez-Gonzalez, Teresa; Olszewska, Agata; Faivre, Damien; Prozorov, Tanya

    2016-02-26

    Understanding magnetosome magnetite biomineralization is of fundamental interest to devising the strategies for bioinspired synthesis of magnetic materials at the nanoscale. Thus, we investigated the early stages of magnetosome formation in this work and correlated the size and emergent crystallinity of magnetosome nanoparticles with the changes in chemical environment of iron and oxygen by utilizing advanced analytical electron microscopy techniques. We observed that magnetosomes in the early stages of biomineralization with the sizes of 5–10 nm were amorphous, with a majority of iron present as Fe3+, indicative of ferric hydroxide. The magnetosomes with intermediate sizes showed partially crystalline structure withmore » a majority of iron present as Fe3+ and trace amounts of Fe2+. The fully maturated magnetosomes were indexed to magnetite. Furthermore, our approach provides spatially resolved structural and chemical information of individual magnetosomes with different particle sizes, attributed to magnetosomes at different stages of biomineralization.« less

  14. MOSSBAUER SPECTROSCOPY STUDIES OF IRON CATALYSTS USED IN SLURRY PHASE FISCHER-TROPSCH SYNTHESIS

    SciTech Connect (OSTI)

    G.P. Huffman; K. R. P. M. Rao; F.E. Huggins

    1998-02-01

    Iron and cobalt are the two principal choices as catalysts for Fischer-Tropsch (F-T) synthesis. As discussed in a recent review by Wender each metal has certain advantages and disadvantages. Davis and co-workers have recently discussed the advantages of iron-based F-T catalysts in some detail. In order to understand the catalytic reaction mechanisms of iron during F-T synthesis, it is critical to identify the active catalytic phases. Moreover, from a practical point of view, it is equally important to identify the reactions and transformations that deactivate the catalysts. {sup 57}Fe Moessbauer spectroscopy is perhaps the best technique available for quantitative characterization of the iron phases in complex samples. For the past several years, our group has been using Moessbauer spectroscopy to characterize the iron-based catalysts prepared and tested for F-T synthesis in a number of DOE-sponsored programs. The results of this investigation have been summarized in detail in DOE reports and in a number of publications released over the past few years. A list of the principal publications resulting from this work is given. A brief summary of the highlights of the results presented in these papers is presented in the current report.

  15. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    DOE Patents [OSTI]

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  16. Reaction of Inconel 690 and 693 in Iron Phosphate Melts: Alternative Glasses for Waste Vitrification

    SciTech Connect (OSTI)

    Day, Delbert E.

    2005-09-13

    The corrosion resistance of candidate materials used for the electrodes (Inconel 690 & 693) and the melt contact refractory (Monofrax K-3) in a Joule Heated Melter (JHM) has been investigated at the University of Missouri-Rolla (UMR) during the period from June 1, 2004 to August 31, 2005. This work was supported by the U.S. Department of Energy (DOE) Office of Biological and Environmental Research (DE-FG02-04ER63831). The unusual properties and characteristics of iron phosphate glasses, as viewed from the standpoint of alternative glasses for vitrifying nuclear and hazardous wastes which contain components that make them poorly suited for vitrification in borosilicate glass, were recently discovered at UMR. The expanding national and international interest in iron phosphate glasses for waste vitrification stems from their rapid melting and chemical homogenization which results in higher furnace output, their high waste loading that varies from 32 wt% up to 75 wt% for the Hanford LAW and HLW, respectively, and the outstanding chemical durability of the iron phosphate wasteforms which meets all present DOE requirements (PCT and VHT). The higher waste loading in iron phosphate glasses, compared to the baseline borosilicate glass, can reduce the time and cost of vitrification considerably since a much smaller mass of glass will be produced, for example, about 43% less glass when the LAW at Hanford is vitrified in an iron phosphate glass according to PNNL estimates. In view of the promising performance of iron phosphate glasses, information is needed for how to best melt these glasses on the scale needed for practical use. Melting iron phosphate glasses in a JHM is considered the preferred method at this time because its design could be nearly identical to the JHM now used to melt borosilicate glasses at the Defense Waste Processing Facility (DWPF), Westinghouse Savannah River Co. Therefore, it is important to have information for the corrosion of candidate electrode

  17. Catalytic iron oxide for lime regeneration in carbonaceous fuel combustion

    DOE Patents [OSTI]

    Shen, Ming-Shing (Rocky Point, NY); Yang, Ralph T. (Middle Island, NY)

    1980-01-01

    Lime utilization for sulfurous oxides absorption in fluidized combustion of carbonaceous fuels is improved by impregnation of porous lime particulates with iron oxide. The impregnation is achieved by spraying an aqueous solution of mixed iron sulfate and sulfite on the limestone before transfer to the fluidized bed combustor, whereby the iron compounds react with the limestone substrate to form iron oxide at the limestone surface. It is found that iron oxide present in the spent limestone acts as a catalyst to regenerate the spent limestone in a reducing environment. With only small quantities of iron oxide the calcium can be recycled at a significantly increased rate.

  18. Tropical forest soil microbial communities couple iron and carbon biogeochemistry

    SciTech Connect (OSTI)

    Dubinsky, E.A.; Silver, W.L.; Firestone, M.K.

    2009-10-15

    We report that iron-reducing bacteria are primary mediators of anaerobic carbon oxidation in upland tropical soils spanning a rainfall gradient (3500 - 5000 mm yr-1) in northeast Puerto Rico. The abundant rainfall and high net primary productivity of these tropical forests provide optimal soil habitat for iron-reducing and iron-oxidizing bacteria. Spatially and temporally dynamic redox conditions make iron-transforming microbial communities central to the belowground carbon cycle in these wet tropical forests. The exceedingly high abundance of iron-reducing bacteria (up to 1.2 x 10{sup 9} cells per gram soil) indicated that they possess extensive metabolic capacity to catalyze the reduction of iron minerals. In soils from the higher rainfall sites, measured rates of ferric iron reduction could account for up to 44 % of organic carbon oxidation. Iron reducers appeared to compete with methanogens when labile carbon availability was limited. We found large numbers of bacteria that oxidize reduced iron at sites with high rates of iron reduction and large numbers of iron-reducers. the coexistence of large populations of ironreducing and iron-oxidizing bacteria is evidence for rapid iron cycling between its reduced and oxidized states, and suggests that mutualistic interactions among these bacteria ultimately fuel organic carbon oxidation and inhibit CH4 production in these upland tropical forests.

  19. Fischer–Tropsch Synthesis: Characterization Rb Promoted Iron Catalyst

    SciTech Connect (OSTI)

    Sarkar,A.; Jacobs, G.; Ji, Y.; Hamdeh, H.; Davis, B.

    2008-01-01

    Rubidium promoted iron Fischer-Tropsch synthesis (FTS) catalysts were prepared with two Rb/Fe atomic ratios (1.44/100 and 5/100) using rubidium nitrate and rubidium carbonate as rubidium precursors. Results of catalytic activity and deactivation studies in a CSTR revealed that rubidium promoted catalysts result in a steady conversion with a lower deactivation rate than that of the corresponding unpromoted catalyst although the initial activity of the promoted catalyst was almost half that of the unpromoted catalyst. Rubidium promotion results in lower methane production, and higher CO2, alkene and 1-alkene fraction in FTS products. M{umlt o}ssbauer spectroscopic measurements of CO activated and working catalyst samples indicated that the composition of the iron carbide phase formed after carbidization was -Fe5 C2 for both promoted and unpromoted catalysts. However, in the case of the rubidium promoted catalyst, '-Fe2.2C became the predominant carbidic phase as FTS continued and the overall catalyst composition remained carbidic in nature. In contrast, the carbide content of the unpromoted catalyst was found to decline very quickly as a function of synthesis time. Results of XANES and EXAFS measurements suggested that rubidium was present in the oxidized state and that the compound most prevalent in the active catalyst samples closely resembled that of rubidium carbonate.

  20. Phase Discrimination through Oxidant Selection for Iron Oxide Ultrathin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Films | ANSER Center | Argonne-Northwestern National Laboratory Phase Discrimination through Oxidant Selection for Iron Oxide Ultrathin Films Home > Research > ANSER Research Highlights > Phase Discrimination through Oxidant Selection for Iron Oxide Ultrathin Films

  1. City of Mountain Iron, Minnesota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    City of Mountain Iron, Minnesota (Utility Company) Jump to: navigation, search Name: City of Mountain Iron Place: Minnesota Phone Number: (218)748-7570 Website: www.mtniron.com...

  2. The Iron Spin Transition in the Earth's Lower Mantle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Iron Spin Transition in the Earth's Lower Mantle Print It is now known that the iron present in minerals of the lower mantle of the Earth undergoes a pressure-induced...

  3. Preparations of rare earth-iron alloys by thermite reduction

    DOE Patents [OSTI]

    Schmidt, F.A.; Peterson, D.T.; Wheelock, J.T.

    1985-10-28

    Disclosed is an improved method for the preparation of high-purity rare earth-iron alloys by the aluminothermic reduction of a mixture of rare earth and iron fluorides.

  4. Baotou Iron and Steel Group Baotou Steel | Open Energy Information

    Open Energy Info (EERE)

    search Name: Baotou Iron and Steel Group (Baotou Steel) Place: Baotou, Inner Mongolia Autonomous Region, China Product: Baotou-based iron and steel maker as well as a rare...

  5. Iron County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is classified as ASHRAE 169-2006 Climate Zone Number 5 Climate Zone Subtype B. Registered Energy Companies in Iron County, Utah Solar Unlimited USA Places in Iron County, Utah...

  6. Sorption of Ferric Iron from Siderophore Complexes by Layer Type...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bottom: Structure of the iron-siderophore complex ferrioxamine B Fe(III)HDFOB+. Image courtesy of Andrzej Jarzecki, Brooklyn College, the City University of New York. Iron is one ...

  7. How Trenton Iron and Steel Innovations Reshaped America Clifford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trenton Iron and Steel Innovations Reshaped America Clifford Zink Independent Historian ... DeParTmenT of energy faciliTy Iron and steel innovations in Trenton helped transform ...

  8. OSCARS Collaborative Work

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OSCARS Collaborative Work Engineering Services The Network OSCARS How It Works Who's Using OSCARS? OSCARS and Future Tech OSCARS Standard and Open Grid Forum OSCARS Developers...

  9. Minnesota Jobs to Come with Efficient Iron Plant

    Broader source: Energy.gov [DOE]

    New energy-efficient iron plant offers a ray of hope for workers after local mining company shuts down.

  10. Service and Repair Work

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    service and repair work Service and Repair Work Whenever on-site service or repair work needs to be done, a Procurement Work Sheet (PWS) must be completed, and possibly an IWS, authorized and released. PWS is required for service work even if there are no apparent hazards. PWS is required for work in Jupiter Laser Facility even if you have a PWS for service/repairs in another location. To complete a PWS for service work in Jupiter Laser Facility, please contact Sean Holte (2-3905, pager #05312).

  11. Capacitance of a passive iron electrode in acidic solutions

    SciTech Connect (OSTI)

    Grilikhes, M.S.; Berezin, M.Yu.; Gorlin, A.V.; Sapelova, E.V.; Sokolov, M.A.; Sukhotin, A.M.

    1985-12-01

    In the present work the authors measured the capacitance of the electrical double layer on passive Armco iron in acidic solutions with the simultaneous recording of the potentiodynamic curves. The measurements were carried out on an apparatus which is based on the double-pulse variant of the galvanostatic method with a pulse lifetime of 2 microseconds, in which the influence of the faradic processes on the capacitance curves is negligibly small in the case of electrochemical systems with small exchange currents. The experiments were carried out at room temperature in 0.5 M sulfuric acid (pH 0.25) and 0.5 M tartaric acid H/sub 2/C/sub 4/H/sub 4/O/sub 6/ (pH 1.6).

  12. Method for preparing hydrous iron oxide gels and spherules

    DOE Patents [OSTI]

    Collins, Jack L.; Lauf, Robert J.; Anderson, Kimberly K.

    2003-07-29

    The present invention is directed to methods for preparing hydrous iron oxide spherules, hydrous iron oxide gels such as gel slabs, films, capillary and electrophoresis gels, iron monohydrogen phosphate spherules, hydrous iron oxide spherules having suspendable particles homogeneously embedded within to form composite sorbents and catalysts, iron monohydrogen phosphate spherules having suspendable particles of at least one different sorbent homogeneously embedded within to form a composite sorbent, iron oxide spherules having suspendable particles homogeneously embedded within to form a composite of hydrous iron oxide fiber materials, iron oxide fiber materials, hydrous iron oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, iron oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, dielectric spherules of barium, strontium, and lead ferrites and mixtures thereof, and composite catalytic spherules of barium or strontium ferrite embedded with oxides of Mg, Zn, Pb, Ce and mixtures thereof. These variations of hydrous iron oxide spherules and gel forms prepared by the gel-sphere, internal gelation process offer more useful forms of inorganic ion exchangers, catalysts, getters, dielectrics, and ceramics.

  13. The microstructure of the laser-alloyed steel and iron: Similarities and differences

    SciTech Connect (OSTI)

    Goldfarb, I.; Bamberger, M.

    1996-04-01

    Formation of hard boride compounds can improve the hardness and wear resistance of steels. Heating steels in the presence of boron powders to high temperatures for relatively long periods of time produces iron borides, but, simultaneously, may lead to significant grain growth and reduction of strength of the bulk material. Laser surface alloying can improve surface properties while leaving the bulk unaffected. Recently, laser surface alloying of steel and iron with CrB{sub 2} particles was investigated by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). A variety of phases identified created a demand for examination on a finer scale. Goldfarb et al. investigated the microstructure of AISI 1045 steel, laser-alloyed with CrB particles, by transmission electron microscopy (TEM). They found a new polytypic structure of chromium boride caused by faulting, following the phase transformation from the initial iron boride. In this work, the microstructures of laser-alloyed AISI 1045 steel and Armco iron are compared and it is concluded that carbon does not play any significant role in the process of polytype formation.

  14. Direct measurement of the alpha-epsilon transition stress and kinetics for shocked iron

    SciTech Connect (OSTI)

    Jensen, Brian J; Gray, Ill, George T; Hixson, Robert S

    2009-01-01

    Iron undergoes a polymorphic phase transformation from alpha phase (bcc) to the epsilon phase (hcp) when compressed to stresses exceeding 13 CPa. Bccause the epsilon phase is denser than the alpha phase, a single shock wave is unstable and breaks up into an elastic wave, a plastic wave, and a phase transition wave. Examination of this structured wave coupled with various phase transformation models has been used to indirectly examine the transition kinetics. Recently, multimillion atom simulations (molecular dynamics) have been used to examine the shock-induced transition in single crystal iron illustrating an orientation dependence of the transition stress, mechanisms, and kinetics. The objective of the current work was to perform plate impact experiments to examine the shock-response of polycrystalline and single crystal iron with nanosecond resolution for impact stresses spanning the {alpha} - {epsilon} transition. The current data reveal an orientation dependence of the transition stress coupled with a transition time that is nonlinearly dependent on the impact stress with a duration ranging from picoseconds to hundreds of nanoseconds. The higher transition stress for iron[100] is in agreement with the predictions from MD calculations that describe an orientation dependence of the transition stress. However, MD calculations do not capture the complexity of the continuum states achieved or the transition kinetics. Further results and implications are discussed in this paper.

  15. The Romelt Process -- Prospects for pig iron production in North America

    SciTech Connect (OSTI)

    Thompson, M.W.; Weston, T.R.

    1997-12-31

    The iron and steel industry in North America is undergoing dramatic changes and is being driven by three factors. First, the introduction of new technologies and pace of innovation has placed North America at the forefront of commercializing new technologies. Second, new technologies have changed the market for steelmaking raw materials and stimulated an industry-wide discussion of the ``value in use`` of scrap and scrap substitutes. Finally, an increase in environmental costs has fundamentally changed management`s view toward the environmental impact of iron and steelmaking, particularly in the integrated steel industry. This paper discusses the Romelt Process, an emerging ironmaking technology developed by the Moscow Institute for Steels and Alloys, in the context of these industry trends. ICF Kaiser, a worldwide licensee to the Romelt technology, believes that the current North American climate is probably the most conducive of all steelmaking regions to the commercialization of new technologies. Liquid or cast pig iron, the product of the Romelt Process, is the highest value feed for both the EAF and BOF steelmaking processes. In terms of environmental benefits, Romelt uses non-coking coals for its fuel and reductant, and has a proven large scale pilot plant track record in smelting both low grade fine ores and iron bearing wastes from the integrated works.

  16. UFD Working Group 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working Group 2015 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Twitter Google + Vimeo GovDelivery SlideShare UFD Working Group 2015 HomeStationary ...

  17. Administering Work Force Discipline

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-05-14

    The order provides requirements and responsibilities for administering work force discipline and corrective actions. Supersedes DOE O 3750.1.

  18. Interagency Sustainability Working Group

    Broader source: Energy.gov [DOE]

    The Interagency Sustainability Working Group (ISWG) is the coordinating body for sustainable buildings in the federal government.

  19. Weld overlay cladding with iron aluminides

    SciTech Connect (OSTI)

    Goodwin, G.M.

    1995-08-01

    The hot and cold cracking tendencies of some early iron aluminide alloy compositions have limited their use in applications where good weldability is required. Using hot crack testing techniques invented at ORNL, and experimental determinations of preheat and postweld heat treatment needed to avoid cold cracking, we have developed iron aluminide filler metal compositions which can be successfully used to weld overlay clad various substrate materials, including 9Cr-1Mo steel, 2-1/4Cr-1Mo steel, and 300-series austenitic stainless steels. Dilution must be carefully controlled to avoid crack-sensitive deposit compositions. The technique used to produce the current filler metal compositions is aspiration-casting, i.e. drawing the liquid from the melt into glass rods. Future development efforts will involve fabrication of composite wires of similar compositions to permit mechanized gas tungsten arc (GTA) and/or gas metal arc (GMA) welding.

  20. Water Clustering on Nanostructured Iron Oxide Films

    SciTech Connect (OSTI)

    Merte, L. R.; Bechstein, Ralf; Peng, Guowen; Rieboldt, Felix; Farberow, Carrie A.; Zeuthen, Helene; Knudsen, Jan; Laegsgaard, E.; Wendt, Stefen; Mavrikakis, Manos; Besenbacher, Fleming

    2014-06-30

    The adhesion of water to solid surfaces is characterized by the tendency to balance competing moleculemolecule and moleculesurface interactions. Hydroxyl groups form strong hydrogen bonds to water molecules and are known to substantially influence the wetting behaviour of oxide surfaces, but it is not well-understood how these hydroxyl groups and their distribution on a surface affect the molecular-scale structure at the interface. Here we report a study of water clustering on a moire-structured iron oxide thin film with a controlled density of hydroxyl groups. While large amorphous monolayer islands form on the are film, the hydroxylated iron oxide film acts as a hydrophilic nanotemplate, causing the formation of a regular array of ice-like hexameric nanoclusters. The formation of this ordered phase is localized at the nanometre scale; with increasing water coverage, ordered and amorphous water are found to coexist at adjacent hydroxylated and hydroxyl-free domains of the moire structure.

  1. Lithium-aluminum-iron electrode composition

    DOE Patents [OSTI]

    Kaun, Thomas D.

    1979-01-01

    A negative electrode composition is presented for use in a secondary electrochemical cell. The cell also includes an electrolyte with lithium ions such as a molten salt of alkali metal halides or alkaline earth metal halides that can be used in high-temperature cells. The cell's positive electrode contains a a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent in an alloy of aluminum-iron. Various binary and ternary intermetallic phases of lithium, aluminum and iron are formed. The lithium within the intermetallic phase of Al.sub.5 Fe.sub.2 exhibits increased activity over that of lithium within a lithium-aluminum alloy to provide an increased cell potential of up to about 0.25 volt.

  2. Iron-sulfide redox flow batteries

    DOE Patents [OSTI]

    Xia, Guan-Guang; Yang, Zhenguo; Li, Liyu; Kim, Soowhan; Liu, Jun; Graff, Gordon L

    2013-12-17

    Iron-sulfide redox flow battery (RFB) systems can be advantageous for energy storage, particularly when the electrolytes have pH values greater than 6. Such systems can exhibit excellent energy conversion efficiency and stability and can utilize low-cost materials that are relatively safer and more environmentally friendly. One example of an iron-sulfide RFB is characterized by a positive electrolyte that comprises Fe(III) and/or Fe(II) in a positive electrolyte supporting solution, a negative electrolyte that comprises S.sup.2- and/or S in a negative electrolyte supporting solution, and a membrane, or a separator, that separates the positive electrolyte and electrode from the negative electrolyte and electrode.

  3. Iron-sulfide redox flow batteries

    DOE Patents [OSTI]

    Xia, Guanguang; Yang, Zhenguo; Li, Liyu; Kim, Soowhan; Liu, Jun; Graff, Gordon L

    2016-06-14

    Iron-sulfide redox flow battery (RFB) systems can be advantageous for energy storage, particularly when the electrolytes have pH values greater than 6. Such systems can exhibit excellent energy conversion efficiency and stability and can utilize low-cost materials that are relatively safer and more environmentally friendly. One example of an iron-sulfide RFB is characterized by a positive electrolyte that comprises Fe(III) and/or Fe(II) in a positive electrolyte supporting solution, a negative electrolyte that comprises S.sup.2- and/or S in a negative electrolyte supporting solution, and a membrane, or a separator, that separates the positive electrolyte and electrode from the negative electrolyte and electrode.

  4. Iron Availability in the Southern Ocean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iraq NNSA program strengthens national security from afar The Nuclear Smuggling Detection and Deterrence (NSDD) program is a key component of NNSA's core mission to reduce nuclear threats. The program, part of NNSA's Office of Defense Nuclear Nonproliferation, provides partners tools and training to deter, detect, and investigate smuggling of

    Iron Availability in the Southern Ocean Print The Southern Ocean, circling the Earth between Antarctica and the southernmost regions of Africa, South

  5. Spectroscopic absorption measurements of an iron plasma

    SciTech Connect (OSTI)

    Springer, P.T.; Fields, D.J.; Wilson, B.G.; Nash, J.K.; Goldstein, W.H.; Iglesias, C.A.; Rogers, F.J.; Swenson, J.K.; Chen, M.H.; Bar-Shalom, A.; Stewart, R.E. Nuclear Research Center Negev, P.O. Box 9001, Beer-Sheva 84190 )

    1992-12-28

    The first quantitative measurement of photoabsorption in the region determining the Rosseland and Planck mean opacities is obtained for a well-characterized, radiatively heated iron plasma using new techniques and instrumentation. The plasma density and temperature are simultaneously constrained with high accuracy, allowing unambiguous comparisons with opacity models used in modeling radiative transfer in equilibrium astrophysical and laboratory plasmas. The experimental Rosseland and Planck group means are constrained to an accuracy of 15%.

  6. Superconductivity at Dawn of the Iron Age

    ScienceCinema (OSTI)

    Tesanovic, Zlatko [Johns Hopkins University, Baltimore, Maryland, United States

    2010-09-01

    Superconductivity is a stunning quantum phenomenon and among the deepest paradigms in all of physics. From fundamental theories of the universe to strange goings-on in exotic materials to medical imaging and cell phones, its conceptual and practical dimensions span a reach as wide as anything in science. Twenty-odd years ago, the discovery of copper oxides ushered in a new era of high-temperature superconductivity, and the joyous exuberance that followed - with physicists throwing everything from fancy gauge theories to synchrotron radiation into its kitchen sink - only recently began to show any signs of waning. In the spring of 2008, as if on cue, a new family of iron pnictide high-temperature superconductors burst on the scene, hinting at an alternative route to room-temperature superconductivity and all of its momentous consequences. Fueled by genuine excitement - and a bit of hype - the iron-based superconductivity turned into a science blockbuster of 2009. I will present a pedagogical review of this new field, contrast the physics of iron- and copper-based systems, and speculate on the microscopic origins of the two types of high-temperature superconductivity.

  7. Seal welded cast iron nuclear waste container

    DOE Patents [OSTI]

    Filippi, Arthur M.; Sprecace, Richard P.

    1987-01-01

    This invention identifies methods and articles designed to circumvent metallurgical problems associated with hermetically closing an all cast iron nuclear waste package by welding. It involves welding nickel-carbon alloy inserts which are bonded to the mating plug and main body components of the package. The welding inserts might be bonded in place during casting of the package components. When the waste package closure weld is made, the most severe thermal effects of the process are restricted to the nickel-carbon insert material which is far better able to accommodate them than is cast iron. Use of nickel-carbon weld inserts should eliminate any need for pre-weld and post-weld heat treatments which are a problem to apply to nuclear waste packages. Although the waste package closure weld approach described results in a dissimilar metal combination, the relative surface area of nickel-to-iron, their electrochemical relationship, and the presence of graphite in both materials will act to prevent any galvanic corrosion problem.

  8. PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT

    SciTech Connect (OSTI)

    Albert Calderon

    2005-10-14

    The commercialization path of the Calderon technology for making a feedstock for steelmaking with assistance from DOE initially focused on making coke and work was done which proved that the Calderon technology is capable of making good coke for hard driving blast furnaces. U.S. Steel which participated in such demonstration felt that the Calderon technology would be more meaningful in lowering the costs of making steel by adapting it to the making of iron--thus obviating the need for coke. U.S. Steel and Calderon teamed up to jointly work together to demonstrate that the Calderon technology will produce in a closed system iron units from iron concentrate (ore) and coal competitively by eliminating pelletizing, sintering, coking and blast furnace operation. If such process steps could be eliminated, a huge reduction in polluting emissions and greenhouse gases (including CO{sub 2}) relating to steelmaking would ensue. Such reduction will restructure the steel industry away from the very energy-intensive steelmaking steps currently practiced and drastically reduce costs of making steel. The development of a technology to lower U.S. steelmaking costs and become globally competitive is a priority of major importance. Therefore, the development work which Calderon is conducting presently under this Agreement with the U.S. Department of Energy becomes more crucial than ever. During the 3rd quarter of 2005 which the present report covers, virtually all the effort to advance the Calderon technology to make iron units was concentrated towards forming a team with a steelmaker who needs both iron units in the form of hot metal and a substitute for natural gas (SNG), both being major contributors to higher costs in steelmaking. Calderon felt that a very good candidate would be Steel Dynamics (SDI) by virtue that it operates a rotary hearth facility in Butler, Indiana that uses large amounts of natural gas to reduce briquettes made from ore and coal that they subsequently melt

  9. SEPARATION OF FISCHER-TROPSCH WAX PRODUCTS FROM ULTRAFINE IRON CATALYST PARTICLES

    SciTech Connect (OSTI)

    James K. Neathery; Gary Jacobs; Burtron H. Davis

    2005-03-31

    In this reporting period, a fundamental filtration study was continued to investigate the separation of Fischer-Tropsch Synthesis (FTS) liquids from iron-based catalyst particles. The overall focus of the program is with slurry-phase FTS in slurry bubble column reactor systems. Hydrocarbon products must be separated from catalyst particles before being removed from the reactor system. An efficient wax product/catalyst separation system is a key factor for optimizing operating costs for iron-based slurry-phase FTS. Previous work has focused on catalyst particle attrition and the formation of ultra-fine iron carbide and/or carbon particles. With the current study, we are investigating how the filtration properties are affected by these chemical and physical changes of the catalyst slurry during activation/synthesis. In this reporting period, a series of crossflow filtration experiments were initiated to study the effect of olefins and oxygenates on the filtration flux and membrane performance. Iron-based FTS reactor waxes contain a significant amount of oxygenates, depending on the catalyst formulation and operating conditions. Mono-olefins and aliphatic alcohols were doped into an activated iron catalyst slurry (with Polywax) to test their influence on filtration properties. The olefins were varied from 5 to 25 wt% and oxygenates from 6 to 17 wt% to simulate a range of reactor slurries reported in the literature. The addition of an alcohol (1-dodecanol) was found to decrease the permeation rate while the olefin added (1-hexadecene) had no effect on the permeation rate. A passive flux maintenance technique was tested that can temporarily increase the permeate rate for 24 hours.

  10. ORISE: Working with ORISE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oak Ridge Institute for Science Education Working with ORISE If you are interested in learning about how your agency can utilize the capabilities of the Oak Ridge Institute for Science and Education (ORISE) through a Work for Others agreement or a procurement contract, or if you are looking for career opportunities, the following information provides an explanation of how to work with ORISE. If you do not see an option that applies to your needs, please contact ORISE General Information.

  11. Work/Life Balance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab » Work/Life Balance Work/Life Balance Explore the multiple dimensions of a career at Los Alamos Lab: work with the best minds on the planet in an inclusive environment that is rich in intellectual vitality and opportunities for growth. Complete suite of benefits to balance your career Enlarge poster enlarge Enlarge poster enlarge Enlarge poster enlarge Enlarge poster enlarge Enlarge poster enlarge Enlarge poster enlarge Enlarge poster enlarge Enlarge poster enlarge Enlarge poster enlarge

  12. Interview: LaborWorks@NeighborWorks Provides Vermont Contractors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interview: LaborWorks@NeighborWorks Provides Vermont Contractors With Help When They Need It Interview: LaborWorks@NeighborWorks Provides Vermont Contractors With Help When They ...

  13. Quality Work Plan Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    * No national standards for work quality * No portable and nationally recognized credentials for experienced WAP workers 3 NaConal Issues and Interests Supported the QWP * White ...

  14. INL @ work: Archaeologist

    ScienceCinema (OSTI)

    Lowrey, Dino

    2013-05-28

    INL @ work features jobs performed at the lab. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  15. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work with Biological Materials Print Planning A complete Experiment Safety Sheet (ESS) is required before work can be done at the ALS. This ESS is either a part of the proposal process or may be completed as an independent document. In the ESS, identify each material (including all biological materials) with which you will be working. The regulatory oversight for biological work is very complicated and we need to understand the risk levels involved with the material you plan to use at the ALS,

  16. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work with Biological Materials Print Planning A complete Experiment Safety Sheet (ESS) is required before work can be done at the ALS. This ESS is either a part of the proposal process or may be completed as an independent document. In the ESS, identify each material (including all biological materials) with which you will be working. The regulatory oversight for biological work is very complicated and we need to understand the risk levels involved with the material you plan to use at the ALS,

  17. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work with Biological Materials Print Planning A complete Experiment Safety Sheet (ESS) is required before work can be done at the ALS. This ESS is either a part of the proposal process or may be completed as an independent document. In the ESS, identify each material (including all biological materials) with which you will be working. The regulatory oversight for biological work is very complicated and we need to understand the risk levels involved with the material you plan to use at the ALS,

  18. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cells, viruses), plant or soil samples (USDA quarantines), recombinant DNA, or blood-borne pathogen. Biological Use Authorization The great majority of biological work at...

  19. INL @ work: Archaeologist

    SciTech Connect (OSTI)

    Lowrey, Dino

    2008-01-01

    INL @ work features jobs performed at the lab. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  20. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for proper development and review time. Training All resident LBNL users (those whose work authorization includes a JHA) must take the standard LBNL training courses for...

  1. SCM Working Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling Working Group Translator Update Shaocheng Xie Lawrence Livermore National Laboratory Outline 1. Data development in support of CMWG * Climate modeling best estimate data * ...

  2. Iron phosphate compositions for containment of hazardous metal waste

    DOE Patents [OSTI]

    Day, Delbert E.

    1998-01-01

    An improved iron phosphate waste form for the vitrification, containment and long-term disposition of hazardous metal waste such as radioactive nuclear waste is provided. The waste form comprises a rigid iron phosphate matrix resulting from the cooling of a melt formed by heating a batch mixture comprising the metal waste and a matrix-forming component. The waste form comprises from about 30 to about 70 weight percent P.sub.2 O.sub.5 and from about 25 to about 50 weight percent iron oxide and has metals present in the metal waste chemically dissolved therein. The concentration of iron oxide in the waste form along with a high proportion of the iron in the waste form being present as Fe.sup.3+ provide a waste form exhibiting improved chemical resistance to corrosive attack. A method for preparing the improved iron phosphate waste forms is also provided.

