National Library of Energy BETA

Sample records for iron magnesium manganese

  1. Zinc, iron, manganese, and magnesium accumulation in crayfish populations near copper-nickel smelters at Sudbury, Ontario, Canada

    SciTech Connect (OSTI)

    Bagatto, G.; Alikhan, M.A.

    1987-06-01

    The Sudbury basin has been subjected to extreme ecological disturbances from logging, mining and smelting activities. Elevated concentrations of copper, cadmium, and nickel have been reported in crayfish populations close to the Sudbury smelting works. The present study compares concentrations of zinc (Zn), iron (Fe), manganese (Mn) and magnesium (Mg) in freshwater crayfish at selected distances of the habitat from the emission source. These metals were selected since they are known to be emitted in moderately high quantities into the Sudbury environment as byproduct of the smelting process. Various tissue concentrations in crayfish were also examined to determined specific tissue sites for these accumulations.

  2. Comparing Well-Defined Manganese, Iron, Cobalt, and Nickel Ketone

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrosilylation Catalysts Comparing Well-Defined Manganese, Iron, Cobalt, and Nickel Ketone Hydrosilylation Catalysts Authors: Trovitch, R.J. Title: Comparing Well-Defined Manganese, Iron, Cobalt, and Nickel Ketone Hydrosilylation Catalysts Source: Synlett Year: 2014 Volume: published online May 8, 2014 Pages: ABSTRACT: A brief review of manganese-catalyzed hydrosilylation is presented along with a personal account of how the design for the highly active catalyst, (Ph2PPrPDI)Mn, was

  3. Magnesium and Manganese Silicides For Efficient And Low Cost Thermo-Electric Power Generation

    SciTech Connect (OSTI)

    Trivedi, Sudhir B.; Kutcher, Susan W.; Rosemeier, Cory A.; Mayers, David; Singh, Jogender

    2013-12-02

    Thermoelectric Power Generation (TEPG) is the most efficient and commercially deployable power generation technology for harvesting wasted heat from such things as automobile exhausts, industrial furnaces, and incinerators, and converting it into usable electrical power. We investigated the materials magnesium silicide (Mg2Si) and manganese silicide (MnSi) for TEG. MgSi2 and MnSi are environmentally friendly, have constituent elements that are abundant in the earth's crust, non-toxic, lighter and cheaper. In Phase I, we successfully produced Mg2Si and MnSi material with good TE properties. We developed a novel technique to synthesize Mg2Si with good crystalline quality, which is normally very difficult due to high Mg vapor pressure and its corrosive nature. We produced n-type Mg2Si and p-type MnSi nanocomposite pellets using FAST. Measurements of resistivity and voltage under a temperature gradient indicated a Seebeck coefficient of roughly 120 V/K on average per leg, which is quite respectable. Results indicated however, that issues related to bonding resulted in high resistivity contacts. Determining a bonding process and bonding material that can provide ohmic contact from room temperature to the operating temperature is an essential part of successful device fabrication. Work continues in the development of a process for reproducibly obtaining low resistance electrical contacts.

  4. Water quality evaluation and geochemical assessment of iron, manganese, and arsenic in a landfill site

    SciTech Connect (OSTI)

    Pisigan, R.A. Jr.

    1995-12-31

    Several monitoring wells at a landfill site were sampled for water quality parameters to determine the nature of groundwater contamination. The landfill, located beneath a limestone and dolomitic bedrock, has been used for about 20 years for trash and garbage disposal. The monitoring parameters include major cations and anions, as well as iron, manganese, arsenic, and other parameters measured in the field to characterize the subsurface conditions. Groundwater samples collected near the landfill and downgradient locations had higher levels of iron, manganese, arsenic, alkalinity, hardness than those samples from an upgradient well. The downgradient and on-site samples were also more acidic and turbid, The dissolved oxygen data tend to suggest reducing conditions in the leachate environment. The elevated groundwater concentrations of the three metals, especially iron, were most probably caused by the acidity generated by carbon dioxide and organic acids released from microbial degradation of organic compounds dumped into the landfill. The acidic pH led to the dissolution of iron, manganese, and arsenic bearing mineral phases. The buffering reactions of limestone and dolomite to neutralize the acidic degradation products increased the hardness cations, Ca{sup +2} and Mg{sup +2}. Inorganic speciation modeling indicates that iron, manganese, and arsenic predominantly exist as Fe {sup +2}, Mn{sup +2}, and H{sub 3}AsO{sub 3}. The possible presence of organic complexes of iron was discussed, but could be modeled due to lack of appropriate equilibrium constant data.

  5. Structural studies of iron and manganese in photosynthetic reaction centers

    SciTech Connect (OSTI)

    McDermott, A.E.

    1987-11-01

    Electron paramagnetic resonance (EPR) and x-ray absorption spectroscopy (XAS) were used to characterize components involved in the light reactions of photosynthetic reaction centers from spinach and a thermophilic cyanobacterium, Synechococcus sp.: center X, the low electron potential acceptor in Photosystem I (PS I) and the Mn complex involved in water oxidation and oxygen evolution. The dependence of its EPR amplitude on microwave power and temperature indicate an Orbach spin relaxation mechanism involving an excited state at 40 cm/sup -1/. This low energy contributes to its unusually anisotropic g-tensor. XAS of iron in PS I preparations containing ferredoxins A, B and X are consistent with a model with (4Fe-4S) ferredoxins, which are presumably centers A and B and (2Fe-2S) ferredoxins, which would be X. Illumination of dark-adapted Synechococcus PS II samples at 220 to 240 K results in the formation of the multiline EPR signal previously assigned as a Mn S/sub 2/ species, and g = 1.8 and 1.9 signals of Fe/sup 2 +/ Q/sub A//sup -/. In contrast to spinach, illumination at 110 to 160 K produces only a new EPR signal at g = 1.6 which we assign to another configuration of Fe/sup 2+ - Q/sup -/. Following illumination of a S/sub 1/ sample at 140 K or 215 K, the Mn x-ray absorption edge inflection energy changes from 6550 eV to 6551 eV, indicating an oxidation of Mn, and average valences greater than Mn(II). Concomitant changes in the shape of the pre-edge spectrum indicate oxidation of Mn(III) to Mn(IV). The Mn EXAFS spectrum of PS II from Synechococcus is similar in the S/sub 1/ and S/sub 2/ states, indicating O or N ligands at 1.75 +- 0.05 A, transition metal neighbor(s) at 2.75 +- 0.05 A, and N and O ligands at 2.2 A with heterogeneous bond lengths; these data demonstrate the presence of a di-..mu..-oxo bridged Mn structure. 202 refs., 40 figs., 7 tabs.

  6. Manganese Doping of Magnetic Iron Oxide Nanoparticles: Tailoring Surface Reactivity for a Regenerable Heavy Metal Sorbent

    SciTech Connect (OSTI)

    Warner, Cynthia L.; Chouyyok, Wilaiwan; Mackie, Katherine E.; Neiner, Doinita; Saraf, Laxmikant; Droubay, Timothy C.; Warner, Marvin G.; Addleman, Raymond S.

    2012-02-28

    A method for tuning the analyte affinity of magnetic, inorganic nanostructured sorbents for heavy metal contaminants is described. The manganese-doped iron oxide nanoparticle sorbents have a remarkably high affinity compared to the precursor material. Sorbent affinity can be tuned toward an analyte of interest simply by adjustment of the dopant quantity. The results show that following the Mn doping process there is a large increase in affinity and capacity for heavy metals (i.e., Co, Ni, Zn, As, Ag, Cd, Hg, and Tl). Capacity measurements were carried out for the removal of cadmium from river water and showed significantly higher loading than the relevant commercial sorbents tested for comparison. The reduction in Cd concentration from 100 ppb spiked river water to 1 ppb (less than the EPA drinking water limit of 5 ppb for Cd) was achieved following treatment with the Mn-doped iron oxide nanoparticles. The Mn-doped iron oxide nanoparticles were able to load 1 ppm of Cd followed by complete stripping and recovery of the Cd with a mild acid wash. The Cd loading and stripping is shown to be consistent through multiple cycles with no loss of sorbent performance.

  7. Neutron and Charged-Particle Induced Cross Sections for Radiochemistry for Isotopes of Scandium, Titanium, Vanadium, Chromium, Manganese, and Iron

    SciTech Connect (OSTI)

    Kelley, K; Hoffman, R D; Dietrich, F S; Bauer, R; Mustafa, M

    2004-11-30

    We have developed a set of modeled nuclear reaction cross sections for use in radiochemical diagnostics. Local systematics for the input parameters required by the Hauser-Feshbach statistical model were developed and used to calculate neutron and proton induced nuclear reaction cross sections in the mass region of scandium, titanium, vanadium, chromium, manganese, and iron (21 {le} Z {le} 26, 20 {le} N {le} 32).

  8. Studies on the catalytic activity of zirconia promoted with sulfate, iron, and manganese

    SciTech Connect (OSTI)

    Wan, K.T.; Khouw, C.B.; Davis, M.E.

    1996-01-01

    The catalytic properties of iron- and manganese-promoted sulfated zirconia (SFMZ) for the isomerization of n-butane to isobutane are investigated using various catalyst pretreatments and reaction conditions. The n-butane isomerization reactivity at 30{degrees}C is effected by calcination of the catalyst at 650{degrees}C in helium and vacuum treatment at room temperature indicating that superacidity is not likely to be responsible for activity. In addition, SFMZ samples exposed to dry air at over 450{degrees}C are more active than those calcined in helium at a reaction temperature of 30{degrees}C (n-butane conversions of 18.7% vs 0.4%) suggesting the presence of an active site involving a metal {open_quotes}oxy{close_quotes} species. The oxy species is capable of reacting CO to CO{sub 2} at room temperature and is present at a number density of 10-15 {mu}mol/g. At a reaction temperature of 100{degrees}C, SFMZ catalysts calcined in air then activated in helium show similar reactivities to those activated in air up to a preheating temperature of 450{degrees}C; above 450{degrees}C the metal oxy species is formed and provides additional activity (n-butane conversions of 37.1% in air vs 15.4% in He for calcinations at 650{degrees}C). The nature of the active sites on SFMZ are investigated using temperature-programmed desorption of substituted benzenes. The liberation of CO{sub 2} and SO{sub 2} in the benzene TPD profile of SFMZ is attributed to the oxidation of benzene at the redox-active metal sites, resulting in the subsequent decomposition of the reduced iron (II) sulfate. Data from the TPD studies do not suggest the presence of superacidity on SFMZ that could contribute to the low-temperature n-butane isomerization activity. Instead, a bifunctional mechanism that involves a combination of a redox-active metal site and an acid site in close proximity is proposed. 62 refs., 17 figs., 4 tabs.

  9. Microwave digestion techniques in the sequential extraction of calcium, iron, chromium, manganese, lead, and zinc in sediments

    SciTech Connect (OSTI)

    Mahan, K.I.; Foderaro, T.A.; Garza, T.L.; Martinez, R.M.; Maroney, G.A.; Trivisonno, M.R.; Willging, E.M.

    1987-04-01

    The sequential extraction scheme of Tessier partitions metals in sediments into exchangeable, carbonate bound iron-manganese oxide bound, organic bound, and residual binding fractions. Extraction rate experiments using conventional and microwave heating showed that microwave heating produces results comparable to the conventional procedure. Sequential microwave extraction procedures were established from the results of the extraction rate experiments. Recoveries of total metals from NBS SRM 1645 ranged from 76% to 120% for the conventional procedure and 62% to 120% for the microwave procedure. Recoveries of total metals using the microwave and conventional techniques were reasonably comparable except for iron (62% by microwave vs. 76% by conventional). Substitution of an aqua regia/HF extraction for total/residual metals results in essentially complete recovery of metals. Precision obtained from 31 replicate samples of the California Gulch, Colorado, sediment yielded about an average 11% relative standard deviation excluding the exchangeable fraction which was more variable.

  10. Chemically bonded phosphate ceramics of trivalent oxides of iron and manganese

    DOE Patents [OSTI]

    Wagh, Arun S.; Jeong, Seung-Young

    2002-01-01

    A new method for combining elemental iron and other metals to form an inexpensive ceramic to stabilize arsenic, alkaline red mud wastes, swarfs, and other iron or metal-based additives, to create products and waste forms which can be poured or dye cast.

  11. Graphitic encapsulation of MgO and Fe{sub 3}C nanoparticles in the reaction of iron pentacarbonyl with magnesium

    SciTech Connect (OSTI)

    Dyjak, Sławomir; Cudziło, Stanisław; Polański, Marek; Budner, Bogusław; Bystrzycki, Jerzy

    2013-07-15

    A simple method to produce highly ordered carbon nanostructures by combustion synthesis is presented. Graphite-encapsulated magnesium oxide, iron carbide nanoparticles and carbon nanobelts were synthesized by the one-step reduction of iron pentacarbonyl with magnesium. High-resolution transmission electron microscopy analysis of the products revealed nanocrystalline MgO and Fe{sub 3}C particles surrounded by a well-crystallized, tight graphite film. The possible formation mechanism is presented and discussed. - Highlights: • We present a simple method to produce highly ordered carbon nanostructures by combustion synthesis. • The cubic MgO particles are completely coated by tight graphitic shells. • The mechanism of formation a distant carbon film on MgO surface has been discussed. • The presented method can be applied to synthesis of other core-shell structures.

  12. Low-temperature superacid catalysis: Reactions of n - butane and propane catalyzed by iron- and manganese-promoted sulfated zirconia

    SciTech Connect (OSTI)

    Tsz-Keung, Cheung; d`Itri, J.L.; Lange, F.C.; Gates, B.C.

    1995-12-31

    The primary goal of this project is to evaluate the potential value of solid superacid catalysts of the sulfated zirconia type for light hydrocarbon conversion. The key experiments catalytic testing of the performance of such catalysts in a flow reactor fed with streams containing, for example, n-butane or propane. Fe- and Mn-promoted sulfated zirconia was used to catalyze the conversion of n-butane at atmospheric pressure, 225-450{degrees}C, and n-butane partial pressures in the range of 0.0025-0.01 atm. At temperatures <225{degrees}C, these reactions were accompanied by cracking; at temperatures >350{degrees}C, cracking and isomerization occurred. Catalyst deactivation, resulting at least in part from coke formation, was rapid. The primary cracking products were methane, ethane, ethylene, and propylene. The observation of these products along with an ethane/ethylene molar ratio of nearly 1 at 450{degrees}C is consistent with cracking occurring, at least in part, by the Haag-Dessau mechanism, whereby the strongly acidic catalyst protonates n-butane to give carbonium ions. The rate of methane formation from n-butane cracking catalyzed by Fe- and Mn-promoted sulfated zirconia at 450{degrees}C was about 3 x 10{sup -8} mol/(g of catalyst {center_dot}s). The observation of butanes, pentanes, and methane as products is consistent with Olah superacid chemistry, whereby propane is first protonated by a very strong acid to form a carbonium ion. The carbonium ion then decomposes into methane and an ethyl cation which undergoes oligocondensation reactions with propane to form higher molecular weight alkanes. The results are consistent with the identification of iron- and manganese-promoted sulfated zirconia as a superacid.

  13. Activation of ethane in the presence of solid acids: Sulfated zirconia, iron- and manganese-promoted sulfated zirconia, and zeolites

    SciTech Connect (OSTI)

    Cheung, Tsz-Keung; Gates, B.

    1997-06-01

    Ethane was activated in the presence of solid acids [sulfated zirconia (SZ), iron- and manganese-promoted sulfated zirconia (FMSZ), HZSM-5, and USY zeolite] at 1 atm, 200-450{degrees}C, and ethane partial pressures in the range 0.014.2 atm. The data were measured with a flow reactor at low conversions (<0.005) such that reaction of ethane took place in the near absence of alkenes. Catalysis was demonstrated for ethane conversion in the presence of FMSZ at 450{degrees}C and 0.2 atm ethane partial pressure, but the reactions were not shown to be catalytic for the other solid acids and other conditions. FMSZ was active for converting ethane into methane, ethene, and butane at an ethane partial pressure of 0.2 atm and at temperatures of 200-300{degrees}C; the other solid acids had no detectable activities under these conditions. At higher temperatures, each of the solid acids was active for conversion of ethane into ethene; butane and methane were also formed in the presence of FMSZ, HZSM-5, and USY zeolite, whereas methane was the only other hydrocarbon observed in the presence of SZ. The initial (5 min on stream) selectivities to ethene at approximately 0.1 % conversion, ethane partial pressure of 0.2 atm, and 450{degrees}C were approximately 98, 94, 97, and 99%, for SZ, FMSZ, HZSM-5, and USY zeolite, respectively. Under the same reaction conditions, the initial rates of ethane conversion were 0. 1 5 x 10{sup -8}, 3.5 x 10{sup -8} 3.9 x 10{sup -8}, and 0.56 x 10{sup -8} mol/(s {circ} g) for SZ, FMSZ, HZSM-5, and USY zeolite, respectively. The reactivities are consistent with chemistry analogous to that occurring in superacidic solutions and with the suggestion that FMSZ is a stronger acid than the others investigated here. 25 refs., 13 figs., 1 tab.

  14. Iron and Manganese Pyrophosphates as Cathodes for Lithium-Ion Batteries

    SciTech Connect (OSTI)

    Zhou, Hui; Upreti, Shailesh; Chernova, Natasha A.; Hautier, Geoffroy; Ceder, Gerbrand; Whittingham, M. Stanley

    2015-10-15

    The mixed-metal phases, (Li{sub 2}Mn{sub 1-y}Fe{sub y}P{sub 2}O{sub 7}, 0 {le} y {le} 1), were synthesized using a 'wet method', and found to form a solid solution in the P2{sub 1}/a space group. Both thermogravimetric analysis and magnetic susceptibility measurements confirm the 2+ oxidation state for both the Mn and Fe. The electrochemical capacity improves as the Fe concentration increases, as do the intensities of the redox peaks of the cyclic voltammogram, indicating higher lithium-ion diffusivity in the iron phase. The two Li{sup +} ions in the three-dimensional tunnel structure of the pyrophosphate phase allows for the cycling of more than one lithium per redox center. Cyclic voltammograms show a second oxidation peak at 5 V and 5.3 V, indicative of the extraction of the second lithium ion, in agreement with ab initio computation predictions. Thus, electrochemical capacities exceeding 200 Ah/kg may be achieved if a stable electrolyte is found.

  15. Iron-nickel-chromium alloy having improved swelling resistance and low neutron absorbence

    DOE Patents [OSTI]

    Korenko, Michael K.

    1986-01-01

    An iron-nickel-chromium age-hardenable alloy suitable for use in fast breeder reactor ducts and cladding which utilizes the gamma-double prime strengthening phase and characterized in having a delta or eta phase distributed at or near grain boundaries. The alloy consists essentially of about 33-39.5% nickel, 7.5-16% chromium, 1.5-4% niobium, 0.1-0.7% silicon, 0.01-0.2% zirconium, 1-3% titanium, 0.2-0.6% aluminum, and the remainder essentially all iron. Up to 0.4% manganese and up to 0.010% magnesium can be added to inhibit trace element effects.

  16. Measuring Real-time Biological and Abiotic Manganese Oxide Reduction |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stanford Synchrotron Radiation Lightsource Measuring Real-time Biological and Abiotic Manganese Oxide Reduction Tuesday, May 31, 2016 Manganese(IV) oxides are powerful scavengers of toxins and trace metals, but they are also strong oxidants in the environment (1). Certain common microbes can also 'breathe' manganese oxides, in a process known as anaerobic respiration (2). During these environmental -commonly with sulfur or iron species- and biological interactions, manganese oxides are often

  17. Cast B2-phase iron-aluminum alloys with improved fluidity

    DOE Patents [OSTI]

    Maziasz, Philip J.; Paris, Alan M.; Vought, Joseph D.

    2002-01-01

    Systems and methods are described for iron aluminum alloys. A composition includes iron, aluminum and manganese. A method includes providing an alloy including iron, aluminum and manganese; and processing the alloy. The systems and methods provide advantages because additions of manganese to iron aluminum alloys dramatically increase the fluidity of the alloys prior to solidification during casting.

  18. Production of magnesium metal

    DOE Patents [OSTI]

    Blencoe, James G. [Harriman, TN; Anovitz, Lawrence M. [Knoxville, TN; Palmer, Donald A. [Oliver Springs, TN; Beard, James S. [Martinsville, VA

    2010-02-23

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention further relates to a process for production of magnesium metal or a magnesium compound where an external source of carbon dioxide is not used in any of the reactions of the process. The invention also relates to the magnesium metal produced by the processes described herein.

  19. Production of magnesium metal

    DOE Patents [OSTI]

    Blencoe, James G.; Anovitz, Lawrence M.; Palmer, Donald A.; Beard, James S.

    2012-04-10

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention also relates to the magnesium metal produced by the processes described herein.

  20. Nuclear reactor shield including magnesium oxide

    DOE Patents [OSTI]

    Rouse, Carl A.; Simnad, Massoud T.

    1981-01-01

    An improvement in nuclear reactor shielding of a type used in reactor applications involving significant amounts of fast neutron flux, the reactor shielding including means providing structural support, neutron moderator material, neutron absorber material and other components as described below, wherein at least a portion of the neutron moderator material is magnesium in the form of magnesium oxide either alone or in combination with other moderator materials such as graphite and iron.

  1. Impurity control and corrosion resistance of magnesium-aluminum alloy

    SciTech Connect (OSTI)

    Liu, M. [GM China Lab] [GM China Lab; Song, GuangLing [ORNL] [ORNL

    2013-01-01

    The corrosion resistance of magnesium alloys is very sensitive to the contents of impurity elements such as iron. In this study, a series of diecast AXJ530 magnesium alloy samples were prepared with additions of Mn and Fe. Through a comprehensive phase diagram calculation and corrosion evaluation, the mechanisms for the tolerance limit of Fe in magnesium alloy are discussed. This adds a new dimension to control the alloying impurity in terms of alloying composition design and casting conditions.

  2. Precipitation hardenable iron-nickel-chromium alloy having good swelling resistance and low neutron absorbence

    DOE Patents [OSTI]

    Korenko, Michael K.; Merrick, Howard F.; Gibson, Robert C.

    1980-01-01

    An iron-nickel-chromium age-hardenable alloy suitable for use in fast breeder reactor ducts and cladding which utilizes the gamma-double prime strengthening phase and characterized in having a morphology of the gamma-double prime phase enveloping the gamma-prime phase and delta phase distributed at or near the grain boundaries. The alloy consists essentially of about 40-50% nickel, 7.5-14% chromium, 1.5-4% niobium, 0.25-0.75% silicon, 1-3% titanium, 0.1-0.5% aluminum, 0.02-0.1% carbon, 0.002-0.015% boron, and the balance iron. Up to 2% manganese and up to 0.01% magnesium may be added to inhibit trace element effects; up to 0.1% zirconium may be added to increase radiation swelling resistance; and up to 3% molybdenum may be added to increase strength.

  3. LOST FOAM CASTING OF MAGNESIUM ALLOYS

    SciTech Connect (OSTI)

    Han, Qingyou [ORNL; Dinwiddie, Ralph Barton [ORNL; Sklad, Philip S [ORNL; Currie, Kenneth [Tennessee Technological University; Abdelrahman, Mohamed [Tennessee Technological University; Vondra, Fred [Tennessee Technological University; Walford, Graham [Walford Technologies; Nolan, Dennis J [Foseco-Morval

    2007-01-01

    The lost foam casting process has been successfully used for making aluminum and cast iron thin walled castings of complex geometries. Little work has been carried out on cast magnesium alloys using the lost foam process. The article describes the research activities at Oak Ridge National Laboratory and Tennessee Technological University on lost foam casting of magnesium alloys. The work was focused on castings of simple geometries such as plate castings and window castings. The plate castings were designed to investigate the mold filling characteristics of magnesium and aluminum alloys using an infrared camera. The pate castings were then characterized for porosity distribution. The window castings were made to test the castability of the alloys under lost foam conditions. Significant differences between lost foam aluminum casting and lost foam magnesium casting have been observed.

  4. Manganese uptake of imprinted polymers

    SciTech Connect (OSTI)

    Susanna Ventura

    2015-09-30

    Batch tests of manganese imprinted polymers of variable composition to assess their ability to extract lithium and manganese from synthetic brines at T=45C . Data on manganese uptake for two consecutive cycles are included.

  5. Magnetic interactions in manganese oxide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manganese oxide Magnetic interactions in manganese oxide Revealing the mechanism of 'superexchange' May 24, 2016 manganese oxide Manganese oxide Revealing the Nature of Magnetic Interactions in Manganese Oxide For nearly 60 years, scientists have been trying to determine how manganese oxide (MnO) achieves its long-range magnetic order of alternating up and down electron spins. Now, a team of scientists has used their recently developed mathematical approach to study the short-range magnetic

  6. Formation of chemically bonded ceramics with magnesium dihydrogen phosphate binder

    DOE Patents [OSTI]

    Wagh, Arun S.; Jeong, Seung-Young

    2004-08-17

    A new method for combining magnesium oxide, MgO, and magnesium dihydrogen phosphate to form an inexpensive compactible ceramic to stabilize very low solubility metal oxides, ashes, swarfs, and other iron or metal-based additives, to create products and waste forms which can be poured or dye cast, and to reinforce and strengthen the ceramics formed by the addition of fibers to the initial ceramic mixture.

  7. Method for production of magnesium

    DOE Patents [OSTI]

    Diaz, Alexander F. (Cambridge, MA); Howard, Jack B. (Winchester, MA); Modestino, Anthony J. (Hanson, MA); Peters, William A. (Lexington, MA)

    1998-01-01

    A continuous process for the production of elemental magnesium is described. Magnesium is made from magnesium oxide and a light hydrocarbon gas. In the process, a feed stream of the magnesium oxide and gas is continuously fed into a reaction zone. There the magnesium oxide and gas are reacted at a temperature of about 1400.degree. C. or greater in the reaction zone to provide a continuous product stream of reaction products, which include elemental magnesium. The product stream is continuously quenched after leaving the reaction zone, and the elemental magnesium is separated from other reaction products.

  8. Method for production of magnesium

    DOE Patents [OSTI]

    Diaz, A.F.; Howard, J.B.; Modestino, A.J.; Peters, W.A.

    1998-07-21

    A continuous process for the production of elemental magnesium is described. Magnesium is made from magnesium oxide and a light hydrocarbon gas. In the process, a feed stream of the magnesium oxide and gas is continuously fed into a reaction zone. There the magnesium oxide and gas are reacted at a temperature of about 1400 C or greater in the reaction zone to provide a continuous product stream of reaction products, which include elemental magnesium. The product stream is continuously quenched after leaving the reaction zone, and the elemental magnesium is separated from other reaction products. 12 figs.

  9. LOW TEMPERATURE VOC COMBUSTION OVER MANGANESE, COBALT AND ZINC ALPO4 MOLECULAR SIEVES

    SciTech Connect (OSTI)

    Rosemarie Szostak

    2003-03-06

    The objective of this project was to prepare microporous aluminophosphates containing magnesium, manganese, cobalt and zinc (MeAPOs) and to evaluate their performance as oxidation catalysts for the removal of low levels of volatile organic compounds (VOCs) from gas streams. The tasks to be accomplished were as follows: (1) To develop reliable synthesis methods for metal aluminophosphates containing manganese, cobalt and zinc in their framework; (2) To characterize these materials for crystallinity, phase purity, the location and nature of the incorporated metal in the framework; and (3) To evaluate the materials for their catalytic activities in the oxidation of volatile organic environmental pollutants.

  10. Process for removing technetium from iron and other metals

    DOE Patents [OSTI]

    Leitnaker, James M.; Trowbridge, Lee D.

    1999-01-01

    A process for removing technetium from iron and other metals comprises the steps of converting the molten, alloyed technetium to a sulfide dissolved in manganese sulfide, and removing the sulfide from the molten metal as a slag.

  11. Process for removing technetium from iron and other metals

    DOE Patents [OSTI]

    Leitnaker, J.M.; Trowbridge, L.D.

    1999-03-23

    A process for removing technetium from iron and other metals comprises the steps of converting the molten, alloyed technetium to a sulfide dissolved in manganese sulfide, and removing the sulfide from the molten metal as a slag. 4 figs.

  12. Electrodeposition of magnesium and magnesium/aluminum alloys

    DOE Patents [OSTI]

    Mayer, Anton

    1988-01-01

    Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

  13. Electrodeposition of magnesium and magnesium/aluminum alloys

    DOE Patents [OSTI]

    Mayer, A.

    1988-01-21

    Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

  14. Np and Pu Sorption to Manganese Oxide Minerals

    SciTech Connect (OSTI)

    Zhao, P; Johnson, M R; Roberts, S K; Zavarin, M

    2005-08-30

    Manganese oxide minerals are a significant component of the fracture lining mineralogy at Yucca Mountain (Carlos et al., 1993) and within the tuff-confining unit at Yucca Flat (Prothro, 1998), Pahute Mesa (Drellack et al., 1997), and other locations at the Nevada Test Site (NTS). Radionuclide sorption to manganese oxide minerals was not included in recent Lawrence Livermore National Laboratory (LLNL) hydrologic source term (HST) models which attempt to predict the migration behavior of radionuclides away from underground nuclear tests. However, experiments performed for the Yucca Mountain Program suggest that these minerals may control much of the retardation of certain radionuclides, particularly Np and Pu (Triay et al., 1991; Duff et al., 1999). As a result, recent HST model results may significantly overpredict radionuclide transport away from underground nuclear tests. The sorption model used in HST calculations performed at LLNL includes sorption to iron oxide, calcite, zeolite, smectite, and mica minerals (Zavarin and Bruton 2004a; 2004b). For the majority of radiologic source term (RST) radionuclides, we believe that this accounts for the dominant sorption processes controlling transport. However, for the case of Np, sorption is rather weak to all but the iron and manganese oxides (Figure 1). Thus, we can expect to significantly reduce predicted Np transport by accounting for Np sorption to manganese oxides. Similarly, Pu has been shown to be predominantly associated with manganese oxides in Yucca Mountain fractured tuffs (Duff et al., 1999). Recent results on colloid-facilitated Pu transport (Kersting and Reimus, 2003) also suggest that manganese oxide coatings on fracture surfaces may compete with colloids for Pu, thus reducing the effects of colloid-facilitated Pu transport (Figure 1b). The available data suggest that it is important to incorporate Np and Pu sorption to manganese oxides in reactive transport models. However, few data are available for

  15. Method for the production of mineral wool and iron from serpentine ore

    DOE Patents [OSTI]

    O'Connor, William K. (Albany, OR); Rush, Gilbert E. (Scio, OR); Soltau, Glen F. (Lebanon, OR)

    2011-10-11

    Magnesium silicate mineral wools having a relatively high liquidus temperature of at least about 1400.degree. C. and to methods for the production thereof are provided. The methods of the present invention comprise melting a magnesium silicate feedstock (e.g., comprising a serpentine or olivine ore) having a liquidus temperature of at least about 1400.degree. C. to form a molten magnesium silicate, and subsequently fiberizing the molten magnesium silicate to produce a magnesium silicate mineral wool. In one embodiment, the magnesium silicate feedstock contains iron oxide (e.g., up to about 12% by weight). Preferably, the melting is performed in the presence of a reducing agent to produce an iron alloy, which can be separated from the molten ore. Useful magnesium silicate feedstocks include, without limitation, serpentine and olivine ores. Optionally, silicon dioxide can be added to the feedstock to lower the liquidus temperature thereof.

  16. Magnesium fluoride recovery method

    DOE Patents [OSTI]

    Gay, Richard L.; McKenzie, Donald E.

    1989-01-01

    A method of obtaining magnesium fluoride substantially free from radioactive uranium from a slag containing the same and having a radioactivity level of at least about 7000 pCi/gm. The slag is ground to a particle size of about 200 microns or less. The ground slag is contacted with an acid under certain prescribed conditions to produce a liquid product and a particulate solid product. The particulate solid product is separated from the liquid and treated at least two more times with acid to produce a solid residue consisting essentially of magnesium fluoride substantially free of uranium and having a residual radioactivity level of less than about 1000 pCi/gm. In accordance with a particularly preferred embodiment of the invention a catalyst and an oxidizing agent are used during the acid treatment and preferably the acid is sulfuric acid having a strength of about 1.0 Normal.

  17. Hot coal gas desulfurization with manganese-based sorbents. Annual report, September 1992--September 1993

    SciTech Connect (OSTI)

    Hepworth, M.T.

    1993-12-01

    The focus of work being performed on Hot Coal Gas Desulfurization at the Morgantown Energy Technology Center is primarily in the use of zinc ferrite and zinc titanate sorbents; however, prior studies at the US Steel Fundamental Research Laboratories in Monroeville, PA, by E. T. Turkdogan indicated that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt % ore + 25 wt % Al{sub 2}O{sub 3}) may be a viable alternative to zinc-based sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc hence it is not as likely to undergo depletion from the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron hence the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. In addition, thermodynamic analysis of the manganese-oxygen-sulfur system shows it to be less amenable to sulfation than zinc ferrite. Potential also exists for utilization of manganese at higher temperatures than zinc ferrite or zinc titanate. This Annual Topical Report documents progress in pelletizing and testing via thermo-gravimetric analysis of individual pellet formulations of manganese ore/ alumina combinations and also manganese carbonate/alumina with two binders, dextrin and bentonite. It includes the prior Quarterly Technical Reports which indicate that the manganese carbonate material, being of higher purity than the manganese ore, has a higher degree of sulfur capacity and more rapid absorption kinetics. A 2-inch fixed-bed reactor has been fabricated and is now ready for subjecting pellets to cyclic loading and regeneration.

  18. SEPARATING PROTOACTINIUM WITH MANGANESE DIOXIDE

    DOE Patents [OSTI]

    Seaborg, G.T.; Gofman, J.W.; Stoughton, R.W.

    1958-04-22

    The preparation of U/sup 235/ and an improved method for isolating Pa/ sup 233/ from foreign products present in neutronirradiated thorium is described. The method comprises forming a solution of neutron-irradiated thorium together with a manganous salt, then adding potassium permanganate to precipitate the manganese as manganese dioxide whereby protoactinium is carried down with the nnanganese dioxide dissolving the precipitate, adding a soluble zirconium salt, and adding phosphate ion to precipitate zirconium phosphate whereby protoactinium is then carried down with the zirconium phosphate to effect a further concentration.

  19. Synthesis of magnesium diboride by magnesium vapor infiltration process (MVIP)

    DOE Patents [OSTI]

    Serquis, Adriana C.; Zhu, Yuntian T.; Mueller, Frederick M.; Peterson, Dean E.; Liao, Xiao Zhou

    2003-01-01

    A process of preparing superconducting magnesium diboride powder by heating an admixture of solid magnesium and amorphous boron powder or pellet under an inert atmosphere in a Mg:B ratio of greater than about 0.6:1 at temperatures and for time sufficient to form said superconducting magnesium diboride. The process can further include exposure to residual oxygen at high synthesis temperatures followed by slow cooling. In the cooling process oxygen atoms dissolved into MgB.sub.2 segregated to form nanometer-sized coherent Mg(B,O) precipitates in the MgB.sub.2 matrix, which can act as flux pinning centers.

  20. Electrical behavior of natural manganese dioxide (NMD)

    SciTech Connect (OSTI)

    Gorgulho, H.F.; Fernandes, R.Z.D.; Pernaut, J.M.

    1996-12-31

    NMD samples from Brazil have been submitted to magnetic and particle size separations and characterized by X-ray diffraction and fluorescence and thermogravimetric analyses. Results showed that simple physical treatments can lead to more than 60% enriched MnO{sub 2} materials which could satisfy some electrochemical applications. The electrical properties of the samples conditioned as pressed pellets have been investigated by four-points direct current probe and impedance spectroscopy, varying the conditions of preparation and measurement. It is proposed that the higher frequency impedance is equivalent to the intrinsic electronic resistance of the MnO{sub 2} phases while at lower frequencies occurs an interphase charge separation coupled with a possible ionic transport. The corresponding contact resistance depends on the particle size distribution of the material, the compactation pressure of pellets and the iron content of the materials. The interphase dielectric relaxation does not behave ideally; the depression of the impedance semicircles as shown in the Nyquist plane is assumed to be related to the roughness of the bulk interfaces. Recent developments have shown the possibility of using manganese oxides as reversible electrodes for battery or supercapacitor applications for electrical vehicle. In these perspectives it is important to study the electrical and electrochemical properties of NMD in order to estimate its suitability for this kind of applications.

  1. Oxygen electrocatalysis on (001)-oriented manganese perovskite...

    Office of Scientific and Technical Information (OSTI)

    the nanoscale Citation Details In-Document Search Title: Oxygen electrocatalysis on (001)-oriented manganese perovskite films: Mn valency and charge transfer at the nanoscale ...

  2. New manganese catalyst for light alkane oxidation

    DOE Patents [OSTI]

    Durante, Vincent A.; Lyons, James E.; Walker, Darrell W.; Marcus, Bonita K.

    1994-01-01

    Aluminophosphates containing manganese in the structural framework are employed for the oxidation of alkanes, for example the vapor phase oxidation of methane to methanol.

  3. Manganese Oxide Composite Electrodes for Lithium Batteries |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manganese Oxide Composite Electrodes for Lithium Batteries Technology available for licensing: Improved spinel-containing "layered-layered" lithium metal oxide electrodes Materials ...

  4. Structural Sequestration of Uranium in Bacteriogenic Manganese...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sequestration of Uranium in Bacteriogenic Manganese Oxides Samuel M. Webb (Stanford ... Uranium is a key contaminant of concern at US DOE sites and shuttered mining and ore ...

  5. Addressing the Voltage Fade Issue with Lithium-Manganese-Rich...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Studies on Lithium Manganese Rich MNC Composite Cathodes ... Addressing the Voltage Fade Issue with Lithium-Manganese-Rich Oxide Cathode Materials

  6. Iron and Manganese Pyrophosphates as Cathodes for Lithium-Ion...

    Office of Scientific and Technical Information (OSTI)

    a 'wet method', and found to form a solid solution in the P2sub 1a space group. Both thermogravimetric analysis and magnetic susceptibility measurements confirm the 2+...

  7. Promising Magnesium Battery Research at ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Promising Magnesium Battery Research at ALS Promising Magnesium Battery Research at ALS Print Wednesday, 23 January 2013 16:59 toyota battery a) Cross-section of the in situ ...

  8. Synthesis of superconducting magnesium diboride objects

    DOE Patents [OSTI]

    Finnemore, Douglas K.; Canfield, Paul C.; Bud'ko, Sergey L.; Ostenson, Jerome E.; Petrovic, Cedomir; Cunningham, Charles E.; Lapertot, Gerard

    2003-08-15

    A process to produce magnesium diboride objects from boron objects with a similar form is presented. Boron objects are reacted with magnesium vapor at a predetermined time and temperature to form magnesium diboride objects having a morphology similar to the boron object's original morphology.

  9. Synthesis Of Superconducting Magnesium Diboride Objects.

    DOE Patents [OSTI]

    Finnemore, Douglas K.; Canfield, Paul C.; Bud'ko, Sergey L.; Ostenson, Jerome E.; Petrovic, Cedomir; Cunningham, Charles E.; Lapertot, Gerard

    2003-07-08

    A process to produce magnesium diboride objects from boron objects with a similar form is presented. Boron objects are reacted with magnesium vapor at a predetermined time and temperature to form magnesium diboride objects having a morphology similar to the boron object's original morphology.

  10. SEPARATION OF SCANDIUM VALUES FORM IRON VALUES BY SOLVENT EXTRACTION

    DOE Patents [OSTI]

    Kuhlman, C.W. Jr.; Lang, G.P.

    1961-12-19

    A process is given for separating scandium from trivalent iron values. In this process, an aqueous nitric acid solution is contacted with a water- immiscible alkyl phosphate solution, the aqueous solution containing the values to be separated, whereby the scandium is taken up by the alkyl phosphate. The aqueous so1ution is preferably saturated with magnesium nitrate to retain the iron in the aqueous solution. (AEC)

  11. S M Stoller Star Center-WWNA Monthly; Largo, FL

    Office of Legacy Management (LM)

    ... 1000 3.8 Chromium 10 .4 Cobalt 50 .5 Copper 25 .4 Iron 300 7.1 anr Lead 5.0 1.2 anr ... Beryllium Cadmium Calcium Chromium Cobalt Copper Iron anr Lead anr Magnesium Manganese ...

  12. MANGANESE DIOXIDE METHOD FOR PREPARATION OF PROTACTINIUM

    DOE Patents [OSTI]

    Katzin, L.I.

    1958-08-12

    A method of obtaining U/sup 233/ is described. An aqueous solution of neutriln irradiated thoriunn is treated by forming tberein a precipitate of manganese dioxide which carries and thus separates the Pa/sup 233/ from the solution. The carrier precipitate so formed is then dissolved in an acidic solution containing a reducing agent sufficiently electronegative to reduce the tetravalent manganese to the divalent state. Further purification of the Pa/sup 233/ may be obtained by forming another manganese dioxide carrier precipitate and subsequently dissolving it. Ater a sufficient number of such cycles have brought the Pa/sup 233/ to the desired purity, the solution is aged, allowing the formation ot U/sup 233/ by radioaetive decay. A manganese dioxide precipitate is then formed in the U/sup 233/ containing solution. This precipitate carries down any remaining Pa/sup 233/ thus leaving the separated U/sup 233/solution, from whieh it may be easily recovered.

  13. Method for magnesium sulfate recovery

    DOE Patents [OSTI]

    Gay, R.L.; Grantham, L.F.

    1987-08-25

    A method is described for obtaining magnesium sulfate substantially free from radioactive uranium from a slag containing the same and having a radioactivity level of at least about 7,000 pCi/gm. The slag is ground to a particle size of about 200 microns or less. The ground slag is then contacted with a concentrated sulfuric acid under certain prescribed conditions to produce a liquid product and a solid product. The particulate solid product and a minor amount of the liquid is then treated to produce a solid residue consisting essentially of magnesium sulfate substantially free of uranium and having a residual radioactivity level of less than 1,000 pCi/gm. In accordance with the preferred embodiment of the invention, a catalyst and an oxidizing agent are used during the initial acid treatment and a final solid residue has a radioactivity level of less than about 50 pCi/gm.

  14. Method for magnesium sulfate recovery

    DOE Patents [OSTI]

    Gay, Richard L.; Grantham, LeRoy F.

    1987-01-01

    A method of obtaining magnesium sulfate substantially free from radioactive uranium from a slag containing the same and having a radioactivity level of at least about 7000 pCi/gm. The slag is ground to a particle size of about 200 microns or less. The ground slag is then contacted with a concentrated sulfuric acid under certain prescribed conditions to produce a liquid product and a solid product. The particulate solid product and a minor amount of the liquid is then treated to produce a solid residue consisting essentially of magnesium sulfate substantially free of uranium and having a residual radioactivity level of less than 1000 pCi/gm. In accordance with the preferred embodiment of the invention, a catalyst and an oxidizing agent are used during the initial acid treatment and a final solid residue has a radioactivity level of less than about 50 pCi/gm.

  15. Method for removing magnesium from aluminum-magnesium alloys with engineered scavenger compound

    SciTech Connect (OSTI)

    Riley, W.D.; Jong, B.W.

    1994-12-31

    The invention relates to a method for removal and production of high purity magnesium from aluminum-magnesium alloys using an engineered scanvenger compound. In particular, the invention relates to a method for removal and production of high purity magnesium from aluminum-magnesium alloys using the engineered scanvenger compound (ESC) lithium titanate (Li2O3TiO2). The removal of magnesium from the aluminum-magnesium alloys is performed at about 600-750 C in a molten salt bath of KCl or KCl-MgCl2 using lithium titanate (Li2O3TiO2) as the engineered scavenger compound (ESC). Electrode deposition of magnesium from the loaded ESC onto a stainless steel electrode is accomplished in a second step, and provides a clean magnesium electrode deposit for recycling. The second step also prepares the ESC for reuse.

  16. Substrate and method for the formation of continuous magnesium diboride and doped magnesium diboride wire

    DOE Patents [OSTI]

    Suplinskas, Raymond J.; Finnemore, Douglas; Bud'ko, Serquei; Canfield, Paul

    2007-11-13

    A chemically doped boron coating is applied by chemical vapor deposition to a silicon carbide fiber and the coated fiber then is exposed to magnesium vapor to convert the doped boron to doped magnesium diboride and a resultant superconductor.

  17. IMPROVED MAGNESIUM OXIDE SLIP CASTING METHOD

    DOE Patents [OSTI]

    Stoddard, S.D.; Nuckolls, D.E.

    1963-12-31

    A process for making an aqueous magnesium oxide slip casting slurry comprising the steps of mixing finely ground fused magnesium oxide with water, milling the slurry for at least 30 hours at a temperature of 2-10 deg C (the low temperature during milling inhibiting the formation of hydrated magnesium oxide), discharging the slurry from the mill, adding hydrochloric acid as a deflocculent, and adding a scum inhibitor is presented. (AEC)

  18. Coordination Chemistry in Magnesium Battery Electrolytes: How...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 3, 2014, Research Highlights Coordination Chemistry in Magnesium Battery Electrolytes: How Ligands Affect Their Performance (Top) Schematic illustration of the solution ...

  19. In vivo measurement of total body magnesium and manganese in rats

    SciTech Connect (OSTI)

    Zhang, R.Q.; Ellis, K.J. )

    1989-11-01

    Mg and Mn are essential minerals in many biological processes. Thus knowledge of their absolute amounts and how those amounts may be altered is important. In the past the in vivo measurement of Mg in animals was limited by both the poor geometry of the counting system and the requirement for multiple counts of the animal over several hours. We have developed a neutron activation technique for the direct in vivo measurement of total body Mg and Mn in the rat. The counting system adapted for the technique has a response that is relatively invariant (+/- 2.5%) to differences in body size. A least-squares curve fitting technique was developed that requires only a single 5-min count of the animal. Our in vivo values for body Mg and Mn were in excellent agreement (+/- 2.0%) with the results of total carcass analysis using atomic absorption. Longitudinal changes in total body Mg and Mn were examined in vivo in two groups of animals maintained on test diets that contained different amounts of Mg.

  20. Stable magnesium peroxide at high pressure (Journal Article)...

    Office of Scientific and Technical Information (OSTI)

    Stable magnesium peroxide at high pressure Citation Details In-Document Search Title: Stable magnesium peroxide at high pressure Authors: Lobanov, Sergey S. ; Zhu, Qiang ; ...

  1. New Electrode Materials for Magnesium Batteries and Metal Anodes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Return to Search New Electrode Materials for Magnesium Batteries and Metal Anodes Beyond ... Technology Marketing Summary Magnesium ion batteries present a viable alternative to ...

  2. Molecular Interactions of Plutonium(VI) with SyntheticManganese...

    Office of Scientific and Technical Information (OSTI)

    We chose to study the influence of manganese as a minor component in goethite, because goethite rarely exists as a pure phase in nature. Manganese X-ray absorption near-edge ...

  3. Silver manganese oxide electrodes for lithium batteries

    DOE Patents [OSTI]

    Thackeray, Michael M.; Vaughey, John T.; Dees, Dennis W.

    2006-05-09

    This invention relates to electrodes for non-aqueous lithium cells and batteries with silver manganese oxide positive electrodes, denoted AgxMnOy, in which x and y are such that the manganese ions in the charged or partially charged electrodes cells have an average oxidation state greater than 3.5. The silver manganese oxide electrodes optionally contain silver powder and/or silver foil to assist in current collection at the electrodes and to improve the power capability of the cells or batteries. The invention relates also to a method for preparing AgxMnOy electrodes by decomposition of a permanganate salt, such as AgMnO4, or by the decomposition of KMnO4 or LiMnO4 in the presence of a silver salt.

  4. Tape casting of magnesium oxide.

    SciTech Connect (OSTI)

    Ayala, Alicia; Corral, Erica L.; Loehman, Ronald E.; Bencoe, Denise Nora; Reiterer, Markus; Shah, Raja A.

    2008-02-01

    A tape casting procedure for fabricating ceramic magnesium oxide tapes has been developed as a method to produce flat sheets of sintered MgO that are thin and porous. Thickness of single layer tapes is in the range of 200-400 {micro}m with corresponding surface roughness values in the range of 10-20 {micro}m as measured by laser profilometry. Development of the tape casting technique required optimization of pretreatment for the starting magnesium oxide (MgO) powder as well as a detailed study of the casting slurry preparation and subsequent heat treatments for sintering and final tape flattening. Milling time of the ceramic powder, plasticizer, and binder mixture was identified as a primary factor affecting surface morphology of the tapes. In general, longer milling times resulted in green tapes with a noticeably smoother surface. This work demonstrates that meticulous control of the entire tape casting operation is necessary to obtain high-quality MgO tapes.

  5. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    DOE Patents [OSTI]

    Doeff, Marca M.; Peng, Marcus Y.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard C.

    1996-01-01

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M.sub.x Z.sub.y Mn.sub.(1-y) O.sub.2, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell.

  6. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    DOE Patents [OSTI]

    Doeff, M.M.; Peng, M.Y.; Ma, Y.; Visco, S.J.; DeJonghe, L.C.

    1996-09-24

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M{sub x}Z{sub y}Mn{sub (1{minus}y)}O{sub 2}, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell. 11 figs.

  7. Magnesium doping of boron nitride nanotubes

    SciTech Connect (OSTI)

    Legg, Robert; Jordan, Kevin

    2015-06-16

    A method to fabricate boron nitride nanotubes incorporating magnesium diboride in their structure. In a first embodiment, magnesium wire is introduced into a reaction feed bundle during a BNNT fabrication process. In a second embodiment, magnesium in powder form is mixed into a nitrogen gas flow during the BNNT fabrication process. MgB.sub.2 yarn may be used for superconducting applications and, in that capacity, has considerably less susceptibility to stress and has considerably better thermal conductivity than these conventional materials when compared to both conventional low and high temperature superconducting materials.

  8. The synthesis of PNP-supported low-spin nitro manganese(I) carbonyl complexes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tondreau, Aaron M.; Boncella, James M.

