Powered by Deep Web Technologies
Note: This page contains sample records for the topic "iron magnesium manganese" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Magnesium/manganese dioxide electrochemical cell  

SciTech Connect

This patent describes an improvement in a magnesium/manganese dioxide electrochemical cell that has been stored following partial usage and including an alloy of magnesium as the anode, a moist cathode mix of carbon black, manganese dioxide, magnesium hydroxide, barium chromate and lithium chromate as the cathode, and 3.5 to 4.0 normal magnesium perchlorate as the electrolyte. The improvement involves increasing the moisture content of the cathode mix from 34 to 38 percent at the time of making the cell to reduce the self discharge and increase the operating capacity after the cell has been stored following partial usage.

Jarvis, L.P.; Brundage, M.T.; Atwater, T.B.

1989-09-26T23:59:59.000Z

2

Improved magnesium/manganese dioxide electrochemical cell  

SciTech Connect

A magnesium/manganese dioxide electrochemical cell, stored following partial usage, is improved by increasing the cathode moisture content at the time of making the cell to reduce the self-discharge and increase the operating capacity after the cell has been stored following partial usage.

Jarvis, L.P.; Brundage, M.T.; Atwater, T.B.

1988-11-10T23:59:59.000Z

3

Drinking Water Problems: Iron and Manganese  

E-Print Network (OSTI)

Iron and manganese can give water an unpleasant taste, odor and color. In this publication you'll learn how to know whether your water contains iron or manganese and how to eliminate these contaminants with various treatment methods such as aeration and chemical oxidation.

Dozier, Monty; McFarland, Mark L.

2004-02-20T23:59:59.000Z

4

Iron and manganese removal from a groundwater supply  

SciTech Connect

The treatment options and planning techniques used by the town of Castle Rock (Colorado) for a new water treatment facility are described. Castle Rock officials assessed the available treatment options for dissolved iron and manganese removal and selected potassium permanganate as the primary oxidant to be followed by manganese greensand. A backup prechlorination system for oxidation was also installed. In addition, to prevent excess headloss buildup in the manganese greensand filter media, an anthracite carbon cap was used as the top filter medium for precipitate removal. It is recommended that a treatability study be performed to determine individual design criteria to allow for specific site conditions. The town also assessed the capital and operation and maintenance costs for both treatment at individual well fields and a centralized location for treatment of a cluster of well fields. The results indicate that it is more economical to provide centralized water treatment even though there are capital costs associated with piping raw water from the individual well fields to the central facility. 3 refs.

Lorenz, W.; Seifert, K.; Kasch, O.K. (Arber Richard P. Associates, Inc., Denver, CO (USA))

1988-11-01T23:59:59.000Z

5

Morphological development of oxide-sulfide scales on iron and iron-manganese alloys  

Science Conference Proceedings (OSTI)

Pure iron and alloys containing 2, 15, 25, and 50 wt.% manganese have been reacted at 1073 K in controlled gas atmospheres of SO/sub 2/-CO/sub 2/-CO-N/sub 2/. Equilibrium gas compositions were such that (1) FeS was stable but not FeO, or (2) both FeS and FeO were stable, or (3) FeO was stable but not FeS; in all cases, both MnS and MnO were stable. Under all reaction conditions, pure iron corroded to produce both sulfide and oxide. The resultant scale morphologies were consistent with local solid-gas equilibrium for the case in which both oxide and sulfide were stable but in the other cases indicated that equilibrium was not achieved and that direct reaction with SO/sub 2/(g) was responsible for corrosion. Additions of manganese did not greatly alter the scale morphologies. Under reaction conditions that were oxidizing and sulfidizing, very high levels of manganese were required to reduce the corrosion rate. On the other hand, relatively low levels had a beneficial effect both when FeO but not FeS was thermodynamically stable and similarly when FeS but not FeO was stable.

McAdam, G.; Young, D.J.

1987-10-01T23:59:59.000Z

6

Influences on the oceanic biogeochemical cycling of the hybrid-type metals, cobalt, iron, and manganese  

E-Print Network (OSTI)

Trace metal cycling is one of many processes that influence ocean ecosystem dynamics. Cobalt, iron, and manganese are redox active trace metal micro-nutrients with oceanic distributions that are influenced by both biological ...

Noble, Abigail Emery

2012-01-01T23:59:59.000Z

7

Effects of Iron and Manganese Ions on Potentiostatic Current ...  

Science Conference Proceedings (OSTI)

Differential Characterization of Ikperejere Iron shale and Iron Sandstone Deposit · Direct Precipitation of ... High Temperature Exposure of Oil Well Cements.

8

Sorption of Ferric Iron from Siderophore Complexes by Layer Type Manganese  

NLE Websites -- All DOE Office Websites (Extended Search)

Sorption of Ferric Iron from Siderophore Complexes by Layer Type Sorption of Ferric Iron from Siderophore Complexes by Layer Type Manganese Oxides Owen W. Duckworth (North Carolina State University), John R. Bargar (Stanford Synchrotron Radiation Lightsource), and Garrison Sposito (University of California-Berkeley) figure 1 Figure 1. Top: Iron is thought to limit phytoplankton in much of the world's oceans. Bottom: Structure of the iron-siderophore complex ferrioxamine B [Fe(III)HDFOB+]. Image courtesy of Andrzej Jarzecki, Brooklyn College, the City University of New York. Iron is one of several essential nutrients thought to limit phytoplankton growth in large areas of the world's oceans. The growth of marine phytoplankton represents a important linkage in the carbon cycle, accounting for approximately 50% of the total biological uptake of carbon

9

Reduction and Separation of High Iron Content Manganese Ore and ...  

Science Conference Proceedings (OSTI)

Chemical Enrichment of Precious Metals in Iron Sulfides Using Microwave Energy · Chloridizing ... Co-Gasification Behavior of Metallurgical Coke with High and Low Reactivity .... Thermal Plasma Torches for Metallurgical Applications.

10

Manganese Doping of Magnetic Iron Oxide Nanoparticles: Tailoring Surface Reactivity for a Regenerable Heavy Metal Sorbent  

SciTech Connect

A method for tuning the analyte affinity of magnetic, inorganic nanostructured sorbents for heavy metal contaminants is described. The manganese-doped iron oxide nanoparticle sorbents have a remarkably high affinity compared to the precursor material. Sorbent affinity can be tuned toward an analyte of interest simply by adjustment of the dopant quantity. The results show that following the Mn doping process there is a large increase in affinity and capacity for heavy metals (i.e., Co, Ni, Zn, As, Ag, Cd, Hg, and Tl). Capacity measurements were carried out for the removal of cadmium from river water and showed significantly higher loading than the relevant commercial sorbents tested for comparison. The reduction in Cd concentration from 100 ppb spiked river water to 1 ppb (less than the EPA drinking water limit of 5 ppb for Cd) was achieved following treatment with the Mn-doped iron oxide nanoparticles. The Mn-doped iron oxide nanoparticles were able to load 1 ppm of Cd followed by complete stripping and recovery of the Cd with a mild acid wash. The Cd loading and stripping is shown to be consistent through multiple cycles with no loss of sorbent performance.

Warner, Cynthia L.; Chouyyok, Wilaiwan; Mackie, Katherine E.; Neiner, Doinita; Saraf, Laxmikant; Droubay, Timothy C.; Warner, Marvin G.; Addleman, Raymond S.

2012-02-28T23:59:59.000Z

11

Electrochemical corrosion of iron-magnesium-alumina spinel (FMAS) in molten potassium salts and coal slag  

DOE Green Energy (OSTI)

Iron, magnesium-alumina spinel (FMAS) (0.25 Fe/sub 3/O/sub 4/ . 0.75 MgAl/sub 2/O/sub 4/) has been considered for use as an electrode in magnetohydrodynamic (MHD) generator channels. Predominantly an electronic conductor, FMAS has adequate electrical conductivity (>1 S/m) above 520/sup 0/K. In addition, FMAS can be easily fabricated into a form and sintered in air to >90% theoretical density and has a melting point of 2124 +- 20/sup 0/K. Laboratory tests to measure both the electrochemical and chemical corrosion of FMAS in molten K/sub 2/CO/sub 3/, K/sub 2/SO/sub 4/ and coal slags were developed at the Pacific Northwest Laboratory to evaluate the relative corrosion of FMAS. Under isothermal conditions, a direct electric current was passed between an anode and a cathode through a molten electrolyte. The molten coal slags were synthetic high-calcium, low-iron Montana Rosebud and low-calcium, high-iron Illinois No. 6. Evaluations of electrochemical corrosion were made as functions of current density, temperature, and slag composition. These results were compared to those of FMAS tested without electric current. The corrosion rates and reaction products were investigated by optical microscopy and scanning electron microscopy. Overall, FMAS has too-high an electrochemical corrosion rate to be considered as MHD electrodes in Montana Rosebud coal slag or in systems where only molten potassium salts are present. However, FMAS may be considered for use in high-iron coal slags although the corrosion rates are still quite high even in these slags.

Marchant, D.D.; Griffin, C.W.; Bates, J.L.

1981-01-01T23:59:59.000Z

12

Reaction of Plutonium(VI) with the Manganese-Substituted Iron Oxide Mineral Goethite  

E-Print Network (OSTI)

Plutonium(VI) Sorption on Manganese-SubstitutedX-ray Beam-Induced Chemistry on Plutonium Sorbed on Variousof Plutonium . . . . . . . . . . . . . . . . .159 v E Anion

Hu, Yung-Jin Hu

2011-01-01T23:59:59.000Z

13

Stability Behavior and Thermodynamic States of Iron and Manganese in Sandy Soil Aquifer, Manukan Island, Malaysia  

Science Conference Proceedings (OSTI)

A total of 20 soil samples were collected from 10 boreholes constructed in the low lying area, which included ancillary samples taken from the high elevation area. Redox processes were investigated in the soil as well as groundwater in the shallow groundwater aquifer of Manukan Island, Sabah, Malaysia. Groundwater samples (n = 10) from each boreholes were also collected in the low lying area to understand the concentrations and behaviors of Fe and Mn in the dissolved state. This study strives to obtain a general understanding of the stability behaviors on Fe and Mn at the upper unsaturated and the lower-saturated soil horizons in the low lying area of Manukan Island as these elements usually play a major role in the redox chemistry of the shallow groundwater. Thermodynamic calculations using PHREEQC showed that the groundwater samples in the study area are oversaturated with respect to goethite, hematite, Fe(OH){sub 3} and undersaturated with respect to manganite and pyrochroite. Low concentrations of Fe and Mn in the groundwater might be probably due to the lack of minerals of iron and manganese oxides, which exist in the sandy aquifer. In fact, high organic matters that present in the unsaturated horizon are believed to be responsible for the high Mn content in the soil. It was observed that the soil samples collected from high elevation area (BK) comprises considerable amount of Fe in both unsaturated (6675.87 mg/kg) and saturated horizons (31440.49 mg/kg) compared to the low Fe content in the low lying area. Based on the stability diagram, the groundwater composition lies within the stability field for Mn{sup 2+} and Fe{sup 2+} under suboxic condition and very close to the FeS/Fe{sup 2+} stability boundary. This study also shows that both pH and Eh values comprise a strong negative value thus suggesting that the redox potential is inversely dependent on the changes of pH.