  3. Iron phosphate compositions for containment of hazardous metal waste

    DOE Patents [OSTI]

    Day, D.E.

    1998-05-12

    An improved iron phosphate waste form for the vitrification, containment and long-term disposition of hazardous metal waste such as radioactive nuclear waste is provided. The waste form comprises a rigid iron phosphate matrix resulting from the cooling of a melt formed by heating a batch mixture comprising the metal waste and a matrix-forming component. The waste form comprises from about 30 to about 70 weight percent P{sub 2}O{sub 5} and from about 25 to about 50 weight percent iron oxide and has metals present in the metal waste chemically dissolved therein. The concentration of iron oxide in the waste form along with a high proportion of the iron in the waste form being present as Fe{sup 3+} provide a waste form exhibiting improved chemical resistance to corrosive attack. A method for preparing the improved iron phosphate waste forms is also provided. 21 figs.

  4. Iron-titanium-mischmetal alloys for hydrogen storage

    DOE Patents [OSTI]

    Sandrock, Gary Dale

    1978-01-01

    A method for the preparation of an iron-titanium-mischmetal alloy which is used for the storage of hydrogen. The alloy is prepared by air-melting an iron charge in a clay-graphite crucible, adding titanium and deoxidizing with mischmetal. The resultant alloy contains less than about 0.1% oxygen and exhibits a capability for hydrogen sorption in less than half the time required by vacuum-melted, iron-titanium alloys.

  5. Iron is the Key to Preserving Dinosaur Soft Tissue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron is the Key to Preserving Dinosaur Soft Tissue Print Researchers studying organic material from dinosaur bones have been able to show that the organic material in the samples contained original soft tissue material from Mesozoic dinosaurs. The x-ray techniques at the ALS were key to showing a possible mechanism for this unexpected preservation-iron nanoparticles associated with dinosaur blood vessels were identified at the ALS. Researchers hypothesized that the iron had come from dinosaurs'

  6. Iron is the Key to Preserving Dinosaur Soft Tissue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron is the Key to Preserving Dinosaur Soft Tissue Print Researchers studying organic material from dinosaur bones have been able to show that the organic material in the samples contained original soft tissue material from Mesozoic dinosaurs. The x-ray techniques at the ALS were key to showing a possible mechanism for this unexpected preservation-iron nanoparticles associated with dinosaur blood vessels were identified at the ALS. Researchers hypothesized that the iron had come from dinosaurs'

  7. Iron is the Key to Preserving Dinosaur Soft Tissue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron is the Key to Preserving Dinosaur Soft Tissue Print Researchers studying organic material from dinosaur bones have been able to show that the organic material in the samples contained original soft tissue material from Mesozoic dinosaurs. The x-ray techniques at the ALS were key to showing a possible mechanism for this unexpected preservation-iron nanoparticles associated with dinosaur blood vessels were identified at the ALS. Researchers hypothesized that the iron had come from dinosaurs'

  8. Iron is the Key to Preserving Dinosaur Soft Tissue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron is the Key to Preserving Dinosaur Soft Tissue Print Researchers studying organic material from dinosaur bones have been able to show that the organic material in the samples contained original soft tissue material from Mesozoic dinosaurs. The x-ray techniques at the ALS were key to showing a possible mechanism for this unexpected preservation-iron nanoparticles associated with dinosaur blood vessels were identified at the ALS. Researchers hypothesized that the iron had come from dinosaurs'

  9. LANSCE | Lujan Center | Highlights | Local iron displacements and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    magnetoelastic coupling in a spin-ladder compound Local iron displacements and magnetoelastic coupling in a spin-ladder compound Hypothesis: Is magnetoelastic coupling in [FeX4]-based materials, an important ingredient in the emergence of superconductivity? Lujan Center: Combined Total Scattering and magnetic structure determination (HIPD-NPDF) The study of local, average and magnetic structure shows the existenceof highly correlated local iron (Fe) displacements in the spin-ladder iron

  10. Importance of Iron Mineralogy to Aerosol Solubility: Potential Effects of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Source on Ocean Photosynthesis Importance of Iron Mineralogy to Aerosol Solubility: Potential Effects of Aerosol Source on Ocean Photosynthesis figure 1 Figure 1. Dust storm blowing glacial dusts from the Copper River Basin of southeast Alaska into the North Pacific Ocean, which depends on this and other external iron sources to support its biological communities. (Image: NASA MODIS satellite image, Nov. 1, 2006. http://earthobservatory.nasa.gov/IOTD/view.php?id=7094) Iron is one of

  11. Iron is the Key to Preserving Dinosaur Soft Tissue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron is the Key to Preserving Dinosaur Soft Tissue Print Researchers studying organic material from dinosaur bones have been able to show that the organic material in the samples contained original soft tissue material from Mesozoic dinosaurs. The x-ray techniques at the ALS were key to showing a possible mechanism for this unexpected preservation-iron nanoparticles associated with dinosaur blood vessels were identified at the ALS. Researchers hypothesized that the iron had come from dinosaurs'

  12. Iron is the Key to Preserving Dinosaur Soft Tissue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron is the Key to Preserving Dinosaur Soft Tissue Print Researchers studying organic material from dinosaur bones have been able to show that the organic material in the samples contained original soft tissue material from Mesozoic dinosaurs. The x-ray techniques at the ALS were key to showing a possible mechanism for this unexpected preservation-iron nanoparticles associated with dinosaur blood vessels were identified at the ALS. Researchers hypothesized that the iron had come from dinosaurs'

  13. Iron is the Key to Preserving Dinosaur Soft Tissue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron is the Key to Preserving Dinosaur Soft Tissue Print Researchers studying organic material from dinosaur bones have been able to show that the organic material in the samples contained original soft tissue material from Mesozoic dinosaurs. The x-ray techniques at the ALS were key to showing a possible mechanism for this unexpected preservation-iron nanoparticles associated with dinosaur blood vessels were identified at the ALS. Researchers hypothesized that the iron had come from dinosaurs'

  14. Iron is the Key to Preserving Dinosaur Soft Tissue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron is the Key to Preserving Dinosaur Soft Tissue Iron is the Key to Preserving Dinosaur Soft Tissue Print Thursday, 21 August 2014 10:43 Researchers studying organic material from dinosaur bones have been able to show that the organic material in the samples contained original soft tissue material from Mesozoic dinosaurs. The x-ray techniques at the ALS were key to showing a possible mechanism for this unexpected preservation-iron nanoparticles associated with dinosaur blood vessels were

  15. Reduction and carburization reactions in the iron bath smelter

    SciTech Connect (OSTI)

    Uemura, Kenichiro

    1993-01-01

    Slag-metal-coal reactions in the iron-bath smelter were analyzed based on a reaction model. It was concluded that the productivity and carbon content of the hot metal produced in a smelter can be controlled by adjusting the slag volume and iron oxide content in slag. Furthermore, iron oxide content is determined by the slag volume and the stirring intensity of the slag.

  16. Work Authorization System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-04-21

    To establish a work authorization and control process for work performed by designated site and facility management contractors, and other contractors as determined by the procurement executive, consistent with the budget execution and program evaluation requirements of the Department of Energy's (DOE's) Planning, Programming, Budgeting, and Evaluation process. Cancels DOE O 412.1.

  17. Work Authorization System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-04-20

    It establishes a work authorization and control process for work performed by designated management and operating (M&O), management and integrating (M&I), environmental restoration management contracts (ERMC) and other contracts determined by the Procurement Executive (hereafter referred to as M&O contractors). Cancels DOE O 5700.7C. Canceled by DOE O 412.1A.

  18. Work Authorization System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-04-21

    To establish a work authorization and control process for work performed by designated site and facility management contractors, and other contractors as determined by the procurement executive, consistent with the budget execution and program evaluation requirements of the Department of Energy's Planning, Programming, Budgeting, and Evaluation process. Admin Chg 1, dated 5-21-2014, cancels DOE O 412.1A.

  19. Melter Throughput Enhancements for High-Iron HLW

    SciTech Connect (OSTI)

    Kruger, A. A.; Gan, Hoa; Joseph, Innocent; Pegg, Ian L.; Matlack, Keith S.; Chaudhuri, Malabika; Kot, Wing

    2012-12-26

    This report describes work performed to develop and test new glass and feed formulations in order to increase glass melting rates in high waste loading glass formulations for HLW with high concentrations of iron. Testing was designed to identify glass and melter feed formulations that optimize waste loading and waste processing rate while meeting all processing and product quality requirements. The work included preparation and characterization of crucible melts to assess melt rate using a vertical gradient furnace system and to develop new formulations with enhanced melt rate. Testing evaluated the effects of waste loading on glass properties and the maximum waste loading that can be achieved. The results from crucible-scale testing supported subsequent DuraMelter 100 (DM100) tests designed to examine the effects of enhanced glass and feed formulations on waste processing rate and product quality. The DM100 was selected as the platform for these tests due to its extensive previous use in processing rate determination for various HLW streams and glass compositions.

  20. Big Iron for Big Data: An Unnatural Alliance?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Big Iron for Big Data: An Unnatural Alliance? Steve Plimpton Sandia National Labs Salishan Conference on High-Speed Computing April 2012 Big data analytics (BD) versus scientific...

  1. Iron active electrode and method of making same

    DOE Patents [OSTI]

    Jackovitz, John F. (Monroeville, PA); Seidel, Joseph (Pittsburgh, PA); Pantier, Earl A. (Verona, PA)

    1982-10-26

    An iron active electrode and method of preparing same in which iron sulfate is calcined in an oxidizing atmosphere at a temperature in the range of from about 600.degree. C. to about 850.degree. C. for a time sufficient to produce an iron oxide with a trace amount of sulfate. The calcined material is loaded into an electrically conductive support and then heated in a reducing atmosphere at an elevated temperature to produce activated iron having a trace amount of sulfide which is formed into an electrode plate.

  2. Pressure-Induced Hydrogen Bond Symmetrization in Iron Oxyhydroxide...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Pressure-Induced Hydrogen Bond Symmetrization in Iron Oxyhydroxide ... Publication Date: 2014-07-21 OSTI Identifier: 1123936 Resource Type: Journal Article ...

  3. Mountain Iron, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mountain Iron, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.5324267, -92.623515 Show Map Loading map... "minzoom":false,"mappi...

  4. Metal regeneration of iron chelates in nitric oxide scrubbing

    DOE Patents [OSTI]

    Chang, S.G.; Littlejohn, D.; Shi, Y.

    1997-08-19

    The present invention relates to a process of using metal particles to reduce NO to NH{sub 3}. More specifically, the invention concerns an improved process to regenerate iron (II) (CHELATE) by reduction of iron (II) (CHELATE) (NO) complex, which process comprises: (a) contacting an aqueous solution containing iron (II) (CHELATE) (NO) with metal particles at between about 20 and 90 C to reduce NO present, produce ammonia or an ammonium ion, and produce free iron (II) (CHELATE) at a pH of between about 3 and 8. The process is useful to remove NO from flue gas and reduce pollution. 34 figs.

  5. Iron is the Key to Preserving Dinosaur Soft Tissue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    occurring mechanism for stabilization of soft tissues has implications beyond paleontology. If iron-mediated reactions are part of a continuum from those that facilitate life...

  6. Recoil-free fractions of iron in aluminous bridgmanite fromtemperatur...

    Office of Scientific and Technical Information (OSTI)

    from temperature-dependent Mssbauer spectra Citation Details In-Document Search Title: Recoil-free fractions of iron in aluminous bridgmanite from temperature-dependent ...

  7. Correlation effects in the iron pnictides (Journal Article) ...

    Office of Scientific and Technical Information (OSTI)

    One of the central questions about the iron pnictides concerns the extent to which their electrons are strongly correlated. Here we address this issue through the phenomenology of ...

  8. Microstructural Modification of a Cast Iron by Magnetic Field Processing

    SciTech Connect (OSTI)

    Kenik, Edward A; Ludtka, Gail Mackiewicz-; Ludtka, Gerard Michael; Wilgen, John B; Kisner, Roger A

    2010-01-01

    The current study deals with the microstructural modification of a nodular cast iron during solidification under the influence of high magnetic fields (up to 18 tesla).

  9. Determination of ferrous and total iron in refractory spinels...

    Office of Scientific and Technical Information (OSTI)

    Accurate and precise determination of the redox state of iron (Fe) in spinels presents a significant challenge due to their refractory nature. The resultant extreme conditions ...

  10. Evidence for a Weak Iron Core at Earth's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence for a Weak Iron Core at Earth's Center Evidence for a Weak Iron Core at Earth's Center Print Wednesday, 30 April 2014 00:00 Seismic waves that pass through the center of the Earth travel faster going from pole to pole than along the equatorial plane-why? One theory is that the grains of iron that make up most of the solid inner core could be aligned in a way that transmits waves more efficiently in one direction than the other. Recent evidence for this "texturing" of iron

  11. Manufacturing Energy and Carbon Footprint - Sector: Iron and...

    Broader source: Energy.gov (indexed) [DOE]

    Total Onsite Electricity Export 1 Manufacturing Energy and Carbon Footprint Sector: Iron and Steel (NAICS 3311,3312) Onsite Generation Process Energy Machine-Driven Systems Fans ...

  12. Metal regeneration of iron chelates in nitric oxide scrubbing

    DOE Patents [OSTI]

    Chang, Shih-Ger; Littlejohn, David; Shi, Yao

    1997-08-19

    The present invention relates to a process of using metal particles to reduce NO to NH.sub.3. More specifically, the invention concerns an improved process to regenerate iron (II) (CHELATE) by reduction of iron (II) (CHELATE) (NO) complex, which process comprises: a) contacting an aqueous solution containing iron (II) (CHELATE) (NO) with metal particles at between about 20.degree. and 90.degree. C. to reduce NO present, produce ammonia or an ammonium ion, and produce free iron (II) (CHELATE) at a pH of between about 3 and 8. The process is useful to remove NO from flue gas and reduce pollution.

  13. Low Resistivity Contact to Iron-Pnicitide Superconductors - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Advanced Materials Find More Like This Return to Search Low Resistivity Contact to Iron-Pnicitide Superconductors Ames Laboratory Contact AMES About This Technology...

  14. Low Resistivity Contact to Iron-Pnicitide Superconductors - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Low Resistivity Contact to Iron-Pnicitide Superconductors Ames Laboratory Contact AMES About This Technology Technology Marketing Summary Superconductors are materials which carry...

  15. Iron County, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 7 Climate Zone Subtype A. Places in Iron County, Wisconsin Anderson, Wisconsin Carey, Wisconsin Gurney, Wisconsin Hurley, Wisconsin Kimball, Wisconsin...

  16. Lithium Iron Phosphate Composites for Lithium Batteries (IN-11...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium Iron Phosphate Composites for Lithium Batteries (IN-11-024) Low-Cost Phosphate Compounds Enhance Lithium Battery Performance Argonne National Laboratory Contact ANL About ...

  17. Next Generation Metallic Iron Nodule Technology in Electric Arc Steelmaking - Phase II

    SciTech Connect (OSTI)

    Donald R. Fosnacht; Iwao Iwasaki; Richard F. Kiesel; David J. Englund; David W. Hendrickson; Rodney L. Bleifuss

    2010-12-22

    -bituminous coal as a reductant. From over 4000 laboratory tube and box furnace tests, it was established that the correct combination of additives, fluxes, and reductant while controlling the concentration of CO and CO2 in the furnace atmosphere (a) lowers the operating temperature, (b) decreases the use of reductant coal (c) generates less micro nodules of iron, and (d) promotes desulphurization. The laboratory scale work was subsequently verified on 12.2 m (40 ft) long pilot scale furnace. High quality NRI could be produced on a routine basis using the pilot furnace facility with energy provided from oxy-gas or oxy-coal burner technologies. Specific strategies were developed to allow the use of sub-bituminous coals both as a hearth material and as part of the reaction mixture. Computational Fluid Dynamics (CFD) modeling was used to study the overall carbothermic reduction and smelting process. The movement of the furnace gas on a pilot hearth furnace and larger simulated furnaces and various means of controlling the gas atmosphere were evaluated. Various atmosphere control methods were identified and tested during the course of the investigation. Based on the results, the appropriate modifications to the furnace were made and tested at the pilot scale. A series of reduction and smelting tests were conducted to verify the utility of the processing conditions. During this phase, the overall energy use characteristics, raw materials, alternative fuels, and the overall economics predicted for full scale implementation were analyzed. The results indicate that it should be possible to lower reaction temperatures while simultaneously producing low sulfur, high carbon NRI if the right mix chemistry and atmosphere are employed. Recommendations for moving the technology to the next stage of commercialization are presented.

  18. Hydrogen-induced cracking in pure iron

    SciTech Connect (OSTI)

    Armstrong, J.H.; Carpenter, S.H.

    1985-01-01

    The modulus and internal friction of Armco iron were continuously measured during cathodic charging with hydrogen to investigate crack initiation and growth. The observed modulus decrease was attributed to crack initiation and growth. The internal friction increase during cathodic charging was attributed to plastic deformation accompanying the crack formation. Both the modulus and internal friction behavior were found to be a sum of two parallel exponential processes. The two exponential processes were consistent with different sources of carbon for the crack-producing hydrogen bubble nucleation.

  19. Suspension Hydrogen Reduction of Iron Oxide Concentrates

    SciTech Connect (OSTI)

    H.Y. Sohn

    2008-03-31

    The objective of the project is to develop a new ironmaking technology based on hydrogen and fine iron oxide concentrates in a suspension reduction process. The ultimate objective of the new technology is to replace the blast furnace and to drastically reduce CO2 emissions in the steel industry. The goals of this phase of development are; the performance of detailed material and energy balances, thermochemical and equilibrium calculations for sulfur and phosphorus impurities, the determination of the complete kinetics of hydrogen reduction and bench-scale testing of the suspension reduction process using a large laboratory flash reactor.

  20. Trails Working Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working Group Trails Working Group Our mission is to inventory, map, and prepare historical reports on the many trails used at LANL. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email The LANL Trails Working Group inventories, maps, and prepares historical reports on the many trails used at LANL. Some of these trails are ancient pueblo footpaths that continue to be used for recreational hiking today. Some serve as quiet

  1. Enhancing the Performance of the Rechargeable Iron Electrode in Alkaline Batteries with Bismuth Oxide and Iron Sulfide Additives

    SciTech Connect (OSTI)

    Manohar, AK; Yang, CG; Malkhandi, S; Prakash, GKS; Narayanan, SR

    2013-09-07

    Iron-based alkaline rechargeable batteries have the potential of meeting the needs of large-scale electrical energy storage because of their low-cost, robustness and eco-friendliness. However, the widespread commercial deployment of iron-based batteries has been limited by the low charging efficiency and the poor discharge rate capability of the iron electrode. In this study, we have demonstrated iron electrodes containing bismuth oxide and iron sulfide with a charging efficiency of 92% and capable of being discharged at the 3C rate. Such a high value of charging efficiency combined with the ability to discharge at high rates is being reported for the first time. The bismuth oxide additive led to the in situ formation of elemental bismuth and a consequent increase in the overpotential for the hydrogen evolution reaction leading to an increase in the charging efficiency. We observed that the sulfide ions added to the electrolyte and iron sulfide added to the electrode mitigated-electrode passivation and allowed for continuous discharge at high rates. At the 3C discharge rate, a utilization of 0.2 Ah/g was achieved. The performance level of the rechargeable iron electrode demonstrated here is attractive for designing economically-viable large-scale energy storage systems based on alkaline nickel-iron and iron-air batteries. (C) 2013 The Electrochemical Society. All rights reserved.

  2. Clean Energy Works

    Broader source: Energy.gov [DOE]

    Through Clean Energy Works, homeowners can finance up to $30,000 at a fixed interest rate for home energy efficiency retrofits for a variety of measures. Customers have varying lender and loan op...

  3. Strategic Initiatives Work Group

    Broader source: Energy.gov [DOE]

    The Work Group, comprised of members representing DOE, contractor and worker representatives, provides a forum for information sharing; data collection and analysis; as well as, identifying best practices and initiatives to enhance safety performance and safety culture across the Complex.

  4. Mon Valley work plan

    Office of Legacy Management (LM)

    GWSHP 1.8 U.S. Department of Energy UMTRA Ground Water Project Work Plan for ... . . . . . . . . 1-1 1.3 Sources of Ground-Water Contamination from Milling Operations . . ...

  5. Exhibit G / working draft

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... DEAR 952.204-73 Facility Clearance (May 2002) Applies when Subcontractor employeesworkers ... work requires workers to hold a clearance and have a need to know to perform in ...

  6. Fermilab: Science at Work

    ScienceCinema (OSTI)

    Brendan Casey; Herman White; Craig Hogan; Denton Morris; Mary Convery; Bonnie Fleming; Deborah Harris; Dave Schmitz; Brenna Flaugher; Aron Soha

    2013-02-14

    Six days. Three frontiers. One amazing lab. From 2010 to 2012, a film crew followed a group of scientists at the Department of Energy's Fermilab and filmed them at work and at home. This 40-minute documentary shows the diversity of the people, research and work at Fermilab. Viewers catch a true behind-the-scenes look of the United States' premier particle physics laboratory while scientists explain why their research is important to them and the world.

  7. Working Group Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Working Group Reports Special Working Session on the Role of Buoy Observations in the Tropical Western Pacific Measurement Scheme J. Downing Marine Sciences Laboratory Sequim, Washington R. M. Reynolds Brookhaven National Laboratory Upton, New York Attending W. Clements (TWPPO) F. Barnes (TWPPO) T. Ackerman (TWP Site Scientist) M. Ivey (ARCS Manager) H. Church J. Curry J. del Corral B. DeRoos S. Kinne J. Mather J. Michalsky M. Miller P. Minnett B. Porch J. Sheaffer P. Webster M. Wesely K.

  8. Fermilab: Science at Work

    SciTech Connect (OSTI)

    Brendan Casey; Herman White; Craig Hogan; Denton Morris; Mary Convery; Bonnie Fleming; Deborah Harris; Dave Schmitz; Brenna Flaugher; Aron Soha

    2013-02-01

    Six days. Three frontiers. One amazing lab. From 2010 to 2012, a film crew followed a group of scientists at the Department of Energy's Fermilab and filmed them at work and at home. This 40-minute documentary shows the diversity of the people, research and work at Fermilab. Viewers catch a true behind-the-scenes look of the United States' premier particle physics laboratory while scientists explain why their research is important to them and the world.

  9. Working With Us | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working With Us Join us in building a clean energy future. NREL offers many opportunities to industry, organizations, government, researchers, businesses, students, educators, and vendors. At NREL, we work with organizations large and small through research partnerships, licensing of NREL technologies, support for cleantech stakeholders, and fostering the clean energy economy. Join us to accelerate the movement of renewable energy and energy-efficient solutions into practical applications.

  10. Final Report: The Impact of Carbonate on Surface Protonation, Electron Transfer and Crystallization Reactions in Iron Oxide Nanoparticles and Colloids

    SciTech Connect (OSTI)

    Dixon, David Adams

    2013-07-02

    This project addresses key issues of importance in the geochemical behavior of iron oxides and in the geochemical cycling of carbon and iron. For Fe, we are specifically studying the influence of carbonate on electron transfer reactions, solid phase transformations, and the binding of carbonate to reactive sites on the edges of particles. The emphasis on carbonate arises because it is widely present in the natural environment, is known to bind strongly to oxide surfaces, is reactive on the time scales of interest, and has a speciation driven by acid-base reactions. The geochemical behavior of carbonate strongly influences global climate change and CO{sub 2} sequestration technologies. Our goal is to answer key questions with regards to specific site binding, electron transfer reactions, and crystallization reactions of iron oxides that impact both the geochemical cycling of iron and CO{sub 2} species. Our work is focused on the molecular level description of carbonate chemistry in solution including the prediction of isotope fractionation factors. We have also done work on critical atmospheric species.

  11. Investigation of Iron Aluminide Weld Overlays

    SciTech Connect (OSTI)

    Banovic, S.W.; DuPont, J.B.; Levin, B.F.; Marder, A.R.

    1999-08-02

    Conventional fossil fired boilers have been retrofitted with low NO(sub)x burners in order for the power plants to comply with new clean air regulations. Due to the operating characteristics of these burners, boiler tube sulfidation corrosion typically has been enhanced resulting in premature tube failure. To protect the existing panels from accelerated attack, weld overlay coatings are typically being applied. By depositing an alloy that offers better corrosion resistance than the underlying tube material, the wastage rates can be reduced. While Ni-based and stainless steel compositions are presently providing protection, they are expensive and susceptible to failure via corrosion-fatigue due to microsegregation upon solidification. Another material system presently under consideration for use as a coating in the oxidation/sulfidation environments is iron-aluminum. These alloys are relatively inexpensive, exhibit little microsegregation, and show excellent corrosion resistance. However, their use is limited due to weldability issues and their lack of corrosion characterization in simulated low NO(sub)x gas compositions. Therefore a program was initiated in 1996 to evaluate the use of iron-aluminum weld overlay coatings for erosion/corrosion protection of boiler tubes in fossil fired boilers with low NO(sub)x burners. Investigated properties included weldability, corrosion behavior, erosion resistance, and erosion-corrosion performance.

  12. Next Generation Metallic Iron Nodule Technology in Electric Furnace Steelmaking

    Broader source: Energy.gov [DOE]

    This factsheet describes a research project whose objective is to investigate reducing processing temperature, controlling the gas temperature and gas atmosphere over metalized iron nodules, and effectively using sub-bituminous coal as a reductant for producing high quality metalized iron nodules at low cost.

  13. Next Generation Metallic Iron Nodule Technology in Electric Furnace Steelmaking

    SciTech Connect (OSTI)

    2007-09-01

    This factsheet describes a research project whose objective is to investigate reducing processing temperature, controlling the gas temperature and gas atmosphere over metallized iron nodules, and effectively using sub-bituminous coal as a reductant for producing high quality metallized iron nodules at low cost.

  14. Work Force Retention Work Group Charter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Force Retention Work Group Charter Work Force Retention Work Group Charter The Work force Retention Work Group is established to support the Department's critical focus on maintaining a high-performing work force at a time when a significant number of the workers needed to support DOE's national security mission are reaching retirement age. Work Force Retention Work Group Charter (86.92 KB) More Documents & Publications Workforce Retention Work Group Status Overview - September 2012 Training

  15. Superconductivity at Dawn of the Iron Age (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Conference: Superconductivity at Dawn of the Iron Age Citation Details In-Document Search Title: Superconductivity at Dawn of the Iron Age Superconductivity is a stunning quantum ...

  16. Large Tensions and Strength of Iron in Different Structure States

    SciTech Connect (OSTI)

    Razorenov, S. V.; Savinykh, A. S.; Kanel, G. I.; Fortov, V. E.

    2006-07-28

    Results of shock-wave experiments with iron single crystals, ultra-fine grain and as-received Armco-iron, at load durations of {approx}20 ns to 200 ns are presented. No evidence of the expected formation of rarefaction shock waves, as predicted by the ab initio calculations, was observed in the range of attained tensile stresses down to -7.6 GPa. The tensile fracture stresses achieved 25-50% of the theoretical iron ultimate strength for a load duration of {approx}10-8 s. The spall strength of a coarse-grain Armco-iron is much less than that of single crystals whereas an intensively deformed Armco-iron with a sub-micron grain size demonstrates nearly the same spall strength as the crystals do.

  17. System and method for producing metallic iron nodules

    DOE Patents [OSTI]

    Bleifuss, Rodney L.; Englund, David J.; Iwasaki, Iwao; Lindgren, Andrew J.; Kiesel, Richard F.

    2011-09-20

    A method for producing metallic iron nodules by assembling a shielding entry system to introduce coarse carbonaceous material greater than 6 mesh in to the furnace atmosphere at location(s) where the temperature of the furnace atmosphere adjacent at least partially reduced reducible iron bearing material is between about 2200 and 2650.degree. F. (1200 and 1450.degree. C.), the shielding entry system adapted to inhibit emission of infrared radiation from the furnace atmosphere and seal the furnace atmosphere from exterior atmosphere while introducing coarse carbonaceous material greater than 6 mesh into the furnace to be distributed over the at least partially reduced reducible iron bearing material, and heating the covered at least partially reduced reducible iron bearing material in a fusion atmosphere to assist in fusion and inhibit reoxidation of the reduced material during fusion to assist in fusion and inhibit reoxidation of the reduced material in forming metallic iron nodules.

  18. Work Force Restructuring Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Work Force Restructuring Activities December 10, 2008 Note: Current updates are in bold # Planned Site/Contractor HQ Approved Separations Status General * LM has finalized the compilation of contractor management team separation data for the end of FY07 actuals and end of FY08 and FY09 projections. LM has submitted to Congress the FY 2007 Annual Report on contractor work force restructuring activities. The report has been posted to the LM website. *LM conducted a DOE complex-wide data call to

  19. Exhibit G / working draft

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Off-site (Rev 6, 5/1/2015) P.R. No. * Date * Page 1 of 2 Subcontract No. or PO No. * EXHIBIT G OFF-SITE SECURITY REQUIREMENTS G1.0 Definitions and Acronyms (Feb 2014) Definitions and acronyms may be accessed electronically at http://www.lanl.gov/resources/_assets/docs/Exhibit-G/exhibit-g-definitions-acronyms-green.pdf G2.0 Statements Applicable To Scope of Work (May 2015) CONTRACTOR believes that all of the statements listed below are factually correct and applicable to the scope of work (SOW)

  20. How ICF Works

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    icf / how icf works How ICF Works Shiva Laser When the 20-beam Shiva laser was completed in 1978, it was the world's most powerful laser. It delivered more than ten kilojoules of energy in less than a billionth of a second in its first full-power firing. About the size of a football field, Shiva was the latest in a series of laser systems built over two decades, each five to ten times more powerful than its predecessor. Since the late 1940s, researchers have used magnetic fields to confine hot,

  1. How Lasers Work

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    how_lasers_work How Lasers Work "Laser" is an acronym for light amplification by stimulated emission of radiation. A laser is created when the electrons in atoms in special glasses, crystals, or gases absorb energy from an electrical current or another laser and become "excited." The excited electrons move from a lower-energy orbit to a higher-energy orbit around the atom's nucleus. When they return to their normal or "ground" state, the electrons emit photons

  2. How NIF Works

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How Much Do You Spend on Energy? How Much Do You Spend on Energy? U.S.A. Energy Expenditure per person Click on a state Energy Expenditure $3724 per person in 2012 Transportation ▀▀▀▀▀ Residential ▀▀▀▀▀ Data: EIA State Energy Data System View All Maps Addthis

    works How NIF Works A weak laser pulse-about 1 billionth of a joule-is created, split, and carried on optical fibers to 48 preamplifiers that increase the pulse's energy by a factor of 10 billion, to a few joules. The

  3. Separation of Fischer-Tropsch Wax Products from Ultrafine Iron Catalyst Particles

    SciTech Connect (OSTI)

    James K. Neathery; Gary Jacobs; Amitava Sarkar; Adam Crawford; Burtron H. Davis

    2006-09-30

    In the previous reporting period, modifications were completed for integrating a continuous wax filtration system for a 4 liter slurry bubble column reactor. During the current reporting period, a shakedown of the system was completed. Several problems were encountered with the progressive cavity pump used to circulate the wax/catalyst slurry though the cross-flow filter element and reactor. During the activation of the catalyst with elevated temperature (> 270 C) the elastomer pump stator released sulfur thereby totally deactivating the iron-based catalyst. Difficulties in maintaining an acceptable leak rate from the pump seal and stator housing were also encountered. Consequently, the system leak rate exceeded the expected production rate of wax; therefore, no online filtration could be accomplished. Work continued regarding the characterization of ultra-fine catalyst structures. The effect of carbidation on the morphology of iron hydroxide oxide particles was the focus of the study during this reporting period. Oxidation of Fe (II) sulfate results in predominantly {gamma}-FeOOH particles which have a rod-shaped (nano-needles) crystalline structure. Carbidation of the prepared {gamma}-FeOOH with CO at atmospheric pressure produced iron carbides with spherical layered structure. HRTEM and EDS analysis revealed that carbidation of {gamma}-FeOOH particles changes the initial nano-needles morphology and generates ultrafine carbide particles with irregular spherical shape.