    2016-04-09

    In this study, the coordination chemistry of Mn(CO)5Br was investigated with a series of PNP-pincer ligands. The ligands iPrPONOP (iPrPONOP = 2,6-bis(diisopropylphosphinito)pyridine) and iPrPNHP (iPrPNHP = HN{CH2CH2(PiPr2)}2) gave the desired organometallic manganese complexes (iPrPONOP)Mn(CO)2Br and (iPrPNHP)Mn(CO)2Br, respectively, upon chelation to Mn(CO)5Br. The reactivity of iPrPNNNP (iPrPNNNP = N,N'-bis(diisopropylphosphino)-2,6-diaminopyridine) with Mn(CO)5Br yielded a pair of products, [(iPrPNNNP)Mn(CO)3][Br] and (iPrPNNNCO)Mn(CO)3. The formation of the asymmetric chelate arises from a formal loss of iPr2PBr and C–N bond formation from a carbonyl ligand and NH, yielding a Mn(I) amide core. The nitration reactions of (iPrPONOP)Mn(CO)2Br and (iPrPNHP)Mn(CO)2Br were carried out using silver nitrite, yieldingmore » the nitro compounds (iPrPONOP)Mn(CO)2(NO2) and (iPrPNHP)Mn(CO)2(NO2), respectively. The analogous iron complex (iPrPONOP)Fe(CO)Cl2 was nitrated under the same conditions to yield the salt pair [(iPrPONOP)Fe(CO)2][FeCl3NO]. This reactivity underlines the difference between iso-valent iron and manganese centers. The manganese complexes (iPrPONOP)Mn(CO)2(NO2) and (iPrPNHP)Mn(CO)2(NO2) were ineffective as oxygen atom transfer reagents for a variety of substrates.« less

  9. A simple route to synthesize manganese germanate nanorods

    SciTech Connect (OSTI)

    Pei, L.Z. Yang, Y.; Yuan, C.Z.; Duan Taike; Zhang Qianfeng

    2011-06-15

    Manganese germanate nanorods have been synthesized by a simple route using germanium dioxide and manganese acetate as the source materials. X-ray diffraction observation shows that the nanorods are composed of orthorhombic and monoclinic manganese germanate phases. Scanning electron microscopy and transmission electron microscopy observations display that the manganese germanate nanorods have flat tips with the length of longer than 10 micrometers and diameter of 60-350 nm, respectively. The role of the growth conditions on the formation of the manganese germanate nanorods shows that the proper selection and combination of the growth conditions are the key factor for controlling the formation of the manganese germanate nanorods. The photoluminescence spectrum of the manganese germanate nanorods exhibits four fluorescence emission peaks centered at 422 nm, 472 nm, 487 nm and 530 nm showing the application potential for the optical devices. - Research Highlights: {yields} Manganese germanate nanorods have been synthesized by simple hydrothermal process. {yields} The formation of manganese germanate nanorods can be controlled by growth conditions. {yields} Manganese germanate nanorods exhibit good PL emission ability for optical device.

  10. Magnesium phosphate glass cements with ceramic-type properties

    DOE Patents [OSTI]

    Sugama, Toshifumi; Kukacka, Lawrence E.

    1984-03-13

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate exhibiting rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  11. Magnesium-phosphate-glass cements with ceramic-type properties

    DOE Patents [OSTI]

    Sugama, T.; Kukacka, L.E.

    1982-09-23

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate, exhibits rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  12. Suppressing Manganese Dissolution from Lithium Manganese Oxide Spinel Cathodes with Single-Layer Graphene

    SciTech Connect (OSTI)

    Jaber-Ansari, Laila; Puntambekar, Kanan P.; Kim, Soo; Aykol, Muratahan; Luo, Langli; Wu, Jinsong; Myers, Benjamin D.; Iddir, Hakim; Russell, John T.; Saldana, Spencer J.; Kumar, Rajan; Thackeray, Michael M.; Curtiss, Larry A.; Dravid, Vinayak P.; Wolverton, Christopher M.; Hersam, Mark C.

    2015-06-24

    Spinel-structured LiMn 2 O 4 (LMO) is a desirable cathode material for Li-ion batteries due to its low cost, abundance, and high power capability. However, LMO suffers from limited cycle life that is triggered by manganese dissolution into the electrolyte during electrochemical cycling. Here, it is shown that single-layer graphene coatings suppress manganese dissolution, thus enhancing the performance and lifetime of LMO cathodes. Relative to lithium cells with uncoated LMO cathodes, cells with graphene-coated LMO cathodes provide improved capacity retention with enhanced cycling stability. X-ray photoelectron spectroscopy reveals that graphene coatings inhibit manganese depletion from the LMO surface. Additionally, transmission electron microscopy demonstrates that a stable solid electrolyte interphase is formed on graphene, which screens the LMO from direct contact with the electrolyte. Density functional theory calculations provide two mechanisms for the role of graphene in the suppression of manganese dissolution. First, common defects in single-layer graphene are found to allow the transport of lithium while concurrently acting as barriers for manganese diffusion. Second, graphene can chemically interact with Mn 3+ at the LMO electrode surface, promoting an oxidation state change to Mn 4+ , which suppresses dissolution.

  13. Manganese oxide nanowires, films, and membranes and methods of making

    DOE Patents [OSTI]

    Suib, Steven Lawrence (Storrs, CT); Yuan, Jikang (Storrs, CT)

    2011-02-15

    Nanowires, films, and membranes comprising ordered porous manganese oxide-based octahedral molecular sieves and methods of making the same are disclosed. A method for forming nanowires includes hydrothermally treating a chemical precursor composition in a hydrothermal treating solvent to form the nanowires, wherein the chemical precursor composition comprises a source of manganese cations and a source of counter cations, and wherein the nanowires comprise ordered porous manganese oxide-based octahedral molecular sieves.

  14. Electrolytic photodissociation of chemical compounds by iron oxide photochemical diodes

    DOE Patents [OSTI]

    Somorjai, Gabor A.; Leygraf, Christofer H.

    1985-01-01

    Chemical compounds can be dissociated by contacting the same with a p/n type semi-conductor photochemical diode having visible light as its sole source of energy. The photochemical diode consists of low cost, readily available materials, specifically polycrystalline iron oxide doped with silicon in the case of the n-type semi-conductor electrode, and polycrystalline iron oxide doped with magnesium in the case of the p-type electrode. So long as the light source has an energy greater than 2.2 electron volts, no added energy source is needed to achieve dissociation.

  15. Understanding Interactions between Manganese Oxide and Gold That...

    Office of Scientific and Technical Information (OSTI)

    Water Oxidation Prev Next Title: Understanding Interactions between Manganese Oxide and Gold That Lead to Enhanced Activity for Electrocatalytic Water Oxidation ...

  16. Final Report: Manganese Redox Mediation of UO2 Stability and...

    Office of Scientific and Technical Information (OSTI)

    Meter Scale Dynamics Citation Details In-Document Search Title: Final Report: Manganese Redox Mediation of UO2 Stability and Uranium Fate in the Subsurface: Molecular and Meter ...

  17. Addressing the Voltage Fade Issue with Lithium-Manganese-Rich...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addressing the Voltage Fade Issue with Lithium-Manganese-Rich Oxide Cathode Materials 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review ...

  18. Thermodynamic Investigations of Lithium- and Manganese-Rich Transition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermodynamic Investigations of Lithium- and Manganese-Rich Transition Metal Oxides 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review ...

  19. Examining Hysteresis in Lithium- and Manganese-Rich Composite...

    Broader source: Energy.gov (indexed) [DOE]

    Technologies Office Merit Review 2014: Understanding Structural Changes in LMR-NMC Materials Thermodynamic Investigations of Lithium- and Manganese-Rich Transition Metal Oxides

  20. Manganese Reduction-Oxidation Drives Plant Debris Decomposition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manganese Reduction-Oxidation Drives Plant Debris Decomposition Print Microbial decomposition of plant debris ("litter") is a keystone ecosystem process because it regulates ...

  1. Friction Stir and Ultrasonic Solid State Joining of Magnesium...

    Broader source: Energy.gov (indexed) [DOE]

    FSW & USW Solid State Joining of Magnesium to Steel Formability of Direct Cast Mg Sheet and Friction Stir and Ultrasonic Joining of Magnesium to Steel FY 2009 Progress Report for ...

  2. SOLID STATE JOINING OF MAGNESIUM TO STEEL

    SciTech Connect (OSTI)

    Jana, Saumyadeep; Hovanski, Yuri; Pilli, Siva Prasad; Field, David P.; Yu, Hao; Pan, Tsung-Yu; Santella, M. L.

    2012-06-04

    Friction stir welding and ultrasonic welding techniques were applied to join automotive magnesium alloys to steel sheet. The effect of tooling and process parameters on the post-weld microstructure, texture and mechanical properties was investigated. Static and dynamic loading were utilized to investigate the joint strength of both cast and wrought magnesium alloys including their susceptibility and degradation under corrosive media. The conditions required to produce joint strengths in excess of 75% of the base metal strength were determined, and the effects of surface coatings, tooling and weld parameters on weld properties are presented.

  3. Promising Magnesium Battery Research at ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Promising Magnesium Battery Research at ALS Promising Magnesium Battery Research at ALS Print Wednesday, 23 January 2013 16:59 toyota battery a) Cross-section of the in situ electrochemical/XAS cell with annotations. b) Drawing and c) photograph of the assembled cell. Alternatives to the current lithium-ion-based car batteries are at the forefront of the automotive industry's research agenda-manufacturers want to build cars with longer battery life, and to do that they're going to have to find

  4. REFRACTORY DIE FOR EXTRUDING URANIUM

    DOE Patents [OSTI]

    Creutz, E.C.

    1959-08-11

    A die is presented for the extrusion of metals, said die being formed of a refractory complex oxide having the composition M/sub n/O/sub m/R/sub x/O/sub y/ where M is magnesium, zinc, manganese, or iron, R is aluminum, chromic chromium, ferric iron, or manganic manganese, and m, n, x, and y are whole numbers. Specific examples are spinel, magnesium aluminate, magnetite, magnesioferrite, chromite, and franklinite.

  5. Environmental fate of methylcyclopentadienyl manganese tricarbonyl

    SciTech Connect (OSTI)

    Garrison, A.W.; Wolfe, N.L.; Swank, R.R. Jr.; Cipollone, M.G.

    1995-11-01

    Methylcyclopentadienyl manganese tricarbonyl (MMT) has been proposed as an octane booster for unleaded gasoline; such use could result in ecological and human exposure through surface water and groundwater ecosystems. To evaluate the environmental risks from MMT, its environmental fate constants and transformation pathways must be known. Constants for physical parameters that would likely influence MMT fate were collected from the literature or calculated; the compound`s octanol/water partition coefficient and water solubility were determined in the laboratory. Experiments were designed to screen MMT for transformation pathways that are significant over environmentally short time frames. The MMT was found to be fairly stable in the dark in aquifer materials and sediments at various Eh levels; half-lives ranged from 0.2 to 1.5 years in aquifer materials at 25 C. (These matrices were not optimized for biodegradation.) On the other hand, MMT photolyzes rapidly in distilled water; its half-life in midday sunlight in water is approximately 1 min and the disappearance quantum yield is 0.13. Photodegradation products were identified as cyclopentadiene, methyl cyclopentadiene, carbon monoxide, and a manganese carbonyl that readily oxidized to trimanganese tetroxide.

  6. Development of Integrated Die Casting Process for Large Thin-Wall Magnesium Applications Enabling Production of Lightweight Magnesium Parts for Near-Term Automotive Applications

    Office of Energy Efficiency and Renewable Energy (EERE)

    Development of Integrated Die Casting Process for Large Thin-Wall Magnesium Applications Enabling Production of Lightweight Magnesium Parts for Near-Term Automotive Applications

  7. Lithium-aluminum-magnesium electrode composition

    DOE Patents [OSTI]

    Melendres, Carlos A.; Siegel, Stanley

    1978-01-01

    A negative electrode composition is presented for use in a secondary, high-temperature electrochemical cell. The cell also includes a molten salt electrolyte of alkali metal halides or alkaline earth metal halides and a positive electrode including a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent and a magnesium-aluminum alloy as a structural matrix. Various binary and ternary intermetallic phases of lithium, magnesium, and aluminum are formed but the electrode composition in both its charged and discharged state remains substantially free of the alpha lithium-aluminum phase and exhibits good structural integrity.

  8. Lead magnesium niobate actuator for micropositioning

    DOE Patents [OSTI]

    Swift, C.D.; Bergum, J.W.

    1994-10-25

    An improved lead magnesium niobate actuator is disclosed comprising a cylindrical lead magnesium niobate crystal stack mounted in a cylindrical casing wherein a bias means, such as one or more belleville washers, is located between one end of the crystal stack and a partially closed end of the casing; and adjustment means are provided which bear against the opposite end of the crystal stack, whereby an adjustable compressive force is constantly applied against the crystal stack, whether the crystal stack is actuated in an extended position, or is in an unactuated contracted position. In a preferred embodiment, cooling ports are provided for the circulation of coolant in the actuator to cool the crystal stack, and provision is made for removal and replacement of the crystal stack without disconnecting the actuator from the external device being actuated. 3 figs.

  9. Lead magnesium niobate actuator for micropositioning

    SciTech Connect (OSTI)

    Swift, Charles D.; Bergum, John W.

    1994-01-01

    An improved lead magnesium niobate actuator is disclosed comprising a cylindrical lead magnesium niobate crystal stack mounted in a cylindrical casing wherein a bias means, such as one or more belleville washers, is located between one end of the crystal stack and a partially closed end of the casing; and adjustment means are provided which bear against the opposite end of the crystal stack, whereby an adjustable compressive force is constantly applied against the crystal stack, whether the crystal stack is actuated in an extended position, or is in an unactuated contracted position. In a preferred embodiment, cooling ports are provided for the circulation of coolant in the actuator to cool the crystal stack, and provision is made for removal and replacement of the crystal stack without disconnecting the actuator from the external device being actuated.

  10. A highly active manganese precatalyst for the hydrosilylation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    precatalyst for the hydrosilylation of ketones and esters Authors: Mukhopadhyay, T.K., Flores, M., Groy, T.L., and Trovitch, R.J. Title: A highly active manganese precatalyst for...

  11. Manganese Reduction-Oxidation Drives Plant Debris Decomposition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manganese Reduction-Oxidation Drives Plant Debris Decomposition Manganese Reduction-Oxidation Drives Plant Debris Decomposition Print Monday, 22 February 2016 00:00 Microbial decomposition of plant debris ("litter") is a keystone ecosystem process because it regulates nutrient availability, ecosystem productivity, and carbon (C) cycling. Historically, climate (primarily temperature and precipitation) has been thought to regulate the rate of litter decomposition, which then influences

  12. Thermodynamic Investigations of Lithium- and Manganese-Rich Transition

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metal Oxides | Department of Energy Investigations of Lithium- and Manganese-Rich Transition Metal Oxides Thermodynamic Investigations of Lithium- and Manganese-Rich Transition Metal Oxides 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es192_lu_2013_p.pdf (2.1 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: Electrochemical Modeling of LMR-NMC Materials and Electrodes Examining

  13. MAGNESIUM-BASED METHODS, SYSTEMS, AND DEVICES - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials for Magnesium Batteries and Metal Anodes Abstract: An aspect of the present invention is an electrical device, where the device includes a current collector and a porous...

  14. Shear Rolling of Magnesium Sheet for Automotive, Defense, and...

    Office of Scientific and Technical Information (OSTI)

    Shear Rolling of Magnesium Sheet for Automotive, Defense, and Energy Applications Citation ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  15. Shear Rolling of Magnesium Sheet for Automotive, Defense, and...

    Office of Scientific and Technical Information (OSTI)

    Title: Shear Rolling of Magnesium Sheet for Automotive, Defense, and Energy Applications Authors: Muralidharan, Govindarajan 1 ; Muth, Thomas R 1 ; Peter, William H 1 ; ...

  16. Scale-Up of Magnesium Production by Fully Stabilized Zirconia...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Solid Oxide Membrane (SOM) Electrolysis of Magnesium: Scale-Up Research and Engineering for Light-Weight Vehicles Vehicle Technologies Office Merit ...

  17. Demonstration of Magnesium Intercalation into a High-Voltage...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    17, 2015, Research Highlights Demonstration of Magnesium Intercalation into a High-Voltage ... Scientific Achievement First demonstration of reversible insertion of multivalent ...

  18. Rechargeable Magnesium Batteries: Low-Cost Rechargeable Magnesium Batteries with High Energy Density

    SciTech Connect (OSTI)

    2010-10-01

    BEEST Project: Pellion Technologies is developing rechargeable magnesium batteries that would enable an EV to travel 3 times farther than it could using Li-ion batteries. Prototype magnesium batteries demonstrate excellent electrochemical behavior; delivering thousands of charge cycles with very little fade. Nevertheless, these prototypes have always stored too little energy to be commercially viable. Pellion Technologies is working to overcome this challenge by rapidly screening potential storage materials using proprietary, high-throughput computer models. To date, 12,000 materials have been identified and analyzed. The resulting best materials have been electrochemically tested, yielding several very promising candidates.

  19. Mesoporous iron–manganese oxides for sulphur mustard and soman degradation

    SciTech Connect (OSTI)

    Štengl, Václav; J.E. Purkyně University in Ústí nad Labem, Faculty of Environment, 400 96 Ústí nad Labem ; Grygar, Tomáš Matys; J.E. Purkyně University in Ústí nad Labem, Faculty of Environment, 400 96 Ústí nad Labem ; Bludská, Jana; Opluštil, František; Němec, Tomáš

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► New nanodispersive materials based on Fe and Mn oxides for degradations of warfare agents. ► The best activities for the degradation of sulphur mustard (97.9% in 64 min) and soman (97.9% in 64 min). ► One pot synthesis with friendly transformed to industrial conditions. -- Abstract: Substituted iron(III)–manganese(III, IV) oxides, ammonio-jarosite and birnessite, were prepared by a homogeneous hydrolysis of potassium permanganate and iron(III) sulphate with 2-chloroacetamide and urea, respectively. Synthesised oxides were characterised using Brunauer–Emmett–Teller (BET) surface area and Barrett–Joiner–Halenda porosity (BJH), X-ray diffraction (XRD), infrared spectroscopy (IR), Raman spectroscopy and scanning electron microscopy (SEM). The oxides were taken for an experimental evaluation of their reactivity against sulphur mustard (HD) and soman (GD). When ammonio-jarosite formation is suppressed by adding urea to the reaction mixture, the reaction products are mixtures of goethite, schwertmannite and ferrihydrite, and their degradation activity against soman considerably increases. The best activities for the degradation of sulphur mustard (97.9% in 64 min) and soman (97.9% in 64 min) were observed for FeMn{sub 7}5 with 32.6 wt.% Fe (36.8 wt.% Mn) and FeMn{sub 3}7U with 60.8 wt.% Fe (10.1 wt.% Mn) samples, respectively.

  20. Gamma prime hardened nickel-iron based superalloy

    DOE Patents [OSTI]

    Korenko, Michael K.

    1978-01-01

    A low swelling, gamma prime hardened nickel-iron base superalloy useful for fast reactor duct and cladding applications is described having from about 7.0 to about 10.5 weight percent (wt%) chromium, from about 24 to about 35 wt% nickel, from about 1.7 to about 2.5 wt% titanium, from about 0.3 to about 1.0 wt% aluminum, from about 2.0 to about 3.3 wt% molybdenum, from about 0.05 to about 1.0 wt% silicon, from about 0.03 to about 0.06 wt% carbon, a maximum of about 2 wt% manganese, and the balance iron.

  1. MAGNESIUM ISOTOPE RATIOS IN {omega} CENTAURI RED GIANTS

    SciTech Connect (OSTI)

    Da Costa, G. S.; Norris, John E.; Yong, David

    2013-05-20

    We have used the high-resolution observations obtained at the Anglo-Australian Telescope with Ultra-High Resolution Facility (R {approx} 100,000) and at Gemini-S with b-HROS (R {approx} 150,000) to determine magnesium isotope ratios for seven {omega} Cen red giants that cover a range in iron abundance from [Fe/H] = -1.78 to -0.78 dex, and for two red giants in M4 (NGC 6121). The {omega} Cen stars sample both the ''primordial'' (i.e., O-rich, Na- and Al-poor) and the ''extreme'' (O-depleted, Na- and Al-rich) populations in the cluster. The primordial population stars in both {omega} Cen and M4 show ({sup 25}Mg, {sup 26}Mg)/{sup 24}Mg isotopic ratios that are consistent with those found for the primordial population in other globular clusters with similar [Fe/H] values. The isotopic ratios for the {omega} Cen extreme stars are also consistent with those for extreme population stars in other clusters. The results for the extreme population stars studied indicate that the {sup 26}Mg/{sup 24}Mg ratio is highest at intermediate metallicities ([Fe/H] < -1.4 dex), and for the highest [Al/Fe] values. Further, the relative abundance of {sup 26}Mg in the extreme population stars is notably higher than that of {sup 25}Mg, in contrast to model predictions. The {sup 25}Mg/{sup 24}Mg isotopic ratio in fact does not show any obvious dependence on either [Fe/H] or [Al/Fe] nor, intriguingly, any obvious difference between the primordial and extreme population stars.

  2. Casting Porosity-Free Grain Refined Magnesium Alloys

    SciTech Connect (OSTI)

    Schwam, David

    2013-08-12

    The objective of this project was to identify the root causes for micro-porosity in magnesium alloy castings and recommend remedies that can be implemented in production. The findings confirm the key role played by utilizing optimal gating and risering practices in minimizing porosity in magnesium castings. 

  3. OPERATION OF A TRITIUM GLOVEBOX CLEAN-UP SYSTEM USING ZIRCONIUM MANGANESE IRON AND ZIRCONIUM TWO IRON METAL GETTERS

    SciTech Connect (OSTI)

    E. LARSON; K. COOK

    2000-08-01

    A metal hydride-based tritium clean-up system has been successfully operated for more than four years on an 11 m{sup 3} helium/nitrogen glovebox which was used for handling metal tritide powders. The clean-up system consists of two beds: (1) a Zr-Mn-Fe (in a 10% by weight Al binder, SAES ST909) bed operating at 675 C followed by (2) a Zr{sub 2}Fe (SAES ST198) bed operating at 250 C. The Zr-Mn-Fe bed serves to condition the gas stream by cracking hydrogenous impurities (such as H{sub 2}O and hydrocarbons) and absorbing oxygen and carbon. The Zr{sub 2}Fe bed absorbs the hydrogen isotopes from the flowing stream by forming a solid hydride compound. These beds contain 3 kilograms of Zr{sub 2}Fe and have been loaded routinely with 230-250 STP liters of hydrogen isotopes in earlier trials. The Zr-Mn-Fe alloy exhibits an anomaly during activation, namely an exotherm upon initial exposure to nitrogen. The purpose of this work is to better understand this reaction. Nitrogen absorption studies were done in order to quantify the nitrogen taken up by the getter and to characterize the reaction kinetics. In addition, ST909 phases before and after the reaction were studied with x-ray diffraction.

  4. Synthesis of nanoscale magnesium diboride powder

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Finnemore, D. K.; Marzik, J. V.

    2015-12-18

    A procedure has been developed for the preparation of small grained magnesium diboride (MgB2) powder by reacting nanometer size boron powder in a magnesium vapor. Plasma synthesized boron powder that had particle sizes ranging from 20 to 300nm was mixed with millimeter size chunks of Mg by rolling stoichiometric amounts of the powders in a sealed cylindrical container under nitrogen gas. This mixture then was placed in a niobium reaction vessel, evacuated, and sealed by e-beam welding. The vessel was typically heated to approximately 830°C for several hours. The resulting MgB2 particles have a grain size in the 200 nmmore » to 800 nm range. Agglomerates of loosely bound particles could be broken up by light grinding in a mortar and pestle. At 830°C, many particles are composed of several grains grown together so that the average particle size is about twice the average grain size. Furthermore, experiments were conducted primarily with undoped boron powder, but carbon-doped boron powder showed very similar results.« less

  5. Synthesis of nanoscale magnesium diboride powder

    SciTech Connect (OSTI)

    Finnemore, D. K.; Marzik, J. V.

    2015-12-18

    A procedure has been developed for the preparation of small grained magnesium diboride (MgB2) powder by reacting nanometer size boron powder in a magnesium vapor. Plasma synthesized boron powder that had particle sizes ranging from 20 to 300nm was mixed with millimeter size chunks of Mg by rolling stoichiometric amounts of the powders in a sealed cylindrical container under nitrogen gas. This mixture then was placed in a niobium reaction vessel, evacuated, and sealed by e-beam welding. The vessel was typically heated to approximately 830°C for several hours. The resulting MgB2 particles have a grain size in the 200 nm to 800 nm range. Agglomerates of loosely bound particles could be broken up by light grinding in a mortar and pestle. At 830°C, many particles are composed of several grains grown together so that the average particle size is about twice the average grain size. Furthermore, experiments were conducted primarily with undoped boron powder, but carbon-doped boron powder showed very similar results.

  6. Manganese-Based Magnets: Manganese-Based Permanent Magnet with 40 MGOe at 200°C

    SciTech Connect (OSTI)

    2012-01-01

    REACT Project: PNNL is working to reduce the cost of wind turbines and EVs by developing a manganese-based nano-composite magnet that could serve as an inexpensive alternative to rare-earth-based magnets. The manganese composite, made from low-cost and abundant materials, could exceed the performance of today’s most powerful commercial magnets at temperature higher than 200°C. Members of PNNL’s research team will leverage comprehensive computer high-performance supercomputer modeling and materials testing to meet this objective. Manganese-based magnets could withstand higher temperatures than their rare earth predecessors and potentially reduce the need for any expensive, bulky engine cooling systems for the motor and generator. This would further contribute to cost savings for both EVs and wind turbines.

  7. Process for converting magnesium fluoride to calcium fluoride

    DOE Patents [OSTI]

    Kreuzmann, A.B.; Palmer, D.A.

    1984-12-21

    This invention is a process for the conversion of magnesium fluoride to calcium fluoride whereby magnesium fluoride is decomposed by heating in the presence of calcium carbonate, calcium oxide or calcium hydroxide. Magnesium fluoride is a by-product of the reduction of uranium tetrafluoride to form uranium metal and has no known commercial use, thus its production creates a significant storage problem. The advantage of this invention is that the quality of calcium fluoride produced is sufficient to be used in the industrial manufacture of anhydrous hydrogen fluoride, steel mill flux or ceramic applications.

  8. Plea for Iron Astrochemistry

    SciTech Connect (OSTI)

    Mostefaoui, T. A.; Benmerad, B.; Kerkar, M.

    2010-10-31

    Iron is a key element and compound in living bodies. It is the most abundant refractory element and has the most stable nucleus in the Universe. Also, elemental Iron has a relevant abundance in the interstellar medium and dense clouds, it can be in gas phase or included in dust particles. During this talk, I shall explain why this special interest in Iron and shall give a brief explanation about its origin and the interstellar nucleosynthesis. After this I'll detail the rich chemistry that Iron can be involved in the interstellar medium, dense clouds with several species.

  9. Electrical and thermal transport properties of iron and iron...

    Office of Scientific and Technical Information (OSTI)

    Electrical and thermal transport properties of iron and iron-silicon alloy at high pressure Citation Details In-Document Search Title: Electrical and thermal transport properties ...

  10. Magnesium Replacement of Aluminum Cast Components in a Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Replacement of Aluminum Cast Components in a Production V6 Engine to Effect Cost-Effective Mass Reduction Magnesium Replacement of Aluminum Cast Components in a Production V6 ...

  11. Ames Lab 101: BAM (Boron-Aluminum-Magnesium)

    ScienceCinema (OSTI)

    Bruce Cook

    2013-06-05

    Materials scientist, Bruce Cook, discusses the super hard, low friction, and lubricious alloy know as BAM (Boron-Aluminum-Magnesium). BAM was discovered by Bruce Cook and his team a

  12. Reversible Magnesium Intercalation into a Layered Oxyfluoride Cathode -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Joint Center for Energy Storage Research December 18, 2015, Research Highlights Reversible Magnesium Intercalation into a Layered Oxyfluoride Cathode Powder diffraction of oxyfluoridecathode with intercalated Mg and capacities of oxyfluorideand oxide cathodes Scientific Achievement Magnesium was reversibly intercalated at room temperature into an oxyfluoride cathode without the co-intercalation of electrolytes or protons and without the formation of unwanted side-products that commonly

  13. Interface-Induced Renormalization of Electrolyte Energy Levels in Magnesium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Batteries - Joint Center for Energy Storage Research February 17, 2016, Research Highlights Interface-Induced Renormalization of Electrolyte Energy Levels in Magnesium Batteries Renormalization of solvent HOMO (green lines) and LUMO (red lines) levels due to interactions with Mg (0001) and MgO (001). The shaded region in the center of the figure represents the electrochemical window of a hypothetical 4V magnesium battery Scientific Achievement Interface-induced changes to the stability of

  14. BACKGROUND REVIEW OF THE BRUSH BERYLLIUM AND DIAMOND MAGNESIUM PLANTS

    Office of Legacy Management (LM)

    BACKGROUND REVIEW OF THE BRUSH BERYLLIUM AND DIAMOND MAGNESIUM PLANTS IN LUCKEY, OHIO October 27, 1989 Prepared for: U.S. Department of Energy Formerly Utilized Sites Remedial Action Program Prepared by: R.F. Weston/Office of Technical Services BACKGROUND REVIEW OF THE BRUSH BERYLLIUM AND DIAMOND MAGNESIUM PLANTS IN LUCKEY, OHIO INTRODUCTION The Department of Energy (DOE) is conducting a program to identify and examine the radiological conditions at sites used in the early years of nuclear

  15. Thin Wall Iron Castings

    SciTech Connect (OSTI)

    J.F. Cuttino; D.M. Stefanescu; T.S. Piwonka

    2001-10-31

    Results of an investigation made to develop methods of making iron castings having wall thicknesses as small as 2.5 mm in green sand molds are presented. It was found that thin wall ductile and compacted graphite iron castings can be made and have properties consistent with heavier castings. Green sand molding variables that affect casting dimensions were also identified.

  16. Layered materials with improved magnesium intercalation for rechargeable magnesium ion cells

    DOE Patents [OSTI]

    Doe, Robert Ellis; Downie, Craig Michael; Fischer, Christopher; Lane, George Hamilton; Morgan, Dane; Nevin, Josh; Cedar, Gerbrand; Persson, Kristin Aslaug; Eaglesham, David

    2015-11-05

    Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqeuous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negative electrode active material is described.

  17. Layered materials with improved magnesium intercalation for rechargeable magnesium ion cells

    DOE Patents [OSTI]

    Doe, Robert Ellis; Downie, Craig Michael; Fischer, Christopher; Lane, George Hamilton; Morgan, Dane; Nevin, Josh; Ceder, Gerbrand; Persson, Kristin Aslaug; Eaglesham, David

    2015-10-27

    Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqeuous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negative electrode active material is described.

  18. Layered materials with improved magnesium intercalation for rechargeable magnesium ion cells

    DOE Patents [OSTI]

    Doe, Robert E.; Downie, Craig M.; Fischer, Christopher; Lane, George H.; Morgan, Dane; Nevin, Josh; Ceder, Gerbrand; Persson, Kristin A.; Eaglesham, David

    2016-01-19

    Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqueous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negative electrode active material is described.

  19. Verification of Steelmaking Slags Iron Content Final Technical Progress Report

    SciTech Connect (OSTI)

    J.Y. Hwang

    2006-10-04

    The steel industry in the United States generates about 30 million tons of by-products each year, including 6 million tons of desulfurization and BOF/BOP slag. The recycling of BF (blast furnace) slag has made significant progress in past years with much of the material being utilized as construction aggregate and in cementitious applications. However, the recycling of desulfurization and BOF/BOP slags still faces many technical, economic, and environmental challenges. Previous efforts have focused on in-plant recycling of the by-products, achieving only limited success. As a result, large amounts of by-products of various qualities have been stockpiled at steel mills or disposed into landfills. After more than 50 years of stockpiling and landfilling, available mill site space has diminished and environmental constraints have increased. The prospect of conventionally landfilling of the material is a high cost option, a waste of true national resources, and an eternal material liability issue. The research effort has demonstrated that major inroads have been made in establishing the viability of recycling and reuse of the steelmaking slags. The research identified key components in the slags, developed technologies to separate the iron units and produce marketable products from the separation processes. Three products are generated from the technology developed in this research, including a high grade iron product containing about 90%Fe, a medium grade iron product containing about 60% Fe, and a low grade iron product containing less than 10% Fe. The high grade iron product contains primarily metallic iron and can be marketed as a replacement of pig iron or DRI (Direct Reduced Iron) for steel mills. The medium grade iron product contains both iron oxide and metallic iron and can be utilized as a substitute for the iron ore in the blast furnace. The low grade iron product is rich in calcium, magnesium and iron oxides and silicates. It has a sufficient lime value and

  20. Electronic effects on iron porphyrins

    SciTech Connect (OSTI)

    Rosa, M. De La; Lopez, M.A.

    1995-12-31

    We have inserted iron into a series of substituted iron tetraphenylporphyrins for the purposes of investigating electronic effects on properties of the iron porphyrins. The properties of interest are the CO stretching frequencies of the ferrous porphyrins, the rates of CO dissociation from the ferrous porphyrins, and the UV-visible spectra of the iron porphyrins. We will present our results to date.

  1. The Unexpected Discovery of the Mg(HMDS)2/MgCl2 Complex as a Magnesium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrolyte for Rechargeable Magnesium Batteries - Joint Center for Energy Storage Research February 2, 2015, Research Highlights The Unexpected Discovery of the Mg(HMDS)2/MgCl2 Complex as a Magnesium Electrolyte for Rechargeable Magnesium Batteries NMR confirms formation of new species Scientific Achievement A simple mixture of magnesium compounds: magnesium hexamethyldisilazide (Mg(HMDS)2) and magnesium chloride (MgCl2) was prepared to achieve reversible Mg deposition/dissolution, a wide

  2. Manganese oxide nanowires, films, and membranes and methods of making

    DOE Patents [OSTI]

    Suib, Steven Lawrence (Storrs, CT); Yuan, Jikang (Storrs, CT)

    2008-10-21

    Nanowires, films, and membranes comprising ordered porous manganese oxide-based octahedral molecular sieves, and methods of making, are disclosed. A single crystal ultra-long nanowire includes an ordered porous manganese oxide-based octahedral molecular sieve, and has an average length greater than about 10 micrometers and an average diameter of about 5 nanometers to about 100 nanometers. A film comprises a microporous network comprising a plurality of single crystal nanowires in the form of a layer, wherein a plurality of layers is stacked on a surface of a substrate, wherein the nanowires of each layer are substantially axially aligned. A free standing membrane comprises a microporous network comprising a plurality of single crystal nanowires in the form of a layer, wherein a plurality of layers is aggregately stacked, and wherein the nanowires of each layer are substantially axially aligned.

  3. Compositions containing nucleosides and manganese and their uses

    SciTech Connect (OSTI)

    Daly, Michael J.; Gaidamakova, Elena K.; Matrosova, Vera Y.; Levine, Rodney L.; Wehr, Nancy B.

    2015-11-17

    This invention encompasses methods of preserving protein function by contacting a protein with a composition comprising one or more purine or pyrimidine nucleosides (such as e.g., adenosine or uridine) and an antioxidant (such as e.g., manganese). In addition, the invention encompasses methods of treating and/or preventing a side effect of radiation exposure and methods of preventing a side effect of radiotherapy comprising administration of a pharmaceutically effective amount of a composition comprising one or more purine or pyrimidine nucleosides (such as e.g., adenosine or uridine) and an antioxidant (such as e.g., manganese) to a subject in need thereof. The compositions may comprise D. radiodurans extracts.

  4. Manganese Reduction-Oxidation Drives Plant Debris Decomposition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manganese Reduction-Oxidation Drives Plant Debris Decomposition Print Microbial decomposition of plant debris ("litter") is a keystone ecosystem process because it regulates nutrient availability, ecosystem productivity, and carbon (C) cycling. Historically, climate (primarily temperature and precipitation) has been thought to regulate the rate of litter decomposition, which then influences the rate at which nutrients become available and C contained in the litter is released back into

  5. Manganese Reduction-Oxidation Drives Plant Debris Decomposition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manganese Reduction-Oxidation Drives Plant Debris Decomposition Print Microbial decomposition of plant debris ("litter") is a keystone ecosystem process because it regulates nutrient availability, ecosystem productivity, and carbon (C) cycling. Historically, climate (primarily temperature and precipitation) has been thought to regulate the rate of litter decomposition, which then influences the rate at which nutrients become available and C contained in the litter is released back into

  6. Manganese Reduction-Oxidation Drives Plant Debris Decomposition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manganese Reduction-Oxidation Drives Plant Debris Decomposition Print Microbial decomposition of plant debris ("litter") is a keystone ecosystem process because it regulates nutrient availability, ecosystem productivity, and carbon (C) cycling. Historically, climate (primarily temperature and precipitation) has been thought to regulate the rate of litter decomposition, which then influences the rate at which nutrients become available and C contained in the litter is released back into

  7. Manganese Reduction-Oxidation Drives Plant Debris Decomposition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manganese Reduction-Oxidation Drives Plant Debris Decomposition Print Microbial decomposition of plant debris ("litter") is a keystone ecosystem process because it regulates nutrient availability, ecosystem productivity, and carbon (C) cycling. Historically, climate (primarily temperature and precipitation) has been thought to regulate the rate of litter decomposition, which then influences the rate at which nutrients become available and C contained in the litter is released back into

  8. Development of High-Volume Warm Forming of Low-Cost Magnesium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Volume Warm Forming of Low-Cost Magnesium Sheet Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet 2009 DOE Hydrogen Program and Vehicle Technologies Program ...

  9. Development of High-Volume Warm Forming of Low-Cost Magnesium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet 2010 DOE Vehicle Technologies and Hydrogen ...

  10. Phase Diagram and Equation of State of Magnesium to High Pressures...

    Office of Scientific and Technical Information (OSTI)

    Phase Diagram and Equation of State of Magnesium to High Pressures and High Temperatures Citation Details In-Document Search Title: Phase Diagram and Equation of State of Magnesium ...

  11. A Lewis Acid-free and Phenolate-based Magnesium Electrolyte for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rechargeable Magnesium Batteries - Joint Center for Energy Storage Research March 2, 2015, Research Highlights A Lewis Acid-free and Phenolate-based Magnesium Electrolyte for Rechargeable Magnesium Batteries X-ray single crystal isolated from the electrolyte containing the prototype [Mg2Cl3(THF)6]+ cation Scientific Achievement A novel Lewis acid-free all magnesium electrolyte containing 2,6-di-tert-butylphenoxidemagnesium chloride ((DTBP)MgCl + MgCl2) has been deliberately developed. The

  12. Nanostructured material for advanced energy storage : magnesium battery cathode development.

    SciTech Connect (OSTI)

    Sigmund, Wolfgang M.; Woan, Karran V.; Bell, Nelson Simmons

    2010-11-01

    Magnesium batteries are alternatives to the use of lithium ion and nickel metal hydride secondary batteries due to magnesium's abundance, safety of operation, and lower toxicity of disposal. The divalency of the magnesium ion and its chemistry poses some difficulties for its general and industrial use. This work developed a continuous and fibrous nanoscale network of the cathode material through the use of electrospinning with the goal of enhancing performance and reactivity of the battery. The system was characterized and preliminary tests were performed on the constructed battery cells. We were successful in building and testing a series of electrochemical systems that demonstrated good cyclability maintaining 60-70% of discharge capacity after more than 50 charge-discharge cycles.

  13. Weldability of iron aluminides

    SciTech Connect (OSTI)

    David, S.A.; Zacharia, T.; Reed, R.W.

    1990-01-01

    A preliminary investigation was carried out to determine the weldability of a class of advanced iron aluminides. Thin sheets of iron aluminides were gas tungsten arc (GTA) and electron beam (EB) welded at different travel speeds and power levels. The results indicate that the weldability of these alloys is very sensitive to the welding conditions and compositions, producing good welds sometimes and severely cracked welds at other times. Alloys containing TiB{sub 2} additions for improved strength and ductility cracked severely upon welding. Alloys without boron and zirconium, in particular alloy FA-129, was found to show more promise for welding than most of the other iron aluminides. 4 refs., 3 figs., 2 tabs.

  14. Evidence That the [beta] Subunit of Chlamydia trachomatis Ribonucleotide Reductase Is Active with the Manganese Ion of Its Manganese(IV)/Iron(III) Cofactor in Site 1

    SciTech Connect (OSTI)

    Dassama, Laura M.K.; Boal, Amie K.; Krebs, Carsten; Rosenzweig, Amy C.; Bollinger, Jr., J. Martin

    2014-10-02

    The reaction of a class I ribonucleotide reductase (RNR) begins when a cofactor in the {beta} subunit oxidizes a cysteine residue {approx}35 {angstrom} away in the {alpha} subunit, generating a thiyl radical. In the class Ic enzyme from Chlamydia trachomatis (Ct), the cysteine oxidant is the Mn{sup IV} ion of a Mn{sup IV}/Fe{sup III} cluster, which assembles in a reaction between O{sub 2} and the Mn{sup II}/Fe{sup II} complex of {beta}. The heterodinuclear nature of the cofactor raises the question of which site, 1 or 2, contains the Mn{sup IV} ion. Because site 1 is closer to the conserved location of the cysteine-oxidizing tyrosyl radical of class Ia and Ib RNRs, we suggested that the Mn{sup IV} ion most likely resides in this site (i.e., {sup 1}Mn{sup IV}/{sup 2}Fe{sup III}), but a subsequent computational study favored its occupation of site 2 ({sup 1}Fe{sup III}/{sup 2}Mn{sup IV}). In this work, we have sought to resolve the location of the Mn{sup IV} ion in Ct RNR-{beta} by correlating X-ray crystallographic anomalous scattering intensities with catalytic activity for samples of the protein reconstituted in vitro by two different procedures. In samples containing primarily Mn{sup IV}/Fe{sup III} clusters, Mn preferentially occupies site 1, but some anomalous scattering from site 2 is observed, implying that both {sup 1}Mn{sup II}/{sup 2}Fe{sup II} and {sup 1}Fe{sup II}/{sup 2}Mn{sup II} complexes are competent to react with O{sub 2} to produce the corresponding oxidized states. However, with diminished Mn{sup II} loading in the reconstitution, there is no evidence for Mn occupancy of site 2, and the greater activity of these 'low-Mn' samples on a per-Mn basis implies that the {sup 1}Mn{sup IV}/{sup 2}Fe{sup III}-{beta} is at least the more active of the two oxidized forms and may be the only active form.

  15. Synthesis of manganese oxide supported on mesoporous titanium oxide: Influence of the block copolymer

    SciTech Connect (OSTI)

    Schmit, F.; Bois, L.; Chiriac, R.; Toche, F.; Chassagneux, F.; Besson, M.; Descorme, C.; Khrouz, L.

    2015-01-15

    Manganese oxides supported on mesoporous titanium oxides were synthesized via a sol–gel route using block copolymer self-assembly. The oxides were characterized by X-ray diffraction, infrared spectroscopy, thermal analyses, nitrogen adsorption/desorption, electron microscopy and electronic paramagnetic resonance. A mesoporous anatase containing amorphous manganese oxide particles could be obtained with a 0.2 Mn:Ti molar ratio. At higher manganese loading (0.5 Mn:Ti molar ratio), segregation of crystalline manganese oxide occurred. The influence of block copolymer and manganese salt on the oxide structure was discussed. The evolution of the textural and structural characteristics of the materials upon hydrothermal treatment was also investigated. - Graphical abstract: One-pot amorphous MnO{sub 2} supported on mesoporous anataseTiO{sub 2}. - Highlights: • Mesoporous manganese titanium oxides were synthesized using block copolymer. • Block copolymers form complexes with Mn{sup 2+} from MnCl{sub 2}. • With block copolymer, manganese oxide can be dispersed around the titania crystallites. • With Mn(acac){sub 2}, manganese is dispersed inside titania. • MnOOH crystallizes outside mesoporous titania during hydrothermal treatment.

  16. REGENERATION OF FISSION-PRODUCT-CONTAINING MAGNESIUM-THORIUM ALLOYS

    DOE Patents [OSTI]

    Chiotti, P.

    1964-02-01

    A process of regenerating a magnesium-thorium alloy contaminated with fission products, protactinium, and uranium is presented. A molten mixture of KCl--LiCl-MgCl/sub 2/ is added to the molten alloy whereby the alkali, alkaline parth, and rare earth fission products (including yttrium) and some of the thorium and uranium are chlorinated and

  17. Magnesium oxide inserts for the LECO Carbon Analyzer

    SciTech Connect (OSTI)

    Bagaasen, L.M.; Jensen, C.M.

    1991-01-16

    LECO carbon analysis of plutonium metal and plutonium oxide at the Rocky Flats Plant generates several hundred kilograms of high silica residues each year. The plutonium in these residues is difficult and expensive to recover using production dissolution processes. A magnesium oxide (MgO) insert has been developed that significantly lowers the plutonium recovery costs without adversely affecting accuracy of the carbon analysis.

  18. Computational Model of Magnesium Deposition and Dissolution for Property

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Determination via Cyclic Voltammetry - Joint Center for Energy Storage Research June 23, 2016, Research Highlights Computational Model of Magnesium Deposition and Dissolution for Property Determination via Cyclic Voltammetry Top: Example distributions of the charge transfer coefficient and standard heterogeneous rate constant, obtained from fitting Bottom: Comparison between experimental and simulated voltammograms, demonstrating good agreement Scientific Achievement A computationally

  19. Red-emitting manganese-doped aluminum nitride phosphor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cherepy, Nerine J.; Payne, Stephen A.; Harvey, Nicholas M.; Aberg, Daniel; Seeley, Zachary M.; Holliday, Kiel S.; Tran, Ich C.; Zhou, Fei; Martinez, H. Paul; Demeyer, Jessica M.; et al

    2016-02-10

    Here, we report high efficiency luminescence with a manganese-doped aluminum nitride red-emitting phosphor under 254 nm excitation, as well as its excellent lumen maintenance in fluorescent lamp conditions, making it a candidate replacement for the widely deployed europium-doped yttria red phosphor. Solid-state reaction of aluminum nitride powders with manganese metal at 1900 °C, 10 atm N2 in a reducing environment results in nitrogen deficiency, as revealed diffuse reflectance spectra. When these powders are subsequently annealed in flowing nitrogen at 1650 °C, higher nitrogen content is recovered, resulting in white powders. Silicon was added to samples as an oxygen getter tomore » improve emission efficiency. NEXAFS spectra and DFT calculations indicate that the Mn dopant is divalent. From DFT calculations, the UV absorption band is proposed to be due to an aluminum vacancy coupled with oxygen impurity dopants, and Mn2+ is assumed to be closely associated with this site. In contrast with some previous reports, we find that the highest quantum efficiency with 254 nm excitation (Q.E. = 0.86 ± 0.14) is obtained in aluminum nitride with a low manganese doping level of 0.06 mol.%. The principal Mn2+ decay of 1.25 ms is assigned to non-interacting Mn sites, while additional components in the microsecond range appear with higher Mn doping, consistent with Mn clustering and resultant exchange coupling. Slower components are present in samples with low Mn doping, as well as strong afterglow, assigned to trapping on shallow traps followed by detrapping and subsequent trapping on Mn.« less

  20. Iron dominated magnets

    SciTech Connect (OSTI)

    Fischer, G.E.

    1985-07-01

    These two lectures on iron dominated magnets are meant for the student of accelerator science and contain general treatments of the subjects design and construction. The material is arranged in the categories: General Concepts and Cost Considerations, Profile Configuration and Harmonics, Magnetic Measurements, a few examples of ''special magnets'' and Materials and Practices. Extensive literature is provided.

  1. Raman Microscopy of Lithium-Manganese-Rich Cathodes

    SciTech Connect (OSTI)

    Ruther, Rose E; Callender, Andrew F.; Zhou, Hui; Martha, Surendra; Nanda, Jagjit

    2014-01-01

    Lithium rich, manganese rich composites with general formula xLi2MnO3 (1-x)LiMO2 are promising candidates for high capacity and high voltage cathodes for lithium ion batteries. Lithium rich oxides crystallize as a nanocomposite of layered phases whose structure further evolves with electrochemical cycling. Raman spectroscopy is potentially a powerful tool to monitor the crystal chemistry and correlate phase changes with electrochemical behavior. While several groups have reported Raman spectra of lithium rich oxides, the data show considerable variability in terms of both the vibrational features observed and their interpretation. In this study Raman microscopy is used to investigate lithium-rich manganese-rich cathodes as a function of average charge and electrochemical cycling. LMR-NMC cycled at elevated temperature (60 C) has a modified crystal structure which may account for some of the observed increase in capacity. Contrary to some reports, no growth of a spinel phase is observed. However, analysis of the Raman spectra does indicate the structure of LMR-NMC deviates significantly from an ideal layered phase. The results also highlight the importance of using low laser power and large sample sizes to obtain consistent data sets.

  2. Raman Microscopy of Lithium-Manganese-Rich Cathodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ruther, Rose E; Callender, Andrew F.; Zhou, Hui; Martha, Surendra; Nanda, Jagjit

    2014-01-01

    Lithium rich, manganese rich composites with general formula xLi2MnO3 (1-x)LiMO2 are promising candidates for high capacity and high voltage cathodes for lithium ion batteries. Lithium rich oxides crystallize as a nanocomposite of layered phases whose structure further evolves with electrochemical cycling. Raman spectroscopy is potentially a powerful tool to monitor the crystal chemistry and correlate phase changes with electrochemical behavior. While several groups have reported Raman spectra of lithium rich oxides, the data show considerable variability in terms of both the vibrational features observed and their interpretation. In this study Raman microscopy is used to investigate lithium-rich manganese-rich cathodes asmore » a function of average charge and electrochemical cycling. LMR-NMC cycled at elevated temperature (60 C) has a modified crystal structure which may account for some of the observed increase in capacity. Contrary to some reports, no growth of a spinel phase is observed. However, analysis of the Raman spectra does indicate the structure of LMR-NMC deviates significantly from an ideal layered phase. The results also highlight the importance of using low laser power and large sample sizes to obtain consistent data sets.« less

  3. Electrolytic conditioning of a magnesium aluminum chloride complex for reversible magnesium deposition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Barile, Christopher J.; Barile, Elizabeth C.; Zavadil, Kevin R.; Nuzzo, Ralph G.; Gewirth, Andrew A.

    2014-12-04

    We describe in this report the electrochemistry of Mg deposition and dissolution from the magnesium aluminum chloride complex (MACC). The results define the requirements for reversible Mg deposition and definitively establish that voltammetric cycling of the electrolyte significantly alters its composition and performance. Elemental analysis, scanning electron microscopy, and energy-dispersive X-ray spectroscopy (SEM-EDS) results demonstrate that irreversible Mg and Al deposits form during early cycles. Electrospray ionization-mass spectrometry (ESI-MS) data show that inhibitory oligomers develop in THF-based solutions. These oligomers form via the well-established mechanism of a cationic ring-opening polymerization of THF during the initial synthesis of the MACC andmore » under resting conditions. In contrast, MACC solutions in 1,2-dimethoxyethane (DME), an acyclic solvent, do not evolve as dramatically at open circuit potential. Furthermore, we propose a mechanism describing how the conditioning process of the MACC in THF improves its performance by both tuning the Mg:Al stoichiometry and eliminating oligomers.« less

  4. Electrolytic conditioning of a magnesium aluminum chloride complex for reversible magnesium deposition

    SciTech Connect (OSTI)

    Barile, Christopher J.; Barile, Elizabeth C.; Zavadil, Kevin R.; Nuzzo, Ralph G.; Gewirth, Andrew A.