Lin, Chin Yik, E-mail: cy_lin_ars@hotmail.com [Universiti Malaysia Sabah, School of Science and Technology (Malaysia); Abdullah, Mohd. Harun [Universiti Malaysia Sabah, Water Research Unit, School of Science and Technology (Malaysia); Musta, Baba; Praveena, Sarva Mangala [Universiti Malaysia Sabah, School of Science and Technology (Malaysia); Aris, Ahmad Zaharin [Universiti Putra Malaysia, Faculty of Environmental Studies (Malaysia)

2011-03-15T23:59:59.000Z

14

It's Elemental - The Element Manganese  

NLE Websites -- All DOE Office Websites (Extended Search)

Chromium Chromium Previous Element (Chromium) The Periodic Table of Elements Next Element (Iron) Iron The Element Manganese [Click for Isotope Data] 25 Mn Manganese 54.938045 Atomic Number: 25 Atomic Weight: 54.938045 Melting Point: 1519 K (1246°C or 2275°F) Boiling Point: 2334 K (2061°C or 3742°F) Density: 7.3 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 4 Group Number: 7 Group Name: none What's in a name? From the Latin word for magnet, magnes. Say what? Manganese is pronounced as MAN-ge-nees. History and Uses: Proposed to be an element by Carl Wilhelm Scheele in 1774, manganese was discovered by Johan Gottlieb Gahn, a Swedish chemist, by heating the mineral pyrolusite (MnO2) in the presence of charcoal later that year.

15

Cast B2-phase iron-aluminum alloys with improved fluidity  

DOE Patents (OSTI)

Systems and methods are described for iron aluminum alloys. A composition includes iron, aluminum and manganese. A method includes providing an alloy including iron, aluminum and manganese; and processing the alloy. The systems and methods provide advantages because additions of manganese to iron aluminum alloys dramatically increase the fluidity of the alloys prior to solidification during casting.

Maziasz, Philip J. (122 Clark La., Oak Ridge, TN 37830); Paris, Alan M. (P.O. Box 64, Tarrs, PA 15688); Vought, Joseph D. (124 Cove Point Rd., Rockwood, TN 37854)

2002-01-01T23:59:59.000Z

16

Multivitamin/Multielement Dietary Supplement SRM  

Science Conference Proceedings (OSTI)

... chromium, copper, iodine, iron, magnesium, manganese, molybdenum, nickel, phosphorous, potassium, selenium, silicon, tin, vanadium, and zinc. ...

2012-10-22T23:59:59.000Z

17

NIST Tech Beat - Oct. 12, 2006  

Science Conference Proceedings (OSTI)

... iron, magnesium, manganese, sodium, potassium, zinc, arsenic cadmium, chromium, cobalt, copper, mercury, molybdenum, nickel, lead and ...

18

By Thomas S. Jones Manganese (Mn) is essential to iron and silicomanganese increased about 7%. consisted of, in tons, natural battery-grade ore,  

E-Print Network (OSTI)

about 7%. consisted of, in tons, natural battery-grade ore, steel production by virtue of its sulfur aluminum alloys and is used in oxide form in dry cell batteries. The overall level and nature of manganese consumption in batteries was denoted by the expansion on schedule of domestic capacity for production

Torgersen, Christian

19

Production of magnesium metal  

DOE Patents (OSTI)

A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention further relates to a process for production of magnesium metal or a magnesium compound where an external source of carbon dioxide is not used in any of the reactions of the process. The invention also relates to the magnesium metal produced by the processes described herein.

Blencoe, James G. (Harriman, TN); Anovitz, Lawrence M. (Knoxville, TN); Palmer, Donald A. (Oliver Springs, TN); Beard, James S. (Martinsville, VA)

2010-02-23T23:59:59.000Z

20

It's Elemental - The Element Iron  

NLE Websites -- All DOE Office Websites (Extended Search)

Manganese Manganese Previous Element (Manganese) The Periodic Table of Elements Next Element (Cobalt) Cobalt The Element Iron [Click for Isotope Data] 26 Fe Iron 55.845 Atomic Number: 26 Atomic Weight: 55.845 Melting Point: 1811 K (1538°C or 2800°F) Boiling Point: 3134 K (2861°C or 5182°F) Density: 7.874 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 4 Group Number: 8 Group Name: none What's in a name? From the Anglo-Saxon word iron. Iron's chemical symbol comes from the Latin word for iron, ferrum. Say what? Iron is pronounced as EYE-ern. History and Uses: Archaeological evidence suggests that people have been using iron for at least 5000 years. Iron is the cheapest and one of the most abundant of all metals, comprising nearly 5.6% of the earth's crust and nearly all of the

Note: This page contains sample records for the topic "iron magnesium manganese" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Magnesium Technology 2009  

Science Conference Proceedings (OSTI)

Feb 1, 2009 ... Print Book and CD-ROM: Magnesium Technology 2007. Hardcover book and CD set: Magnesium Technology 2008 ...

22

Production of magnesium metal  

DOE Patents (OSTI)

A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention also relates to the magnesium metal produced by the processes described herein.

Blencoe, James G. (Harriman, TN); Anovitz, Lawrence M. (Knoxville, TN); Palmer, Donald A. (Oliver Springs, TN); Beard, James S. (Martinsville, VA)

2012-04-10T23:59:59.000Z

23

Nuclear reactor shield including magnesium oxide  

DOE Patents (OSTI)

An improvement in nuclear reactor shielding of a type used in reactor applications involving significant amounts of fast neutron flux, the reactor shielding including means providing structural support, neutron moderator material, neutron absorber material and other components as described below, wherein at least a portion of the neutron moderator material is magnesium in the form of magnesium oxide either alone or in combination with other moderator materials such as graphite and iron.

Rouse, Carl A. (Del Mar, CA); Simnad, Massoud T. (La Jolla, CA)

1981-01-01T23:59:59.000Z

24

Magnesium Electrolytic Production Process  

Science Conference Proceedings (OSTI)

Oct 1, 1999 ... The process is adopted at magnesium and titanium-magnesium plants of Russia, Kazakhstan, Ukraine. The best modern projects are realised ...

25

Magnesium: Digital Resource Center - BOOK: Magnesium ...  

Science Conference Proceedings (OSTI)

Oct 6, 2008 ... This book presents all aspects of magnesium production, properties and application, including primary production, alloy development, ...

26

Magnesium Technology Symposium  

Science Conference Proceedings (OSTI)

Conference Tools for Materials Science & Technology 2013 ... Scope, The magnesium technology symposium will cover a broad spectrum of theoretical and ...

27

Magnesium Technology 2014  

Science Conference Proceedings (OSTI)

Jul 15, 2013 ... Emerging Applications (hydrogen storage, additive manufacturing of ... with an electrolytic process for magnesium production from serpentine.

28

Why sequence freshwater manganese depositing β-proteobacterium  

NLE Websites -- All DOE Office Websites (Extended Search)

freshwater manganese depositing β-proteobacterium freshwater manganese depositing β-proteobacterium (Siderocapsaceae)? Stream biofilms are key component of stream food webs and contain bacteria that contribute to the carbon and nitrogen cycles. A slow-growing bacterium isolated from a freshwater stream biofilm has potential bioenergy and bioremediation applications. JOSHI_001 is part of a class of bacteria that deposit iron and manganese precipitates externally to the colony early in its life cycle and could be used for fuel cells and to help clean up manganese contaminated water. Members of the Siderocapsaceae family to which JOSHI_001 belongs have been observed in biofilms for the past century, but have never before been isolated and cultivated in a laboratory environment. As a result, researchers have not been able to learn about the

29

The Magnesium Industry  

Science Conference Proceedings (OSTI)

...salt lakes (for example, the Great Salt Lake in Utah) or salt deposits as the raw material. Both magnesium and chlorine are produced.

30

Magnesium Technology 2011  

Science Conference Proceedings (OSTI)

Aug 2, 2010 ... Processing Aspects of Magnesium Alloy Stent Tube ... The Effect of Rare Earth Elements on the Texture and Formability of Asymmetrically ...

31

Magnesium Technology 2001  

Science Conference Proceedings (OSTI)

Inno\\ ative Vacuum Distillation for Magnesium Recjvcling ........................................... .................... 3 3. Tiunhrri ZJ711. A.irihr Li, "iicioniing .\\lei. '4 lfi-cd I'ii, mid ...

32

Recycling - Magnesium - TMS  

Science Conference Proceedings (OSTI)

Guidelines to assist in buying and selling of various types of Scrap. ... A cooperative effort between EPA and US magnesium industry to reduce emissions of SF6.

33

WEB RESOURCE: Gas Welding Magnesium  

Science Conference Proceedings (OSTI)

Sep 20, 2007 ... This webpage offers advice on gas welding of magnesium. Launch Site SOURCE: "Gas Welding Magnesium". Weldwell Corporate Website.

34

Process for removing technetium from iron and other metals  

DOE Patents (OSTI)

A process for removing technetium from iron and other metals comprises the steps of converting the molten, alloyed technetium to a sulfide dissolved in manganese sulfide, and removing the sulfide from the molten metal as a slag. 4 figs.

Leitnaker, J.M.; Trowbridge, L.D.

1999-03-23T23:59:59.000Z

35

Process for removing technetium from iron and other metals  

DOE Patents (OSTI)

A process for removing technetium from iron and other metals comprises the steps of converting the molten, alloyed technetium to a sulfide dissolved in manganese sulfide, and removing the sulfide from the molten metal as a slag.

Leitnaker, James M. (Kingston, TN); Trowbridge, Lee D. (Oak Ridge, TN)

1999-01-01T23:59:59.000Z

36

WEB RESOURCE: Magnesium Welding - Information Sources for ...  

Science Conference Proceedings (OSTI)

Sep 20, 2007 ... This web-based, magnesium welding resource is a compilation of: ... SOURCE: “ Magnesium Welding – Information Sources for Magnesium ...

37

Magnesium - Rare Earth Alloys  

Science Conference Proceedings (OSTI)

Feb 16, 2010 ... Location: Washington State Convention Center ... The Use of Computer Modeling for Producing DC Cast WE43 Magnesium Alloy Slab: ... However, there is a limited operating window within which favourable textures arise.

38

Improving the Performance of Lithium Manganese Phosphate  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving the Performance of Lithium Manganese Phosphate Title Improving the Performance of Lithium Manganese Phosphate Publication Type Journal Article Year of Publication 2009...

39

ASM Specialty Handbook: Magnesium and Magnesium Alloys - TMS  

Science Conference Proceedings (OSTI)

Feb 9, 2007 ... Prepared with the cooperation of the International Magnesium Association, this handbook presents current industrial practices and provides ...

40

Method for the production of mineral wool and iron from serpentine ore  

DOE Patents (OSTI)

Magnesium silicate mineral wools having a relatively high liquidus temperature of at least about 1400.degree. C. and to methods for the production thereof are provided. The methods of the present invention comprise melting a magnesium silicate feedstock (e.g., comprising a serpentine or olivine ore) having a liquidus temperature of at least about 1400.degree. C. to form a molten magnesium silicate, and subsequently fiberizing the molten magnesium silicate to produce a magnesium silicate mineral wool. In one embodiment, the magnesium silicate feedstock contains iron oxide (e.g., up to about 12% by weight). Preferably, the melting is performed in the presence of a reducing agent to produce an iron alloy, which can be separated from the molten ore. Useful magnesium silicate feedstocks include, without limitation, serpentine and olivine ores. Optionally, silicon dioxide can be added to the feedstock to lower the liquidus temperature thereof.

O' Connor, William K. (Albany, OR); Rush, Gilbert E. (Scio, OR); Soltau, Glen F. (Lebanon, OR)

2011-10-11T23:59:59.000Z

Note: This page contains sample records for the topic "iron magnesium manganese" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Magnesium fluoride recovery method  

DOE Patents (OSTI)

A method of obtaining magnesium fluoride substantially free from radioactive uranium from a slag containing the same and having a radioactivity level of at least about 7000 pCi/gm. The slag is ground to a particle size of about 200 microns or less. The ground slag is contacted with an acid under certain prescribed conditions to produce a liquid product and a particulate solid product. The particulate solid product is separated from the liquid and treated at least two more times with acid to produce a solid residue consisting essentially of magnesium fluoride substantially free of uranium and having a residual radioactivity level of less than about 1000 pCi/gm. In accordance with a particularly preferred embodiment of the invention a catalyst and an oxidizing agent are used during the acid treatment and preferably the acid is sulfuric acid having a strength of about 1.0 Normal.