  4. Evaluation of West Virginia University`s iron catalyst impregnated on coal

    SciTech Connect (OSTI)

    Stohl, F.V.; Diegert, K.V.; Goodnow, D.C.

    1995-07-01

    The objectives to evaluate and compare the activities/selectivities of fine-particle size catalysts being developed in the DOE/PETC Advanced Research (AR) Coal Liquefaction program by using standard coal liquefaction activity test procedures. Previously reported results have described the standard test procedure developed at Sandia to evaluate fine-particle size iron catalysts being developed in DOE/PETC`s AR Coal Liquefaction Program and described the evaluation of several catalysts (commercially available pyrite, University of Pittsburgh`s catalyst, Pacific Northwest Laboratories` catalyst) using these procedures. The test uses DECS-17 Blind Canyon Coal, phenanthrene as the reaction solvent, and a factorial experimental design that enables evaluation of a catalyst over ranges of temperature (350 to 400{degree}C), time (20 to 60 minutes), and catalyst loading (0 to 1 wt % on an as-received coal basis). Recent work has focused on the evaluation of West Virginia University`s iron catalyst that WVU impregnated on DECS-17 Blind Canyon coal. Results showed good activity for this catalyst including the highest amount of 9,10-dihydrophenanthrene (13.2%) observed in a reaction product and a small but significant catalytic effect for heptane conversion (0.5%). Additional experiments are being performed to enable comparison with previously tested catalysts. Tetrahydrofuran insolubles from selected reactions have been sent to the University of Kentucky for Mossbauer characterization of the iron phases present.

  5. Work Force Discipline

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1983-03-23

    The order provides guidance and procedures and states responsibilities for maintaining work force discipline in DOE. Chg 1, dated 3-11-85; Chg 2, dated 1-6-86; Chg 3, dated 3-21-89; Chg 4, dated 8-2-90; Chg 5, dated 3-9-92; Chg 6, dated 8-21-92, cancels Chg 5.

  6. Facilities removal working group

    SciTech Connect (OSTI)

    1997-03-01

    This working group`s first objective is to identify major economic, technical, and regulatory constraints on operator practices and decisions relevant to offshore facilities removal. Then, the group will try to make recommendations as to regulatory and policy adjustments, additional research, or process improvements and/or technological advances, that may be needed to improve the efficiency and effectiveness of the removal process. The working group will focus primarily on issues dealing with Gulf of Mexico platform abandonments. In order to make the working group sessions as productive as possible, the Facilities Removal Working Group will focus on three topics that address a majority of the concerns and/or constraints relevant to facilities removal. The three areas are: (1) Explosive Severing and its Impact on Marine Life, (2) Pile and Conductor Severing, and (3) Deep Water Abandonments This paper will outline the current state of practice in the offshore industry, identifying current regulations and specific issues encountered when addressing each of the three main topics above. The intent of the paper is to highlight potential issues for panel discussion, not to provide a detailed review of all data relevant to the topic. Before each panel discussion, key speakers will review data and information to facilitate development and discussion of the main issues of each topic. Please refer to the attached agenda for the workshop format, key speakers, presentation topics, and panel participants. The goal of the panel discussions is to identify key issues for each of the three topics above. The working group will also make recommendations on how to proceed on these key issues.

  7. Development of attrition resistant iron-based Fischer-Tropsch catalysts

    SciTech Connect (OSTI)

    2000-09-20

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. The use of iron-based catalysts is attractive not only due to their low cost and ready availability, but also due to their high water-gas shift activity which makes it possible to use these catalysts with low H{sub 2}/CO ratios. However, a serious problem with use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, makes the separation of catalyst from the oil/wax product very difficult if not impossible, and results a steady loss of catalyst from the reactor. The objective of this research is to develop robust iron-based Fischer-Tropsch catalysts that have suitable activity, selectivity and stability to be used in the slurry bubble column reactor. Specifically we aim to develop to: (1) improve the performance and preparation procedure of the high activity, high attrition resistant, high alpha iron-based catalysts synthesized at Hampton University (2) seek improvements in the catalyst performance through variations in process conditions, pretreatment procedures and/or modifications in catalyst preparation steps and (3) investigate the performance in a slurry reactor. The effort during the reporting period has been devoted to effects of pretreating procedures, using H{sub 2}, CO and syngas (H{sub 2}/CO = 0.67) as reductants, on the performance (activity, selectivity and stability with time) of a precipitated iron catalyst (100Fe/5Cu/4.2K/10SiO{sub 2} on a mass basis ) during F-T synthesis were studied in a fixed-bed reactor.

  8. System and method for producing metallic iron

    DOE Patents [OSTI]

    Bleifuss, Rodney L; Englund, David J; Iwasaki, Iwao; Fosnacht, Donald R; Brandon, Mark M; True, Bradford G

    2013-09-17

    A hearth furnace for producing metallic iron material has a furnace housing having a drying/preheat zone, a conversion zone, a fusion zone, and optionally a cooling zone, the conversion zone is between the drying/preheat zone and the fusion zone. A moving hearth is positioned within the furnace housing. A hood or separation barrier within at least a portion of the conversion zone, fusion zone or both separates the fusion zone into an upper region and a lower region with the lower region adjacent the hearth and the upper region adjacent the lower region and spaced from the hearth. An injector introduces a gaseous reductant into the lower region adjacent the hearth. A combustion region may be formed above the hood or separation barrier.

  9. System and method for producing metallic iron

    DOE Patents [OSTI]

    Bleifuss, Rodney L.; Englund, David J.; Iwasaki, Iwao; Fosnacht, Donald R.; Brandon, Mark M.; True, Bradford G.

    2012-01-17

    A hearth furnace 10 for producing metallic iron material has a furnace housing 11 having a drying/preheat zone 12, a conversion zone 13, a fusion zone 14, and optionally a cooling zone 15, the conversion zone 13 is between the drying/preheat zone 12 and the fusion zone 14. A moving hearth 20 is positioned within the furnace housing 11. A hood or separation barrier 30 within at least a portion of the conversion zone 13, fusion zone 14 or both separates the fusion zone 14 into an upper region and a lower region with the lower region adjacent the hearth 20 and the upper region adjacent the lower region and spaced from the hearth 20. An injector introduces a gaseous reductant into the lower region adjacent the hearth 20. A combustion region may be formed above the hood or separation barrier.

  10. Multiple hearth furnace for reducing iron oxide

    DOE Patents [OSTI]

    Brandon, Mark M. (Charlotte, NC); True, Bradford G. (Charlotte, NC)

    2012-03-13

    A multiple moving hearth furnace (10) having a furnace housing (11) with at least two moving hearths (20) positioned laterally within the furnace housing, the hearths moving in opposite directions and each moving hearth (20) capable of being charged with at least one layer of iron oxide and carbon bearing material at one end, and being capable of discharging reduced material at the other end. A heat insulating partition (92) is positioned between adjacent moving hearths of at least portions of the conversion zones (13), and is capable of communicating gases between the atmospheres of the conversion zones of adjacent moving hearths. A drying/preheat zone (12), a conversion zone (13), and optionally a cooling zone (15) are sequentially positioned along each moving hearth (30) in the furnace housing (11).

  11. Predict carbonation rate on iron catalyst

    SciTech Connect (OSTI)

    Dry, M.E.

    1980-02-01

    On solely thermodynamic grounds, the main hydrocarbon product of the Fischer-Tropsch reaction should be methane; in practice, however, carbon is frequently produced as well and deposited on the iron catalyst, fouling the active surface sites. South African Coal, Oil and Gas Corp., Ltd.'s experiments with a fluidized Fischer-Tropsch catalyst bed demonstrate that the rate of carbon deposition is strongly dependent on the hydrogen partial pressure in the reactor, much less dependent on the CO pressure, and not affected at all by the pressure of CO/sub 2/. A suggested reaction scheme for the Fischer-Tropsch synthesis explains these observations and provides a basis for a correlation useful in predicting carbon-deposition rates.

  12. Rhombohedral magnetostriction in dilute iron (Co) alloys

    SciTech Connect (OSTI)

    Jones, Nicholas J. Wun-Fogle, Marilyn; Restorff, J. B.; Petculescu, Gabriela; Clark, Arthur E.; Hathaway, Kristl B.; Schlagel, Deborah; Lograsso, Thomas A.

    2015-05-07

    Iron is a well-utilized material in structural and magnetic applications. This does not mean, however, that it is well understood, especially in the field of magnetostriction. In particular, the rhombohedral magnetostriction of iron, λ{sub 111}, is anomalous in two respects: it is negative in sign, in disagreement with the prediction of first principles theory, and its magnitude decreases with increasing temperature much too rapidly to be explained by a power law dependence on magnetization. These behaviors could arise from the location of the Fermi level, which leaves a small region of the majority 3d t{sub 2g} states unfilled, possibly favoring small internal displacements that split these states. If this view is correct, adding small amounts of Co to Fe fills some of these states, and the value of λ{sub 111} should increase toward a positive value, as predicted for perfect bcc Fe. We have measured the magnetostriction coefficients (λ{sub 111} and λ{sub 100}) of pure Fe, Fe{sub 97}Co{sub 3}, and Fe{sub 94}Co{sub 6} single crystals from 77 K to 450 K. Resonant ultrasound spectroscopy has been used to check for anomalies in the associated elastic constants, c{sub 44} and c′. The additional electrons provided by the cobalt atoms indeed produced positive contributions to both magnetostriction constants, λ{sub 111} and λ{sub 100}, exhibiting an increase of 2.8 × 10{sup −6} per at. % Co for λ{sub 111} and 3.8 × 10{sup −6} per at. % Co for λ{sub 100}.

  13. Theoretical Investigation of Hydrogen Adsorption and Dissociation on Iron and Iron Carbide Surfaces Using the ReaxFF Reactive Force Field Method

    SciTech Connect (OSTI)

    Zou, Chenyu; van Duin, Adri C.T.; Sorescu, Dan C.

    2012-06-01

    We have developed a ReaxFF reactive force field to describe hydrogen adsorption and dissociation on iron and iron carbide surfaces relevant for simulation of FischerTropsch (FT) synthesis on iron catalysts. This force field enables large system (>>1000 atoms) simulations of hydrogen related reactions with iron. The ReaxFF force field parameters are trained against a substantial amount of structural and energetic data including the equations of state and heats of formation of iron and iron carbide related materials, as well as hydrogen interaction with iron surfaces and different phases of bulk iron. We have validated the accuracy and applicability of ReaxFF force field by carrying out molecular dynamics simulations of hydrogen adsorption, dissociation and recombination on iron and iron carbide surfaces. The barriers and reaction energies for molecular dissociation on these two types of surfaces have been compared and the effect of subsurface carbon on hydrogen interaction with iron surface is evaluated. We found that existence of carbon atoms at subsurface iron sites tends to increase the hydrogen dissociation energy barrier on the surface, and also makes the corresponding hydrogen dissociative state relatively more stable compared to that on bare iron. These properties of iron carbide will affect the dissociation rate of H{sub 2} and will retain more surface hydride species, thus influencing the dynamics of the FT synthesis process.

  14. TECHNOLOGY DEVELOPMENT FOR IRON AND COBALT FISCHER-TROPSCH CATALYSTS

    SciTech Connect (OSTI)

    Burtron H. Davis

    1999-04-30

    The impact of activation procedure on the phase composition of precipitated iron Fischer-Tropsch (FT) catalysts has been studied. Catalyst samples taken during activation and FT synthesis have been characterized by Moessbauer spectroscopy. Formation of iron carbide is necessary for high FT activity. Hydrogen activation of precipitated iron catalysts results in reduction to predominantly metallic iron and Fe{sub 3}O{sub 4}. Metallic iron is not stable under FT 3 4 conditions and is rapidly converted to {epsilon}{prime}-Fe{sub 2.2}C. Activation with carbon monoxide or syngas 2.2 with low hydrogen partial pressure reduces catalysts to {chi}-Fe{sub 5}C{sub 2} and a small amount of 5 2 superparamagnetic carbide. Exposure to FT conditions partially oxidizes iron carbide to Fe{sub 3}O{sub 4}; however, catalysts promoted with potassium or potassium and copper maintain a constant carbide content and activity after the initial oxidation. An unpromoted iron catalyst which was activated with carbon monoxide to produce 94% {chi}-Fe{sub 5}C{sub 2}, deactivated rapidly as the carbide was oxidized to Fe{sub 3}O{sub 4}. No difference in activity, stability or deactivation rate was found for {chi}-Fe{sub 5}C{sub 2} and {epsilon}{prime}-Fe{sub 2.2}C.

  15. Iron aluminide alloy coatings and joints, and methods of forming

    DOE Patents [OSTI]

    Wright, Richard N. (Idaho Falls, ID); Wright, Julie K. (Idaho Falls, ID); Moore, Glenn A. (Idaho Falls, ID)

    1994-01-01

    A method of joining two bodies together, at least one of the bodies being predominantly composed of metal, the two bodies each having a respective joint surface for joining with the joint surface of the other body, the two bodies having a respective melting point, includes the following steps: a) providing aluminum metal and iron metal on at least one of the joint surfaces of the two bodies; b) after providing the aluminum metal and iron metal on the one joint surface, positioning the joint surfaces of the two bodies in juxtaposition against one another with the aluminum and iron positioned therebetween; c) heating the aluminum and iron on the juxtaposed bodies to a temperature from greater than or equal to 600.degree. C. to less than the melting point of the lower melting point body; d) applying pressure on the juxtaposed surfaces; and e) maintaining the pressure and the temperature for a time period effective to form the aluminum and iron into an iron aluminide alloy joint which bonds the juxtaposed surfaces and correspondingly the two bodies together. The method can also effectively be used to coat a body with an iron aluminide coating.

  16. Iron aluminide alloy coatings and joints, and methods of forming

    DOE Patents [OSTI]

    Wright, R.N.; Wright, J.K.; Moore, G.A.

    1994-09-27

    Disclosed is a method of joining two bodies together, at least one of the bodies being predominantly composed of metal, the two bodies each having a respective joint surface for joining with the joint surface of the other body, the two bodies having a respective melting point, includes the following steps: (a) providing aluminum metal and iron metal on at least one of the joint surfaces of the two bodies; (b) after providing the aluminum metal and iron metal on the one joint surface, positioning the joint surfaces of the two bodies in juxtaposition against one another with the aluminum and iron positioned therebetween; (c) heating the aluminum and iron on the juxtaposed bodies to a temperature from greater than or equal to 600 C to less than the melting point of the lower melting point body; (d) applying pressure on the juxtaposed surfaces; and (e) maintaining the pressure and the temperature for a time period effective to form the aluminum and iron into an iron aluminide alloy joint which bonds the juxtaposed surfaces and correspondingly the two bodies together. The method can also effectively be used to coat a body with an iron aluminide coating.

  17. TRU TeamWorks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    , 2004 By the Numbers WIPP marks five-year anniversary Shipments scheduled to arrive at WIPP for the week of 4/4/04 - 4/10/04: 18 Total shipments received at WIPP: 2,456 Total volume disposed at WIPP: 19,042 m 3 FY04 Performance Metrics D E P A R T M E N T O F E N E R G Y U N I T E D S T A T ES O F A M E R I C A TeamWorks TeamWorks TRU A weekly e-newsletter for the Waste Isolation Pilot Plant team For those who endured the early morning cold of March 26, 1999, to witness WIPP's first shipment,

  18. Work plan (Nov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM STM Cloud Modeling Working Group Session AGENDA Brief introduction of new ARM funded modeling projects: ---------------------------------------------------------------------------------------------------------- 1:00 pm - 1:05 pm Understanding and Improving CRM and GCM Simulations of Cloud Systems with ARM Observations (Xiaoqing Wu, Iowa State University) 1:05 pm - 1:10 pm Interactions of Cumulus Convection and the Boundary Layer at the Southern Great Plains ACRF (Steve Krueger, University of

  19. Quality Work Plan Requirements

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Weatherization Assistance Program (WAP) has introduced a comprehensive Quality Work Plan (QWP) that will establish a benchmark for quality home energy upgrades. This plan defines what is required when federal dollars are used to purchase weatherization services and leverages the resources developed through the Guidelines for Home Energy Professionals project. Below you will find links to QWP guidance, as well as links to the individual requirements.

  20. Emergency Preparedness Working

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 24, 2015 Emergency Preparedness Working Group (EPWG) Grant * Nevada Field Office funds the EPWG grant based on $.50 per cubic foot of low-level/mixed low-level waste disposed at the Nevada National Security Site * EPWG consists of six Nevada counties: Clark, Elko, Esmeralda, Lincoln, Nye, and White Pine * EPWG addresses grant administration issues and any cross-cutting emergency related questions that incorporate grant funding or are required to attain operations level emergency response

  1. Putting Data to Work

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hughes, julie@imt.org Director, Building Energy Performance Policy Putting Data to Work 2016 Building Technologies Office Peer Review 2 Project Summary Timeline (NEW PROJECT): Start date: July 15, 2015 Planned end date: July 14, 2018 Key Milestones 1. DC and NYC have committed to using SEED in their ordinance compliance cycles and continuously provide feedback on the Platform to DOE/LBNL; January 2016 2. DC and NYC pilot programs are designed and ready for implementation; June 2016 3. Toolkit

  2. Spall behavior of cast iron with varying microstructures

    SciTech Connect (OSTI)

    Plume, Gifford; Rousseau, Carl-Ernst

    2014-07-21

    The spall strength of cast iron with varying microstructures has been investigated using plate impact at moderate speed. Stress history measurements were made with manganin stress gauges embedded between the back face of the specimen and a low impedance polycarbonate backing. Five separate cast irons were tested. Four of these consisted of gray cast iron with graphite in flake form, with three classified as Type VII A2 and the fourth containing a bimodal distribution of Types VII A4 and VII D8. The fifth casting consisted of ductile cast iron with graphite in nodular form, classified as Type I, size class 5. The spall strength for the Type VII A2 gray cast irons varied between 40 and 370 MPa, and that of the additional gray cast iron, between 410 and 490 MPa. The spall strength of the ductile cast iron fell within the range of 0.94–1.2 GPa. It is shown that the spall strength is linked to the damage level at the spall plane, where an increased level of tensile stress is required to generate higher levels of damage. Post mortem analysis was performed on the recovered samples, revealing the graphite phase to be the primary factor governing the spall fracture of cast irons, where crack nucleation is directly correlated to the debonding of graphite from the metal matrix. The average length of graphite found within a casting is linked to the material's strength, where strength increases as a function of decreasing length. The morphology and mean free path of graphite precipitates further govern the subsequent coalescence of initiated cracks to form a complete fracture plane. In cases where graphite spacing is large, increased energy level is required to complete the fracture process. A secondary factor governing the spall fracture of cast irons has also been linked to the microstructure of the metal matrix, with pearlite yielding higher spall strengths than free ferrite.

  3. Abandoning wells working group

    SciTech Connect (OSTI)

    1997-03-01

    The primary objective of this working group is to identify major technical, regulatory, and environmental issues that are relevant to the abandonment of offshore wellbores. Once the issues have been identified, the working group also has the objective of making recommendations or providing potential solutions for consideration. Areas for process improvement will be identified and {open_quotes}best practices{close_quotes} will be discussed and compared to {open_quotes}minimum standards.{close_quotes} The working group will primarily focus on wellbore abandonment in the Gulf of Mexico. However, workshop participants are encouraged to discuss international issues which may be relevant to wellbore abandonment practices in the Gulf of Mexico. The Abandoning Wells Group has identified several major areas for discussion that have concerns related to both operators and service companies performing wellbore abandonments in the Gulf of Mexico. The following broad topics were selected for the agenda: (1) MMS minimum requirements and state regulations. (2) Co-existence of best practices, new technology, and P & A economics. (3) Liability and environmental issues relating to wellbore abandonment.

  4. Recommended values of clean metal surface work functions

    SciTech Connect (OSTI)

    Derry, Gregory N. Kern, Megan E.; Worth, Eli H.

    2015-11-15

    A critical review of the experimental literature for measurements of the work functions of clean metal surfaces of single-crystals is presented. The tables presented include all results found for low-index crystal faces except cases that were known to be contaminated surfaces. These results are used to construct a recommended value of the work function for each surface examined, along with an uncertainty estimate for that value. The uncertainties are based in part on the error distribution for all measured work functions in the literature, which is included here. The metals included in this review are silver (Ag), aluminum (Al), gold (Au), copper (Cu), iron (Fe), iridium (Ir), molybdenum (Mo), niobium (Nb), nickel (Ni), palladium (Pd), platinum (Pt), rhodium (Rh), ruthenium (Ru), tantalum (Ta), and tungsten (W)

  5. Evidence for a Weak Iron Core at Earth's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence for a Weak Iron Core at Earth's Center Print Seismic waves that pass through the center of the Earth travel faster going from pole to pole than along the equatorial plane-why? One theory is that the grains of iron that make up most of the solid inner core could be aligned in a way that transmits waves more efficiently in one direction than the other. Recent evidence for this "texturing" of iron grains in the Earth's inner core comes from x-ray spectroscopy and diffraction

  6. Evidence for a Weak Iron Core at Earth's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence for a Weak Iron Core at Earth's Center Print Seismic waves that pass through the center of the Earth travel faster going from pole to pole than along the equatorial plane-why? One theory is that the grains of iron that make up most of the solid inner core could be aligned in a way that transmits waves more efficiently in one direction than the other. Recent evidence for this "texturing" of iron grains in the Earth's inner core comes from x-ray spectroscopy and diffraction

  7. Iron-carbon compacts and process for making them

    DOE Patents [OSTI]

    Sheinberg, Haskell

    2000-01-01

    The present invention includes iron-carbon compacts and a process for making them. The process includes preparing a slurry comprising iron powder, furfuryl alcohol, and a polymerization catalyst for initiating the polymerization of the furfuryl alcohol into a resin, and heating the slurry to convert the alcohol into the resin. The resulting mixture is pressed into a green body and heated to form the iron-carbon compact. The compact can be used as, or machined into, a magnetic flux concentrator for an induction heating apparatus.

  8. The Iron Spin Transition in the Earth's Lower Mantle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Iron Spin Transition in the Earth's Lower Mantle The Iron Spin Transition in the Earth's Lower Mantle Print Wednesday, 30 April 2008 00:00 It is now known that the iron present in minerals of the lower mantle of the Earth undergoes a pressure-induced transition with pairing of the spins of its 3d electrons. A team from the University of California, Berkeley, Tel Aviv University, and Lawrence Livermore National Laboratory has used x-ray diffraction at very high pressure to investigate the

  9. Probing iron at Super-Earth core conditions

    SciTech Connect (OSTI)

    Amadou, N.; Brambrink, E.; Vinci, T.; Benuzzi-Mounaix, A.; Huser, G.; Brygoo, S.; Morard, G.; Guyot, F.; Resseguier, T. de; Mazevet, S.; Miyanishi, K.; Ozaki, N.; Kodama, R.; Henry, O.; Raffestin, D.; Boehly, T.; and others

    2015-02-15

    In this paper, we report on the quasi-isentropic compression of an iron sample using ramp shaped laser irradiation. This technique allows us to quasi-isentropically compress iron up to 700 GPa and 8500 K. To our knowledge, these data are the highest pressures reached on iron in off-Hugoniot conditions and the closest to the thermodynamic states thought to exist in Earth-like planetary cores. The experiment was performed on the Ligne d'Intégration laser facility at CESTA, Bordeaux, France.

  10. Evidence for a Weak Iron Core at Earth's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence for a Weak Iron Core at Earth's Center Print Seismic waves that pass through the center of the Earth travel faster going from pole to pole than along the equatorial plane-why? One theory is that the grains of iron that make up most of the solid inner core could be aligned in a way that transmits waves more efficiently in one direction than the other. Recent evidence for this "texturing" of iron grains in the Earth's inner core comes from x-ray spectroscopy and diffraction

  11. Evidence for a Weak Iron Core at Earth's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence for a Weak Iron Core at Earth's Center Print Seismic waves that pass through the center of the Earth travel faster going from pole to pole than along the equatorial plane-why? One theory is that the grains of iron that make up most of the solid inner core could be aligned in a way that transmits waves more efficiently in one direction than the other. Recent evidence for this "texturing" of iron grains in the Earth's inner core comes from x-ray spectroscopy and diffraction

  12. Evidence for a Weak Iron Core at Earth's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence for a Weak Iron Core at Earth's Center Print Seismic waves that pass through the center of the Earth travel faster going from pole to pole than along the equatorial plane-why? One theory is that the grains of iron that make up most of the solid inner core could be aligned in a way that transmits waves more efficiently in one direction than the other. Recent evidence for this "texturing" of iron grains in the Earth's inner core comes from x-ray spectroscopy and diffraction

  13. Evidence for a Weak Iron Core at Earth's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence for a Weak Iron Core at Earth's Center Print Seismic waves that pass through the center of the Earth travel faster going from pole to pole than along the equatorial plane-why? One theory is that the grains of iron that make up most of the solid inner core could be aligned in a way that transmits waves more efficiently in one direction than the other. Recent evidence for this "texturing" of iron grains in the Earth's inner core comes from x-ray spectroscopy and diffraction

  14. Assimilation of zinc, cadmium, lead, copper, and iron by the spider Dysdera crocata, a predator of woodlice

    SciTech Connect (OSTI)

    Hopkin, S.P.; Martin, M.H.

    1985-02-01

    In this paper, an experiment is described on the assimilation of zinc, cadmium, lead, copper and iron by Dysdera crocata collected from a site in central Bristol. The spiders were fed on woodlice from their own site, and on woodlice from a site contaminated by a smelting works which contained much higher levels of zinc, cadmium and lead than the spiders would have been used to in their normal diet.

  15. Superconductivity at Dawn of the Iron Age (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; COPPER OXIDES; DIMENSIONS; IRON; PHYSICS; PNICTIDES; SUPERCONDUCTIVITY; SUPERCONDUCTORS; SYNCHROTRON ...

  16. Third (March 2006) Coring and Analysis of Zero-Valent Iron Permeable Reactive Barrier, Monticello, Utah

    Broader source: Energy.gov [DOE]

    Third (March 2006) Coring and Analysis of Zero-Valent Iron Permeable Reactive Barrier, Monticello, Utah

  17. Dispersivity Testing of Zero-Valent Iron Treatment Cells: Monticello, Utah, November 2005 Through February 2008

    Broader source: Energy.gov [DOE]

    Dispersivity Testing of Zero-Valent Iron Treatment Cells: Monticello, Utah, November 2005 Through February 2008

  18. Cast B2-phase iron-aluminum alloys with improved fluidity

    DOE Patents [OSTI]

    Maziasz, Philip J.; Paris, Alan M.; Vought, Joseph D.

    2002-01-01

    Systems and methods are described for iron aluminum alloys. A composition includes iron, aluminum and manganese. A method includes providing an alloy including iron, aluminum and manganese; and processing the alloy. The systems and methods provide advantages because additions of manganese to iron aluminum alloys dramatically increase the fluidity of the alloys prior to solidification during casting.

  19. INL's '@work' Scientific Glassblower

    SciTech Connect (OSTI)

    Lewis, Russel

    2008-01-01

    INL's '@work' segments feature INL employees and the jobs they perform. This edition features INL's Russell Lewis, a skilled glassblower. Learn more at http://www.facebook.com/idahonationallaboratory. Prepared by Battelle Energy Alliance, LLC under Contract NO.DE-AC07-05ID14517 with the U.S. Department of Energy. The United States Government retains a nonexclusive paid-up, irrevocable, world-wide license to publish or reproduce this video, or allow others to do so, for United States Government Purposes.

  20. HANFORD ENGINEER WORKS

    Office of Legacy Management (LM)

    HANFORD ENGINEER WORKS IJd *P-t - - ~~~ssiticatiC+n cwcetted rat G.E. NUCLEONICS PROJECT xi I ~@L.%&~--G-ENERAI,@ ELECTRIC z ,m ._.__.-. _ I--..-. By Authority of. COMPANY ._ Atmic Energy Commission Office of Hanford Dire&xl Operations Riohland, Washington Attention; Mr. Carleton Shugg, Manager ./ ALPKA-ROLLED EL'GIL%I jw -879 ' . *_ a. f' Richland, Washington February 6, 1948 , Thla Dclc.Jv-<en! :-; . ' - -*...-- f_ ~~~.s No .__. ._. .s / ~. - J-LccIp%. Fr:*? fi This will con&rm

  1. Evidence for a Weak Iron Core at Earth's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    going from pole to pole than along the equatorial plane-why? One theory is that the grains of iron that make up most of the solid inner core could be aligned in a way that...

  2. Magnetic properties of the iron laminations for CBA magnets

    SciTech Connect (OSTI)

    Tannenbaum, M.J.; Ghosh, A.K.; Robins, K.E.; Sampson, W.B.

    1983-01-01

    The required magnetic properties of the iron for CBA dipoles are for the most part the same as those for conventional accelerators, namely: low coercive force, high permeability at both low and high inductions, and high saturation induction. There are two main differences in the CBA application, (1) the iron is at 3.8/sup 0/K, and (2) the magnetic field in the iron can go as high as 6 Tesla, which is well above saturation. Measurements of the magnetization curves for CBA iron laminations at 300/sup 0/K and 4.2/sup 0/K are presented. The data are analyzed in terms of a simple model in which the variation in saturation induction can be separated from the low field permeability variation. Tolerances on coercive force, permeability, and saturation induction are discussed.

  3. EOS for Armco Iron at pressures less than 100 GPa

    SciTech Connect (OSTI)

    Moss, W.C.

    1984-06-06

    We have constructed an analytic EOS for Armco Iron, at pressures less than 100 GPa using shock data. The efects of the ..cap alpha.. reversible epsilon phase transition have been included.

  4. Percolation Explains How Earth's Iron Core Formed | Stanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... at high pressure (64 GPa) and temperature (3,300 K). a,b, The channel in a has been confirmed to be iron-rich material by element-sensitive nanoscale tomographic imaging; the ...

  5. Evaluation of Characterization Techniques for Iron Pipe Corrosion...

    Office of Scientific and Technical Information (OSTI)

    Films A common problem faced by drinking water studies is that of properly characterizing ... Fe (hydr)oxides used to simulate the iron pipe used in municipal drinking-water systems. ...

  6. Shewanella loihica sp. nov., isolated from iron-rich microbial...

    Office of Scientific and Technical Information (OSTI)

    loihica sp. nov., isolated from iron-rich microbial mats in the Pacific Ocean A novel marine bacterial strain, PV-4T, isolated from a microbial mat located at a hydrothermal vent...

  7. Dopant Site Determination in Iron Oxide Nanoparticles Utilizing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dopant Site Determination in Iron Oxide Nanoparticles Utilizing X-ray Absorption Techniques Monday, September 9, 2013 - 11:00am SLAC, Conference Room 137-322 Presented by Dr....

  8. Probing high-energy spin fluctuations in iron pnictide superconductors...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    spin fluctuations in iron pnictide superconductors and the metal-insulator transition in rare-earth nickelates by soft X-ray RIXS Wednesday, November 18, 2015 - 3:00pm...

  9. Evidence for a Weak Iron Core at Earth's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron Core at Earth's Center Print Seismic waves that pass through the center of the Earth travel faster going from pole to pole than along the equatorial plane-why? One theory...