    2014-12-04

    We describe in this report the electrochemistry of Mg deposition and dissolution from the magnesium aluminum chloride complex (MACC). The results define the requirements for reversible Mg deposition and definitively establish that voltammetric cycling of the electrolyte significantly alters its composition and performance. Elemental analysis, scanning electron microscopy, and energy-dispersive X-ray spectroscopy (SEM-EDS) results demonstrate that irreversible Mg and Al deposits form during early cycles. Electrospray ionization-mass spectrometry (ESI-MS) data show that inhibitory oligomers develop in THF-based solutions. These oligomers form via the well-established mechanism of a cationic ring-opening polymerization of THF during the initial synthesis of the MACC and under resting conditions. In contrast, MACC solutions in 1,2-dimethoxyethane (DME), an acyclic solvent, do not evolve as dramatically at open circuit potential. Furthermore, we propose a mechanism describing how the conditioning process of the MACC in THF improves its performance by both tuning the Mg:Al stoichiometry and eliminating oligomers.

  5. A New Direct-Pour In-Mold (DPI) Technology for Producing Ductile and Compacted Graphite Iron Castings.

    SciTech Connect (OSTI)

    Jason Hitchings; Jay R. Hitchings

    2007-07-20

    A new "Direct Pour In-Mold" (DPI) Magnesium treatment technology has been developed that can produce both Nodular and Compacted Graphite iron. The DPI technology converts the standard horizontal runner system into a vertical one, by placing a Magnesium Ferrosilicon treatment alloy and molten metal filter into a specially designed container. The DPI container is easily placed into either vertically or horizontally parted molds, and then a base metal can be poured directly into it. The metal is treated and filtered as it passes through, and then proceeds directly into a runner or casting cavity. Various sizes of containers provide all of the necessary components required to deliver a range of weights of treated and filtered metal at accurate and consistent flow rates. The DPI containers provide energy savings over competing techniques, increased mold yields, very high Magnesium recovery, zero Magnesium fume, and no post inoculation is required. By treating the metal just prior to it entering a casting cavity many other benefits and advantages are also realized.

  6. Chemical conversion coating for protecting magnesium alloys from corrosion

    DOE Patents [OSTI]

    Bhargava, Gaurang; Allen, Fred M.; Skandan, Ganesh; Hornish, Peter; Jain, Mohit

    2016-01-05

    A chromate-free, self-healing conversion coating solution for magnesium alloy substrates, composed of 10-20 wt. % Mg(NO.sub.3).sub.2.6H.sub.2O, 1-5 wt. % Al(NO.sub.3).sub.3.9H.sub.2O, and less than 1 wt. % of [V.sub.10O.sub.28].sup.6- or VO.sub.3.sup.- dissolved in water. The corrosion resistance offered by the resulting coating is in several hundreds of hours in salt-spray testing. This prolonged corrosion protection is attributed to the creation of a unique structure and morphology of the conversion coating that serves as a barrier coating with self-healing properties. Hydroxoaluminates form the backbone of the barrier protection offered while the magnesium hydroxide domains facilitate the "slow release" of vanadium compounds as self-healing moieties to defect sites, thus providing active corrosion protection.

  7. Efficient One-Step Electrolytic Recycling of Low-Grade and Post-Consumer Magnesium Scrap

    SciTech Connect (OSTI)

    Adam C. Powell, IV

    2012-07-19

    Metal Oxygen Separation Technologies, Inc. (abbreviated MOxST, pronounced most) and Boston University (BU) have developed a new low-cost process for recycling post-consumer co-mingled and heavily-oxidized magnesium scrap, and discovered a new chemical mechanism for magnesium separations in the process. The new process, designated MagReGenTM, is very effective in laboratory experiments, and on scale-up promises to be the lowest-cost lowest-energy lowest-impact method for separating magnesium metal from aluminum while recovering oxidized magnesium. MagReGenTM uses as little as one-eighth as much energy as today's methods for recycling magnesium metal from comingled scrap. As such, this technology could play a vital role in recycling automotive non-ferrous metals, particularly as motor vehicle magnesium/aluminum ratios increase in order to reduce vehicle weight and increase efficiency.

  8. Microbial reduction of iron ore

    DOE Patents [OSTI]

    Hoffmann, M.R.; Arnold, R.G.; Stephanopoulos, G.

    1989-11-14

    A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry. 11 figs.

  9. Microbial reduction of iron ore

    DOE Patents [OSTI]

    Hoffmann, Michael R.; Arnold, Robert G.; Stephanopoulos, Gregory

    1989-01-01

    A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry.

  10. Low-Cost Magnesium Sheet Production using the Twin Roll Casting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Low-Cost Magnesium Sheet Production using the Twin Roll Casting Process and Asymmetric Rolling Materials Characterization Capabilities at the High ...

  11. Low-Cost Magnesium Sheet Production using the Twin Roll Casting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Magnesium Sheet Production using the Twin Roll Casting Process and Asymmetric Rolling Materials Characterization Capabilities at the High Temperature Materials Laboratory:...

  12. High-Quality Manganese-Doped Zinc Sulfide Quantum Rods with Tunable...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-Quality Manganese-Doped Zinc Sulfide Quantum Rods with Tunable Dual-Color and Multiphoton Emissions Authors: Deng, Z., Tong, L., Flores, M., Lin, S., Cheng, J.-X., Yan, H.,...

  13. Spin-dependent electron transport in zinc- and manganese-doped adenine molecules

    SciTech Connect (OSTI)

    Simchi, Hamidreza; Esmaeilzadeh, Mahdi Mazidabadi, Hossein

    2014-01-28

    The spin-dependent electron transport properties of zinc- and manganese-doped adenine molecules connected to zigzag graphene leads are studied in the zero bias regime using the non-equilibrium Green's function method. The conductance of the adenine molecule increased and became spin-dependent when a zinc or manganese atom was doped into the molecules. The effects of a transverse electric field on the spin-polarization of the transmitted electrons were investigated and the spin-polarization was controlled by changing the transverse electric field. Under the presence of a transverse electric field, both the zinc- and manganese-doped adenine molecules acted as spin-filters. The maximum spin-polarization of the manganese-doped adenine molecule was greater than the molecule doped with zinc.

  14. Process for the electrodeposition of low stress nickel-manganese alloys

    DOE Patents [OSTI]

    Kelly, James John; Goods, Steven Howard; Yang, Nancy Yuan-Chi; Cadden, Charles Henry

    2005-06-07

    A process for electrodepositing a low stress nickel-manganese multilayer alloy on an electrically conductive substrate is provided. The process includes the steps of immersing the substrate in an electrodeposition solution containing a nickel salt and a manganese salt and repeatedly passing an electric current through an immersed surface of the substrate. The electric current is alternately pulsed for predetermined durations between a first electrical current that is effective to electrodeposit nickel and a second electrical current that is effective to electrodeposit nickel and manganese. A multilayered alloy having adjacent layers of nickel and a nickel-manganese alloy on the immersed surface of the substrate is thereby produced. The resulting multilayered alloy exhibits low internal stress, high strength and ductility, and high strength retention upon exposure to heat.

  15. MECS 2006- Iron and Steel

    Office of Energy Efficiency and Renewable Energy (EERE)

    Manufacturing Energy and Carbon Footprint for Iron and Steel Sector (NAICS 3311, 3312) with Total Energy Input, October 2012 (MECS 2006)

  16. Final Report: Manganese Redox Mediation of UO2 Stability and Uranium Fate

    Office of Scientific and Technical Information (OSTI)

    in the Subsurface: Molecular and Meter Scale Dynamics (Technical Report) | SciTech Connect Report: Manganese Redox Mediation of UO2 Stability and Uranium Fate in the Subsurface: Molecular and Meter Scale Dynamics Citation Details In-Document Search Title: Final Report: Manganese Redox Mediation of UO2 Stability and Uranium Fate in the Subsurface: Molecular and Meter Scale Dynamics One strategy to remediate U contamination in the subsurface is the immobilization of U via injection of an

  17. Weldability of iron aluminides

    SciTech Connect (OSTI)

    Goodwin, G.M.; McKamey, C.J.; Maziasz, P.J.; Sikka, V.K.

    1993-12-31

    Corrosion-resistant, weldable iron-aluminide alloys with improved high-temperature strength are being developed for structural applications, and for weld overlay cladding of conventional structural steels and alloys. The weld hot cracking of iron-aluminide alloys is highly variable to over a wide range of aluminum content. In general, the higher aluminum content alloys are somewhat more resistant to hot cracking, and by careful choice of alloying additions (and balancing of multiple additions), cracking resistance equivalent to commercial austenitic stainless steels can be achieved. Improved weldability, however, often comes at the expense of high-temperature strength. Delayed cold cracking, presumed to be hydrogen-related, is also an important consideration in welding these alloys, either as monolithic materials, or as weld overlay cladding on stainless or low alloy steel substrates. The authors are employing various combinations of preheat and postweld stress relief heat treatments to assess the severity of this problem, and have determined that heat treatment in excess of 400 C following welding will be required to avoid delayed cracking. Due to the difficulties encountered in fabricating some of the alloy compositions into wire or rod, they are also pursuing the formulation of coated electrodes for use in shielded metal-arc (SMA) welding. Initial attempts have shown very high aluminum losses in the welding arc, and additional batches of electrodes are being formulated and produced.

  18. Advanced Hybrid Batteries with a Magnesium Metal Anode and Spinel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LiMn₂O₄ Cathode - Joint Center for Energy Storage Research July 11, 2016, Research Highlights Advanced Hybrid Batteries with a Magnesium Metal Anode and Spinel LiMn₂O₄ Cathode Two Mg-Li dual salt hybrid electrolytes were successfully developed and can enable rechargeable Mg-LiMn2O4 batteries Scientific Achievement Two Mg-Li dual salt hybrid electrolytes were developed with excellent oxidative stability up to around 3.8 V (vs Mg/Mg2+) on a aluminum current collector, enabling the

  19. Electrochemistry of Magnesium Electrolytes in Ionic Liquids for Secondary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Batteries - Joint Center for Energy Storage Research 23, 2014, Research Highlights Electrochemistry of Magnesium Electrolytes in Ionic Liquids for Secondary Batteries Cyclic voltammograms of neat DEME-BF4 (light gray) and 100 mM Mg(BH4)2 in DEME-BF4 (black). CV scan limits are chosen to represent the electrochemical stability window. Inset: magnified view with voltage range restricted to -1.5 to 1.5 V vs. Mg/Mg2+. Scientific Achievement Ionic liquids (ILs) have wide electrochemical stability

  20. High Performance Batteries Based on Hybrid Magnesium and Lithium Chemistry

    SciTech Connect (OSTI)

    Cheng, Yingwen; Shao, Yuyan; Zhang, Jiguang; Sprenkle, Vincent L.; Liu, Jun; Li, Guosheng

    2014-01-01

    Magnesium and lithium (Mg/Li) hybrid batteries that combine Mg and Li electrochemistry, consisting of a Mg anode, a lithium-intercalation cathode and a dual-salt electrolyte with both Mg2+ and Li+ ions, were constructed and examined in this work. Our results show that hybrid (Mg/Li) batteries were able to combine the advantages of Li-ion and Mg batteries, and delivered outstanding rate performance (83% for capacities at 15C and 0.1C) and superior cyclic stability (~5% fade after 3000 cycles).

  1. Copper-silicon-magnesium alloys for latent heat storage

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gibbs, P. J.; Withey, E. A.; Coker, E. N.; Kruizenga, A. M.; Andraka, C. E.

    2016-06-21

    The systematic development of microstructure, solidification characteristics, and heat of solidification with composition in copper-silicon-magnesium alloys for thermal energy storage is presented. Differential scanning calorimetry was used to relate the thermal characteristics to microstructural development in the investigated alloys and clarifies the location of one of the terminal three-phase eutectics. Repeated thermal cycling highlights the thermal storage stability of the transformation through multiple melting events. In conclusion, two near-terminal eutectic alloys display high enthalpies of solidification, relatively narrow melting ranges, and stable transformation hysteresis behaviors suited to thermal energy storage.

  2. Novel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries

    SciTech Connect (OSTI)

    Doe, RE; Han, R; Hwang, J; Gmitter, AJ; Shterenberg, I; Yoo, HD; Pour, N; Aurbach, D

    2014-01-01

    Herein the first inorganic magnesium salt solution capable of highly reversible magnesium electrodeposition is presented. Synthesized by acid-base reaction of MgCl2 and Lewis acidic compounds such as AlCl3, this salt class demonstrates upwards of 99% Coulombic efficiency, deposition overpotential of <200 mV, and anodic stability of 3.1 V.

  3. Aluminum battery alloys

    DOE Patents [OSTI]

    Thompson, D.S.; Scott, D.H.

    1984-09-28

    Aluminum alloys suitable for use as anode structures in electrochemical cells are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  4. Aluminum battery alloys

    DOE Patents [OSTI]

    Thompson, David S.; Scott, Darwin H.

    1985-01-01

    Aluminum alloys suitable for use as anode structures in electrochemical cs are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  5. Carbon dioxide adsorbents containing magnesium oxide suitable for use at high temperatures

    DOE Patents [OSTI]

    Mayorga, Steven Gerard; Weigel, Scott Jeffrey; Gaffney, Thomas Richard; Brzozowski, Jeffrey Richard

    2001-01-01

    Adsorption of carbon dioxide from gas streams at temperatures in the range of 300 to 500.degree. C. is carried out with a solid adsorbent containing magnesium oxide, preferably promoted with an alkali metal carbonate or bicarbonate so that the atomic ratio of alkali metal to magnesium is in the range of 0.006 to 2.60. Preferred adsorbents are made from the precipitate formed on addition of alkali metal and carbonate ions to an aqueous solution of a magnesium salt. Atomic ratios of alkali metal to magnesium can be adjusted by washing the precipitate with water. Low surface area adsorbents can be made by dehydration and CO.sub.2 removal of magnesium hydroxycarbonate, with or without alkali metal promotion. The process is especially valuable in pressure swing adsorption operations.

  6. Weldability of iron aluminides

    SciTech Connect (OSTI)

    Zacharia, T.; David, S.A.

    1991-01-01

    Improvements in the ductility of iron aluminide alloys, achieved through control of composition and microstructure, has led to growing interest in using these materials for structural applications. weldability is a key issues in the utilization of these alloys for structural components. This paper describes the welding and welding behavior of an Fe{sub 3}Al alloy (FA-129) containing niobium and carbon. Weldability of this alloy has been found to be a strong function of composition, welding process and processing conditions. Crack free welds were made on both sheet and plate material using the electron beam (EB) welding process. Gas tungsten arc (GTA) welds, on the other hand, exhibited a tendency for delayed cold cracking. However, the study clearly demonstrated that successful welds can be made using matching filler metal and proper choice of processing conditions. 15 ref., 5 figs.

  7. Low-temperature superacid catalysis: Reactions of n-butane catalyzed by iron- and manganese-promoted sulfated zirconia

    SciTech Connect (OSTI)

    Cheung, T.K.; D`Itri, J.L.; Gates, B.C.

    1995-02-01

    Environmental concerns are leading to the replacement of aromatic hydrocarbons in gasoline with high-octane-number branched paraffins and oxygenated compounds such as methyl t-butyl ether, which is produced from methanol and isobutylene. The latter can be formed from n-butane by isomerization followed by dehydrogenation. To meet the need for improved catalysts for isomerization of n-butane and other paraffins, researchers identified solid acids that are noncorrosive and active at low temperatures. Sulfated zirconia catalyzes the isomerization of n-butane even at 25{degrees}C, and the addition of Fe and Mn promoters increases its activity by three orders of magnitude. Little is known about this new catalyst. Here the authors provide evidence of its performance for n-butane conversion, demonstrating that isomerization is accompanied by disproportionation and other, less well understood, acid-catalyzed reactions and undergoes rapid deactivation associated with deposition of carbonaceous material. 10 refs., 3 figs.

  8. The Iron Spin Transition in the Earth's Lower Mantle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    670 and 2900 km below the surface) consists mainly of magnesium-rich (Mg,Fe)SiO3 perovskite, magnesium-rich magnesiowstite, and CaSiO3 perovskite in a mass ratio 64:31:5,...

  9. Method for reducing iron losses in an iron smelting process

    DOE Patents [OSTI]

    Sarma, B.; Downing, K.B.

    1999-03-23

    A process of smelting iron that comprises the steps of: (a) introducing a source of iron oxide, oxygen, nitrogen, and a source of carbonaceous fuel to a smelting reactor, at least some of said oxygen being continuously introduced through an overhead lance; (b) maintaining conditions in said reactor to cause (1) at least some of the iron oxide to be chemically reduced, (2) a bath of molten iron to be created and stirred in the bottom of the reactor, surmounted by a layer of slag, and (3) carbon monoxide gas to rise through the slag; (c) causing at least some of said carbon monoxide to react in the reactor with the incoming oxygen, thereby generating heat for reactions taking place in the reactor; and (d) releasing from the reactor an offgas effluent, is run in a way that keeps iron losses in the offgas relatively low. After start-up of the process is complete, steps (a) and (b) are controlled so as to: (1) keep the temperature of the molten iron at or below about 1550 C and (2) keep the slag weight at or above about 0.8 ton per square meter. 13 figs.

  10. Method for reducing iron losses in an iron smelting process

    DOE Patents [OSTI]

    Sarma, Balu; Downing, Kenneth B.

    1999-01-01

    A process of smelting iron that comprises the steps of: a) introducing a source of iron oxide, oxygen, nitrogen, and a source of carbonaceous fuel to a smelting reactor, at least some of said oxygen being continuously introduced through an overhead lance; b) maintaining conditions in said reactor to cause (i) at least some of the iron oxide to be chemically reduced, (ii) a bath of molten iron to be created and stirred in the bottom of the reactor, surmounted by a layer of slag, and (iii) carbon monoxide gas to rise through the slag; c) causing at least some of said carbon monoxide to react in the reactor with the incoming oxygen, thereby generating heat for reactions taking place in the reactor; and d) releasing from the reactor an offgas effluent, is run in a way that keeps iron losses in the offgas relatively low. After start-up of the process is complete, steps (a) and (b) are controlled so as to: e) keep the temperature of the molten iron at or below about 1550.degree. C. and f) keep the slag weight at or above about 0.8 tonne per square meter.

  11. Fabrication and mechanical properties of Fe sub 3 Al-based iron aluminides

    SciTech Connect (OSTI)

    Sikka, V.K.; McKamey, C.G.; Howell, C.R.; Baldwin, R.H.

    1990-03-01

    Iron aluminides based on Fe{sub 3}Al are ordered intermetallic alloys that offer good oxidation resistance, excellent sulfidation resistance, and lower material cost than many stainless steels. These materials also conserve strategic elements such as chromium and have a lower density than stainless steels. However, limited ductility at ambient temperature and a sharp drop in strength have been major deterrents to their acceptance for structural applications. This report presents results on iron aluminides with room-temperature elongations of 15 to 20%. Ductility values were improved by a combination of thermomechanical processing and heat-treatment control. This method of ductility improvement has been demonstrated for a range of compositions. Melting, casting, and processing of 7-kg (15-lb) heats produced at the Oak Ridge National Laboratory (ORNL) and 70-kg (150-lb) commercial heats are described. Vacuum melting and other refining processes such as electroslag remelting are recommended for commercial heats. The Fe{sub 3}Al-based iron aluminides are hot workable by forging or extruding at temperatures in the range of 850 to 1100{degree}C. rolling at 800{degree}C is recommended with a final 50% reduction at 650{degree}C. Tensile and creep properties of 7- and 70-kg (15- and 150-lb) heats are presented. The presence of impurities such as manganese an silicon played an important role in reducing the ductility of commercially melted heats. 7 refs., 60 figs., 12 tabs.

  12. It is ironic: many immigrants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is ironic: many immigrants fleeing Adolf Hitler's and Benito Mussolini's fascist governments in the 1930s and 1940s played critical roles in the development of Los Alamos National ...

  13. Iron catalyzed coal liquefaction process

    DOE Patents [OSTI]

    Garg, Diwakar; Givens, Edwin N.

    1983-01-01

    A process is described for the solvent refining of coal into a gas product, a liquid product and a normally solid dissolved product. Particulate coal and a unique co-catalyst system are suspended in a coal solvent and processed in a coal liquefaction reactor, preferably an ebullated bed reactor. The co-catalyst system comprises a combination of a stoichiometric excess of iron oxide and pyrite which reduce predominantly to active iron sulfide catalysts in the reaction zone. This catalyst system results in increased catalytic activity with attendant improved coal conversion and enhanced oil product distribution as well as reduced sulfide effluent. Iron oxide is used in a stoichiometric excess of that required to react with sulfur indigenous to the feed coal and that produced during reduction of the pyrite catalyst to iron sulfide.

  14. Process for the synthesis of iron powder

    DOE Patents [OSTI]

    Welbon, W.W.

    1983-11-08

    A process for preparing iron powder suitable for use in preparing the iron-potassium perchlorate heat-powder fuel mixture used in thermal batteries, comprises preparing a homogeneous, dense iron oxide hydroxide precipitate by homogeneous precipitation from an aqueous mixture of a ferric salt, formic or sulfuric acid, ammonium hydroxide and urea as precipitating agent; and then reducing the dense iron oxide hydroxide by treatment with hydrogen to prepare the iron powder. 2 figs.

  15. Process for the synthesis of iron powder

    DOE Patents [OSTI]

    Welbon, William W.

    1983-01-01

    A process for preparing iron powder suitable for use in preparing the iron-potassium perchlorate heat-powder fuel mixture used in thermal batteries, comprises preparing a homogeneous, dense iron oxide hydroxide precipitate by homogeneous precipitation from an aqueous mixture of a ferric salt, formic or sulfuric acid, ammonium hydroxide and urea as precipitating agent; and then reducing the dense iron oxide hydroxide by treatment with hydrogen to prepare the iron powder.

  16. Process for the synthesis of iron powder

    DOE Patents [OSTI]

    Not Available

    1982-03-06

    A process for preparing iron powder suitable for use in preparing the iron-potassium perchlorate heat-powder fuel mixture used in thermal batteries, comprises preparing a homogeneous, dense iron oxide hydroxide precipitate by homogeneous precipitation from an aqueous mixture of a ferric salt, formic or sulfuric acid, ammonium hydroxide and urea as precipitating agent; and then reducing the dense iron oxide hydroxide by treatment with hydrogen to prepare the iron powder.

  17. Synthesis and optical study of barium magnesium aluminate blue phosphors

    SciTech Connect (OSTI)

    Jeet, Suninder Pandey, O. P.; Sharma, Manoj

    2015-05-15

    Europium doped barium magnesium aluminate (BaMgAl{sub 10}O{sub 17}:Eu{sup 2+}) phosphor was prepared via solution combustion method at 550C using urea as a fuel. Morphological and optical properties of the prepared sample was studied by X-ray diffraction (XRD), Transmission electron microscopy (TEM) and Photoluminescence spectroscopy (PL). XRD result showed the formation of pure phase BaMgAl{sub 10}O{sub 17}(JCPDS 26-0163) along with an additional phase BaAl{sub 2}O{sub 4}(JCPDS 01-082-1350). TEM image indicated the formation of faceted particles with average particle size 40?nm. From PL spectra, a broad emission band obtained at about 450?nm attributes to 4f{sup 6} 5d ? 4f{sup 7} transition of Eu{sup 2+} which lies in the blue region of the visible spectrum.

  18. Appendix MgO: Magnesium Oxide as an Engineered Barrier

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MgO-2014 Magnesium Oxide as an Engineered Barrier United States Department of Energy Waste Isolation Pilot Plant Carlsbad Field Office Carlsbad, New Mexico Compliance Recertification Application 2014 Appendix MgO-2014 Table of Contents MgO-1.0 Introduction MgO-2.0 Description of the Engineered Barrier System MgO-2.1 Emplacement of MgO MgO-2.1.1 Supersacks MgO-2.1.2 Minisacks MgO-2.1.3 Use of Racks to Emplace Additional MgO MgO-2.1.4 Changes since the CRA-2009 MgO-2.2 MgO Vendors MgO-3.0

  19. Manganese oxide helices, rings, strands, and films, and methods for their preparation

    DOE Patents [OSTI]

    Suib, Steven L.; Giraldo, Oscar; Marquez, Manuel; Brock, Stephanie

    2003-01-07

    Methods for the preparation of mixed-valence manganese oxide compositions with quaternary ammonium ions are described. The compositions self-assemble into helices, rings, and strands without any imposed concentration gradient. These helices, rings, and strands, as well as films having the same composition, undergo rapid ion exchange to replace the quaternary ammonium ions with various metal ions. And the metal-ion-containing manganese oxide compositions so formed can be heat treated to form semi-conducting materials with high surface areas.

  20. Role of manganese in red long-lasting phosphorescence of manganese-doped diopside for in vivo imaging

    SciTech Connect (OSTI)

    Lecointre, A.; Bessire, A.; Priolkar, K.R.; Gourier, D.; Wallez, G.; Viana, B.

    2013-05-15

    Highlights: ? Long-lasting phosphorescence of CaMgSi{sub 2}O{sub 6}:Mn is studied for bioimaging application. ? CaMgSi{sub 2}O{sub 6}:Mn yields orange and red luminescence of Mn{sup II}{sub Ca} and Mn{sup II}{sub Mg}, respectively. ? Red Mn{sup II}{sub Mg} emission dominates long-lasting phosphorescence spectra. ? Mn mainly substitutes Mg. ? Mn{sup II}{sub Mg} plays the role of hole trap in the persistent luminescence mechanism. - Abstract: Materials with red long-lasting phosphorescence, such as Mn{sup II}-doped diopsides, can be used for small animal in vivo imaging. CaMgSi{sub 2}O{sub 6}:Mn powders with various amounts of Mn were prepared by solgel to investigate their long-lasting phosphorescence mechanism. X-ray diffraction, X-ray absorption fine and near-edge structure and electron paramagnetic resonance showed that manganese is quantitatively introduced in the structure as Mn{sup II}. Most of the Mn doping ions substitute Mg and possess a highly elongated octahedral environment. While photoluminescence and X-ray excited optical luminescence spectra show both orange (585 nm) and red (685 nm) {sup 4}T{sub 1} ({sup 4}G) ? {sup 6}A{sub 1} ({sup 6}S) emission of Mn{sup II}{sub Ca} and Mn{sup II}{sub Mg}, respectively, Mn{sup II}{sub Mg} red emission dominates long-lasting phosphorescence and thermally stimulated luminescence spectra. These results point to Mn{sup II}{sub Mg} as the preferential hole trap and recombination center in the long-lasting phosphorescence mechanism. An intense persistent red emission suitable for in vivo imaging probes is obtained for the highest nominal Mn content (7.5%)

  1. Steelmaking with iron carbide

    SciTech Connect (OSTI)

    Geiger, G.H.; Stephens, F.A. )

    1993-01-01

    The concept of using iron carbide in steelmaking is not new. Tests were run several decades ago, using carbide made from ore, in steelmaking furnaces. The problem was that at that time, the need for the product was not clear and the economics of production were not favorable. In the early 1970's Frank M. Stephens, Jr., conceived the basis for the present process, and considerable development work has been done during the past decade to bring the carbide production process to its present state, with the first commercial unit now under construction. The process utilizes the following overall reaction to produce Fe[sub 3]C from ore: 3Fe[sub 2]O[sub 3] + 5H[sub 2] + 2 CH[sub 4][equals]2 Fe[sub 3]C + 9 H[sub 2]O. Hydrogen gas from a natural gas reformer is blended with natural gas to form the process gas that is recirculated through the fluid bed reactor, the cooling tower, to remove reaction product water, and back through the reactor again, after reheating. The closed loop nature of the process means that virtually 100% of the process reagents are utilized by the process. The only exception is that a small stream of the process gas is burned as fuel in the reheating step, in order to maintain the level of inerts in the process gas at an acceptable level. The quantity of the bleed stream is entirely dependent on the concentration of inert gases in the fuel supply.

  2. In situ XANES Spectroscopic Investigation of the Pre-Reduction of Iron-Based Catalysts for Non-Oxidative Alkane Dehydrogenation

    SciTech Connect (OSTI)

    Huggins, F.; Shen, W; Cprek, N; Shah, N; Marinkovic, N; Huffman, G

    2008-01-01

    The reduction in a methane atmosphere of two as-prepared ferric oxide catalysts for the non-oxidative dehydrogenation of alkanes has been investigated by in situ X-ray absorption near-edge structure (XANES) spectroscopy using a novel X-ray transmission reaction cell. The two catalysts were prepared by different synthesis methods (incipient wetness and nanoparticle impregnation) and were supported on Al-substituted magnesium oxide obtained by decomposition of a synthetic hydrotalcite. The reduction of the ferric oxides by methane was followed by iron XANES spectroscopy at temperatures up to 650 C complemented by a residual gas analyzer (RGA) used to track changes in the product gas. Results showed that the ferric oxides in the two catalysts underwent a stepwise reduction to first ferrous oxide, releasing mainly H{sub 2}O in the case of the nanoparticle catalyst but H{sub 2} and CO in the case of the incipient wetness formulation at temperatures between 200 and 550 C, and then more slowly to metallic iron at higher temperatures. Reaction of the ferrous oxide with the support to form magnesiowstite also occurred in conjunction with the reduction. This in situ investigation confirms that metallic iron is the active catalytic phase for alkane dehydrogenation and that observations of ferric iron in samples investigated at room temperature after reduction and reaction are most likely due to re-oxidation of the iron in the catalyst upon exposure to air rather than incomplete reduction of the original ferric iron in the catalyst.

  3. Vehicle Technologies Office Merit Review 2015: Magnesium-Intensive Front End Sub-Structure Development

    Broader source: Energy.gov [DOE]

    Presentation given by USAMP at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about magnesium-intensive front end sub...

  4. Novel Nonflammable Electrolytes for Secondary Magnesium Batteries and High Voltage Electrolytes for Electrochemcial Supercapacitors

    SciTech Connect (OSTI)

    Dr. Brian Dixon

    2008-12-30

    Magnesium has been used successfully in primary batteries, but its use in rechargeable cells has been stymied by the lack of suitable non-aqueous electrolyte that can conduct Mg+2 species, combined with poor stripping and plating properties. The development of a suitable cathode material for rechargeable magnesium batteries has also been a roadblock, but a nonflammable electrolyte is key. Likewise, the development of safe high voltage electrochemical supercapaitors has been stymied by the use of flammable solvents in the liquid electrolyte; to wit, acetonitrile. The purpose of the research conducted in this effort was to identify useful compositions of magnesium salts and polyphosphate solvents that would enable magnesium ions to be cycled within a secondary battery design. The polyphosphate solvents would provide the solvent for the magnesium salts while preventing the electrolyte from being flammable. This would enable these novel electrolytes to be considered as an alternative to THF-based electrolytes. In addition, we explored several of these solvents together with lithium slats for use as high voltage electrolytes for carbon-based electrochemical supercapacitors. The research was successful in that: 1) Magnesium imide dissolved in a phosphate ester solvent that contains a halogented phosphate ester appears to be the preferred electrolyte for a rechargeable Mg cell. 2) A combination of B-doped CNTs and vanadium phosphate appear to be the cathode of choice for a rechargeable Mg cell by virtue of higher voltage and better reversibility. 3) Magnesium alloys appear to perform better than pure magnesium when used in combination with the novel polyphosphate electrolytes. Also, this effort has established that Phoenix Innovation??s family of phosphonate/phosphate electrolytes together with specific lithium slats can be used in supercapacitor systems at voltages of greater than 10V.

  5. Strategies to Suppress Cation Vacancies in Metal Oxide Alloys: Consequences for Solar Energy Conversion

    SciTech Connect (OSTI)

    Toroker, Maytal; Carter, Emily A.

    2015-09-01

    First-row transition metal oxides (TMOs) are promising alternative materials for inexpensive and efficient solar energy conversion. However, their conversion efficiency can be deleteriously affected by material imperfections, such as atomic vacancies. In this work, we provide examples showing that in some iron-containing TMOs, iron cation vacancy formation can be suppressed via alloying. We calculate within density functional theory+U theory the iron vacancy formation energy in binary rock-salt oxide alloys that contain iron, manganese, nickel, zinc, and/or magnesium. We demonstrate that formation of iron vacancies is less favorable if we choose to alloy iron(II) oxide with metals that cannot readily accept vacancy-generated holes, e.g., magnesium, manganese, nickel, or zinc. Since there are less available sites for holes and the holes are forced to reside on iron cations, the driving force for iron vacancy formation decreases. These results are consistent with an experiment observing a sharp drop in cation vacancy concentration upon alloying iron(II) oxide with manganese.

  6. Effects of the Exposure to Corrosive Salts on the Frictional Behavior of Gray Cast Iron and a Titanium-Based Metal Matrix Composite

    SciTech Connect (OSTI)

    Blau, Peter Julian; Truhan, Jr., John J; Kenik, Edward A

    2007-01-01

    The introduction of increasingly aggressive road-deicing chemicals has created significant and costly corrosion problems for the trucking industry. From a tribological perspective, corrosion of the sliding surfaces of brakes after exposure to road salts can create oxide scales on the surfaces that affect friction. This paper describes experiments on the effects of exposure to sodium chloride and magnesium chloride sprays on the transient frictional behavior of cast iron and a titanium-based composite sliding against a commercial brake lining material. Corrosion scales on cast iron initially act as abrasive third-bodies, then they become crushed, spread out, and behave as a solid lubricant. The composition and subsurface microstructures of the corrosion products on the cast iron were analyzed. Owing to its greater corrosion resistance, the titanium composite remained scale-free and its frictional response was markedly different. No corrosion scales were formed on the titanium composite after aggressive exposure to salts; however, a reduction in friction was still observed. Unlike the crystalline sodium chloride deposits that tended to remain dry, hygroscopic magnesium chloride deposits absorbed ambient moisture from the air, liquefied, and retained a persistent lubricating effect on the titanium surfaces.

  7. Amperometric Biosensors Based on Carbon Paste Electrodes Modified with Nanostructured Mixed-valence Manganese Oxides and Glucose Oxidase

    SciTech Connect (OSTI)

    Cui, Xiaoli; Liu, Guodong; Lin, Yuehe

    2005-06-01

    Nanostructured multivalent manganese oxides octahedral molecular sieve (OMS), including cryptomelane-type manganese oxides and todorokite-type manganese oxides, were synthesized and evaluated for chemical sensing and biosensing at low operating potential. Both cryptomelane-type manganese oxides and todorokite-type manganese oxides are nanofibrous crystals with sub-nanometer open tunnels that provide a unique property for sensing applications. The electrochemical and electrocatalytic performance of OMS for the oxidation of H2O2 have been compared. Both cryptomelane-type manganese oxides and todorokite-type manganese oxides can be used to fabricate sensitive H2O2 sensors. Amperometric glucose biosensors are constructed by bulk modification of carbon paste electrodes (CPEs) with glucose oxidase as a biocomponent and nanostructured OMS as a mediator. A Nafion thin film was applied as an immobilization/encapsulation and protective layer. The biosensors were evaluated as an amperometric glucose detector at phosphate buffer solution with a pH 7.4 at an operating potential of 0.3 V (vs. Ag/AgCl). The biosensor is characterized by a well-reproducible amperometric response, linear signal-to-glucose concentration range up to 3.5 mM and 1.75 mM, and detection limits (S/N = 3) of 0.1 mM and 0.05 mM for todorokite-type manganese oxide and cryptomelane-type manganese oxide modified electrodes, respectively. The biosensors based on OMS exhibit considerable good reproducibility and stability, and the construction and renewal are simple and inexpensive.

  8. Kumba Iron Ore | Open Energy Information

    Open Energy Info (EERE)

    can help OpenEI by expanding it. Kumba Iron Ore is a company located in Pretoria, South Africa . References "Kumba Iron Ore" Retrieved from "http:en.openei.orgw...

  9. Iron Edison Battery Company | Open Energy Information

    Open Energy Info (EERE)

    is a company based in Lakewood, Colorado. Iron Edison is redefining off-grid energy storage using advanced Nickel-iron (Ni-Fe) battery technology. Vastly out-lasting the 7...

  10. Effect of intranasal manganese administration on neurotransmission and spatial learning in rats

    SciTech Connect (OSTI)

    Blecharz-Klin, Kamilla; Piechal, Agnieszka; Joniec-Maciejak, Ilona; Pyrzanowska, Justyna; Widy-Tyszkiewicz, Ewa

    2012-11-15

    The effect of intranasal manganese chloride (MnCl{sub 2}4H{sub 2}O) exposure on spatial learning, memory and motor activity was estimated in Morris water maze task in adult rats. Three-month-old male Wistar rats received for 2 weeks MnCl{sub 2}4H{sub 2}O at two doses the following: 0.2 mg/kg b.w. (Mn0.2) or 0.8 mg/kg b.w. (Mn0.8) per day. Control (Con) and manganese-exposed groups were observed for behavioral performance and learning in water maze. ANOVA for repeated measurements did not show any significant differences in acquisition in the water maze between the groups. However, the results of the probe trial on day 5, exhibited spatial memory deficits following manganese treatment. After completion of the behavioral experiment, the regional brain concentrations of neurotransmitters and their metabolites were determined via HPLC in selected brain regions, i.e. prefrontal cortex, hippocampus and striatum. ANOVA demonstrated significant differences in the content of monoamines and metabolites between the treatment groups compared to the controls. Negative correlations between platform crossings on the previous platform position in Southeast (SE) quadrant during the probe trial and neurotransmitter turnover suggest that impairment of spatial memory and cognitive performance after manganese (Mn) treatment is associated with modulation of the serotonergic, noradrenergic and dopaminergic neurotransmission in the brain. These findings show that intranasally applied Mn can impair spatial memory with significant changes in the tissue level and metabolism of monoamines in several brain regions. -- Highlights: ? Intranasal exposure to manganese in rats impairs spatial memory in the water maze. ? Regional changes in levels of neurotransmitters in the brain have been identified. ? Cognitive disorder correlates with modulation of 5-HT, NA and DA neurotransmission.

  11. Ligand iron catalysts for selective hydrogenation

    DOE Patents [OSTI]

    Casey, Charles P.; Guan, Hairong

    2010-11-16

    Disclosed are iron ligand catalysts for selective hydrogenation of aldehydes, ketones and imines. A catalyst such as dicarbonyl iron hydride hydroxycyclopentadiene) complex uses the OH on the five member ring and hydrogen linked to the iron to facilitate hydrogenation reactions, particularly in the presence of hydrogen gas.

  12. Oxide Film and Porosity Defects in Magnesium Alloy AZ91

    SciTech Connect (OSTI)

    Wang, Liang [Mississippi State University (MSU); Rhee, Hongjoo [Mississippi State University (MSU); Felicelli, Sergio D. [Mississippi State University (MSU); Sabau, Adrian S [ORNL; Berry, John T. [Mississippi State University (MSU)

    2009-01-01

    Porosity is a major concern in the production of light metal parts. This work aims to identify some of the mechanisms of microporosity formation in magnesium alloy AZ91. Microstructure analysis was performed on several samples obtained from gravity-poured ingots in graphite plate molds. Temperature data during cooling was acquired with type K thermocouples at 60 Hz at three locations of each casting. The microstructure of samples extracted from the regions of measured temperature was then characterized with optical metallography. Tensile tests and conventional four point bend tests were also conducted on specimens cut from the cast plates. Scanning electron microscopy was then used to observe the microstructure on the fracture surface of the specimens. The results of this study revealed the existence of abundant oxide film defects, similar to those observed in aluminum alloys. Remnants of oxide films were detected on some pore surfaces, and folded oxides were observed in fracture surfaces indicating the presence of double oxides entrained during pouring.

  13. Durability of concrete materials in high-magnesium brine

    SciTech Connect (OSTI)

    Wakeley, L.D.; Poole, T.S.; Burkes, J.P.

    1994-03-01

    Cement pastes and mortars representing 11 combinations of candidate concrete materials were cast in the laboratory and monitored for susceptibility to chemical deterioration in high-magnesium brine. Mixtures were selected to include materials included in the current leading candidate concrete for seals at the Waste Isolation Pilot Plant (WIPP). Some materials were included in the experimental matrix to answer questions that had arisen during study of the concrete used for construction of the liner of the WIPP waste-handling shaft. Mixture combinations compared Class C and Class F fly ashes, presence or absence of an expansive component, and presence or absence of salt as a mixture component. Experimental conditions exposed the pastes and mortars to extreme conditions, those being very high levels of Mg ion and an effectively unlimited supply of brine. All pastes and mortars showed deterioration with brine exposure. In general, mortars deteriorated more extensively than the corresponding pastes. Two-inch cube specimens of mortar were not uniformly deteriorated, but showed obvious zoning even after a year in the brine, with a relatively unreacted zone remaining at the center of each cube. Loss of calcium from the calcium hydroxide of paste/aggregate interfaces caused measurable strength loss in the reacted zone comprising the outer portion of every mortar specimen. The current candidate mass concrete for WIPP seals includes salt as an initial component, and has a relatively closed initial microstructure. Both of these features contribute to its suitability for use in large placements within the Salado Formation.

  14. Ab Initio Thermodynamic Model for Magnesium Carbonates and Hydrates

    SciTech Connect (OSTI)

    Chaka, Anne M.; Felmy, Andrew R.

    2014-03-28

    An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogs of Ca-based hydrated carbonates monohydrocalcite and ikaite which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation.

  15. FAINT POPULATION III SUPERNOVAE AS THE ORIGIN OF THE MOST IRON-POOR STARS

    SciTech Connect (OSTI)

    Ishigaki, Miho N.; Tominaga, Nozomu; Kobayashi, Chiaki; Nomoto, Ken'ichi, E-mail: miho.ishigaki@ipmu.jp [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan)

    2014-09-10

    The most iron-poor stars in the Milky Way provide important observational clues to the astrophysical objects that enriched the primordial gas with heavy elements. Among them, the recently discovered iron-deficient star SMSS J031300.36670839.3 shows a remarkable chemical composition with a non-detection of iron ([Fe/H] <7.1) and large enhancement of carbon and magnesium relative to calcium. We investigate supernova yields of metal-free (Population III) stars to interpret the abundance pattern observed in this star. We report that the high [C/Ca] and [C/Mg] ratios and upper limits of other elemental abundances are well reproduced with the yields of core-collapse supernovae (which have normal kinetic energies of explosion E of E {sub 51} = E/10{sup 51}erg=1) and hypernovae (E {sub 51} ? 10) of Population III 25 M {sub ?} or 40 M {sub ?} stars. The best-fit models assume that the explosions undergo extensive matter mixing and fallback, leaving behind a black hole remnant. In these models, Ca is produced by static/explosive O burning and incomplete Si burning in the Population III supernova/hypernova, in contrast to the suggestion that Ca is originated from the hot-CNO cycle during pre-supernova evolution. Chemical abundances of four carbon-rich iron-poor stars with [Fe/H] <4.5, including SMSS J031300.36670839.3, are consistently explained by faint supernova models with ejected masses of {sup 56}Ni less than 10{sup 3} M {sub ?}.

  16. Unusual behavior in magnesium-copper cluster matter produced by helium droplet mediated deposition

    SciTech Connect (OSTI)

    Emery, S. B. Little, B. K.; Xin, Y.; Ridge, C. J.; Lindsay, C. M.; Buszek, R. J.; Boatz, J. A.; Boyle, J. M.

    2015-02-28

    We demonstrate the ability to produce core-shell nanoclusters of materials that typically undergo intermetallic reactions using helium droplet mediated deposition. Composite structures of magnesium and copper were produced by sequential condensation of metal vapors inside the 0.4 K helium droplet baths and then gently deposited onto a substrate for analysis. Upon deposition, the individual clusters, with diameters ∼5 nm, form a cluster material which was subsequently characterized using scanning and transmission electron microscopies. Results of this analysis reveal the following about the deposited cluster material: it is in the un-alloyed chemical state, it maintains a stable core-shell 5 nm structure at sub-monolayer quantities, and it aggregates into unreacted structures of ∼75 nm during further deposition. Surprisingly, high angle annular dark field scanning transmission electron microscopy images revealed that the copper appears to displace the magnesium at the core of the composite cluster despite magnesium being the initially condensed species within the droplet. This phenomenon was studied further using preliminary density functional theory which revealed that copper atoms, when added sequentially to magnesium clusters, penetrate into the magnesium cores.

  17. MAGNESIUM MONO POTASSIUM PHOSPHATE GROUT FOR P-REACTOR VESSEL IN-SITU DECOMISSIONING

    SciTech Connect (OSTI)

    Langton, C.; Stefanko, D.

    2011-01-05

    The objective of this report is to document laboratory testing of magnesium mono potassium phosphate grouts for P-Reactor vessel in-situ decommissioning. Magnesium mono potassium phosphate cement-based grout was identified as candidate material for filling (physically stabilizing) the 105-P Reactor vessel (RV) because it is less alkaline than portland cement-based grout (pH of about 12.4). A less alkaline material ({<=} 10.5) was desired to address a potential materials compatibility issue caused by corrosion of aluminum metal in highly alkaline environments such as that encountered in portland cement grouts. Information concerning access points into the P-Reactor vessel and amount of aluminum metal in the vessel is provided elsewhere. Fresh and cured properties were measured for: (1) commercially blended magnesium mono potassium phosphate packaged grouts, (2) commercially available binders blended with inert fillers at SRNL, (3) grouts prepared from technical grade MgO and KH{sub 2}PO{sub 4} and inert fillers (quartz sands, Class F fly ash), and (4) Ceramicrete{reg_sign} magnesium mono potassium phosphate-based grouts prepared at Argonne National Laboratory. Boric acid was evaluated as a set retarder in the magnesium mono potassium phosphate mixes.

  18. Lightning arrestor connector lead magnesium niobate qualification pellet test procedures.

    SciTech Connect (OSTI)

    Tuohig, W.; Mahoney, Patrick A.; Tuttle, Bruce Andrew; Wheeler, Jill Susanne

    2009-02-01

    Enhanced knowledge preservation for DOE DP technical component activities has recently received much attention. As part of this recent knowledge preservation effort, improved documentation of the sample preparation and electrical testing procedures for lead magnesium niobate--lead titanate (PMN/PT) qualification pellets was completed. The qualification pellets are fabricated from the same parent powders used to produce PMN/PT lightning arrestor connector (LAC) granules at HWF&T. In our report, the procedures for fired pellet surface preparation, electrode deposition, electrical testing and data recording are described. The dielectric measurements described in our report are an information only test. Technical reasons for selecting the electrode material, electrode size and geometry are presented. The electrical testing is based on measuring the dielectric constant and dissipation factor of the pellet during cooling from 280 C to 220 C. The most important data are the temperature for which the peak dielectric constant occurs (Curie Point temperature) and the peak dielectric constant magnitude. We determined that the peak dielectric constant for our procedure would be that measured at 1 kHz at the Curie Point. Both the peak dielectric constant and the Curie point parameters provide semi-quantitative information concerning the chemical and microstructural homogeneity of the parent material used for the production of PMN/PT granules for LACs. Finally, we have proposed flag limits for the dielectric data for the pellets. Specifically, if the temperature of the peak dielectric constant falls outside the range of 250 C {+-} 30 C we propose that a flag limit be imposed that will initiate communication between production agency and design agency personnel. If the peak dielectric constant measured falls outside the range 25,000 {+-} 10,000 we also propose that a flag limit be imposed.

  19. Structural studies of magnesium nitride fluorides by powder neutron diffraction

    SciTech Connect (OSTI)

    Brogan, Michael A.; Hughes, Robert W.; Smith, Ronald I.; Gregory, Duncan H.

    2012-01-15

    Samples of ternary nitride fluorides, Mg{sub 3}NF{sub 3} and Mg{sub 2}NF have been prepared by solid state reaction of Mg{sub 3}N{sub 2} and MgF{sub 2} at 1323-1423 K and investigated by powder X-ray and powder neutron diffraction techniques. Mg{sub 3}NF{sub 3} is cubic (space group: Pm3m) and has a structure related to rock-salt MgO, but with one cation site vacant. Mg{sub 2}NF is tetragonal (space group: I4{sub 1}/amd) and has an anti-LiFeO{sub 2} related structure. Both compounds are essentially ionic and form structures in which nitride and fluoride anions are crystallographically ordered. The nitride fluorides show temperature independent paramagnetic behaviour between 5 and 300 K. - Graphical abstract: Definitive structures of the ternary magnesium nitride fluorides Mg{sub 3}NF{sub 3} and the lower temperature polymorph of Mg{sub 2}NF have been determined from powder neutron diffraction data. The nitride halides are essentially ionic and exhibit weak temperature independent paramagnetic behaviour. Highlights: Black-Right-Pointing-Pointer Definitive structures of Mg{sub 3}NF{sub 3} and Mg{sub 2}NF were determined by neutron diffraction. Black-Right-Pointing-Pointer Nitride and fluoride anions are crystallographically ordered in both structures. Black-Right-Pointing-Pointer Both compounds exhibit weak, temperature independent paramagnetic behaviour. Black-Right-Pointing-Pointer The compounds are essentially ionic with ionicity increasing with F{sup -} content.

  20. Iron production maintenance effectiveness system

    SciTech Connect (OSTI)

    Augstman, J.J.

    1996-12-31

    In 1989, an internal study in the Coke and Iron Maintenance Department identified the opportunities available to increase production, by decreasing unscheduled maintenance delays from 4.6%. A five year front loaded plan was developed, and presented to the company president. The plan required an initial investment of $1.4 million and a conservative break-even point was calculated to be 2.5 years. Due to budget restraints, it would have to be self-funded, i.e., generate additional production or savings, to pay for the program. The program began in 1991 at number 2 coke plant and the blast furnaces. This paper will describe the Iron Production Maintenance Effectiveness System (ME), which began with the mechanical and pipefitting trades.

  1. Coordination Chemistry in magnesium battery electrolytes: how ligands affect their performance

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shao, Yuyan; Liu, Tianbiao L.; Li, Guosheng; Gu, Meng; Nie, Zimin; Engelhard, Mark H.; Xiao, Jie; Lu, Dongping; Wang, Chong M.; Zhang, Jiguang; et al

    2013-11-04

    Magnesium battery is potentially a safe, cost-effective, and high energy density technology for large scale energy storage. However, the development of magnesium battery has been hindered by the limited performance and the lack of fundamental understandings of electrolytes. Here, we present a coordination chemistry study of Mg(BH4)2 in ethereal solvents. The O donor denticity, i.e. ligand strength of the ethereal solvents which act as ligands to form solvated Mg complexes, plays a significant role in enhancing coulombic efficiency of the corresponding solvated Mg complex electrolytes. A new and safer electrolyte is developed based on Mg(BH4)2, diglyme and optimized LiBH4 additive.more » The new electrolyte demonstrates 100% coulombic efficiency, no dendrite formation, and stable cycling performance with the cathode capacity retention of ~90% for 300 cycles in a prototype magnesium battery.« less

  2. Laser beam welding of AZ31B-H24 magnesium alloy.

    SciTech Connect (OSTI)

    Leong, K. H.