Gay, Richard L. (Canoga Park, CA); McKenzie, Donald E. (Woodland Hills, CA)

1989-01-01T23:59:59.000Z

42

Molten Salts, Magnesium and Aluminum  

Science Conference Proceedings (OSTI)

Mar 1, 2011 ... Chloride 2011: Practice and Theory of Chloride-Based Metallurgy: Molten Salts, Magnesium and Aluminum Sponsored by: The Minerals, ...

43

EPNews2009Winter  

NLE Websites -- All DOE Office Websites (Extended Search)

are arsenic, iron, magnesium, chromium, zinc, boron, barium, selenium, and manganese. Oil shale produced waters are typically derived from retorting, mine drainage, and leachate...

44

Magnesium Workshop Madrid 2013: Home Page  

Science Conference Proceedings (OSTI)

Magnesium Workshop Madrid 2013. An International Workshop on Processing- Microstructure-Mechanical Property of Magnesium Alloys May 21-24, 2013 ...

45

Climate VISION: Private Sector Initiatives: Magnesium: Resources...  

Office of Scientific and Technical Information (OSTI)

in 1943, the mission of the International Magnesium Association (IMA) is to promote the use of the metal magnesium in material selection and encourage innovative applications of...

46

Promising Magnesium Battery Research at ALS  

NLE Websites -- All DOE Office Websites (Extended Search)

AdvancedLightSource Home Science Highlights Industry @ ALS Promising Magnesium Battery Research at ALS Promising Magnesium Battery Research at ALS Print Wednesday, 23...

47

The Magnesium Industry Today: A Global Perspective  

Science Conference Proceedings (OSTI)

World demand for magnesium continues to remain subdued, succumbing to the ... Magnesium Alloy Sheets and Lubricants for Warm-Forming - Friction Effects.

48

The Use of Manganese Substituted Ferrotitanium Alloys for Energy Storage  

DOE Green Energy (OSTI)

Experimental results are presented on properties of major practical importance in the utilization of manganese-substituted ferrotitanium alloys as hydrogen storage media. Consideration is given to (1) pressure-composition-temperature characteristics, (2) particle attrition properties, (3) effects of long-term cycling on alloy stability, (4) ease of activation and reactivation, and (5) effects of contaminants on alloy activity. The performance of ternary alloys is compared with that of titanium iron as is the development of an optimum ternary alloy for use with a particular peak shaving operation, i.e., the regenerative H2-Cl system.

Johnson, J.R.; Reilly, J.

1977-12-05T23:59:59.000Z

49

It's Elemental - The Element Magnesium  

NLE Websites -- All DOE Office Websites (Extended Search)

Sodium Sodium Previous Element (Sodium) The Periodic Table of Elements Next Element (Aluminum) Aluminum The Element Magnesium [Click for Isotope Data] 12 Mg Magnesium 24.3050 Atomic Number: 12 Atomic Weight: 24.3050 Melting Point: 923 K (650°C or 1202°F) Boiling Point: 1363 K (1090°C or 1994°F) Density: 1.74 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 3 Group Number: 2 Group Name: Alkaline Earth Metal What's in a name? For Magnesia, a district in the region of Thessaly, Greece. Say what? Magnesium is pronounced as mag-NEE-zhi-em. History and Uses: Although it is the eighth most abundant element in the universe and the seventh most abundant element in the earth's crust, magnesium is never found free in nature. Magnesium was first isolated by Sir Humphry Davy, an

50

SEPARATING PROTOACTINIUM WITH MANGANESE DIOXIDE  

DOE Patents (OSTI)

The preparation of U/sup 235/ and an improved method for isolating Pa/ sup 233/ from foreign products present in neutronirradiated thorium is described. The method comprises forming a solution of neutron-irradiated thorium together with a manganous salt, then adding potassium permanganate to precipitate the manganese as manganese dioxide whereby protoactinium is carried down with the nnanganese dioxide dissolving the precipitate, adding a soluble zirconium salt, and adding phosphate ion to precipitate zirconium phosphate whereby protoactinium is then carried down with the zirconium phosphate to effect a further concentration.

Seaborg, G.T.; Gofman, J.W.; Stoughton, R.W.

1958-04-22T23:59:59.000Z

51

Iron (Fe)  

Science Conference Proceedings (OSTI)

Table 19   Linear thermal expansion of iron...Table 19 Linear thermal expansion of iron Temperature Change in length, % (a) Coefficient

52

Hot coal gas desulfurization with manganese-based sorbents. Quarterly report, October--December 1993  

SciTech Connect

The focus of work being performed on Hot Coal Gas Desulfurization at the Morgantown Energy Technology Center is primarily in the use of zinc ferrite and zinc titanate sorbents; however, prior studies indicated that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt% ore + 25 wt% Al{sub 2}O{sub 3}) may be a viable alternative to zinc-based sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc hence it is not as likely to undergo depletion from the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron hence the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. In addition, thermodynamic analysis of the manganese-oxygen-sulfur system shows it to be less amenable to sulfation than zinc ferrite. Potential also exists for utilization of manganese at higher temperatures than zinc ferrite or zinc titanate. This Fifth Quarterly Report documents progress in pellet testing via thermogravimetric analysis of pellet formulation FORM4-A of a manganese ore/alumina combination. This formulation, described more fully in the Quarterly Technical Progress Report of October 15, 1993, consists of manganese carbonate combined with alundum. A 2-inch fixed-bed reactor has been fabricated and is now ready for subjecting pellets to cyclic loading and regeneration; however, a minor problem has arisen during the regeneration cycle in that sulfur tends to form and plug the exit tube during the early stage of regeneration. This problem is about to be overcome by increasing the flow rate of air during the regeneration cycle resulting in more oxidizing conditions and hence less tendency for sulfide sulfur (S{sup =}) to oxidize to the intermediate elemental form (S{sup o}) rather than to 4-valent (S{sup +4}).

Hepworth, M.T.; Slimane, R.B.

1994-01-01T23:59:59.000Z

53

New manganese catalyst for light alkane oxidation  

DOE Patents (OSTI)

Aluminophosphates containing manganese in the structural framework are employed for the oxidation of alkanes, for example the vapor phase oxidation of methane to methanol.

Durante, Vincent A. (West Chester, PA); Lyons, James E. (Wallingford, PA); Walker, Darrell W. (Visalia, CA); Marcus, Bonita K. (Radnor, PA)

1994-01-01T23:59:59.000Z

54

Structural Sequestration of Uranium in Bacteriogenic Manganese...  

NLE Websites -- All DOE Office Websites (Extended Search)

Highlightsbanner Structural Sequestration of Uranium in Bacteriogenic Manganese Oxides Samuel M. Webb (Stanford Synchrotron Radiation Laboratory), Bradley M. Tebo (Oregon Health...

55

Degradation of Manganese Cobalt Spinel SOFC Interconnect ...  

Science Conference Proceedings (OSTI)

Presentation Title, Degradation of Manganese Cobalt Spinel SOFC Interconnect Coatings. Author(s), Jeffrey W. Fergus, Yingjia Liu, Yu Zhao. On-Site Speaker ...

56

Batteries with Orthorhombic Sodium Manganese Oxide Cathodes  

Berkeley National Laboratory researchers have discovered a low-cost, low-toxicity manganese oxide for rechargeable lithium and sodium batteries.

57

Magnesium: Digital Resource Center - ARTICLE: Safe Machining of ...  

Science Conference Proceedings (OSTI)

Sep 7, 2007... Other ==== Miscellaneous Digital Resources in Magnesium. Spacer ... Topic Title: ARTICLE: Safe Machining of Magnesium Parts by Cutting ...

58

Slashing Greenhouse Emissions from Magnesium Production - TMS  

Science Conference Proceedings (OSTI)

Jul 1, 2008 ... Topic Title: Slashing Greenhouse Emissions from Magnesium Production Topic Summary: CSIRO, an Australia's national science agency ...

59

Synthesis of superconducting magnesium diboride objects  

DOE Patents (OSTI)

A process to produce magnesium diboride objects from boron objects with a similar form is presented. Boron objects are reacted with magnesium vapor at a predetermined time and temperature to form magnesium diboride objects having a morphology similar to the boron object's original morphology.

Finnemore, Douglas K. (Ames, IA); Canfield, Paul C. (Ames, IA); Bud' ko, Sergey L. (Ames, IA); Ostenson, Jerome E. (Ames, IA); Petrovic, Cedomir (Ames, IA); Cunningham, Charles E. (Ames, IA); Lapertot, Gerard (Grenoble, FR)

2003-08-15T23:59:59.000Z

60

Synthesis Of Superconducting Magnesium Diboride Objects.  

DOE Patents (OSTI)

A process to produce magnesium diboride objects from boron objects with a similar form is presented. Boron objects are reacted with magnesium vapor at a predetermined time and temperature to form magnesium diboride objects having a morphology similar to the boron object's original morphology.

Finnemore, Douglas K. (Ames, IA); Canfield, Paul C. (Ames, IA); Bud' ko, Sergey L. (Ames, IA); Ostenson, Jerome E. (Ames, IA); Petrovic, Cedomir (Ames, IA); Cunningham, Charles E. (Ames, IA); Lapertot, Gerard (Grenoble, FR)

2003-07-08T23:59:59.000Z

Note: This page contains sample records for the topic "iron magnesium manganese" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Climate VISION: Private Sector Initiatives: Magnesium  

Office of Scientific and Technical Information (OSTI)

Letters of Intent/Agreements Letters of Intent/Agreements International Magnesium Association Logo In response to President Bush's challenge to reduce greenhouse gas emissions, fifteen U.S. companies along with the International Magnesium Association (IMA) have voluntarily committed to eliminate SF6 emissions by 2010. This commitment builds on the efforts of the SF6 Emission Reduction Partnership for the Magnesium Industry, a partnership program that EPA has had with the industry since 1999. These industry leaders represent 100% of domestic primary magnesium production and 90% of U.S. magnesium casting capacity. In addition, the IMA's members operate on five continents and represent 80% of the global magnesium industry. The magnesium industry commonly uses a potent and long-lived greenhouse

62

Method for magnesium sulfate recovery  

DOE Patents (OSTI)

A method is described for obtaining magnesium sulfate substantially free from radioactive uranium from a slag containing the same and having a radioactivity level of at least about 7,000 pCi/gm. The slag is ground to a particle size of about 200 microns or less. The ground slag is then contacted with a concentrated sulfuric acid under certain prescribed conditions to produce a liquid product and a solid product. The particulate solid product and a minor amount of the liquid is then treated to produce a solid residue consisting essentially of magnesium sulfate substantially free of uranium and having a residual radioactivity level of less than 1,000 pCi/gm. In accordance with the preferred embodiment of the invention, a catalyst and an oxidizing agent are used during the initial acid treatment and a final solid residue has a radioactivity level of less than about 50 pCi/gm.

Gay, R.L.; Grantham, L.F.

1987-08-25T23:59:59.000Z

63

Substrate and method for the formation of continuous magnesium diboride and doped magnesium diboride wire  

DOE Patents (OSTI)

A chemically doped boron coating is applied by chemical vapor deposition to a silicon carbide fiber and the coated fiber then is exposed to magnesium vapor to convert the doped boron to doped magnesium diboride and a resultant superconductor.