  10. Method and system for producing metallic iron nuggets

    SciTech Connect (OSTI)

    Iwasaki, Iwao; Kiesel, Richard F.; Englund, David J; Hendrickson, Dave

    2012-12-18

    A method and system for producing metallic iron nuggets may include providing multiple layers of agglomerates, such as briquettes, balls and extrusions, of a reducible mixture of reducing material (such as carbonaceous material) and of a reducible iron bearing material (such as iron oxide) on a hearth material layer (such as carbonaceous material) and providing a coarse overlayer of carbonaceous material over at least some of the agglomerates. Heating the agglomerates of reducible mixture to 1425.degree. C. or 1400.degree. C. or 1375.degree. C. results in formation of an intermediate product of one or more metallic iron nuggets, which may have a sulfur content of less than 0.03%, and slag, which may have less than 5% mass MgO, which may have a ratio of percent by weight sulfur in the slag over percent by weight sulfur in the metallic nuggets of at least about 12 or at least about 15.

  11. Process for removing technetium from iron and other metals

    DOE Patents [OSTI]

    Leitnaker, James M.; Trowbridge, Lee D.

    1999-01-01

    A process for removing technetium from iron and other metals comprises the steps of converting the molten, alloyed technetium to a sulfide dissolved in manganese sulfide, and removing the sulfide from the molten metal as a slag.

  12. Process for removing technetium from iron and other metals

    DOE Patents [OSTI]

    Leitnaker, J.M.; Trowbridge, L.D.

    1999-03-23

    A process for removing technetium from iron and other metals comprises the steps of converting the molten, alloyed technetium to a sulfide dissolved in manganese sulfide, and removing the sulfide from the molten metal as a slag. 4 figs.

  13. Verification of Steelmaking Slags Iron Content Final Technical Progress Report

    SciTech Connect (OSTI)

    J.Y. Hwang

    2006-10-04

    The steel industry in the United States generates about 30 million tons of by-products each year, including 6 million tons of desulfurization and BOF/BOP slag. The recycling of BF (blast furnace) slag has made significant progress in past years with much of the material being utilized as construction aggregate and in cementitious applications. However, the recycling of desulfurization and BOF/BOP slags still faces many technical, economic, and environmental challenges. Previous efforts have focused on in-plant recycling of the by-products, achieving only limited success. As a result, large amounts of by-products of various qualities have been stockpiled at steel mills or disposed into landfills. After more than 50 years of stockpiling and landfilling, available mill site space has diminished and environmental constraints have increased. The prospect of conventionally landfilling of the material is a high cost option, a waste of true national resources, and an eternal material liability issue. The research effort has demonstrated that major inroads have been made in establishing the viability of recycling and reuse of the steelmaking slags. The research identified key components in the slags, developed technologies to separate the iron units and produce marketable products from the separation processes. Three products are generated from the technology developed in this research, including a high grade iron product containing about 90%Fe, a medium grade iron product containing about 60% Fe, and a low grade iron product containing less than 10% Fe. The high grade iron product contains primarily metallic iron and can be marketed as a replacement of pig iron or DRI (Direct Reduced Iron) for steel mills. The medium grade iron product contains both iron oxide and metallic iron and can be utilized as a substitute for the iron ore in the blast furnace. The low grade iron product is rich in calcium, magnesium and iron oxides and silicates. It has a sufficient lime value and

  14. Korea Iron Steel Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Steel Co Ltd Jump to: navigation, search Name: Korea Iron & Steel Co Ltd Place: Changwon, South Gyeongsang, Korea (Republic) Zip: 641 370 Product: Korea-based manufacturer of steel...

  15. Marine Diatoms Survive Iron Droughts in the Ocean by Storing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In particular, phytoplankton, which are aquatic, free-drifting, single-celled organisms that can harvest energy from the sun, have an elevated demand for iron due to the large role ...

  16. Origin of banded iron formations : oceanic crust leaching & self...

    Office of Scientific and Technical Information (OSTI)

    Subject: 58 GEOSCIENCES; IRON; LEACHING; OCEANIC CRUST; ORIGIN Word Cloud More Like This Full Text Journal Articles Find in Google Scholar Find in Google Scholar Search WorldCat ...

  17. Iron speciation in minerals and glasses probed by M [subscript...

    Office of Scientific and Technical Information (OSTI)

    Title: Iron speciation in minerals and glasses probed by M subscript 23 -edge X-ray Raman scattering spectroscopy Authors: Nyrow, A. ; Sternemann, C. ; Wilke, M. ; Gordon, R. A. ...

  18. Modernization of the iron making plant at SOLLAC FOS

    SciTech Connect (OSTI)

    Crayelynghe, M. van; Dufour, A.; Soland, J.; Feret, J.; Lebonvallet, J.

    1995-12-01

    When the blast furnaces at SOLLAC/FOS were relined, the objective being to ensure a worklife of 15 years, it was decided that the iron making plant would be modernized at the same time: the coking plant has been overhauled and renovated and its coking time increased to ensure a worklife of at least 34 years. The surface area of the sinter strand was increased from 400 to 520 m{sup 2}, the burden preparation circuit were simplified, and pig iron production capacity increased from 4.2 to 4.5 million metric tons per year. Coal injection was developed so as to obtain 170 kg/t of pig iron, an expert system was added to ensure more efficient blast furnace operation, and new measures have been carried out for environmental protection. Since these heavy investments have been completed, SOLLAC/FOS is a high-performance iron making plant, allowing it to face new challenges in the future.

  19. Evidence for a Weak Iron Core at Earth's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence for a Weak Iron Core at Earth's Center Print Seismic waves that pass through the center of the Earth travel faster going from pole to pole than along the equatorial...

  20. Nitrogen Atom Transfer From High Valent Iron Nitrides

    SciTech Connect (OSTI)

    Johnson, Michael D.; Smith, Jeremy M.

    2015-10-14

    This report describes the synthesis and reactions of high valent iron nitrides. Organonitrogen compounds such as aziridines are useful species for organic synthesis, but there are few efficient methods for their synthesis. Using iron nitrides to catalytically access these species may allow for their synthesis in an energy-and atom-efficient manner. We have developed a new ligand framework to achieve these goals as well as providing a method for inducing previously unknown reactivity.

  1. SEPARATION OF SCANDIUM VALUES FORM IRON VALUES BY SOLVENT EXTRACTION

    DOE Patents [OSTI]

    Kuhlman, C.W. Jr.; Lang, G.P.

    1961-12-19

    A process is given for separating scandium from trivalent iron values. In this process, an aqueous nitric acid solution is contacted with a water- immiscible alkyl phosphate solution, the aqueous solution containing the values to be separated, whereby the scandium is taken up by the alkyl phosphate. The aqueous so1ution is preferably saturated with magnesium nitrate to retain the iron in the aqueous solution. (AEC)

  2. Comparing Well-Defined Manganese, Iron, Cobalt, and Nickel Ketone

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrosilylation Catalysts Comparing Well-Defined Manganese, Iron, Cobalt, and Nickel Ketone Hydrosilylation Catalysts Authors: Trovitch, R.J. Title: Comparing Well-Defined Manganese, Iron, Cobalt, and Nickel Ketone Hydrosilylation Catalysts Source: Synlett Year: 2014 Volume: published online May 8, 2014 Pages: ABSTRACT: A brief review of manganese-catalyzed hydrosilylation is presented along with a personal account of how the design for the highly active catalyst, (Ph2PPrPDI)Mn, was

  3. High-temperature fabricable nickel-iron aluminides

    DOE Patents [OSTI]

    Liu, Chain T. (Oak Ridge, TN)

    1988-02-02

    Nickel-iron aluminides are described that are based on Ni.sub.3 Al, and have significant iron content, to which additions of hafnium, boron, carbon and cerium are made resulting in Ni.sub.3 Al base alloys that can be fabricated at higher temperatures than similar alloys previously developed. Further addition of molybdenum improves oxidation and cracking resistance. These alloys possess the advantages of ductility, hot fabricability, strength, and oxidation resistance.

  4. Iron Catalysis in Oxidations by Ozone - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Iron Catalysis in Oxidations by Ozone Ames Laboratory Contact AMES About This Technology Technology Marketing Summary Ozone is used commercially for treatment of potable and non-potable water, and as an industrial oxidant. ISU and Ames Laboratory researchers have developed a method for using iron in ozone oxidation that significantly improves the speed of oxidation reactions. Description Ozone is recognized as potent and effective oxidizing agent, and has a

  5. DOE - Office of Legacy Management -- Knoxville Iron Co - TN 07

    Office of Legacy Management (LM)

    Knoxville Iron Co - TN 07 FUSRAP Considered Sites Site: KNOXVILLE IRON CO. (TN.07 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Knoxville , Tennessee TN.07-1 Evaluation Year: 1994 TN.07-2 TN.07-3 Site Operations: Melted uranium contaminated scrap metal in order to test industrial hygiene procedures in the mid-1950s. TN.07-1 Site Disposition: Eliminated - AEC license TN.07-2 Radioactive Materials Handled: Yes Primary Radioactive

  6. Strong Orbital-selective Correlation Effects Unite Iron Chalcogenide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Superconductors | Stanford Synchrotron Radiation Lightsource Strong Orbital-selective Correlation Effects Unite Iron Chalcogenide Superconductors Wednesday, September 30, 2015 Seven years ago when superconductivity was first discovered in the iron-based compounds (FeSCs), one of the very first questions in the field was to find out whether the physics governing superconductivity in these materials were the same or different from the only other known high temperature superconductors (HTSC) -

  7. SLURRY PHASE IRON CATALYSTS FOR INDIRECT COAL LIQUEFACTION

    SciTech Connect (OSTI)

    Abhaya K. Datye

    1998-11-19

    This report describes research conducted to support the DOE program in indirect coal liquefaction. Specifically, they have studied the attrition behavior of iron Fischer-Tropsch catalysts, their interaction with the silica binder and the evolution of iron phases in a synthesis gas conversion process. The results provide significant insight into factors that should be considered in the design of catalysts for converting coal based syngas into liquid fuels.

  8. Panasonic Electric Works Ltd formerly Matsushita Electric Works...

    Open Energy Info (EERE)

    Electric Works Ltd (formerly Matsushita Electric Works) Place: Kadoma-shi, Osaka, Japan Zip: 571-8686 Product: Japanese manufacturer of mainly electric appliances including...

  9. Archaeometallurgical investigation of the iron anchor from the Tantura F shipwreck

    SciTech Connect (OSTI)

    Aronson, A.; Ashkenazi, D.; Barkai, O.; Kahanov, Y.

    2013-04-15

    The Tantura F shipwreck was a coaster or a fishing vessel about 15.7 m long, discovered in the Dor/Tantura lagoon, Israel in 1995. It was dated to between the mid-7th and the end of the 8th centuries CE. Among the finds excavated were two T-shaped type iron anchors. Of the two anchors, one (anchor A) was thoroughly studied by archaeometallurgical methods in order to identify forge-welding lines, to determine the welding quality and to understand the manufacturing technology. The examinations included X-ray radiography, XRF analysis, optical microscopy, SEM/EDS observation and analysis, OES analysis and microhardness tests. The investigation included characterization of the composition, microstructure, thermal treatments, forge-welding junctions and slag analysis. The results revealed a heterogeneous microstructure, rich in glassy, fayalite and wüstite slag. Iron based phases included ferrite, pearlite, cementite and Widmanstätten plates, all typical to wrought iron. The forge-welds of Anchor A were located. Each arm was made of one piece, weighing about 2.5–3 kg and the shank was made of a few 1.5–2 kg pieces. The second anchor (anchor B) was only briefly examined visually and with a few radiographs, which support the results from anchor A. The research results revealed significant information about T-shaped anchors and their manufacturing process, including hot-working processes without any additional heat treatments, and folding techniques. The microstructure was similar to other ancient simple tools such as saws, sickles, axes and mortise chisels, and though the technology to make complicated structures and objects, such as swords, existed at that time, the anchors did not require this sophistication; thus simpler techniques were used, presumably because they were more cost-effective. - Highlights: ► Tantura F was a coaster dated to mid-7th–end-8th centuries. ► Two iron anchors were discovered at the Tantura F shipwreck-site. ► Anchor A was

  10. Working Group Report: Sensors

    SciTech Connect (OSTI)

    Artuso, M.; et al.,

    2013-10-18

    Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In addition the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.

  11. How NIF Works

    ScienceCinema (OSTI)

    None

    2010-09-01

    The National Ignition Facility, located at Lawrence Livermore National Laboratory, is the world's largest laser system... 192 huge laser beams in a massive building, all focused down at the last moment at a 2 millimeter ball containing frozen hydrogen gas. The goal is to achieve fusion... getting more energy out than was used to create it. It's never been done before under controlled conditions, just in nuclear weapons and in stars. We expect to do it within the next 2-3 years. The purpose is threefold: to create an almost limitless supply of safe, carbon-free, proliferation-free electricity; examine new regimes of astrophysics as well as basic science; and study the inner-workings of the U.S. stockpile of nuclear weapons to ensure they remain safe, secure and reliable without the need for underground testing. More information about NIF can be found at:

  12. Study of hydrogen induced cracking in iron

    SciTech Connect (OSTI)

    Armstrong, J.H.

    1985-01-01

    The hydrogen assisted crack growth of Armco iron from cathodic charging was studied using continuous measurements of the modulus and internal friction. A Marx composite piezoelectric oscillator was used to measure resonant frequency and internal friction during the cathodic charging. Internal friction measured before and after cathodic charging was separated into dislocation and magnetic effects. The effects of charging time, vibratory strain amplitude and charging current density were studied. In all cases the modulus decreased continuously during cathodic charging. The internal friction increased rapidly during the early portion of cathodic charging and leveled off during the latter portion. Using a composite sample model (a cracked thin outer layer with a solid core), the change in modulus was found to be proportional to the quantity na/sup 3/..delta..d, where n is the crack density, a is the average crack radius and d is the depth of cracking. The kinetic behavior of both the internal friction and modulus change were found to be a two-part parallel exponential process. The rapid process was quite rapid and was found to be consistent with the initiation and growth of cracks due to the combination of hydrogen and carbon found at grain boundaries. The rapid increase in internal friction during the first process was attributed to the rapid plastic deformation from the initiation of the cracks.

  13. Attrition Resistant Iron-Based Fischer-Tropsch Catalysts.

    SciTech Connect (OSTI)

    Jothimurugesan, K.; Goodwin, J.S.; Spivey, J.J.; Gangwal, S.K.

    1997-09-22

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO and H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. Iron-based (Fe) catalysts are preferred catalysts for F-T when using low CO/H{sub 2} ratio synthesis gases derived from modern coal gasifiers. This is because in addition to reasonable F-T activity, the F-T catalysts also possess high water gas shift (WGS) activity. However, a serious problem with the use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, making the separation of catalyst from the oil/wax product very difficult if not impossible, and results in a steady loss of catalyst from the reactor. The objectives of this research are to develop a better understanding of the parameters affecting attrition resistance of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance. Catalyst preparations will be based on the use of spray drying and will be scalable using commercially available equipment. The research will employ among other measurements, attrition testing and F-T synthesis, including long duration slurry reactor runs in order to ascertain the degree of success of the various preparations. The goal is to develop an Fe catalyst which can be used in a SBCR having only an internal filter for separation of the catalyst from the liquid product, without sacrificing F-T activity and selectivity.

  14. Reservoir Modeling Working Group Meeting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reservoir Modeling Working Group Meeting 2012 GEOTHERMAL TECHNOLOGIES PROGRAM PEER REVIEW ... History Past Meetings: March 2010 IPGT Modeling Working Group Meeting May 2010 GTP Peer ...

  15. CRAD, Work Controls Assessment Plan

    Broader source: Energy.gov [DOE]

    Management should have an established work control process in place with authorized, controlled and documented methods that provide an accurate status of the work to be performed.

  16. Interplay between interband coupling and ferromagnetism in iron pnictide superconductor/ferromagnet/iron pnictide superconductor junctions

    SciTech Connect (OSTI)

    Liu, S. Y.; Tao, Y. C.; Hu, J. G.

    2014-08-28

    An extended eight-component Bogoliubov-de Gennes equation is applied to study the Josephson effect between iron-based superconductors (SCs) with s{sub }-wave pairing symmetry, separated by an ferromagnet (FM). The feature of damped oscillations of critical Josephson current as a function of FM thickness, the split of the peaks induced by the interband coupling is much different from that for the junction with the s{sub }-wave SCs replaced by s{sub ++}-wave ones. In particular, a 0?? transition as a function of interband coupling strength ? is found to always exhibit with the corresponding dip shifting toward the larger ? due to enhancing the spin polarization in the FM, while there exits no 0?? transition for the SC with s{sub ++}-wave pairing symmetry. The two features can be used to identify the pairing symmetry in the iron pnictide SC different from the s{sub ++}-wave one in MgB{sub 2}. Experimentally, by adjusting the doping level in the s{sub }-wave SCs, one can vary ?.

  17. Novel Investigation of Iron Cross Sections via Spherical Shell Transmission Measurements and Particle Transport Calculations for Material Embrittlement Studies. Quarterly Status Report 5

    SciTech Connect (OSTI)

    Dr. Derek W. Storm

    2002-04-25

    Previously, measurements were made of the transmission of 14 MeV neutrons through various spherical shell thicknesses of iron in a comprehensive investigation at Lawrence Livermore National Laboratory (LLNL) about 30 years ago. Two of these spheres, composed of hemispherical sections, have appropriate dimensions for the lower energy neutron measurements that we propose to make. Due to their interest in our experimental results, LLNL has agreed to make these hemispheres available for our work. Those hemispheres have been shipped. In addition, a spherical iron shell, composed of two hemispherical sections with an annular thickness of approximately 1 inch, was fabricated at NEST. However, since we will need additional hemispheres for our experiments, we purchased a radius cutter that will allow us to fabricate hemispheres as large as 5 inches in radius at the Ohio University Machine Shop. This will give us maximum flexibility to adapt to the needs of the spherical shell transmission experiments. High purity (99.94% iron) Armco iron has been obtained which can be used to make the smaller hemispheres. Larger hemispheres will be made using ASTM designation steel with high iron content. In all cases compositional analyses will be made of the hemispheres.

  18. The effect of iron dilution on strength of nickel/steel and Monel/steel welds

    SciTech Connect (OSTI)

    Fout, S.L.; Wamsley, S.D.

    1983-03-28

    The weld strength, as a function of iron content, for nickel/steel and Monel/steel welds was determined. Samples were prepared using a Gas Metal Arc (GMAW) automatic process to weld steel plate together with nickel or Monel to produce a range of iron contents typical of weld compositions. Tensile specimens of each iron content were tested to obtain strength and ductility measurements for that weld composition. Data indicate that at iron contents of less than 20% iron in a nickel/steel weld, the weld fails at the weld interface, due to a lack of fusion. Between 20% and 35% iron, the highest iron dilution that could be achieved in a nickel weld, the welds were stronger than the steel base metal. This indicates that a minimum amount of iron dilution (20%) is necessary for good fusion and optimum strength. On the other hand for Monel/steel welds, test results showed that the welds had good strength and integrity between 10% and 27% iron in the weld. Above 35% iron, the welds have less strength and are more brittle. The 35% iron content also corresponds to the iron dilution in Monel welds that has been shown to produce an increase in corrosion rate. This indicates that the iron dilution in Monel welds should be kept below 35% iron to maximize both the strength and corrosion resistance. 2 refs., 6 figs., 3 tabs.

  19. Video Shoot Scope of Work

    Broader source: Energy.gov [DOE]

    Video Shoot Scope of Work, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  20. Clean Energy Works Oregon (CEWO)

    Broader source: Energy.gov [DOE]

    Presents Clean Energy Works Oregon's program background and the four easy steps to lender selection.

  1. Radiation Safety Work Control Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Safety Work Control Form (see instructions on pg-3) Rev. May 2014 Area: Form #: Date: Preliminary Applicability Screen: (a) Will closing the beam line injection stoppers mitigate the radiological hazards introduced by the proposed work? Yes No (b) Can the closed state of the beam line injection stoppers be assured during the proposed work (ie., work does NOT involve injection stoppers or associated HPS)? Yes No If the answers to both questions are yes, the work can be performed safely

  2. Insights into the Structure and Metabolic Function of Microbes That Shape Pelagic Iron-Rich Aggregates ( Iron Snow )

    SciTech Connect (OSTI)

    Lu, S; Chourey, Karuna; REICHE, M; Nietzsche, S; Shah, Manesh B; Hettich, Robert {Bob} L; Kusel, K

    2013-01-01

    Metaproteomics combined with total nucleic acid-based methods aided in deciphering the roles of microorganisms in the formation and transformation of iron-rich macroscopic aggregates (iron snow) formed in the redoxcline of an acidic lignite mine lake. Iron snow had high total bacterial 16S rRNA gene copies, with 2 x 109 copies g (dry wt)-1 in the acidic (pH 3.5) central lake basin and 4 x 1010 copies g (dry wt)-1 in the less acidic (pH 5.5) northern lake basin. Active microbial communities in the central basin were dominated by Alphaproteobacteria (36.6%) and Actinobacteria (21.4%), and by Betaproteobacteria (36.2%) in the northern basin. Microbial Fe-cycling appeared to be the dominant metabolism in the schwertmannite-rich iron snow, because cloning and qPCR assigned up to 61% of active bacteria as Fe-cycling bacteria (FeB). Metaproteomics revealed 70 unique proteins from central basin iron snow and 283 unique proteins from 43 genera from northern basin. Protein identification provided a glimpse into in situ processes, such as primary production, motility, metabolism of acidophilic FeB, and survival strategies of neutrophilic FeB. Expression of carboxysome shell proteins and RubisCO indicated active CO2 fixation by Fe(II) oxidizers. Flagellar proteins from heterotrophs indicated their activity to reach and attach surfaces. Gas vesicle proteins related to CO2-fixing Chlorobium suggested that microbes could influence iron snow sinking. We suggest that iron snow formed by autotrophs in the redoxcline acts as a microbial parachute, since it is colonized by motile heterotrophs during sinking which start to dissolve schwertmannite.

  3. Separation of Fischer-Tropsch Wax Products from Ultrafine Iron Catalyst Particles

    SciTech Connect (OSTI)

    James K. Neathery; Gary Jacobs; Amitava Sarkar; Burtron H. Davis

    2005-09-30

    In this reporting period, a study of ultra-fine iron catalyst filtration was initiated to study the behavior of ultra-fine particles during the separation of Fischer-Tropsch Synthesis (FTS) liquids filtration. The overall focus of the program is with slurry-phase FTS in slurry bubble column reactor systems. Hydrocarbon products must be separated from catalyst particles before being removed from the reactor system. An efficient wax product/catalyst separation system is a key factor for optimizing operating costs for iron-based slurry-phase FTS. Previous work has focused on catalyst particle attrition and the formation of ultra-fine iron carbide and/or carbon particles. With the current study, we are investigating how the filtration properties are affected by these chemical and physical changes of the catalyst slurry during activation/synthesis. The change of particle size during the slurry-phase FTS has monitored by withdrawing catalyst sample at different TOS. The measurement of dimension of the HRTEM images of samples showed a tremendous growth of the particles. Carbon rims of thickness 3-6 nm around the particles were observed. This growth in particle size was not due to carbon deposition on the catalyst. A conceptual design and operating philosophy was developed for an integrated wax filtration system for a 4 liter slurry bubble column reactor to be used in Phase II of this research program. The system will utilize a primary inertial hydroclone followed by a Pall Accusep cross-flow membrane. Provisions for cleaned permeate back-pulsing will be included to as a flux maintenance measure.

  4. ATTRITION RESISTANT IRON-BASED FISCHER-TROPSCH CATALYSTS

    SciTech Connect (OSTI)

    James G. Goodwin, Jr.; James J. Spivey; K. Jothimurugesan; Santosh K. Gangwal

    1999-03-29

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. Iron-based (Fe) catalysts are preferred catalysts for F-T when using low CO/H2 ratio synthesis gases derived from modern coal gasifiers. This is because in addition to reasonable F-T activity, the F-T catalysts also possess high water gas shift (WGS) activity. However, a serious problem with the use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, making the separation of catalyst from the oil/wax product very difficult if not impossible, and results in a steady loss of catalyst from the reactor. The objectives of this research are to develop a better understanding of the parameters affecting attrition resistance of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance. Catalyst preparations will be based on the use of spray drying and will be scalable using commercially available equipment. The research will employ among other measurements, attrition testing and F-T synthesis, including long duration slurry reactor runs in order to ascertain the degree of success of the various preparations. The goal is to develop an Fe catalyst which can be used in a SBCR having only an internal filter for separation of the catalyst from the liquid product, without sacrificing F-T activity and selectivity. The effect of silica addition via coprecipitation and as a binder to a doubly promoted Fischer-Tropsch synthesis iron catalyst (100 Fe/5 Cu/4.2 K) was studied. The catalysts were prepared by coprecipitation, followed by binder addition and drying in a 1 m

  5. September 2012, Work Force Retention Work Group Status Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Work Force Retention Work Group Status Overview 2 Subgroups: Pro-Force and Non-Pro-Force Pro-Force Subgroup: Accomplishments: 1. Completion of 10 CFR 1046 Protective Force ...

  6. Method and system for producing metallic iron nuggets

    DOE Patents [OSTI]

    Iwasaki, Iwao; Lindgren, Andrew J.; Kiesel, Richard F.

    2013-06-25

    Method and system for producing metallic nuggets includes providing reducible mixture of reducing material (such as carbonaceous material) and reducible iron bearing material (such as iron oxide) that may be arranged in discrete portions, such as mounds or briquettes, on at least a portion of a hearth material layer (such as carbonaceous material). A coarse overlayer of carbonaceous material may be provided over at least some of the discrete portions. Heating the reducible mixture to 1425.degree. C. or 1400.degree. C. or 1375.degree. C. results in formation of an intermediate product of one or more metallic iron nuggets, which may have a sulfur content of less than 0.03%, and slag, which may have less than 5% mass MgO, which may have a ratio of percent by weight sulfur in the slag over percent by weight sulfur in the metallic nuggets of at least about 12 or at least about 15.

  7. Welding studies of nickel aluminide and nickel-iron aluminides

    SciTech Connect (OSTI)

    Santella, M.L.; David, S.A.; Horton, J.A.; White, C.L.; Liu, C.T.

    1985-08-01

    Because welding is often used during the fabrication of structural components, one of the key issues in the development of nickel aluminides and nickel-iron aluminides for engineering applications is their weldability. The goals of this study were to characterize weldment microstructures and to identify some of the factors controlling weldability of ductile Ni/sub 3/Al alloys. The alloys used in this initial study were Ni/sub 3/Al containing 500 wppm boron and Ni/sub 3/Al containing 10 at. % iron and either 500 wppm or 20 wppm boron. Full-penetration autogenous welds were made in sheet shock by the electron beam (EB) and gas tungsten arc (GTA) processes. The main process variables were travel speed and preheat. The as-welded coupons were examined visually and in detail by the usual optical and electron metallographic methods. Weldments of boron-doped Ni/sub 3/Al were composed of nearly 100% ordered ..gamma..' phase. Weldments of the nickel-iron aluminides were ..gamma..' + ..beta..' phase mixtures, with martensitic ..beta..' distributed interdendritically in the fusion zone and decorating grain boundaries in the heat-affected zone. All welds made in this particular boron-doped Ni/sub 3/Al alloy contained cracks. Weldability improved with the addition of iron, and defect-free welds were made in the nickel-iron aluminides by both EB and GTA welding. Nevertheless, the iron-containing alloys were susceptible to cracking, and their weldability was affected by boron concentration, welding speed, and (for GTA) gas shielding. Defect-free welds were found to have good tensile properties relative to those of the base metal. 34 refs., 17 figs., 2 tabs.

  8. Electrolytic photodissociation of chemical compounds by iron oxide photochemical diodes

    DOE Patents [OSTI]

    Somorjai, Gabor A.; Leygraf, Christofer H.

    1985-01-01

    Chemical compounds can be dissociated by contacting the same with a p/n type semi-conductor photochemical diode having visible light as its sole source of energy. The photochemical diode consists of low cost, readily available materials, specifically polycrystalline iron oxide doped with silicon in the case of the n-type semi-conductor electrode, and polycrystalline iron oxide doped with magnesium in the case of the p-type electrode. So long as the light source has an energy greater than 2.2 electron volts, no added energy source is needed to achieve dissociation.

  9. Electronic spin state of iron in lower mantle perovskite

    SciTech Connect (OSTI)

    Li, J.; Struzhkin, V.; Mao, H.-k.; Shu, J.; Hemley, R.; Fei, Y.; Mysen, B.; Dera, P.; Parapenka, V.; Shen, G.

    2010-11-16

    The electronic spin state of iron in lower mantle perovskite is one of the fundamental parameters that governs the physics and chemistry of the most voluminous and massive shell in the Earth. We present experimental evidence for spin-pairing transition in aluminum-bearing silicate perovskite (Mg,Fe)(Si,Al)O{sub 3} under the lower mantle pressures. Our results demonstrate that as pressure increases, iron in perovskite transforms gradually from the initial high-spin state toward the final low-spin state. At 100 GPa, both aluminum-free and aluminum-bearing samples exhibit a mixed spin state. The residual magnetic moment in the aluminum-bearing perovskite is significantly higher than that in its aluminum-free counterpart. The observed spin evolution with pressure can be explained by the presence of multiple iron species and the occurrence of partial spin-paring transitions in the perovskite. Pressure-induced spin-pairing transitions in the perovskite would have important bearing on the magnetic, thermoelastic, and transport properties of the lower mantle, and on the distribution of iron in the Earth's interior. The lower mantle constitutes more than half of the Earth's interior by volume (1), and it is believed to consist predominantly (80-100%) of (Mg,Fe)(Si,Al)O{sub 3} perovskite (hereafter called perovskite), with up to 20% (Mg,Fe)O ferropericlase (2). The electronic spin state of iron has direct influence on the physical properties and chemical behavior of its host phase. Hence, knowledge on the spin state of iron is important for the interpretation of seismic observations, geochemical modeling, and geodynamic simulation of the Earth's deep interior (3, 4). Crystal field theory (4, 5) and band theory (6) predicted that a high-spin to low-spin transition would occur as a result of compression. To date, no experimental data exist on the spin sate of iron in Al-bearing perovskite. To detect possible spinpairing transition of iron in perovskite under the lower mantle

  10. The Iron Spin Transition in the Earth's Lower Mantle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Iron Spin Transition in the Earth's Lower Mantle Print It is now known that the iron present in minerals of the lower mantle of the Earth undergoes a pressure-induced transition with pairing of the spins of its 3d electrons. A team from the University of California, Berkeley, Tel Aviv University, and Lawrence Livermore National Laboratory has used x-ray diffraction at very high pressure to investigate the effects of this transition on the elastic properties of magnesiowüstite (Mg1-xFex)O,

  11. The Iron Spin Transition in the Earth's Lower Mantle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Iron Spin Transition in the Earth's Lower Mantle Print It is now known that the iron present in minerals of the lower mantle of the Earth undergoes a pressure-induced transition with pairing of the spins of its 3d electrons. A team from the University of California, Berkeley, Tel Aviv University, and Lawrence Livermore National Laboratory has used x-ray diffraction at very high pressure to investigate the effects of this transition on the elastic properties of magnesiowüstite (Mg1-xFex)O,

  12. The Iron Spin Transition in the Earth's Lower Mantle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Iron Spin Transition in the Earth's Lower Mantle Print It is now known that the iron present in minerals of the lower mantle of the Earth undergoes a pressure-induced transition with pairing of the spins of its 3d electrons. A team from the University of California, Berkeley, Tel Aviv University, and Lawrence Livermore National Laboratory has used x-ray diffraction at very high pressure to investigate the effects of this transition on the elastic properties of magnesiowüstite (Mg1-xFex)O,

  13. The Iron Spin Transition in the Earth's Lower Mantle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Iron Spin Transition in the Earth's Lower Mantle Print It is now known that the iron present in minerals of the lower mantle of the Earth undergoes a pressure-induced transition with pairing of the spins of its 3d electrons. A team from the University of California, Berkeley, Tel Aviv University, and Lawrence Livermore National Laboratory has used x-ray diffraction at very high pressure to investigate the effects of this transition on the elastic properties of magnesiowüstite (Mg1-xFex)O,

  14. Recovery of iron oxide from coal fly ash

    DOE Patents [OSTI]

    Dobbins, Michael S.; Murtha, Marlyn J.