    1998-09-29

    The laser beam weldability of AZ31B magnesium alloy was examined with high power CW CO{sub 2} and pulsed Nd:YAG lasers. The low viscosity and surface tension of the melt pool make magnesium more difficult to weld than steel. Welding parameters necessary to obtain good welds were determined for both CW CO{sub 2} and pulsed Nd:YAG lasers. The weldability of the magnesium alloy was significantly better with the Nd:YAG laser. The cause of this improvement was attributed to the higher absorption of the Nd:YAG beam. A lower threshold beam irradiance was required for welding, and a more stable weldpool was obtained.

  3. Coordination Chemistry in magnesium battery electrolytes: how ligands affect their performance

    SciTech Connect (OSTI)

    Shao, Yuyan; Liu, Tianbiao L.; Li, Guosheng; Gu, Meng; Nie, Zimin; Engelhard, Mark H.; Xiao, Jie; Lu, Dongping; Wang, Chong M.; Zhang, Jiguang; Liu, Jun

    2013-11-04

    Magnesium battery is potentially a safe, cost-effective, and high energy density technology for large scale energy storage. However, the development of magnesium battery has been hindered by the limited performance and the lack of fundamental understandings of electrolytes. Here, we present a coordination chemistry study of Mg(BH4)2 in ethereal solvents. The O donor denticity, i.e. ligand strength of the ethereal solvents which act as ligands to form solvated Mg complexes, plays a significant role in enhancing coulombic efficiency of the corresponding solvated Mg complex electrolytes. A new and safer electrolyte is developed based on Mg(BH4)2, diglyme and optimized LiBH4 additive. The new electrolyte demonstrates 100% coulombic efficiency, no dendrite formation, and stable cycling performance with the cathode capacity retention of ~90% for 300 cycles in a prototype magnesium battery.

  4. Development of a Thin-Wall Magnesium side door Inner Panel for Automobiles

    SciTech Connect (OSTI)

    Jekl, J.; Auld, J.; Sweet, C.; Carter, Jon; Resch, Steve; Klarner, A.; Brevick, J.; Luo, A.

    2015-05-17

    Cast magnesium side door inner panels can provide a good combination of weight, functional, manufacturing and economical requirements. However, several challenges exist including casting technology for thin-wall part design, multi-material incompatibility and relatively low strength vs steel. A project has been initiated, supported by the US Department of Energy, to design and develop a lightweight frame-under-glass door having a thin-wall, full die-cast, magnesium inner panel. This development project is the first of its kind within North America. Phase I of the project is now complete and the 2.0mm magnesium design, through casting process enablers, has met or exceeded all stiffness requirements, with significant mass reduction and part consolidation. In addition, a corrosion mitigation strategy has been established using industry-accepted galvanic isolation methods and coating technologies.

  5. Raman microscopy of lithium-manganese-rich transition metal oxide cathodes

    SciTech Connect (OSTI)

    Ruther, Rose E.; Callender, Andrew F.; Zhou, Hui; Martha, Surendra K.; Nanda, Jagjit

    2014-11-15

    Lithium-rich and manganese-rich (LMR) layered transition metal (TM) oxide composites with general formula xLi2MnO3·(1-x)LiMO2 (M = Ni, Co, Mn) are promising cathode candidates for high energy density lithium ion batteries. Lithium-manganese-rich TM oxides crystallize as a nanocomposite layered phase whose structure further evolves with electrochemical cycling. Raman spectroscopy is a powerful tool to monitor the crystal chemistry and correlate phase changes with electrochemical behavior. While several groups have reported Raman spectra of lithium rich TM oxides, the data show considerable variability in terms of both the vibrational features observed and their interpretation. In this paper, Raman microscopy is used to investigate lithium-rich and manganese-rich TM cathodes as a function of voltage and electrochemical cycling at various temperatures. No growth of a spinel phase is observed within the cycling conditions. However, analysis of the Raman spectra does indicate the structure of LMR-NMC deviates significantly from an ideal layered phase. Finally, the results also highlight the importance of using low laser power and large sample sizes to obtain consistent data sets.

  6. Effects of water hardness on the toxicity of manganese to developing brown trout (Salmo trutta)

    SciTech Connect (OSTI)

    Stubblefield, W.A.; Garrison, T.D.; Hockett, J.R.; Brinkman, S.F.; Davies, P.H.; McIntyre, M.W.

    1997-10-01

    Manganese is a common constituent of point and nonpoint discharges from mining and smelting activities. Available data indicate that Mn is acutely toxic at relatively high aqueous concentrations, when compared with trace metals, and its toxicity is affected by water hardness. Little information is available regarding the chronic toxicity of manganese. Early-life-stage (ELS) tests were conducted to determine the toxicity of manganese to brown trout (Salmo trutta) and to evaluate the extent to which water hardness (ranging from 30 to 450 mg/L as CaCO{sub 3}) affects the chronic toxicity of Mn. Water hardness of significantly affected Mn chronic toxicity, with toxicity decreasing with increasing hardness. Decreased survival was the predominant effect noted in the 30-mg/L hardness experiment, while significant effects on growth (as measured by changes in body weight) were observed in both the 150- and 450-mg/L hardness experiments. Twenty-five percent inhibition concentration (IC25) values, based on the combined endpoints (i.e., survival and body weight), were 4.67, 5.59, and 8.68 mg Mn/L (based on measured Mn concentration) at hardness levels of approximately 30, 150, and 450 mg/L as CaCO{sub 3}, respectively.

  7. Formation of manganese {delta}-doped atomic layer in wurtzite GaN

    SciTech Connect (OSTI)

    Shi Meng; Chinchore, Abhijit; Wang Kangkang; Mandru, Andrada-Oana; Liu Yinghao; Smith, Arthur R.

    2012-09-01

    We describe the formation of a {delta}-doped manganese layer embedded within c-plane wurtzite gallium nitride using a special molecular beam epitaxy growth process. Manganese is first deposited on the gallium-poor GaN (0001) surface, forming a {radical}(3) Multiplication-Sign {radical}(3)-R30 Degree-Sign reconstructed phase. This well-defined surface reconstruction is then nitrided using plasma nitridation, and gallium nitride is overgrown. The manganese content of the {radical}(3) Multiplication-Sign {radical}(3)-R30 Degree-Sign phase, namely one Mn per each {radical}(3) Multiplication-Sign {radical}(3)-R30 Degree-Sign unit cell, implies that the MnGaN alloy layer has a Mn concentration of up to 33%. The structure and chemical content of the surface are monitored beginning from the initial growth stage up through the overgrowth of 20 additional monolayers (MLs) of GaN. An exponential-like drop-off of the Mn signal with increasing GaN monolayers, as measured by Auger electron spectroscopy, indicates that the highly concentrated Mn layer remains at the {delta}-doped interface. A model of the resultant {delta}-doped structure is formulated based on the experimental data, and implications for possible spintronic applications are discussed.

  8. Two coordination polymers of manganese(II) isophthalate and their preparation, structures, and magnetic properties

    SciTech Connect (OSTI)

    Chen Jinxi; Wang Jingjing; Ohba, Masaaki

    2012-01-15

    Two manganese coordination polymers, [Mn{sub 2}(ip){sub 2}(dmf)]{center_dot}dmf (1) and [Mn{sub 4}(ip){sub 4}(dmf){sub 6}]{center_dot}2dmf (2) (ip=isophthalate; dmf=N,N-dimethylformamide), have been synthesized and characterized. X-ray crystal structural data reveal that compound 1 crystallizes in triclinic space group P-1, a=9.716(3) A, b=12.193(3) A, c=12.576(3) A, {alpha}=62.19(2) Degree-Sign , {beta}=66.423(17) Degree-Sign , {gamma}=72.72(2) Degree-Sign , Z=2, while compound 2 crystallizes in monoclinic space group Cc, a=19.80(3) A, b=20.20(2) A, c=18.01(3) A, {beta}=108.40(4) Degree-Sign , Z=4. Variable-temperature magnetic susceptibilities of compounds 1 and 2 exhibit overall weak antiferromagnetic coupling between the adjacent Mn(II) ions. - Graphical abstract: Three-dimensional porous and two-dimensional layered manganese isophthalates have been prepared. Magnetic susceptibility measurements exhibit overall weak antiferromagnetic interactions between the Mn(II) ions in both compounds. Highlights: Black-Right-Pointing-Pointer Two manganese isophthalates have been prepared. Black-Right-Pointing-Pointer Compound 1 adopts a three-dimensional porous structure. Black-Right-Pointing-Pointer Compound 2 adopts a two-dimensional layered structure. Black-Right-Pointing-Pointer Magnetic properties of both compounds are investigated.

  9. Discovery and Characterization of Iron Sulfide and Polyphosphate Bodies Coexisting in Archaeoglobus fulgidus Cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Toso, Daniel B.; Javed, Muhammad Mohsin; Czornyj, Elizabeth; Gunsalus, Robert P.; Zhou, Z. Hong

    2016-01-01

    Inorganic storage granules have long been recognized in bacterial and eukaryotic cells but were only recently identified in archaeal cells. Here, we report the cellular organization and chemical compositions of storage granules in the Euryarchaeon , Archaeoglobus fulgidus strain VC16, a hyperthermophilic, anaerobic, and sulfate-reducing microorganism. Dense granules were apparent in A. fulgidus cells imaged by cryo electron microscopy (cryoEM) but not so by negative stain electron microscopy. Cryo electron tomography (cryoET) revealed that each cell contains one to several dense granules located near the cell membrane. Energy dispersive X-ray (EDX) spectroscopy and scanning transmission electron microscopy (STEM) showmore » that, surprisingly, each cell contains not just one but often two types of granules with different elemental compositions. One type, named iron sulfide body (ISB), is composed mainly of the elements iron and sulfur plus copper; and the other one, called polyphosphate body (PPB), is composed of phosphorus and oxygen plus magnesium, calcium, and aluminum. PPBs are likely used for energy storage and/or metal sequestration/detoxification. ISBs could result from the reduction of sulfate to sulfide via anaerobic energy harvesting pathways and may be associated with energy and/or metal storage or detoxification. The exceptional ability of these archaeal cells to sequester different elements may have novel bioengineering applications.« less

  10. Method for the manufacture of iron-containing sintered electrodes

    SciTech Connect (OSTI)

    Buhl, H.; Gutjahr, M.

    1980-12-02

    A method is described for manufacturing an iron-containing sintered electrode for alkaline accumulators as well as the product obtained by such method, in which iron powder and at least one reducible iron compound are intimately mixed with each other; the powder mixture is sintered into a stable body and the reducible iron compound is reduced to highly active iron.

  11. Weldability and hot ductility of iron aluminides

    SciTech Connect (OSTI)

    Ash, D.I.; Edwards, G.R. . Center for Welding and Joining Research); David, S.A. )

    1991-05-01

    The weldability of iron aluminide alloys is discussed. Although readily welded with electron beam (EB) and gas-tungsten arc (GTA) techniques, iron aluminides are sometimes susceptible to cracking during cooling when welded with the GTA welding process. Taken into account are the effects of microstructural instability (grain growth), weld heat input (cooling rate) and environment on the hot ductility of an iron aluminide alloy designated FA-129. 64 refs., 59 figs., 3 tabs.

  12. Surface modification of high temperature iron alloys

    DOE Patents [OSTI]

    Park, J.H.

    1995-06-06

    A method and article of manufacture of a coated iron based alloy are disclosed. The method includes providing an iron based alloy substrate, depositing a silicon containing layer on the alloy surface while maintaining the alloy at a temperature of about 700--1200 C to diffuse silicon into the alloy surface and exposing the alloy surface to an ammonia atmosphere to form a silicon/oxygen/nitrogen containing protective layer on the iron based alloy. 13 figs.

  13. Electron Correlation in Iron-Based Superconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Correlation in Iron-Based Superconductors Electron Correlation in Iron-Based Superconductors Print Wednesday, 24 February 2010 00:00 In 2008, the discovery of iron-based superconductors stimulated a worldwide burst of activity, leading to about two preprints per day ever since. With a maximum superconducting transition temperature (so far) of 55 K, it is natural to wonder if studying the new materials will help uncover one of the deepest mysteries in modern physics-the mechanism of

  14. Method for producing iron-based catalysts

    DOE Patents [OSTI]

    Farcasiu, Malvina; Kaufman, Phillip B.; Diehl, J. Rodney; Kathrein, Hendrik

    1999-01-01

    A method for preparing an acid catalyst having a long shelf-life is provided comprising doping crystalline iron oxides with lattice-compatible metals and heating the now-doped oxide with halogen compounds at elevated temperatures. The invention also provides for a catalyst comprising an iron oxide particle having a predetermined lattice structure, one or more metal dopants for said iron oxide, said dopants having an ionic radius compatible with said lattice structure; and a halogen bound with the iron and the metal dopants on the surface of the particle.

  15. Iron Availability in the Southern Ocean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    At bottom left, the kinds of iron species found in two transects of the Southern Ocean are ... (ACC stands for Antarctic Circumpolar Current.) The map shows chlorophyll ...

  16. Iron oxyhydroxide mineralization on microbial extracellular polysaccha...

    Office of Scientific and Technical Information (OSTI)

    a creek and abandoned mine; these samples are dominated by iron oxyhydroxide-coated structures with sheath, stalk, and filament morphologies. In addition, we characterized the...

  17. Electron Correlation in Iron-Based Superconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    between different theoretical models and experimental data indicated that, instead of localized states due to strong electron interactions, electrons in iron pnictides prefer...

  18. Iron oxyhydroxide mineralization on microbial extracellular polysaccharides

    SciTech Connect (OSTI)

    Chan, Clara S.; Fakra, Sirine C.; Edwards, David C.; Emerson, David; Banfield, Jillian F.

    2010-06-22

    Iron biominerals can form in neutral pH microaerophilic environments where microbes both catalyze iron oxidation and create polymers that localize mineral precipitation. In order to classify the microbial polymers that influence FeOOH mineralogy, we studied the organic and mineral components of biominerals using scanning transmission X-ray microscopy (STXM), micro X-ray fluorescence ({mu}XRF) microscopy, and high-resolution transmission electron microscopy (HRTEM). We focused on iron microbial mat samples from a creek and abandoned mine; these samples are dominated by iron oxyhydroxide-coated structures with sheath, stalk, and filament morphologies. In addition, we characterized the mineralized products of an iron-oxidizing, stalk-forming bacterial culture isolated from the mine. In both natural and cultured samples, microbial polymers were found to be acidic polysaccharides with carboxyl functional groups, strongly spatially correlated with iron oxyhydroxide distribution patterns. Organic fibrils collect FeOOH and control its recrystallization, in some cases resulting in oriented crystals with high aspect ratios. The impact of polymers is particularly pronounced as the materials age. Synthesis experiments designed to mimic the biomineralization processes show that the polysaccharide carboxyl groups bind dissolved iron strongly but release it as mineralization proceeds. Our results suggest that carboxyl groups of acidic polysaccharides are produced by different microorganisms to create a wide range of iron oxyhydroxide biomineral structures. The intimate and potentially long-term association controls the crystal growth, phase, and reactivity of iron oxyhydroxide nanoparticles in natural systems.

  19. Oregon Iron Works Inc | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Oregon Iron Works Inc Region: United States Sector: Marine and Hydrokinetic Website: http: This company is listed in the Marine and Hydrokinetic...

  20. The production of iron carbide

    SciTech Connect (OSTI)

    Anderson, K.M.; Scheel, J.

    1997-12-31

    From start-up in 1994 to present, Nucor`s Iron Carbide plant has overcome many obstacles in achieving design production. Many of these impediments were due to flaws in equipment design. With the integration existing within the plant, limitations in any one system reduced the operating capacity of others. For this reason, as modifications were made and system capacities were increased, the need for additional modifications became apparent. Subsequently, operating practices, maintenance scheduling, employee incentives, and production objectives were continually adapted. This paper discusses equipment and design corrections and the quality issues that contributed to achieving the plant`s production capacity.

  1. The Iron Spin Transition in the Earth's Lower Mantle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Iron Spin Transition in the Earth's Lower Mantle The Iron Spin Transition in the Earth's Lower Mantle Print Wednesday, 30 April 2008 00:00 It is now known that the iron present...

  2. Microbial reduction of iron ore (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a...

  3. AEC Lowman Station FGD conversion from limestone to magnesium-enhanced lime scrubbing

    SciTech Connect (OSTI)

    Inkenhaus, W.; Babu, M.; Smith, K.; Loper, L.

    1996-12-31

    AEC`s Lowman Station is located in Leroy, Alabama. Units 2 and 3, with a total of 516 MW output capacity, were switched from the limestone FGD operation in January of 1996. Prior to switching, personnel from AEC and Dravo Lime Company conducted a four week test on magnesium-enhanced lime and obtained scrubber performance data including SO{sub 2} removal efficiencies on the modulus while burning higher sulfur coal. It was determined that the plant could take advantage of the higher SO{sub 2} removal efficiency of the magnesium-enhanced lime system. Major benefits resulting from this conversion were AEC`s ability to switch to a lower cost high sulfur coal while meeting the stringent SO{sub 2} emission requirements. Power cost savings resulted from the lower liquid to gas ratio required by the magnesium-enhanced lime process. Three recirculation pumps per module were reduced to a single operating pump per module, lowering the scrubber pressure drop. Significant cost reduction in the operating costs of the ball mill was realized due to modifications made to slake lime instead of grinding limestone. This paper discusses the plant modifications that were needed to make the switch, cost justifications, and AEC`s operating experiences to date. AEC and Dravo Lime Company working together as a team conducted detailed cost studies that followed with extended field tests and implementing plant modifications. This plant continues to operate in the magnesium-enhanced lime FGD mode to date.

  4. Iron and Steel (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Iron and Steel (2010 MECS) Iron and Steel (2010 MECS) Manufacturing Energy and Carbon Footprint for Iron and Steel Sector (NAICS 3311, 3312) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint Iron and Steel (125.81 KB) More Documents & Publications MECS 2006 - Iron and Steel Manufacturing Energy and Carbon Footprint - Sector: Iron and Steel (NAICS 3311, 3312), October

  5. Iron is the Key to Preserving Dinosaur Soft Tissue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron and Steel (2010 MECS) Iron and Steel (2010 MECS) Manufacturing Energy and Carbon Footprint for Iron and Steel Sector (NAICS 3311, 3312) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint Iron and Steel (125.81 KB) More Documents & Publications MECS 2006 - Iron and Steel Manufacturing Energy and Carbon Footprint - Sector: Iron and Steel (NAICS 3311, 3312), October

  6. Flow and fracture of aluminum alloys and of iron and steel within and outside the range of inhomogeneous flow

    SciTech Connect (OSTI)

    Pink, E.; Bernt, W.; Fellner, M. )

    1993-05-01

    It is well known that aluminum alloys exhibit shear fractures when they are deformed at conventional strain rates in tensile tests at room temperature. Most of the common aluminum alloys deform inhomogeneously under these testing conditions due to an effect arising from the substitutionally dissolved alloying atoms; their load-extension curves are serrated in constant-strain-rate tests. This coincidence of fracture by shear and serrated flow has supported the conception that both are interrelated. An investigation of materials with strong tendencies to serrated flow, obtained for temperature ranges exceeding those where serrations exist, sheds new light on this question. The materials tested were aluminum alloys with 5 wt.% zinc and 1 wt.% magnesium (AlZn5Mg1), and with 4.8 wt.% magnesium (AlMg5). AlMg5 exhibits shearing within part of the serrated-flow range. AlZn5Mg1 which is deformed at temperatures below and within the range of serrated flow breaks by shearing. During the deformation the cross section of the specimen becomes oval. At the highest test temperatures where serrated flow has ceased to occur, a tendency to normal' isotropic reduction of the cross section and cup-and-cone fractures were observed in both aluminium alloys. Armco iron and steel deform and break normally'.

  7. Production of iron from metallurgical waste

    SciTech Connect (OSTI)

    Hendrickson, David W; Iwasaki, Iwao

    2013-09-17

    A method of recovering metallic iron from iron-bearing metallurgical waste in steelmaking comprising steps of providing an iron-bearing metallurgical waste containing more than 55% by weight FeO and FeO equivalent and a particle size of at least 80% less than 10 mesh, mixing the iron-bearing metallurgical waste with a carbonaceous material to form a reducible mixture where the carbonaceous material is between 80 and 110% of the stoichiometric amount needed to reduce the iron-bearing waste to metallic iron, and as needed additions to provide a silica content between 0.8 and 8% by weight and a ratio of CaO/SiO.sub.2 between 1.4 and 1.8, forming agglomerates of the reducible mixture over a hearth material layer to protect the hearth, heating the agglomerates to a higher temperature above the melting point of iron to form nodules of metallic iron and slag material from the agglomerates by melting.

  8. Removal of metallic iron on oxide slags

    SciTech Connect (OSTI)

    Shannon, G.N.; Fruehan, R.J.; Sridhar, S.

    2009-10-15

    It is possible, in some cases, for ground coal particles to react with gasifier gas during combustion, allowing the ash material in the coal to form phases besides the expected slag phase. One of these phases is metallic iron, because some gasifiers are designed to operate under a reducing atmosphere (pO{sub 2}) of approximately 10{sup -4} atm). Metallic iron can become entrained in the gas stream and deposit on, and foul, downstream equipment. To improve the understanding of the reaction between different metallic iron particles and gas, which eventually oxidizes them, and the slag that the resulting oxide dissolves in, the kinetics of iron reaction on slag were predicted using gas-phase mass-transfer limitations for the reaction and were compared with diffusion in the slag; the reaction itself was observed under confocal scanning laser microscopy. The expected rates for iron droplet removal are provided based on the size and effective partial pressure of oxygen, and it is found that decarburization occurs before iron reaction, leading to an extra 30- to 100-second delay for carbon-saturated particles vs pure iron particles. A pure metallic iron particle of 0.5 mg should be removed in about 220 seconds at 1400{sup o}C and in 160 seconds at 1600{sup o}C.

  9. IRON COATED URANIUM AND ITS PRODUCTION

    DOE Patents [OSTI]

    Gray, A.G.

    1960-03-15

    A method of applying a protective coating to a metallic uranium article is given. The method comprises etching the surface of the article with an etchant solution containlng chloride ions, such as a solution of phosphoric acid and hydrochloric acid, cleaning the etched surface, electroplating iron thereon from a ferrous ammonium sulfate electroplating bath, and soldering an aluminum sheath to the resultant iron layer.

  10. Dechlorination of TCE with palladized iron

    DOE Patents [OSTI]

    Fernando, Quintus; Muftikian, Rosy; Korte, Nic

    1997-01-01

    The present invention relates to various methods, such as an above-ground method and an in-ground method, of using a palladized iron bimetallic system for the dechlorination of chlorinated organic compounds from various effluents or contaminated soil containing the same. The use of palladized iron bimetallic system results in the dechlorination of the chlorinated organic compound into environmentally safe reaction products.

  11. Oxidation of ethane to ethanol by N2O in a metal-organic framework with coordinatively unsaturated iron(II) sites

    SciTech Connect (OSTI)

    Xiao, Dianne J.; Bloch, Eric D.; Mason, Jarad A.; Queen, Wendy L.; Hudson, Matthew R.; Planas, Nora; Borycz, Joshua; Dzubak, Allison L.; Verma, Pragya; Lee, Kyuho; Bonino, Francesca; Crocellà, Valentina; Yano, Junko; Bordiga, Silvia; Truhlar, Donald G.; Gagliardi, Laura; Brown, Craig M.; Long, Jeffrey R.

    2014-08-19

    Enzymatic haem and non-haem high-valent iron–oxo species are known to activate strong C–H bonds, yet duplicating this reactivity in a synthetic system remains a formidable challenge. Although instability of the terminal iron–oxo moiety is perhaps the foremost obstacle, steric and electronic factors also limit the activity of previously reported mononuclear iron(IV)–oxo compounds. In particular, although nature's non-haem iron(IV)–oxo compounds possess high-spin S = 2 ground states, this electronic configuration has proved difficult to achieve in a molecular species. These challenges may be mitigated within metal–organic frameworks that feature site-isolated iron centres in a constrained, weak-field ligand environment. Here, we show that the metal–organic framework Fe2(dobdc) (dobdc4- = 2,5-dioxido-1,4-benzenedicarboxylate) and its magnesium-diluted analogue, Fe0.1Mg1.9(dobdc), are able to activate the C–H bonds of ethane and convert it into ethanol and acetaldehyde using nitrous oxide as the terminal oxidant. Electronic structure calculations indicate that the active oxidant is likely to be a high-spin S = 2 iron(IV)–oxo species.

  12. AEC Lowman Station - coal switching and magnesium-enhanced lime scrubbing to lower operating costs

    SciTech Connect (OSTI)

    Inkenhaus, W.; Babu, M.; Smith, K.; Loper, L.

    1997-12-31

    AEC`s Lowman Station is located in Leroy, Alabama. There are three coal-fired boilers at this station. Unit 1 is capable of generating 85 MW without a flue gas desulfurization, FGD, system. Units 2 and 3, with a total of 516 MW output capacity, are equipped with FGD systems. The FGD plant was designed for wet limestone FGD with natural oxidation. Lowman Station burned low sulfur, 1.3 to 1.8% sulfur, coal. In January of 1996 AEC switched Units 2 and 3 from limestone to magnesium-enhanced lime FGD operation. It was determined that the plant could take advantage of the higher SO{sub 2} removal efficiency of the magnesium-enhanced lime system. Major benefits resulting from this conversion were AEC`s ability to switch to a lower cost high sulfur coal while meeting the stringent SO{sub 2} emission requirements. Power cost savings resulted from the lower liquid to gas ratio required by the magnesium-enhanced lime process. Three recirculation pumps per module were reduced to a single operating pump per module, lowering the scrubber pressure drop. Significant cost reduction in the operating costs of the ball mill was realized due to modifications made to slake lime instead of grinding limestone. Prior to switching, personnel from AEC and Dravo Lime Company ran a four week test on magnesium-enhanced lime to obtain scrubber performance data including SO{sub 2} removal efficiencies on the modules while burning a 1.8% sulfur coal. This paper discusses the plant modifications that were needed to make the switch, cost justifications due to coal switching, and AEC`s operating experiences to date. AEC and Dravo Lime Company working together as a team conducted detailed cost studies, followed by extensive field tests and implemented the plant modifications. This plant continues to operate burning higher sulfur coal with the magnesium-enhanced lime FGD system.

  13. Iron is the Key to Preserving Dinosaur Soft Tissue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the ALS. Researchers hypothesized that the iron had come from dinosaurs' blood and muscle cells during decay, and were able to identify iron-facilitated reactions that...

  14. Pressure-Driven Quantum Criticality in Iron-Selenide Superconductors...

    Office of Scientific and Technical Information (OSTI)

    Pressure-Driven Quantum Criticality in Iron-Selenide Superconductors Title: Pressure-Driven Quantum Criticality in Iron-Selenide Superconductors Authors: Guo, Jing ; Chen, Xiao-Jia ...

  15. Preparations of rare earth-iron alloys by thermite reduction

    DOE Patents [OSTI]

    Schmidt, Frederick A.; Peterson, David T.; Wheelock, John T.

    1986-09-16

    An improved method for the preparation of high-purity rare earth-iron alloys by the aluminothermic reduction of a mixture of rare earth and iron fluorides.

  16. Neutron scattering of iron-based superconductors (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Neutron scattering of iron-based superconductors Citation Details In-Document Search Title: Neutron scattering of iron-based superconductors Low-energy spin excitations have been...

  17. Iron is the Key to Preserving Dinosaur Soft Tissue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mechanism for this unexpected preservation-iron nanoparticles associated with dinosaur blood vessels were identified at the ALS. Researchers hypothesized that the iron had come...

  18. Phase Discrimination through Oxidant Selection for Iron Oxide...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phase Discrimination through Oxidant Selection for Iron Oxide Ultrathin Films Home > Research > ANSER Research Highlights > Phase Discrimination through Oxidant Selection for Iron...

  19. Manufacturing Energy and Carbon Footprint - Sector: Iron and...

    Office of Environmental Management (EM)

    - Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006) Manufacturing Energy and Carbon Footprint - Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS ...

  20. COLLOQUIUM: How Trenton Iron and Steel Innovations Reshaped America...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MBG Auditorium COLLOQUIUM: How Trenton Iron and Steel Innovations Reshaped America Mr. Clifford Zink Independent Historian Iron and steel innovations in Trenton helped transform ...

  1. Laboratory Shock Experiments on Basalt - Iron Sulfate Mixes at...

    Office of Scientific and Technical Information (OSTI)

    Laboratory Shock Experiments on Basalt - Iron Sulfate Mixes at 40 - 50 GPa and their ... Title: Laboratory Shock Experiments on Basalt - Iron Sulfate Mixes at 40 - 50 GPa and ...

  2. Relationship between blood manganese and blood pressure in the Korean general population according to KNHANES 2008

    SciTech Connect (OSTI)

    Lee, Byung-Kook; Kim, Yangho

    2011-08-15

    Introduction: We present data on the association of manganese (Mn) level with hypertension in a representative sample of the adult Korean population who participated in the Korean National Health and Nutrition Examination Survey (KNHANES) 2008. Methods: This study was based on the data obtained by KNHANES 2008, which was conducted for three years (2007-2009) using a rolling sampling design involving a complex, stratified, multistage, probability-cluster survey of a representative sample of the noninstitutionalized civilian population of South Korea. Results: Multiple regression analysis after controlling for covariates, including gender, age, regional area, education level, smoking, drinking status, hemoglobin, and serum creatinine, showed that the beta coefficients of log blood Mn were 3.514, 1.878, and 2.517 for diastolic blood pressure, and 3.593, 2.449, and 2.440 for systolic blood pressure in female, male, and all participants, respectively. Multiple regression analysis including three other blood metals, lead, mercury, and cadmium, revealed no significant effects of the three metals on blood pressure and showed no effect on the association between blood Mn and blood pressure. In addition, doubling the blood Mn increased the risk of hypertension 1.828, 1.573, and 1.567 fold in women, men, and all participants, respectively, after adjustment for covariates. The addition of blood lead, mercury, and cadmium as covariates did not affect the association between blood Mn and the prevalence of hypertension. Conclusion: Blood Mn level was associated with an increased risk of hypertension in a representative sample of the Korean adult population. - Highlights: {yields} We showed the association of manganese with hypertension in Korean population. {yields} This study was based on the data obtained by KNHANES 2008. {yields} Blood manganese level was associated with an increased risk of hypertension.

  3. Reactivity of biogenic manganese oxide for metal sequestration and photochemistry: Computational solid state physics study

    SciTech Connect (OSTI)

    Kwon, K.D.; Sposito, G.

    2010-02-01

    Many microbes, including both bacteria and fungi, produce manganese (Mn) oxides by oxidizing soluble Mn(II) to form insoluble Mn(IV) oxide minerals, a kinetically much faster process than abiotic oxidation. These biogenic Mn oxides drive the Mn cycle, coupling it with diverse biogeochemical cycles and determining the bioavailability of environmental contaminants, mainly through strong adsorption and redox reactions. This mini review introduces recent findings based on quantum mechanical density functional theory that reveal the detailed mechanisms of toxic metal adsorption at Mn oxide surfaces and the remarkable role of Mn vacancies in the photochemistry of these minerals.

  4. Synthesis and characterization of rare-earth-free magnetic manganese bismuth nanocrystals

    SciTech Connect (OSTI)

    Shen, J; Cui, HZ; Huang, XP; Gong, MG; Qin, W; Kirkeminde, A; Cui, J; Ren, SQ

    2015-01-01

    Earth abundant manganese bismuth (MnBi) has long been of interest due to its largemagnetocrystalline anisotropy and high energy density for advanced permanent magnet applications. However, solution synthesis of MnBi phase is challenging due to the reduction potential mismatch between Mn and Bi elements. In this study, we show a versatile MnBi synthesis method involving the metal co-reduction followed by thermal annealing. The magnetically hard MnBi crystalline phase is then exchange coupled with magnetically soft cobalt coating. Our processing approach offers a promising strategy for manufacturing rare-earth-free magnetic nanocrystals.

  5. Synthesis and Characterization of Rare-earth-free Magnetic Manganese Bismuth Nanocrystals

    SciTech Connect (OSTI)

    Shen, Jian Q.; Cui, Huizhong; Huang, Xiaopeng; Gong, Maogang; Qin, Wei; Kirkeminde, Alec; Cui, Jun; Ren, Shenqiang

    2015-01-01

    Earth abundant manganese bismuth (MnBi) has long been of interest due to its large magnetocrystalline anisotropy and high energy density for advanced permanent magnet applications. However, solution synthesis of MnBi phase is challenging due to the reduction potential mismatch between Mn and Bi elements. In this study, we show a versatile MnBi synthesis method involving the metal co-reduction followed by thermal annealing. The magnetically hard MnBi crystalline phase is then exchange coupled with magnetically soft cobalt coating. Our processing approach offers a promising strategy for manufacturing rare-earth-free magnetic nanocrystals.

  6. Manganese-Aluminum-Based Magnets: Nanocrystalline t-MnAI Permanent Magnets

    SciTech Connect (OSTI)

    2012-01-01

    REACT Project: Dartmouth is developing specialized alloys with magnetic properties superior to the rare earths used in todays best magnets. EVs and renewable power generators typically use rare earths to turn the axles in their electric motors due to the magnetic strength of these minerals. However, rare earths are difficult and expensive to refine. Dartmouth will swap rare earths for a manganese-aluminum alloy that could demonstrate better performance and cost significantly less. The ultimate goal of this project is to develop an easily scalable process that enables the widespread use of low-cost and abundant materials for the magnets used in EVs and renewable power generators.

  7. Synthesis and Structural Characterization of Magnesium Based Coordination Networks in Different Solvents

    SciTech Connect (OSTI)

    Banerjee, Debasis; Finkelstein, Jeffrey; Smirnov, A.; Forster, Paul M.; Borkowski, Lauren A.; Teat, Simon J.; Parise, John B.

    2015-10-15

    Three magnesium based metal-organic frameworks, Mg{sub 3}(3,5-PDC){sub 3}(DMF){sub 3} {center_dot} DMF [1], Mg(3,5-PDC)(H{sub 2}O) {center_dot} (H{sub 2}O) [3], and Mg4(3,5-PDC)4(DMF){sub 2}(H{sub 2}O){sub 2} {center_dot} 2DMF {center_dot} 4.5H{sub 2}O [4], and a 2-D coordination polymer, [Mg(3,5-PDC)(H{sub 2}O){sub 2}] [2] [PDC = pyridinedicarboxylate], were synthesized using a combination of DMF, methanol, ethanol, and water. Compound 1 [space group P2{sub 1}/n, a = 12.3475(5) {angstrom}, b = 11.1929(5) {angstrom}, c = 28.6734(12) {angstrom}, {beta} = 98.8160(10){sup o}, V = 3916.0(3) {angstrom}{sup 3}] consists of a combination of isolated and corner-sharing magnesium octahedra connected by the organic linkers to form a 3-D network with a 12.2 {angstrom} x 4.6 {angstrom} 1-D channel. The channel contains coordinated and free DMF molecules. In compound 2 [space group C2/c, a = 9.964(5) {angstrom}, b = 12.0694(6) {angstrom}, c = 7.2763(4) {angstrom}, {beta} = 106.4970(6){sup o}, V = 836.70(6) {angstrom}{sup 3}], PDC connects isolated seven coordinated magnesium polyhedra into a layered structure. Compound 3 [space group P6{sub 1}22, a = 11.479(1) {angstrom}, c = 14.735(3) {angstrom}, V = 1681.7(4) {angstrom}{sup 3}] (previously reported) contains isolated magnesium octahedra connected by the organic linker with each other forming a 3D network. Compound 4 [space group P2{sub 1}/c, a = 13.7442(14) {angstrom}, b = 14.2887(15) {angstrom}, c = 14.1178(14) {angstrom}, {beta} = 104.912(2){sup o}, V = 2679.2(5) {angstrom}{sup 3}] also exhibits a 3D network based on isolated magnesium octahedra with square cavities containing both disordered DMF and water molecules. The structural topologies originate due to the variable coordination ability of solvent molecules with the metal center. Water molecules coordinate with the magnesium metal centers preferably over other polar solvents (DMF, methanol, ethanol) used to synthesize the coordination networks. Despite testing

  8. Vehicle Technologies Office Merit Review 2014: Scale-Up of Magnesium Production by Fully Stabilized Zirconia Electrolysis

    Broader source: Energy.gov [DOE]

    Presentation given by INFINIUM, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about scale-up of magnesium...

  9. Vehicle Technologies Office Merit Review 2015: Scale-Up of Magnesium Production by Fully Stabilized Zirconia Electrolysis

    Broader source: Energy.gov [DOE]

    Presentation given by INFINIUM, Inc. at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about scale-up of magnesium...

  10. Dechlorination of TCE with palladized iron

    DOE Patents [OSTI]

    Fernando, Q.; Muftikian, R.; Korte, N.

    1997-03-18

    The present invention relates to various methods, such as an above-ground method and an in-ground method, of using a palladized iron bimetallic system for the dechlorination of chlorinated organic compounds from effluents containing the same. The use of palladized iron bimetallic system results in the dechlorination of the chlorinated organic compound into environmentally safe reaction products. The present invention also provides kits, devices, and other instruments that use the above-mentioned palladized iron bimetallic system for the dechlorination of chlorinated organic compounds. 10 figs.

  11. Dechlorination of TCE with palladized iron

    DOE Patents [OSTI]

    Fernando, Q.; Muftikian, R.; Korte, N.

    1998-06-02

    The present invention relates to various methods, such as an above-ground method and an in-ground method, of using a palladized iron bimetallic system for the dechlorination of chlorinated organic compounds from effluents containing the same. The use of palladized iron bimetallic system results in the dechlorination of the chlorinated organic compound into environmentally safe reaction products. The present invention also provides kits, devices, and other instruments that use the above-mentioned palladized iron bimetallic system for the dechlorination of chlorinated organic compounds. 10 figs.

  12. Dechlorination of TCE with palladized iron

    DOE Patents [OSTI]

    Fernando, Quintus; Muftikian, Rosy; Korte, Nic

    1997-01-01

    The present invention relates to various methods, such as an above-ground method and an in-ground method, of using a palladized iron bimetallic system for the dechlorination of chlorinated organic compounds from effluents containing the same. The use of palladized iron bimetallic system results in the dechlorination of the chlorinated organic compound into environmentally safe reaction products. The present invention also provides kits, devices, and other instruments that use the above-mentioned palladized iron bimetallic system for the dechlorination of chlorinated organic compounds.

  13. Dechlorination of TCE with palladized iron

    DOE Patents [OSTI]

    Fernando, Quintus; Muftikian, Rosy; Korte, Nic

    1998-01-01

    The present invention relates to various methods, such as an above-ground method and an in-ground method, of using a palladized iron bimetallic system for the dechlorination of chlorinated organic compounds from effluents containing the same. The use of palladized iron bimetallic system results in the dechlorination of the chlorinated organic compound into environmentally safe reaction products. The present invention also provides kits, devices, and other instruments that use the above-mentioned palladized iron bimetallic system for the dechlorination of chlorinated organic compounds.

  14. Iron Availability in the Southern Ocean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron Availability in the Southern Ocean Iron Availability in the Southern Ocean Print Friday, 21 June 2013 10:08 The Southern Ocean, circling the Earth between Antarctica and the southernmost regions of Africa, South America, and Australia, is notorious for its high-nutrient, low-chlorophyll areas, which are rich in nutrients-but poor in essential iron. Sea life is less abundant in these regions because the growth of phytoplankton-the marine plants that form the base of the food chain-is

  15. Synthesis of iron based hydrocracking catalysts

    DOE Patents [OSTI]

    Farcasiu, Malvina (Pittsburgh, PA); Eldredge, Patricia A. (Barboursville, VA); Ladner, Edward P. (Pittsburgh, PA)

    1993-01-01

    A method of preparing a fine particle iron based hydrocracking catalyst and the catalyst prepared thereby. An iron (III) oxide powder and elemental sulfur are reacted with a liquid hydrogen donor having a hydroaromatic structure present in the range of from about 5 to about 50 times the weight of iron (III) oxide at a temperature in the range of from about 180.degree. C. to about 240.degree. C. for a time in the range of from about 0 to about 8 hours. Various specific hydrogen donors are disclosed. The catalysts are active at low temperature (<350.degree. C.) and low pressure.

  16. Growth and magnetic property of antiperovskite manganese nitride films doped with Cu by molecular beam epitaxy

    SciTech Connect (OSTI)

    Yu, Fengmei; Ren, Lizhu; Meng, Meng; Wang, Yunjia; Yang, Mei; Wu, Shuxiang; Li, Shuwei

    2014-04-07

    Manganese nitrides thin films on MgO (100) substrates with and without Cu-doping have been fabricated by plasma assisted molecular beam epitaxy. Antiperovskite compounds Mn{sub 3.6}Cu{sub 0.4}N have been grown in the case of Cu-doping, and the pure Mn{sub 3}N{sub 2} single crystal has been obtained without Cu-doping. The Mn{sub 3.6}Cu{sub 0.4}N exhibits ferrimagnetism, and the magnetization of Mn{sub 3.6}Cu{sub 0.4}N increases upon the temperature decreasing from 300 K to 5 K, similar to Mn{sub 4}N. The exchange bias (EB) effects emerge in the Mn{sub 3.6}Cu{sub 0.4}N films. The EB behavior is originated from the interfaces between ferrimagnetic Mn{sub 3.6}Cu{sub 0.4}N and antiferromagnetic metal Mn, which is verified to be formed by the data of x-ray photoelectron spectroscopy. The present results not only provide a strategy for producing functional antiperovskite manganese nitrides, but also shed promising light on fabricating the exchange bias part of spintronic devices.

  17. Sol-Gel Preparation Of Lead Magnesium Ni Obate (Pmn) Powdersand Thin Films

    DOE Patents [OSTI]

    Boyle, Timothy J.

    1999-01-12

    A method of preparing a lead magnesium niobium oxide (PMN), Pb(Mg.sub.1/3 Nb.sub.2/3)O.sub.3, precursor solution by a solvent method wherein a liquid solution of a lead-complex PMN precursor is combined with a liquid solution of a niobium-complex PMN precursor, the combined lead- and niobium-complex liquid solutions are reacted with a magnesium-alkyl solution, forming a PMN precursor solution and a lead-based precipitate, and the precipitate is separated from the reacted liquid PMN precursor solution to form a precipitate-free PMN precursor solution. This precursor solution can be processed to form both ferroelectric powders and thin films.

  18. Sol-gel preparation of lead magnesium niobate (PMN) powders and thin films

    DOE Patents [OSTI]

    Boyle, T.J.

    1999-01-12

    A method of preparing a lead magnesium niobium oxide (PMN), Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}, precursor solution by a solvent method wherein a liquid solution of a lead-complex PMN precursor is combined with a liquid solution of a niobium-complex PMN precursor, the combined lead- and niobium-complex liquid solutions are reacted with a magnesium-alkyl solution, forming a PMN precursor solution and a lead-based precipitate, and the precipitate is separated from the reacted liquid PMN precursor solution to form a precipitate-free PMN precursor solution. This precursor solution can be processed to form both ferroelectric powders and thin films. 3 figs.

  19. The effect of rare earth elements on the texture and formability of asymmetrically rolled magnesium sheet

    SciTech Connect (OSTI)

    Alderman, Dr. Martyn; Cavin, Odis Burl; Davis, Dr. Bruce; Muralidharan, Govindarajan; Muth, Thomas R; Peter, William H; Randman, David; Watkins, Thomas R

    2011-01-01

    The lack of formability is a serious issue when considering magnesium alloys for various applications. Standard symmetric rolling introduces a strong basal texture that decreases the formability; however, asymmetric rolling has been put forward as a possible route to produce sheet with weaker texture and greater ductility. It has also been shown in recent work that weaker textures can be produced through the addition of rare earth elements to magnesium alloys. Therefore, this study has been carried out to investigate the effect of rare earth additions on the texture changes during asymmetric rolling. Two alloys have been used, AZ31B and ZEK100. The effect that the rare earth additions have on the texture of asymmetrically rolled sheet and the subsequent changes in formability will be discussed.

  20. Iron Availability in the Southern Ocean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Animal, Vegetable or Mineral? Iron is a limiting nutrient in many parts of the oceans, nowhere more so than in the Southern Ocean's photic zone, which receives enough sunlight for...

  1. System and method for producing metallic iron

    DOE Patents [OSTI]

    Englund, David J.; Schlichting, Mark; Meehan, John; Crouch, Jeremiah; Wilson, Logan

    2014-07-29

    A method of production of metallic iron nodules comprises assembling a hearth furnace having a moveable hearth comprising refractory material and having a conversion zone and a fusion zone, providing a hearth material layer comprising carbonaceous material on the refractory material, providing a layer of reducible material comprising and iron bearing material arranged in discrete portions over at least a portion of the hearth material layer, delivering oxygen gas into the hearth furnace to a ratio of at least 0.8:1 ponds of oxygen to pounds of iron in the reducible material to heat the conversion zone to a temperature sufficient to at least partially reduce the reducible material and to heat the fusion zone to a temperature sufficient to at least partially reduce the reducible material, and heating the reducible material to form one or more metallic iron nodules and slag.

  2. Electron Correlation in Iron-Based Superconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    which prevents two electrons from occupying the same site, resulting in a so-called Mott insulator. The lack of information on the strength of electron correlation in the iron...

  3. Large scale two-dimensional arrays of magnesium diboride superconducting quantum interference devices

    SciTech Connect (OSTI)

    Cybart, Shane A. Dynes, R. C.; Wong, T. J.; Cho, E. Y.; Beeman, J. W.; Yung, C. S.; Moeckly, B. H.

    2014-05-05

    Magnetic field sensors based on two-dimensional arrays of superconducting quantum interference devices were constructed from magnesium diboride thin films. Each array contained over 30?000 Josephson junctions fabricated by ion damage of 30?nm weak links through an implant mask defined by nano-lithography. Current-biased devices exhibited very large voltage modulation as a function of magnetic field, with amplitudes as high as 8?mV.

  4. Electron Correlation in Iron-Based Superconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Correlation in Iron-Based Superconductors Print In 2008, the discovery of iron-based superconductors stimulated a worldwide burst of activity, leading to about two preprints per day ever since. With a maximum superconducting transition temperature (so far) of 55 K, it is natural to wonder if studying the new materials will help uncover one of the deepest mysteries in modern physics-the mechanism of superconductivity in the copper-based "high-temperature superconductors." One

  5. Electron Correlation in Iron-Based Superconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Correlation in Iron-Based Superconductors Print In 2008, the discovery of iron-based superconductors stimulated a worldwide burst of activity, leading to about two preprints per day ever since. With a maximum superconducting transition temperature (so far) of 55 K, it is natural to wonder if studying the new materials will help uncover one of the deepest mysteries in modern physics-the mechanism of superconductivity in the copper-based "high-temperature superconductors." One

  6. Dechlorination of TCE with palladized iron

    DOE Patents [OSTI]

    Fernando, Q.; Muftikian, R.; Korte, N.

    1997-04-01

    The present invention relates to various methods, such as an above-ground method and an in-ground method, of using a palladized iron bimetallic system for the dechlorination of chlorinated organic compounds from various effluents or contaminated soil containing the same. The use of palladized iron bimetallic system results in the dechlorination of the chlorinated organic compound into environmentally safe reaction products. 10 figs.

  7. Electron Correlation in Iron-Based Superconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Correlation in Iron-Based Superconductors Print In 2008, the discovery of iron-based superconductors stimulated a worldwide burst of activity, leading to about two preprints per day ever since. With a maximum superconducting transition temperature (so far) of 55 K, it is natural to wonder if studying the new materials will help uncover one of the deepest mysteries in modern physics-the mechanism of superconductivity in the copper-based "high-temperature superconductors." One

  8. Electron Correlation in Iron-Based Superconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Correlation in Iron-Based Superconductors Print In 2008, the discovery of iron-based superconductors stimulated a worldwide burst of activity, leading to about two preprints per day ever since. With a maximum superconducting transition temperature (so far) of 55 K, it is natural to wonder if studying the new materials will help uncover one of the deepest mysteries in modern physics-the mechanism of superconductivity in the copper-based "high-temperature superconductors." One

  9. Electron Correlation in Iron-Based Superconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Correlation in Iron-Based Superconductors Print In 2008, the discovery of iron-based superconductors stimulated a worldwide burst of activity, leading to about two preprints per day ever since. With a maximum superconducting transition temperature (so far) of 55 K, it is natural to wonder if studying the new materials will help uncover one of the deepest mysteries in modern physics-the mechanism of superconductivity in the copper-based "high-temperature superconductors." One

  10. Electron Correlation in Iron-Based Superconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Correlation in Iron-Based Superconductors Print In 2008, the discovery of iron-based superconductors stimulated a worldwide burst of activity, leading to about two preprints per day ever since. With a maximum superconducting transition temperature (so far) of 55 K, it is natural to wonder if studying the new materials will help uncover one of the deepest mysteries in modern physics-the mechanism of superconductivity in the copper-based "high-temperature superconductors." One

  11. Electron Correlation in Iron-Based Superconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Correlation in Iron-Based Superconductors Print In 2008, the discovery of iron-based superconductors stimulated a worldwide burst of activity, leading to about two preprints per day ever since. With a maximum superconducting transition temperature (so far) of 55 K, it is natural to wonder if studying the new materials will help uncover one of the deepest mysteries in modern physics-the mechanism of superconductivity in the copper-based "high-temperature superconductors." One

  12. Iron Availability in the Southern Ocean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron Availability in the Southern Ocean Print The Southern Ocean, circling the Earth between Antarctica and the southernmost regions of Africa, South America, and Australia, is notorious for its high-nutrient, low-chlorophyll areas, which are rich in nutrients-but poor in essential iron. Sea life is less abundant in these regions because the growth of phytoplankton-the marine plants that form the base of the food chain-is suppressed. A study by scientists from South Africa's Stellenbosch

  13. Iron Availability in the Southern Ocean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron Availability in the Southern Ocean Print The Southern Ocean, circling the Earth between Antarctica and the southernmost regions of Africa, South America, and Australia, is notorious for its high-nutrient, low-chlorophyll areas, which are rich in nutrients-but poor in essential iron. Sea life is less abundant in these regions because the growth of phytoplankton-the marine plants that form the base of the food chain-is suppressed. A study by scientists from South Africa's Stellenbosch

  14. Iron Availability in the Southern Ocean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron Availability in the Southern Ocean Print The Southern Ocean, circling the Earth between Antarctica and the southernmost regions of Africa, South America, and Australia, is notorious for its high-nutrient, low-chlorophyll areas, which are rich in nutrients-but poor in essential iron. Sea life is less abundant in these regions because the growth of phytoplankton-the marine plants that form the base of the food chain-is suppressed. A study by scientists from South Africa's Stellenbosch

  15. Iron Availability in the Southern Ocean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron Availability in the Southern Ocean Print The Southern Ocean, circling the Earth between Antarctica and the southernmost regions of Africa, South America, and Australia, is notorious for its high-nutrient, low-chlorophyll areas, which are rich in nutrients-but poor in essential iron. Sea life is less abundant in these regions because the growth of phytoplankton-the marine plants that form the base of the food chain-is suppressed. A study by scientists from South Africa's Stellenbosch

  16. Iron Availability in the Southern Ocean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron Availability in the Southern Ocean Print The Southern Ocean, circling the Earth between Antarctica and the southernmost regions of Africa, South America, and Australia, is notorious for its high-nutrient, low-chlorophyll areas, which are rich in nutrients-but poor in essential iron. Sea life is less abundant in these regions because the growth of phytoplankton-the marine plants that form the base of the food chain-is suppressed. A study by scientists from South Africa's Stellenbosch

  17. CO{sub 2} laser beam welding of magnesium-based alloys

    SciTech Connect (OSTI)

    Weisheit, A.; Galun, R.; Mordike, B.L.