Suplinskas, Raymond J. (Haverhill, MA); Finnemore, Douglas (Ames, IA); Bud' ko, Serquei (Ames, IA); Canfield, Paul (Ames, IA)

2007-11-13T23:59:59.000Z

64

Promising Magnesium Battery Research at ALS  

NLE Websites -- All DOE Office Websites (Extended Search)

Promising Magnesium Battery Research Promising Magnesium Battery Research at ALS Promising Magnesium Battery Research at ALS Print Wednesday, 23 January 2013 16:59 toyota battery a) Cross-section of the in situ electrochemical/XAS cell with annotations. b) Drawing and c) photograph of the assembled cell. Alternatives to the current lithium-ion-based car batteries are at the forefront of the automotive industry's research agenda-manufacturers want to build cars with longer battery life, and to do that they're going to have to find new solutions. One promising battery material is magnesium (Mg)-it is more dense than lithium, it is safer, and the magnesium ion carries a two-electron charge, giving it potential as a more efficient energy source. Magnesium has a high volumetric capacity, which could mean

65

IMPROVED MAGNESIUM OXIDE SLIP CASTING METHOD  

DOE Patents (OSTI)

A process for making an aqueous magnesium oxide slip casting slurry comprising the steps of mixing finely ground fused magnesium oxide with water, milling the slurry for at least 30 hours at a temperature of 2-10 deg C (the low temperature during milling inhibiting the formation of hydrated magnesium oxide), discharging the slurry from the mill, adding hydrochloric acid as a deflocculent, and adding a scum inhibitor is presented. (AEC)

Stoddard, S.D.; Nuckolls, D.E.

1963-12-31T23:59:59.000Z

66

Climate VISION: Private Sector Initiatives: Magnesium: Results  

Office of Scientific and Technical Information (OSTI)

plans, the International Magnesium Association and the federal government will begin tracking progress. The results will be measured by metrics developed by the industry, in...

67

Nanoparticles in Magnesium Alloys: Novel Nanoscale Phenomena ...  

Science Conference Proceedings (OSTI)

Also, the in-situ creation of nanoparticles in magnesium alloy and consequent simultaneous ... Processing and Mechanical Behavior of Unalloyed Plutonium.

68

Magnesium: Digital Resource Center Text Topic  

Science Conference Proceedings (OSTI)

Feb 11, 2007 ... E. Aghion, B. Bronfin, F. Von Buch, S. Schumann and H. Friedrich. "Dead Sea Magnesium Alloys Newly Developed for High Temperature ...

69

PDF: Automotive Magnesium Applications and Life Cycle ...  

Science Conference Proceedings (OSTI)

Feb 11, 2007 ... This presentation includes images of a die cast magnesium steering wheel, AZ91D cam cover, AZ91D transmission housing, AM50 door inner, ...

70

Materials Design in Magnesium Alloy Development  

Science Conference Proceedings (OSTI)

This presentation will provide insight into the status of materials design tools in its application to magnesium alloy development as well as provide forecasts as to ...

71

Magnesium: Digital Resource Center -- Background - TMS  

Science Conference Proceedings (OSTI)

WEB RESOURCE: MIL-HDBK-5H: Metallic Materials and Elements for Aerospace Vehicle Structures Link provided to Chapter 4: Magnesium Alloys, 0, 780 ...

72

Magnesium: Digital Resource Center -- Databases - TMS  

Science Conference Proceedings (OSTI)

WEB RESOURCE: MIL-HDBK-5H: Metallic Materials and Elements for Aerospace Vehicle Structures Link provided to Chapter 4: Magnesium Alloys, 0, 958 ...

73

Magnesium: Digital Resource Center -- Background - TMS  

Science Conference Proceedings (OSTI)

WEB RESOURCE: MIL-HDBK-5H: Metallic Materials and Elements for Aerospace Vehicle Structures Link provided to Chapter 4: Magnesium Alloys, 0, 793 ...

74

Magnesium: Digital Resource Center -- Databases - TMS  

Science Conference Proceedings (OSTI)

WEB RESOURCE: MIL-HDBK-5H: Metallic Materials and Elements for Aerospace Vehicle Structures Link provided to Chapter 4: Magnesium Alloys, 0, 1005 ...

75

Fluid Bed Dehydration of Magnesium Chloride  

Science Conference Proceedings (OSTI)

... is provided based on open literature sources, including papers and patents. ... Demonstration of Solar-Pumped Laser-Induced Magnesium Production from ...

76

Understanding Protective Film Formation by Magnesium Alloys  

Science Conference Proceedings (OSTI)

Abstract Scope, Magnesium-based alloys are the lightest structural metals, and thus ... The present work aims to understand the mechanism(s) of protective film ...

77

Magnesium: Digital Resource Center - ARTICLE: Forming of ...  

Science Conference Proceedings (OSTI)

Sep 20, 2007 ... This paper addresses the formability of magnesium extrusions with respect to rotary-draw bending and hydro-mechanical forming, presenting ...

78

Climate VISION: Private Sector Initiatives: Magnesium: Work Plans  

Office of Scientific and Technical Information (OSTI)

Work Plans EPA's SF6 Emission Reduction Partnership for the Magnesium Industry in cooperation with the International Magnesium Association has developed a work plan for achieving...

79

2003 TMS Annual Meeting: Short Courses--Magnesium Metallurgy ...  

Science Conference Proceedings (OSTI)

Mar 1, 2003 ... Returned to China and started in the magnesium business in 1991 selling metals , including magnesium to the end users. Has worked on the ...

80

Hydrogen Storage property of sandwiched magnesium hydride naoparticle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage property of sandwiched magnesium hydride naoparticle thin film Title Hydrogen Storage property of sandwiched magnesium hydride naoparticle thin film Publication Type...

Note: This page contains sample records for the topic "iron magnesium manganese" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material  

DOE Patents (OSTI)

An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M{sub x}Z{sub y}Mn{sub (1{minus}y)}O{sub 2}, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell. 11 figs.

Doeff, M.M.; Peng, M.Y.; Ma, Y.; Visco, S.J.; DeJonghe, L.C.

1996-09-24T23:59:59.000Z

82

Cation Adsorption on Manganese Dioxide Impregnated Fibers  

Science Conference Proceedings (OSTI)

The complete removal of radioactive cations by standard mixed-bed ion-exchange resins is sometimes not achieved in liquid radwaste systems. This report documents an alternative ion adsorption process for the purification of liquid wastes, specifically, the use of manganese dioxide (MnO2) impregnated fibers to remove selected cations from PWR liquid waste streams.

1993-02-26T23:59:59.000Z

83

Innovative Vacuum Distillation for Magnesium Recycling  

Science Conference Proceedings (OSTI)

Feb 1, 2001 ... TMS Member price: 10.00. Non-member price: 25.00. TMS Student Member price : 10.00. Product In Stock. Description Magnesium recycling ...

84

Magnesium Alloys - TMS: Knowledge Resource Center  

Science Conference Proceedings (OSTI)

A.A. Luo, A.K. Sachdev, R.K. Mishra, and R.C. Kubic. An Internal Variable Approach to the Superplastic Deformation of AZ31 Magnesium Alloy [pp. 149] H.S. Lee ...

85

Climate VISION: Private Sector Initiatives: Magnesium  

Office of Scientific and Technical Information (OSTI)

Federal/State Programs Federal/State Programs U.S. EPA's SF6 Emission Reduction Partnership for the Magnesium Industry Leading magnesium producers and casting companies are working with the U.S. Environmental Protection Agency (EPA) to alleviate the global environmental threat of climate change. EPA is very proud to cooperate with the industry through the SF6 Emission Reduction Partnership for the Magnesium Industry and the International Magnesium Association (IMA) to protect the climate. This voluntary initiative is guiding research of new technologies, promoting environmental stewardship, and providing a valuable forum to freely exchange technical information. Significant progress has been made to identify and implement SF6 emission reduction strategies since the partnership's inception.

86

Electrolytic photodissociation of chemical compounds by iron oxide photochemical diodes  

DOE Patents (OSTI)

Chemical compounds can be dissociated by contacting the same with a p/n type semi-conductor photochemical diode having visible light as its sole source of energy. The photochemical diode consists of low cost, readily available materials, specifically polycrystalline iron oxide doped with silicon in the case of the n-type semi-conductor electrode, and polycrystalline iron oxide doped with magnesium in the case of the p-type electrode. So long as the light source has an energy greater than 2.2 electron volts, no added energy source is needed to achieve dissociation.

Somorjai, Gabor A. (Berkeley, CA); Leygraf, Christofer H. (Berkeley, CA)

1985-01-01T23:59:59.000Z

87

Electrolytic photodissociation of chemical compounds by iron oxide electrodes  

DOE Patents (OSTI)

Chemical compounds can be dissociated by contacting the same with a p/n type semi-conductor diode having visible light as its sole source of energy. The diode consists of low cost, readily available materials, specifically polycrystalline iron oxide doped with silicon in the case of the n-type semi-conductor electrode, and polycrystalline iron oxide doped with magnesium in the case of the p-type electrode. So long as the light source has an energy greater than 2.2 electron volts, no added energy source is needed to achieve dissociation.

Somorjai, Gabor A. (Berkeley, CA); Leygraf, Christofer H. (Berkeley, CA)

1984-01-01T23:59:59.000Z

88

Reducing acid leaching of manganiferous ore: Effect of the iron removal operation on solid waste disposal  

Science Conference Proceedings (OSTI)

The process of reducing acid leaching of manganiferous ore is aimed at the extraction of manganese from low grade manganese ores. This work is focused on the iron removal operation. The following items have been considered in order to investigate the effect of the main operating conditions on solid waste disposal and on the process costs: (i) type and quantity of the base agent used for iron precipitation, (ii) effective need of leaching waste separation prior to the iron removal operation, (iii) presence of a second leaching stage with the roasted ore, which might also act as a preliminary iron removal step, and (iv) effect of tailings washing on the solid waste classification. Different base compounds have been tested, including CaO, CaCO{sub 3}, NaOH, and Na{sub 2}CO{sub 3}. The latter gave the best results concerning both the precipitation process kinetics and the reagent consumption. The filtration of the liquor leach prior to iron removal was not necessary, implying significant savings in capital costs. A reduction of chemical consumption and an increase of manganese concentration in the solution were obtained by introducing secondary leaching tests with the previously roasted ore; this additional step was introduced without a significant decrease of global manganese extraction yield. Finally, toxicity characteristic leaching procedure (TCLP) tests carried out on the leaching solid waste showed: (i) a reduction of arsenic mobility in the presence of iron precipitates, and (ii) the need for a washing step in order to produce a waste that is classifiable as not dangerous, taking into consideration the existing Environmental National Laws.

De Michelis, Ida; Ferella, Francesco [University of L'Aquila, Department of Chemistry, Chemical Engineering and Materials, Monteluco di Roio, 67040 L'Aquila (Italy); Beolchini, Francesca [Polytechnic University of Marche, Department of Marine Sciences, Via Brecce Bianche, 60131 Ancona (Italy)], E-mail: f.beolchini@univpm.it; Veglio, Francesco [University of L'Aquila, Department of Chemistry, Chemical Engineering and Materials, Monteluco di Roio, 67040 L'Aquila (Italy)

2009-01-15T23:59:59.000Z

89

Iron Absorption  

NLE Websites -- All DOE Office Websites (Extended Search)

Iron Absorption Iron Absorption Name: Mary Location: N/A Country: N/A Date: N/A Question: I wrote before to Steve and got a answer back. I would like more information. The cirmcustances were that I first had anaemia and then I went for a gastroscopy. The results of which were I had insufficient acid been produced in the stomach. I was told that acid was nessary for the absorbion of iron and it was because of this that I became anaemic. I was told to eat plently of red meat not too many vegetables. Is there any other information you can give me? Replies: It is very difficult to say for sure without seeing you chart and I am not your doctor. But it sounds to me like you are deficient in the vitamin B12. In your stomach you have 3 basic types of cells. One is called chief cells which secrete the precursor of the enzyme pepsin which begins the breakdown of protein. Another is called the parietal cells which secrete your stomach acid and a substance called intrinsic factor. Now-switch to your bone marrow which is where your red blood cells are made. In order for your red blood cells to mature in the bone marrow, vitamin B12 is necessary. B12 can only be obtained from animal food sources such as meat, milk and eggs. Unfortunately, B12 cannot be absorbed in the stomach without intrinsic factor. If there is sufficient B12 present in the diet, it can be stored in the liver. If you aren't eating enough animal sources your B12 will be taken from your liver until you run out. You could also be deficient in intrinsic factor. So while the outcome is anemia (not enough red blood cells) the problem could be from a few different things. Follow your doctor's recommendations and eat more sources of B12

90

Iron and Prochlorococcus/  

E-Print Network (OSTI)

Iron availability and primary productivity in the oceans are intricately linked through photosynthesis. At the global scale we understand how iron addition induces phytoplankton blooms through meso-scale iron-addition ...