    1983-05-31

    A high quality iron oxide concentrate, suitable as a feed for blast and electric reduction furnaces is recovered from pulverized coal fly ash. The magnetic portion of the fly ash is separated and treated with a hot strong alkali solution which dissolves most of the silica and alumina in the fly ash, leaving a solid residue and forming a precipitate which is an acid soluble salt of aluminosilicate hydrate. The residue and precipitate are then treated with a strong mineral acid to dissolve the precipitate leaving a solid residue containing at least 90 weight percent iron oxide.

  15. Effects of titanium and zirconium on iron aluminide weldments

    SciTech Connect (OSTI)

    Burt, R.P.; Edwards, G.R.; David, S.A.

    1996-08-01

    Iron aluminides form a coarse fusion zone microstructure when gas-tungsten arc welded. This microstructure is susceptible to hydrogen cracking when water vapor is present in the welding environment. Because fusion zone microstructural refinement can reduce the hydrogen cracking susceptibility, titanium was used to inoculate the weld pool in iron aluminide alloy FA-129. Although the fusion zone microstructure was significantly refined by this method, the fracture stress was found to decrease with titanium additions. This decrease is attributed to an increase in inclusions at the grain boundaries.

  16. The Iron Spin Transition in the Earth's Lower Mantle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Iron Spin Transition in the Earth's Lower Mantle Print It is now known that the iron present in minerals of the lower mantle of the Earth undergoes a pressure-induced transition with pairing of the spins of its 3d electrons. A team from the University of California, Berkeley, Tel Aviv University, and Lawrence Livermore National Laboratory has used x-ray diffraction at very high pressure to investigate the effects of this transition on the elastic properties of magnesiowüstite (Mg1-xFex)O,

  17. The Iron Spin Transition in the Earth's Lower Mantle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Iron Spin Transition in the Earth's Lower Mantle Print It is now known that the iron present in minerals of the lower mantle of the Earth undergoes a pressure-induced transition with pairing of the spins of its 3d electrons. A team from the University of California, Berkeley, Tel Aviv University, and Lawrence Livermore National Laboratory has used x-ray diffraction at very high pressure to investigate the effects of this transition on the elastic properties of magnesiowüstite (Mg1-xFex)O,

  18. Work with Us | Buildings | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work with Us At NREL, industry, universities, and government agencies have many opportunities to take advantage of our residential and commercial buildings expertise. Here's how you can work with us to improve the energy efficiency of your buildings. NREL's award-winning work with the commercial and public sectors to improve building energy performance is central to its mission. Learn about our awards. Partner with Us You can work with our experts and use NREL's outstanding facilities and

  19. Training Work Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Outreach Forums Focus Group and Work Group Activities Focus Group Training Work Group 10 CFR 851 Implementation Work Group Workforce Retention Work Group Strategic Initiatives Work ...

  20. Controlled Phase and Tunable Magnetism in Ordered Iron Oxide Nanotube Arrays Prepared by Atomic Layer Deposition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Yijun; Liu, Ming; Peng, Bin; Zhou, Ziyao; Chen, Xing; Yang, Shu-Ming; Jiang, Zhuang-De; Zhang, Jie; Ren, Wei; Ye, Zuo-Guang

    2016-01-27

    Highly-ordered and conformal iron oxide nanotube arrays on an atomic scale are successfully prepared by atomic layer deposition (ALD) with controlled oxidization states and tunable magnetic properties between superparamagnetism and ferrimagnetism. Non-magnetic α-Fe2O3 and superparamagnetic Fe2O3with a blocking temperature of 120 K are in-situ obtained by finely controlling the oxidation reaction. Both of them exhibit a very small grain size of only several nanometers due to the nature of atom-by-atom growth of the ALD technique. Post-annealing α-Fe2O3 in a reducing atmosphere leads to the formation of the spinel Fe3O4 phase which displays a distinct ferrimagnetic anisotropy and the Verwey metal-insulatormore » transition that usually takes place only in single crystal magnetite or thick epitaxial films at low temperatures. Finally, the ALD deposition of iron oxide with well-controlled phase and tunable magnetism demonstrated in this work provides a promising opportunity for the fabrication of 3D nano-devices to be used in catalysis, spintronics, microelectronics, data storages and bio-applications.« less

  1. ITP Steel: Energy and Environmental Profile fo the U.S. Iron...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy and Environmental Profile fo the U.S. Iron and Steel Industry ITP Steel: Energy and Environmental Profile fo the U.S. Iron and Steel Industry steelprofile.pdf (581.28 KB) ...

  2. ITmk3: High-Quality Iron Nuggets Using a Rotary Hearth Furnace

    Broader source: Energy.gov [DOE]

    The industrial sector consumes 30% of all U.S. energy consumption, of which about half (1.5 quad) is consumed by iron and steel production. Despite steadily increasing demand the iron and steel...

  3. Iron Pyrite Thin Films Synthesized from an Fe(acac)[subscript...

    Office of Scientific and Technical Information (OSTI)

    Iron Pyrite Thin Films Synthesized from an Fe(acac)subscript 3 Ink Citation Details In-Document Search Title: Iron Pyrite Thin Films Synthesized from an Fe(acac)subscript 3 Ink...

  4. Solvent Tuning of Properties of Iron-Sulfur Clusters in Proteins

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Proteins Figure 1. Schematic repre-sentation of the common active-site iron-sulfur cluster structural motif. Proteins containing Fe4S4 iron-sulfur clusters are ubiquitous in...

  5. Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project Scoping and Feasibility Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project Scoping and Feasibility ...

  6. Magnetic states of the two-leg-ladder alkali metal iron selenides...

    Office of Scientific and Technical Information (OSTI)

    states of the two-leg-ladder alkali metal iron selenides AFe2Se3 Prev Next Title: Magnetic states of the two-leg-ladder alkali metal iron selenides AFe2Se3 Authors: Luo, ...

  7. Studies of anisotropy of iron based superconductors

    SciTech Connect (OSTI)

    Murphy, Jason

    2013-05-15

    To study the electronic anisotropy in iron based superconductors, the temperature dependent London penetration depth, {Delta}{lambda}#1;#21;(T), have been measured in several compounds, along with the angular dependent upper critical field, H{sub c2}(T). Study was undertaken on single crystals of Ba(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2} with x=0.108 and x=0.127, in the overdoped range of the doping phase diagram, characterized by notable modulation of the superconducting gap. Heavy ion irradiation with matching field doses of 6 T and 6.5 T respectively, were used to create columnar defects and to study their effect on the temperature {Delta}{lambda}#1;#21;(T). The variation of the low-temperature penetration depth in both pristine and irradiated samples was #12;tted with a power-law function {Delta}{lambda}#1;#21;(T) = AT{sup n}. Irradiation increases the magnitude of the pre-factor A and decreases the exponent n, similar to the effect on the optimally doped samples. This finding supports the universal s{sub {+-}}#6; scenario for the whole doping range. Knowing that the s{sub {+-}}#6; gap symmetry exists across the superconducting dome for the electron doped systems, we next looked at {lambda}#21;(T), in optimally - doped, SrFe{sub 2}(As{sub 1-x}P{sub x}){sub 2}, x =0.35. Both, as-grown (T{sub c} ~ #25;25 K) and annealed (T{sub c} ~ #25;35 K) single crystals of SrFe{sub 2}(As{sub 1-x}P{sub x}){sub 2} were measured. Annealing decreases the absolute value of the London penetration depth from #21;{lambda}(0) = 300 {+-}#6; 10 nm in as-grown samples to {lambda}#21;(0) = 275{+-}#6;10 nm. At low temperatures, {lambda}#21;(T) #24;~ T indicates a superconducting gap with line nodes. Analysis of the full-temperature range superfluid density is consistent with the line nodes, but differs from the simple single-gap d-wave. The observed behavior is very similar to that of BaFe{sub 2}(As{sub 1-x}P{sub x}){sub 2}, showing that isovalently substituted pnictides are inherently

  8. Manufacturing Energy and Carbon Footprint- Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Manufacturing Energy and Carbon Footprint for Iron and Steel Sector (NAICS 3311, 3312) with Total Energy Input

  9. Bandwidth Study U.S. Iron and Steel Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Iron and Steel Manufacturing Bandwidth Study U.S. Iron and Steel Manufacturing Bandwidth Study U.S. Iron and Steel Manufacturing Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. iron and steel manufacturing. The study relies on multiple sources to estimate the energy used in

  10. Chromium modified nickel-iron aluminide useful in sulfur bearing environments

    DOE Patents [OSTI]

    Cathcart, John V.; Liu, Chain T.

    1989-06-13

    An improved nickel-iron aluminide containing chromium and molybdenum additions to improve resistance to sulfur attack.

  11. Interplay between superconductivity and magnetism in iron-based superconductors

    SciTech Connect (OSTI)

    Chubukov, Andrey V

    2015-06-10

    This proposal is for theoretical work on strongly correlated electron systems, which are at the center of experimental and theoretical activities in condensed-matter physics. The interest to this field is driven fascinating variety of observed effects, universality of underlying theoretical ideas, and practical applications. I propose to do research on Iron-based superconductors (FeSCs), which currently attract high attention in the physics community. My goal is to understand superconductivity and magnetism in these materials at various dopings, the interplay between the two, and the physics in the phase in which magnetism and superconductivity co-exist. A related goal is to understand the origin of the observed pseudogap-like behavior in the normal state. My research explores the idea that superconductivity is of electronic origin and is caused by the exchange of spin-fluctuations, enhanced due to close proximity to antiferromagnetism. The multi-orbital/multi-band nature of FeSCs opens routes for qualitatively new superconducting states, particularly the ones which break time-reversal symmetry. By all accounts, the coupling in pnictdes is below the threshold for Mott physics and I intend to analyze these systems within the itinerant approach. My plan is to do research in two stages. I first plan to address several problems within weak-coupling approach. Among them: (i) what sets stripe magnetic order at small doping, (ii) is there a preemptive instability into a spin-nematic state, and how stripe order affects fermions; (iii) is there a co-existence between magnetism and superconductivity and what are the system properties in the co-existence state; (iv) how superconductivity emerges despite strong Coulomb repulsion and can the gap be s-wave but with nodes along electron FSs, (v) are there complex superconducting states, like s+id, which break time reversal symmetry. My second goal is to go beyond weak coupling and derive spin-mediated, dynamic interaction between

  12. WORK PLAN FOR ENVIRONMENTAL WORK PLAN FOR ENVIRONMENTAL WORK PLAN FOR ENVIRONMENTAL

    Office of Legacy Management (LM)

    WORK PLAN FOR ENVIRONMENTAL WORK PLAN FOR ENVIRONMENTAL WORK PLAN FOR ENVIRONMENTAL WORK PLAN FOR ENVIRONMENTAL RESTORATION OF THE DOE MOUND RESTORATION OF THE DOE MOUND RESTORATION OF THE DOE MOUND RESTORATION OF THE DOE MOUND SITE, THE MOUND 2000 APPROACH SITE, THE MOUND 2000 APPROACH SITE, THE MOUND 2000 APPROACH SITE, THE MOUND 2000 APPROACH FEBRUARY 1999 Final (Revision 0) Department of Energy Babcock & Wilcox of Ohio Mr. Daniel Bird AICP, Planning Manager Miamisburg Mound Community

  13. July 2012, Work Force Retention Work Group Status Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Work Force Retention Work Group Status Overview Accomplishments: 1. Progress on the completion of the 10 CFR 1046 modifications to address barriers to workforce retention. Written response to public comment is being drafted by HS-51. 2. Pro-Force (PF) union representative, Randy Lawson, identified this accomplishment as the single most significant step toward PF workforce retention in over 20 years. 3. Draft re-charter of PF Career Options Committee (PFCOC) to establish a PF Working Group

  14. Atomic-Scale Design of Iron Fischer-Tropsch Catalysts; A Combined Computational Chemistry, Experimental, and Microkinetic Modeling Approach

    SciTech Connect (OSTI)

    Manos Mavrikakis; James Dumesic; Rahul Nabar; Calvin Bartholonew; Hu Zou; Uchenna Paul

    2008-09-29

    This work focuses on (1) searching/summarizing published Fischer-Tropsch synthesis (FTS) mechanistic and kinetic studies of FTS reactions on iron catalysts; (2) preparation and characterization of unsupported iron catalysts with/without potassium/platinum promoters; (3) measurement of H{sub 2} and CO adsorption/dissociation kinetics on iron catalysts using transient methods; (3) analysis of the transient rate data to calculate kinetic parameters of early elementary steps in FTS; (4) construction of a microkinetic model of FTS on iron, and (5) validation of the model from collection of steady-state rate data for FTS on iron catalysts. Three unsupported iron catalysts and three alumina-supported iron catalysts were prepared by non-aqueous-evaporative deposition (NED) or aqueous impregnation (AI) and characterized by chemisorption, BET, temperature-programmed reduction (TPR), extent-of-reduction, XRD, and TEM methods. These catalysts, covering a wide range of dispersions and metal loadings, are well-reduced and relatively thermally stable up to 500-600 C in H{sub 2} and thus ideal for kinetic and mechanistic studies. Kinetic parameters for CO adsorption, CO dissociation, and surface carbon hydrogenation on these catalysts were determined from temperature-programmed desorption (TPD) of CO and temperature programmed surface hydrogenation (TPSR), temperature-programmed hydrogenation (TPH), and isothermal, transient hydrogenation (ITH). A microkinetic model was constructed for the early steps in FTS on polycrystalline iron from the kinetic parameters of elementary steps determined experimentally in this work and from literature values. Steady-state rate data were collected in a Berty reactor and used for validation of the microkinetic model. These rate data were fitted to 'smart' Langmuir-Hinshelwood rate expressions derived from a sequence of elementary steps and using a combination of fitted steady-state parameters and parameters specified from the transient

  15. file://\\\\Bellview\\TeamWorks\\TRUTeamWorks.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    team March 4, 2004 The Big Story Raising crane Topics Characterization News ... Refurbishment of one crane has been successfully completed and work on the second crane is ...

  16. Oxide Dispersion Strengthened Iron Aluminide by CVD Coated Powders

    SciTech Connect (OSTI)

    Asit Biswas Andrew J. Sherman

    2006-09-25

    This I &I Category2 program developed chemical vapor deposition (CVD) of iron, aluminum and aluminum oxide coated iron powders and the availability of high temperature oxidation, corrosion and erosion resistant coating for future power generation equipment and can be used for retrofitting existing fossil-fired power plant equipment. This coating will provide enhanced life and performance of Coal-Fired Boilers components such as fire side corrosion on the outer diameter (OD) of the water wall and superheater tubing as well as on the inner diameter (ID) and OD of larger diameter headers. The program also developed a manufacturing route for readily available thermal spray powders for iron aluminide coating and fabrication of net shape component by powder metallurgy route using this CVD coated powders. This coating can also be applid on jet engine compressor blade and housing, industrial heat treating furnace fixtures, magnetic electronic parts, heating element, piping and tubing for fossil energy application and automotive application, chemical processing equipment , heat exchanger, and structural member of aircraft. The program also resulted in developing a new fabrication route of thermal spray coating and oxide dispersion strengthened (ODS) iron aluminide composites enabling more precise control over material microstructures.

  17. Friedel-Like Oscillations from Interstitial Iron in Superconducting...

    Office of Scientific and Technical Information (OSTI)

    Fe1+yTe0.62Se0.38 Citation Details In-Document Search Title: Friedel-Like Oscillations from Interstitial Iron in Superconducting Fe1+yTe0.62Se0.38 Using polarized and ...

  18. Deactivation by carbon of iron catalysts for indirect liquefaction

    SciTech Connect (OSTI)

    Bartholomew, C H

    1991-02-14

    Progress is reported for a four-year fundamental investigation of carbon formation and its effects on the activity and selectivity of promoted iron catalysts for FT synthesis, the objectives of which were to (1) determine rates and mechanisms of carbon deactivation of unsupported Fe and Fe/K catalysts during CO hydrogenation and (2) model the global rates of deactivation at the surface of the catalyst for the same catalysts. A computer-automated reactor system to be used in the kinetic and deactivation studies was designed, constructed and tested. Kinetic data for CO hydrogenation on unsupported, unpromoted iron, 99% Fe/1% Al{sub 2}O{sub 3}, and K-promoted 99% Fe/1% Al{sub 2}O{sub 3} catalysts were obtained as functions of temperature, reactant particle pressures and time. The activity/selectivity and kinetic data are consistent with those previously reported for supported, unpromoted and promoted iron. Two kinds of deactivation were observed during FT synthesis on these samples: (1) loss of surface area after reduction of unsupported, unpromoted iron at 400{degree}C and (2) loss of activity with time due to carbon deposition, especially in the case of K-promoted 99% Fe/1% A1{sub 2}O{sub 3}. Deactivation rate data were obtained for CO hydrogenation on promoted Fe as a function of time, temperature, and H{sub 2}/CO ratio. 50 refs., 24 figs., 5 tabs.

  19. Work For Others (Non-Department of Energy Funded Work)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-09-28

    Work for Others (WFO) is the performance of work for non-Department of Energy (DOE) entities by DOE/National Nuclear Security Administration (NNSA) and/or their respective contractor personnel or the use of DOE/NNSA facilities that is not directly funded by DOE appropriations. Cancels DOE O 481.1A.

  20. Work For Others (Non-Department of Energy Funded Work)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-03

    Work for Others (WFO) is the performance of work for non-Department of Energy (DOE) entities by DOE/National Nuclear Security Administration (NNSA) and/or their respective contractor personnel or the use of DOE/NNSA facilities that is not directly funded by DOE appropriations. WFO has the following objectives. Cancels DOE O 481.1.

  1. Working with SRNL - Technology Partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    16/2016 SEARCH SRNL GO SRNL Home Technology Partnerships Working with SRNL Technology Partnerships Work for Others and Cooperative Research and Development Agreements SRNL is pleased to provide a variety of business arrangements whereby our technologies or capabilities can be utilized to benefit the general public. We welcome opportunities to bring new technologies to the marketplace by closely working with industry, universities, or state and local government agencies. With its wide spectrum of

  2. Physics Division Work Planning Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Requirements The following is Physics Division requirements related to work planning, control and authorization for work projects and test set ups in division work areas across the laboratory. For the testing and commissioning of experimental equipment the consequences/cost of said equipment should receive careful consideration when doing the risk analysis. * Any small setup or task with total duration of less than two weeks requires an informal task hazard analysis. Informal means we can do

  3. Radiation Safety Work Control Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Safety Work Control Form (see instructions on pg-3) Rev. May 2014 Area: Form : ... Safety Office (namesignaturedate) Radiation Physics (namesignaturedate) Section 4: ...

  4. Module 2- Work Breakdown Structure

    Broader source: Energy.gov [DOE]

    This module defines and illustrates the Work Breakdown Structure (WBS), WBS dictionary, Organizational Breakdown Structure (OBS) and Responsibility Assignment Matrix (RAM).

  5. HEADQUARTERS MEDIATION PROGRAM MEDIATION WORKS!

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MEDIATION WORKS Mediation helps to build relationships. People solve their own problems ... It Preserves Relationships You resolve your dispute while building a better relationship ...

  6. INL @ work: Nuclear Reactor Operator

    SciTech Connect (OSTI)

    Russell, Patty

    2008-01-01

    INL @ work features jobs at the Idaho National Laboratory. Learn more about careers and energy research at INL's facebook site http://www.facebook.com/idahonationallaboratory

  7. INL @ work: Nuclear Reactor Operator

    ScienceCinema (OSTI)

    Russell, Patty

    2013-05-28

    INL @ work features jobs at the Idaho National Laboratory. Learn more about careers and energy research at INL's facebook site http://www.facebook.com/idahonationallaboratory

  8. Zinc, iron, manganese, and magnesium accumulation in crayfish populations near copper-nickel smelters at Sudbury, Ontario, Canada

    SciTech Connect (OSTI)

    Bagatto, G.; Alikhan, M.A.

    1987-06-01

    The Sudbury basin has been subjected to extreme ecological disturbances from logging, mining and smelting activities. Elevated concentrations of copper, cadmium, and nickel have been reported in crayfish populations close to the Sudbury smelting works. The present study compares concentrations of zinc (Zn), iron (Fe), manganese (Mn) and magnesium (Mg) in freshwater crayfish at selected distances of the habitat from the emission source. These metals were selected since they are known to be emitted in moderately high quantities into the Sudbury environment as byproduct of the smelting process. Various tissue concentrations in crayfish were also examined to determined specific tissue sites for these accumulations.

  9. Technology development for iron Fischer-Tropsch catalysis. Quarterly technical progress report No. 5, October 1, 1995--December 31, 1995

    SciTech Connect (OSTI)

    Davis, B.H.

    1996-01-19

    The objective of this research project is to develop the technology for the production of physically robust iron-based Fischer-Tropsch catalysts that have suitable activity, selectivity and stability to be used in the slurry phase synthesis reactor development. The catalysts that are developed shall be suitable for testing in the Advanced Fuels Development Facility at LaPorte, Texas, to produce either low- or high-alpha product distributions. Previous work by the offeror has produced a catalyst formulation that is 1.5 times as active as the ``standard-catalyst`` developed by German workers for slurry phase synthesis. The proposed work will optimize the catalyst composition and pretreatment operation for this low-alpha catalyst. In parallel, work will be conducted to design a high-alpha iron catalyst this is suitable for slurry phase synthesis. Studies will be conducted to define the chemical phases present at various stages of the pretreatment and synthesis stages and to define the course of these changes. The oxidation/reduction cycles that are anticipated to occur in large, commercial reactors will be studied at the laboratory scale. Catalyst performance will be determined for catalysts synthesized in this program for activity, selectivity and aging characteristics. The research is divided into four major topical areas: (a) catalyst preparation and characterization, (b) product characterization, (c) reactor operations, and (d) data assessment. Accomplishments to date are described.

  10. Technology development for iron Fischer-Tropsch catalysis. Quarterly technical progress report No. 6, January 1, 1996--March 31, 1996

    SciTech Connect (OSTI)

    Davis, B.H.

    1996-05-01

    The objective of this research project is to develop the technology for the production of physically robust iron-based Fischer-Tropsch catalysts that have suitable activity, selectivity and stability to be used in the slurry phase synthesis reactor development. The catalysts that are developed shall be suitable for testing in the Advanced Fuels Development Facility at LaPorte, Texas, to produce either low- or high-alpha product distributions. Previous work by the offeror has produced a catalyst formulation that is 1.5 times as active as the ``standard-catalyst`` developed by German workers for slurry phase synthesis. The proposed work will optimize the catalyst composition and pretreatment operation for this low-alpha catalyst. In parallel, work will be conducted to design a high-alpha iron catalyst that is suitable for slurry phase synthesis. Studies will be conducted to define the chemical phases present at various stages of the pretreatment and synthesis stages and to define the course of these changes. The oxidation/reduction cycles that are anticipated to occur in large, commercial reactors will be studied at the laboratory scale. Catalyst performance will be determined for catalysts synthesized in this program for activity, selectivity and aging characteristics. The research is divided into four major topical areas: (a) catalyst preparation and characterization, (b) product characterization, (c) reactor operations, and (d) data assessment. Accomplishments for this period are discussed.

  11. Iron Aerogel and Xerogel Catalysts for Fischer-Tropsch Synthesis of Diesel Fuel

    SciTech Connect (OSTI)

    Bali, S.; Huggins, F; Huffman, G; Ernst, R; Pugmire, R; Eyring, E

    2009-01-01

    Iron aerogels, potassium-doped iron aerogels, and potassium-doped iron xerogels have been synthesized and characterized and their catalytic activity in the Fischer-Tropsch (F-T) reaction has been studied. Iron aerogels and xerogels were synthesized by polycondensation of an ethanolic solution of iron(III) chloride hexahydrate with propylene oxide which acts as a proton scavenger for the initiation of hydrolysis and polycondensation. Potassium was incorporated in the iron aerogel and iron xerogel by adding aqueous K{sub 2}CO{sub 3} to the ethanolic solutions of the Fe(III) precursor prior to addition of propylene oxide. Fischer-Tropsch activities of the catalysts were tested in a fixed bed reactor at a pressure of 100 psi with a H{sub 2}:CO ratio of 2:1. Iron aerogels were found to be active for F-T synthesis, and their F-T activities increased on addition of a K containing promoter. Moessbauer spectroscopic data are consistent with an open, nonrigid iron(III) aerogel structure progressing to an iron carbide/metallic iron catalyst via agglomeration as the F-T synthesis proceeds in the course of a 35 h fixed bed reaction test.

  12. Use of bimodal carbon distribution in compacts for producing metallic iron nodules

    DOE Patents [OSTI]

    Iwasaki, Iwao

    2014-04-08

    A method for use in production of metallic iron nodules comprising providing a reducible mixture into a hearth furnace for the production of metallic iron nodules, where the reducible mixture comprises a quantity of reducible iron bearing material, a quantity of first carbonaceous reducing material of a size less than about 28 mesh of an amount between about 65 percent and about 95 percent of a stoichiometric amount necessary for complete iron reduction of the reducible iron bearing material, and a quantity of second carbonaceous reducing material with an average particle size greater than average particle size of the first carbonaceous reducing material and a size between about 3 mesh and about 48 mesh of an amount between about 20 percent and about 60 percent of a stoichiometric amount of necessary for complete iron reduction of the reducible iron bearing material.

  13. Use of bimodal carbon distribution in compacts for producing metallic iron nodules

    DOE Patents [OSTI]

    Iwasaki, Iwao

    2012-10-16

    A method for use in production of metallic iron nodules comprising providing a reducible mixture into a hearth furnace for the production of metallic iron nodules, where the reducible mixture comprises a quantity of reducible iron bearing material, a quantity of first carbonaceous reducing material of a size less than about 28 mesh of an amount between about 65 percent and about 95 percent of a stoichiometric amount necessary for complete iron reduction of the reducible iron bearing material, and a quantity of second carbonaceous reducing material with an average particle size greater than average particle size of the first carbonaceous reducing material and a size between about 3 mesh and about 48 mesh of an amount between about 20 percent and about 60 percent of a stoichiometric amount of necessary for complete iron reduction of the reducible iron bearing material.

  14. Work Authorization System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Work Authorization System Work Authorization System PDF icon Work Authorization System More Documents & Publications Policy Flash 2014-30 DOE Order 412.1a, Work Authorization ...

  15. WageWorks Screen Shot(s)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WageWorks Screen Shot(s)

  16. Arsenic Sequestration By Sorption Processes in High-Iron Sediments

    SciTech Connect (OSTI)

    Root, R.A.; Dixit, S.; Campbell, K.M.; Jew, A.D.; Hering, J.G.; O'Day, P.A.

    2009-06-04

    High-iron sediments in North Haiwee Reservoir (Olancha, CA), resulting from water treatment for removal of elevated dissolved arsenic in the Los Angeles Aqueduct system, were studied to examine arsenic partitioning between solid phases and porewaters undergoing shallow burial. To reduce arsenic in drinking water supplies, ferric chloride and a cationic polymer coagulant are added to the aqueduct upstream of Haiwee Reservoir, forming an iron-rich floc that scavenges arsenic from the water. Analysis by synchrotron X-ray absorption spectroscopy (XAS) showed that the aqueduct precipitate is an amorphous hydrous ferric oxide (HFO) similar to ferrihydrite, and that arsenic is associated with the floc as adsorbed and/or coprecipitated As(V). Arsenic-rich floc and sediments are deposited along the inlet channel as aqueduct waters enter the reservoir. Sediment core samples were collected in two consecutive years from the edge of the reservoir along the inlet channel using 30- or 90-cm push cores. Cores were analyzed for total and extractable arsenic and iron concentrations. Arsenic and iron speciation and mineralogy in sediments were examined at selected depths by synchrotron XAS and X-ray diffraction (XRD). Sediment-porewater measurements were made adjacent to the core sample sites using polyacrylamide gel probe samplers. Results showed that sediment As(V) is reduced to As(III) in all cores at or near the sediment-water interface (0--4 cm), and only As(III) was observed in deeper sediments. Analyses of EXAFS spectra indicated that arsenic is present in the sediments mostly as a bidentate-binuclear, inner-sphere sorption complex with local atomic geometries similar to those found in laboratory studies. Below about 10 cm depth, XAS indicated that the HFO floc had been reduced to a mixed Fe(II, III) solid with a local structure similar to that of synthetic green rust (GR) but with a slightly contracted average interatomic Fe-Fe distance in the hydroxide layer. There was no

  17. Work for Others (Non-Department of Energy Funded Work)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-01-24

    Work for Others is the performance of work for non-Department of Energy (DOE) entities by DOE/National Nuclear Security Administration (NNSA) and/or their respective contractor personnel or the use of DOE/NNSA facilities that is not directly funded by DOE appropriations. Cancels DOE O 481.1B. Certified 1-13-11. Admin Chg 1, dated 3-14-11.

  18. Weld overlay cladding with iron aluminides

    SciTech Connect (OSTI)

    Goodwin, G.M.

    1997-12-01

    The author has established a range of compositions for these alloys within which hot cracking resistance is very good, and within which cold cracking can be avoided in many instances by careful control of welding conditions, particularly preheat and postweld heat treatment. For example, crack-free butt welds have been produced for the first time in 12-mm thick wrought Fe{sub 3}Al plate. Cold cracking, however, still remains an issue in many cases. The author has developed a commercial source for composite weld filler metals spanning a wide range of achievable aluminum levels, and are pursuing the application of these filler metals in a variety of industrial environments. Welding techniques have been developed for both the gas tungsten arc and gas metal arc processes, and preliminary work has been done to utilize the wire arc process for coating of boiler tubes. Clad specimens have been prepared for environmental testing in-house, and a number of components have been modified and placed in service in operating kraft recovery boilers. In collaboration with a commercial producer of spiral weld overlay tubing, the author is attempting to utilize the new filler metals for this novel application.

  19. RCRA corrective action: Work plans

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    This Information Brief describes the work plans that owners/operators may have to prepare in conjunction with the performance of corrective action for compliance with RCRA guidelines. In general, the more complicated the performance of corrective action appears from the remedial investigation and other analyses, the more likely it is that the regulator will impose work plan requirements. In any case, most owner/operators will prepare work plans in conjunction with the performance of corrective action processes as a matter of best engineering management practices.

  20. Synthesis of carbon-coated iron nanoparticles by detonation technique

    SciTech Connect (OSTI)

    Sun, Guilei, E-mail: sunguilei@126.com [Department of Safety Engineering, China Institute of Industrial Relations, Beijing 100037 (China)] [Department of Safety Engineering, China Institute of Industrial Relations, Beijing 100037 (China); Li, Xiaojie, E-mail: dalian03@vip.sina.com [State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023 (China)] [State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023 (China); Wang, Qiquan [Department of Safety Engineering, China Institute of Industrial Relations, Beijing 100037 (China)] [Department of Safety Engineering, China Institute of Industrial Relations, Beijing 100037 (China); Yan, Honghao [State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023 (China)] [State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023 (China)

    2010-05-15

    Carbon-coated iron nanoparticles were synthesized by detonating a mixture of ferrocene, naphthalene and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in an explosion vessel under low vacuum conditions (8.1 kPa). The RDX functioned as an energy source for the decomposition of ferrocene and naphthalene. The carbon-coated iron nanoparticles were formed as soot-like deposits on the inner surface of the reactor, which were characterized by XRD, TEM, HRTEM, Raman spectroscopy and vibrating sample magnetometer. And a portion of the detonation soot was treated with hydrochloric acid. The product was carbon-coated nanoparticles in perfect core-shell structures with graphitic shells and bcc-Fe cores. The detonation technique offers an energy-saving route to the synthesis of carbon-coated nanomaterials.