    1998-04-01

    Magnesium has gained increased attention in recent years as a structural metal--especially in the automotive industry--necessitating the development of welding techniques qualified for this new application. Lasers are known to be an excellent tool for joining metals. This paper presents results of recent investigations on the weldability of several cast and wrought magnesium-based alloys. Plates with a thickness of 2.5--8 mm were butt joint welded with and without filler metal using a 2.5-kW CO{sub 2} laser. The investigations showed that magnesium alloys can be easily laser welded in similar and dissimilar joints. The beam characteristics of the laser leads to small welds and a deep penetration depth. Crackfree welds exhibiting low porosity and good surface finish can be achieved with appropriate process parameters. Generally, the laser welding leads to either no change or a small increase in hardness in the fusion zone (FZ) and in the heat-affected zone (HAZ) relative to the base metal. Less promising results were obtained for the cast alloy QE22, in which cracking in the age-hardened condition and a significant decrease in hardness occurred. Laser welded die cast alloys showed an extremely high level of porosity in the weld.

  18. Process for CO.sub.2 capture using a regenerable magnesium hydroxide sorbent

    DOE Patents [OSTI]

    Siriwardane, Ranjani V; Stevens, Jr., Robert W

    2013-06-25

    A process for CO.sub.2 separation using a regenerable Mg(OH).sub.2 sorbent. The process absorbs CO.sub.2 through the formation of MgCO.sub.3 and releases water product H.sub.2O. The MgCO.sub.3 is partially regenerated through direct contact with steam, which acts to heat the magnesium carbonate to a higher temperature, provide heat duty required to decompose the magnesium carbonate to yield MgO and CO.sub.2, provide an H.sub.2O environment over the magnesium carbonate thereby shifting the equilibrium and increasing the potential for CO.sub.2 desorption, and supply H.sub.2O for rehydroxylation of a portion of the MgO. The mixture is polished in the absence of CO.sub.2 using water product H.sub.2O produced during the CO.sub.2 absorption to maintain sorbent capture capacity. The sorbent now comprised substantially of Mg(OH).sub.2 is then available for further CO.sub.2 absorption duty in a cyclic process.

  19. Characterization of fold defects in AZ91D and AE42 magnesium alloy permanent mold castings

    SciTech Connect (OSTI)

    Bichler, L. [Centre for Near-net-shape Processing of Materials, Ryerson University, 101 Gerrard St. E., Toronto, M5B 2K3 (Canada); Ravindran, C., E-mail: rravindr@ryerson.ca [Centre for Near-net-shape Processing of Materials, Ryerson University, 101 Gerrard St. E., Toronto, M5B 2K3 (Canada)

    2010-03-15

    Casting premium-quality magnesium alloy components for aerospace and automotive applications poses unique challenges. Magnesium alloys are known to freeze rapidly prior to filling a casting cavity, resulting in misruns and cold shuts. In addition, melt oxidation, solute segregation and turbulent metal flow during casting contribute to the formation of fold defects. In this research, formation of fold defects in AZ91D and AE42 magnesium alloys cast via the permanent mold casting process was investigated. Computer simulations of the casting process predicted the development of a turbulent metal flow in a critical casting region with abrupt geometrical transitions. SEM and light optical microscopy examinations revealed the presence of folds in this region for both alloys. However, each alloy exhibited a unique mechanism responsible for fold formation. In the AZ91D alloy, melt oxidation and velocity gradients in the critical casting region prevented fusion of merging metal front streams. In the AE42 alloy, limited solubility of rare-earth intermetallic compounds in the {alpha}-Mg phase resulted in segregation of Al{sub 2}RE particles at the leading edge of a metal front and created microstructural inhomogeneity across the fold.

  20. Manufacturing of SiCp Reinforced Magnesium Composite Tubes by Hot Extrusion Processes

    SciTech Connect (OSTI)

    Hwang, Yeong-Maw; Huang, Song-Jeng; Huang, Yu-San

    2011-05-04

    Magnesium alloys have higher specific strength compared with other metals, such as aluminum, copper and steel. Nevertheless, their ductility is still not good for further metal forming and their strength is not large enough for real structure applications. The aim of this paper is to develop magnesium alloy composite tubes reinforced with SiC particulates by the stir-casting method and hot extrusion processes. At first, AZ61/SiCp composite ingots reinforced with 5 wt% SiC particulates are fabricated by the melt-stirring technique. Then, finite element simulations are conducted to analyze the plastic flow of magnesium alloy AZ61 within the die and the temperature distribution of the products. AZ61/SiCp composite tubes are manufactured by hot extrusion using a specially designed die-set for obtaining uniform thickness distribution tubes. Finally, the mechanical properties of the reinforced AZ61/SiCp composite and Mg alloy AZ61 tubes are compared with those of the billets to manifest the advantages of extrusion processes and reinforcement of SiC particulates. The microstructures of the billet and extruded tubes are also observed. Through the improvement of the strength of the tube product, its life cycle can be extended and the energy consumption can be reduced, and eventually the environmental sustainability is achieved.

  1. Magnesite Step Growth Rates as a Function of the Aqueous Magnesium:Carbonate Ratio

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bracco, Jacquelyn N.; Stack, Andrew G.; Higgins, Steven R.

    2014-10-01

    Step velocities of monolayer-height steps on the (101⁻4) magnesite surface have been measured as functions of the aqueous magnesium-to-carbonate ratio and saturation index (SI) using a hydrothermal atomic force microscope (HAFM). At SI ≤ 1.9 and 80-90 °C, step velocities were found to be invariant with changes in the magnesium-to-carbonate ratio, an observation in contrast with standard models for growth and dissolution of ionically-bonded, multi-component crystals. However, at high saturation indices (SI = 2.15), step velocities displayed a ratio dependence, maximized at magnesium-to-carbonate ratios slightly greater than 1:1. Traditional affinity-based models were unable to describe growth rates at the highermore » saturation index. Step velocities also could not be modeled solely through nucleation of kink sites, in contrast to other minerals whose bonding between constituent ions is also dominantly ionic in nature, such as calcite and barite. Instead, they could be described only by a model that incorporates both kink nucleation and propagation. Based on observed step morphological changes at these higher saturation indices, the step velocity maximum at SI = 2.15 is likely due to the rate of attachment to propagating kink sites overcoming the rate of detachment from kink sites as the latter becomes less significant under far from equilibrium conditions.« less

  2. Recovery of manganese oxides from spent alkaline and zinc–carbon batteries. An application as catalysts for VOCs elimination

    SciTech Connect (OSTI)

    Gallegos, María V.; Falco, Lorena R.; Peluso, Miguel A.; Sambeth, Jorge E.; Thomas, Horacio J.

    2013-06-15

    Highlights: • Manganese oxides were synthesized using spent batteries as raw materials. • Spent alkaline and zinc–carbon size AA batteries were used. • A biohydrometallurgical process was employed to bio-lixiviate batteries. • Manganese oxides were active in the oxidation of VOCs (ethanol and heptane). - Abstract: Manganese, in the form of oxide, was recovered from spent alkaline and zinc–carbon batteries employing a biohydrometallurgy process, using a pilot plant consisting in: an air-lift bioreactor (containing an acid-reducing medium produced by an Acidithiobacillus thiooxidans bacteria immobilized on elemental sulfur); a leaching reactor (were battery powder is mixed with the acid-reducing medium) and a recovery reactor. Two different manganese oxides were recovered from the leachate liquor: one of them by electrolysis (EMO) and the other by a chemical precipitation with KMnO{sub 4} solution (CMO). The non-leached solid residue was also studied (RMO). The solids were compared with a MnO{sub x} synthesized in our laboratory. The characterization by XRD, FTIR and XPS reveal the presence of Mn{sub 2}O{sub 3} in the EMO and the CMO samples, together with some Mn{sup 4+} cations. In the solid not extracted by acidic leaching (RMO) the main phase detected was Mn{sub 3}O{sub 4}. The catalytic performance of the oxides was studied in the complete oxidation of ethanol and heptane. Complete conversion of ethanol occurs at 200 °C, while heptane requires more than 400 °C. The CMO has the highest oxide selectivity to CO{sub 2}. The results show that manganese oxides obtained using spent alkaline and zinc–carbon batteries as raw materials, have an interesting performance as catalysts for elimination of VOCs.

  3. Understanding the Factors Affecting the Formation of Carbonyl Iron Electrodes in Rechargeable Alkaline Iron Batteries

    SciTech Connect (OSTI)

    Manohar, AK; Yang, CG; Malkhandi, S; Yang, B; Prakash, GKS; Narayanan, SR

    2012-01-01

    Rechargeable iron-based alkaline batteries such as iron - air and nickel - iron batteries are attractive for large-scale electrical energy storage because iron is inexpensive, globally-abundant and environmentally-friendly. Further, the iron electrode is known for its robustness to repeated charge/discharge cycling. During manufacturing these batteries are charged and discharged 20 to 50 times during which the discharge capacity of the iron electrode increases gradually and attains a stable value. This process of achieving stable capacity is called formation. In this study we have focused our efforts on understanding the effect of electrode design on formation. We have investigated the role of wetting agent, pore-former additive, and sulfide additive on the formation of carbonyl iron electrodes. The wetting agent increased the rate of formation while the pore-former additive increased the final capacity. Sodium sulfide added to the electrolyte worked as a de-passivation agent and increased the final discharge capacity. We have proposed a phenomenological model for the formation process that predicts the rate of formation and final discharge capacity given the design parameters for the electrode. The understanding gained here will be useful in reducing the time lost in formation and in maximizing the utilization of the iron electrode. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.021301jes] All rights reserved.

  4. 3-D Atomic-Scale Mapping of Manganese Dopants in Lead Sulfide Nanowires

    SciTech Connect (OSTI)

    Isheim, Dieter; Kaszpurenko, Jason; Yu, Dong; Mao, Zugang; Seidman, David N.; Arslan, Ilke

    2012-03-22

    Dopants in nanowires, whether intentional or unintentional, can ultimately control the material's properties and therefore need to be understood on the atomic scale. We study vapor-liquid-solid grown manganese-doped lead sulfide nanowires by atom-probe tomography for the first time for lead salt materials. The three-dimensional chemical concentration maps at the atomic scale demonstrate a radial distribution profile of Mn ions, with a concentration of only 0.18 at.% and 0.01 at.% for MnCl2 and Mn-acetate precursors, respectively. The ability to characterize these small concentrations of dopant atoms in Pb1-xMnxS nanowires (x = 0.0036 and 0.0002), important for spintronic and thermoelectric devices, sets a platform for similar analyses for all nanostructures. First-principles calculations confirm that Mn atoms substitute for Pb in the PbS structure.

  5. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    DOE Patents [OSTI]

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  6. Understanding the Chemistry of the Actinides in HL Waste Tank Systems: Actinide Speciation in Oxalic Acid Solutions in the Presence of Significant Quantities of Aluminum, Iron, and Manganese

    SciTech Connect (OSTI)

    Clark, Sue

    2006-07-30

    The overall goal of this research plan is to provide a thermodynamic basis for describing actinide speciation over a range of tank-like conditions, including elevated temperature, elevated OH- concentrations, and the presence of various organic ligands. With support from DOE's EMSP program, we have made significant progress towards measuring thermodynamic parameters for actinide complexation as a function of temperature. We have used the needs of the ESP modelers to guide our work to date, and we have made important progress defining the effect of temperature for actinide complexation by organic, and for hydrolysis of the hexa- and pentvalent oxidation states.

  7. Enhancing performance of Li/(CFx)n cells at low temperatures...

    Office of Scientific and Technical Information (OSTI)

    English Subject: 25 ENERGY STORAGE; CAPACITY; CATHODES; ELECTROLYTES; IRON OXIDES; IRON PHOSPHATES; LITHIUM; MANGANESE OXIDES; NICKEL; PELLETS; PERFORMANCE; THERMAL BATTERIES

  8. Catalytic iron oxide for lime regeneration in carbonaceous fuel combustion

    DOE Patents [OSTI]

    Shen, Ming-Shing (Rocky Point, NY); Yang, Ralph T. (Middle Island, NY)

    1980-01-01

    Lime utilization for sulfurous oxides absorption in fluidized combustion of carbonaceous fuels is improved by impregnation of porous lime particulates with iron oxide. The impregnation is achieved by spraying an aqueous solution of mixed iron sulfate and sulfite on the limestone before transfer to the fluidized bed combustor, whereby the iron compounds react with the limestone substrate to form iron oxide at the limestone surface. It is found that iron oxide present in the spent limestone acts as a catalyst to regenerate the spent limestone in a reducing environment. With only small quantities of iron oxide the calcium can be recycled at a significantly increased rate.

  9. Tropical forest soil microbial communities couple iron and carbon biogeochemistry

    SciTech Connect (OSTI)

    Dubinsky, E.A.; Silver, W.L.; Firestone, M.K.

    2009-10-15

    We report that iron-reducing bacteria are primary mediators of anaerobic carbon oxidation in upland tropical soils spanning a rainfall gradient (3500 - 5000 mm yr-1) in northeast Puerto Rico. The abundant rainfall and high net primary productivity of these tropical forests provide optimal soil habitat for iron-reducing and iron-oxidizing bacteria. Spatially and temporally dynamic redox conditions make iron-transforming microbial communities central to the belowground carbon cycle in these wet tropical forests. The exceedingly high abundance of iron-reducing bacteria (up to 1.2 x 10{sup 9} cells per gram soil) indicated that they possess extensive metabolic capacity to catalyze the reduction of iron minerals. In soils from the higher rainfall sites, measured rates of ferric iron reduction could account for up to 44 % of organic carbon oxidation. Iron reducers appeared to compete with methanogens when labile carbon availability was limited. We found large numbers of bacteria that oxidize reduced iron at sites with high rates of iron reduction and large numbers of iron-reducers. the coexistence of large populations of ironreducing and iron-oxidizing bacteria is evidence for rapid iron cycling between its reduced and oxidized states, and suggests that mutualistic interactions among these bacteria ultimately fuel organic carbon oxidation and inhibit CH4 production in these upland tropical forests.

  10. The role of electronic and ionic conductivities in the rate performance of tunnel structured manganese oxides in Li-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Byles, B. W.; Palapati, N. K. R.; Subramanian, A.; Pomerantseva, E.

    2016-04-29

    Single nanowires of two manganese oxide polymorphs (α-MnO2 and todorokite manganese oxide), which display a controlled size variation in terms of their square structural tunnels, were isolated onto nanofabricated platforms using dielectrophoresis. This platform allowed for the measurement of the electronic conductivity of these manganese oxides, which was found to be higher in α-MnO2 as compared to that of the todorokite phase by a factor of similar to 46. Despite this observation of substantially higher electronic conductivity in α-MnO2, the todorokite manganese oxide exhibited better electrochemical rate performance as a Li-ion battery cathode. The relationship between this electrochemical performance, themore » electronic conductivities of the manganese oxides, and their reported ionic conductivities is discussed for the first time, clearly revealing that the rate performance of these materials is limited by their Li+ diffusivity, and not by their electronic conductivity. This result reveals important new insights relevant for improving the power density of manganese oxides, which have shown promise as a low-cost, abundant, and safe alternative for next-generation cathode materials. Moreover, the presented experimental approach is suitable for assessing a broader family of one-dimensional electrode active materials (in terms of their electronic and ionic conductivities) for both Li-ion batteries and for electrochemical systems utilizing charge-carrying ions beyond Li+.« less

  11. Terrace-like morphology of the boundary created through basal-prismatic transformation in magnesium

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Bo -Yu; Wan, Liang; Wang, Jian; Ma, Evan; Shan, Zhi -Wei

    2015-01-24

    Here, the boundaries created through basal-prismatic transformation in submicron-sized single crystal magnesium have been investigated systematically using in situ transmission electron microscopy. We found that these boundaries not only deviated significantly from the twin plane associated with {101¯2} twin, but also possessed a non-planar morphology. After the sample was thinned to be less than 90 nm, aberration-corrected scanning transmission electron microscopy observation found that the basic components of these boundaries are actually terrace-like basal-prismatic interfaces.

  12. A systematic multiscale modeling and experimental approach to protect grain boundaries in magnesium alloys from corrosion

    SciTech Connect (OSTI)

    Horstemeyer, Mark R.; Chaudhuri, Santanu

    2015-09-30

    A multiscale modeling Internal State Variable (ISV) constitutive model was developed that captures the fundamental structure-property relationships. The macroscale ISV model used lower length scale simulations (Butler-Volmer and Electronics Structures results) in order to inform the ISVs at the macroscale. The chemomechanical ISV model was calibrated and validated from experiments with magnesium (Mg) alloys that were investigated under corrosive environments coupled with experimental electrochemical studies. Because the ISV chemomechanical model is physically based, it can be used for other material systems to predict corrosion behavior. As such, others can use the chemomechanical model for analyzing corrosion effects on their designs.

  13. High voltage rechargeable magnesium batteries having a non-aqueous electrolyte

    DOE Patents [OSTI]

    Doe, Robert Ellis; Lane, George Hamilton; Jilek, Robert E.; Hwang, Jaehee

    2016-03-22

    A rechargable magnesium battery having an non-aqueous electrolyte is provided. The properties of the electrolyte include high conductivity, high Coulombic efficiency, and an electrochemical window that can exceed 3.5 V vs. Mg/Mg.sup.+2. The use of the electrolyte promotes the electrochemical deposition and dissolution of Mg without the use of any Grignard reagents, other organometallic materials, tetraphenyl borate, or tetrachloroaluminate derived anions. Other Mg-containing electrolyte systems that are expected to be suitable for use in secondary batteries are also described.

  14. Orientation influence on grain size-effects in ultrafine-grained magnesium

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fan, Haidong; Aubry, Sylvie; Arsenlis, A.; El-Awady, Jaafar

    2014-11-08

    The mechanical behavior of ultrafine-grained magnesium was studied by discrete dislocation dynamics (DDD) simulations. Our results show basal slip yields a strong size effect, while prismatic and pyramidal slips produce a weak one. We developed a new size-strength model that considers dislocation transmission across grain boundaries. Good agreement between this model, current DDD simulations and previous experiments is observed. These results reveal that the grain size effect depends on 3 factors: Peierls stress, dislocation source strength and grain boundary strength.

  15. Phase Discrimination through Oxidant Selection for Iron Oxide Ultrathin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Films | ANSER Center | Argonne-Northwestern National Laboratory Phase Discrimination through Oxidant Selection for Iron Oxide Ultrathin Films Home > Research > ANSER Research Highlights > Phase Discrimination through Oxidant Selection for Iron Oxide Ultrathin Films

  16. City of Mountain Iron, Minnesota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    City of Mountain Iron, Minnesota (Utility Company) Jump to: navigation, search Name: City of Mountain Iron Place: Minnesota Phone Number: (218)748-7570 Website: www.mtniron.com...

  17. The Iron Spin Transition in the Earth's Lower Mantle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Iron Spin Transition in the Earth's Lower Mantle Print It is now known that the iron present in minerals of the lower mantle of the Earth undergoes a pressure-induced...

  18. Preparations of rare earth-iron alloys by thermite reduction

    DOE Patents [OSTI]

    Schmidt, F.A.; Peterson, D.T.; Wheelock, J.T.

    1985-10-28

    Disclosed is an improved method for the preparation of high-purity rare earth-iron alloys by the aluminothermic reduction of a mixture of rare earth and iron fluorides.

  19. Baotou Iron and Steel Group Baotou Steel | Open Energy Information

    Open Energy Info (EERE)

    search Name: Baotou Iron and Steel Group (Baotou Steel) Place: Baotou, Inner Mongolia Autonomous Region, China Product: Baotou-based iron and steel maker as well as a rare...

  20. Iron County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is classified as ASHRAE 169-2006 Climate Zone Number 5 Climate Zone Subtype B. Registered Energy Companies in Iron County, Utah Solar Unlimited USA Places in Iron County, Utah...

  1. Sorption of Ferric Iron from Siderophore Complexes by Layer Type...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bottom: Structure of the iron-siderophore complex ferrioxamine B Fe(III)HDFOB+. Image courtesy of Andrzej Jarzecki, Brooklyn College, the City University of New York. Iron is one ...

  2. How Trenton Iron and Steel Innovations Reshaped America Clifford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trenton Iron and Steel Innovations Reshaped America Clifford Zink Independent Historian ... DeParTmenT of energy faciliTy Iron and steel innovations in Trenton helped transform ...

  3. Inverse association of intellectual function with very low blood lead but not with manganese exposure in Italian adolescents

    SciTech Connect (OSTI)

    Lucchini, Roberto G.; Zoni, Silvia; Guazzetti, Stefano; Bontempi, Elza; Micheletti, Serena; Broberg, Karin; Parrinello, Giovanni; Smith, Donald R.

    2012-10-15

    Background: Pediatric lead (Pb) exposure impacts cognitive function and behavior and co-exposure to manganese (Mn) may enhance neurotoxicity. Objectives: To assess cognitive and behavioral function in adolescents with environmental exposure to Pb and Mn. Methods: In this cross sectional study, cognitive function and behavior were examined in healthy adolescents with environmental exposure to metals. The Wechsler Intelligence Scale for Children (WISC) and the Conners-Wells' Adolescent Self-Report Scale Long Form (CASS:L) were used to assess cognitive and behavioral function, respectively. ALAD polymorphisms rs1800435 and rs1139488 were measured as potential modifiers. Results: We examined 299 adolescents (49.2% females) aged 11-14 years. Blood lead (BPb) averaged 1.71 {mu}g/dL (median 1.5, range 0.44-10.2), mean Blood Manganese (BMn) was 11.1 {mu}g/dL (median 10.9, range 4.00-24.1). Average total IQ was 106.3 (verbal IQ=102, performance IQ=109.3). According to a multiple regression model considering the effect of other covariates, a reduction of about 2.4 IQ points resulted from a two-fold increase of BPb. The Benchmark Level of BPb associated with a loss of 1 IQ-point (BML01) was 0.19 {mu}g/dL, with a lower 95% confidence limit (BMLL01) of 0.11 {mu}g/dL. A very weak correlation resulted between BPb and the ADHD-like behavior (Kendall's tau rank correlation=0.074, p=0.07). No influence of ALAD genotype was observed on any outcome. Manganese was not associated with cognitive and behavioral outcomes, nor was there any interaction with lead. Conclusions: These findings demonstrate that very low level of lead exposure has a significant negative impact on cognitive function in adolescent children. Being an essential micro-nutrient, manganese may not cause cognitive effects at these low exposure levels.

  4. Minnesota Jobs to Come with Efficient Iron Plant

    Broader source: Energy.gov [DOE]

    New energy-efficient iron plant offers a ray of hope for workers after local mining company shuts down.

  5. Synthesis, structures and properties of a series of manganese coordination complexes constructed from dicarboxylic fluorene derivatives

    SciTech Connect (OSTI)

    Li Xing; Zhao Xiuhua; Bing Yue; Zha Meiqin; Xie Hongzhen; Guo Zhiyong

    2013-01-15

    Assembly reactions of 9,9-diethylfluorene-2,7-dicarboxylic acid (H{sub 2}DFDC) and Mn(CH{sub 3}COO){sub 2}{center_dot}4H{sub 2}O or MnCl{sub 2}{center_dot}4H{sub 2}O by tuning of various secondary ligands such as 2,2 Prime -bipyridine (2,2 Prime -bpy), 4,4 Prime -bipyridine (4,4 Prime -bpy) or 1,3-bis(4-pyridyl)propane) (bpp), gave rise to four complexes {l_brace} [Mn{sub 2}(DFDC){sub 2}(DMF){sub 2}]{center_dot}H{sub 2}O{r_brace} {sub n} (1), [Mn(DFDC)(2,2 Prime -bpy)]{sub n} (2), {l_brace} [Mn{sub 2}(DFDC){sub 2}(4,4 Prime -bpy){sub 2}]{center_dot}2CH{sub 3}OH{r_brace} {sub n} (3), and {l_brace} [Mn{sub 4}(DFDC){sub 4}(bpp){sub 2}(CH{sub 3}OH){sub 3} (H{sub 2}O){sub 3}]{center_dot}3(CH{sub 3}OH){center_dot}3(H{sub 2}O){r_brace} {sub n} (4). Single crystal X-ray diffraction analysis reveal that complex 1 is three dimensional structure with rhombic channels filled by guest water molecules; 2 presents a close-packed structure with high thermal stability; 3 exhibits a three dimensional framework with micro-porous channels filled by guest methanol molecules and 4 is a two-dimensional structure. The photoluminescent properties of 1-4 have been studied, respectively, showing that the Mn(II) ions, accessorial organic ligands or crystal structures exert important influences on the photoluminescence emissions of H{sub 2}DFDC ligands. Thermogravimetric analysis show that the complexes have remarkably high thermal stability. Magnetic susceptibility measurements have been finished and discussed for the complexes. - Graphical abstract: Assembly of 9,9-diethylfluorene-2,7-dicarboxylic acid and Mn(II) salts by tuning of various accessorial ligands resulted in four manganese complexes with different topological frameworks. Highlights: Black-Right-Pointing-Pointer Four manganese complexes based on 9,9-diethylfluorene-2,7-dicarboxylic acid were obtained. Black-Right-Pointing-Pointer The complexes were structurally characterized by single-crystal X-ray diffraction. Black

  6. Kinetic and Crystallgraphic Studies of a Redesigned Manganese-Binding Site in Cytochrome c Peroxidase

    SciTech Connect (OSTI)

    Pfister,T.; Mirarefi, A.; Gengenbach, A.; Zhao, X.; Danstrom , C.; Conatser, N.; Gao, Y.; Robinson, H.; Zukoski, C.; et al.

    2007-01-01

    Manganese peroxidase (MnP) from the white rot fungus Phanerochaete chrysosporium contains a manganese-binding site that plays a critical role in its function. Previously, a Mn{sup II}-binding site was designed into cytochrome c peroxidase (CcP) based on sequence homology (Yeung et al. in Chem. Biol. 4:215-222, 1997; Gengenbach et al. in Biochemistry 38:11425-11432, 1999). Here, we report a redesign of this site based on X-ray structural comparison of MnP and CcP. The variant, CcP(D37E, V45E, H181E), displays 2.5-fold higher catalytic efficiency (k{sub cat}/k{sub M}) than the variant in the original design, mostly due to a stronger k{sub M} of 1.9 mM (vs. 4.1 mM). High-resolution X-ray crystal structures of a metal-free form and a form with Co{sup II} at the designed Mn{sup II} site were also obtained. The metal ion in the engineered metal-binding site overlays well with Mn{sup II} bound in MnP, suggesting that this variant is the closest structural model of the Mn{sup II}-binding site in MnP for which a crystal structure exists. A major difference arises in the distances of the ligands to the metal; the metal-ligand interactions in the CcP variant are much weaker than the corresponding interactions in MnP, probably owing to partial occupancy of metal ion at the designed site, difference in the identity of metal ions (Co{sup II} rather than Mn{sup II}) and other interactions in the second coordination sphere. These results indicate that the metal ion, the ligands, and the environment around the metal-binding site play important roles in tuning the structure and function of metalloenzymes.

  7. Structure-dielectric properties relationships in copper-substituted magnesium ferrites

    SciTech Connect (OSTI)

    Druc, A.C.; Borhan, A.I.; Nedelcu, G.G.; Leontie, L.; Iordan, A.R.; Palamaru, M.N.

    2013-11-15

    Graphical abstract: - Highlights: • Synthesis of copper substituted magnesium ferrites materials is reported. • A shift from cubic to tetragonal structure starting with x = 0.84 was observed. • The dielectric properties are influenced by Cu-substitution. - Abstract: Nanocrystalline powders of copper-substituted magnesium ferrites with general formula Mg{sub 1−x}Cu{sub x}Fe{sub 2}O{sub 4} (x = 0.00, 0.17, 0.34, 0.50, 0.67, 0.84, 1.00) were prepared for the first time by sol–gel auto-combustion method, using glycine as fuel agent. Solid phase chemical reactions and the occurrence of spinel structure were monitored by using infrared spectroscopy. X-ray diffraction analysis confirmed the spinel single-phase formation. A shift from cubic structure to tetragonal structure starting with x = 0.84 was also observed. Microstructure of the samples was analyzed by scanning electron microscopy and particle size was estimated from the micrographs. Analysis of dielectric properties revealed very low values of dielectric loss at frequencies over 10 MHz.

  8. Manufacture of gradient micro-structures of magnesium alloys using two stage extrusion dies

    SciTech Connect (OSTI)

    Hwang, Yeong-Maw; Huang, Tze-Hui [Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, No. 70, Lien-Hai Rd., Kaohsiung, 804, Taiwan (China); Alexandrov, Sergei [Institute for Problems in Mechanics, Russian Academy of Sciences, Moscow (Russian Federation); Naimark, Oleg Borisovich [Institute of Continuous Media Mechanics, Russian Academy of Sciences, Perm (Russian Federation); Jeng, Yeau-Ren [Department of Mechanical Engineering and Advanced Institute of Manufacturing with High-tech Innovations, National Chung Cheng University, Ming-Hsiung, Chia-Yi 621, Taiwan (China)

    2013-12-16

    This paper aims to manufacture magnesium alloy metals with gradient micro-structures using hot extrusion process. The extrusion die was designed to have a straight channel part combined with a conical part. Materials pushed through this specially-designed die generate a non-uniform velocity distribution at cross sections inside the die and result in different strain and strain rate distributions. Accordingly, a gradient microstructure product can be obtained. Using the finite element analysis, the forming temperature, effective strain, and effective strain rate distributions at the die exit were firstly discussed for various inclination angles in the conical die. Then, hot extrusion experiments with a two stage die were conducted to obtain magnesium alloy products with gradient micro-structures. The effects of the inclination angle on the grain size distribution at cross sections of the products were also discussed. Using a die of an inclination angle of 15, gradient micro-structures of the grain size decreasing gradually from 17 ?m at the center to 4 ?m at the edge of product were achieved.

  9. Synthesis, deposition and characterization of magnesium hydroxide nanostructures on zeolite 4A

    SciTech Connect (OSTI)

    Koh, Pei-Yoong; Yan, Jing; Ward, Jason; Koros, William J.; Teja, Amyn S.; Xu, Bo

    2011-03-15

    Research highlights: {yields} Reports a simple precipitation-growth method to produce nanostructures of Mg(OH){sub 2} on the surface of zeolite 4A. {yields} Able to control the growth of the nanostructures by manipulating the experimental procedure. {yields} Able to deposit Mg(OH){sub 2} onto specific sites namely bridging hydroxyl protons (SiOHAl) on the surface of zeolite 4A. -- Abstract: The precipitation and self-assembly of magnesium hydroxide Mg(OH){sub 2} nanopetals on dispersed zeolite 4A particles was investigated. Mg(OH){sub 2}/zeolite nanocomposites were produced from magnesium chloride solutions and characterized via X-ray powder diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Fourier transform infrared analysis (FTIR), and solid state NMR. It was determined that Mg(OH){sub 2} interacted with bridging hydroxyl protons (SiOHAl) on the zeolite surface, but not with silanol or aluminol groups. NMR analysis showed that 13% of the tetrahedral Al sites on the zeolite were converted to octahedral Al. The zeolite structure and crystallinity remained intact after treatment, and no dealumination reactions were detected. This suggests that the deposition-precipitation process at ambient conditions is a facile method for controlling Mg(OH){sub 2} nanostructures on zeolites.

  10. Dynamical behaviors of structural, constrained and free water in calcium- and magnesium-silicate-hydrate gels

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Le, Peisi; Fratini, Emiliano; Ito, Kanae; Wang, Zhe; Mamontov, Eugene; Baglioni, Piero; Chen, Sow-Hsin

    2016-01-28

    We present the hypothesis that the mechanical properties of cement pastes depend strongly on their porosities. In a saturated paste, the porosity links to the free water volume after hydration. Structural water, constrained water, and free water have different dynamical behavior. Hence, it should be possible to extract information on pore system by exploiting the water dynamics. With our experiments we investigated the slow dynamics of hydration water confined in calcium- and magnesium-silicate-hydrate (C-S-H and M-S-H) gels using high-resolution quasi-elastic neutron scattering (QENS) technique. C-S-H and M-S-H are the chemical binders present in calcium rich and magnesium rich cements. Wemore » measured three M-S-H samples: pure M-S-H, M-S-H with aluminum-silicate nanotubes (ASN), and M-S-H with carboxyl group functionalized ASN (ASN-COOH). A C-S-H sample with the same water content (i.e. 0.3) is also studied for comparison. We found that structural water in the gels contributes to the elastic component of the QENS spectrum, while constrained water and free water contribute the quasi-elastic component. The quantitative analysis suggests that the three components vary for different samples and indicate the variance in the system porosity, which controls the mechanical properties of cement pastes.« less

  11. Computational Examination of Orientation-Dependent Morphological Evolution during the Electrodeposition and Electrodissolution of Magnesium

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    DeWitt, S.; Hahn, N.; Zavadil, K.; Thornton, K.

    2015-12-30

    Here a new model of electrodeposition and electrodissolution is developed and applied to the evolution of Mg deposits during anode cycling. The model captures Butler-Volmer kinetics, facet evolution, the spatially varying potential in the electrolyte, and the time-dependent electrolyte concentration. The model utilizes a diffuse interface approach, employing the phase field and smoothed boundary methods. Scanning electron microscope (SEM) images of magnesium deposited on a gold substrate show the formation of faceted deposits, often in the form of hexagonal prisms. Orientation-dependent reaction rate coefficients were parameterized using the experimental SEM images. Three-dimensional simulations of the growth of magnesium deposits yieldmore » deposit morphologies consistent with the experimental results. The simulations predict that the deposits become narrower and taller as the current density increases due to the depletion of the electrolyte concentration near the sides of the deposits. Increasing the distance between the deposits leads to increased depletion of the electrolyte surrounding the deposit. Two models relating the orientation-dependence of the deposition and dissolution reactions are presented. Finally, the morphology of the Mg deposit after one deposition-dissolution cycle is significantly different between the two orientation-dependence models, providing testable predictions that suggest the underlying physical mechanisms governing morphology evolution during deposition and dissolution.« less

  12. Formation of magnesium silicate hydrate (M-S-H) cement pastes using sodium hexametaphosphate

    SciTech Connect (OSTI)

    Zhang, Tingting; Vandeperre, Luc J.; Cheeseman, Christopher R.

    2014-11-15

    Magnesium silicate hydrate (M-S-H) gel is formed by the reaction of brucite with amorphous silica during sulphate attack in concrete and M-S-H is therefore regarded as having limited cementing properties. The aim of this work was to form M-S-H pastes, characterise the hydration reactions and assess the resulting properties. It is shown that M-S-H pastes can be prepared by reacting magnesium oxide (MgO) and silica fume (SF) at low water to solid ratio using sodium hexametaphosphate (NaHMP) as a dispersant. Characterisation of the hydration reactions by x-ray diffraction and thermogravimetric analysis shows that brucite and M-S-H gel are formed and that for samples containing 60 wt.% SF and 40 wt.% MgO all of the brucites react with SF to form M-S-H gel. These M-S-H cement pastes were found to have compressive strengths in excess of 70 MPa.

  13. Approaching the Minimum Thermal Conductivity in Rhenium-Substituted Higher Manganese Silicides

    SciTech Connect (OSTI)

    Chen, Xi [University of Texas at Austin] [University of Texas at Austin; Girard, S. N. [University of Wisconsin, Madison] [University of Wisconsin, Madison; Meng, F. [University of Wisconsin, Madison] [University of Wisconsin, Madison; Lara-Curzio, Edgar [ORNL] [ORNL; Jin, S [University of Wisconsin, Madison] [University of Wisconsin, Madison; Goodenough, J. B. [University of Texas at Austin] [University of Texas at Austin; Zhou, J. S. [University of Texas at Austin] [University of Texas at Austin; Shi, L [University of Texas at Austin] [University of Texas at Austin

    2014-01-01

    Higher manganese silicides (HMS) made of earth-abundant and non-toxic elements are regarded as promising p-type thermoelectric materials because their complex crystal structure results in low lattice thermal conductivity. It is shown here that the already low thermal conductivity of HMS can be reduced further to approach the minimum thermal conductivity via partial substitu- tion of Mn with heavier rhenium (Re) to increase point defect scattering. The solubility limit of Re in the obtained RexMn1 xSi1.8 is determined to be about x = 0.18. Elemental inhomogeneity and the formation of ReSi1.75 inclusions with 50 200 nm size are found within the HMS matrix. It is found that the power factor does not change markedly at low Re content of x 0.04 before it drops considerably at higher Re contents. Compared to pure HMS, the reduced lattice thermal conductivity in RexMn1 xSi1.8 results in a 25% increase of the peak figure of merit ZT to reach 0.57 0.08 at 800 K for x = 0.04. The suppressed thermal conductivity in the pure RexMn1 xSi1.8 can enable further investigations of the ZT limit of this system by exploring different impurity doping strategies to optimize the carrier concentration and power factor.

  14. Layered manganese oxide intergrowth electrodes for rechargeable lithium batteries: Part 1-substitution with Co or Ni

    SciTech Connect (OSTI)

    Dolle, Mickael; Patoux, Sebastien; Doeff, Marca M.

    2004-09-08

    Lithium manganese oxides substituted with nickel or cobalt were characterized electrochemically in lithium cell configurations. The compounds studied were either single-phase layered structures with either primarily O2 or O3 stacking arrangements, or O2/O3 intergrowths, prepared from P2, P3 and P2/P3 sodium-containing precursors, respectively. The stacking arrangements are extremely sensitive to the Na/T. M. (T. M. = transition metal) ratios and the level of substitution. Phase diagrams showing the stability regions of the various arrangements for the Na-Ni-Mn-O system are presented. A possible correlation between vacancies and electrochemical performance is suggested. For high levels of substitution with Ni, fewer defects are possible for materials containing more O3 component and higher discharge capacities can be achieved, but spinel conversion upon cycling also occurs more rapidly as the O3 content increases. Intergrowths show intermediate behavior and represent a potential route towards designing stable, high capacity electrodes.

  15. Investigation of the Highly Active Manganese Superoxide Dismutase from Saccharomyces cerevisiae

    SciTech Connect (OSTI)

    Cabelli, D.E.; Barnese, K.; Sheng, Y.; Stich, T.A.; Gralla, E.B.; Britt, R.D.; Valentine, J.S.

    2010-09-15

    Manganese superoxide dismutase (MnSOD) from different species differs in its efficiency in removing high concentrations of superoxide (O{sub 2}{sup -}), due to different levels of product inhibition. Human MnSOD exhibits a substantially higher level of product inhibition than the MnSODs from bacteria. In order to investigate the mechanism of product inhibition and whether it is a feature common to eukaryotic MnSODs, we purified MnSOD from Saccharomyces cerevisiae (ScMnSOD). It was a tetramer with 0.6 equiv of Mn per monomer. The catalytic activity of ScMnSOD was investigated by pulse radiolysis and compared with human and two bacterial (Escherichia coli and Deinococcus radiodurans) MnSODs. To our surprise, ScMnSOD most efficiently facilitates removal of high concentrations of O{sub 2}{sup -} among these MnSODs. The gating value k{sub 2}/k{sub 3} that characterizes the level of product inhibition scales as ScMnSOD > D. radiodurans MnSOD > E. coli MnSOD > human MnSOD. While most MnSODs rest as the oxidized form, ScMnSOD was isolated in the Mn{sup 2+} oxidation state as revealed by its optical and electron paramagnetic resonance spectra. This finding poses the possibility of elucidating the origin of product inhibition by comparing human MnSOD with ScMnSOD.

  16. Biologically Relevant Mechanism For Catalytic Removal of Superoxide by Simple Manganese Compounds

    SciTech Connect (OSTI)

    Barnese K.; Cabelli D.; Gralla, E.B.; Valentine, J.S.

    2012-05-01

    Nonenzymatic manganese was first shown to provide protection against superoxide toxicity in vivo in 1981, but the chemical mechanism responsible for this protection subsequently became controversial due to conflicting reports concerning the ability of Mn to catalyze superoxide disproportionation in vitro. In a recent communication, we reported that low concentrations of a simple Mn phosphate salt under physiologically relevant conditions will indeed catalyze superoxide disproportionation in vitro. We report now that two of the four Mn complexes that are expected to be most abundant in vivo, Mn phosphate and Mn carbonate, can catalyze superoxide disproportionation at physiologically relevant concentrations and pH, whereas Mn pyrophosphate and citrate complexes cannot. Additionally, the chemical mechanisms of these reactions have been studied in detail, and the rates of reactions of the catalytic removal of superoxide by Mn phosphate and carbonate have been modeled. Physiologically relevant concentrations of these compounds were found to be sufficient to mimic an effective concentration of enzymatic superoxide dismutase found in vivo. This mechanism provides a likely explanation as to how Mn combats superoxide stress in cellular systems.

  17. Lithium/Manganese Dioxide (Li/MnO(2)) Battery Performance Evaluation: Final Report

    SciTech Connect (OSTI)

    Ingersoll, D.; Clark, N.H.

    1999-04-01

    In February 1997, under the auspices of the Product Realization Program, an initiative to develop performance models for lithium/manganese dioxide-based batteries began. As a part of this initiative, the performance characteristics of the cells under a variety of conditions were determined, both for model development and for model validation. As a direct result of this work, it became apparent that possible Defense Program (DP) uses for batteries based on this cell chemistry existed. A larger effort aimed at mapping the performance envelope of this chemistry was initiated in order to assess the practicality of this cell chemistry, not only for DP applications, but also for other uses. The work performed included an evaluation of the cell performance as a function of a number of variables, including cell size, manufacturer, current, pulse loads, constant current loads, safety, etc. In addition, the development of new evaluation techniques that would apply to any battery system, such as those related to reliability assessments began. This report describes the results of these evaluations.

  18. Solar-thermal Water Splitting Using the Sodium Manganese Oxide Process & Preliminary H2A Analysis

    SciTech Connect (OSTI)

    Francis, Todd M; Lichty, Paul R; Perkins, Christopher; Tucker, Melinda; Kreider, Peter B; Funke, Hans H; Lewandowski, A; Weimer, Alan W

    2012-10-24

    There are three primary reactions in the sodium manganese oxide high temperature water splitting cycle. In the first reaction, Mn2O3 is decomposed to MnO at 1,500C and 50 psig. This reaction occurs in a high temperature solar reactor and has a heat of reaction of 173,212 J/mol. Hydrogen is produced in the next step of this cycle. This step occurs at 700C and 1 atm in the presence of sodium hydroxide. Finally, water is added in the hydrolysis step, which removes NaOH and regenerates the original reactant, Mn2O3. The high temperature solar-driven step for decomposing Mn2O3 to MnO can be carried out to high conversion without major complication in an inert environment. The second step to produce H2 in the presence of sodium hydroxide is also straightforward and can be completed. The third step, the low temperature step to recover the sodium hydroxide is the most difficult. The amount of energy required to essentially distill water to recover sodium hydroxide is prohibitive and too costly. Methods must be found for lower cost recovery. This report provides information on the use of ZnO as an additive to improve the recovery of sodium hydroxide.

  19. Electrodeposited manganese dioxide nanostructures on electro-etched carbon fibers: High performance materials for supercapacitor applications

    SciTech Connect (OSTI)

    Kazemi, Sayed Habib; Maghami, Mostafa Ghaem; Kiani, Mohammad Ali

    2014-12-15

    Highlights: • We report a facile method for fabrication of MnO{sub 2} nanostructures on electro-etched carbon fiber. • MnO{sub 2}-ECF electrode shows outstanding supercapacitive behavior even at high discharge rates. • Exceptional cycle stability was achieved for MnO{sub 2}-ECF electrode. • The coulombic efficiency of MnO{sub 2}-ECF electrode is nearly 100%. - Abstract: In this article we introduce a facile, low cost and additive/template free method to fabricate high-rate electrochemical capacitors. Manganese oxide nanostructures were electrodeposited on electro-etched carbon fiber substrate by applying a constant anodic current. Nanostructured MnO{sub 2} on electro-etched carbon fiber was characterized by scanning electron microscopy, X-ray diffraction and energy dispersive X-ray analysis. The electrochemical behavior of MnO{sub 2} electro-etched carbon fiber electrode was investigated by electrochemical techniques including cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy. A maximum specific capacitance of 728.5 F g{sup −1} was achieved at a scan rate of 5 mV s{sup −1} for MnO{sub 2} electro-etched carbon fiber electrode. Also, this electrode showed exceptional cycle stability, suggesting that it can be considered as a good candidate for supercapacitor electrodes.

  20. Enhanced power factor of higher manganese silicide via melt spin synthesis method

    SciTech Connect (OSTI)

    Shi, Xiaoya; Shi, Xun; Li, Yulong; He, Ying; Chen, Lidong; Li, Qiang

    2014-12-30

    We report on the thermoelectric properties of the Higher Manganese Silicide MnSi₁.₇₅ (HMS) synthesized by means of a one-step non-equilibrium method. The ultrahigh cooling rate generated from the melt-spin technique is found to be effective in reducing second phases, which are inevitable during the traditional solid state diffusion processes. Aside from being detrimental to thermoelectric properties, second phases skew the revealing of the intrinsic properties of this class of materials, for example the optimal level of carrier concentration. With this melt-spin sample, we are able to formulate a simple model based on a single parabolic band that can well describe the carrier concentration dependence of the Seebeck coefficient and power factor of the data reported in the literature. An optimal carrier concentration around 5x10²⁰ cm⁻³ at 300 K is predicted according to this model. The phase-pure melt-spin sample shows the largest power factor at high temperature, resulting in the highest zT value among the three samples in this paper; the maximum value is superior to those reported in the literatures.

  1. Enhanced power factor of higher manganese silicide via melt spin synthesis method

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shi, Xiaoya; Shi, Xun; Li, Yulong; He, Ying; Chen, Lidong; Li, Qiang

    2014-12-30

    We report on the thermoelectric properties of the Higher Manganese Silicide MnSi₁.₇₅ (HMS) synthesized by means of a one-step non-equilibrium method. The ultrahigh cooling rate generated from the melt-spin technique is found to be effective in reducing second phases, which are inevitable during the traditional solid state diffusion processes. Aside from being detrimental to thermoelectric properties, second phases skew the revealing of the intrinsic properties of this class of materials, for example the optimal level of carrier concentration. With this melt-spin sample, we are able to formulate a simple model based on a single parabolic band that can well describemore » the carrier concentration dependence of the Seebeck coefficient and power factor of the data reported in the literature. An optimal carrier concentration around 5x10²⁰ cm⁻³ at 300 K is predicted according to this model. The phase-pure melt-spin sample shows the largest power factor at high temperature, resulting in the highest zT value among the three samples in this paper; the maximum value is superior to those reported in the literatures.« less

  2. Enhanced power factor of higher manganese silicide via melt spin synthesis method

    SciTech Connect (OSTI)

    Shi, Xiaoya; Li, Qiang; Shi, Xun; Chen, Lidong; Li, Yulong; He, Ying

    2014-12-28

    We report on the thermoelectric properties of the higher manganese silicide MnSi{sub 1.75} synthesized by means of a one-step non-equilibrium method. The ultrahigh cooling rate generated from the melt-spin technique is found to be effective in reducing second phases, which are inevitable during the traditional solid state diffusion processes. Aside from being detrimental to thermoelectric properties, second phases skew the revealing of the intrinsic properties of this class of materials, for example, the optimal level of carrier concentration. With this melt-spin sample, we are able to formulate a simple model based on a single parabolic band that can well describe the carrier concentration dependence of the Seebeck coefficient and power factor of the data reported in the literature. An optimal carrier concentration around 5 × 10{sup 20 }cm{sup −3} at 300 K is predicted according to this model. The phase-pure melt-spin sample shows the largest power factor at high temperature, resulting in the highest zT value among the three samples in this paper.

  3. Anomalous hole injection deterioration of organic light-emitting diodes with a manganese phthalocyanine layer

    SciTech Connect (OSTI)

    Lee, Hyunbok; Lee, Jeihyun; Yi, Yeonjin; Cho, Sang Wan; Kim, Jeong Won

    2015-01-21

    Metal phthalocyanines (MPcs) are well known as an efficient hole injection layer (HIL) in organic devices. They possess a low ionization energy, and so the low-lying highest occupied molecular orbital (HOMO) gives a small hole injection barrier from an anode in organic light-emitting diodes. However, in this study, we show that the hole injection characteristics of MPc are not only determined by the HOMO position but also significantly affected by the wave function distribution of the HOMO. We show that even with the HOMO level of a manganese phthalocyanine (MnPc) HIL located between the Fermi level of an indium tin oxide anode and the HOMO level of a N,N?-bis(1-naphthyl)-N,N?-diphenyl-1,1?-biphenyl-4,4?-diamine hole transport layer the device performance with the MnPc HIL is rather deteriorated. This anomalous hole injection deterioration is due to the contracted HOMO wave function, which leads to small intermolecular electronic coupling. The origin of this contraction is the significant contribution of the Mn d-orbital to the MnPc HOMO.

  4. A fast route to obtain manganese spinel nanoparticles by reduction of K-birnessite

    SciTech Connect (OSTI)

    Giovannelli, F.; Chartier, T.; Autret-Lambert, C.; Delorme, F.; Zaghrioui, M.; Seron, A.

    2009-05-15

    The K-birnessite (K{sub x}MnO{sub 2}.yH{sub 2}O) reduction reaction has been tested in order to obtain manganese spinel nanoparticles. The addition of 0.25 weight percent of hydrazine hydrate, the reducing agent, during 24 hours is efficient to transform the birnessite powder in a hausmanite Mn{sub 3}O{sub 4} powder. Well crystallised square shape nanoparticles are obtained. Different birnessite precursors have been tested and the reaction kinetics is strongly correlated to the crystallinity and granulometry of the precursor. The effects of aging time and hydrazine hydrate amount have been studied. Well crystallised Mn{sub 3}O{sub 4} is obtained in one hour. The presence of feitknechtite (MnO(OH)) and amorphous nanorods has been detected as an intermediate phase during birnessite conversion into hausmanite. The conversion mechanism is discussed. - Graphical abstract: TEM image showing Mn{sub 3}O{sub 4} particle after treatment of birnessite with an addition of hydrazine during 24 hours.