Thompson, Anne Williford

2009-01-01T23:59:59.000Z

91

Manganese-Based Magnets: Manganese-Based Permanent Magnet with 40 MGOe at 200°C  

Science Conference Proceedings (OSTI)

REACT Project: PNNL is working to reduce the cost of wind turbines and EVs by developing a manganese-based nano-composite magnet that could serve as an inexpensive alternative to rare-earth-based magnets. The manganese composite, made from low-cost and abundant materials, could exceed the performance of today’s most powerful commercial magnets at temperature higher than 200°C. Members of PNNL’s research team will leverage comprehensive computer high-performance supercomputer modeling and materials testing to meet this objective. Manganese-based magnets could withstand higher temperatures than their rare earth predecessors and potentially reduce the need for any expensive, bulky engine cooling systems for the motor and generator. This would further contribute to cost savings for both EVs and wind turbines.

None

2012-01-01T23:59:59.000Z

92

Calorimetric Investigation of the Lithium–Manganese–Oxygen ...  

Science Conference Proceedings (OSTI)

Presentation Title, Calorimetric Investigation of the Lithium–Manganese–Oxygen Cathode Material System for Lithium Ion Batteries. Author(s), Damian M. Cupid, ...

93

Experimental Cell for Neutron Reflection on Lithium Manganese ...  

Science Conference Proceedings (OSTI)

Presentation Title, Experimental Cell for Neutron Reflection on Lithium Manganese Oxide to Study the Electrode/Electrolyte Interface. Author(s), Brian Kitchen.

94

A Study of Pelletization of Manganese Ore Fines  

Science Conference Proceedings (OSTI)

... ores, fine manganese fines are characterized by large amount and low price. ... A Study of Coal-Based Direct Reduction of Composite Binder Magnetite ...

95

Manganese Cobalt Spinel Oxide Based Coatings for SOFC ...  

Science Conference Proceedings (OSTI)

Presentation Title, Manganese Cobalt Spinel Oxide Based Coatings for SOFC Interconnects. Author(s), Jeffrey W. Fergus, Yingjia Liu, Yu Zhao. On-Site Speaker ...

96

High Temperature Stainless Steel Alloy with Low Cost Manganese  

High Temperature Stainless Steel Alloy with Low Cost Manganese ... ••Power industry components such as boiler tubing and piping, pressure vessels, chemical

97

Researches on Reduction Roasting of Low-grade Manganese ...  

Science Conference Proceedings (OSTI)

In this study, a kind of abundant biomass, pine black charcoal, was firstly used as a substitute for coals to reduce low-grade manganese oxide ores.

98

greenhouse gas balance of magnesium parts for automotive ...  

Science Conference Proceedings (OSTI)

Jul 20, 2012 ... GREENHOUSE GAS BALANCE OF MAGNESIUM PARTS FOR AUTOMOTIVE APPLICATIONS by Simone Ehrenberger, Horst E. Friedrich ...

99

Demonstration of Solar-Pumped Laser-Induced Magnesium ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2012 TMS Annual Meeting & Exhibition. Symposium , Magnesium Technology 2012. Presentation Title, Demonstration of ...

100

TMS Professional Honors and Awards: LMD Magnesium Award  

Science Conference Proceedings (OSTI)

TMS ENERGY INITIATIVES · KNOWLEDGE ... 2005, “Heated Hydro-Mechanical Deep Drawing of Magnesium Sheet Metal” Gerrit Kurz, University of Hanover.

Note: This page contains sample records for the topic "iron magnesium manganese" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Manganese Occurrence Near Three Coal Ash Impoundments in Illinois  

Science Conference Proceedings (OSTI)

This report describes research performed to better understand the cause of elevated manganese concentrations sometimes found in groundwater near coal ash management facilities. Three impoundments in Illinois were selected for detailed field and laboratory studies of conditions conducive to manganese release from coal ash as well as natural soils.

2002-09-24T23:59:59.000Z

102

Direct Hydrogenation Magnesium Boride to Magnesium Borohydride: Demonstration of >11 Weight Percent Reversible Hydrogen Storage  

DOE Green Energy (OSTI)

We here for the first time demonstrate direct hydrogenation of magnesium boride, MgB2, to magnesium borohydride, Mg(BH4)2 at 900 bar H2-pressures and 400°C. Upon 14.8wt% hydrogen release, the end-decomposition product of Mg(BH4)2 is MgB2, thus, this is a unique reversible path here obtaining >11wt% H2 which implies promise for a fully reversible hydrogen storage material.

Severa, Godwin; Ronnebro, Ewa; Jensen, Craig M.

2010-11-16T23:59:59.000Z

103

Assessment of the magnesium primary production technology. Final report  

SciTech Connect

At current production levels, direct energy savings achievable in primary magnesium production are 1.2 milliquads of energy per annum. Were magnesium to penetrate the automotive market to an average level of 50 pounds per vehicle, the resultant energy savings at the production stage would be somewhat larger, but the resulting savings in gasoline would conserve an estimated 325 milliquads of energy per year. The principal barrier to more widespread use of magnesium in the immediate future is its price. A price reduction of magnesium of 10% would lead to widespread conversion of aluminum die and permanent mold castings to magnesium. This report addresses the technology of electrolytic and thermic magnesium production and the economics of expanded magnesium production and use.

Flemings, M.C.; Kenney, G.B.; Sadoway, D.R.; Clark, J.P.; Szekely, J.

1981-02-01T23:59:59.000Z

104

The Role of Manganese Dioxide (MnO2) Deposition in Microbiologically Influenced Corrosion  

Science Conference Proceedings (OSTI)

This report documents the role of manganese dioxide (MnO2) in microbiologically influenced corrosion.

2004-12-20T23:59:59.000Z

105

Lead magnesium niobate actuator for micropositioning  

DOE Patents (OSTI)

An improved lead magnesium niobate actuator is disclosed comprising a cylindrical lead magnesium niobate crystal stack mounted in a cylindrical casing wherein a bias means, such as one or more belleville washers, is located between one end of the crystal stack and a partially closed end of the casing; and adjustment means are provided which bear against the opposite end of the crystal stack, whereby an adjustable compressive force is constantly applied against the crystal stack, whether the crystal stack is actuated in an extended position, or is in an unactuated contracted position. In a preferred embodiment, cooling ports are provided for the circulation of coolant in the actuator to cool the crystal stack, and provision is made for removal and replacement of the crystal stack without disconnecting the actuator from the external device being actuated. 3 figs.

Swift, C.D.; Bergum, J.W.

1994-10-25T23:59:59.000Z

106

Enhancements in Magnesium Die Casting Impact Properties  

SciTech Connect

The need to produce lighter components in transportation equipment is the main driver in the increasing demand for magnesium castings. In many automotive applications, components can be made of magnesium or aluminum. While being lighter, often times the magnesium parts have lower impact and fatigue properties than the aluminum. The main objective of this study was to identify potential improvements in the impact resistance of magnesium alloys. The most common magnesium alloys in automotive applications are AZ91D, AM50 and AM60. Accordingly, these alloys were selected as the main candidates for the study. Experimental quantities of these alloys were melted in an electrical furnace under a protective atmosphere comprising sulfur hexafluoride, carbon dioxide and dry air. The alloys were cast both in a permanent mold and in a UBE 315 Ton squeeze caster. Extensive evaluation of tensile, impact and fatigue properties was conducted at CWRU on permanent mold and squeeze cast test bars of AZ91, AM60 and AM50. Ultimate tensile strength values between 20ksi and 30ksi were obtained. The respective elongations varied between 25 and 115. the Charpy V-notch impact strength varied between 1.6 ft-lb and 5 ft-lb depending on the alloy and processing conditions. Preliminary bending fatigue evaluation indicates a fatigue limit of 11-12 ksi for AM50 and AM60. This is about 0.4 of the UTS, typical for these alloys. The microstructures of the cast specimens were investigated with optical and scanning electron microscopy. Concomitantly, a study of the fracture toughness in AM60 was conducted at ORNL as part of the study. The results are in line with values published in the literature and are representative of current state of the art in casting magnesium alloys. The experimental results confirm the strong relationship between aluminum content of the alloys and the mechanical properties, in particular the impact strength and the elongation. As the aluminum content increases from about 5% in AM50 to over 9% in AZ91, more of the intermetallic Mg17Al12 is formed in the microstructure. For instance, for 15 increase in the aluminum content from AM50 to AM60, the volume fraction of eutectic present in the microstructure increases by 35%! Eventually, the brittle Mg17Al12 compound forms an interconnected network that reduces ductility and impact resistance. The lower aluminum in AM50 and AM60 are therefore a desirable feature in applications that call for higher impact resistance. Further improvement in impact resistance depends on the processing condition of the casting. Sound castings without porosity and impurities will have better mechanical properties. Since magnesium oxidizes readily, good melting and metal transfer practices are essential. The liquid metal has to be protected from oxidation at all times and entrainment of oxide films in the casting needs to be prevented. In this regard, there is evidence that us of vacuum to evacuate air from the die casting cavity can improve the quality of the castings. Fast cooling rates, leading to smaller grain size are beneficial and promote superior mechanical properties. Micro-segregation and banding are two additional defect types often encountered in magnesium alloys, in particular in AZ91D. While difficult to eliminate, segregation can be minimized by careful thermal management of the dies and the shot sleeve. A major source of segregation is the premature solidification in the shot sleeve. The primary solid dendrites are carried into the casting and form a heterogeneous structure. Furthermore, during the shot, segregation banding can occur. The remedies for this kind of defects include a hotter shot sleeve, use of insulating coatings on the shot sleeve and a short lag time between pouring into the shot sleeve and the shot.

David Schwam; John F. Wallace; Yulong Zhu; Srinath Viswanathan; Shafik Iskander

2000-06-30T23:59:59.000Z

107

Reversible Dehydrogenation of Magnesium Borohydride to Magnesium Triborane in the Solid State Under Moderate Conditions  

DOE Green Energy (OSTI)

Thermal decomposition of magnesium borohydride, Mg(BH4)2, in the solid state was studied by a combination of PCT, TGA/MS and NMR spectroscopy. Dehydrogenation of Mg(BH4)2 at 200 °C, results in the highly selective formation of magnesium triborane, Mg(B3H8)2. This process is reversible at 250 °C under 120 atm H2. Dehydrogenation at higher temperature, > 300 °C, produces a complex mixture of polyborane species. Solution phase 11B NMR spectra of the hydrolyzed decomposition products reveals the formation of the B3H8 anion, boric acid from hydrolysis of the unstable polyboranes (BnHx) (n = 3-11, x >8), and the closoborane B12H12 dianion as a minor product. A BH condensation mechanism involving metal hydride formation is proposed to explain the limited reversible hydrogen storage in magnesium borohydride.

Chong, Marina; Karkamkar, Abhijeet J.; Autrey, Thomas; Orimo, Shin-ichi; Jalisatgi, Satish; Jensen, Craig M.

2011-02-17T23:59:59.000Z

108

WEB RESOURCE: Magnesium Wrought Products Flow Chart - TMS  

Science Conference Proceedings (OSTI)

Aug 18, 2007 ... The following flow charts attempt to list important wrought magnesium products being made as extrusions, forgings, sheet and plate. In these ...

109

WEB RESOURCE: Magnesium Cast Products Flow Chart - TMS  

Science Conference Proceedings (OSTI)

Aug 18, 2007 ... The following flow charts attempt to list important cast magnesium products being made as die castings, sand and permanent mold castings ...

110

Climate VISION: Private Sector Initiatives: Magnesium: GHG Information  

Office of Scientific and Technical Information (OSTI)

GHG Information The magnesium industry directly emits SF6 from its primary metal production, parts casting, and recycling operations. In 2005, the industry's SF6 emissions were...