  1. Weldability of Fe sub 3 Al based iron aluminide alloys

    SciTech Connect (OSTI)

    Zacharia, T.; Maziasz, P.J.; David, S.A.; McKamey, C.G.

    1992-01-01

    An investigation was carried out to determine the weldability of Fe{sub 3}Al type alloys. Sigmajig tests of a commercial heat of FA-129 alloy indicate that hot-cracking may not be a problem for this alloy. Additionally, several new Fe{sub 3}Al based iron aluminides were evaluated for weldability. The preliminary results are encouraging and suggest that some of these alloys have comparable or better weldability than FA-129 based iron-aluminides. For the first time, successful welds, without hot or cold cracking, were made on 13 mm (0.5 in.) thick plates from a commercial heat of FA-129 using the proper choice of welding conditions and parameters.

  2. Cation-exchange fiber reduces iron oxide leakage

    SciTech Connect (OSTI)

    MacClure, S.L.

    1993-10-01

    This article describes how addition of new fiber in powdered-resin precoat improves demineralizer crud-retention capability and reduces disposal cost for radioactive spent resin. Various attempts have been made to reduce the concentrations of iron oxide at the outlet of filter/demineralizer (FTD) vessels. Each vessel is fitted with an array of tubular septa that are precoated with powdered ion-exchange resin. The coatings perform filtering and ion-exchange actions on incoming feedwater, removing both suspended and dissolved solids. Experience at Duane Arnold Energy Center (CAED) indicates that use of a powdered-resin precoat containing cation-exchange fibers rather than cellulose fibers can reduce iron oxide levels in FTD effluent significantly.

  3. Iron beam acceleration using direct plasma injection scheme

    SciTech Connect (OSTI)

    Okamura, M.; Kanesue, T.; Yamamoto, T.; Fuwa, Y.; RIKEN, Wako, Saitama 351-0198

    2014-02-15

    A new set of vanes of radio frequency quadrupole (RFQ) accelerator was commissioned using highly charged iron beam. To supply high intensity heavy ion beams to the RFQ, direct plasma injection scheme (DPIS) with a confinement solenoid was adopted. One of the difficulties to utilize the combination of DPIS and a solenoid field is a complexity of electro magnetic field at the beam extraction region, since biasing high static electric field for ion extraction, RFQ focusing field, and the solenoid magnetic field fill the same space simultaneously. To mitigate the complexity, a newly designed magnetic field clamps were used. The intense iron beam was observed with bunched structure and the total accelerated current reached 2.5 nC.

  4. Iron aluminide useful as electrical resistance heating elements

    DOE Patents [OSTI]

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    2001-01-01

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  5. Iron aluminide useful as electrical resistance heating elements

    DOE Patents [OSTI]

    Sikka, V.K.; Deevi, S.C.; Fleischhauer, G.S.; Hajaligol, M.R.; Lilly, A.C. Jr.

    1997-04-15

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, {<=}1% Cr and either {>=}0.05% Zr or ZrO{sub 2} stringers extending perpendicular to an exposed surface of the heating element or {>=}0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, {<=}2% Ti, {<=}2% Mo, {<=}1% Zr, {<=}1% C, {<=}0.1% B, {<=}30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, {<=}1% rare earth metal, {<=}1% oxygen, {<=}3% Cu, balance Fe. 64 figs.

  6. Iron aluminide useful as electrical resistance heating elements

    DOE Patents [OSTI]

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    1999-01-01

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  7. Iron aluminide useful as electrical resistance heating elements

    DOE Patents [OSTI]

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    1997-01-01

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  8. Iron aluminide alloy container for solid oxide fuel cells

    DOE Patents [OSTI]

    Judkins, Roddie Reagan; Singh, Prabhakar; Sikka, Vinod Kumar

    2000-01-01

    A container for fuel cells is made from an iron aluminide alloy. The container alloy preferably includes from about 13 to about 22 weight percent Al, from about 2 to about 8 weight percent Cr, from about 0.1 to about 4 weight percent M selected from Zr and Hf, from about 0.005 to about 0.5 weight percent B or from about 0.001 to about 1 weight percent C, and the balance Fe and incidental impurities. The iron aluminide container alloy is extremely resistant to corrosion and metal loss when exposed to dual reducing and oxidizing atmospheres at elevated temperatures. The alloy is particularly useful for containment vessels for solid oxide fuel cells, as a replacement for stainless steel alloys which are currently used.

  9. Brooklyn Union develops tool for replacing steel, cast iron mains

    SciTech Connect (OSTI)

    Marazzo, J.J. )

    1994-12-01

    Over the last 10 years, Brooklyn Union Gas Co. has undergone significant changes in the methods it has used to install gas service and gas main systems. Recently, Brooklyn Union engineers developed a user friendly method of replacing steel and cast iron gas mains and service lines with same size or larger polyethylene pipe without using conventional trench excavation. The system, known as the ''Bullet'' pipe replacement system, involves splitting steel and cast iron pipe using a series of rolling cutter wheels. After consecutive cutting wheels completely penetrate both pipe and fittings, both pipe and soil are spread with an expander and new polyethylene pipe is inserted. The ''Bullet'' pipe splitting system for 1[1/4] in. (32 mm) through 6 in. (150 mm) diameter has been developed.

  10. Iron aluminide alloys with improved properties for high temperature applications

    DOE Patents [OSTI]

    McKamey, C.G.; Liu, C.T.

    1990-10-09

    An improved iron aluminide alloy of the DO[sub 3] type is described that has increased room temperature ductility and improved high elevated temperature strength. The alloy system further is resistant to corrosive attack in the environments of advanced energy conversion systems such as those using fossil fuels. The resultant alloy is relatively inexpensive as contrasted to nickel based and high nickel steels currently utilized for structural components. The alloy system consists essentially of 26--30 at. % aluminum, 0.5--10 at. % chromium, 0.02--0.3 at. % boron plus carbon, up to 2 at. % molybdenum, up to 1 at. % niobium, up to 0.5 at. % zirconium, up to 0.1 at. % yttrium, up to 0.5 at. % vanadium and the balance iron. 3 figs.

  11. Gamma prime hardened nickel-iron based superalloy

    DOE Patents [OSTI]

    Korenko, Michael K.

    1978-01-01

    A low swelling, gamma prime hardened nickel-iron base superalloy useful for fast reactor duct and cladding applications is described having from about 7.0 to about 10.5 weight percent (wt%) chromium, from about 24 to about 35 wt% nickel, from about 1.7 to about 2.5 wt% titanium, from about 0.3 to about 1.0 wt% aluminum, from about 2.0 to about 3.3 wt% molybdenum, from about 0.05 to about 1.0 wt% silicon, from about 0.03 to about 0.06 wt% carbon, a maximum of about 2 wt% manganese, and the balance iron.

  12. Iron aluminide alloys with improved properties for high temperature applications

    DOE Patents [OSTI]

    McKamey, Claudette G.; Liu, Chain T.

    1990-01-01

    An improved iron aluminide alloy of the DO.sub.3 type that has increased room temperature ductility and improved high elevated temperature strength. The alloy system further is resistant to corrosive attack in the environments of advanced energy corrosion systems such as those using fossil fuels. The resultant alloy is relatively inexpensive as contrasted to nickel based and high nickel steels currently utilized for structural components. The alloy system consists essentially of 26-30 at. % aluminum, 0.5-10 at. % chromium, 0.02-0.3 at. % boron plus carbon, up to 2 at. % molybdenum, up to 1 at. % niobium, up to 0.5 at. % zirconium, up to 0.1 at. % yttrium, up to 0.5 at. % vanadium and the balance iron.

  13. The world`s first commercial iron carbide plant

    SciTech Connect (OSTI)

    Prichard, L.C.; Schad, D.

    1995-12-01

    The paper traces the development of Nucor`s investigation of clean iron unit processes, namely, direct reduction, and the decision to build and operate the world`s first commercial iron carbide plant. They first investigated coal based processes since the US has abundant coal reserves, but found a variety of reasons for dropping the coal-based processes from further consideration. A natural gas based process was selected, but the failure to find economically priced gas supplies stopped the development of a US based venture. It was later found that Trinidad had economically priced and abundant supplies of natural gas, and the system of government, the use of English language, and geographic location were also ideal. The cost estimates required modification of the design, but the plant was begun in April, 1993. Start-up problems with the plant are also discussed. Production should commence shortly.

  14. Oxidation, carburization and/or sulfidation resistant iron aluminide alloy

    DOE Patents [OSTI]

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    2003-08-19

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or Zro.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B. .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  15. Low resistivity contact to iron-pnictide superconductors

    DOE Patents [OSTI]

    Tanatar, Makariy; Prozorov, Ruslan; Ni, Ni; Bud'ko, Sergey; Canfield, Paul

    2013-05-28

    Method of making a low resistivity electrical connection between an electrical conductor and an iron pnictide superconductor involves connecting the electrical conductor and superconductor using a tin or tin-based material therebetween, such as using a tin or tin-based solder. The superconductor can be based on doped AFe.sub.2As.sub.2, where A can be Ca, Sr, Ba, Eu or combinations thereof for purposes of illustration only.

  16. Magnetism and Superconductivity Compete in Iron-based Superconductors |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stanford Synchrotron Radiation Lightsource Magnetism and Superconductivity Compete in Iron-based Superconductors Wednesday, April 30, 2014 HTSC Figure 1 Fig. 1. Measured electronic structure of underdoped Ba1-xKxFe2As2 in the orthorhombic spin-density-wave (SDW) ordered state. The antiferromagnetic and ferromagnetic directions are indicated by arrows. High-temperature superconductivity (HTSC), one of the long-standing unsolved mysteries of condensed matter physics, is a beautiful example of

  17. Methods for making a supported iron-copper catalyst

    DOE Patents [OSTI]

    Dyer, Paul N.; Pierantozzi, Ronald

    1986-01-01

    A catalyst is described for the synthesis of hydrocarbons from CO+H.sub.2 utilizing a porous Al.sub.2 O.sub.3 support impregnated with iron and copper and optionally promoted with an alkali metal. The use of an Al.sub.2 O.sub.3 support results in the suppression of heavy waxes (C.sub.26 + hydrocarbons), particularly in slurry phase operation, when compared to unsupported or co-precipitated catalysts.

  18. Bifunctional air electrodes containing elemental iron powder charging additive

    DOE Patents [OSTI]

    Liu, Chia-tsun; Demczyk, Brian G.; Gongaware, Paul R.

    1982-01-01

    A bifunctional air electrode for use in electrochemical energy cells is made, comprising a hydrophilic layer and a hydrophobic layer, where the hydrophilic layer essentially comprises a hydrophilic composite which includes: (i) carbon; (ii) elemental iron particles having a particle size of between about 25 microns and about 700 microns diameter; (iii) an oxygen evolution material; (iv) a nonwetting agent; and (v) a catalyst, where at least one current collector is formed into said composite.

  19. Processing Iron Pyrite Nanocrystals for Use in Solar Cells - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Processing Iron Pyrite Nanocrystals for Use in Solar Cells Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryFor solar energy to become an economically viable energy source, alternative semiconductor materials to be used in solar cells must be found. Silicon, the longtime standard for solar cells, is expensive to process and in ever-growing demand.

  20. Attachment 1 - Performance Work Statement

    National Nuclear Security Administration (NNSA)

    including TTR. Waste acceptance services will be performed at the NNSS and at waste generator sites. DE-SOL-0005982 Attachment 1 Page 1 2. Scope of Work 2.1 Requirement: The EPS...

  1. FY 1994 Annual Work Plan

    SciTech Connect (OSTI)

    Not Available

    1993-09-30

    In accordance with the Inspector General`s Strategic Planning Policy directive, the Office of Inspector General (OIG) annually updates its Strategic Plan with budgetary and program guidance for the next fiscal year. The program guidance identifies and establishes priorities for OIG coverage of important DOE issues and operations, provides the basis for assigning OIG resources, and is the source for issues covered in Assistant Inspectors General annual work plans. The Office of the Assistant Inspector General for Audits (AIGA) publishes an Annual Work Plan in September of each year. The plan includes the OIG program guidance and shows the commitment of resources necessary to accomplish the assigned work and meet our goals. The program guidance provides the framework within which the AIGA work will be planned and accomplished. Audits included in this plan are designed to help insure that the requirements of our stakeholders have been considered and blended into a well balanced audit program.

  2. Utility Security & Resiliency: Working Together

    Broader source: Energy.gov [DOE]

    Presentation—given at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meeting—discusses Edison Electric Institute (EEI), including its key security objectives, key activities, cybersecurity activities, and spare transformer equipment program (STEP).

  3. Get Access to Work Onsite

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    your registration. NOTE: Users who are citizens of, or were born in, T4 countries (Cuba, Iran, Sudan, and Syria) need DOE permission to work at the ALS, a process which can...

  4. AEO2016 Electricity Working Group

    U.S. Energy Information Administration (EIA) Indexed Site

    Office of Electricity, Coal, Nuclear, and Renewables Analysis December 8, 2015 | Washington, DC AEO2016 Electricity Working Group WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE What to look for: Electricity sector in AEO2016 * Inclusion of EPA final Clean Power Plan in Reference Case * Updated cost estimates for new generating technologies * Major data update on existing coal plant status: MATS- compliant technology or retirement

  5. BEDES Strategic Working Group Recommendations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Energy Data Exchange Specification: Strategic Working Group Recommendations Rick Diamond, Robin Mitchell, Andrea Mercado, Shankar Earni, and Lindsay Holiday Lawrence Berkeley National Laboratory Jonathan Raab, Raab Associates October 27, 2014 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of

  6. Submitting Work | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Submitting Work Customers may directly contact the supervisor of the required service area to discuss the technical details of proposed projects. Iowa State University requestors need to bring an Intramural Purchase Order (IPO) with them from their departmental office to request services. After the technical details of the project are known, a cost estimate is prepared. Ames Laboratory operations work less than $1,000 is submitted directly to the shop using the Engineering Services Shop -

  7. The development of precipitated iron catalysts with improved stability

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The goal of this program is to identify the chemical principles governing the deactivation of precipitated iron catalysts during Fischer-Tropsch synthesis and to use these chemical principles in the design of catalysts suitable for slurry reactors. This report covers testing an iron catalyst. During the last quarter, a new precipitated iron catalyst was prepared and tested in the slurry autoclave reactor at various conditions. This catalyst did not noticeably deactivate during 1250 hours of testing. This quarter, the test was extended to include performance evaluations at different conversion levels ranging from 35 to 88% at 265 and 275{degree}C. The conversion levels were varied by changing the feed rate. The catalytic performance at different conversion intervals was then integrated to approximately predict performance in a bubble column reactor. The run was shut down at the end of 1996 hours because of a 24-hour-power outage. When the power was back on, the run was restarted from room temperature. Catalytic performance during the first 300 hours after the restart-up was monitored. Overall product distributions are being tabulated as analytical laboratory data are obtained. 34 figs., 3 tabs.

  8. Method of fabricating a prestressed cast iron vessel

    DOE Patents [OSTI]

    Lampe, Robert F.

    1982-01-01

    A method of fabricating a prestressed cast iron vessel wherein double wall cast iron body segments each have an arcuate inner wall and a spaced apart substantially parallel outer wall with a plurality of radially extending webs interconnecting the inner wall and the outer wall, the bottom surface and the two exposed radial side surfaces of each body segment are machined and eight body segments are formed into a ring. The top surfaces and outer surfaces of the outer walls are machined and keyways are provided across the juncture of adjacent end walls of the body segments. A liner segment complementary in shape to a selected inner wall of one of the body segments is mounted to each of the body segments and again formed into a ring. The liner segments of each ring are welded to form unitary liner rings and thereafter the cast iron body segments are prestressed to complete the ring assembly. Ring assemblies are stacked to form the vessel and adjacent unitary liner rings are welded. A top head covers the top ring assembly to close the vessel and axially extending tendons retain the top and bottom heads in place under pressure.

  9. Deactivation by carbon of iron catalysts for indirect liquefaction

    SciTech Connect (OSTI)

    Bartholomew, C.H.

    1991-01-10

    Although promoted cobalt and iron catalysts for Fischer-Tropsch (FT) synthesis of gasoline feedstock were first developed more than three decades ago, a major technical problem still limiting the commercial use of these catalysts today is carbon deactivation. This report describes recent progress in a fundamental, three-year investigation of carbon formation and its effects on the activity and selectivity of promoted iron catalysts for FT synthesis, the objectives of which are to: determine rates and mechanisms of carbon deactivation of unsupported Fe and Fe/K catalysts during CO hydrogenation over a range of CO concentrations, CO:H{sub 2} ratios, and temperatures; and model the rates of deactivation of the same catalysts in fixed-bed reactors. To accomplish the above objectives, the project is divided into the following tasks: (1) determine the kinetics of reaction and of carbon deactivation during CO hydrogenation on Fe and Fe/K catalysts coated on monolith bodies. (2) Determine the reactivities and types of carbon deposited during reaction on the same catalysts from temperature-programmed-surface-reaction spectroscopy (TPSR) and transmission electron microscopy (TEM). Determine the types of iron carbides formed at various temperatures and H{sub 2}/CO ratios using x-ray diffraction and Moessbauer spectroscopy. (3) Develop mathematical deactivation models which include heat and mass transport contributions for FT synthesis is packed-bed reactors. Progress to date is described. 48 refs., 3 figs., 1 tab.

  10. Coal Fly Ash as a Source of Iron in Atmospheric Dust

    SciTech Connect (OSTI)

    Chen, Haihan; Laskin, Alexander; Baltrusaitis, Jonas; Gorski, Christopher A.; Scherer, Michelle; Grassian, Vicki H.

    2012-01-18

    Anthropogenic coal fly ash aerosols may represent a significant source of bioavailable iron in the open ocean. Few measurements have been made to compare the solubility of atmospheric iron from anthropogenic aerosols and other sources. We report an investigation of the iron dissolution of three fly ash samples in acidic aqueous solutions and compare the solubilities with that of Arizona test dust, a reference material of mineral dust. The effects of pH, cloud processing, and solar irradiation on Fe solubility were explored. Similar to previously reported results on mineral dust, iron in aluminosilicate phases provide predominant dissolved iron compared with iron in oxides. Iron solubility of fly ash is higher than Arizona test dust, especially at the higher pH conditions investigated. Simulated atmospheric processing elevates iron solubility due to significant changes in the morphology aluminosilicate glass, a dominantly material in fly ash particle. Iron continuously releases into the aqueous solution as fly ash particles break up into smaller fragments. The assessment of dissolved atmospheric iron deposition fluxes, and their effect on the biogeochemistry at ocean surface should be constrained by taking into account the source, environment pH, Fe speciation, and solar radiation.

  11. Interface driven magnetic interactions in nanostructured thin films of iron nanocrystallites embedded in a copper matrix

    SciTech Connect (OSTI)

    Desautels, R. D. Lierop, J. van; Shueh, C.; Lin, K.-W.; Freeland, J. W.

    2015-05-07

    We have fabricated thin films of iron nanocrystallites embedded in a copper matrix using a dual ion beam assisted deposition technique. A secondary End-Hall ion beam bombarded the iron atoms during deposition altering significantly the morphology of the films and allowing for control of the intermixing between iron and copper components. Cross-sectional transmission electron microscopy and x-ray reflectometry experiments indicated that the morphology of the films was that of iron nanocrystallites embedded in a copper matrix. Rietveld refinements of the diffraction pattern identified fcc-copper and amorphous iron. An increased amount of disorder was observed with a reduction in the amount of deposited iron from a 1:1 Fe:Cu ratio to 0.25:0.75 Fe:Cu ratio. Interfacial copper-iron alloys were identified by DC susceptibility experiments through their reduced T{sub C,Alloy} (370, 310, and 280 K) compared with that of bulk iron (∼1000 K). Element specific x-ray absorption and x-ray magnetic circular dichroism experiments were performed to identify the contributions to the magnetism from the iron and the copper-iron alloy.

  12. Interdiffusion and Reaction between Uranium and Iron

    SciTech Connect (OSTI)

    K. Huang; Y. Park; A. Ewh; B. H. Sencer; J. R. Kennedy; K. R. Coffey; Y. H. Sohn

    2012-05-01

    Metallic uranium alloy fuels cladded in stainless steel are being examined for fast reactors that operate at high temperature. In this work, solid-to-solid diffusion couples were assembled between pure U and Fe, and annealed at 853K, 888K and 923K where U exists as orthorhombic {alpha}, and at 953K and 973K where U exists as tetragonal {beta}. The microstructures and concentration profiles developed during annealing were examined by scanning electron microscopy and electron probe microanalysis, respectively. U{sub 6}Fe and UFe{sub 2} intermetallics developed in all diffusion couples, and U{sub 6}Fe was observed to grow faster than UFe{sub 2}. The interdiffusion fluxes of U and Fe were calculated to determine the integrated interdiffusion coefficients in U{sub 6}Fe and UFe{sub 2}. The extrinsic (K{sub I}) and intrinsic growth constants (K{sub II}) of U{sub 6}Fe and UFe{sub 2} were also calculated according to Wagner's formalism. The difference between K{sub I} and K{sub II} of UFe{sub 2} indicate that its growth was impeded by the fast-growing U{sub 6}Fe phase. However, the thin UFe{sub 2} played only a small role on the growth of U{sub 6}Fe as its K{sub I} and K{sub II} values were determined to be similar. The allotropic transformation of uranium (orthorhombic {alpha} to tetragonal {beta} phase) was observed to influence the growth of U{sub 6}Fe directly, because the growth rate of U{sub 6}Fe changed based on variation of activation energy. The change in chemical potential and crystal structure of U due to the allotropic transformation affected the interdiffusion between U and U{sub 6}Fe. Faster growth of U{sub 6}Fe is also examined with respect to various factors including crystal structure, phase diagram, and diffusion.

  13. file://\\Bellview\TeamWorks\TRUTeamWorks.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8/03 TRU TeamWorks will resume printing on January 8, 2004 | Shipments expected this we December 18, 2003 The Big Story: It's a wrap - 2003 Topics Characterization News Transportation News Disposal News Safety News Working Smart Announcements Our Team Tools Acronym List Archives Back to Main Page WIPP Home Page Links Feedback Contact us with feedback or submit your e-mail address for updates. Click here to e- mail. WIPP Shipments (as of 12/18/03 at 8:14 a.m.) Shipments scheduled to arrive at

  14. Work for Others (Non-Department of Energy Funded Work)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-01-24

    Work for Others is the performance of work for non-Department of Energy (DOE) entities by DOE/National Nuclear Security Administration (NNSA) and/or their respective contractor personnel or the use of DOE/NNSA facilities that is not directly funded by DOE appropriations. Cancels DOE O 481.1B. Certified 1-13-11. Admin Chg 1, dated 3-14-11, cancels DOE O 481.1C. Admin Chg 2, dated 3-9-15, cancels DOE O 481.1C Admin Chg 1

  15. http://bellview/TeamWorks/TRUTeamWorks.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | NRC Officials Visit WIPP Tod A weekly e-newsletter for the Waste Isolation Pilot Plant team September 25, 2003 The Big Story Recertification - a work in progress Topics Characterization News Transportation News Disposal News Safety News Working Smart Announcements Our Team Tools Acronym List Archives Back to Main Page WIPP Home Page Links Feedback Contact us with feedback or submit your e-mail address for updates. Click here to e-mail. WIPP Shipments (as of 9-25-03 at 7:16 a.m.) 21 Shipments

  16. The Effects of Iron Complexing Ligands on the Long Term Ecosystem Response to Iron Enrichment of HNLC waters

    SciTech Connect (OSTI)

    Mark L. Wells; Mary Jane Perry; William P. Cochlan; Charles G. Trick

    2006-11-18

    The central hypothesis of this project is that natural iron-complexing organic ligands in seawater differentially regulate iron availability to large (microplankton) and small (nano and picoplankton) class of phytoplankton and thereby strongly influence the potential carbon sequestration in High Nitrate Low Chlorophyll (HNLC) regions of the ocean. The primary project goals are to: 1) determine how different natural and synthetic Fe chelators affect Fe availability to phytoplankton species that are representative of offshore HNLC waters, 2) elucidate how the changes in absolute concentrations of these chelators affect the longer-term ecosystem response to alleviation of Fe limitation, and 3) ascertain how changes in the ligand composition affect rates of cell sinking and aggregation - representative measures of the efficiency of carbon sequestration to the deep.

  17. Mssbauer study of metallic iron and iron oxide nanoparticles having environmental purifying ability

    SciTech Connect (OSTI)

    Kubuki, Shiro Watanabe, Yuka Akiyama, Kazuhiko; Risti?, Mira; Krehula, Stjepko; Homonnay, Zoltn; Kuzmann, Ern?; Nishida, Tetsuaki

    2014-10-27

    A relationship between local structure and methylene blue (MB) decomposing ability of nanoparticles (NPs) of metallic iron (Fe{sup 0}) and maghemite (??Fe{sub 2}O{sub 3}) was investigated by {sup 57}Fe Mssbauer spectroscopy, X-ray diffractometry and UV-visible light absorption spectroscopy. ??Fe{sub 2}O{sub 3} NPs were successfully prepared by mixing (NH{sub 4}){sub 2}Fe(SO{sub 4}){sub 2}?6H{sub 2}O (Mohr's salt) and (NH{sub 4}){sub 3}Fe(C{sub 2}O{sub 4}){sub 3}?3H{sub 2}O aqueous solution at 30 C for 1 h, while those of Fe{sup 0} were obtained by the reduction of Mohr's salt with NaBH{sub 4}. From the Scherrer's equation, the smallest crystallite sizes of ??Fe{sub 2}O{sub 3} NPs and Fe{sup 0} NPs were determined to be 9.7 and 1.5 nm, respectively. {sup 57}Fe Mssbauer spectrum of ??Fe{sub 2}O{sub 3} NPs consists of a relaxed sextet with isomer shift (?) of 0.33{sub 0.01} mm s{sup ?1}, internal magnetic field (H{sub int}) of 25.8{sub 0.5} T, and linewidth (?) of 0.62{sub 0.04} mm s{sup ?1}. {sup 57}Fe Mssbauer spectrum of Fe{sup 0} NP is mainly composed of a sextet having ?, ?, and H{sub int} of 0.00{sub 0.01} mm s{sup ?1} 0.45{sub 0.01} mm s{sup ?1}, and 22.8{sub 0.1} T, respectively. A bleaching test of the mixture of Fe{sup 0} and ??Fe{sub 2}O{sub 3} NPs (3:7 ratio, 100 mg) in MB aqueous solution (20 mL) for 6 h showed a remarkable decrease of MB concentration with the first-order rate constant (k{sub MB}) of 6.7 10{sup ?1} h{sup ?1}. This value is larger than that obtained for the bleaching test using bulk Fe{sup 0}+??Fe{sub 2}O{sub 3} (3:7) mixture (k{sub MB}?=?6.510{sup ?3}h{sup ?1}). These results prove that MB decomposing ability is enhanced by the NPs mixture of Fe{sub 0} and ??Fe{sub 2}O{sub 3}.

  18. Fe sub 3 Al-type iron aluminides: Aqueous corrosion properties in a range of electrolytes and slow-strain-rate ductilities during aqueous corrosion

    SciTech Connect (OSTI)

    Buchanan, R.A.; Kim, J.G. . Dept. of Materials Science and Engineering)

    1992-08-01

    The Fe{sub 3}Al-type iron aluminides have undergone continued development at the Oak Ridge National Laboratory for enhancement of mechanical and corrosion properties. Improved alloys and thermomechanical processing methods have evolved. The overall purpose of the project herein described was to evaluate the aqueous corrosion properties of the most recent alloy compositions in a wide range of possibly-aggressive solutions and under several different types of corrosion-test conditions. The work supplements previous aqueous-corrosion studies on iron aluminides by the present authors. Four stages of this one-year aqueous-corrosion investigation are described. First the corrosion properties of selected iron aluminides were evaluated by means of electrochemical tests and longer-time immersion tests in a range of acidic, basic and chloride solutions. Theses tests were performed under non-crevice conditions, i.e. the specimens were not designed to contain crevice geometries. Second, the iron-aluminide alloy that proved most resistance to chloride-induced localized corrosion under non-crevice conditions was further evaluated under more-severe crevice conditions by electrochemical and immersion testing. Third, in order to study the relative roles of Fe, Al, Cr and Mo in the formation of passive films, the chemical compositions of passive films were determined by X-ray photoelectron spectroscopy (XPS). And fourth, in order to study aqueous-corrosion effects on the ductilities of iron aluminides as related to hydrogen embrittlement and/or stress-corrosion cracking, slow-strain-rate corrosion (SSRC) tests were conducted over a range of electrochemical potentials.

  19. Fe{sub 3}Al-type iron aluminides: Aqueous corrosion properties in a range of electrolytes and slow-strain-rate ductilities during aqueous corrosion

    SciTech Connect (OSTI)

    Buchanan, R.A.; Kim, J.G.

    1992-08-01

    The Fe{sub 3}Al-type iron aluminides have undergone continued development at the Oak Ridge National Laboratory for enhancement of mechanical and corrosion properties. Improved alloys and thermomechanical processing methods have evolved. The overall purpose of the project herein described was to evaluate the aqueous corrosion properties of the most recent alloy compositions in a wide range of possibly-aggressive solutions and under several different types of corrosion-test conditions. The work supplements previous aqueous-corrosion studies on iron aluminides by the present authors. Four stages of this one-year aqueous-corrosion investigation are described. First the corrosion properties of selected iron aluminides were evaluated by means of electrochemical tests and longer-time immersion tests in a range of acidic, basic and chloride solutions. Theses tests were performed under non-crevice conditions, i.e. the specimens were not designed to contain crevice geometries. Second, the iron-aluminide alloy that proved most resistance to chloride-induced localized corrosion under non-crevice conditions was further evaluated under more-severe crevice conditions by electrochemical and immersion testing. Third, in order to study the relative roles of Fe, Al, Cr and Mo in the formation of passive films, the chemical compositions of passive films were determined by X-ray photoelectron spectroscopy (XPS). And fourth, in order to study aqueous-corrosion effects on the ductilities of iron aluminides as related to hydrogen embrittlement and/or stress-corrosion cracking, slow-strain-rate corrosion (SSRC) tests were conducted over a range of electrochemical potentials.

  20. Synthesis of metastable rare-earth-iron mixed oxide with the hexagonal crystal structure

    SciTech Connect (OSTI)

    Nishimura, Tatsuya; Hosokawa, Saburo; Masuda, Yuichi; Wada, Kenji; Inoue, Masashi

    2013-01-15

    Rare-earth-iron mixed oxides with the rare earth/iron ratio=1 have either orthorhombic (o-REFeO{sub 3}) or hexagonal (h-REFeO{sub 3}) structure. h-REFeO{sub 3} is a metastable phase and the synthesis of h-REFeO{sub 3} is usually difficult. In this work, the crystallization process of the precursors obtained by co-precipitation and Pechini methods was investigated in detail to synthesize h-REFeO{sub 3}. It was found that the crystallization from amorphous to hexagonal phase and the phase transition from hexagonal to orthorhombic phase occurred at a similar temperature range for rare earth elements with small ionic radii (Er-Lu, Y). For both co-precipitation and Pechini methods, single-phase h-REFeO{sub 3} was obtained by shortening the heating time during calcination process. The hexagonal-to-orthorhombic phase transition took place by a nucleation growth mechanism and vermicular morphology of the thus-formed orthorhombic phase was observed. The hexagonal YbFeO{sub 3} had higher catalytic activity for C{sub 3}H{sub 8} combustion than orthorhombic YbFeO{sub 3}. - Graphical abstract: Although the synthesis of metastable hexagonal REFeO{sub 3} by the conventional method is difficult, we found that this phase is obtained by shortening the heating time of the precursor prepared by co-precipitation method. Highlights: Black-Right-Pointing-Pointer Synthesis of metastable REFeO{sub 3} with hexagonal structure by the co-precipitation method. Black-Right-Pointing-Pointer Hexagonal REFeO{sub 3} is obtained for the rare earth elements with small ionic radii. Black-Right-Pointing-Pointer Hexagonal-to-orthorhombic transformation of REFeO{sub 3}. Black-Right-Pointing-Pointer Catalytic activity of hexagonal REFeO{sub 3} for C{sub 3}H{sub 8} combustion.