  5. Manganese valence and coordination structure in Mn,Mg-codoped {gamma}-AlON green phosphor

    SciTech Connect (OSTI)

    Takeda, Takashi; Xie, Rong-Jun; Hirosaki, Naoto; Matsushita, Yoshitaka; Honma, Tetuso

    2012-10-15

    The valence and coordination structure of manganese in a Mn,Mg-codoped {gamma}-AlON spinel-type oxynitride green phosphor were studied by synchrotron X-ray diffraction and absorption fine structure measurements. The absorption edge position of the XANES revealed the bivalency of Mn. Two cation sites are available in the spinel structure for cation doping: a tetrahedral site and an octahedral site. The pre-edge of the XANES and the distance to the nearest neighbor atoms obtained from the EXAFS measurement showed that Mn was situated at the tetrahedral site. Rietveld analysis showed that the vacancy occupied the octahedral site. The preferential occupation of the tetrahedral site by Mn and the roles of N and Mg are discussed in relation to the spinel crystal structure. - Graphical Abstract: Fourier transform of EXAFS of Mn K-edge for Mn,Mg-codoped green phosphor and Mn coordination structure. Highlights: Black-Right-Pointing-Pointer Mn, Mg-codoped {gamma}-AlON green phosphor for white LED. Black-Right-Pointing-Pointer The valence of Mn is divalent. Black-Right-Pointing-Pointer Mn occupies the tetrahedral site in the spinel structure.

  6. The structure of the Caenorhabditis elegans manganese superoxide dismutase MnSOD-3-azide complex

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hunter, Gary J.; Trinh, Chi H.; Bonetta, Rosalin; Stewart, Emma E.; Cabelli, Diane E.; Hunter, Therese

    2015-08-27

    C. elegans MnSOD-3 has been implicated in the longevity pathway and its mechanism of catalysis is relevant to the aging process and carcinogenesis. The structures of MnSOD-3 provide unique crystallographic evidence of a dynamic region of the tetrameric interface (residues 41–54). We have determined the structure of the MnSOD-3-azide complex to 1.77-Å resolution. The analysis of this complex shows that the substrate analog, azide, binds end-on to the manganese center as a sixth ligand and that it ligates directly to a third and new solvent molecule also positioned within interacting distance to the His30 and Tyr34 residues of the substratemore » access funnel. This is the first structure of a eukaryotic MnSOD-azide complex that demonstrates the extended, uninterrupted hydrogen-bonded network that forms a proton relay incorporating three outer sphere solvent molecules, the substrate analog, the gateway residues, Gln142, and the solvent ligand. This configuration supports the formation and release of the hydrogen peroxide product in agreement with the 5-6-5 catalytic mechanism for MnSOD. The high product dissociation constant k₄ of MnSOD-3 reflects low product inhibition making this enzyme efficient even at high levels of superoxide.« less

  7. Enhanced power factor of higher manganese silicide via melt spin synthesis method

    SciTech Connect (OSTI)

    Shi, Xiaoya; Shi, Xun; Li, Yulong; He, Ying; Chen, Lidong; Li, Qiang

    2014-12-30

    We report on the thermoelectric properties of the Higher Manganese Silicide MnSi?.?? (HMS) synthesized by means of a one-step non-equilibrium method. The ultrahigh cooling rate generated from the melt-spin technique is found to be effective in reducing second phases, which are inevitable during the traditional solid state diffusion processes. Aside from being detrimental to thermoelectric properties, second phases skew the revealing of the intrinsic properties of this class of materials, for example the optimal level of carrier concentration. With this melt-spin sample, we are able to formulate a simple model based on a single parabolic band that can well describe the carrier concentration dependence of the Seebeck coefficient and power factor of the data reported in the literature. An optimal carrier concentration around 5x10? cm? at 300 K is predicted according to this model. The phase-pure melt-spin sample shows the largest power factor at high temperature, resulting in the highest zT value among the three samples in this paper. And the maximum value is superior to those reported in the literatures.

  8. Method for preparing hydrous iron oxide gels and spherules

    DOE Patents [OSTI]

    Collins, Jack L.; Lauf, Robert J.; Anderson, Kimberly K.

    2003-07-29

    The present invention is directed to methods for preparing hydrous iron oxide spherules, hydrous iron oxide gels such as gel slabs, films, capillary and electrophoresis gels, iron monohydrogen phosphate spherules, hydrous iron oxide spherules having suspendable particles homogeneously embedded within to form composite sorbents and catalysts, iron monohydrogen phosphate spherules having suspendable particles of at least one different sorbent homogeneously embedded within to form a composite sorbent, iron oxide spherules having suspendable particles homogeneously embedded within to form a composite of hydrous iron oxide fiber materials, iron oxide fiber materials, hydrous iron oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, iron oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, dielectric spherules of barium, strontium, and lead ferrites and mixtures thereof, and composite catalytic spherules of barium or strontium ferrite embedded with oxides of Mg, Zn, Pb, Ce and mixtures thereof. These variations of hydrous iron oxide spherules and gel forms prepared by the gel-sphere, internal gelation process offer more useful forms of inorganic ion exchangers, catalysts, getters, dielectrics, and ceramics.

  9. Magnesium Projects

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  10. Weld overlay cladding with iron aluminides

    SciTech Connect (OSTI)

    Goodwin, G.M.

    1995-08-01

    The hot and cold cracking tendencies of some early iron aluminide alloy compositions have limited their use in applications where good weldability is required. Using hot crack testing techniques invented at ORNL, and experimental determinations of preheat and postweld heat treatment needed to avoid cold cracking, we have developed iron aluminide filler metal compositions which can be successfully used to weld overlay clad various substrate materials, including 9Cr-1Mo steel, 2-1/4Cr-1Mo steel, and 300-series austenitic stainless steels. Dilution must be carefully controlled to avoid crack-sensitive deposit compositions. The technique used to produce the current filler metal compositions is aspiration-casting, i.e. drawing the liquid from the melt into glass rods. Future development efforts will involve fabrication of composite wires of similar compositions to permit mechanized gas tungsten arc (GTA) and/or gas metal arc (GMA) welding.

  11. Water Clustering on Nanostructured Iron Oxide Films

    SciTech Connect (OSTI)

    Merte, L. R.; Bechstein, Ralf; Peng, Guowen; Rieboldt, Felix; Farberow, Carrie A.; Zeuthen, Helene; Knudsen, Jan; Laegsgaard, E.; Wendt, Stefen; Mavrikakis, Manos; Besenbacher, Fleming

    2014-06-30

    The adhesion of water to solid surfaces is characterized by the tendency to balance competing moleculemolecule and moleculesurface interactions. Hydroxyl groups form strong hydrogen bonds to water molecules and are known to substantially influence the wetting behaviour of oxide surfaces, but it is not well-understood how these hydroxyl groups and their distribution on a surface affect the molecular-scale structure at the interface. Here we report a study of water clustering on a moire-structured iron oxide thin film with a controlled density of hydroxyl groups. While large amorphous monolayer islands form on the are film, the hydroxylated iron oxide film acts as a hydrophilic nanotemplate, causing the formation of a regular array of ice-like hexameric nanoclusters. The formation of this ordered phase is localized at the nanometre scale; with increasing water coverage, ordered and amorphous water are found to coexist at adjacent hydroxylated and hydroxyl-free domains of the moire structure.

  12. Lithium-aluminum-iron electrode composition

    DOE Patents [OSTI]

    Kaun, Thomas D.

    1979-01-01

    A negative electrode composition is presented for use in a secondary electrochemical cell. The cell also includes an electrolyte with lithium ions such as a molten salt of alkali metal halides or alkaline earth metal halides that can be used in high-temperature cells. The cell's positive electrode contains a a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent in an alloy of aluminum-iron. Various binary and ternary intermetallic phases of lithium, aluminum and iron are formed. The lithium within the intermetallic phase of Al.sub.5 Fe.sub.2 exhibits increased activity over that of lithium within a lithium-aluminum alloy to provide an increased cell potential of up to about 0.25 volt.

  13. Iron-sulfide redox flow batteries

    DOE Patents [OSTI]

    Xia, Guan-Guang; Yang, Zhenguo; Li, Liyu; Kim, Soowhan; Liu, Jun; Graff, Gordon L

    2013-12-17

    Iron-sulfide redox flow battery (RFB) systems can be advantageous for energy storage, particularly when the electrolytes have pH values greater than 6. Such systems can exhibit excellent energy conversion efficiency and stability and can utilize low-cost materials that are relatively safer and more environmentally friendly. One example of an iron-sulfide RFB is characterized by a positive electrolyte that comprises Fe(III) and/or Fe(II) in a positive electrolyte supporting solution, a negative electrolyte that comprises S.sup.2- and/or S in a negative electrolyte supporting solution, and a membrane, or a separator, that separates the positive electrolyte and electrode from the negative electrolyte and electrode.

  14. Iron-sulfide redox flow batteries

    DOE Patents [OSTI]

    Xia, Guanguang; Yang, Zhenguo; Li, Liyu; Kim, Soowhan; Liu, Jun; Graff, Gordon L

    2016-06-14

    Iron-sulfide redox flow battery (RFB) systems can be advantageous for energy storage, particularly when the electrolytes have pH values greater than 6. Such systems can exhibit excellent energy conversion efficiency and stability and can utilize low-cost materials that are relatively safer and more environmentally friendly. One example of an iron-sulfide RFB is characterized by a positive electrolyte that comprises Fe(III) and/or Fe(II) in a positive electrolyte supporting solution, a negative electrolyte that comprises S.sup.2- and/or S in a negative electrolyte supporting solution, and a membrane, or a separator, that separates the positive electrolyte and electrode from the negative electrolyte and electrode.

  15. Thin Wall Cast Iron: Phase II

    SciTech Connect (OSTI)

    Doru M. Stefanescu

    2005-07-21

    The development of thin-wall technology allows the designers of energy consuming equipment to select the most appropriate material based on cost/material properties considerations, and not solely on density. The technology developed in this research project will permit the designers working for the automotive industry to make a better informed choice between competing materials and thin wall cast iron, thus decreasing the overall cost of the automobile.

  16. Iron Availability in the Southern Ocean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iraq NNSA program strengthens national security from afar The Nuclear Smuggling Detection and Deterrence (NSDD) program is a key component of NNSA's core mission to reduce nuclear threats. The program, part of NNSA's Office of Defense Nuclear Nonproliferation, provides partners tools and training to deter, detect, and investigate smuggling of

    Iron Availability in the Southern Ocean Print The Southern Ocean, circling the Earth between Antarctica and the southernmost regions of Africa, South

  17. Spectroscopic absorption measurements of an iron plasma

    SciTech Connect (OSTI)

    Springer, P.T.; Fields, D.J.; Wilson, B.G.; Nash, J.K.; Goldstein, W.H.; Iglesias, C.A.; Rogers, F.J.; Swenson, J.K.; Chen, M.H.; Bar-Shalom, A.; Stewart, R.E. Nuclear Research Center Negev, P.O. Box 9001, Beer-Sheva 84190 )

    1992-12-28

    The first quantitative measurement of photoabsorption in the region determining the Rosseland and Planck mean opacities is obtained for a well-characterized, radiatively heated iron plasma using new techniques and instrumentation. The plasma density and temperature are simultaneously constrained with high accuracy, allowing unambiguous comparisons with opacity models used in modeling radiative transfer in equilibrium astrophysical and laboratory plasmas. The experimental Rosseland and Planck group means are constrained to an accuracy of 15%.

  18. Superconductivity at Dawn of the Iron Age

    ScienceCinema (OSTI)

    Tesanovic, Zlatko [Johns Hopkins University, Baltimore, Maryland, United States

    2010-09-01

    Superconductivity is a stunning quantum phenomenon and among the deepest paradigms in all of physics. From fundamental theories of the universe to strange goings-on in exotic materials to medical imaging and cell phones, its conceptual and practical dimensions span a reach as wide as anything in science. Twenty-odd years ago, the discovery of copper oxides ushered in a new era of high-temperature superconductivity, and the joyous exuberance that followed - with physicists throwing everything from fancy gauge theories to synchrotron radiation into its kitchen sink - only recently began to show any signs of waning. In the spring of 2008, as if on cue, a new family of iron pnictide high-temperature superconductors burst on the scene, hinting at an alternative route to room-temperature superconductivity and all of its momentous consequences. Fueled by genuine excitement - and a bit of hype - the iron-based superconductivity turned into a science blockbuster of 2009. I will present a pedagogical review of this new field, contrast the physics of iron- and copper-based systems, and speculate on the microscopic origins of the two types of high-temperature superconductivity.

  19. Seal welded cast iron nuclear waste container

    DOE Patents [OSTI]

    Filippi, Arthur M.; Sprecace, Richard P.

    1987-01-01

    This invention identifies methods and articles designed to circumvent metallurgical problems associated with hermetically closing an all cast iron nuclear waste package by welding. It involves welding nickel-carbon alloy inserts which are bonded to the mating plug and main body components of the package. The welding inserts might be bonded in place during casting of the package components. When the waste package closure weld is made, the most severe thermal effects of the process are restricted to the nickel-carbon insert material which is far better able to accommodate them than is cast iron. Use of nickel-carbon weld inserts should eliminate any need for pre-weld and post-weld heat treatments which are a problem to apply to nuclear waste packages. Although the waste package closure weld approach described results in a dissimilar metal combination, the relative surface area of nickel-to-iron, their electrochemical relationship, and the presence of graphite in both materials will act to prevent any galvanic corrosion problem.

  20. Solidification, growth mechanisms, and associated properties of Al-Si and magnesium lightweight casting alloys

    SciTech Connect (OSTI)

    Hosch, Timothy

    2010-01-01

    Continually rising energy prices have inspired increased interest in weight reduction in the automotive and aerospace industries, opening the door for the widespread use and development of lightweight structural materials. Chief among these materials are cast Al-Si and magnesium-based alloys. Utilization of Al-Si alloys depends on obtaining a modified fibrous microstructure in lieu of the intrinsic flake structure, a process which is incompletely understood. The local solidification conditions, mechanisms, and tensile properties associated with the flake to fiber growth mode transition in Al-Si eutectic alloys are investigated here using bridgman type gradient-zone directional solidification. Resulting microstructures are examined through quantitative image analysis of two-dimensional sections and observation of deep-etched sections showing three-dimensional microstructural features. The transition was found to occur in two stages: an initial stage dominated by in-plane plate breakup and rod formation within the plane of the plate, and a second stage where the onset of out-of-plane silicon rod growth leads to the formation of an irregular fibrous structure. Several microstructural parameters were investigated in an attempt to quantify this transition, and it was found that the particle aspect ratio is effective in objectively identifying the onset and completion velocity of the flake to fiber transition. The appearance of intricate out-of-plane silicon instability formations was investigated by adapting a perturbed-interface stability analysis to the Al-Si system. Measurements of silicon equilibrium shape particles provided an estimate of the anisotropy of the solid Si/liquid Al-Si system and incorporation of this silicon anisotropy into the model was found to improve prediction of the instability length scale. Magnesium alloys share many of the benefits of Al-Si alloys, with the added benefit of a 1/3 lower density and increased machinability. Magnesium castings

  1. Evaluation of the Magnesium Hydroxide Treatment Process for Stabilizing PFP Plutonium/Nitric Acid Solutions

    SciTech Connect (OSTI)

    Gerber, Mark A.; Schmidt, Andrew J.; Delegard, Calvin H.; Silvers, Kurt L.; Baker, Aaron B.; Gano, Susan R.; Thornton, Brenda M.

    2000-09-28

    This document summarizes an evaluation of the magnesium hydroxide [Mg(OH)2] process to be used at the Hanford Plutonium Finishing Plant (PFP) for stabilizing plutonium/nitric acid solutions to meet the goal of stabilizing the plutonium in an oxide form suitable for storage under DOE-STD-3013-99. During the treatment process, nitric acid solutions bearing plutonium nitrate are neutralized with Mg(OH)2 in an air sparge reactor. The resulting slurry, containing plutonium hydroxide, is filtered and calcined. The process evaluation included a literature review and extensive laboratory- and bench-scale testing. The testing was conducted using cerium as a surrogate for plutonium to identify and quantify the effects of key processing variables on processing time (primarily neutralization and filtration time) and calcined product properties.

  2. Characterizing the boundary lateral to the shear direction of deformation twins in magnesium

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Y.; Li, N.; Shao, S.; Gong, M.; Wang, J.; McCabe, R. J.; Jiang, Y.; Tomé, C. N.

    2016-06-01

    The three-dimensional nature of twins, especially the atomic structures and motion mechanisms of the boundary lateral to the shear direction of the twin, has never been characterized at the atomic level, because such boundary is, in principle, crystallographically unobservable. We thus refer to it here as the dark side of the twin. Here, using high-resolution transmission electron microscopy and atomistic simulations, we characterize the dark side of {101⁻2} deformation twins in magnesium. It is found that the dark side is serrated and comprised of {101⁻2} coherent twin boundaries and semi-coherent twist prismatic–prismatic {211⁻0} boundaries that control twin growth. The conclusionsmore » we find in this work apply to the same twin mode in other hexagonal close-packed materials, and the conceptual ideas discussed here should hold for all twin modes in crystalline materials.« less

  3. Tension-compression-tension tertiary twins in coarse-grained polycrystalline pure magnesium at room temperature

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yu, Qin; Jiang, Yanyao; Wang, Jian

    2015-04-07

    Using electron backscatter diffraction, the microstructural features of tension–compression–tension (T–C–T) tertiary twins are studied in coarse-grained pure polycrystalline magnesium subjected to monotonic compression along the extrusion direction in ambient air. T–C–T tertiary twins are developed due to the formation of a compression–tension double twin inside a primary tension twin. All the observed T–C–T twin variants are of TiCjTj type. TiCi+1Ti+1 (or TiCi–1Ti–1) variants are observed more frequently than TiCi+2Ti+2 (or TiCi–2Ti–2) variants. Moreover, the number of tertiary twin lamellae increases with the applied compressive strain.

  4. THE HYDROLYSIS AND OXIDATION BEHAVIOR OF LITHIUM BOROHYDRIDE AND MAGNESIUM HYDRIDE DETERMINED BY CALORIMETRY

    SciTech Connect (OSTI)

    Brinkman, K; Donald Anton, D; Joshua Gray, J; Bruce Hardy, B

    2008-03-13

    Lithium borohydride, magnesium hydride and the 2:1 'destabilized' ball milled mixtures (2LiBH{sub 4}:MgH{sub 2}) underwent liquid phase hydrolysis, gas phase hydrolysis and air oxidation reactions monitored by isothermal calorimetry. The experimentally determined heats of reaction and resulting products were compared with those theoretically predicted using thermodynamic databases. Results showed a discrepancy between the predicted and observed hydrolysis and oxidation products due to both kinetic limitations and to the significant amorphous character of observed reaction products. Gas phase and liquid phase hydrolysis were the dominant reactions in 2LiBH{sub 4}:MgH{sub 2} with approximately the same total energy release and reaction products; liquid phase hydrolysis displayed the maximum heat flow for likely environmental exposure with a peak energy release of 6 (mW/mg).

  5. Analysis of the potential for new automotive uses of wrought magnesium

    SciTech Connect (OSTI)

    Gaines, L.; Cuenca, R.; Wu, S.; Stodolsky, F.

    1996-02-01

    The Center for Transportation Research at Argonne National Laboratory has performed a study for the Lightweight Materials Program within the US Department of Energy`s Office of Transportation Materials to evaluate the suitability of wrought magnesium and its alloys to replace steel or aluminum for automotive structural and sheet applications. Vehicle weight reduction is one of the major means available for improving automotive fuel efficiency. Although high-strength steels, Al, and polymers are already being used to achieve significant weight reductions, substantial additional weight reductions could be achieved by increased use of Mg (whose density is less than one-fourth that of steel and only two-thirds that of Al). This study shows that Mg sheet could be used in automotive body nonstructural and semistructural applications, whereas extrusions could be used in such structural applications as spaceframes. The primary barrier to such uses of wrought Mg is high cost.

  6. Individual and combined effects of chloride, sulfate, and magnesium ions on hydrated Portland-cement paste

    SciTech Connect (OSTI)

    Poole, T.S.; Wakeley, L.D.; Young, C.L.

    1994-03-01

    Ground water with a high concentration of magnesium ion is known to cause deterioration to portland cement concretes. A proposed mechanism for this deterioration process published previously involves an approximate 1:1 replacement of Ca ions by Mg ions in the crystalline phases of hydrated cement. The current study was undertaken to determine which ions, among magnesium, chloride, and sulfate, cause deterioration; whether their deleterious action is individual or interdependent; and to relate this mechanism of deterioration to the outlook for a 100-yr service life of concretes used in mass placements at the Waste Isolation Pilot Plant. Loss of Ca ion by cement pastes was found to be strongly related to the concentration of Mg ion in simulated ground-water solutions in which the paste samples were aged. This was true of both salt- containing and conventional cement pastes. No other ion in the solutions exerted a strong effect on Ca loss. Ca ion left first from calcium hydroxide in the pastes, depleting all calcium hydroxide by 60 days. Some calcium silicate hydrate remained even after 90 days in the solutions with the highest concentration of Mg ion, while the paste samples deteriorated noticeably. The results indicated a mechanism that involves dissolution of Ca phases and transport of Ca ions to the surface of the sample, followed by formation of Mg-bearing phases at this reaction surface rather than directly by substitution within the microstructure of hydrated cement. Given that calcium hydroxide and calcium silicate hydrate are the principal strength-giving phases of hydrated cement, this mechanism indicates the likelihood of significant loss of integrity of a concrete exposed to Mg-bearing ground water at the WIPP. The rate of deterioration ultimately will depend on Mg-ion concentration, the microstructure materials of the concrete exposed to that groundwater, and the availability of brine.

  7. Spatially resolved characterization of biogenic manganese oxideproduction within a bacterial biofilm

    SciTech Connect (OSTI)

    Toner, Brandy; Fakra, Sirine; Villalobos, Mario; Warwick, Tony; Sposito, Garrison

    2004-10-01

    Pseudomonas putida strain MnB1, a biofilm forming bacteria, was used as a model for the study of bacterial Mn oxidation in freshwater and soil environments. The oxidation of Mn{sub (aq)}{sup +2} by P. putida was characterized by spatially and temporally resolving the oxidation state of Mn in the presence of a bacterial biofilm using scanning transmission x-ray microscopy (STXM) combined with near edge x-ray absorption fine structure (NEXAFS) spectroscopy at the Mn-L{sub 2,3} absorption edges. Subsamples were collected from growth flasks containing 0.1 mM and 1 mM total Mn at 16, 24, 36 and 48 hours after inoculation. Immediately after collection, the unprocessed hydrated subsamples were imaged at 40 nm resolution. Manganese NEXAFS spectra were extracted from x-ray energy sequences of STXM images (stacks) and fit with linear combinations of well characterized reference spectra to obtain quantitative relative abundances of Mn(II), Mn(III) and Mn(IV). Careful consideration was given to uncertainty in the normalization of the reference spectra, choice of reference compounds, and chemical changes due to radiation damage. The STXM results confirm that Mn{sub (aq)}{sup +2} was removed from solution by P. putida and was concentrated as Mn(III) and Mn(IV) immediately adjacent to the bacterial cells. The Mn precipitates were completely enveloped by bacterial biofilm material. The distribution of Mn oxidation states was spatially heterogeneous within and between the clusters of bacterial cells. Scanning transmission x-ray microscopy is a promising tool to advance the study of hydrated interfaces between minerals and bacteria, particularly in cases where the structure of bacterial biofilms needs to be maintained.

  8. Facet Dependent Disorder in the Pristine High Voltage Lithium-Manganese-Rich Cathode Material

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dixit, Hemant M.; Zhou, Wu; Idrobo Tapia, Juan Carlos; Nanda, Jagjit; Cooper, Valentino R.

    2014-11-21

    Defects and surface reconstructions are thought to be crucial for the long term stability of high-voltage lithium-manganese-rich cathodes. Unfortunately, many of these defects arise only after electrochemical cycling which occur under harsh conditions making it difficult to fully comprehend the role they play in degrading material performance. Recently, it has been observed that defects are present even in the pristine material. This study, therefore, focuses on examining the nature of the disorder observed in pristine Limore » $$_{1.2}$$Ni$$_{0.175}$$Mn$$_{0.525}$$Co$$_{0.1}$$O$_2$ (LNMCO) particles. Using atomic resolution Z-contrast imaging and electron energy-loss spectroscopy measurements we show that there are indeed a significant amount of anti-site defects present in this material; with transition metals substituting on Li metal sites. Furthermore, we find a strong tendency of segregation of these types of defects towards open facets (surfaces perpendicular to the layered arrangement of atoms), rather than closed facets (surfaces parallel to the layered arrangement of atoms). First principles calculations identify anti-site defect pairs of Ni swapping with Li ions as the predominant defect in the material. Furthermore, energetically favorable swapping of Ni on the Mn sites were observed to lead to Mn depletion at open facets. Relatively, low Ni migration barriers also support the notion that Ni are the predominant cause of disorder. These insights suggests that certain facets of the LNMCO particles may be more useful for inhibiting surface reconstruction and improving the stability of these materials through careful consideration of the exposed surface.« less

  9. Structural implications of the C-terminal tail in the catalytic and stability properties of manganese peroxidases from ligninolytic fungi

    SciTech Connect (OSTI)

    Fernndez-Fueyo, Elena [CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain); Acebes, Sandra [Barcelona Supercomputing Center, Jordi Girona 29, 08034 Barcelona (Spain); Ruiz-Dueas, Francisco J.; Martnez, Mara Jess; Romero, Antonio; Medrano, Francisco Javier, E-mail: fjmedrano@cib.csic.es [CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain); Guallar, Victor, E-mail: fjmedrano@cib.csic.es [Barcelona Supercomputing Center, Jordi Girona 29, 08034 Barcelona (Spain); ICREA, Passeig Llus Companys 23, 08010 Barcelona (Spain); Martnez, Angel T., E-mail: fjmedrano@cib.csic.es [CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain)

    2014-12-01

    The variable C-terminal tail of manganese peroxidases, a group of enzymes involved in lignin degradation, is implicated in their catalytic and stability properties, as shown by new crystal structures, molecular-simulation and directed-mutagenesis data. Based on this structuralfunctional evaluation, short and long/extralong manganese peroxidase subfamilies have been accepted; the latter are characterized by exceptional stability, while it is shown for the first time that the former are able to oxidize other substrates at the same site where manganese(II) is oxidized. The genome of Ceriporiopsis subvermispora includes 13 manganese peroxidase (MnP) genes representative of the three subfamilies described in ligninolytic fungi, which share an Mn{sup 2+}-oxidation site and have varying lengths of the C-terminal tail. Short, long and extralong MnPs were heterologously expressed and biochemically characterized, and the first structure of an extralong MnP was solved. Its C-terminal tail surrounds the haem-propionate access channel, contributing to Mn{sup 2+} oxidation by the internal propionate, but prevents the oxidation of 2, 2?-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS), which is only oxidized by short MnPs and by shortened-tail variants from site-directed mutagenesis. The tail, which is anchored by numerous contacts, not only affects the catalytic properties of long/extralong MnPs but is also associated with their high acidic stability. Cd{sup 2+} binds at the Mn{sup 2+}-oxidation site and competitively inhibits oxidation of both Mn{sup 2+} and ABTS. Moreover, mutations blocking the haem-propionate channel prevent substrate oxidation. This agrees with molecular simulations that position ABTS at an electron-transfer distance from the haem propionates of an in silico shortened-tail form, while it cannot reach this position in the extralong MnP crystal structure. Only small differences exist between the long and the extralong MnPs, which do not justify their

  10. Iron phosphate compositions for containment of hazardous metal waste

    DOE Patents [OSTI]

    Day, Delbert E.

    1998-01-01

    An improved iron phosphate waste form for the vitrification, containment and long-term disposition of hazardous metal waste such as radioactive nuclear waste is provided. The waste form comprises a rigid iron phosphate matrix resulting from the cooling of a melt formed by heating a batch mixture comprising the metal waste and a matrix-forming component. The waste form comprises from about 30 to about 70 weight percent P.sub.2 O.sub.5 and from about 25 to about 50 weight percent iron oxide and has metals present in the metal waste chemically dissolved therein. The concentration of iron oxide in the waste form along with a high proportion of the iron in the waste form being present as Fe.sup.3+ provide a waste form exhibiting improved chemical resistance to corrosive attack. A method for preparing the improved iron phosphate waste forms is also provided.

  11. Iron phosphate compositions for containment of hazardous metal waste

    DOE Patents [OSTI]

    Day, D.E.

    1998-05-12

    An improved iron phosphate waste form for the vitrification, containment and long-term disposition of hazardous metal waste such as radioactive nuclear waste is provided. The waste form comprises a rigid iron phosphate matrix resulting from the cooling of a melt formed by heating a batch mixture comprising the metal waste and a matrix-forming component. The waste form comprises from about 30 to about 70 weight percent P{sub 2}O{sub 5} and from about 25 to about 50 weight percent iron oxide and has metals present in the metal waste chemically dissolved therein. The concentration of iron oxide in the waste form along with a high proportion of the iron in the waste form being present as Fe{sup 3+} provide a waste form exhibiting improved chemical resistance to corrosive attack. A method for preparing the improved iron phosphate waste forms is also provided. 21 figs.

  12. Iron-titanium-mischmetal alloys for hydrogen storage

    DOE Patents [OSTI]

    Sandrock, Gary Dale

    1978-01-01

    A method for the preparation of an iron-titanium-mischmetal alloy which is used for the storage of hydrogen. The alloy is prepared by air-melting an iron charge in a clay-graphite crucible, adding titanium and deoxidizing with mischmetal. The resultant alloy contains less than about 0.1% oxygen and exhibits a capability for hydrogen sorption in less than half the time required by vacuum-melted, iron-titanium alloys.

  13. Iron is the Key to Preserving Dinosaur Soft Tissue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron is the Key to Preserving Dinosaur Soft Tissue Print Researchers studying organic material from dinosaur bones have been able to show that the organic material in the samples contained original soft tissue material from Mesozoic dinosaurs. The x-ray techniques at the ALS were key to showing a possible mechanism for this unexpected preservation-iron nanoparticles associated with dinosaur blood vessels were identified at the ALS. Researchers hypothesized that the iron had come from dinosaurs'

  14. Iron is the Key to Preserving Dinosaur Soft Tissue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron is the Key to Preserving Dinosaur Soft Tissue Print Researchers studying organic material from dinosaur bones have been able to show that the organic material in the samples contained original soft tissue material from Mesozoic dinosaurs. The x-ray techniques at the ALS were key to showing a possible mechanism for this unexpected preservation-iron nanoparticles associated with dinosaur blood vessels were identified at the ALS. Researchers hypothesized that the iron had come from dinosaurs'

  15. Iron is the Key to Preserving Dinosaur Soft Tissue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron is the Key to Preserving Dinosaur Soft Tissue Print Researchers studying organic material from dinosaur bones have been able to show that the organic material in the samples contained original soft tissue material from Mesozoic dinosaurs. The x-ray techniques at the ALS were key to showing a possible mechanism for this unexpected preservation-iron nanoparticles associated with dinosaur blood vessels were identified at the ALS. Researchers hypothesized that the iron had come from dinosaurs'

  16. Iron is the Key to Preserving Dinosaur Soft Tissue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron is the Key to Preserving Dinosaur Soft Tissue Print Researchers studying organic material from dinosaur bones have been able to show that the organic material in the samples contained original soft tissue material from Mesozoic dinosaurs. The x-ray techniques at the ALS were key to showing a possible mechanism for this unexpected preservation-iron nanoparticles associated with dinosaur blood vessels were identified at the ALS. Researchers hypothesized that the iron had come from dinosaurs'

  17. LANSCE | Lujan Center | Highlights | Local iron displacements and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    magnetoelastic coupling in a spin-ladder compound Local iron displacements and magnetoelastic coupling in a spin-ladder compound Hypothesis: Is magnetoelastic coupling in [FeX4]-based materials, an important ingredient in the emergence of superconductivity? Lujan Center: Combined Total Scattering and magnetic structure determination (HIPD-NPDF) The study of local, average and magnetic structure shows the existenceof highly correlated local iron (Fe) displacements in the spin-ladder iron

  18. Importance of Iron Mineralogy to Aerosol Solubility: Potential Effects of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Source on Ocean Photosynthesis Importance of Iron Mineralogy to Aerosol Solubility: Potential Effects of Aerosol Source on Ocean Photosynthesis figure 1 Figure 1. Dust storm blowing glacial dusts from the Copper River Basin of southeast Alaska into the North Pacific Ocean, which depends on this and other external iron sources to support its biological communities. (Image: NASA MODIS satellite image, Nov. 1, 2006. http://earthobservatory.nasa.gov/IOTD/view.php?id=7094) Iron is one of

  19. Iron is the Key to Preserving Dinosaur Soft Tissue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron is the Key to Preserving Dinosaur Soft Tissue Print Researchers studying organic material from dinosaur bones have been able to show that the organic material in the samples contained original soft tissue material from Mesozoic dinosaurs. The x-ray techniques at the ALS were key to showing a possible mechanism for this unexpected preservation-iron nanoparticles associated with dinosaur blood vessels were identified at the ALS. Researchers hypothesized that the iron had come from dinosaurs'

  20. Iron is the Key to Preserving Dinosaur Soft Tissue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron is the Key to Preserving Dinosaur Soft Tissue Print Researchers studying organic material from dinosaur bones have been able to show that the organic material in the samples contained original soft tissue material from Mesozoic dinosaurs. The x-ray techniques at the ALS were key to showing a possible mechanism for this unexpected preservation-iron nanoparticles associated with dinosaur blood vessels were identified at the ALS. Researchers hypothesized that the iron had come from dinosaurs'

  1. Iron is the Key to Preserving Dinosaur Soft Tissue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron is the Key to Preserving Dinosaur Soft Tissue Print Researchers studying organic material from dinosaur bones have been able to show that the organic material in the samples contained original soft tissue material from Mesozoic dinosaurs. The x-ray techniques at the ALS were key to showing a possible mechanism for this unexpected preservation-iron nanoparticles associated with dinosaur blood vessels were identified at the ALS. Researchers hypothesized that the iron had come from dinosaurs'

  2. Iron is the Key to Preserving Dinosaur Soft Tissue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron is the Key to Preserving Dinosaur Soft Tissue Iron is the Key to Preserving Dinosaur Soft Tissue Print Thursday, 21 August 2014 10:43 Researchers studying organic material from dinosaur bones have been able to show that the organic material in the samples contained original soft tissue material from Mesozoic dinosaurs. The x-ray techniques at the ALS were key to showing a possible mechanism for this unexpected preservation-iron nanoparticles associated with dinosaur blood vessels were

  3. Reduction and carburization reactions in the iron bath smelter

    SciTech Connect (OSTI)

    Uemura, Kenichiro

    1993-01-01

    Slag-metal-coal reactions in the iron-bath smelter were analyzed based on a reaction model. It was concluded that the productivity and carbon content of the hot metal produced in a smelter can be controlled by adjusting the slag volume and iron oxide content in slag. Furthermore, iron oxide content is determined by the slag volume and the stirring intensity of the slag.

  4. Big Iron for Big Data: An Unnatural Alliance?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Big Iron for Big Data: An Unnatural Alliance? Steve Plimpton Sandia National Labs Salishan Conference on High-Speed Computing April 2012 Big data analytics (BD) versus scientific...

  5. Iron active electrode and method of making same

    DOE Patents [OSTI]

    Jackovitz, John F. (Monroeville, PA); Seidel, Joseph (Pittsburgh, PA); Pantier, Earl A. (Verona, PA)

    1982-10-26

    An iron active electrode and method of preparing same in which iron sulfate is calcined in an oxidizing atmosphere at a temperature in the range of from about 600.degree. C. to about 850.degree. C. for a time sufficient to produce an iron oxide with a trace amount of sulfate. The calcined material is loaded into an electrically conductive support and then heated in a reducing atmosphere at an elevated temperature to produce activated iron having a trace amount of sulfide which is formed into an electrode plate.

  6. Pressure-Induced Hydrogen Bond Symmetrization in Iron Oxyhydroxide...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Pressure-Induced Hydrogen Bond Symmetrization in Iron Oxyhydroxide ... Publication Date: 2014-07-21 OSTI Identifier: 1123936 Resource Type: Journal Article ...

  7. Mountain Iron, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mountain Iron, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.5324267, -92.623515 Show Map Loading map... "minzoom":false,"mappi...

  8. Metal regeneration of iron chelates in nitric oxide scrubbing

    DOE Patents [OSTI]

    Chang, S.G.; Littlejohn, D.; Shi, Y.

    1997-08-19

    The present invention relates to a process of using metal particles to reduce NO to NH{sub 3}. More specifically, the invention concerns an improved process to regenerate iron (II) (CHELATE) by reduction of iron (II) (CHELATE) (NO) complex, which process comprises: (a) contacting an aqueous solution containing iron (II) (CHELATE) (NO) with metal particles at between about 20 and 90 C to reduce NO present, produce ammonia or an ammonium ion, and produce free iron (II) (CHELATE) at a pH of between about 3 and 8. The process is useful to remove NO from flue gas and reduce pollution. 34 figs.

  9. Iron is the Key to Preserving Dinosaur Soft Tissue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    occurring mechanism for stabilization of soft tissues has implications beyond paleontology. If iron-mediated reactions are part of a continuum from those that facilitate life...

  10. Recoil-free fractions of iron in aluminous bridgmanite fromtemperatur...

    Office of Scientific and Technical Information (OSTI)

    from temperature-dependent Mssbauer spectra Citation Details In-Document Search Title: Recoil-free fractions of iron in aluminous bridgmanite from temperature-dependent ...

  11. Correlation effects in the iron pnictides (Journal Article) ...

    Office of Scientific and Technical Information (OSTI)

    One of the central questions about the iron pnictides concerns the extent to which their electrons are strongly correlated. Here we address this issue through the phenomenology of ...

  12. Microstructural Modification of a Cast Iron by Magnetic Field Processing

    SciTech Connect (OSTI)

    Kenik, Edward A; Ludtka, Gail Mackiewicz-; Ludtka, Gerard Michael; Wilgen, John B; Kisner, Roger A

    2010-01-01

    The current study deals with the microstructural modification of a nodular cast iron during solidification under the influence of high magnetic fields (up to 18 tesla).

  13. Determination of ferrous and total iron in refractory spinels...

    Office of Scientific and Technical Information (OSTI)

    Accurate and precise determination of the redox state of iron (Fe) in spinels presents a significant challenge due to their refractory nature. The resultant extreme conditions ...

  14. Evidence for a Weak Iron Core at Earth's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence for a Weak Iron Core at Earth's Center Evidence for a Weak Iron Core at Earth's Center Print Wednesday, 30 April 2014 00:00 Seismic waves that pass through the center of the Earth travel faster going from pole to pole than along the equatorial plane-why? One theory is that the grains of iron that make up most of the solid inner core could be aligned in a way that transmits waves more efficiently in one direction than the other. Recent evidence for this "texturing" of iron

  15. Manufacturing Energy and Carbon Footprint - Sector: Iron and...

    Broader source: Energy.gov (indexed) [DOE]

    Total Onsite Electricity Export 1 Manufacturing Energy and Carbon Footprint Sector: Iron and Steel (NAICS 3311,3312) Onsite Generation Process Energy Machine-Driven Systems Fans ...

  16. Metal regeneration of iron chelates in nitric oxide scrubbing

    DOE Patents [OSTI]

    Chang, Shih-Ger; Littlejohn, David; Shi, Yao

    1997-08-19

    The present invention relates to a process of using metal particles to reduce NO to NH.sub.3. More specifically, the invention concerns an improved process to regenerate iron (II) (CHELATE) by reduction of iron (II) (CHELATE) (NO) complex, which process comprises: a) contacting an aqueous solution containing iron (II) (CHELATE) (NO) with metal particles at between about 20.degree. and 90.degree. C. to reduce NO present, produce ammonia or an ammonium ion, and produce free iron (II) (CHELATE) at a pH of between about 3 and 8. The process is useful to remove NO from flue gas and reduce pollution.

  17. Low Resistivity Contact to Iron-Pnicitide Superconductors - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Advanced Materials Find More Like This Return to Search Low Resistivity Contact to Iron-Pnicitide Superconductors Ames Laboratory Contact AMES About This Technology...

  18. Low Resistivity Contact to Iron-Pnicitide Superconductors - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Low Resistivity Contact to Iron-Pnicitide Superconductors Ames Laboratory Contact AMES About This Technology Technology Marketing Summary Superconductors are materials which carry...

  19. Iron County, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 7 Climate Zone Subtype A. Places in Iron County, Wisconsin Anderson, Wisconsin Carey, Wisconsin Gurney, Wisconsin Hurley, Wisconsin Kimball, Wisconsin...

  20. Lithium Iron Phosphate Composites for Lithium Batteries (IN-11...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium Iron Phosphate Composites for Lithium Batteries (IN-11-024) Low-Cost Phosphate Compounds Enhance Lithium Battery Performance Argonne National Laboratory Contact ANL About ...

  1. Iron-Air Rechargeable Battery: A Robust and Inexpensive Iron-Air Rechargeable Battery for Grid-Scale Energy Storage

    SciTech Connect (OSTI)

    2010-10-01

    GRIDS Project: USC is developing an iron-air rechargeable battery for large-scale energy storage that could help integrate renewable energy sources into the electric grid. Iron-air batteries have the potential to store large amounts of energy at low cost—iron is inexpensive and abundant, while oxygen is freely obtained from the air we breathe. However, current iron-air battery technologies have suffered from low efficiency and short life spans. USC is working to dramatically increase the efficiency of the battery by placing chemical additives on the battery’s iron-based electrode and restructuring the catalysts at the molecular level on the battery’s air-based electrode. This can help the battery resist degradation and increase life span. The goal of the project is to develop a prototype iron-air battery at significantly cost lower than today’s best commercial batteries.

  2. Hydrogen-induced cracking in pure iron

    SciTech Connect (OSTI)

    Armstrong, J.H.; Carpenter, S.H.

    1985-01-01

    The modulus and internal friction of Armco iron were continuously measured during cathodic charging with hydrogen to investigate crack initiation and growth. The observed modulus decrease was attributed to crack initiation and growth. The internal friction increase during cathodic charging was attributed to plastic deformation accompanying the crack formation. Both the modulus and internal friction behavior were found to be a sum of two parallel exponential processes. The two exponential processes were consistent with different sources of carbon for the crack-producing hydrogen bubble nucleation.

  3. Suspension Hydrogen Reduction of Iron Oxide Concentrates

    SciTech Connect (OSTI)

    H.Y. Sohn

    2008-03-31

    The objective of the project is to develop a new ironmaking technology based on hydrogen and fine iron oxide concentrates in a suspension reduction process. The ultimate objective of the new technology is to replace the blast furnace and to drastically reduce CO2 emissions in the steel industry. The goals of this phase of development are; the performance of detailed material and energy balances, thermochemical and equilibrium calculations for sulfur and phosphorus impurities, the determination of the complete kinetics of hydrogen reduction and bench-scale testing of the suspension reduction process using a large laboratory flash reactor.

  4. Effect of Manganese Addition to the Co-MCM-41 Catalyst in the Selective Synthesis of Single Wall Carbon Nanotubes

    SciTech Connect (OSTI)

    Zoican Loebick, C.; Derrouiche, S; Marinkovic, N; Wang, C; Hennrich, F; Kappes, M; Haller, L; Pfefferle, L

    2009-01-01

    The effect of manganese addition to the Co-MCM-41 catalyst on the synthesis of single wall carbon nanotubes (SWNT) by CO disproportionation was characterized. The ratio between the two metals in the MCM-41 framework was varied, and its effect on the resultant SWNT distribution was studied and compared with the results obtained for the monometallic Co-MCM-41 catalyst. Methods including temperature-programmed reduction, X-ray absorption fine structure, thermogravimetric analysis, TEM imaging, and Raman and fluorescence spectroscopy were employed to characterize the behavior of the catalysts under the SWNT synthesis conditions and the diameter and structure distribution of the resultant nanotubes. We found that addition of Mn to the Co-MCM-41 catalyst promotes the growth of SWNT, leading to synthesis of high yield, small diameter SWNT. Manganese does not act in the nucleation of SWNT but acts as an anchoring site for cobalt particles formed during the synthesis process as shown by X-ray absorption.

  5. Electrodeposited Manganese Oxides on Three-Dimensional Carbon Nanotube Substrate: Supercapacitive Behaviour in Aqueous and Organic Electrolytes

    SciTech Connect (OSTI)

    Nam,K.W.; Yang,X.

    2009-03-01

    Thin amorphous manganese oxide layers with a thickness of 3-5nm are electrodeposited on a carbon nanotube (CNT) film substrate that has a three-dimensional nanoporous structure (denoted asMnO2/CNT electrode). For the purpose of comparison, manganese oxide films are also electrodeposited on a flat Pt-coated Si wafer substrate (denoted as MnO2 film electrode). The pseudocapacitive properties of the MnO2 film and MnO2/CNT electrodes are examined in both aqueous electrolyte (1.0M KCl) and nonaqueousorganic electrolyte (1.0M LiClO4 in propylene carbonate). While both types of electrode showpseudocapacitive behaviour in the aqueous electrolyte, only the MnO2/CNT electrode does so in the organic electrolyte, due to its high oxide/electrolyte interfacial area and improved electron conduction through the CNT substrate. Compared with the MnO2 film electrode, the MnO2/CNT electrode shows a much higher specific capacitance and better high-rate capability, regardless of the electrolyte used.Use of the organic electrolyte results in a ?6 times higher specific energy compared with that obtained with the aqueous electrolyte, while maintaining a similar specific power. The construction of a threedimensional nanoporous network structure consisting of a thin oxide layer on a CNT film substrate at the nm scale and the use of an organic electrolyte are promising approaches to improving the specific energyof supercapacitors.

  6. Enhancing the Performance of the Rechargeable Iron Electrode in Alkaline Batteries with Bismuth Oxide and Iron Sulfide Additives

    SciTech Connect (OSTI)

    Manohar, AK; Yang, CG; Malkhandi, S; Prakash, GKS; Narayanan, SR

    2013-09-07

    Iron-based alkaline rechargeable batteries have the potential of meeting the needs of large-scale electrical energy storage because of their low-cost, robustness and eco-friendliness. However, the widespread commercial deployment of iron-based batteries has been limited by the low charging efficiency and the poor discharge rate capability of the iron electrode. In this study, we have demonstrated iron electrodes containing bismuth oxide and iron sulfide with a charging efficiency of 92% and capable of being discharged at the 3C rate. Such a high value of charging efficiency combined with the ability to discharge at high rates is being reported for the first time. The bismuth oxide additive led to the in situ formation of elemental bismuth and a consequent increase in the overpotential for the hydrogen evolution reaction leading to an increase in the charging efficiency. We observed that the sulfide ions added to the electrolyte and iron sulfide added to the electrode mitigated-electrode passivation and allowed for continuous discharge at high rates. At the 3C discharge rate, a utilization of 0.2 Ah/g was achieved. The performance level of the rechargeable iron electrode demonstrated here is attractive for designing economically-viable large-scale energy storage systems based on alkaline nickel-iron and iron-air batteries. (C) 2013 The Electrochemical Society. All rights reserved.

  7. Abnormal macropore formation during double-sided gas tungsten arc welding of magnesium AZ91D alloy

    SciTech Connect (OSTI)

    Shen Jun You Guoqiang; Long Siyuan; Pan Fusheng

    2008-08-15

    One of the major concerns during gas tungsten arc (GTA) welding of cast magnesium alloys is the presence of large macroporosity in weldments, normally thought to occur from the presence of gas in the castings. In this study, a double-sided GTA welding process was adopted to join wrought magnesium AZ91D alloy plates. Micropores were formed in the weld zone of the first side that was welded, due to precipitation of H{sub 2} as the mushy zone freezes. When the reverse side was welded, the heat generated caused the mushy zone in the initial weld to reform. The micropores in the initial weld then coalesced and expanded to form macropores by means of gas expansion through small holes that are present at the grain boundaries in the partially melted zone. Macropores in the partially melted zone increase with increased heat input, so that when a filler metal is used the macropores are smaller in number and in size.

  8. Effects of (Al,Ge) double doping on the thermoelectric properties of higher manganese silicides

    SciTech Connect (OSTI)

    Chen, Xi; Salta, Daniel; Zhang, Libin [Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712 (United States); Weathers, Annie [Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Zhou, Jianshi; Goodenough, John B.; Shi, Li [Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712 (United States); Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2013-11-07

    Experiments and analysis have been carried out to investigate the effects of Al and (Al,Ge) doping on the microstructure and thermoelectric properties of polycrystalline higher manganese silicide (HMS) samples, which were prepared by solid-state reaction, ball milling, and followed by spark plasma sintering. It has been found that Al doping effectively increases the hole concentration, which leads to an increase in the electrical conductivity and power factor. By introducing the second dopant Ge into Al-doped HMS, the electrical conductivity is increased, and the Seebeck coefficient is decreased as a result of further increased hole concentration. The peak power factor is found to occur at a hole concentration between 1.8??10{sup 21} and 2.2??10{sup 21}?cm{sup ?3} measured at room temperature. The (Al,Ge)-doped HMS samples show lower power factors owing to their higher hole concentrations. The mobility of Mn(Al{sub 0.0035}Ge{sub y}Si{sub 0.9965-y}){sub 1.8} with y?=?0.035 varies approximately as T{sup ?3/2} above 200?K, suggesting acoustic phonon scattering is the dominant scattering mechanism. The thermal conductivity of HMS does not change appreciably by Al or (Al,Ge) doping. The maximum ZT of (Al,Ge)-doped HMS is 0.57 at 823?K, which is similar to the highest value found in the Al-doped HMS samples. The ZT values were reduced in the Mn(Al{sub 0.0035}Ge{sub y}Si{sub 0.9965-y}){sub 1.8} samples with high Ge concentration of y?=?0.025 and 0.035, because of reduced power factor. In addition, a two-band model was employed to show that the hole contribution to the thermal conductivity dominates the bipolar and electron contributions for all samples from 300 to 823?K and accounts for about 12% of the total thermal conductivity at about 800?K.