111

Fatigue Predictions of Various Joints of Magnesium Alloys  

Science Conference Proceedings (OSTI)

Currently, a front shock tower of passenger vehicle is developed with various magnesium alloys and joining methods. To predict the fatigue behavior of the joints ...

112

Cryoscopic Data for Hall-Héroult Bath Containing Magnesium ...  

Science Conference Proceedings (OSTI)

Presentation Title, Cryoscopic Data for Hall-Héroult Bath Containing Magnesium Fluoride, Calcium Fluoride, Potassium Cryolite, and Sodium Chloride. Author(s) ...

113

Recycling Magnesium Alloy Housings for Notebook Computers - TMS  

Science Conference Proceedings (OSTI)

Jul 1, 2008 ... This article from Fujitsu Laboratories describes two recycling processes for magnesium alloy housings: one for recycling the excess material ...

114

Formation of Vanadate Conversion Coating on AZ31 Magnesium Alloy  

Science Conference Proceedings (OSTI)

In the present investigation, a chromate-free, corrosion-resistant conversion coating using vanadium based solution was applied to AZ31 magnesium alloy.

115

Stress Corrosion Cracking of Aluminium-Free Magnesium Alloys in ...  

Science Conference Proceedings (OSTI)

Presentation Title, Stress Corrosion Cracking of Aluminium-Free Magnesium Alloys in a Simulated Human Body Fluid. Author(s), Lokesh Choudhary, R. K. Singh ...

116

Climate VISION: Private Sector Initiatives: Magnesium: GHG Inventory...  

Office of Scientific and Technical Information (OSTI)

GHG Inventory Protocols The Magnesium Industry Partnership's SF6 emissions tracking and reporting software tool (Excel based) can be accessed by visiting the Partnership's...

117

Rechargeable Magnesium Batteries: Low-Cost Rechargeable Magnesium Batteries with High Energy Density  

Science Conference Proceedings (OSTI)

BEEST Project: Pellion Technologies is developing rechargeable magnesium batteries that would enable an EV to travel 3 times farther than it could using Li-ion batteries. Prototype magnesium batteries demonstrate excellent electrochemical behavior; delivering thousands of charge cycles with very little fade. Nevertheless, these prototypes have always stored too little energy to be commercially viable. Pellion Technologies is working to overcome this challenge by rapidly screening potential storage materials using proprietary, high-throughput computer models. To date, 12,000 materials have been identified and analyzed. The resulting best materials have been electrochemically tested, yielding several very promising candidates.

None

2010-10-01T23:59:59.000Z

118

Stationary storage and purification of hydrogen using nickel-coated magnesium powder. Final technical report  

DOE Green Energy (OSTI)

The following conclusions were reached: (1) The concept of a coating on a magnesium particle serving as a well-supported hydrogen-permselective membrane is sound. (2) Magnesium nitride can be made to coat magnesium particles through chemical vapor deposition within a fluidized bed. (3) Magnesium nitride exhibits the properties necessary for such a coating. (4) Magnesium nitride is not chemically inert to hydrogen in the absence of ammonia at temperatures typically used to hydride/dehydride magnesium.

NONE

1999-12-30T23:59:59.000Z

119

The impacts of graphene nanosheets and manganese valency on lithium storage characteristics in graphene/manganese oxide hybrid anode  

Science Conference Proceedings (OSTI)

Graphene nanosheets (GNS) with attached MnOx nanoparticles are studied in regard to their structure and morphology. The relationship between the lithium storage performances and GNS contents as well as manganese valency was investigated. Experimental ...

S. L. Cheekati; Z. Yao; H. Huang

2012-01-01T23:59:59.000Z

120

Nano-engineering of magnesium hydride for hydrogen storage  

Science Conference Proceedings (OSTI)

The destabilization of magnesium hydride (MgH"2) by solid-state reaction with Si in a nanoscale under vacuum was studied. The nanostructured Si films were deposited on the nanocrystalline MgH"2/Mg composite substrate by the pulsed laser deposition (PLD). ... Keywords: Destabilization, Magnesium hydride, Microstructure, Nano-engineering, Silicon

J. Bystrzycki; T. P?oci?ski; W. Zieli?ski; Z. Winiewski; M. Polanski; W. Mróz; Z. Bojar; K. J. Kurzd?owski

2009-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "iron magnesium manganese" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Casting Porosity-Free Grain Refined Magnesium Alloys  

SciTech Connect

The objective of this project was to identify the root causes for micro-porosity in magnesium alloy castings and recommend remedies that can be implemented in production. The findings confirm the key role played by utilizing optimal gating and risering practices in minimizing porosity in magnesium castings.?

Schwam, David [Case Western Reserve University] [Case Western Reserve University

2013-08-12T23:59:59.000Z

122

OPERATION OF A TRITIUM GLOVEBOX CLEAN-UP SYSTEM USING ZIRCONIUM MANGANESE IRON AND ZIRCONIUM TWO IRON METAL GETTERS  

SciTech Connect

A metal hydride-based tritium clean-up system has been successfully operated for more than four years on an 11 m{sup 3} helium/nitrogen glovebox which was used for handling metal tritide powders. The clean-up system consists of two beds: (1) a Zr-Mn-Fe (in a 10% by weight Al binder, SAES ST909) bed operating at 675 C followed by (2) a Zr{sub 2}Fe (SAES ST198) bed operating at 250 C. The Zr-Mn-Fe bed serves to condition the gas stream by cracking hydrogenous impurities (such as H{sub 2}O and hydrocarbons) and absorbing oxygen and carbon. The Zr{sub 2}Fe bed absorbs the hydrogen isotopes from the flowing stream by forming a solid hydride compound. These beds contain 3 kilograms of Zr{sub 2}Fe and have been loaded routinely with 230-250 STP liters of hydrogen isotopes in earlier trials. The Zr-Mn-Fe alloy exhibits an anomaly during activation, namely an exotherm upon initial exposure to nitrogen. The purpose of this work is to better understand this reaction. Nitrogen absorption studies were done in order to quantify the nitrogen taken up by the getter and to characterize the reaction kinetics. In addition, ST909 phases before and after the reaction were studied with x-ray diffraction.

E. LARSON; K. COOK

2000-08-01T23:59:59.000Z

123

Climate VISION: Private Sector Initiatives: Magnesium: Resources and Links  

Office of Scientific and Technical Information (OSTI)

Technical Information Technical Information Publications CD-ROMs Publications The following publications are available for download as Adobe PDF documents. Download Acrobat Reader Cooperative Study of Magnesium Melt Protection Technologies: Emissions Characterization and Occupational Exposure. (PDF 275 KB) EPA Conference on SF6 and the Environment (2006) presentation by Holger Brandt, Lunt Manufacturing, and Scott Bartos, U.S. EPA. The Alternatives to SF6 for Magnesium Melt Protection brochure, published in Chinese, English, and Japanese language versions, was first introduced to the industry and public at the 63rd Annual World Magnesium Conference in Beijing, China on May 21, 2006. EPA collaborated with the International Magnesium Association (IMA), China Magnesium Association (CMA), and Japan

124

Xenon in Mercury-Manganese Stars  

E-Print Network (OSTI)

Previous studies of elemental abundances in Mercury-Manganese (HgMn) stars have occasionally reported the presence of lines of the ionized rare noble gas Xe II, especially in a few of the hottest stars with Teff ~ 13000--15000 K. A new study of this element has been undertaken using observations from Lick Observatory's Hamilton Echelle Spectrograph. In this work, the spectrum synthesis program UCLSYN has been used to undertake abundance analysis assuming LTE. We find that in the Smith & Dworetsky sample of HgMn stars, Xe is vastly over-abundant in 21 of 22 HgMn stars studied, by factors of 3.1--4.8 dex. There does not appear to be a significant correlation of Xe abundance with Teff. A comparison sample of normal late B stars shows no sign of Xe II lines that could be detected, consistent with the expected weakness of lines at normal abundance. The main reason for the previous lack of widespread detection in HgMn stars is probably due to the strongest lines being at longer wavelengths than the photographic blue. The lines used in this work were 4603.03A, 4844.33A and 5292.22A.

M. M. Dworetsky; J. L. Persaud; K. Patel

2008-01-16T23:59:59.000Z

125

Cross sections for electron scattering from magnesium  

SciTech Connect

A B-spline R-matrix (close-coupling) method has been used to perform a systematic study of angle-differential cross sections for electron scattering from neutral magnesium. The calculations cover elastic scattering and excitation of the five excited states (3s3p) {sup 3,1}P{sup o}, (3s3d) {sup 1}D, (3s4s) {sup 1}S, and (3s4p) {sup 1}P{sup o}. A multiconfiguration Hartree-Fock method with nonorthogonal orbitals was employed for an accurate representation of the target wave functions. The close-coupling expansion for the collision problem included 37 bound states of neutral magnesium. Angle-differential cross sections are presented for incident electron energies from 10 to 100 eV. These results, as well as the corresponding angle-integrated cross sections, are compared with various experimental data and predictions from other close-coupling and distorted-wave calculations. In spite of a few remaining discrepancies, the overall agreement between our results and the experimental data is very satisfactory.

Zatsarinny, Oleg; Bartschat, Klaus; Gedeon, Sergey; Gedeon, Viktor; Lazur, Vladimir; Nagy, Elizabeth [Department of Physics and Astronomy, Drake University, Des Moines, Iowa 50311 (United States); Department of Theoretical Physics, Uzhgorod State University, Uzhgorod 88000 (Ukraine)

2009-05-15T23:59:59.000Z

126

ZIRCONIUM IRON DISPROPORTIONATION DURING ...  

Science Conference Proceedings (OSTI)

... These Zr3Fe and Zr2Fe button samples were made at LANL by arc melting stoichiometric amounts of zirconium and iron in an argon atmosphere. ...

2012-11-26T23:59:59.000Z

127

Cell cycle-regulated manganese superoxide dismutase activity via reversible  

NLE Websites -- All DOE Office Websites (Extended Search)

cycle-regulated manganese superoxide dismutase activity via reversible cycle-regulated manganese superoxide dismutase activity via reversible phosphorylation Demet Candas University of California Davis Abstract The constant stress environment that the cells live in required the development of defense systems against free radical and radiation insults. One of the major antioxidant enzymes responsible for detoxifying free radical species is manganese superoxide dismutase (MnSOD, Sod2), which is specifically localized into the mitochondria of cells. MnSOD catalyzes the conversion of two molecules of superoxide anion into water and hydrogen peroxide, the latter of which is then further oxidized to water. The significance of the role of MnSOD activity was shown by the studies showing that the loss or deficiency of MnSOD sensitize cells to ionizing

128

Reaction of Plutonium(VI) with the Manganese-Substituted Iron Oxide Mineral Goethite  

E-Print Network (OSTI)

161 E.3 Pu AnionPreparation of Pu(III) . . . . . . . . . . . . . . . . . .of Pu(IV) . . . . . . . . . . . . . . . . . . . . C.5

Hu, Yung-Jin Hu

2011-01-01T23:59:59.000Z

129

THE MECHANICAL PROPERTIES AND MICROSTRUCTURAL RELATIONSHIPS IN IRON-MANGANESE-CHROMIUM ALLOYS  

E-Print Network (OSTI)

industrial standpoint. Heat treatment scheme B involves an ice-hrine quench 00% salt solution, refrigeration

Thompson, L.D.