  1. Studies on the reduction kinetics of hematite iron ore pellets with noncoking coals for sponge iron plants

    SciTech Connect (OSTI)

    Kumar, M.; Mohapatra, P.; Patel, S.K.

    2009-07-01

    In the present investigation, fired pellets were made by mixing hematite iron ore fines of -100, -16+18, and -8+10 mesh size in different ratios and studies on their reduction kinetics in Lakhanpur, Orient OC-2 and Belpahar coals were carried out at temperatures ranging from 850{sup o}C to 1000{sup o}C with a view toward promoting the massive utilization of fines in ironmaking. The rate of reduction in all the fired iron ore pellets increased markedly with an increase in temperature up to 1000{sup o}C, and it was more intense in the first 30min. The values of activation energy, calculated from integral and differential approaches, for the reduction of fired pellets (prepared from iron ore fines of -100 mesh size) in coals were found to be in the range 131-148 and 130-181 kJ mol{sup -1} (for =0.2 to 0.8), indicating the process is controlled by a carbon gasification reaction. The addition of selected larger size particles in the matrix of -100 mesh size fines up to the extent studied decreased the activation energy and slightly increased the reduction rates of resultant fired pellets. In comparison to coal, the reduction of fired pellets in char was characterized by significantly lower reduction rates and higher activation energy.

  2. Superexchange and iron valence control by off-stoichiometry in yttrium iron garnet thin films grown by pulsed laser deposition

    SciTech Connect (OSTI)

    Dumont, Y.; Keller, N.; Popova, E.; Schmool, D.S.; Bhattacharya, S.; Stahl, B.; Tessier, M.; Guyot, M.

    2005-05-15

    Controlled off-stoichiometric single phase polycrystalline yttrium iron garnet (YIG) thin films have been grown by pulsed laser deposition, adjusting the oxygen partial pressure P{sub O2} between 5 and 400 mTorr. Atomic stoichiometry by RBS shows an oxygen deficiency for P{sub O2}iron and yttrium deficiency for P{sub O2}>P{sub stoich}. P{sub stoich}=30 mTorr refers to films showing magnetic and structural properties of the bulk stoichiometric YIG. Curie temperature T{sub c} and saturation magnetization 4{pi}Ms decreased for P{sub O2}P{sub stoich}: Increase of Tc (up to +10%) and of 4{pi}Ms (up to +20%) and lattice parameter compression. Microscopic interpretation is given in terms of superexchange interaction and creation and site selectivity of iron vacancies.

  3. Coiled tubing working life prediction

    SciTech Connect (OSTI)

    Wu, J.

    1995-12-31

    Failure of coiled tubing, due to the repeated bending and plastic deformation of coiled tubing on and off the reel and gooseneck, is of great concern in coiled tubing operations. This paper discusses the coiled tubing working life based on one of the coiled tubing life models published in the literature, and compares the results with other models. Certain agreements are found among these models. A group of curves is presented to illustrate the coiled tubing working life affected by coiled tubing size and wall thickness, internal pressure, yield strength, reel diameter, gooseneck radius, operation condition (corrosion) and butt-welded connection (stress concentration). The results show that coiled tubing life can be greatly increased by increasing CT wall thickness and CT strength, while the coiled tubing working life decreases under high internal pressure, corrosion, and butt-weld conditions. These curves can be easily used in estimating coiled tubing life for the field use.

  4. CFCC working group meeting: Proceedings

    SciTech Connect (OSTI)

    1997-12-31

    This report is a compilation of the vugraphs presented at this meeting. Presentations covered are: CFCC Working Group; Overview of study on applications for advanced ceramics in industries for the future; Design codes and data bases: The CFCC program and its involvement in ASTM, ISO, ASME, and military handbook 17 activities; CFCC Working Group meeting (McDermott Technology); CFCC Working Group meeting (Textron); CFCC program for DMO materials; Developments in PIP-derived CFCCs; Toughened Silcomp (SiC-Si) composites for gas turbine engine applications; CFCC program for CVI materials; Self-lubricating CFCCs for diesel engine applications; Overview of the CFCC program`s supporting technologies task; Life prediction methodologies for CFCC components; Environmental testing of CFCCs in combustion gas environments; High-temperature particle filtration ORNL/DCC CRADA; HSCT CMC combustor; and Case study -- CFCC shroud for industrial gas turbines.

  5. Laboratory study related to the production and properties of pig iron nuggets

    SciTech Connect (OSTI)

    Anameric, B.; Kawatra, S.K.

    2006-02-15

    Pig iron nuggets were produced in a laboratory-scale furnace at Michigan Technological University. The process was intended to replicate Kobe Steel's ITmk3 direct ironmaking process. These nuggets were produced from pellets that were made from a mixture of iron oxide, coal, flux and a binder and heated in a furnace with a chamber temperature of 1450{sup o}C. The pellets then self-reduced to produce a solid, high-density, highly metallized (96.5% Fe) pig iron. During the nugget production process, a separate liquid slag phase formed that cleanly separated from the molten metal. The physical and chemical properties of the pig iron nuggets were similar to pig iron produced by blast furnaces, which is distinct from direct reduced iron (DRI).

  6. Nitrided iron catalysts for the Fischer-Tropsch synthesis in the eighties

    SciTech Connect (OSTI)

    Anderson, R.B.

    1980-01-01

    Nitrided iron catalysts are active and durable and have an unusal selectivity. They do not produce significant amounts of wax, which should be advantageous in situations where gasoline is the desired product. The low yield of wax permits operation of nitrided iron in fluidized fixed-bed or entrained reactors at 230 to 255/sup 0/C. Conventional reduced iron catalysts in these reactors must be operated at about 325/sup 0/C to prevent formation of higher hydrocarbon that leads to agglomeration of the fluidized particles. At 325/sup 0/C carbon deposition and other processes leading to catalyst deterioration proceed rapidly. The yields of methane and ethane from nitrided iron are larger than desired for most purposes. Possibly promoters may be found to improve the selectivity of nitrided iron catalysts. The Bureau of Mines did not conduct a systematic catalyst development program on iron nitrides. (DP) 5 fgures, 6 tables.

  7. Get Access to Work Onsite

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Get Access to Work Onsite Get Access to Work Onsite Print Monday, 31 August 2009 09:48 The following process MUST be completed online by new and returning users at least TWO WEEKS prior to arrival at the ALS. Not a U.S. citizen? Please look at Documents for Foreign Nationals well ahead of your visit. Bring all relevant documents to the ALS in order to complete your registration. NOTE: Users who are citizens of, or were born in, T4 countries (Cuba, Iran, Sudan, and Syria) need DOE permission to

  8. Get Access to Work Onsite

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Get Access to Work Onsite Print The following process MUST be completed online by new and returning users at least TWO WEEKS prior to arrival at the ALS. Not a U.S. citizen? Please look at Documents for Foreign Nationals well ahead of your visit. Bring all relevant documents to the ALS in order to complete your registration. NOTE: Users who are citizens of, or were born in, T4 countries (Cuba, Iran, Sudan, and Syria) need DOE permission to work at the ALS, a process which can take 4-6 months to

  9. Get Access to Work Onsite

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Get Access to Work Onsite Print The following process MUST be completed online by new and returning users at least TWO WEEKS prior to arrival at the ALS. Not a U.S. citizen? Please look at Documents for Foreign Nationals well ahead of your visit. Bring all relevant documents to the ALS in order to complete your registration. NOTE: Users who are citizens of, or were born in, T4 countries (Cuba, Iran, Sudan, and Syria) need DOE permission to work at the ALS, a process which can take 4-6 months to

  10. Long working distance interference microscope

    DOE Patents [OSTI]

    Sinclair, Michael B.; DeBoer, Maarten P.; Smith, Norman F.

    2004-04-13

    Disclosed is a long working distance interference microscope suitable for three-dimensional imaging and metrology of MEMS devices and test structures on a standard microelectronics probe station. The long working distance of 10-30 mm allows standard probes or probe cards to be used. This enables nanometer-scale 3-D height profiles of MEMS test structures to be acquired across an entire wafer. A well-matched pair of reference/sample objectives is not required, significantly reducing the cost of this microscope, as compared to a Linnik microinterferometer.

  11. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    SciTech Connect (OSTI)

    Salama, Samir A.; Omar, Hany A.; Maghrabi, Ibrahim A.; AlSaeed, Mohammed S.; EL-Tarras, Adel E.

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1?, IL-6, and TNF-?), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: Iron supplementation at high altitudes induced lung histological changes in rats. Iron induced oxidative stress in lung tissues of rats at high altitudes. Iron increased

  12. Transport Modeling Working Group Meeting Reports | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling Working Group Meeting Reports Transport Modeling Working Group Meeting Reports View reports from meetings of the Transport Modeling Working Group, which meets twice per ...

  13. LotusWorks | Open Energy Information

    Open Energy Info (EERE)

    LotusWorks Jump to: navigation, search Name: LotusWorks Place: Ireland Product: Engineering, technical and construction management service provider. References: LotusWorks1 This...

  14. ACME solar works | Open Energy Information

    Open Energy Info (EERE)

    ACME solar works Jump to: navigation, search Logo: ACME solar works Name: ACME solar works Address: 20738 Brown Lane Place: Summerdale, Alabama Zip: 36580 Sector: Solar Product:...

  15. Policy Memo: Working Effectively with Contractors | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Policy Memo: Working Effectively with Contractors Policy Memo: Working Effectively with Contractors Guidance on working effectively with contractors. PDF icon MAPolicyMemoWorkingw...

  16. Water Electrolysis Working Group | Department of Energy

    Office of Environmental Management (EM)

    Water Electrolysis Working Group Water Electrolysis Working Group The Water Electrolysis Working Group, inaugurated in May 2007, brings industry, academia, and national ...

  17. NREL: Technology Deployment - Standard Work Specifications for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Standard Work Specifications for Home Energy Upgrades Online Tool Explore the Standard Work Specifications Online Tool now. The Standard Work Specifications (SWS) for Home Energy ...

  18. Working Gas in Underground Storage Figure

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Gas in Underground Storage Figure Working Gas in Underground Storage Figure Working Gas in Underground Storage Compared with 5-Year Range Graph....

  19. Iron repletion relocalizes hephaestin to a proximal basolateral compartment in polarized MDCK and Caco2 cells

    SciTech Connect (OSTI)

    Lee, Seung-Min [Department of Biological Sciences, University of Columbia, NY (United States) [Department of Biological Sciences, University of Columbia, NY (United States); Department of Nutritional Science and Toxicology, University of California, Berkeley, CA (United States); Attieh, Zouhair K. [Department of Laboratory Science and Technology, American University of Science and Technology, Ashrafieh (Lebanon) [Department of Laboratory Science and Technology, American University of Science and Technology, Ashrafieh (Lebanon); Department of Nutritional Science and Toxicology, University of California, Berkeley, CA (United States); Son, Hee Sook [Department of Food Science and Human Nutrition, College of Human Ecology, Chonbuk National University (Korea, Republic of) [Department of Food Science and Human Nutrition, College of Human Ecology, Chonbuk National University (Korea, Republic of); Department of Nutritional Science and Toxicology, University of California, Berkeley, CA (United States); Chen, Huijun [Medical School, Nanjing University, Nanjing 210008, Jiangsu Province (China) [Medical School, Nanjing University, Nanjing 210008, Jiangsu Province (China); Department of Nutritional Science and Toxicology, University of California, Berkeley, CA (United States); Bacouri-Haidar, Mhenia [Department of Biology, Faculty of Sciences (I), Lebanese University, Hadath (Lebanon) [Department of Biology, Faculty of Sciences (I), Lebanese University, Hadath (Lebanon); Department of Nutritional Science and Toxicology, University of California, Berkeley, CA (United States); Vulpe, Chris D., E-mail: vulpe@berkeley.edu [Department of Nutritional Science and Toxicology, University of California, Berkeley, CA (United States)

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer Hephaestin localizes in the perinuclear space in non-polarized cells. Black-Right-Pointing-Pointer Hephaestin localizes in the perinuclear space in iron deficient and polarized cells. Black-Right-Pointing-Pointer Hephaestin with apical iron moves near to basolateral membrane of polarized cells. Black-Right-Pointing-Pointer Peri-basolateral location of hephaestin is accessible to the extracellular space. Black-Right-Pointing-Pointer Hephaestin is involved in iron mobilization from the intestine to circulation. -- Abstract: While intestinal cellular iron entry in vertebrates employs multiple routes including heme and non-heme routes, iron egress from these cells is exclusively channeled through the only known transporter, ferroportin. Reduced intestinal iron export in sex-linked anemia mice implicates hephaestin, a ferroxidase, in this process. Polarized cells are exposed to two distinct environments. Enterocytes contact the gut lumen via the apical surface of the cell, and through the basolateral surface, to the body. Previous studies indicate both local and systemic control of iron uptake. We hypothesized that differences in iron availability at the apical and/or basolateral surface may modulate iron uptake via cellular localization of hephaestin. We therefore characterized the localization of hephaestin in two models of polarized epithelial cell lines, MDCK and Caco2, with varying iron availability at the apical and basolateral surfaces. Our results indicate that hephaestin is expressed in a supra-nuclear compartment in non-polarized cells regardless of the iron status of the cells and in iron deficient and polarized cells. In polarized cells, we found that both apical (as FeSO{sub 4}) and basolateral iron (as the ratio of apo-transferrin to holo-transferrin) affect mobilization of hephaestin from the supra-nuclear compartment. We find that the presence of apical iron is essential for relocalization of hephaestin to a

  20. Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition

    SciTech Connect (OSTI)

    Hufschmid, Ryan D.; Arami, Hamed; Ferguson, R. Matthew; Gonzales, Marcela; Teeman, Eric M.; Brush, Lucien N.; Browning, Nigel D.; Krishnan, Kannan M.

    2015-06-03

    We present a comprehensive template for the design and synthesis of iron oxide nanoparticles with control over size, size distribution, phase, and resulting properties. Monodisperse superparamagnetic iron oxide nanoparticles were synthesized by thermal decomposition of three different iron containing precursors (iron oleate, iron pentacarbonyl, and iron oxyhydroxide) in organic solvents under a variety of synthetic conditions. We compare the suitability of these three kinetically controlled synthesis protocols, which have in common the use of iron oleate as a starting precursor or reaction intermediate, for producing nanoparticles with specific size and magnetic properties. Monodisperse particles were produced over a tunable range of sizes from approximately 2-30 nm. Reaction parameters such as precursor concentration, addition of surfactant, temperature, ramp rate, and time were adjusted to kinetically control size and size-distribution. In particular, large quantities of excess surfactant (up to 25:1 molar ratio) alter reaction kinetics and result in larger particles with uniform size; however, there is often a trade-off between large particles and a narrow size distribution. Iron oxide phase is also critical for establishing magnetic properties. As an example, we show the importance of obtaining the required iron oxide phase for application to Magnetic Particle Imaging (MPI), and describe how phase purity can be controlled.

  1. Assessing the Role of Iron Sulfides in the Long Term Sequestration...

    Office of Scientific and Technical Information (OSTI)

    effort conducted at Arizona State University (ASU) and the University of Michigan (UM). ... precipitation, the mineralogical characteristics of the iron sulfides, and how uranium ...

  2. Visualization at Supercomputing Centers: The Tale of Little Big Iron and the Three Skinny Guys

    SciTech Connect (OSTI)

    Bethel, E Wes; Brugger, Eric

    2011-01-01

    Supercomputing centers are unique resources that aim to enable scientific knowledge discovery by employing large computational resources - the 'Big Iron.' Design, acquisition, installation, and management of the Big Iron are carefully planned and monitored. Because these Big Iron systems produce a tsunami of data, it's natural to colocate the visualization and analysis infrastructure. This infrastructure consists of hardware (Little Iron) and staff (Skinny Guys). Our collective experience suggests that design, acquisition, installation, and management of the Little Iron and Skinny Guys doesn't receive the same level of treatment as that of the Big Iron. This article explores the following questions about the Little Iron: How should we size the Little Iron to adequately support visualization and analysis of data coming off the Big Iron? What sort of capabilities must it have? Related questions concern the size of visualization support staff: How big should a visualization program be - that is, how many Skinny Guys should it have? What should the staff do? How much of the visualization should be provided as a support service, and how much should applications scientists be expected to do on their own?

  3. Iron and Steel Sector (NAICS 3311 and 3312) Energy and GHG Combustion Emissions Profile, November 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    99 2.6 IRON AND STEEL SECTOR (NAICS 3311, 3312) 2.6.1. Overview of the Iron and Steel Manufacturing Sector The iron and steel sector is an essential part of the U.S. manufacturing sector, providing the necessary raw material for the extensive industrial supply chain. U.S. infrastructure is heavily reliant on the U.S. iron and steel sector, as it provides the foundation for construction (bridges, buildings), transportation systems (railroads, cars, trucks), utility systems (municipal water

  4. Molten iron oxysulfide as a superior sulfur sorbent

    SciTech Connect (OSTI)

    Hepworth, M.T.

    1990-01-01

    Slagging combustors with injected lime or limestone are being considered as replacements for conventional coal burners. They have advantages in that they can be staged to reduce NO{sub x} and SO{sub x} emissions. Iron oxide, as an alternative to lime or limestone may be effective not only as a desulfurizing agent, but under the right conditions of oxygen potential and after combination with sulfur, the reaction products of coal gases with iron oxide can act as a flux to produce a fluid phase. The thermodynamic conditions for determining the most effective operating conditions of the first stage of a combustor are calculated for several Illinois coals. These conditions include contact of the gas with the phase combinations: CaO/CaSO{sub 4}, CaO/CaS, and Fe/FeO/liquid for the temperature range 950{degree} to 1300{degree}C. In the latter system, the minimum dosage of iron required at equilibrium and the calculated maximum percent sulfur removal are reported. Also given are the expected pounds of SO{sub 2} per million Btu of heat evolution calculated for complete combustion. The calculations indicate that for the Fe-O-S system, higher temperatures give better results approaching 96 percent sulfur removal from a coal containing 4.2% sulfur. For this example, the stack gas emerging from the second stage of combustion under stoichiometric conditions would contain 0.36 pounds of SO{sub 2} per million BTU's of heat generated. The temperature limits of the sulfate and sulfide forming reactions are defined.

  5. Electronic Structure And Spectroscopy of 'Superoxidized' Iron Centers in Model Systems: Theoretical And Experimental Trends

    SciTech Connect (OSTI)

    Berry, J.F.; George, S.DeBeer; Neese, F.

    2009-05-12

    Recent advances in synthetic chemistry have led to the discovery of superoxidized iron centers with valencies Fe(V) and Fe(VI) [K. Meyer et al., J. Am. Chem. Soc., 1999, 121, 4859-4876; J. F. Berry et al., Science, 2006, 312, 1937-1941; F. T. de Oliveira et al., Science, 2007, 315, 835-838.]. Furthermore, in recent years a number of high-valent Fe(IV) species have been found as reaction intermediates in metalloenzymes and have also been characterized in model systems [C. Krebs et al., Acc. Chem. Res., 2007, 40, 484-492; L. Que, Jr, Acc. Chem. Res., 2007, 40, 493-500.]. These species are almost invariably stabilized by a highly basic ligand X{sup n-} which is either O{sup 2-} or N{sup 3-}. The differences in structure and bonding between oxo- and nitrido species as a function of oxidation state and their consequences on the observable spectroscopic properties have never been carefully assessed. Hence, fundamental differences between high-valent iron complexes having either Fe=O or Fe=N multiple bonds have been probed computationally in this work in a series of hypothetical trans-[FeO(NH{sub 3}){sub 4}OH]{sup +/2+/3+} (1-3) and trans-[FeN(NH{sub 3}){sub 4}OH]{sup 0/+/2+} (4-6) complexes. All computational properties are permeated by the intrinsically more covalent character of the Fe=N multiple bond as compared to the Fe=O bond. This difference is likely due to differences in Z* between N and O that allow for better orbital overlap to occur in the case of the Fe=N multiple bond. Spin-state energetics were addressed using elaborate multireference ab initio computations that show that all species 1-6 have an intrinsic preference for the low-spin state, except in the case of 1 in which S = 1 and S = 2 states are very close in energy. In addition to Moessbauer parameters, g-tensors, zero-field splitting and iron hyperfine couplings, X-ray absorption Fe K pre-edge spectra have been simulated using time-dependent DFT methods for the first time for a series of compounds

  6. Advances in Glass Formulations for Hanford High-Alumimum, High-Iron and Enhanced Sulphate Management in HLW Streams - 13000

    SciTech Connect (OSTI)

    Kruger, Albert A.

    2013-01-16

    The current estimates and glass formulation efforts have been conservative in terms of achievable waste loadings. These formulations have been specified to ensure that the glasses are homogenous, contain essentially no crystalline phases, are processable in joule-heated, ceramic-lined melters and meet Hanford Tank Waste Treatment and Immobilization Plant (WTP) Contract terms. The WTP?s overall mission will require the immobilization of tank waste compositions that are dominated by mixtures of aluminum (Al), chromium (Cr), bismuth (Bi), iron (Fe), phosphorous (P), zirconium (Zr), and sulphur (S) compounds as waste-limiting components. Glass compositions for these waste mixtures have been developed based upon previous experience and current glass property models. Recently, DOE has initiated a testing program to develop and characterize HLW glasses with higher waste loadings and higher throughput efficiencies. Results of this work have demonstrated the feasibility of increases in waste loading from about 25 wt% to 33-50 wt% (based on oxide loading) in the glass depending on the waste stream. In view of the importance of aluminum limited waste streams at Hanford (and also Savannah River), the ability to achieve high waste loadings without adversely impacting melt rates has the potential for enormous cost savings from reductions in canister count and the potential for schedule acceleration. Consequently, the potential return on the investment made in the development of these enhancements is extremely favorable. Glass composition development for one of the latest Hanford HLW projected compositions with sulphate concentrations high enough to limit waste loading have been successfully tested and show tolerance for previously unreported tolerance for sulphate. Though a significant increase in waste loading for high-iron wastes has been achieved, the magnitude of the increase is not as substantial as those achieved for high-aluminum, high-chromium, high-bismuth or sulphur

  7. Uniform 2 nm gold nanoparticles supported on iron oxides as active catalysts for CO oxidation reaction: Structure-activity relationship

    SciTech Connect (OSTI)

    Guo, Yu; Senanayake, Sanjaya; Gu, Dong; Jin, Zhao; Du, Pei -Pei; Si, Rui; Xu, Wen -Qian; Huang, Yu -Ying; Tao, Jing; Song, Qi -Sheng; Jia, Chun -Jia; Schueth, Ferdi

    2015-01-12

    Uniform Au nanoparticles (~2 nm) with narrow size-distribution (standard deviation: 0.5–0.6 nm) supported on both hydroxylated (Fe_OH) and dehydrated iron oxide (Fe_O) have been prepared by either deposition-precipitation (DP) or colloidal-deposition (CD) methods. Different structural and textural characterizations were applied to the dried, calcined and used gold-iron oxide samples. The transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) described the high homogeneity in the supported Au nanoparticles. The ex-situ and in-situ X-ray absorption fine structure (XAFS) characterization monitored the electronic and short-range local structure of active gold species. The synchrotron-based in-situ X-ray diffraction (XRD), together with the corresponding temperature-programmed reduction by hydrogen (H₂-TPR), indicated a structural evolution of the iron-oxide supports, correlating to their reducibility. An inverse order of catalytic activity between DP (Au/Fe_OH < Au/Fe_O) and CD (Au/Fe_OH > Au/Fe_O) was observed. Effective gold-support interaction results in a high activity for gold nanoparticles, locally generated by the sintering of dispersed Au atoms on the oxide support in the DP synthesis, while a hydroxylated surface favors the reactivity of externally introduced Au nanoparticles on Fe_OH support for the CD approach. This work reveals why differences in the synthetic protocol translate to differences in the catalytic performance of Au/FeOx catalysts with very similar structural characteristics in CO oxidation.

  8. Uniform 2 nm gold nanoparticles supported on iron oxides as active catalysts for CO oxidation reaction: Structure-activity relationship

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guo, Yu; Senanayake, Sanjaya; Gu, Dong; Jin, Zhao; Du, Pei -Pei; Si, Rui; Xu, Wen -Qian; Huang, Yu -Ying; Tao, Jing; Song, Qi -Sheng; et al

    2015-01-12

    Uniform Au nanoparticles (~2 nm) with narrow size-distribution (standard deviation: 0.5–0.6 nm) supported on both hydroxylated (Fe_OH) and dehydrated iron oxide (Fe_O) have been prepared by either deposition-precipitation (DP) or colloidal-deposition (CD) methods. Different structural and textural characterizations were applied to the dried, calcined and used gold-iron oxide samples. The transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) described the high homogeneity in the supported Au nanoparticles. The ex-situ and in-situ X-ray absorption fine structure (XAFS) characterization monitored the electronic and short-range local structure of active gold species. The synchrotron-based in-situ X-ray diffraction (XRD), together with the corresponding temperature-programmed reductionmore » by hydrogen (H₂-TPR), indicated a structural evolution of the iron-oxide supports, correlating to their reducibility. An inverse order of catalytic activity between DP (Au/Fe_OH < Au/Fe_O) and CD (Au/Fe_OH > Au/Fe_O) was observed. Effective gold-support interaction results in a high activity for gold nanoparticles, locally generated by the sintering of dispersed Au atoms on the oxide support in the DP synthesis, while a hydroxylated surface favors the reactivity of externally introduced Au nanoparticles on Fe_OH support for the CD approach. This work reveals why differences in the synthetic protocol translate to differences in the catalytic performance of Au/FeOx catalysts with very similar structural characteristics in CO oxidation.« less

  9. Iron catalyst for preparation of polymethylene from synthesis gas

    DOE Patents [OSTI]

    Sapienza, Richard S. (Shoreham, NY); Slegeir, William A. (Hampton Bays, NY)

    1990-01-01

    This invention relates to a process for synthesizing hydrocarbons; more particularly, the invention relates to a process for synthesizing long-chain hydrocarbons known as polymethylene from carbon monoxide and hydrogen or from carbon monoxide and water or mixtures thereof in the presence of a catalyst comprising iron and platinum or palladium or mixtures thereof which may be supported on a solid material, preferably an inorganic refractory oxide. This process may be used to convert a cabon monoxide containing gas to a product which could substitute for high density polyethylene.

  10. New iron catalyst for preparation of polymethylene from synthesis gas

    DOE Patents [OSTI]

    Sapienza, R.S.; Slegeir, W.A.

    1988-03-31

    This invention relates to a process for synthesizing hydrocarbons; more particularly, the invention relates to a process for synthesizing long-chain hydrocarbons known as polymethylene from carbon monoxide and hydrogen or from carbon monoxide and water or mixtures thereof in the presence of a catalyst comprising iron and platinum or palladium or mixtures thereof which may be supported on a solid material, preferably an inorganic refractory oxide. This process may be used to convert a carbon monoxide containing gas to a product which could substitute for high density polyethylene.

  11. Alkali-lead-iron phosphate glass and associated method

    DOE Patents [OSTI]

    Boatner, L.A.; Sales, B.C.; Franco, S.C.S.

    1994-03-29

    A glass composition and method of preparation utilizes a mixture consisting of phosphorus oxide within the range of about 40 to 49 molar percent, lead oxide within the range of about 10 to 25 molar percent, iron oxide within the range of about 10 to 17 molar percent and an alkali oxide within the range of about 23 to 30 molar percent. The glass resulting from the melting and subsequent solidifying of the mixture possesses a high degree of durability and a coefficient of thermal expansion as high as that of any of a number of metals. Such features render this glass highly desirable in glass-to-metal seal applications. 6 figures.

  12. Fractography of hydrogen-embrittled iron-chromium-nickel alloys

    SciTech Connect (OSTI)

    Caskey, G.R. Jr.

    1981-01-01

    Tensile specimens of iron-chromium-nickel base alloys were broken in either a hydrogen enviroment or in air following thermal charging with hydrogen. Fracture surfaces were examined by scanning electron microscopy. Fracture morphology of hydrogen-embrittled specimens was characterized by: changed dimple size, twin-boundary parting, transgranular cleavage, and intergranular separation. The nature and extent of the fracture mode changes induced by hydrogen varied systematically with alloy composition and test temperature. Initial microstructure developed during deformation processing and heat treating had a secondary influence on fracture mode.

  13. An Octahedral Coordination Complex of Iron(VI)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron is the most abundant transition element on earth, and is typically found in formal oxidation states of either II or III. However, high valent Fe(IV) and Fe(V) complexes are invoked in the mechanisms of both heme and non-heme enzymes; and Fe(VI) is known to exist in the mineral ferrate.[1] Ferrate is a powerful oxidant, which has been used in soil and wastewater treatment, batteries, and disinfectants; however, it is unstable and often indiscriminately reactive. This has driven chemists to

  14. Alkali-lead-iron phosphate glass and associated method

    DOE Patents [OSTI]

    Boatner, Lynn A.; Sales, Brian C.; Franco, Sofia C. S.

    1994-01-01

    A glass composition and method of preparation utilizes a mixture consisting of phosphorus oxide within the range of about 40 to 49 molar percent, lead oxide within the range of about 10 to 25 molar percent, iron oxide within the range of about 10 to 17 molar percent and an alkali oxide within the range of about 23 to 30 molar percent. The glass resulting from the melting and subsequent solidifying of the mixture possesses a high degree of durability and a coefficient of thermal expansion as high as that of any of a number of metals. Such features render this glass highly desirable in glass-to-metal seal applications.

  15. HQ Work Control Permit | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HQ Work Control Permit HQ Work Control Permit To ensure safe operations when undertaking work at DOE Headquarters, the Office of Headquarters Health and Safety has developed a Work ...