  9. Baseline blood levels of manganese, lead, cadmium, copper, and zinc in residents of Beijing suburb

    SciTech Connect (OSTI)

    Zhang, Long-Lian; Lu, Ling; Pan, Ya-Juan; Ding, Chun-Guang; Xu, Da-Yong; Huang, Chuan-Feng; Pan, Xing-Fu; Zheng, Wei

    2015-07-15

    Baseline blood concentrations of metals are important references for monitoring metal exposure in environmental and occupational settings. The purpose of this study was to determine the blood levels of manganese (Mn), copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd) among the residents (aged 12–60 years old) living in the suburb southwest of Beijing in China and to compare the outcomes with reported values in various developed countries. Blood samples were collected from 648 subjects from March 2009 to February 2010. Metal concentrations in the whole blood were determined by ICP-MS. The geometric means of blood levels of Mn, Cu, Zn, Pb and Cd were 11.4, 802.4, 4665, 42.6, and 0.68 µg/L, respectively. Male subjects had higher blood Pb than the females, while the females had higher blood Mn and Cu than the males. There was no gender difference for blood Cd and Zn. Smokers had higher blood Cu, Zn, and Cd than nonsmokers. There were significant age-related differences in blood levels of all metals studied; subjects in the 17–30 age group had higher blood levels of Mn, Pb, Cu, and Zn, while those in the 46–60 age group had higher Cd than the other age groups. A remarkably lower blood level of Cu and Zn in this population as compared with residents of other developed countries was noticed. Based on the current study, the normal reference ranges for the blood Mn were estimated to be 5.80–25.2 μg/L; for blood Cu, 541–1475 μg/L; for blood Zn, 2349–9492 μg/L; for blood Pb, <100 μg/L; and for blood Cd, <5.30 μg/L in the general population living in Beijing suburbs. - Highlights: • Baseline blood levels of metals in residents of Beijing suburb are investigated. • BMn and BPb in this cohort are higher than those in other developed countries. • Remarkably lower blood levels of Cu and Zn in this Chinese cohort are noticed. • The reference values for blood levels of Mn, Cu, Zn, Pb, and Cd are established.

  10. Surface composition, microstructure and corrosion resistance of AZ31 magnesium alloy irradiated by high-intensity pulsed ion beam

    SciTech Connect (OSTI)

    Li, P., E-mail: pli@sqnc.edu.cn [Department of Physics and Information Engineering, Shangqiu Normal University, Shangqiu 476000 (China); Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Lei, M.K., E-mail: surfeng@dlut.edu.cn [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Zhu, X.P. [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China)

    2011-06-15

    High-intensity pulsed ion beam (HIPIB) irradiation of AZ31 magnesium alloy is performed and electrochemical corrosion experiment of irradiated samples is carried out by using potentiodynamic polarization technology in order to explore the effect of HIPIB irradiation on corrosion resistance of magnesium alloy. The surface composition, cross-sectional morphology and microstructure are characterized by using electron probe microanalyzer, optical microscope and transmission electron microscope, respectively. The results indicated that HIPIB irradiation leads to a significant improvement in corrosion resistance of magnesium alloy, in terms of the considerable increase in both corrosion potential and pitting breakdown potential. The microstructural refinement and surface purification induced by HIPIB irradiation are responsible for the improved corrosion resistance. - Research Highlights: {yields} A modified layer about 30 {mu}m thick is obtained by HIPIB irradiation. {yields} Selective ablation of element/impurity phase having lower melting point is observed. {yields} More importantly, microstructural refinement occurred on the irradiated surface. {yields} The modified layer exhibited a significantly improved corrosion resistance. {yields} Improved corrosion resistance is ascribed to the combined effect induced by HIPIB.

  11. Energy and Technolgy Assessment of Zinc and Magnesium Casting Plants, Technical Report Close-out, August 25,2006

    SciTech Connect (OSTI)

    Twin City Die Castings Company; Tom Heider; North American Die Castings Association

    2006-08-25

    Twin City Die Castings Company of Minneapolis, Minnesota, Twin City Die Castings Company was awarded project No. DE-FG36-05GO15097 to perform plant wide assessments of ten (10) die casting facilities that produce zinc and magnesium alloy castings in order to determine improvements and potential cost savings in energy use. Mr. Heider filled the role of team leader for the project and utilized the North American Die Casting Association (NADCA) to conduct audits at team participant plants so as to hold findings specific to each plant proprietary. The intended benefits of the project were to improve energy use through higher operational and process efficiency for the plants assessed. An improvement in energy efficiency of 5 15% was targeted. The primary objectives of the project was to: 1) Expand an energy and technology tool developed by the NADCA under a previous DOE project titled, Energy and Technology Assessment for Die Casting Plants for assessing aluminum die casting plants to be more specifically applicable to zinc and magnesium die casting facilities. 2) Conduct ten (10) assessments of zinc and magnesium die casting plants, within eight (8) companies, utilizing the assessment tool to identify, evaluate and recommend opportunities to enhance energy efficiency, minimize waste, and improve productivity. 3) Transfer the assessment tool to the die casting industry at large.

  12. Investigation of Iron Aluminide Weld Overlays

    SciTech Connect (OSTI)

    Banovic, S.W.; DuPont, J.B.; Levin, B.F.; Marder, A.R.

    1999-08-02

    Conventional fossil fired boilers have been retrofitted with low NO(sub)x burners in order for the power plants to comply with new clean air regulations. Due to the operating characteristics of these burners, boiler tube sulfidation corrosion typically has been enhanced resulting in premature tube failure. To protect the existing panels from accelerated attack, weld overlay coatings are typically being applied. By depositing an alloy that offers better corrosion resistance than the underlying tube material, the wastage rates can be reduced. While Ni-based and stainless steel compositions are presently providing protection, they are expensive and susceptible to failure via corrosion-fatigue due to microsegregation upon solidification. Another material system presently under consideration for use as a coating in the oxidation/sulfidation environments is iron-aluminum. These alloys are relatively inexpensive, exhibit little microsegregation, and show excellent corrosion resistance. However, their use is limited due to weldability issues and their lack of corrosion characterization in simulated low NO(sub)x gas compositions. Therefore a program was initiated in 1996 to evaluate the use of iron-aluminum weld overlay coatings for erosion/corrosion protection of boiler tubes in fossil fired boilers with low NO(sub)x burners. Investigated properties included weldability, corrosion behavior, erosion resistance, and erosion-corrosion performance.

  13. Next Generation Metallic Iron Nodule Technology in Electric Furnace Steelmaking

    Broader source: Energy.gov [DOE]

    This factsheet describes a research project whose objective is to investigate reducing processing temperature, controlling the gas temperature and gas atmosphere over metalized iron nodules, and effectively using sub-bituminous coal as a reductant for producing high quality metalized iron nodules at low cost.

  14. Next Generation Metallic Iron Nodule Technology in Electric Furnace Steelmaking

    SciTech Connect (OSTI)

    2007-09-01

    This factsheet describes a research project whose objective is to investigate reducing processing temperature, controlling the gas temperature and gas atmosphere over metallized iron nodules, and effectively using sub-bituminous coal as a reductant for producing high quality metallized iron nodules at low cost.

  15. Superconductivity at Dawn of the Iron Age (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Conference: Superconductivity at Dawn of the Iron Age Citation Details In-Document Search Title: Superconductivity at Dawn of the Iron Age Superconductivity is a stunning quantum ...

  16. Electrochemical Deposition of Iron Nanoneedles on Titanium Oxide Nanotubes

    SciTech Connect (OSTI)

    Gan Y. X.; Zhang L.; Gan B.J.

    2011-10-01

    Iron as a catalyst has wide applications for hydrogen generation from ammonia, photodecomposition of organics, and carbon nanotube growth. Tuning the size and shape of iron is meaningful for improving the catalysis efficiency. It is the objective of this work to prepare nanostructured iron with high surface area via electrochemical deposition. Iron nanoneedles were successfully electrodeposited on Ti supported TiO2 nanotube arrays in a chlorine-based electrolyte containing 0.15 M FeCl2 {center_dot} 4H2O and 2.0 M HCl. Transmission electron microscopic analysis reveals that the average length of the nanoneedles is about 200 nm and the thickness is about 10 nm. It has been found that a high overpotential at the cathode made of Ti/TiO2 nanotube arrays is necessary for the formation of the nanoneedles. Cyclic voltammetry test indicates that the electrodeposition of iron nanoneedles is a concentration-limited process.

  17. Large Tensions and Strength of Iron in Different Structure States

    SciTech Connect (OSTI)

    Razorenov, S. V.; Savinykh, A. S.; Kanel, G. I.; Fortov, V. E.

    2006-07-28

    Results of shock-wave experiments with iron single crystals, ultra-fine grain and as-received Armco-iron, at load durations of {approx}20 ns to 200 ns are presented. No evidence of the expected formation of rarefaction shock waves, as predicted by the ab initio calculations, was observed in the range of attained tensile stresses down to -7.6 GPa. The tensile fracture stresses achieved 25-50% of the theoretical iron ultimate strength for a load duration of {approx}10-8 s. The spall strength of a coarse-grain Armco-iron is much less than that of single crystals whereas an intensively deformed Armco-iron with a sub-micron grain size demonstrates nearly the same spall strength as the crystals do.

  18. System and method for producing metallic iron nodules

    DOE Patents [OSTI]

    Bleifuss, Rodney L.; Englund, David J.; Iwasaki, Iwao; Lindgren, Andrew J.; Kiesel, Richard F.

    2011-09-20

    A method for producing metallic iron nodules by assembling a shielding entry system to introduce coarse carbonaceous material greater than 6 mesh in to the furnace atmosphere at location(s) where the temperature of the furnace atmosphere adjacent at least partially reduced reducible iron bearing material is between about 2200 and 2650.degree. F. (1200 and 1450.degree. C.), the shielding entry system adapted to inhibit emission of infrared radiation from the furnace atmosphere and seal the furnace atmosphere from exterior atmosphere while introducing coarse carbonaceous material greater than 6 mesh into the furnace to be distributed over the at least partially reduced reducible iron bearing material, and heating the covered at least partially reduced reducible iron bearing material in a fusion atmosphere to assist in fusion and inhibit reoxidation of the reduced material during fusion to assist in fusion and inhibit reoxidation of the reduced material in forming metallic iron nodules.

  19. Understanding Low-cycle Fatigue Life Improvement Mechanisms in a Pre-twinned Magnesium Alloy

    SciTech Connect (OSTI)

    Wu, Wei; An, Ke

    2015-10-03

    The mechanisms of fatigue life improvement by pre-twinning process in a commercial rolled magnesium (Mg) alloy have been investigated using real-time in situ neutron diffraction under a continuous-loading condition. It is found that by introducing the excess twinned grains through pre-compression along the rolling direction the fatigue life was enhanced approximately 50%, mainly resulting from the prolonged detwinning process and inhibited dislocation slip during reverse tension. Moreover, after pre-twinning process, the removal of the rapid strain hardening during reverse tension leads to a compressive mean stress value and more symmetric shape of stress-strain hysteresis loop. The pre-twinning has significant impacts on the twinning-detwinning characteristics and deformation modes during cyclic loading and greatly facilitates the twinning-detwinning activities in plastic deformation. The cyclic straining leads to the increase of contribution of tensile twinning deformation in overall plastic deformation in both the as-received and pre-deformed sample. The mechanisms of load partitioning in different groups of grains are closely related to the deformation modes in each deformation stage, while the fatigue cycling has little influence on the load sharing. The pre-twinning process provides an easy and cost-effective route to improve the low-cycle fatigue life through manufacturing and processing, which would advance the wide application of light-weight wrought Mg alloys as structural materials.

  20. Effects of Pore Distributions on Ductility of Thin-Walled High Pressure Die-Cast Magnesium

    SciTech Connect (OSTI)

    Choi, Kyoo Sil; Li, Dongsheng; Sun, Xin; Li, Mei; Allison, John

    2013-06-01

    In this paper, a microstructure-based three-dimensional (3D) finite element modeling method is adopted to investigate the effects of porosity in thin-walled high pressure die-cast (HPDC) Magnesium alloys on their ductility. For this purpose, the cross-sections of AM60 casting samples are first examined using optical microscope and X-ray tomography to obtain the general information on the pore distribution features. The experimentally observed pore distribution features are then used to generate a series of synthetic microstructure-based 3D finite element models with different pore volume fractions and pore distribution features. Shear and ductile damage models are adopted in the finite element analyses to induce the fracture by element removal, leading to the prediction of ductility. The results in this study show that the ductility monotonically decreases as the pore volume fraction increases and that the effect of skin region on the ductility is noticeable under the condition of same local pore volume fraction in the center region of the sample and its existence can be beneficial for the improvement of ductility. The further synthetic microstructure-based 3D finite element analyses are planned to investigate the effects of pore size and pore size distribution.

  1. A Rac1--GDP trimer complex binds zinc with tetrahedral and octahedral coordination, displacing magnesium

    SciTech Connect (OSTI)

    Prehna, G.; Stebbins, C

    2007-01-01

    The Rho family of small GTPases represent well characterized signaling molecules that regulate many cellular functions such as actin cytoskeletal arrangement and the cell cycle by acting as molecular switches. A Rac1-GDP-Zn complex has been crystallized in space group P3221 and its crystal structure has been solved at 1.9 {angstrom} resolution. These trigonal crystals reveal the unexpected ability of Rac1 to coordinate Zn atoms in a tetrahedral fashion by use of its biologically relevant switch I and switch II regions. Upon coordination of zinc, the switch I region is stabilized in the GDP-bound conformation and contributes to a Rac1 trimer in the asymmetric unit. Zinc coordination causes switch II to adopt a novel conformation with a symmetry-related molecule. Additionally, zinc was found to displace magnesium from its octahedral coordination at switch I, although GDP binding remained stable. This structure represents the first reported Rac1-GDP-Zn complex, which further underscores the conformational flexibility and versatility of the small GTPase switch regions.

  2. A Rac1-GDP Trimer Complex Binds Zinc with Tetrahedral and Octahedral Coordination, Displacing Magnesium

    SciTech Connect (OSTI)

    Prehna,G.; Stebbins, E.

    2007-01-01

    The Rho family of small GTPases represent well characterized signaling molecules that regulate many cellular functions such as actin cytoskeletal arrangement and the cell cycle by acting as molecular switches. A Rac1-GDP-Zn complex has been crystallized in space group P3{sub 2}21 and its crystal structure has been solved at 1.9 {angstrom} resolution. These trigonal crystals reveal the unexpected ability of Rac1 to coordinate Zn atoms in a tetrahedral fashion by use of its biologically relevant switch I and switch II regions. Upon coordination of zinc, the switch I region is stabilized in the GDP-bound conformation and contributes to a Rac1 trimer in the asymmetric unit. Zinc coordination causes switch II to adopt a novel conformation with a symmetry-related molecule. Additionally, zinc was found to displace magnesium from its octahedral coordination at switch I, although GDP binding remained stable. This structure represents the first reported Rac1-GDP-Zn complex, which further underscores the conformational flexibility and versatility of the small GTPase switch regions.

  3. Tension-compression-tension tertiary twins in coarse-grained polycrystalline pure magnesium at room temperature

    SciTech Connect (OSTI)

    Yu, Qin; Jiang, Yanyao; Wang, Jian

    2015-04-07

    Using electron backscatter diffraction, the microstructural features of tension–compression–tension (T–C–T) tertiary twins are studied in coarse-grained pure polycrystalline magnesium subjected to monotonic compression along the extrusion direction in ambient air. T–C–T tertiary twins are developed due to the formation of a compression–tension double twin inside a primary tension twin. All the observed T–C–T twin variants are of TiCjTj type. TiCi+1Ti+1 (or TiCi–1Ti–1) variants are observed more frequently than TiCi+2Ti+2 (or TiCi–2Ti–2) variants. Moreover, the number of tertiary twin lamellae increases with the applied compressive strain.

  4. CHARACTERIZATION AND FORMABILITY OF CONTINUOUS-CAST AZ31B MAGNESIUM ALLOY SHEETS

    SciTech Connect (OSTI)

    Rohatgi, Aashish; Herling, Darrell R.; Nyberg, Eric A.

    2009-09-24

    The goal of this work is to understand the inter-relationship between the initial properties of continuous-cast magnesium alloy (AZ31B) sheets and their subsequent formability and post-formed mechanical performance for use in cost-effective, lightweight, automotive body panels. As-received sheets, provided by the Automotive Metals Division (AMD-602) team, were characterized by surface roughness measurements using mechanical profilometry. The arithmetic mean deviation of profile (Ra) and the maximum two-point height of profile (Ry) of the as-received sheets ranged from ~0.2-2 ?m and ~2-15 ?m, respectively. Several commercial lubricants were evaluated by thermal analysis and the liquid phase of the lubricants was found to evaporate/decompose upon heating leaving behind a solid residue upon heating to temperatures exceeding ~125-150C. Elevated temperature bending-under-tension (BUT) friction tests were conducted at 350C and the coefficient-of-friction values ranged from a minimum of ~0.1 (for tungsten disulfide lubricant) to ~0.7 when no lubricant was used. These results, in conjunction with those from the forming trials conducted by the AMD-602 team, will be eventually used to determine the role of sheet-die friction in determining the formability of AZ31B sheets.

  5. Characterisation of magnesium potassium phosphate cements blended with fly ash and ground granulated blast furnace slag

    SciTech Connect (OSTI)

    Gardner, Laura J.; Bernal, Susan A.; Walling, Samuel A.; Corkhill, Claire L.; Provis, John L.; Hyatt, Neil C.

    2015-08-15

    Magnesium potassium phosphate cements (MKPCs), blended with 50 wt.% fly ash (FA) or ground granulated blast furnace slag (GBFS) to reduce heat evolution, water demand and cost, were assessed using compressive strength, X-ray diffraction (XRD), scanning electron microscopy (SEM) and nuclear magnetic resonance (NMR) spectroscopy on {sup 25}Mg, {sup 27}Al, {sup 29}Si, {sup 31}P and {sup 39}K nuclei. We present the first definitive evidence that dissolution of the glassy aluminosilicate phases of both FA and GBFS occurred under the pH conditions of MKPC. In addition to the main binder phase, struvite-K, an amorphous orthophosphate phase was detected in FA/MKPC and GBFS/MKPC systems. It was postulated that an aluminium phosphate phase was formed, however, no significant Al–O–P interactions were identified. High-field NMR analysis of the GBFS/MKPC system indicated the potential formation of a potassium-aluminosilicate phase. This study demonstrates the need for further research on these binders, as both FA and GBFS are generally regarded as inert fillers within MKPC.

  6. Passivation dynamics in the anisotropic deposition and stripping of bulk magnesium electrodes during electrochemical cycling

    SciTech Connect (OSTI)

    Wetzel, David J.; Malone, Marvin A.; Haasch, Richard T.; Meng, Yifei; Vieker, Henning; Hahn, Nathan; Golzhauser, Armin; Zuo, Jian-Min; Zavadil, Kevin R.; Gewirth, Andrew A.; Nuzzo, Ralph G.

    2015-08-10

    Rechargeable magnesium (Mg) batteries show promise for use as a next generation technology for high-density energy storage, though little is known about the Mg anode solid electrolyte interphase and its implications for the performance and durability of a Mg-based battery. We explore in this report passivation effects engendered during the electrochemical cycling of a bulk Mg anode, characterizing their influences during metal deposition and dissolution in a simple, nonaqueous, Grignard electrolyte solution (ethylmagnesium bromide, EtMgBr, in tetrahydrofuran). Scanning electron microscopy images of Mg foil working electrodes after electrochemical polarization to dissolution potentials show the formation of corrosion pits. The pit densities so evidenced are markedly potential-dependent. When the Mg working electrode is cycled both potentiostatically and galvanostatically in EtMgBr these pits, formed due to passive layer breakdown, act as the foci for subsequent electrochemical activity. Detailed microscopy, diffraction, and spectroscopic data show that further passivation and corrosion results in the anisotropic stripping of the Mg {0001} plane, leaving thin oxide-comprising passivated side wall structures that demark the {0001} fiber texture of the etched Mg grains. Upon long-term cycling, oxide side walls formed due to the pronounced crystallographic anisotropy of the anodic stripping processes, leading to complex overlay anisotropic, columnar structures, exceeding 50 μm in height. Finally, the passive responses mediating the growth of these structures appear to be an intrinsic feature of the electrochemical growth and dissolution of Mg using this electrolyte.

  7. Understanding Low-cycle Fatigue Life Improvement Mechanisms in a Pre-twinned Magnesium Alloy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wu, Wei; An, Ke

    2015-10-03

    The mechanisms of fatigue life improvement by pre-twinning process in a commercial rolled magnesium (Mg) alloy have been investigated using real-time in situ neutron diffraction under a continuous-loading condition. It is found that by introducing the excess twinned grains through pre-compression along the rolling direction the fatigue life was enhanced approximately 50%, mainly resulting from the prolonged detwinning process and inhibited dislocation slip during reverse tension. Moreover, after pre-twinning process, the removal of the rapid strain hardening during reverse tension leads to a compressive mean stress value and more symmetric shape of stress-strain hysteresis loop. The pre-twinning has significant impactsmore » on the twinning-detwinning characteristics and deformation modes during cyclic loading and greatly facilitates the twinning-detwinning activities in plastic deformation. The cyclic straining leads to the increase of contribution of tensile twinning deformation in overall plastic deformation in both the as-received and pre-deformed sample. The mechanisms of load partitioning in different groups of grains are closely related to the deformation modes in each deformation stage, while the fatigue cycling has little influence on the load sharing. The pre-twinning process provides an easy and cost-effective route to improve the low-cycle fatigue life through manufacturing and processing, which would advance the wide application of light-weight wrought Mg alloys as structural materials.« less

  8. Passivation dynamics in the anisotropic deposition and stripping of bulk magnesium electrodes during electrochemical cycling

    SciTech Connect (OSTI)

    Wetzel, David J.; Malone, Marvin A.; Haasch, Richard T.; Meng, Yifei; Vieker, Henning; Hahn, Nathan; Golzhauser, Armin; Zuo, Jian-Min; Zavadil, Kevin R.; Gewirth, Andrew A.; Nuzzo, Ralph G.

    2015-08-10

    Rechargeable magnesium (Mg) batteries show promise for use as a next generation technology for high-density energy storage, though little is known about the Mg anode solid electrolyte interphase and its implications for the performance and durability of a Mg-based battery. We explore in this report passivation effects engendered during the electrochemical cycling of a bulk Mg anode, characterizing their influences during metal deposition and dissolution in a simple, nonaqueous, Grignard electrolyte solution (ethylmagnesium bromide, EtMgBr, in tetrahydrofuran). Scanning electron microscopy images of Mg foil working electrodes after electrochemical polarization to dissolution potentials show the formation of corrosion pits. The pit densities so evidenced are markedly potential-dependent. When the Mg working electrode is cycled both potentiostatically and galvanostatically in EtMgBr these pits, formed due to passive layer breakdown, act as the foci for subsequent electrochemical activity. Detailed microscopy, diffraction, and spectroscopic data show that further passivation and corrosion results in the anisotropic stripping of the Mg {0001} plane, leaving thin oxide-comprising passivated side wall structures that demark the {0001} fiber texture of the etched Mg grains. Upon long-term cycling, oxide side walls formed due to the pronounced crystallographic anisotropy of the anodic stripping processes, leading to complex overlay anisotropic, columnar structures, exceeding 50 ?m in height. Finally, the passive responses mediating the growth of these structures appear to be an intrinsic feature of the electrochemical growth and dissolution of Mg using this electrolyte.

  9. Chemical and mechanical consequences of environmental barrier coating exposure to calcium-magnesium-aluminosilicate.

    SciTech Connect (OSTI)

    Harder, B.; Ramirez-Rico, J.; Almer, J. D.; Kang, L.; Faber, K.

    2011-06-01

    The success of Si-based ceramics as high-temperature structural materials for gas turbine applications relies on the use of environmental barrier coatings (EBCs) with low silica activity, such as Ba{sub 1-x}Sr{sub x}Al{sub 2}Si{sub 2}O{sub 8} (BSAS), which protect the underlying components from oxidation and corrosion in combustion environments containing water vapor. One of the current challenges concerning EBC lifetime is the effect of sandy deposits of calcium-magnesium-aluminosilicate (CMAS) glass that melt during engine operation and react with the EBC, changing both its composition and stress state. In this work, we study the effect of CMAS exposure at 1300 C on the residual stress state and composition in BSAS-mullite-Si-SiC multilayers. Residual stresses were measured in BSAS multilayers exposed to CMAS for different times using high-energy X-ray diffraction. Their microstructure was studied using a combination of scanning electron microscopy and transmission electron microscopy techniques. Our results show that CMAS dissolves the BSAS topcoat preferentially through the grain boundaries, dislodging the grains and changing the residual stress state in the topcoat to a nonuniform and increasingly compressive stress state with increasing exposure time. The presence of CMAS accelerates the hexacelsian-to-celsian phase transformation kinetics in BSAS, which reacts with the glass by a solution-reprecipitation mechanism. Precipitates have crystallographic structures consistent with Ca-doped celsian and Ba-doped anorthite.

  10. Assessment of Computer Simulation Software and Process Data for High Pressure Die Casting of Magnesium

    SciTech Connect (OSTI)

    Sabau, Adrian S; Hatfield, Edward C; Dinwiddie, Ralph Barton; Kuwana, Kazunori; Viti, Valerio; Hassan, Mohamed I; Saito, Kozo

    2007-09-01

    Computer software for the numerical simulation of solidification and mold filling is an effective design tool for cast structural automotive magnesium components. A review of commercial software capabilities and their validation procedures was conducted. Aside form the software assessment, the program addressed five main areas: lubricant degradation, lubricant application, gate atomization, and heat transfer at metal mold interfaces. A test stand for lubricant application was designed. A sensor was used for the direct measurement of heat fluxes during lubricant application and casting solidification in graphite molds. Spray experiments were conducted using pure deionized water and commercial die lubricants. The results show that the sensor can be used with confidence for measuring heat fluxes under conditions specific to the die lube application. The data on heat flux was presented in forms suitable for use in HPDC simulation software. Severe jet breakup and atomization phenomena are likely to occur due to high gate velocities in HPDC. As a result of gate atomization, droplet flow affects the mold filling pattern, air entrapment, skin formation, and ensuing defects. Warm water analogue dies were designed for obtaining experimental data on mold filling phenomena. Data on break-up jet length, break-up pattern, velocities, and droplet size distribution were obtained experimentally and was used to develop correlations for jet break-up phenomena specific to die casting gate configurations.

  11. System and method for producing metallic iron

    DOE Patents [OSTI]

    Bleifuss, Rodney L; Englund, David J; Iwasaki, Iwao; Fosnacht, Donald R; Brandon, Mark M; True, Bradford G

    2013-09-17

    A hearth furnace for producing metallic iron material has a furnace housing having a drying/preheat zone, a conversion zone, a fusion zone, and optionally a cooling zone, the conversion zone is between the drying/preheat zone and the fusion zone. A moving hearth is positioned within the furnace housing. A hood or separation barrier within at least a portion of the conversion zone, fusion zone or both separates the fusion zone into an upper region and a lower region with the lower region adjacent the hearth and the upper region adjacent the lower region and spaced from the hearth. An injector introduces a gaseous reductant into the lower region adjacent the hearth. A combustion region may be formed above the hood or separation barrier.

  12. System and method for producing metallic iron

    DOE Patents [OSTI]

    Bleifuss, Rodney L.; Englund, David J.; Iwasaki, Iwao; Fosnacht, Donald R.; Brandon, Mark M.; True, Bradford G.

    2012-01-17

    A hearth furnace 10 for producing metallic iron material has a furnace housing 11 having a drying/preheat zone 12, a conversion zone 13, a fusion zone 14, and optionally a cooling zone 15, the conversion zone 13 is between the drying/preheat zone 12 and the fusion zone 14. A moving hearth 20 is positioned within the furnace housing 11. A hood or separation barrier 30 within at least a portion of the conversion zone 13, fusion zone 14 or both separates the fusion zone 14 into an upper region and a lower region with the lower region adjacent the hearth 20 and the upper region adjacent the lower region and spaced from the hearth 20. An injector introduces a gaseous reductant into the lower region adjacent the hearth 20. A combustion region may be formed above the hood or separation barrier.

  13. Multiple hearth furnace for reducing iron oxide

    DOE Patents [OSTI]

    Brandon, Mark M. (Charlotte, NC); True, Bradford G. (Charlotte, NC)

    2012-03-13

    A multiple moving hearth furnace (10) having a furnace housing (11) with at least two moving hearths (20) positioned laterally within the furnace housing, the hearths moving in opposite directions and each moving hearth (20) capable of being charged with at least one layer of iron oxide and carbon bearing material at one end, and being capable of discharging reduced material at the other end. A heat insulating partition (92) is positioned between adjacent moving hearths of at least portions of the conversion zones (13), and is capable of communicating gases between the atmospheres of the conversion zones of adjacent moving hearths. A drying/preheat zone (12), a conversion zone (13), and optionally a cooling zone (15) are sequentially positioned along each moving hearth (30) in the furnace housing (11).

  14. Predict carbonation rate on iron catalyst

    SciTech Connect (OSTI)

    Dry, M.E.

    1980-02-01

    On solely thermodynamic grounds, the main hydrocarbon product of the Fischer-Tropsch reaction should be methane; in practice, however, carbon is frequently produced as well and deposited on the iron catalyst, fouling the active surface sites. South African Coal, Oil and Gas Corp., Ltd.'s experiments with a fluidized Fischer-Tropsch catalyst bed demonstrate that the rate of carbon deposition is strongly dependent on the hydrogen partial pressure in the reactor, much less dependent on the CO pressure, and not affected at all by the pressure of CO/sub 2/. A suggested reaction scheme for the Fischer-Tropsch synthesis explains these observations and provides a basis for a correlation useful in predicting carbon-deposition rates.

  15. Rhombohedral magnetostriction in dilute iron (Co) alloys

    SciTech Connect (OSTI)

    Jones, Nicholas J. Wun-Fogle, Marilyn; Restorff, J. B.; Petculescu, Gabriela; Clark, Arthur E.; Hathaway, Kristl B.; Schlagel, Deborah; Lograsso, Thomas A.

    2015-05-07

    Iron is a well-utilized material in structural and magnetic applications. This does not mean, however, that it is well understood, especially in the field of magnetostriction. In particular, the rhombohedral magnetostriction of iron, λ{sub 111}, is anomalous in two respects: it is negative in sign, in disagreement with the prediction of first principles theory, and its magnitude decreases with increasing temperature much too rapidly to be explained by a power law dependence on magnetization. These behaviors could arise from the location of the Fermi level, which leaves a small region of the majority 3d t{sub 2g} states unfilled, possibly favoring small internal displacements that split these states. If this view is correct, adding small amounts of Co to Fe fills some of these states, and the value of λ{sub 111} should increase toward a positive value, as predicted for perfect bcc Fe. We have measured the magnetostriction coefficients (λ{sub 111} and λ{sub 100}) of pure Fe, Fe{sub 97}Co{sub 3}, and Fe{sub 94}Co{sub 6} single crystals from 77 K to 450 K. Resonant ultrasound spectroscopy has been used to check for anomalies in the associated elastic constants, c{sub 44} and c′. The additional electrons provided by the cobalt atoms indeed produced positive contributions to both magnetostriction constants, λ{sub 111} and λ{sub 100}, exhibiting an increase of 2.8 × 10{sup −6} per at. % Co for λ{sub 111} and 3.8 × 10{sup −6} per at. % Co for λ{sub 100}.

  16. Matrix-filler interfaces and physical properties of metal matrix composites with negative thermal expansion manganese nitride

    SciTech Connect (OSTI)

    Takenaka, Koshi; Kuzuoka, Kota; Sugimoto, Norihiro

    2015-08-28

    Copper matrix composites containing antiperovskite manganese nitrides with negative thermal expansion (NTE) were formed using pulsed electric current sintering. Energy dispersive X-ray spectroscopy revealed that the chemically reacted region extends over 10 μm around the matrix–filler interfaces. The small-size filler was chemically deteriorated during formation of composites and it lost the NTE property. Therefore, we produced the composites using only the nitride particles having diameter larger than 50 μm. The large-size filler effectively suppressed the thermal expansion of copper and improved the conductivity of the composites to the level of pure aluminum. The present composites, having high thermal conductivity and low thermal expansion, are suitable for practical applications such as a heat radiation substrate for semiconductor devices.

  17. Low frequency sonochemical synthesis of nanoporous amorphous manganese dioxide (MnO{sub 2}) and adsorption of remazol reactive dye

    SciTech Connect (OSTI)

    Hasan, Siti Zubaidah; Yusop, Muhammad Rahimi; Othman, Mohamed Rozali

    2015-09-25

    Nanoporous amorphous-MnO{sub 2} was synthesized by sonochemical process (sonication) on the solid manganese (II) acetate tetrahydrate (Mn(CH{sub 3}COO){sub 2}.4H{sub 2}O) in 0.1 M KMnO{sub 4}. The product was characterized by X-ray diffraction (XRD), morphology of the material was scanned by Field Emission Scanning Electron Microscopy (FE-SEM) and absorptions of MnO{sub 2} bonding was characterized by Fourier Transform Infra-Red Spectrometer (FT-IR). Remazol reactive dye or Red 3BS, was used in the adsorption study using nanoporous amorphous-MnO{sub 2}. In batch experiment, 10 ppm of Remazol reactive dye was used and experiment was carried out at room temperature. Adsorption of Remazol dye on 0.2g synthesized nanoporous amorphous-MnO{sub 2} showed 99 – 100% decolorization.

  18. Theoretical Investigation of Hydrogen Adsorption and Dissociation on Iron and Iron Carbide Surfaces Using the ReaxFF Reactive Force Field Method

    SciTech Connect (OSTI)

    Zou, Chenyu; van Duin, Adri C.T.; Sorescu, Dan C.

    2012-06-01

    We have developed a ReaxFF reactive force field to describe hydrogen adsorption and dissociation on iron and iron carbide surfaces relevant for simulation of FischerTropsch (FT) synthesis on iron catalysts. This force field enables large system (>>1000 atoms) simulations of hydrogen related reactions with iron. The ReaxFF force field parameters are trained against a substantial amount of structural and energetic data including the equations of state and heats of formation of iron and iron carbide related materials, as well as hydrogen interaction with iron surfaces and different phases of bulk iron. We have validated the accuracy and applicability of ReaxFF force field by carrying out molecular dynamics simulations of hydrogen adsorption, dissociation and recombination on iron and iron carbide surfaces. The barriers and reaction energies for molecular dissociation on these two types of surfaces have been compared and the effect of subsurface carbon on hydrogen interaction with iron surface is evaluated. We found that existence of carbon atoms at subsurface iron sites tends to increase the hydrogen dissociation energy barrier on the surface, and also makes the corresponding hydrogen dissociative state relatively more stable compared to that on bare iron. These properties of iron carbide will affect the dissociation rate of H{sub 2} and will retain more surface hydride species, thus influencing the dynamics of the FT synthesis process.

  19. TECHNOLOGY DEVELOPMENT FOR IRON AND COBALT FISCHER-TROPSCH CATALYSTS

    SciTech Connect (OSTI)

    Burtron H. Davis

    1999-04-30

    The impact of activation procedure on the phase composition of precipitated iron Fischer-Tropsch (FT) catalysts has been studied. Catalyst samples taken during activation and FT synthesis have been characterized by Moessbauer spectroscopy. Formation of iron carbide is necessary for high FT activity. Hydrogen activation of precipitated iron catalysts results in reduction to predominantly metallic iron and Fe{sub 3}O{sub 4}. Metallic iron is not stable under FT 3 4 conditions and is rapidly converted to {epsilon}{prime}-Fe{sub 2.2}C. Activation with carbon monoxide or syngas 2.2 with low hydrogen partial pressure reduces catalysts to {chi}-Fe{sub 5}C{sub 2} and a small amount of 5 2 superparamagnetic carbide. Exposure to FT conditions partially oxidizes iron carbide to Fe{sub 3}O{sub 4}; however, catalysts promoted with potassium or potassium and copper maintain a constant carbide content and activity after the initial oxidation. An unpromoted iron catalyst which was activated with carbon monoxide to produce 94% {chi}-Fe{sub 5}C{sub 2}, deactivated rapidly as the carbide was oxidized to Fe{sub 3}O{sub 4}. No difference in activity, stability or deactivation rate was found for {chi}-Fe{sub 5}C{sub 2} and {epsilon}{prime}-Fe{sub 2.2}C.

  20. Iron aluminide alloy coatings and joints, and methods of forming

    DOE Patents [OSTI]

    Wright, Richard N. (Idaho Falls, ID); Wright, Julie K. (Idaho Falls, ID); Moore, Glenn A. (Idaho Falls, ID)

    1994-01-01

    A method of joining two bodies together, at least one of the bodies being predominantly composed of metal, the two bodies each having a respective joint surface for joining with the joint surface of the other body, the two bodies having a respective melting point, includes the following steps: a) providing aluminum metal and iron metal on at least one of the joint surfaces of the two bodies; b) after providing the aluminum metal and iron metal on the one joint surface, positioning the joint surfaces of the two bodies in juxtaposition against one another with the aluminum and iron positioned therebetween; c) heating the aluminum and iron on the juxtaposed bodies to a temperature from greater than or equal to 600.degree. C. to less than the melting point of the lower melting point body; d) applying pressure on the juxtaposed surfaces; and e) maintaining the pressure and the temperature for a time period effective to form the aluminum and iron into an iron aluminide alloy joint which bonds the juxtaposed surfaces and correspondingly the two bodies together. The method can also effectively be used to coat a body with an iron aluminide coating.

  1. Iron aluminide alloy coatings and joints, and methods of forming

    DOE Patents [OSTI]

    Wright, R.N.; Wright, J.K.; Moore, G.A.

    1994-09-27

    Disclosed is a method of joining two bodies together, at least one of the bodies being predominantly composed of metal, the two bodies each having a respective joint surface for joining with the joint surface of the other body, the two bodies having a respective melting point, includes the following steps: (a) providing aluminum metal and iron metal on at least one of the joint surfaces of the two bodies; (b) after providing the aluminum metal and iron metal on the one joint surface, positioning the joint surfaces of the two bodies in juxtaposition against one another with the aluminum and iron positioned therebetween; (c) heating the aluminum and iron on the juxtaposed bodies to a temperature from greater than or equal to 600 C to less than the melting point of the lower melting point body; (d) applying pressure on the juxtaposed surfaces; and (e) maintaining the pressure and the temperature for a time period effective to form the aluminum and iron into an iron aluminide alloy joint which bonds the juxtaposed surfaces and correspondingly the two bodies together. The method can also effectively be used to coat a body with an iron aluminide coating.

  2. Rechargeability and economic aspects of alkaline zinc-manganese dioxide cells for electrical storage and load leveling

    SciTech Connect (OSTI)

    Ingale, ND; Gallaway, JW; Nyce, M; Couzis, A; Banerjee, S

    2015-02-15

    Batteries based on manganese dioxide (MnO2) cathodes are good candidates for grid-scale electrical energy storage, as MnO2 is low-cost, relatively energy dense, safe, water-compatible, and non-toxic. Alkaline Zn-MnO2 cells, if cycled at reduced depth of discharge (DOD), have been found to achieve substantial cycle life with battery costs projected to be in the range of $100 to 150 per kWh (delivered). Commercialization of rechargeable Zn-MnO2 batteries has in the past been hampered due to poor cycle life. In view of this, the work reported here focuses on the long-term rechargeability of prismatic MnO2 cathodes at reduced DOD when exposed to the effects of Zn anodes and with no additives or specialty materials. Over 3000 cycles is shown to be obtainable at 10% DOD with energy efficiency >80%. The causes of capacity fade during long-term cycling are also investigated and appear to be mainly due to the formation of irreversible manganese oxides in the cathode. Analysis of the data indicates that capacity loss is rapid in the first 250 cycles, followed by a regime of stability that can last for thousands of cycles. A model has been developed that captures the behavior of the cells investigated using measured state of charge (SOC) data as input. An approximate economic analysis is also presented to evaluate the economic viability of Zn-MnO2 batteries based on the experiments reported here. (C) 2014 Elsevier B.V. All rights reserved.

  3. Spall behavior of cast iron with varying microstructures

    SciTech Connect (OSTI)

    Plume, Gifford; Rousseau, Carl-Ernst

    2014-07-21

    The spall strength of cast iron with varying microstructures has been investigated using plate impact at moderate speed. Stress history measurements were made with manganin stress gauges embedded between the back face of the specimen and a low impedance polycarbonate backing. Five separate cast irons were tested. Four of these consisted of gray cast iron with graphite in flake form, with three classified as Type VII A2 and the fourth containing a bimodal distribution of Types VII A4 and VII D8. The fifth casting consisted of ductile cast iron with graphite in nodular form, classified as Type I, size class 5. The spall strength for the Type VII A2 gray cast irons varied between 40 and 370 MPa, and that of the additional gray cast iron, between 410 and 490 MPa. The spall strength of the ductile cast iron fell within the range of 0.94–1.2 GPa. It is shown that the spall strength is linked to the damage level at the spall plane, where an increased level of tensile stress is required to generate higher levels of damage. Post mortem analysis was performed on the recovered samples, revealing the graphite phase to be the primary factor governing the spall fracture of cast irons, where crack nucleation is directly correlated to the debonding of graphite from the metal matrix. The average length of graphite found within a casting is linked to the material's strength, where strength increases as a function of decreasing length. The morphology and mean free path of graphite precipitates further govern the subsequent coalescence of initiated cracks to form a complete fracture plane. In cases where graphite spacing is large, increased energy level is required to complete the fracture process. A secondary factor governing the spall fracture of cast irons has also been linked to the microstructure of the metal matrix, with pearlite yielding higher spall strengths than free ferrite.

  4. A Double-Blind Placebo-Controlled Randomized Clinical Trial With Magnesium Oxide to Reduce Intrafraction Prostate Motion for Prostate Cancer Radiotherapy

    SciTech Connect (OSTI)

    Lips, Irene M.; Gils, Carla H. van; Kotte, Alexis N.T.J.; Leerdam, Monique E. van; Franken, Stefan P.G.; Heide, Uulke A. van der; Vulpen, Marco van

    2012-06-01

    Purpose: To investigate whether magnesium oxide during external-beam radiotherapy for prostate cancer reduces intrafraction prostate motion in a double-blind, placebo-controlled randomized trial. Methods and Materials: At the Department of Radiotherapy, prostate cancer patients scheduled for intensity-modulated radiotherapy (77 Gy in 35 fractions) using fiducial marker-based position verification were randomly assigned to receive magnesium oxide (500 mg twice a day) or placebo during radiotherapy. The primary outcome was the proportion of patients with clinically relevant intrafraction prostate motion, defined as the proportion of patients who demonstrated in {>=}50% of the fractions an intrafraction motion outside a range of 2 mm. Secondary outcome measures included quality of life and acute toxicity. Results: In total, 46 patients per treatment arm were enrolled. The primary endpoint did not show a statistically significant difference between the treatment arms with a percentage of patients with clinically relevant intrafraction motion of 83% in the magnesium oxide arm as compared with 80% in the placebo arm (p = 1.00). Concerning the secondary endpoints, exploratory analyses demonstrated a trend towards worsened quality of life and slightly more toxicity in the magnesium oxide arm than in the placebo arm; however, these differences were not statistically significant. Conclusions: Magnesium oxide is not effective in reducing the intrafraction prostate motion during external-beam radiotherapy, and therefore there is no indication to use it in clinical practice for this purpose.

  5. Evidence for a Weak Iron Core at Earth's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence for a Weak Iron Core at Earth's Center Print Seismic waves that pass through the center of the Earth travel faster going from pole to pole than along the equatorial plane-why? One theory is that the grains of iron that make up most of the solid inner core could be aligned in a way that transmits waves more efficiently in one direction than the other. Recent evidence for this "texturing" of iron grains in the Earth's inner core comes from x-ray spectroscopy and diffraction

  6. Evidence for a Weak Iron Core at Earth's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence for a Weak Iron Core at Earth's Center Print Seismic waves that pass through the center of the Earth travel faster going from pole to pole than along the equatorial plane-why? One theory is that the grains of iron that make up most of the solid inner core could be aligned in a way that transmits waves more efficiently in one direction than the other. Recent evidence for this "texturing" of iron grains in the Earth's inner core comes from x-ray spectroscopy and diffraction

  7. Iron-carbon compacts and process for making them

    DOE Patents [OSTI]

    Sheinberg, Haskell

    2000-01-01

    The present invention includes iron-carbon compacts and a process for making them. The process includes preparing a slurry comprising iron powder, furfuryl alcohol, and a polymerization catalyst for initiating the polymerization of the furfuryl alcohol into a resin, and heating the slurry to convert the alcohol into the resin. The resulting mixture is pressed into a green body and heated to form the iron-carbon compact. The compact can be used as, or machined into, a magnetic flux concentrator for an induction heating apparatus.

  8. The Iron Spin Transition in the Earth's Lower Mantle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Iron Spin Transition in the Earth's Lower Mantle The Iron Spin Transition in the Earth's Lower Mantle Print Wednesday, 30 April 2008 00:00 It is now known that the iron present in minerals of the lower mantle of the Earth undergoes a pressure-induced transition with pairing of the spins of its 3d electrons. A team from the University of California, Berkeley, Tel Aviv University, and Lawrence Livermore National Laboratory has used x-ray diffraction at very high pressure to investigate the

  9. Probing iron at Super-Earth core conditions

    SciTech Connect (OSTI)

    Amadou, N.; Brambrink, E.; Vinci, T.; Benuzzi-Mounaix, A.; Huser, G.; Brygoo, S.; Morard, G.; Guyot, F.; Resseguier, T. de; Mazevet, S.; Miyanishi, K.; Ozaki, N.; Kodama, R.; Henry, O.; Raffestin, D.; Boehly, T.; and others

    2015-02-15

    In this paper, we report on the quasi-isentropic compression of an iron sample using ramp shaped laser irradiation. This technique allows us to quasi-isentropically compress iron up to 700 GPa and 8500 K. To our knowledge, these data are the highest pressures reached on iron in off-Hugoniot conditions and the closest to the thermodynamic states thought to exist in Earth-like planetary cores. The experiment was performed on the Ligne d'Intégration laser facility at CESTA, Bordeaux, France.

  10. Evidence for a Weak Iron Core at Earth's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence for a Weak Iron Core at Earth's Center Print Seismic waves that pass through the center of the Earth travel faster going from pole to pole than along the equatorial plane-why? One theory is that the grains of iron that make up most of the solid inner core could be aligned in a way that transmits waves more efficiently in one direction than the other. Recent evidence for this "texturing" of iron grains in the Earth's inner core comes from x-ray spectroscopy and diffraction

  11. Evidence for a Weak Iron Core at Earth's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence for a Weak Iron Core at Earth's Center Print Seismic waves that pass through the center of the Earth travel faster going from pole to pole than along the equatorial plane-why? One theory is that the grains of iron that make up most of the solid inner core could be aligned in a way that transmits waves more efficiently in one direction than the other. Recent evidence for this "texturing" of iron grains in the Earth's inner core comes from x-ray spectroscopy and diffraction

  12. Evidence for a Weak Iron Core at Earth's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence for a Weak Iron Core at Earth's Center Print Seismic waves that pass through the center of the Earth travel faster going from pole to pole than along the equatorial plane-why? One theory is that the grains of iron that make up most of the solid inner core could be aligned in a way that transmits waves more efficiently in one direction than the other. Recent evidence for this "texturing" of iron grains in the Earth's inner core comes from x-ray spectroscopy and diffraction

  13. Evidence for a Weak Iron Core at Earth's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence for a Weak Iron Core at Earth's Center Print Seismic waves that pass through the center of the Earth travel faster going from pole to pole than along the equatorial plane-why? One theory is that the grains of iron that make up most of the solid inner core could be aligned in a way that transmits waves more efficiently in one direction than the other. Recent evidence for this "texturing" of iron grains in the Earth's inner core comes from x-ray spectroscopy and diffraction

  14. Superconductivity at Dawn of the Iron Age (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; COPPER OXIDES; DIMENSIONS; IRON; PHYSICS; PNICTIDES; SUPERCONDUCTIVITY; SUPERCONDUCTORS; SYNCHROTRON ...

  15. Third (March 2006) Coring and Analysis of Zero-Valent Iron Permeable Reactive Barrier, Monticello, Utah

    Broader source: Energy.gov [DOE]

    Third (March 2006) Coring and Analysis of Zero-Valent Iron Permeable Reactive Barrier, Monticello, Utah

  16. Dispersivity Testing of Zero-Valent Iron Treatment Cells: Monticello, Utah, November 2005 Through February 2008

    Broader source: Energy.gov [DOE]

    Dispersivity Testing of Zero-Valent Iron Treatment Cells: Monticello, Utah, November 2005 Through February 2008

  17. A magnesium-carboxylate framework showing luminescent sensing for CS{sub 2} and nitroaromatic compounds

    SciTech Connect (OSTI)

    Wu, Zhao-Feng; Tan, Bin; Feng, Mei-Ling; Du, Cheng-Feng; Huang, Xiao-Ying

    2015-03-15

    A magnesium metal-organic framework compound, namely [NH{sub 2}(CH{sub 3}){sub 2}][Mg{sub 3}(NDC){sub 2.5}(HCO{sub 2}){sub 2}(DMF){sub 0.75}(H{sub 2}O){sub 0.25}]·1.25DMF·0.75H{sub 2}O (1) (H{sub 2}NDC=1,4-naphthalene dicarboxylic acid, DMF=N,N′-dimethylformamide), has been synthesized in solvothermal conditions and structurally characterized. It features a three-dimensionally anionic framework with aligned channels parallel to the b-axis. Luminescent studies indicated that it showed significant luminescence quenching for carbon disulfide (CS{sub 2}) and nitrobenzene after being activated, at a content of only 3.0 and 0.1 vol% in DMF, respectively. In addition, the activated sample showed sensitive luminescence quenching for 1,3,5-trinitrophenol with a low concentration of 5×10{sup −5} mol/L. - Graphical abstract: Presented is a microporous 3D Mg-MOF, namely, [NH{sub 2}(CH{sub 3}){sub 2}][Mg{sub 3}(NDC){sub 2.5}(HCO{sub 2}){sub 2}(DMF){sub 0.75}(H{sub 2}O){sub 0.25}]·1.25DMF·0.75H{sub 2}O (1) (H{sub 2}NDC=1,4-naphthalene dicarboxylic acid) showing significant luminescence quenching for carbon disulfide and nitrobenzene. - Highlights: • A microporous 3D metal-organic framework based on Mg. • The compound shows significant luminescence quenching for CS{sub 2} and nitrobenzene after activated. • The compound shows sensitive luminescence quenching for 1,3,5-trinitrophenol with a low concentration of 5×10{sup −5} mol/L.