2010-01-01T23:59:59.000Z

130

Distribution and speciation of trace elements in iron and manganese oxide cave deposits  

SciTech Connect

Fe and Mn oxide minerals control the distribution and speciation of heavy metals and trace elements in soils and aquatic systems through chemical mechanisms involving adsorption, incorporation, and electron transfer. The Pautler Cave System in Southwest Illinois, an analog to other temperate carbonate-hosted karst systems, contains Fe and Mn oxide minerals that form in multiple depositional environments and have high concentrations of associated trace elements. Synchrotron-based micro-scanning X-ray fluorescence ({mu}-SXRF) shows unique spatial distributions of Fe, Mn, and trace elements in mineral samples. Profile maps of Mn oxide cave stream pebble coatings show Fe- and As-rich laminations, indicating dynamic redox conditions in the cave stream. {mu}-SXRF maps demonstrate that Ni, Cu, and Zn correlate primarily with Mn whereas As correlates with both Mn and Fe; As is more enriched in the Fe phase. Zn is concentrated in the periphery of Mn oxide stream pebble coatings, and may be an indication of recent anthropogenic surface activity. X-ray absorption fine structure spectroscopy measurements reveal that As(V) occurs as surface complexes on Mn and Fe oxides whereas Zn(II) associated with Mn oxides is adsorbed to the basal planes of phyllomanganates in a tetrahedral coordination. Co(III) and Se(IV) are also observed to be associated with Mn oxides. The observation of Fe, Mn, and trace element banding in Mn oxide cave stream pebble coatings suggests that these materials are sensitive to and document aqueous redox conditions, similar to ferromanganese nodules in soils and in marine and freshwater sediments. Furthermore, speciation and distribution measurements indicate that these minerals scavenge trace elements and limit the transport of micronutrients and contaminants in karst aquifer systems while also potentially recording changes in anthropogenic surface activity and land-use.

Frierdich, Andrew J.; Catalano, Jeffrey G. (WU)

2012-10-24T23:59:59.000Z

131

Reaction of Plutonium(VI) with the Manganese-Substituted Iron Oxide Mineral Goethite  

E-Print Network (OSTI)

R. , and Sam W. down at SSRL. Your hard work made my exper-been a small part of the SSRL family during my time here.protection group down at SSRL, especially Carol for going

Hu, Yung-Jin Hu

2011-01-01T23:59:59.000Z

132

Nucleation of the isothermal martensitic transformation in iron-nickel-manganese alloys  

E-Print Network (OSTI)

By means of quantitative metallography and electrical resistance measurements, the incubation period (time to form a detectable amount of martensite) and the initial nucleation rate have been determined as a function of ...

Pati, Satya Ranjan

1967-01-01T23:59:59.000Z

133

Process for converting magnesium fluoride to calcium fluoride  

DOE Patents (OSTI)

This invention is a process for the conversion of magnesium fluoride to calcium fluoride whereby magnesium fluoride is decomposed by heating in the presence of calcium carbonate, calcium oxide or calcium hydroxide. Magnesium fluoride is a by-product of the reduction of uranium tetrafluoride to form uranium metal and has no known commercial use, thus its production creates a significant storage problem. The advantage of this invention is that the quality of calcium fluoride produced is sufficient to be used in the industrial manufacture of anhydrous hydrogen fluoride, steel mill flux or ceramic applications.

Kreuzmann, A.B.; Palmer, D.A.

1984-12-21T23:59:59.000Z

134

Cast Irons - Programmaster.org  

Science Conference Proceedings (OSTI)

Oct 20, 2011 ... Processing, Microstructure and Properties of Cast Irons and Cast and Forged Specialty Steels: Cast Irons Sponsored by: MS&T Organization

135

It's Elemental - Isotopes of the Element Magnesium  

NLE Websites -- All DOE Office Websites (Extended Search)

Sodium Sodium Previous Element (Sodium) The Periodic Table of Elements Next Element (Aluminum) Aluminum Isotopes of the Element Magnesium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 24 78.99% STABLE 25 10.00% STABLE 26 11.01% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 19 4.0 picoseconds Double Proton Emission 100.00% 20 90.8 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission ~ 27.00% 21 122 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 32.60% Electron Capture with delayed Alpha Decay < 0.50%

136

Manganese sulfide formation via concomitant microbial manganese oxide and thiosulfate reduction  

Science Conference Proceedings (OSTI)

The dissimilatory metal-reducing bacterium, Shewanella oneidensis MR-1 produced {gamma}-MnS (rambergite) nanoparticles during the concurrent reduction of MnO{sub 2} and thiosulfate coupled to H{sub 2} oxidation. To investigate effect of direct microbial reduction of MnO{sub 2} on MnS formation, two MR-1 mutants defective in outer membrane c-type cytochromes ({Delta}mtrC/{Delta}omcA and {Delta}mtrC/{Delta}omcA/{Delta}mtrF) were also used and it was determined that direct reduction of MnO{sub 2} was dominant relative to chemical reduction by biogenic sulfide generated from thiosulfate reduction. Although bicarbonate was excluded from the medium, incubations of strain MR-1 with lactate as the electron donor produced MnCO{sub 3} (rhodochrosite) as well as MnS in nearly equivalent amounts as estimated by micro X-ray diffraction (micro-XRD) analysis. It was concluded that carbonate released from lactate metabolism promoted MnCO{sub 3} formation and that Mn(II) mineralogy was strongly affected by carbonate ions even in the presence of abundant sulfide and weakly alkaline conditions expected to favor the precipitation of MnS. Formation of MnS, as determined by a combination of micro-XRD, transmission electron microscopy, energy dispersive X-ray spectroscopy, and selected area electron diffraction analyses was consistent with equilibrium speciation modeling predictions. Biogenic manganese sulfide may be a manganese sink in the Mn biogeochemical cycle in select environments such as deep anoxic marine basins within the Baltic Sea.

Lee, Ji-Hoon; Kennedy, David W.; Dohnalkova, Alice; Moore, Dean A.; Nachimuthu, Ponnusamy; Reed, Samantha B.; Fredrickson, Jim K.

2011-12-13T23:59:59.000Z

137

Enhancing Tensile and Compressive Strength of AZ41 Magnesium ...  

Science Conference Proceedings (OSTI)

Al and 1 wt.% Al with 1.5 vol.% nano-sized Al2O3 (50 nm) particulates in to AZ31 magnesium alloy, respectively, using disintegrated melt deposition technique.

138

Controlling the Biodegradation Rate of Magnesium-Based Implants ...  

Science Conference Proceedings (OSTI)

Author(s), Z. Pu, D. Puleo, O.W. Dillon, Jr., I.S. Jawahir. On-Site ... By proper selection of machining conditions, magnesium-based implants with customized ...

139

SF6 Emission Reduction Partnership for the Magnesium Industry  

Science Conference Proceedings (OSTI)

Topic Summary: A cooperative effort between EPA and US magnesium industry to reduce emissions of SF6. Created On: 7/1/2008 9:12 AM, Topic View:.

140

Verification of Steelmaking Slags Iron Content Final Technical Progress Report  

Science Conference Proceedings (OSTI)

The steel industry in the United States generates about 30 million tons of by-products each year, including 6 million tons of desulfurization and BOF/BOP slag. The recycling of BF (blast furnace) slag has made significant progress in past years with much of the material being utilized as construction aggregate and in cementitious applications. However, the recycling of desulfurization and BOF/BOP slags still faces many technical, economic, and environmental challenges. Previous efforts have focused on in-plant recycling of the by-products, achieving only limited success. As a result, large amounts of by-products of various qualities have been stockpiled at steel mills or disposed into landfills. After more than 50 years of stockpiling and landfilling, available mill site space has diminished and environmental constraints have increased. The prospect of conventionally landfilling of the material is a high cost option, a waste of true national resources, and an eternal material liability issue. The research effort has demonstrated that major inroads have been made in establishing the viability of recycling and reuse of the steelmaking slags. The research identified key components in the slags, developed technologies to separate the iron units and produce marketable products from the separation processes. Three products are generated from the technology developed in this research, including a high grade iron product containing about 90%Fe, a medium grade iron product containing about 60% Fe, and a low grade iron product containing less than 10% Fe. The high grade iron product contains primarily metallic iron and can be marketed as a replacement of pig iron or DRI (Direct Reduced Iron) for steel mills. The medium grade iron product contains both iron oxide and metallic iron and can be utilized as a substitute for the iron ore in the blast furnace. The low grade iron product is rich in calcium, magnesium and iron oxides and silicates. It has a sufficient lime value and can be utilized for acid mine drainage treatment. Economic analysis from this research demonstrates that the results are favorable. The strong demand and the increase of price of the DRI and pig iron in recent years are particularly beneficial to the economics. The favorable economics has brought commercial interests. ICAN Global has obtained license agreement on the technology from Michigan Tech. This right was later transferred to the Westwood Land, Inc. A demonstration pilot plant is under construction to evaluate the technology. Steel industry will benefit from the new supply of the iron units once the commercial plants are constructed. Environmental benefits to the public and the steel industry will be tremendous. Not only the old piles of the slag will be removed, but also the federal responsible abandoned mines from the old mining activities can be remediated with the favorable product generated from the process. Cost can be reduced and there will be no lime required, which can avoid the release of carbon dioxide from lime production process.

J.Y. Hwang

2006-10-04T23:59:59.000Z

Note: This page contains sample records for the topic "iron magnesium manganese" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

iron and steel making  

Science Conference Proceedings (OSTI)

Gas-Solid Reaction Will Help Solid-Solid Reaction—Novel Iron Ore Agglomerate Bearing Semi-Coal-Char (Keynote) [pp. 97-104] T. Usui, H. Konishi, and N.

142

Potential automotive uses of wrought magnesium alloys  

DOE Green Energy (OSTI)

Vehicle weight reduction is one of the major means available to improve automotive fuel efficiency. High-strength steels, aluminum (Al), and polymers are already being used to reduce weight significantly, but substantial additional reductions could be achieved by greater use of low-density magnesium (Mg) and its alloys. Mg alloys are currently used in relatively small quantities for auto parts, generally limited to die castings (e.g., housings). Argonne National Laboratory`s Center for Transportation Research has performed a study for the Lightweight Materials Program within DOE`s Office of Transportation Materials to evaluate the suitability of wrought Mg and its alloys to replace steel/aluminum for automotive structural and sheet applications. Mg sheet could be used in body nonstructural and semi-structural applications, while extrusions could be used in such structural applications as spaceframes. This study identifies high cost as the major barrier to greatly increased Mg use in autos. Two technical R and D areas, novel reduction technology and better hot-forming technology, could enable major cost reductions.

Gaines, L.; Cuenca, R.; Wu, S. [Argonne National Lab., IL (United States); Stodolsky, F. [Argonne National Lab., IL (United States)]|[Argonne National Lab., Washington, DC (United States)

1996-06-01T23:59:59.000Z

143

Synthesis and Characterization of Magnesium-Silicon and Magnesium-Tin Solid Solutions for Thermoelectric Applications  

E-Print Network (OSTI)

The environmentally friendly n-type Mg2(Si, Sn) thermoelectric solid solutions have a strong potential of commercial utilization in thermoelectric (TE) energy conversion due to their availability, low density (~3.02 g/cm3), and high stability at middle temperature range (400-600 ?C) that are typically observed from waste heat dissipating systems. The bulk materials were prepared from element powders via slow cooking under vacuum condition and current-assisted hot-press sintering. Temperature vs time curves have been researched in this thesis for fully reacted magnesium-silicide & magnesium-stannide green ingots with doping materials i.e. antimony, bismuth by different doping ratios. These ingots were ground by a high energy ball miller, uniaxial cold pressed into half inch pallets and then sintered by Direct Current-assisted hot pressing. Different synthesis conditions such as ball milling, sintering time, pressure, have been compared by SEM images and XRD tests analysis to figure out optimized process parameters. Several samples’ thermal conductivities (?) were plotted as a function of temperature to study different synthesis strategies and doping materials’ effects on phonon scattering inside bulk thermoelectric materials.