  16. Working Remotely | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis & Projections Glossary › FAQS › Overview Projection Data Monthly short-term forecasts to 2016 Annual projections to 2040 International projections All projections reports Analysis & Projections Major Topics Most popular Annual Energy Outlook related Congressional & other requests International Energy Outlook related Presentations Recurring Short-Term Outlook Related Special outlooks Testimony All reports Browse by Tag Alphabetical Frequency Tag Cloud Working Paper Series

  17. Working with SRNL - AMC - Industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry The dynamic, long-term relationships that would emerge from this laboratory, industry, and academic collaborative would generate new concepts and approaches that not only "spin in" modern manufacturing methods that support DOE mission success but also "spin out" new innovations to support overall chemical and manufacturing competitiveness within the United States. Technology and innovation are being driven by the need to work smarter to reduce risk. The Advanced

  18. Working with SRNL - AMC - Leadership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    31/2016 SEARCH SRNL GO The Advanced Manufacturing Collaborative Academia Government Industry AMC Leadership Contact AMC Home SRNL Home Working with SRNL Advanced Manufacturing Collaborative AMC Leadership Charles Meyers Thad Adams Steven Tibrea Charles Meyers 803-725-3020 Chuck.Meyers@srnl.doe.gov Click to view bio Thad Adams 803-725-5510 Thad.Adams@srnl.doe.gov Click to view bio Steven Tibrea 803-725-3978 Steven.Tibrea@srnl.doe.gov Click to view bio

  19. Working with SRNL - Technology Partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SRNL Home SRNL Contacts Media Contacts For information about the Savannah River National Laboratory, contact: Lana Patterson, Communications Coordinator SRNL Executive Communications lana.patterson@srnl.doe.gov 803.725.4396 Technology Transfer For information on working with SRNL in the development and use of new technology, contact: Matthew Biasiny Partnerships and Commercialization matthew.biasiny@srs.gov 803.725.0406 Protocol Office For information pertaining to SRNL business related visits

  20. Working with SRNL - Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    01/2015 SEARCH SRNL GO Tech Briefs Contacts Ombudsman Tech Home SRNL Home Working with SRNL Technology Transfer 2015 SRNL Research and Technology Recognition Reception Click to view the 2015 SRNL Research and Technology Recognition Reception Savannah River National Laboratory scientists and engineers develop technologies designed to improve environmental quality, support international nonproliferation, dispose of legacy wastes, and provide clean energy sources. SRNL is responsible for

  1. FY11 Work Package Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DFN-FCM FLOW AND TRANSPORT SIMULATIONS IN CRYSTALLINE ROCK Teklu Hadgu, Elena Kalinina, Kate Klise and Yifeng Wang Sandia National Laboratories UFD Working Group Meeting June 7-9, 2016 SAND2016-5398 O Used Fuel Disposition Fracture Continuum Model (FCM)  The Fractured Continuum Model (FCM) incorporates fully three-dimensional representations of multiple independent fracture sets.  Based on discrete fracture and effective continuum approaches (McKenna and Reeves, 2005, Kalinina et al. 2012,

  2. Working Group Presentation for Discussion

    U.S. Energy Information Administration (EIA) Indexed Site

    1, 2016 MEMORANDUM FOR: IAN MEAD ASSISTANT ADMINISTRATOR FOR ENERGY ANALYSIS PAUL HOLTBERG TEAM LEADER ANALYSIS INTEGRATION TEAM JIM TURNURE DIRECTOR OFFICE OF ENERGY CONSUMPTION AND EFFICIENCY ANALYSIS FROM: TRANSPORTATION CONSUMPTION AND EFFICIENCY ANALYSIS TEAM SUBJECT: Annual Energy Outlook (AEO)2017 Transportation Working Group Meeting Summary (presented on 08-31-2016) Attendees: David Daniels (EIA) Mindi Farber-DeAnda (EIA) Devi Mishra (EIA) Alicia Birky (Energetics) Sarah Garman (DOE)

  3. Renewable Electricity Working Group Presentation

    U.S. Energy Information Administration (EIA) Indexed Site

    Renewable Electricity Working Group Chris Namovicz, Renewable Electricity Analysis Team July 9, 2013 Agenda * Review status of AEO 2013 * Discuss new model updates and development efforts for AEO 2014 and future AEOs - Model updates - Policy updates - Planned additions updates - Performance updates * Obtain feedback from stakeholders on any key items that EIA should look at Chris Namovicz, July 9 2 Status of AEO 2013 Chris Namovicz, July 9 * AEO 2013 was released in stages this year - Reference

  4. Interagency Sustainability Working Group | Department of Energy

    Energy Savers [EERE]

    Facilities Sustainable Buildings & Campuses Interagency Sustainability Working Group ... Working Group (ISWG) is the coordinating body for sustainable federal buildings. ...

  5. Environmental Justice Interagency Working Group releases "Promising...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Justice Interagency Working Group releases "Promising Practices for EJ Methodologies in NEPA Reviews" Environmental Justice Interagency Working Group releases ...

  6. Low cost improvements in air pollution control for ARMCO's Ashland, Kentucky Works Sinter Plant

    SciTech Connect (OSTI)

    Felton, S.S. )

    1987-01-01

    Particulate emissions from sinter plants can contribute a significant percentage of the total emissions from integrated steelmaking facilities. A well-known sinter plant air pollution phenomenon is called blue haze emissions. These emissions are caused when hydrocarbons introduced by filter cake, coke breeze, and mill scale are not burned in the sintering process and pass through the system as a very finely divided stable dispersed fog. The Sinter Plant at Ashland Works consists of Dravo-Lurgi traveling grate sintering machine which processes a mixture of materials including iron ore, iron pellet fines, blast furnace flue dust, limestone, melt shop slag, coke breeze and sinter return fines. This system is illustrated by the authors. Upon completion of the sintering process, the hot agglomerated sinter product is discharged to the sinter crusher. The sinter is then cooled and screened for use in Ashland Works' Amanda Blast Furnace. This system is illustrated. The Ashland Works Sinter Plant complex consists of a Sintering Machine Building, Sinter Screens Building and Ore Screens Building. For the purposes of this study, the Ore Transfer Tower Building was also included. The general layout of the complex is illustrated.

  7. file://\\Bellview\TeamWorks\TRUTeamWorks.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Total shipments received at WIPP as of 8-25-03: 1,956 | Shipments expected this week: Hanford A weekly e-newsletter for the Waste Isolation Pilot Plant team August 25, 2003 The Big Story INEEL drum fire and Senate Bill S. 1424: questions and answers Topics Characterization News Transportation News Disposal News Safety News Working Smart Announcements Our Team Tools Acronym List Archives WIPP Home Page Links Feedback Contact us with feedback or submit your e-mail address for updates. Click here

  8. file://\\Bellview\TeamWorks\TRUTeamWorks.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9/04 Shipments expected this week: RFETS (14), SRS (6) February 5, 2004 The Big Story Southeastern NM Legislative delegation WIPP update Topics Characterization News Transportation News Disposal News Safety News Working Smart Announcements Our Team Tools Acronym List Archives Back to Main Page WIPP Home Page Links Feedback Contact us with feedback or submit your e-mail address for updates. Click here to e-mail. WIPP Shipments (as of 2/9/04 at 8:21 a.m.) Shipments scheduled to arrive at WIPP this

  9. file://\\Bellview\TeamWorks\TRUTeamWorks.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    30/03 Shipments expected this week: RFETS (11), SRS (4), Hanford (2) A weekly e-newsletter for the Waste Isolation Pilot Plant team October 30, 2003 ARROW-PAK Topics Characterization News Transportation News Disposal News Safety News Working Smart Announcements Our Team Tools Acronym List Archives Back to Main Page WIPP Home Page Links Feedback Contact us with feedback or submit your e-mail address for updates. Click here to e- mail. WIPP Shipments (as of 10/30/03 at 6:59 a.m.) Shipments

  10. file://\\Bellview\TeamWorks\TRUTeamWorks.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6/03 | Shipments expected this week: RFETS (13), SRS (6) | A weekly e-newsletter for the Waste Isolation Pilot Plant team November 6, 2003 The Big Story FY03 cleanup and disposal accomplishments Topics Characterization News Transportation News Disposal News Safety News Working Smart Announcements Our Team Tools Acronym List Archives Back to Main Page WIPP Home Page Links Feedback Contact us with feedback or submit your e-mail address for updates. Click here to e-mail. WIPP Shipments (as of

  11. http://bellview/TeamWorks/TRUTeamWorks.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thursday, 9/4/03 | Total shipments received at WIPP: 1,978 | Shipments expected this week: Hanford (2), LA A weekly e-newsletter for the Waste Isolation Pilot Plant team September 4, 2003 The Big Story Get ready, set, go for 100 Topics Characterization News Transportation News Disposal News Safety News Working Smart Announcements Our Team Tools Acronym List Archives Back to Main Page WIPP Home Page Links Feedback Contact us with feedback or submit your e-mail address for updates. Click here to e

  12. http://bellview/TeamWorks/TRUTeamWorks.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15/04 Shipments expected this week: Hanford (2), NTS (2), RFETS (11), SRS (6) January 15, 2004 The Big Story Topics Characterization News Transportation News Disposal News Safety News Working Smart Announcements Our Team Tools Acronym List Archives Back to Main Page WIPP Home Page Links Feedback Contact us with feedback or submit your e-mail address for updates. Click here to e-mail. WIPP Shipments (as of 1/15/04 at 7:09 a.m. Shipments scheduled to arrive at WIPP this week 21 Total shipments

  13. http://bellview/TeamWorks/TRUTeamWorks.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2/04 Shipments expected this week: Hanford (3), NTS (2), RFETS (11), SRS (6) January 22, 2004 The Big Story Topics Characterization News Transportation News Disposal News Safety News Working Smart Announcements Our Team Tools Acronym List Archives Back to Main Page WIPP Home Page Links Feedback Contact us with feedback or submit your e-mail address for updates. Click here to e-mail. WIPP Shipments (as of 1/22/04 at 7:22 a.m. Shipments scheduled to arrive at WIPP this week 22 Total shipments

  14. http://bellview/TeamWorks/TRUTeamWorks.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9/04 Shipments expected this week: NTS (2), RFETS (13), SRS (6) January 29, 2004 The Big Story WTS restructures workforce Topics Characterization News Transportation News Disposal News Safety News Working Smart Announcements Our Team Tools Acronym List Archives Back to Main Page WIPP Home Page Links Feedback Contact us with feedback or submit your e-mail address for updates. Click here to e-mail. WIPP Shipments (as of 1/29/04 at 7:14 a.m.) Shipments scheduled to arrive at WIPP this week 21 Total

  15. http://bellview/TeamWorks/TRUTeamWorks.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thursday, 9/11/03 | Total shipments received at WIPP: 2003 | Shipments expected this A weekly e-newsletter for the Waste Isolation Pilot Plant team September 11, 2003 The Big Story 2003 in 2003 Topics Characterization News Transportation News Disposal News Safety News Working Smart Announcements Our Team Tools Acronym List Archives Back to Main Page WIPP Home Page Links Feedback Contact us with feedback or submit your e-mail address for updates. Click here to e-mail. WIPP Shipments (as of

  16. http://bellview/TeamWorks/TRUTeamWorks.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A weekly e-newsletter for the Waste Isolation Pilot Plant team September 18, 2003 The Big Story Characterization Operations completed at ANL-E Topics Characterization News Transportation News Disposal News Safety News Working Smart Announcements Our Team Tools Acronym List Archives Back to Main Page WIPP Home Page Links Feedback Contact us with feedback or submit your e-mail address for updates. Click here to e-mail. WIPP Shipments (as of 9-18-03 at 7:17 a.m.) 21 Shipments scheduled to arrive

  17. http://bellview/TeamWorks/TRUTeamWorks.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    /03 | Shipments expected this week: Hanford (1), RFETS (11), SRS (6) | A weekly e-newsletter for the Waste Isolation Pilot Plant team October 2, 2003 The Big Story Laboratory setup at CEMRC is teamwork in action Topics Characterization News Transportation News Disposal News Safety News Working Smart Announcements Our Team Tools Acronym List Archives Back to Main Page WIPP Home Page Links Feedback Contact us with feedback or submit your e-mail address for updates. Click here to e-mail. WIPP

  18. http://bellview/TeamWorks/TRUTeamWorks.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9/03 | Shipments expected this week: Hanford (1), RFETS (11), SRS (6) | A weekly e-newsletter for the Waste Isolation Pilot Plant team October 9, 2003 The Big Story It's a whole new "WIPP Experience" Topics Characterization News Transportation News Safety News Working Smart Announcements Our Team Tools Acronym List Archives Back to Main Page WIPP Home Page Links Feedback Contact us with feedback or submit your e-mail address for updates. Click here to e- mail. WIPP Shipments (as of

  19. http://bellview/TeamWorks/TRUTeamWorks.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    16/03 | Shipments expected this week: ANL-E (2) , RFETS (11), SRS (6) | A weekly e-newsletter for the Waste Isolation Pilot Plant team October 16, 2003 The Big Story EM-6 to review WIPP baseline Topics Characterization News Transportation News Disposal News Safety News Working Smart Announcements Our Team Tools Acronym List Archives Back to Main Page WIPP Home Page Links Feedback Contact us with feedback or submit your e-mail address for updates. Click here to e-mail. WIPP Shipments (as of

  20. http://bellview/TeamWorks/TRUTeamWorks.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3/03 | Shipments expected this week: RFETS (11), SRS (4), Hanford (2) | A weekly e-newsletter for the Waste Isolation Pilot Plant team October 23, 2003 Sealed sources: questions and answers Topics Characterization News Transportation News Disposal News Safety News Working Smart Announcements Our Team Tools Acronym List Archives Back to Main Page WIPP Home Page Links Feedback Contact us with feedback or submit your e-mail address for updates. Click here to e-mail. WIPP Shipments (as of 10/23/03

  1. http://bellview/TeamWorks/TRUTeamWorks.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    13/03 | Shipments expected this week: RFETS (11), SRS (6) | WIPP welcomes new CBFO Deputy Ma A weekly e-newsletter for the Waste Isolation Pilot Plant team November 13, 2003 The Big Story Farewell to a leader Topics Characterization News Transportation News Disposal News Safety News Working Smart Announcements Our Team Tools Acronym List Archives Back to Main Page WIPP Home Page Links Feedback Contact us with feedback or submit your e-mail address for updates. Click here to e-mail. WIPP

  2. http://bellview/TeamWorks/TRUTeamWorks.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20/03 | Shipments expected this week: Hanford (2), RFETS (14), SRS (6) | A weekly e-newsletter for the Waste Isolation Pilot Plant team November 20, 2003 The Big Story WIPP welcomes Lloyd Piper Topics Characterization News Transportation News Disposal News Safety News Working Smart Announcements Our Team Tools Acronym List Archives Back to Main Page WIPP Home Page Links Feedback Contact us with feedback or submit your e-mail address for updates. Click here to e-mail. WIPP Shipments (as of

  3. http://bellview/TeamWorks/TRUTeamWorks.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    04/03 | Shipments expected this week: Hanford (2), RFETS (11), SRS (3) | December 4, 2003 The Big Story H.R.2754 to usher in change Topics Characterization News Transportation News Disposal News Safety News Working Smart Announcements Our Team Tools Acronym List Archives Back to Main Page WIPP Home Page Links Feedback Contact us with feedback or submit your e-mail address for updates. Click here to e-mail. WIPP Shipments (as of 12/4/03 at 8:05 a.m.) Shipments scheduled to arrive at WIPP this

  4. http://bellview/TeamWorks/TRUTeamWorks.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1/03 | Shipments expected this week: Hanford (2), RFETS (11), SRS (3) | December 11, 2003 The Big Story Standardization - a cost saving innovation Topics Characterization News Transportation News Disposal News Safety News Working Smart Announcements Our Team Tools Acronym List Archives Back to Main Page WIPP Home Page Links Feedback Contact us with feedback or submit your e-mail address for updates. Click here to e- mail. WIPP Shipments (as of 12/11/03 at 7:47 a.m.) Shipments scheduled to arrive

  5. Electron uptake by iron-oxidizing phototrophic bacteria

    SciTech Connect (OSTI)

    Bose, A; Gardel, EJ; Vidoudez, C; Parra, EA; Girguis, PR

    2014-02-26

    Oxidation-reduction reactions underlie energy generation in nearly all life forms. Although most organisms use soluble oxidants and reductants, some microbes can access solid-phase materials as electron-acceptors or -donors via extracellular electron transfer. Many studies have focused on the reduction of solid-phase oxidants. Far less is known about electron uptake via microbial extracellular electron transfer, and almost nothing is known about the associated mechanisms. Here we show that the iron-oxidizing photoautotroph Rhodopseudomonas palustris TIE-1 accepts electrons from a poised electrode, with carbon dioxide as the sole carbon source/electron acceptor. Both electron uptake and ruBisCo form I expression are stimulated by light. Electron uptake also occurs in the dark, uncoupled from photosynthesis. Notably, the pioABC operon, which encodes a protein system essential for photoautotrophic growth by ferrous iron oxidation, influences electron uptake. These data reveal a previously unknown metabolic versatility of photoferrotrophs to use extracellular electron transfer for electron uptake.

  6. Discharge model for the lithium iron-phosphate electrode

    SciTech Connect (OSTI)

    Srinivasan, Venkat; Newman, John

    2004-02-28

    This paper develops a mathematical model for lithium intercalation and phase change in an iron phosphate-based lithium-ion cell in order to understand the cause for the low power capability of the material. The juxtaposition of the two phases is assumed to be in the form of a shrinking core, where a shell of one phase covers a core of the second phase. Diffusion of lithium through the shell and the movement of the phase interface are described and incorporated into a porous electrode model consisting of two different particle sizes. Open-circuit measurements are used to estimate the composition ranges of the single-phase region. Model-experimental comparisons under constant current show that ohmic drops in the matrix phase, contact resistances between the current collector and the porous matrix, and transport limitations in the iron phosphate particle limit the power capability of the cells. Various design options, consisting of decreasing the ohmic drops, using smaller particles, and substituting the liquid electrolyte by a gel are explored, and their relative importance discussed. The model developed in this paper can be used as a means of optimizing the cell design to suit a particular application.

  7. Deactivation by carbon of iron catalysts for indirect liquefaction

    SciTech Connect (OSTI)

    Bartholomew, C.H.

    1990-10-11

    This report describes recent progress in a fundamental, three-year investigation of carbon formation and its effects on the activity and selectivity of promoted iron catalysts for Fischer-Tropsch (FT) synthesis, the objectives of which are: determine rates and mechanisms of carbon deactivation of unsupported Fe and Fe/K catalysts during CO hydrogenation over a range of CO concentrations, CO:H{sub 2} ratios, and temperatures; model the rates of deactivation of the same catalysts in fixed-bed reactors. During the thirteenth quarter design of software for a computer-automated reactor system to be used in the kinetic and deactivation studies was continued. Further progress was made toward the completion of the control language, control routines, and software for operating this system. Progress was also made on the testing of the system hardware and software. H{sub 2} chemisorption capacities and activity selectivity data were also measured for three iron catalysts promoted with 1% alumina. 47 refs., 8 figs., 1 tab.

  8. Sublattice Magnetic Relaxation in Rare Earth Iron Garnets

    SciTech Connect (OSTI)

    McCloy, John S.; Walsh, Brian

    2013-07-08

    The magnetic properties of rare earth garnets make them attractive materials for applications ranging from optical communications to magnetic refrigeration. The purpose of this research was to determine the AC magnetic properties of several rare earth garnets, in order to ascertain the contributions of various sublattices. Gd3Fe5O¬12, Gd3Ga5O12, Tb3Fe5O12, Tb3Ga5O12, and Y3Fe5O12 were synthesized by a solid state reaction of their oxides and verified by x-ray diffraction. Frequency-dependent AC susceptibility and DC magnetization were measured versus temperature (10 – 340 K). Field cooling had little effect on AC susceptibility, but large effect on DC magnetization, increasing magnetization at the lowest temperature and shifting the compensation point to lower temperatures. Data suggest that interaction of the two iron lattices results in the two frequency dependent magnetic relaxations in the iron garnets, which were fit using the Vogel-Fulcher and Arrhenius laws.

  9. Atomic-Scale Design of Iron Fischer-Tropsch Catalysts: A Combined Computational Chemistry, Experimental, and Microkinetic Modeling Approach

    SciTech Connect (OSTI)

    Manos Mavrikakis; James A. Dumesic; Rahul P. Nabar

    2006-09-29

    Work continued on the development of a microkinetic model of Fischer-Tropsch synthesis (FTS) on supported and unsupported Fe catalysts. The following aspects of the FT mechanism on unsupported iron catalysts were investigated on during this third year: (1) the collection of rate data in a Berty CSTR reactor based on sequential design of experiments; (2) CO adsorption and CO-TPD for obtaining the heat of adsorption of CO on polycrystalline iron; and (3) isothermal hydrogenation (IH) after Fischer Tropsch reaction to identify and quantify surface carbonaceous species. Rates of C{sub 2+} formation on unsupported iron catalysts at 220 C and 20 atm correlated well to a Langmuir-Hinshelwood type expression, derived assuming carbon hydrogenation to CH and OH recombination to water to be rate-determining steps. From desorption of molecularly adsorbed CO at different temperatures the heat of adsorption of CO on polycrystalline iron was determined to be 100 kJ/mol. Amounts and types of carbonaceous species formed after FT reaction for 5-10 minutes at 150, 175, 200 and 285 C vary significantly with temperature. Mr. Brian Critchfield completed his M.S. thesis work on a statistically designed study of the kinetics of FTS on 20% Fe/alumina. Preparation of a paper describing this work is in progress. Results of these studies were reported at the Annual Meeting of the Western States Catalysis and at the San Francisco AIChE meeting. In the coming period, studies will focus on quantitative determination of the rates of kinetically-relevant elementary steps on unsupported Fe catalysts with/without K and Pt promoters by SSITKA method. This study will help us to (1) understand effects of promoter and support on elementary kinetic parameters and (2) build a microkinetics model for FTS on iron. Calculations using periodic, self-consistent Density Functional Theory (DFT) methods were performed on models of defected Fe surfaces, most significantly the stepped Fe(211) surface. Binding

  10. The Remediation of Abandoned Iron Ore Mine Subsidence in Rockaway Township, New Jersey

    SciTech Connect (OSTI)

    Gartenberg, Gary; Poff, Gregory

    2010-06-30

    This report represents the twenty-seventh and Final Technical Progress Report issued in connection with the subsidence remediation projects undertaken by Rockaway Township in Morris County, New Jersey. This report provides a summary of the major project work accomplished during this last reporting period ending June 30, 2010 and a summary of the work accomplished since the agreement inception in 1997. This report is issued as part of the project reporting provisions set forth in the Cooperator’s Agreement between the United States Government - Department of Energy, and Rockaway Township. The purpose of the Cooperator’s Agreement is for the Department of Energy to provide technical and financial assistance in a coordinated effort with Rockaway Township to develop and implement a multi-phased plan to remediate ground stability problems associated with abandoned mining activity. Primarily during the 1800’s, extensive iron ore mining and prospecting was undertaken in Rockaway Township, part of the Dover District Mining region in Morris County. The abandoned mining activity has resulted in public safety hazards associated with ground collapse and surface subsidence features evolving in both developed and undeveloped areas within Rockaway Township. At the Green Pond Mine site at the Township’s Jacobs Road Compost Storage Facility, surface monitoring continued after completion of construction in September 2003. Surface monitoring was conducted periodically at the Mt. Hope Road subsidence work area and adjacent areas after the January 2000 construction effort. In March 2007, a seventh collapse occurred over a portion of the White Meadow Mine in a public roadway at the intersection of Iowa and Erie Avenues in Rockaway Township. After test drilling, this portion of the mine was remediated by drilling and grouting the stopes.

  11. FY11 Work Package Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE MANAGED HLW AND SNF DISPOSAL PRELIMINARY ANALYSIS OF THE EFFECT OF DECAY HEAT IN THE NEAR FIELD Teklu Hadgu, Heeho Park and Ed Matteo Sandia National Laboratories UFD Working Group Meeting June 9, 2016 SAND2016-6239 C Used Fuel Disposition Thermal Analysis of DOE Managed HLW and SNF  Detailed thermal analysis for various disposal concepts  Disposal in crystalline and salt host rocks  Single-pack and multi-pack packaging  Thermal-only Semi-analytical methods and Thermal- Hydrology

  12. DOE Catalysis Working Group Meeting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    16, 2014 Marriott Wardman Park Hotel 2660 Woodley Road NM, Washington, D.C. 8:30 - 9:00 Continental breakfast: breads, coffee, tea Joint Durability and Catalysis Working Groups Meeting Delaware A 9:00 - 9:05 Welcome & introductory comments DWG co-chairs - Debbie Myers (ANL), Rod Borup (LANL), Donna Ho (DOE); CWG co-chairs - Piotr Zelenay (LANL), Nancy Garland (DOE) 9:05 - 9:25 Are We There Yet? Pt-Alloy Catalyst - Anu Kongkanand (GM) 9:25 - 9:45 Pt-Co/C Catalysts: PEMFC Performance and

  13. Evolution of iron-containing defects during processing of Si solar cells

    SciTech Connect (OSTI)

    Mchedlidze, Teimuraz Weber, Jrg; Mller, Christian; Lauer, Kevin

    2014-12-28

    The formation of iron-containing defects was studied during the fabrication process of a Si solar cell. Three Cz-Si crystals with different iron content in the feedstock were grown for the study. Iron-containing defects in and near-to the n{sup +}p-junction volume (NJV) of the cells are formed directly after phosphorus diffusion due to an inflow of iron atoms from the dissolving iron-silicide precipitates. These NJV-defects strongly affect the dark saturation current of the junctions. Partial dissolution or gettering of the NJV-defects during formation of the antireflection coating is accompanied by an increase in defect concentrations in the bulk of the cell. Further deterioration of bulk carrier lifetime during the formation of electrical contacts is related to the partial dissolution of remaining iron-silicide precipitates during the firing process. A general description of the defect evolution in iron-contaminated wafers during solar cell processing is presented and possible strategies for reducing the influence of iron-containing defects are proposed.

  14. Removal of copper from carbon-saturated steel with an aluminum sulfide/iron sulfide slag

    SciTech Connect (OSTI)

    Cohen, A.; Blander, M.

    1995-12-01

    Scrap iron and steel has long been considered a resource in the steel-making industry, and its value is largely determined by its impurity content. As the mini-mills, the major consumers of scrap iron and steel, expand into producing flat-rolled sheet, the demand for high-quality scrap will increase. Of the impurities present in scrap, copper is particularly troublesome because of its role in causing hot shortness. Therefore, the copper content of scrap should be kept below {approx} 0.1 wt%. A method for removing copper from steel could be used to improve the quality of scrap and make it more available for use by mini-mills. To determine the effectiveness of a binary slag consisting of aluminum sulfide and iron sulfide on the removal of copper from steel and iron, the distribution coefficient of copper between the slag and a carbon-saturated iron melt was investigated at 1,365 C. The composition of the slag was varied from nearly pure aluminum sulfide to pure iron sulfide. A maximum distribution coefficient of 30 was found, and the copper level in the iron melt was reduced to as low as 0.07 wt.% with a 4:1 ratio of iron to slag.

  15. Chemically bonded phosphate ceramics of trivalent oxides of iron and manganese

    DOE Patents [OSTI]

    Wagh, Arun S.; Jeong, Seung-Young

    2002-01-01

    A new method for combining elemental iron and other metals to form an inexpensive ceramic to stabilize arsenic, alkaline red mud wastes, swarfs, and other iron or metal-based additives, to create products and waste forms which can be poured or dye cast.

  16. Attrition resistant bulk iron catalysts and processes for preparing and using same

    DOE Patents [OSTI]

    Jothimurugesan, Kandaswamy; Goodwin, Jr., James G.; Gangwal, Santosh K.

    2007-08-21

    An attrition resistant precipitated bulk iron catalyst is prepared from iron oxide precursor and a binder by spray drying. The catalysts are preferably used in carbon monoxide hydrogenation processes such as Fischer-Tropsch synthesis. These catalysts are suitable for use in fluidized-bed reactors, transport reactors and, especially, slurry bubble column reactors.

  17. Visualization at Supercomputing Centers: The Tale of Little Big Iron and the Three Skinny Guys

    SciTech Connect (OSTI)

    Bethel, E. Wes; van Rosendale, John; Southard, Dale; Gaither, Kelly; Childs, Hank; Brugger, Eric; Ahern, Sean

    2010-12-01

    Supercomputing Centers (SC's) are unique resources that aim to enable scientific knowledge discovery through the use of large computational resources, the Big Iron. Design, acquisition, installation, and management of the Big Iron are activities that are carefully planned and monitored. Since these Big Iron systems produce a tsunami of data, it is natural to co-locate visualization and analysis infrastructure as part of the same facility. This infrastructure consists of hardware (Little Iron) and staff (Skinny Guys). Our collective experience suggests that design, acquisition, installation, and management of the Little Iron and Skinny Guys does not receive the same level of treatment as that of the Big Iron. The main focus of this article is to explore different aspects of planning, designing, fielding, and maintaining the visualization and analysis infrastructure at supercomputing centers. Some of the questions we explore in this article include:"How should the Little Iron be sized to adequately support visualization and analysis of data coming off the Big Iron?" What sort of capabilities does it need to have?" Related questions concern the size of visualization support staff:"How big should a visualization program be (number of persons) and what should the staff do?" and"How much of the visualization should be provided as a support service, and how much should applications scientists be expected to do on their own?"

  18. Spectral induced polarization and electrodic potential monitoring of microbially mediated iron sulfide transformations

    SciTech Connect (OSTI)

    Hubbard, Susan; Personna, Y.R.; Ntarlagiannis, D.; Slater, L.; Yee, N.; O'Brien, M.; Hubbard, S.

    2008-02-15

    Stimulated sulfate-reduction is a bioremediation technique utilized for the sequestration of heavy metals in the subsurface.We performed laboratory column experiments to investigate the geoelectrical response of iron sulfide transformations by Desulfo vibriovulgaris. Two geoelectrical methods, (1) spectral induced polarization (SIP), and (2) electrodic potential measurements, were investigated. Aqueous geochemistry (sulfate, lactate, sulfide, and acetate), observations of precipitates (identified from electron microscopy as iron sulfide), and electrodic potentials on bisulfide ion (HS) sensitive silver-silver chloride (Ag-AgCl) electrodes (630 mV) were diagnostic of induced transitions between an aerobic iron sulfide forming conditions and aerobic conditions promoting iron sulfide dissolution. The SIP data showed 10m rad anomalies during iron sulfide mineralization accompanying microbial activity under an anaerobic transition. These anomalies disappeared during iron sulfide dissolution under the subsequent aerobic transition. SIP model parameters based on a Cole-Cole relaxation model of the polarization at the mineral-fluid interface were converted to (1) estimated biomineral surface area to pore volume (Sp), and (2) an equivalent polarizable sphere diameter (d) controlling the relaxation time. The temporal variation in these model parameters is consistent with filling and emptying of pores by iron sulfide biofilms, as the system transitions between anaerobic (pore filling) and aerobic (pore emptying) conditions. The results suggest that combined SIP and electrodic potential measurements might be used to monitor spatiotemporal variability in microbial iron sulfide transformations in the field.

  19. Workforce Retention Work Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workforce Retention Work Group Workforce Retention Work Group The Workforce Retention Work Group was established to collaboratively address the needs of the Department to maintain a skilled work force in the face of anticipated retirements and to address the specific health and safety concerns of that work force that could impede retention. Due to the broad nature of the issues reflected within this working group, the chartered objectives and outcomes have been moved forward to be worked by the

  20. Mixed Waste Working Group report

    SciTech Connect (OSTI)

    Not Available

    1993-11-09

    The treatment of mixed waste remains one of this country`s most vexing environmental problems. Mixed waste is the combination of radioactive waste and hazardous waste, as defined by the Resource Conservation and Recovery Act (RCRA). The Department of Energy (DOE), as the country`s largest mixed waste generator, responsible for 95 percent of the Nation`s mixed waste volume, is now required to address a strict set of milestones under the Federal Facility Compliance Act of 1992. DOE`s earlier failure to adequately address the storage and treatment issues associated with mixed waste has led to a significant backlog of temporarily stored waste, significant quantities of buried waste, limited permanent disposal options, and inadequate treatment solutions. Between May and November of 1993, the Mixed Waste Working Group brought together stakeholders from around the Nation. Scientists, citizens, entrepreneurs, and bureaucrats convened in a series of forums to chart a course for accelerated testing of innovative mixed waste technologies. For the first time, a wide range of stakeholders were asked to examine new technologies that, if given the chance to be tested and evaluated, offer the prospect for better, safer, cheaper, and faster solutions to the mixed waste problem. In a matter of months, the Working Group has managed to bridge a gap between science and perception, engineer and citizen, and has developed a shared program for testing new technologies.