  18. Passivation dynamics in the anisotropic deposition and stripping of bulk magnesium electrodes during electrochemical cycling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wetzel, David J.; Malone, Marvin A.; Haasch, Richard T.; Meng, Yifei; Vieker, Henning; Hahn, Nathan; Golzhauser, Armin; Zuo, Jian-Min; Zavadil, Kevin R.; Gewirth, Andrew A.; et al

    2015-08-10

    Rechargeable magnesium (Mg) batteries show promise for use as a next generation technology for high-density energy storage, though little is known about the Mg anode solid electrolyte interphase and its implications for the performance and durability of a Mg-based battery. We explore in this report passivation effects engendered during the electrochemical cycling of a bulk Mg anode, characterizing their influences during metal deposition and dissolution in a simple, nonaqueous, Grignard electrolyte solution (ethylmagnesium bromide, EtMgBr, in tetrahydrofuran). Scanning electron microscopy images of Mg foil working electrodes after electrochemical polarization to dissolution potentials show the formation of corrosion pits. The pitmore » densities so evidenced are markedly potential-dependent. When the Mg working electrode is cycled both potentiostatically and galvanostatically in EtMgBr these pits, formed due to passive layer breakdown, act as the foci for subsequent electrochemical activity. Detailed microscopy, diffraction, and spectroscopic data show that further passivation and corrosion results in the anisotropic stripping of the Mg {0001} plane, leaving thin oxide-comprising passivated side wall structures that demark the {0001} fiber texture of the etched Mg grains. Upon long-term cycling, oxide side walls formed due to the pronounced crystallographic anisotropy of the anodic stripping processes, leading to complex overlay anisotropic, columnar structures, exceeding 50 μm in height. Finally, the passive responses mediating the growth of these structures appear to be an intrinsic feature of the electrochemical growth and dissolution of Mg using this electrolyte.« less

  19. Cyclopentadienyl-bis(oxazoline) magnesium and zirconium complexes in aminoalkene hydroaminations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Eedugurala, Naresh; Hovey, Megan; Ho, Hung -An; Jana, Barun; Lampland, Nicole L.; Ellern, Arkady; Sadow, Aaron D.

    2015-11-25

    Here, a new class of cyclopentadiene-bis(oxazoline) compounds and their piano-stool-type organometallic complexes have been prepared as catalysts for hydroamination of aminoalkenes. The two compounds MeC(OxMe2)2C5H5 (BoMCpH; OxMe2 = 4,4-dimethyl-2-oxazoline) and MeC(OxMe2)2C5Me4H (BoMCptetH) are synthesized from C5R4HI (R = H, Me) and MeC(OxMe2)2Li. These cyclopentadiene-bis(oxazolines) are converted into ligands that support a variety of metal centers in piano-stool-type geometries, and here we report the preparation of Mg, Tl, Ti, and Zr compounds. BoMCpH and BoMCptetH react with MgMe2(O2C4H8)2 to give the magnesium methyl complexes {BoMCp}MgMe and {BoMCptet}MgMe. BoMCpH and BoMCptetH are converted to BoMCpTl and BoMCptetTl by reaction with TlOEt. Themore » thallium derivatives react with TiCl3(THF)3 to provide [{BoMCp}TiCl(μ-Cl)]2 and [{BoMCptet}TiCl(μ-Cl)]2, the former of which is crystallographically characterized as a dimeric species. BoMCpH and Zr(NMe2)4 react to eliminate dimethylamine and afford {BoMCp}Zr(NMe2)3, which is crystallographically characterized as a monomeric four-legged piano-stool compound. {BoMCp}Zr(NMe2)3, {BoMCp}MgMe, and {BoMCptet}MgMe are efficient catalysts for the hydroamination/cyclization of aminoalkenes under mild conditions.« less

  20. Color-Center Production and Formation in Electron-Irradiated Magnesium Aluminate Spinel and Ceria

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Costantini, Jean-Marc; Lelong, Gerald; Guillaumet, Maxime; Weber, William J.; Takaki, Seiya; Yasuda, Kazuhiro

    2016-06-20

    Single crystals of magnesium aluminate spinel (MgAl2O4) with (100) or (110) orientations and cerium dioxide or ceria (CeO2) were irradiated by 1.0-MeV and 2.5-MeV electrons in a high fluence range. Point-defect production was studied by off-line UV-visible optical spectroscopy after irradiation. For spinel, regardless of both crystal orientation and electron energy, two characteristic broad bands centered at photon energies of 5.4 eV and 4.9 eV were assigned to F and F+ centers (neutral and singly-ionized oxygen vacancies), respectively, on the basis of available literature data. No clear differences in colour-centre formation were observed for the two crystal orientations. Using calculationsmore » of displacement cross sections by elastic collisions, these results are consistent with a very large threshold displacement energy (200 eV) for oxygen atoms at RT. A third very broad band centered at 3.7 eV might be attributed either to an oxygen hole center (V-type center) or an F2 dimer center (oxygen di-vacancy). The onset of recovery of these color centers took place at 200°C with almost full bleaching at 600°C. Activation energies (~0.3-0.4 eV) for defect recovery were deduced from the isochronal annealing data by using a first-order kinetics analysis. For ceria, a sub band-gap absorption feature peaked at ~3.1 eV was recorded for 2.5-MeV electron irradiation only. Assuming a ballistic process, we suggest that the latter defect might result from cerium atom displacement on the basis of computed cross sections.« less

  1. Final Scientific/Technical Report--In-Situ Generation of Iron-Chromium Precipitates for Long Term Immobilization of Chromium at the Hanford Site

    SciTech Connect (OSTI)

    Butler, Elizabeth C.; Krumholz, Lee R.; Madden, Andrew S.; Hansel, Colleen M.

    2013-12-13

    Hexavalent chromium (Cr(VI)) is a toxic ground water contaminant widespread at the Hanford site and many other industrial facilities. A common remediation method for Cr(VI) is in situ reduction/immobilization, in which soluble Cr(VI) is reduced to the less soluble trivalent Cr (Cr(III)). If iron (Fe) minerals are present during the process, Cr(III) precipitates as a mixed Fe(III)-Cr(III) (Fe-Cr) solid. The objective of this exploratory research was to obtain preliminary evidence about the relationships among the method of Cr(VI) reduction (i.e., abiotic or microbial), the properties of the resulting Fe-Cr precipitates, and their tendencies to release soluble Cr(VI) in the presence of the common manganese oxide birnessite. The results of this exploratory research project show that the conditions of Cr(VI) reduction—specifically the ratio of Cr to Fe, and/or whether the Cr(VI) reductant is a mineral or a microorganism—can significantly affect the tendency of the resulting Fe-Cr precipitate to release Cr(VI) to the environment in the presence of birnessite. These results suggest the chosen remediation conditions have the potential to strongly influence not only the initial success of in situ Cr(VI) reduction/immobilization, but also the potential for successful long term sequestration of Cr in the form of stable soil precipitates.

  2. Evidence for a Weak Iron Core at Earth's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    going from pole to pole than along the equatorial plane-why? One theory is that the grains of iron that make up most of the solid inner core could be aligned in a way that...

  3. Magnetic properties of the iron laminations for CBA magnets

    SciTech Connect (OSTI)

    Tannenbaum, M.J.; Ghosh, A.K.; Robins, K.E.; Sampson, W.B.

    1983-01-01

    The required magnetic properties of the iron for CBA dipoles are for the most part the same as those for conventional accelerators, namely: low coercive force, high permeability at both low and high inductions, and high saturation induction. There are two main differences in the CBA application, (1) the iron is at 3.8/sup 0/K, and (2) the magnetic field in the iron can go as high as 6 Tesla, which is well above saturation. Measurements of the magnetization curves for CBA iron laminations at 300/sup 0/K and 4.2/sup 0/K are presented. The data are analyzed in terms of a simple model in which the variation in saturation induction can be separated from the low field permeability variation. Tolerances on coercive force, permeability, and saturation induction are discussed.

  4. EOS for Armco Iron at pressures less than 100 GPa

    SciTech Connect (OSTI)

    Moss, W.C.

    1984-06-06

    We have constructed an analytic EOS for Armco Iron, at pressures less than 100 GPa using shock data. The efects of the ..cap alpha.. reversible epsilon phase transition have been included.

  5. Percolation Explains How Earth's Iron Core Formed | Stanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... at high pressure (64 GPa) and temperature (3,300 K). a,b, The channel in a has been confirmed to be iron-rich material by element-sensitive nanoscale tomographic imaging; the ...

  6. Evaluation of Characterization Techniques for Iron Pipe Corrosion...

    Office of Scientific and Technical Information (OSTI)

    Films A common problem faced by drinking water studies is that of properly characterizing ... Fe (hydr)oxides used to simulate the iron pipe used in municipal drinking-water systems. ...

  7. Shewanella loihica sp. nov., isolated from iron-rich microbial...

    Office of Scientific and Technical Information (OSTI)

    loihica sp. nov., isolated from iron-rich microbial mats in the Pacific Ocean A novel marine bacterial strain, PV-4T, isolated from a microbial mat located at a hydrothermal vent...

  8. Dopant Site Determination in Iron Oxide Nanoparticles Utilizing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dopant Site Determination in Iron Oxide Nanoparticles Utilizing X-ray Absorption Techniques Monday, September 9, 2013 - 11:00am SLAC, Conference Room 137-322 Presented by Dr....

  9. Probing high-energy spin fluctuations in iron pnictide superconductors...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    spin fluctuations in iron pnictide superconductors and the metal-insulator transition in rare-earth nickelates by soft X-ray RIXS Wednesday, November 18, 2015 - 3:00pm...

  10. Evidence for a Weak Iron Core at Earth's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron Core at Earth's Center Print Seismic waves that pass through the center of the Earth travel faster going from pole to pole than along the equatorial plane-why? One theory...

  11. Controlled Phase and Tunable Magnetism in Ordered Iron Oxide...

    Office of Scientific and Technical Information (OSTI)

    Finally, the ALD deposition of iron oxide with well-controlled phase and tunable magnetism demonstrated in this work provides a promising opportunity for the fabrication of 3D nano...

  12. Method and system for producing metallic iron nuggets

    SciTech Connect (OSTI)

    Iwasaki, Iwao; Kiesel, Richard F.; Englund, David J; Hendrickson, Dave

    2012-12-18

    A method and system for producing metallic iron nuggets may include providing multiple layers of agglomerates, such as briquettes, balls and extrusions, of a reducible mixture of reducing material (such as carbonaceous material) and of a reducible iron bearing material (such as iron oxide) on a hearth material layer (such as carbonaceous material) and providing a coarse overlayer of carbonaceous material over at least some of the agglomerates. Heating the agglomerates of reducible mixture to 1425.degree. C. or 1400.degree. C. or 1375.degree. C. results in formation of an intermediate product of one or more metallic iron nuggets, which may have a sulfur content of less than 0.03%, and slag, which may have less than 5% mass MgO, which may have a ratio of percent by weight sulfur in the slag over percent by weight sulfur in the metallic nuggets of at least about 12 or at least about 15.

  13. Korea Iron Steel Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Steel Co Ltd Jump to: navigation, search Name: Korea Iron & Steel Co Ltd Place: Changwon, South Gyeongsang, Korea (Republic) Zip: 641 370 Product: Korea-based manufacturer of steel...

  14. Marine Diatoms Survive Iron Droughts in the Ocean by Storing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In particular, phytoplankton, which are aquatic, free-drifting, single-celled organisms that can harvest energy from the sun, have an elevated demand for iron due to the large role ...

  15. Origin of banded iron formations : oceanic crust leaching & self...

    Office of Scientific and Technical Information (OSTI)

    Subject: 58 GEOSCIENCES; IRON; LEACHING; OCEANIC CRUST; ORIGIN Word Cloud More Like This Full Text Journal Articles Find in Google Scholar Find in Google Scholar Search WorldCat ...

  16. Iron speciation in minerals and glasses probed by M [subscript...

    Office of Scientific and Technical Information (OSTI)

    Title: Iron speciation in minerals and glasses probed by M subscript 23 -edge X-ray Raman scattering spectroscopy Authors: Nyrow, A. ; Sternemann, C. ; Wilke, M. ; Gordon, R. A. ...

  17. Modernization of the iron making plant at SOLLAC FOS

    SciTech Connect (OSTI)

    Crayelynghe, M. van; Dufour, A.; Soland, J.; Feret, J.; Lebonvallet, J.

    1995-12-01

    When the blast furnaces at SOLLAC/FOS were relined, the objective being to ensure a worklife of 15 years, it was decided that the iron making plant would be modernized at the same time: the coking plant has been overhauled and renovated and its coking time increased to ensure a worklife of at least 34 years. The surface area of the sinter strand was increased from 400 to 520 m{sup 2}, the burden preparation circuit were simplified, and pig iron production capacity increased from 4.2 to 4.5 million metric tons per year. Coal injection was developed so as to obtain 170 kg/t of pig iron, an expert system was added to ensure more efficient blast furnace operation, and new measures have been carried out for environmental protection. Since these heavy investments have been completed, SOLLAC/FOS is a high-performance iron making plant, allowing it to face new challenges in the future.

  18. Evidence for a Weak Iron Core at Earth's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence for a Weak Iron Core at Earth's Center Print Seismic waves that pass through the center of the Earth travel faster going from pole to pole than along the equatorial...

  19. Gas sensing properties of magnesium doped SnO{sub 2} thin films in relation to AC conduction

    SciTech Connect (OSTI)

    Deepa, S.; Skariah, Benoy Thomas, Boben; Joseph, Anisha

    2014-01-28

    Conducting magnesium doped (0 to 1.5 wt %) tin oxide thin films prepared by Spray Pyrolysis technique achieved detection of 1000 ppm of LPG. The films deposited at 304 C exhibit an enhanced response at an operating temperature of 350 C. The microstructural properties are studied by means of X-ray diffraction. AC conductivity measurements are carried out using precision LCR meter to analyze the parameters that affect the variation in sensing. The results are correlated with compositional parameters and the subsequent modification in the charge transport mechanism facilitating an enhanced LPG sensing action.

  20. Nitrogen Atom Transfer From High Valent Iron Nitrides

    SciTech Connect (OSTI)

    Johnson, Michael D.; Smith, Jeremy M.

    2015-10-14

    This report describes the synthesis and reactions of high valent iron nitrides. Organonitrogen compounds such as aziridines are useful species for organic synthesis, but there are few efficient methods for their synthesis. Using iron nitrides to catalytically access these species may allow for their synthesis in an energy-and atom-efficient manner. We have developed a new ligand framework to achieve these goals as well as providing a method for inducing previously unknown reactivity.

  1. High-temperature fabricable nickel-iron aluminides

    DOE Patents [OSTI]

    Liu, Chain T. (Oak Ridge, TN)

    1988-02-02

    Nickel-iron aluminides are described that are based on Ni.sub.3 Al, and have significant iron content, to which additions of hafnium, boron, carbon and cerium are made resulting in Ni.sub.3 Al base alloys that can be fabricated at higher temperatures than similar alloys previously developed. Further addition of molybdenum improves oxidation and cracking resistance. These alloys possess the advantages of ductility, hot fabricability, strength, and oxidation resistance.

  2. Iron Catalysis in Oxidations by Ozone - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Iron Catalysis in Oxidations by Ozone Ames Laboratory Contact AMES About This Technology Technology Marketing Summary Ozone is used commercially for treatment of potable and non-potable water, and as an industrial oxidant. ISU and Ames Laboratory researchers have developed a method for using iron in ozone oxidation that significantly improves the speed of oxidation reactions. Description Ozone is recognized as potent and effective oxidizing agent, and has a

  3. DOE - Office of Legacy Management -- Knoxville Iron Co - TN 07

    Office of Legacy Management (LM)

    Knoxville Iron Co - TN 07 FUSRAP Considered Sites Site: KNOXVILLE IRON CO. (TN.07 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Knoxville , Tennessee TN.07-1 Evaluation Year: 1994 TN.07-2 TN.07-3 Site Operations: Melted uranium contaminated scrap metal in order to test industrial hygiene procedures in the mid-1950s. TN.07-1 Site Disposition: Eliminated - AEC license TN.07-2 Radioactive Materials Handled: Yes Primary Radioactive

  4. Strong Orbital-selective Correlation Effects Unite Iron Chalcogenide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Superconductors | Stanford Synchrotron Radiation Lightsource Strong Orbital-selective Correlation Effects Unite Iron Chalcogenide Superconductors Wednesday, September 30, 2015 Seven years ago when superconductivity was first discovered in the iron-based compounds (FeSCs), one of the very first questions in the field was to find out whether the physics governing superconductivity in these materials were the same or different from the only other known high temperature superconductors (HTSC) -

  5. SLURRY PHASE IRON CATALYSTS FOR INDIRECT COAL LIQUEFACTION

    SciTech Connect (OSTI)

    Abhaya K. Datye

    1998-11-19

    This report describes research conducted to support the DOE program in indirect coal liquefaction. Specifically, they have studied the attrition behavior of iron Fischer-Tropsch catalysts, their interaction with the silica binder and the evolution of iron phases in a synthesis gas conversion process. The results provide significant insight into factors that should be considered in the design of catalysts for converting coal based syngas into liquid fuels.

  6. Study of hydrogen induced cracking in iron

    SciTech Connect (OSTI)

    Armstrong, J.H.

    1985-01-01

    The hydrogen assisted crack growth of Armco iron from cathodic charging was studied using continuous measurements of the modulus and internal friction. A Marx composite piezoelectric oscillator was used to measure resonant frequency and internal friction during the cathodic charging. Internal friction measured before and after cathodic charging was separated into dislocation and magnetic effects. The effects of charging time, vibratory strain amplitude and charging current density were studied. In all cases the modulus decreased continuously during cathodic charging. The internal friction increased rapidly during the early portion of cathodic charging and leveled off during the latter portion. Using a composite sample model (a cracked thin outer layer with a solid core), the change in modulus was found to be proportional to the quantity na/sup 3/..delta..d, where n is the crack density, a is the average crack radius and d is the depth of cracking. The kinetic behavior of both the internal friction and modulus change were found to be a two-part parallel exponential process. The rapid process was quite rapid and was found to be consistent with the initiation and growth of cracks due to the combination of hydrogen and carbon found at grain boundaries. The rapid increase in internal friction during the first process was attributed to the rapid plastic deformation from the initiation of the cracks.

  7. Twisting phonons in complex crystals with quasi-one-dimensional substructures [Twisting Phonons in Higher Manganese Silicides with a Complex Nowotny Chimney Ladder Structure

    SciTech Connect (OSTI)

    Abernathy, Douglas L.; Ma, Jie; Yan, Jiaqiang; Delaire, Olivier A.; Chen, Xi; Weathers, Annie; Mukhopadhyay, Saikat; Shi, Li

    2015-04-15

    A variety of crystals contain quasi-one-dimensional substructures, which yield distinctive electronic, spintronic, optical and thermoelectric properties. There is a lack of understanding of the lattice dynamics that influences the properties of such complex crystals. Here we employ inelastic neutron scatting measurements and density functional theory calculations to show that numerous low-energy optical vibrational modes exist in higher manganese silicides, an example of such crystals. These optical modes, including unusually low-frequency twisting motions of the Si ladders inside the Mn chimneys, provide a large phase space for scattering acoustic phonons. A hybrid phonon and diffuson model is proposed to explain the low and anisotropic thermal conductivity of higher manganese silicides and to evaluate nanostructuring as an approach to further suppress the thermal conductivity and enhance the thermoelectric energy conversion efficiency. This discovery offers new insights into the structure-property relationships of a broad class of materials with quasi-one-dimensional substructures for various applications.

  8. Flow-Assisted Alkaline Battery: Low-Cost Grid-Scale Electrical Storage using a Flow-Assisted Rechargeable Zinc-Manganese Dioxide Battery

    SciTech Connect (OSTI)

    2010-09-15

    GRIDS Project: Traditional consumer-grade disposable batteries are made of Zinc and Manganese, 2 inexpensive, abundant, and non-toxic metals. But these disposable batteries can only be used once. If they are recharged, the Zinc in the battery develops filaments called dendrites that grow haphazardly and disrupt battery performance, while the Manganese quickly loses its ability to store energy. CUNY Energy Institute is working to tame dendrite formation and to enhance the lifetime of Manganese in order to create a long-lasting, fully rechargeable battery for grid-scale energy storage. CUNY Energy Institute is also working to reduce dendrite formation by pumping fluid through the battery, enabling researchers to fix the dendrites as theyre forming. The team has already tested its Zinc battery through 3,000 recharge cycles (and counting). CUNY Energy Institute aims to demonstrate a better cycle life than lithium-ion batteries, which can be up to 20 times more expensive than Zinc-based batteries.

  9. Atomistic modeling of nanowires, small-scale fatigue damage in cast magnesium, and materials for MEMS.

    SciTech Connect (OSTI)

    Dunn, Martin L.; Talmage, Mellisa J.; McDowell, David L., 1956- (,-Georgia Institute of Technology, Atlanta, GA); West, Neil (University of Colorado, Boulder, CO); Gullett, Philip Michael (Mississippi State University , MS); Miller, David C. (University of Colorado, Boulder, CO); Spark, Kevin (University of Colorado, Boulder, CO); Diao, Jiankuai (University of Colorado, Boulder, CO); Horstemeyer, Mark F. (Mississippi State University , MS); Zimmerman, Jonathan A.; Gall, K

    2006-10-01

    titled 'Atomistic Modeling of Nanowires, Small-scale Fatigue Damage in Cast Magnesium, and Materials for MEMS'. This project supported a strategic partnership between Sandia National Laboratories and the University of Colorado at Boulder by providing funding for the lead author, Ken Gall, and his students, while he was a member of the University of Colorado faculty.

  10. Cyclopentadienyl-bis(oxazoline) magnesium and zirconium complexes in aminoalkene hydroaminations

    SciTech Connect (OSTI)

    Eedugurala, Naresh; Hovey, Megan; Ho, Hung -An; Jana, Barun; Lampland, Nicole L.; Ellern, Arkady; Sadow, Aaron D.

    2015-11-25

    Here, a new class of cyclopentadiene-bis(oxazoline) compounds and their piano-stool-type organometallic complexes have been prepared as catalysts for hydroamination of aminoalkenes. The two compounds MeC(OxMe2)2C5H5 (BoMCpH; OxMe2 = 4,4-dimethyl-2-oxazoline) and MeC(OxMe2)2C5Me4H (BoMCptetH) are synthesized from C5R4HI (R = H, Me) and MeC(OxMe2)2Li. These cyclopentadiene-bis(oxazolines) are converted into ligands that support a variety of metal centers in piano-stool-type geometries, and here we report the preparation of Mg, Tl, Ti, and Zr compounds. BoMCpH and BoMCptetH react with MgMe2(O2C4H8)2 to give the magnesium methyl complexes {BoMCp}MgMe and {BoMCptet}MgMe. BoMCpH and BoMCptetH are converted to BoMCpTl and BoMCptetTl by reaction with TlOEt. The thallium derivatives react with TiCl3(THF)3 to provide [{BoMCp}TiCl(μ-Cl)]2 and [{BoMCptet}TiCl(μ-Cl)]2, the former of which is crystallographically characterized as a dimeric species. BoMCpH and Zr(NMe2)4 react to eliminate dimethylamine and afford {BoMCp}Zr(NMe2)3, which is crystallographically characterized as a monomeric four-legged piano-stool compound. {BoMCp}Zr(NMe2)3, {BoMCp}MgMe, and {BoMCptet}MgMe are efficient catalysts for the hydroamination/cyclization of aminoalkenes under mild conditions.

  11. The role of twinning deformation on the hardening response of polycrystalline magnesium from discrete dislocation dynamics simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fan, Haidong; Aubry, Sylvie; Arsenlis, Athanasios; El-Awady, Jaafar A.

    2015-04-13

    The mechanical response of micro-twinned polycrystalline magnesium was studied through three-dimensional discrete dislocation dynamics (DDD). A systematic interaction model between dislocations and (1012) tension twin boundaries (TBs) was proposed and introduced into the DDD framework. In addition, a nominal grain boundary (GB) model agreeing with experimental results was also introduced to mimic the GB’s barrier effect. The current simulation results show that TBs act as a strong obstacle to gliding dislocations, which contributes significantly to the hardening behavior of magnesium. On the other hand, the deformation accommodated by twinning plays a softening role. Therefore, the concave shape of the Mgmore » stress-strain curve results from the competition between dislocation-TB induced hardening and twinning deformation induced softening. At low strain levels, twinning deformation induced softening dominates and a decreasing hardening rate is observed in Stage-I. In Stage-II, both the hardening and softening effects decline, but twinning deformation induced softening declines faster, which leads to an increasing hardening rate.« less

  12. Interplay between interband coupling and ferromagnetism in iron pnictide superconductor/ferromagnet/iron pnictide superconductor junctions

    SciTech Connect (OSTI)

    Liu, S. Y.; Tao, Y. C.; Hu, J. G.

    2014-08-28

    An extended eight-component Bogoliubov-de Gennes equation is applied to study the Josephson effect between iron-based superconductors (SCs) with s{sub }-wave pairing symmetry, separated by an ferromagnet (FM). The feature of damped oscillations of critical Josephson current as a function of FM thickness, the split of the peaks induced by the interband coupling is much different from that for the junction with the s{sub }-wave SCs replaced by s{sub ++}-wave ones. In particular, a 0?? transition as a function of interband coupling strength ? is found to always exhibit with the corresponding dip shifting toward the larger ? due to enhancing the spin polarization in the FM, while there exits no 0?? transition for the SC with s{sub ++}-wave pairing symmetry. The two features can be used to identify the pairing symmetry in the iron pnictide SC different from the s{sub ++}-wave one in MgB{sub 2}. Experimentally, by adjusting the doping level in the s{sub }-wave SCs, one can vary ?.

  13. X-ray absorption spectroscopy on the calcium cofactor to the manganese cluster in photosynthetic oxygen evolution

    SciTech Connect (OSTI)

    Cinco, Roehl M.

    1999-12-16

    Along with Mn, calcium and chloride ions are necessary cofactors for oxygen evolution in Photosystem II (PS II). To further test and verify whether Ca is close to the Mn cluster, the authors substituted strontium for Ca and probed from the Sr point of view for any nearby Mn. The extended X-ray absorption fine structure (EXAFS) of Sr-reactivated PS II indicates major differences between the intact and NH{sub 2}OH-treated samples. In intact samples, the Fourier transform of the Sr EXAFS shows a Fourier peak that is missing in inactive samples. This peak II is best simulated by two Mn neighbors at a distance of 3.5 Angstrom, confirming the proximity of Ca (Sr) cofactor to the Mn cluster. In addition, polarized Sr EXAFS on oriented Sr-reactivated samples shows this peak II is dichroic: large magnitude at 10 degrees (angle between the PS II membrane normal and the x-ray electric field vector) and small at 80 degrees. Analysis of the dichroism yields the relative angle between the Sr-Mn vector and membrane normal (23 degrees {+-} 4 degrees), and the isotropic coordination number for these layered samples. X-ray absorption spectroscopy has also been employed to assess the degree of similarity between the manganese cluster in PS II and a family of synthetic manganese complexes containing the distorted cubane [Mn{sub 4}O{sub 3}X] core (X = benzoate, acetate, methoxide, hydroxide, azide, fluoride, chloride or bromide). In addition, Mn{sub 4}O{sub 3}Cl complexes containing three or six terminal Cl ligands at three of the Mn were included in this study. The EXAFS method detects the small changes in the core structures as X is varied in this series, and serves to exclude these distorted cubanes of C3v symmetry as a topological model for the Mn catalytic cluster. The sulfur K-edge x-ray absorption near-edge structure (XANES) spectra for the amino acids cysteine, methionine, their corresponding oxidized forms cystine and methionine sulfoxide, and glutathione show distinct

  14. Microstructural Characterization of Nodular Ductile Iron

    SciTech Connect (OSTI)

    Springer, H K

    2012-01-03

    The objective of this study is to quantify the graphite particle phase in nodular ductile iron (NDI). This study provides the basis for initializing microstructure in direct numerical simulations, as part of developing microstructure-fracture response models. The work presented here is a subset of a PhD dissertation on spall fracture in NDI. NDI is an ideal material for studying the influence of microstructure on ductile fracture because it contains a readily identifiable second-phase particle population, embedded in a ductile metallic matrix, which serves as primary void nucleation sites. Nucleated voids grow and coalesce under continued tensile loading, as part of the micromechanisms of ductile fracture, and lead to macroscopic failure. For this study, we used 2D optical microscopy and quantitative metallography relationships to characterize the volume fraction, size distribution, nearest-neighbor distance, and other higher-order metrics of the graphite particle phase. We found that the volume fraction was {Phi} = 0.115, the average particle diameter was d{sub avg} = 25.9 {mu}m, the Weibull shape and scaling parameters were {beta} = 1.8 and {eta} = 29.1 {mu}m, respectively, the (first) nearest neighbor distance was L{sub nn} = 32.4 {mu}m, the exponential coefficients for volume fraction fluctuations was A{sub {Phi}} = 1.89 and B{sub {Phi}} = -0.59, respectively. Based on reaching a coefficient-of-variation (COV) of 0.01, the representative volume element (RVE) size was determined to be 8.9L{sub nn} (288 {mu}m).

  15. The effect of iron dilution on strength of nickel/steel and Monel/steel welds

    SciTech Connect (OSTI)

    Fout, S.L.; Wamsley, S.D.

    1983-03-28

    The weld strength, as a function of iron content, for nickel/steel and Monel/steel welds was determined. Samples were prepared using a Gas Metal Arc (GMAW) automatic process to weld steel plate together with nickel or Monel to produce a range of iron contents typical of weld compositions. Tensile specimens of each iron content were tested to obtain strength and ductility measurements for that weld composition. Data indicate that at iron contents of less than 20% iron in a nickel/steel weld, the weld fails at the weld interface, due to a lack of fusion. Between 20% and 35% iron, the highest iron dilution that could be achieved in a nickel weld, the welds were stronger than the steel base metal. This indicates that a minimum amount of iron dilution (20%) is necessary for good fusion and optimum strength. On the other hand for Monel/steel welds, test results showed that the welds had good strength and integrity between 10% and 27% iron in the weld. Above 35% iron, the welds have less strength and are more brittle. The 35% iron content also corresponds to the iron dilution in Monel welds that has been shown to produce an increase in corrosion rate. This indicates that the iron dilution in Monel welds should be kept below 35% iron to maximize both the strength and corrosion resistance. 2 refs., 6 figs., 3 tabs.

  16. Ductile aluminide alloys for high temperature applications

    DOE Patents [OSTI]

    Liu, Chain T.; Koch, Carl C.

    1987-01-01

    Alloys are described which contain nickel, aluminum, boron, iron and in some instances manganese, niobium and titanium.

  17. Effect of Cr substitution on the magnetic and magnetic-transport...

    Office of Scientific and Technical Information (OSTI)

    ANTIFERROMAGNETISM; CHROMIUM; CONCENTRATION RATIO; CURIE POINT; ELECTRON-PHONON COUPLING; ELECTRONS; INTERMETALLIC COMPOUNDS; IRON; MAGNETORESISTANCE; MAGNONS; MANGANESE; PHONONS;...

  18. Insights into the Structure and Metabolic Function of Microbes That Shape Pelagic Iron-Rich Aggregates ( Iron Snow )

    SciTech Connect (OSTI)

    Lu, S; Chourey, Karuna; REICHE, M; Nietzsche, S; Shah, Manesh B; Hettich, Robert {Bob} L; Kusel, K

    2013-01-01

    Metaproteomics combined with total nucleic acid-based methods aided in deciphering the roles of microorganisms in the formation and transformation of iron-rich macroscopic aggregates (iron snow) formed in the redoxcline of an acidic lignite mine lake. Iron snow had high total bacterial 16S rRNA gene copies, with 2 x 109 copies g (dry wt)-1 in the acidic (pH 3.5) central lake basin and 4 x 1010 copies g (dry wt)-1 in the less acidic (pH 5.5) northern lake basin. Active microbial communities in the central basin were dominated by Alphaproteobacteria (36.6%) and Actinobacteria (21.4%), and by Betaproteobacteria (36.2%) in the northern basin. Microbial Fe-cycling appeared to be the dominant metabolism in the schwertmannite-rich iron snow, because cloning and qPCR assigned up to 61% of active bacteria as Fe-cycling bacteria (FeB). Metaproteomics revealed 70 unique proteins from central basin iron snow and 283 unique proteins from 43 genera from northern basin. Protein identification provided a glimpse into in situ processes, such as primary production, motility, metabolism of acidophilic FeB, and survival strategies of neutrophilic FeB. Expression of carboxysome shell proteins and RubisCO indicated active CO2 fixation by Fe(II) oxidizers. Flagellar proteins from heterotrophs indicated their activity to reach and attach surfaces. Gas vesicle proteins related to CO2-fixing Chlorobium suggested that microbes could influence iron snow sinking. We suggest that iron snow formed by autotrophs in the redoxcline acts as a microbial parachute, since it is colonized by motile heterotrophs during sinking which start to dissolve schwertmannite.

  19. A hard X-ray study of a manganese-terpyridine catalyst in a chromium-based Metal Organic Framework

    SciTech Connect (OSTI)

    Ramsey, Alexandra V.

    2015-08-28

    Hydrogen produced from water splitting is a promising source of clean energy. However, a robust catalyst is necessary to carry out the water oxidation step of water splitting. In this study, the catalyst studied was [(terpy)Mn(μ-O)2Mn(terpy)]3+ (MnTD) synthesized in the Metal Organic Framework (MOF) MIL-101(Cr), and the method used for analysis was hard X-ray powder diffraction. The diffraction data was used to detect the presence of MOF in different catalytic stages, and lattice parameters were assigned to the samples containing MOF. Fourier maps were constructed with GSAS II to determine the contents of the MOF as preliminary studies suggested that MnTD may not be present. Results showed that MOF is present before catalysis occurs but disappears by the time 45 minutes of catalysis has ensued. Changes in the MOF’s lattice parameters and location of electron density in the Fourier maps suggest attractions between the MOF and catalyst that may lead to MOF degradation. Fourier maps also revealed limited, if any, amounts of MnTD, even before catalysis occurred. Molecular manganese oxide may be the source of the high rate of water oxidation catalysis in the studied system.

  20. Low- and high-order harmonic generation in the extended plasmas produced by laser ablation of zinc and manganese targets

    SciTech Connect (OSTI)

    Ganeev, R. A.; Baba, M.; Suzuki, M.; Yoneya, S.; Kuroda, H.

    2014-12-28

    The systematic studies of the harmonic generation of ultrashort laser pulses in the 5-mm-long Zn and Mn plasmas (i.e., application of nanosecond, picosecond, and femtosecond pulses for ablation, comparison of harmonic generation from atomic, ionic, and cluster-contained species of plasma, variation of plasma length, two-color pump of plasmas, etc.) are presented. The conversion efficiency of the 11th–19th harmonics generated in the Zn plasma was ∼5 × 10{sup −5}. The role of the ionic resonances of Zn near the 9th and 10th harmonics on the enhancement of harmonics is discussed. The enhancement of harmonics was also analyzed using the two-color pump of extended plasmas, which showed similar intensities of the odd and even harmonics along the whole range of generation. The harmonics up to the 107th order were demonstrated in the case of manganese plasma. The comparison of harmonic generation in the 5-mm-long and commonly used short (≤0.5 mm) plasma plumes showed the advanced properties of extended media.

  1. A study of a ceria-zirconia-supported manganese oxide catalyst for combustion of Diesel soot particles

    SciTech Connect (OSTI)

    Sanchez Escribano, V.; Fernandez Lopez, E.; del Hoyo Martinez, C.; Pistarino, C.; Panizza, M.; Resini, C.; Busca, G.

    2008-04-15

    A study has been conducted on the structural and morphological characterization of a Ce-Zr mixed oxide-supported Mn oxide as well as on its catalytic activity in the oxidation of particulate matter arising from Diesel engines. X-ray powder diffraction analysis (XRD) and FT-IR and FT-Raman spectroscopy evidence that the support is a fluorite-like ceria-zirconia solid solution, whereas the supported phase corresponds to the manganese oxide denoted as bixbyite ({alpha}-Mn{sub 2}O{sub 3}). Thermal analyses and FT-IR spectra in air at varying temperatures of soot mechanically mixed with the catalyst evidence that the combustion takes place to a total extent in the range 420-720 K, carboxylic species being detected as intermediate compounds. Moreover, the soot oxidation was studied in a flow reactor and was found to be selective to CO{sub 2}, with CO as by-product in the range 420-620 K. The amount of the generated CO decreases significantly with increasing O{sub 2} concentration in the feed. (author)

  2. The structure of the Caenorhabditis elegans manganese superoxide dismutase MnSOD-3-azide complex

    SciTech Connect (OSTI)

    Hunter, Gary J.; Trinh, Chi H.; Bonetta, Rosalin; Stewart, Emma E.; Cabelli, Diane E.; Hunter, Therese

    2015-08-27

    C. elegans MnSOD-3 has been implicated in the longevity pathway and its mechanism of catalysis is relevant to the aging process and carcinogenesis. The structures of MnSOD-3 provide unique crystallographic evidence of a dynamic region of the tetrameric interface (residues 41–54). We have determined the structure of the MnSOD-3-azide complex to 1.77-Å resolution. The analysis of this complex shows that the substrate analog, azide, binds end-on to the manganese center as a sixth ligand and that it ligates directly to a third and new solvent molecule also positioned within interacting distance to the His30 and Tyr34 residues of the substrate access funnel. This is the first structure of a eukaryotic MnSOD-azide complex that demonstrates the extended, uninterrupted hydrogen-bonded network that forms a proton relay incorporating three outer sphere solvent molecules, the substrate analog, the gateway residues, Gln142, and the solvent ligand. This configuration supports the formation and release of the hydrogen peroxide product in agreement with the 5-6-5 catalytic mechanism for MnSOD. The high product dissociation constant k₄ of MnSOD-3 reflects low product inhibition making this enzyme efficient even at high levels of superoxide.

  3. Research and Education of CO{sub 2} Separation from Coal Combustion Flue Gases with Regenerable Magnesium Solutions

    SciTech Connect (OSTI)

    Lee, Joo-Youp

    2013-09-30

    A novel method using environment-friendly chemical magnesium hydroxide (Mg(OH){sub 2}) solution to capture carbon dioxide from coal-fired power plants flue gas has been studied under this project in the post-combustion control area. The project utilizes the chemistry underlying the CO{sub 2}-Mg(OH){sub 2} system and proven and well-studied mass transfer devices for high levels of CO{sub 2} removal. The major goals of this research were to select and design an appropriate absorber which can absorb greater than 90% CO{sub 2} gas with low energy costs, and to find and optimize the operating conditions for the regeneration step. During the project period, we studied the physical and chemical characteristics of the scrubbing agent, the reaction taking place in the system, development and evaluation of CO{sub 2} gas absorber, desorption mechanism, and operation and optimization of continuous operation. Both batch and continuous operations were performed to examine the effects of various parameters including liquid-to-gas ratio, residence time, lean solvent concentration, pressure drop, bed height, CO{sub 2} partial pressure, bubble size, pH, and temperature on the absorption. The dissolution of Mg(OH){sub 2} particles, formation of magnesium carbonate (MgCO{sub 3}), and vapor-liquid-solid equilibrium (VLSE) of the system were also studied. The dissolution of Mg(OH){sub 2} particles and the steady release of magnesium ions into the solution was a crucial step to maintain a level of alkalinity in the CO{sub 2} absorption process. The dissolution process was modeled using a shrinking core model, and the dissolution reaction between proton ions and Mg(OH){sub 2} particles was found to be a rate-controlling step. The intrinsic surface reaction kinetics was found to be a strong function of temperature, and its kinetic expression was obtained. The kinetics of MgCO{sub 3} formation was also studied in terms of different pH values and temperatures, and was enhanced under high p

  4. Method and system for producing metallic iron nuggets

    DOE Patents [OSTI]

    Iwasaki, Iwao; Lindgren, Andrew J.; Kiesel, Richard F.

    2013-06-25

    Method and system for producing metallic nuggets includes providing reducible mixture of reducing material (such as carbonaceous material) and reducible iron bearing material (such as iron oxide) that may be arranged in discrete portions, such as mounds or briquettes, on at least a portion of a hearth material layer (such as carbonaceous material). A coarse overlayer of carbonaceous material may be provided over at least some of the discrete portions. Heating the reducible mixture to 1425.degree. C. or 1400.degree. C. or 1375.degree. C. results in formation of an intermediate product of one or more metallic iron nuggets, which may have a sulfur content of less than 0.03%, and slag, which may have less than 5% mass MgO, which may have a ratio of percent by weight sulfur in the slag over percent by weight sulfur in the metallic nuggets of at least about 12 or at least about 15.

  5. Reaction of iron and steel slags with refractories

    SciTech Connect (OSTI)

    Banerjee, S.; Anderson, M.W.

    1993-04-01

    Slag corrosion and erosion has been a major wear factor for refractories wear in contact with molten iron and steel. In blast furnace ironmaking, the slag/iron interface plays a more important role than does the slag/refractory interface. On the other hand in steelmaking, the slag in the ladles and tundish predominantly affect refractory wear. This paper presents the results of a detailed microstructural evaluation of (a) slag and slag/iron interactions with A1{sub 2}O{sub 3}-SiC-C refractories for ironmaking in blast furnaces, (b) basic oxygen furnace and ladle slag interactions with alumina spinel refractories for steelmaking, and (c) slag interactions with working refractory lining for continuous casting tundishes. Results will also be presented on refractory wear/failure due to simultaneous corrosion and penetration by the slag.

  6. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... We calculate within density functional theory+U theory the iron vacancy formation energy in binary rock-salt oxide alloys that contain iron, manganese, nickel, zinc, andor ...

  7. Welding studies of nickel aluminide and nickel-iron aluminides

    SciTech Connect (OSTI)

    Santella, M.L.; David, S.A.; Horton, J.A.; White, C.L.; Liu, C.T.

    1985-08-01

    Because welding is often used during the fabrication of structural components, one of the key issues in the development of nickel aluminides and nickel-iron aluminides for engineering applications is their weldability. The goals of this study were to characterize weldment microstructures and to identify some of the factors controlling weldability of ductile Ni/sub 3/Al alloys. The alloys used in this initial study were Ni/sub 3/Al containing 500 wppm boron and Ni/sub 3/Al containing 10 at. % iron and either 500 wppm or 20 wppm boron. Full-penetration autogenous welds were made in sheet shock by the electron beam (EB) and gas tungsten arc (GTA) processes. The main process variables were travel speed and preheat. The as-welded coupons were examined visually and in detail by the usual optical and electron metallographic methods. Weldments of boron-doped Ni/sub 3/Al were composed of nearly 100% ordered ..gamma..' phase. Weldments of the nickel-iron aluminides were ..gamma..' + ..beta..' phase mixtures, with martensitic ..beta..' distributed interdendritically in the fusion zone and decorating grain boundaries in the heat-affected zone. All welds made in this particular boron-doped Ni/sub 3/Al alloy contained cracks. Weldability improved with the addition of iron, and defect-free welds were made in the nickel-iron aluminides by both EB and GTA welding. Nevertheless, the iron-containing alloys were susceptible to cracking, and their weldability was affected by boron concentration, welding speed, and (for GTA) gas shielding. Defect-free welds were found to have good tensile properties relative to those of the base metal. 34 refs., 17 figs., 2 tabs.

  8. Electronic spin state of iron in lower mantle perovskite

    SciTech Connect (OSTI)

    Li, J.; Struzhkin, V.; Mao, H.-k.; Shu, J.; Hemley, R.; Fei, Y.; Mysen, B.; Dera, P.; Parapenka, V.; Shen, G.

    2010-11-16

    The electronic spin state of iron in lower mantle perovskite is one of the fundamental parameters that governs the physics and chemistry of the most voluminous and massive shell in the Earth. We present experimental evidence for spin-pairing transition in aluminum-bearing silicate perovskite (Mg,Fe)(Si,Al)O{sub 3} under the lower mantle pressures. Our results demonstrate that as pressure increases, iron in perovskite transforms gradually from the initial high-spin state toward the final low-spin state. At 100 GPa, both aluminum-free and aluminum-bearing samples exhibit a mixed spin state. The residual magnetic moment in the aluminum-bearing perovskite is significantly higher than that in its aluminum-free counterpart. The observed spin evolution with pressure can be explained by the presence of multiple iron species and the occurrence of partial spin-paring transitions in the perovskite. Pressure-induced spin-pairing transitions in the perovskite would have important bearing on the magnetic, thermoelastic, and transport properties of the lower mantle, and on the distribution of iron in the Earth's interior. The lower mantle constitutes more than half of the Earth's interior by volume (1), and it is believed to consist predominantly (80-100%) of (Mg,Fe)(Si,Al)O{sub 3} perovskite (hereafter called perovskite), with up to 20% (Mg,Fe)O ferropericlase (2). The electronic spin state of iron has direct influence on the physical properties and chemical behavior of its host phase. Hence, knowledge on the spin state of iron is important for the interpretation of seismic observations, geochemical modeling, and geodynamic simulation of the Earth's deep interior (3, 4). Crystal field theory (4, 5) and band theory (6) predicted that a high-spin to low-spin transition would occur as a result of compression. To date, no experimental data exist on the spin sate of iron in Al-bearing perovskite. To detect possible spinpairing transition of iron in perovskite under the lower mantle

  9. The Iron Spin Transition in the Earth's Lower Mantle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Iron Spin Transition in the Earth's Lower Mantle Print It is now known that the iron present in minerals of the lower mantle of the Earth undergoes a pressure-induced transition with pairing of the spins of its 3d electrons. A team from the University of California, Berkeley, Tel Aviv University, and Lawrence Livermore National Laboratory has used x-ray diffraction at very high pressure to investigate the effects of this transition on the elastic properties of magnesiowüstite (Mg1-xFex)O,

  10. The Iron Spin Transition in the Earth's Lower Mantle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Iron Spin Transition in the Earth's Lower Mantle Print It is now known that the iron present in minerals of the lower mantle of the Earth undergoes a pressure-induced transition with pairing of the spins of its 3d electrons. A team from the University of California, Berkeley, Tel Aviv University, and Lawrence Livermore National Laboratory has used x-ray diffraction at very high pressure to investigate the effects of this transition on the elastic properties of magnesiowüstite (Mg1-xFex)O,

  11. The Iron Spin Transition in the Earth's Lower Mantle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Iron Spin Transition in the Earth's Lower Mantle Print It is now known that the iron present in minerals of the lower mantle of the Earth undergoes a pressure-induced transition with pairing of the spins of its 3d electrons. A team from the University of California, Berkeley, Tel Aviv University, and Lawrence Livermore National Laboratory has used x-ray diffraction at very high pressure to investigate the effects of this transition on the elastic properties of magnesiowüstite (Mg1-xFex)O,

  12. The Iron Spin Transition in the Earth's Lower Mantle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Iron Spin Transition in the Earth's Lower Mantle Print It is now known that the iron present in minerals of the lower mantle of the Earth undergoes a pressure-induced transition with pairing of the spins of its 3d electrons. A team from the University of California, Berkeley, Tel Aviv University, and Lawrence Livermore National Laboratory has used x-ray diffraction at very high pressure to investigate the effects of this transition on the elastic properties of magnesiowüstite (Mg1-xFex)O,

  13. Recovery of iron oxide from coal fly ash

    DOE Patents [OSTI]

    Dobbins, Michael S.; Murtha, Marlyn J.

    1983-05-31

    A high quality iron oxide concentrate, suitable as a feed for blast and electric reduction furnaces is recovered from pulverized coal fly ash. The magnetic portion of the fly ash is separated and treated with a hot strong alkali solution which dissolves most of the silica and alumina in the fly ash, leaving a solid residue and forming a precipitate which is an acid soluble salt of aluminosilicate hydrate. The residue and precipitate are then treated with a strong mineral acid to dissolve the precipitate leaving a solid residue containing at least 90 weight percent iron oxide.

  14. Effects of titanium and zirconium on iron aluminide weldments

    SciTech Connect (OSTI)

    Burt, R.P.; Edwards, G.R.; David, S.A.

    1996-08-01

    Iron aluminides form a coarse fusion zone microstructure when gas-tungsten arc welded. This microstructure is susceptible to hydrogen cracking when water vapor is present in the welding environment. Because fusion zone microstructural refinement can reduce the hydrogen cracking susceptibility, titanium was used to inoculate the weld pool in iron aluminide alloy FA-129. Although the fusion zone microstructure was significantly refined by this method, the fracture stress was found to decrease with titanium additions. This decrease is attributed to an increase in inclusions at the grain boundaries.

  15. The Iron Spin Transition in the Earth's Lower Mantle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Iran Deal is Working The Iran Deal is Working Addthis Topic Nuclear Security & Safety Since the Iran Deal came into effect in October 2015, the International Atomic Energy Agency (IAEA) verified that Iran undertook critical steps to ensure its four pathways to a nuclear bomb are blocked. Watch to see how the Iran Deal is working

    The Iron Spin Transition in the Earth's Lower Mantle Print It is now known that the iron present in minerals of the lower mantle of the Earth undergoes a

  16. The Iron Spin Transition in the Earth's Lower Mantle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Iron Spin Transition in the Earth's Lower Mantle Print It is now known that the iron present in minerals of the lower mantle of the Earth undergoes a pressure-induced transition with pairing of the spins of its 3d electrons. A team from the University of California, Berkeley, Tel Aviv University, and Lawrence Livermore National Laboratory has used x-ray diffraction at very high pressure to investigate the effects of this transition on the elastic properties of magnesiowüstite (Mg1-xFex)O,

  17. The Iron Spin Transition in the Earth's Lower Mantle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Iron Spin Transition in the Earth's Lower Mantle Print It is now known that the iron present in minerals of the lower mantle of the Earth undergoes a pressure-induced transition with pairing of the spins of its 3d electrons. A team from the University of California, Berkeley, Tel Aviv University, and Lawrence Livermore National Laboratory has used x-ray diffraction at very high pressure to investigate the effects of this transition on the elastic properties of magnesiowüstite (Mg1-xFex)O,

  18. Effects of Variations in Salt-Spray Conditions on the Corrosion Mechanisms of an AE44 Magnesium Alloy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Martin, Holly J.; Horstemeyer, M. F.; Wang, Paul T.

    2010-01-01

    The understanding of how corrosion affects magnesium alloys is of utmost importance as the automotive and aerospace industries have become interested in the use of these lightweight alloys. However, the standardized salt-spray test does not produce adequate corrosion results when compared with field data, due to the lack of multiple exposure environments. This research explored four test combinations through three sets of cycles to determine how the corrosion mechanisms of pitting, intergranular corrosion, and general corrosion were affected by the environment. Of the four test combinations, Humidity-Drying was the least corrosive, while the most corrosive test condition was Salt Spray-Humidity-Drying.more » The differences in corrosivity of the test conditions are due to the various reactions needed to cause corrosion, including the presence of chloride ions to cause pit nucleation, the presence of humidity to cause galvanic corrosion, and the drying phase which trapped chloride ions beneath the corrosion by-products.« less

  19. ITP Steel: Energy and Environmental Profile fo the U.S. Iron...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy and Environmental Profile fo the U.S. Iron and Steel Industry ITP Steel: Energy and Environmental Profile fo the U.S. Iron and Steel Industry steelprofile.pdf (581.28 KB) ...

  20. ITmk3: High-Quality Iron Nuggets Using a Rotary Hearth Furnace

    Broader source: Energy.gov [DOE]

    The industrial sector consumes 30% of all U.S. energy consumption, of which about half (1.5 quad) is consumed by iron and steel production. Despite steadily increasing demand the iron and steel...