Hu, Fang

2012-05-01T23:59:59.000Z

144

Switchable Mirrors Based on Nickel-Magnesium Films  

NLE Websites -- All DOE Office Websites (Extended Search)

Switchable Mirrors Based on Nickel-Magnesium Films Switchable Mirrors Based on Nickel-Magnesium Films Title Switchable Mirrors Based on Nickel-Magnesium Films Publication Type Journal Article LBNL Report Number LBNL-47180 Year of Publication 2001 Authors Richardson, Thomas J., Jonathan L. Slack, Robert D. Armitage, Robert Kostecki, Baker Farangis, and Michael D. Rubin Journal Applied Physics Letters Volume 78 Pagination 3047 Call Number LBNL-47180 Abstract An electrochromic mirror electrode based on reversible uptake of hydrogen in nickel magnesium alloy films is reported. Thin, magnesium-rich Ni-Mg films prepared on glass substrates by cosputtering from Ni and Mg targets are mirror-like in appearance and have low visible transmittance. Upon exposure to hydrogen gas or on cathodic polarization in alkaline electrolyte, the films take up hydrogen and become transparent. When hydrogen is removed, the mirror properties are recovered. The transition is believed to result from reversible formation of Mg2NiH4 and MgH2. A thin overlayer of palladium was found to enhance the kinetics of hydrogen insertion and extraction, and to protect the metal surface against oxidation.

145

Hydrogen Storage Properties of the Tetrahydrofuran Treated Magnesium  

DOE Green Energy (OSTI)

The electronic structure, crystalline feature and morphology of the tetrahydrofuran (THF) treated magnesium, along with its hydriding and dehydriding properties have been investigated. The THF treated magnesium absorbs 6.3 wt per cent hydrogen at 723K and 3.5 MPa. After hydrogenation, in addition to the expected MgH2, a new less-stable hydride phase appears at 673K, but not at a lower temperature. Desorption produces 5.5 wt per cent hydrogen at 723K against a back pressure of 1.3 Pa after 20 cycles of hydriding-dehydriding. The THF treatment improves the kinetics of hydrogen absorption and desorption significantly. From 723K to 623K, the THF treated Mg demonstrates acceptable reaction rates. XPS studies show that tetrahydrofuran treatment causes the electronic energy state of the magnesium surface atoms to change, but the XRD studies show the crystal structure remains unchanged. Metallographic observation of the bulk hydrides of THF treated magnesium reveal they are poly-crystalline wi th the wide-spreading slip bands and twins within the crystals, indicating the phase transformation upon hydriding causes serious stress and distortion. It appears this microstructural deformation explains the much higher energy requirements (higher pressure and temperature) for magnesium hydrogenation than the simple lattice expansion that accompany hydrogen uptake for LaNi5 and FeTi.

AU, MING

2004-05-25T23:59:59.000Z

146

Iron Pots and Kettles  

NLE Websites -- All DOE Office Websites (Extended Search)

Iron Pots and Kettles Iron Pots and Kettles Nature Bulletin No. 544-A November 16, 1974 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation IRON POTS AND KETTLES At Possum Trot Hill, on US 150 west of Danville, a huge iron kettle squats as a monument to what was once an important industry in Illinois. It is one of 80 used from 1824 to 1831 for boiling down brine from salt springs in that vicinity. Salt was a luxury then. About a bushel was produced from one kettleful (100 gallons) of brine and that was worth more than 100 bushels of oats. Those 80 monsters came from Kentucky where iron works had been established to make the utensils and implements desperately needed by pioneer families. About half of them had come up through the Cumberland Gap, on horseback, with only a rifle, an ax, a pot for cooking, some bedding and the clothes on their backs. Every family, in addition to a skillet or spider, and a Dutch oven, coveted a big kettle for making salt, soap, candles and maple syrup, butchering hogs, rendering lard, boiling clothes on wash day, and dyeing homespun material for garments.

147

Manganese: Recent advances in understanding its transport and neurotoxicity  

SciTech Connect

The present review is based on presentations from the meeting of the Society of Toxicology in San Diego, CA (March 2006). It addresses recent developments in the understanding of the transport of manganese (Mn) into the central nervous system (CNS), as well as brain imaging and neurocognitive studies in non-human primates aimed at improving our understanding of the mechanisms of Mn neurotoxicity. Finally, we discuss potential therapeutic modalities for treating Mn intoxication in humans.

Aschner, Michael [Departments of Pediatrics, Pharmacology, and Kennedy Center for Research on Human Development, B-3307 Medical Center North, Vanderbilt University, School of Medicine, Nashville, TN 37232-2495 (United States)]. E-mail: Michael.Aschner@vanderbilt.edu; Guilarte, Tomas R. [Neurotoxicology and Molecular Imaging Laboratory, Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (United States); Schneider, Jay S. [Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA (United States); Zheng Wei [School of Health Sciences, Purdue University, West Lafayette, IN (United States)

2007-06-01T23:59:59.000Z

148

Low-Cost Zero-Emission Primary Magnesium Production by Solid ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Solid Oxide Membrane (SOM) Electrolysis is a new low-cost process for direct extraction of magnesium oxide to pure magnesium and oxygen gas. .... Grain Refinement of AZ91 Alloy by Addition of Ceramic Particles.

149

Nanostructured material for advanced energy storage : magnesium battery cathode development.  

SciTech Connect

Magnesium batteries are alternatives to the use of lithium ion and nickel metal hydride secondary batteries due to magnesium's abundance, safety of operation, and lower toxicity of disposal. The divalency of the magnesium ion and its chemistry poses some difficulties for its general and industrial use. This work developed a continuous and fibrous nanoscale network of the cathode material through the use of electrospinning with the goal of enhancing performance and reactivity of the battery. The system was characterized and preliminary tests were performed on the constructed battery cells. We were successful in building and testing a series of electrochemical systems that demonstrated good cyclability maintaining 60-70% of discharge capacity after more than 50 charge-discharge cycles.

Sigmund, Wolfgang M. (University of Florida, Gainesville, FL); Woan, Karran V. (University of Florida, Gainesville, FL); Bell, Nelson Simmons

2010-11-01T23:59:59.000Z

150

Nanostructured material for advanced energy storage : magnesium battery cathode development.  

DOE Green Energy (OSTI)

Magnesium batteries are alternatives to the use of lithium ion and nickel metal hydride secondary batteries due to magnesium's abundance, safety of operation, and lower toxicity of disposal. The divalency of the magnesium ion and its chemistry poses some difficulties for its general and industrial use. This work developed a continuous and fibrous nanoscale network of the cathode material through the use of electrospinning with the goal of enhancing performance and reactivity of the battery. The system was characterized and preliminary tests were performed on the constructed battery cells. We were successful in building and testing a series of electrochemical systems that demonstrated good cyclability maintaining 60-70% of discharge capacity after more than 50 charge-discharge cycles.

Sigmund, Wolfgang M. (University of Florida, Gainesville, FL); Woan, Karran V. (University of Florida, Gainesville, FL); Bell, Nelson Simmons

2010-11-01T23:59:59.000Z

151

BACKGROUND REVIEW OF THE BRUSH BERYLLIUM AND DIAMOND MAGNESIUM PLANTS  

Office of Legacy Management (LM)

BACKGROUND REVIEW OF THE BRUSH BERYLLIUM AND DIAMOND MAGNESIUM PLANTS BACKGROUND REVIEW OF THE BRUSH BERYLLIUM AND DIAMOND MAGNESIUM PLANTS IN LUCKEY, OHIO October 27, 1989 Prepared for: U.S. Department of Energy Formerly Utilized Sites Remedial Action Program Prepared by: R.F. Weston/Office of Technical Services BACKGROUND REVIEW OF THE BRUSH BERYLLIUM AND DIAMOND MAGNESIUM PLANTS IN LUCKEY, OHIO INTRODUCTION The Department of Energy (DOE) is conducting a program to identify and examine the radiological conditions at sites used in the early years of nuclear energy development by the U.S. Army Corps of Engineer's Manhattan Engineer District (MED) and the Atomic Energy Commission (AEC). This program, the Formerly Utilized Sites Remedial Action Program (FUSRAP), is administered by the Assistant Secretary for Nuclear Energy through the

152

Analysis of the potential for new automotive uses of magnesium  

DOE Green Energy (OSTI)

This paper describes the scope of a new project, just initiated, for the Lightweight Materials Program within the Office of Transportation Materials. The Center for Transportation Research and the Energy Technology Division at Argonne National Laboratory will assess the feasibility and technical potential of using magnesium and its alloys in place of steel or aluminum for automotive structural and sheet applications in order to enable more energy-efficient, lightweight passenger vehicles. The analysis will provide an information base to help guide magnesium research and development in the most promising directions.

Stodolsky, F.; Gaines, L.; Cuenca, R.; Wu, S.

1994-12-31T23:59:59.000Z

153

EPRI BWR Iron Control Monitoring Final Report  

Science Conference Proceedings (OSTI)

This report summarizes the state of iron control in U.S. BWRs as of July 1999 and documents the implementation and performance status of new iron control technologies. Issues involving the relationship between iron control and radiation dose control, iron control with deep beds, iron control with filters, and iron addition are documented, and areas for future research are noted.

1999-09-16T23:59:59.000Z

154

In-Situ Studies of Intercritically Austempered Ductile Iron Using Neutron Diffraction  

Science Conference Proceedings (OSTI)

Intercritically austempered ductile irons hold promise for applications requiring fatigue durability, excellent castability, low production energy requirements, reduced greenhouse gas emissions and excellent machinability. In the present study, four different ductile iron alloys, containing manganese and nickel as the primary austenite-stabilizing elements, were heat treated to obtain different quantities of austenite in the final microstructure. This paper reports the microstructures and phases present in these alloys. Further, lattice strains and diffraction elastic constants in various crystallographic directions and the transformation characteristics of the austenite as a function of applied stress were determined using in-situ loading with neutron diffraction at the second generation Neutron Residual Stress Facility (NRSF2) at the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL).

Druschitz, Alan [University of Alabama, Birmingham; Aristizabal, Ricardo [University of Alabama, Birmingham; Druschitz, Edward [University of Alabama, Birmingham; Hubbard, Camden R [ORNL; Watkins, Thomas R [ORNL; Walker, Larry R [ORNL; Ostrander, M [Rex Heat Treat, Anniston, AL

2012-01-01T23:59:59.000Z

155

Magnesium oxide inserts for the LECO Carbon Analyzer  

Science Conference Proceedings (OSTI)

LECO carbon analysis of plutonium metal and plutonium oxide at the Rocky Flats Plant generates several hundred kilograms of high silica residues each year. The plutonium in these residues is difficult and expensive to recover using production dissolution processes. A magnesium oxide (MgO) insert has been developed that significantly lowers the plutonium recovery costs without adversely affecting accuracy of the carbon analysis.

Bagaasen, L.M.; Jensen, C.M.

1991-01-16T23:59:59.000Z

156

Applications of Computer in Engineering Especially in Electrolysis Magnesium Industry  

Science Conference Proceedings (OSTI)

In modern times, computers have closely connection with everyone, especially scientist and engineer. Computer programs can now solve difficult problems in a fraction of the time it used to take. Computer-Aided engineering is a powerful tool and necessary ... Keywords: CFD, CAE, Electrochemistry, electrolysis, molten magnesium salt

Ze Sun; Bing Li; Jianguo Yu

2009-03-01T23:59:59.000Z

157

REGENERATION OF FISSION-PRODUCT-CONTAINING MAGNESIUM-THORIUM ALLOYS  

DOE Patents (OSTI)

A process of regenerating a magnesium-thorium alloy contaminated with fission products, protactinium, and uranium is presented. A molten mixture of KCl--LiCl-MgCl/sub 2/ is added to the molten alloy whereby the alkali, alkaline parth, and rare earth fission products (including yttrium) and some of the thorium and uranium are chlorinated and

Chiotti, P.

1964-02-01T23:59:59.000Z

158

Manganese trends in a sample of thin and thick disk stars. The origin of Mn  

E-Print Network (OSTI)

CONTEXT: Manganese is an iron-peak element and although the nucleosynthesis path that leads to its formation is fairly well understood, it remains unclear which objects, SN II and/or SN Ia, that contribute the majority of Mn to the interstellar medium. It also remains unclear to which extent the supernovae Mn yields depend on the metallicity of the progenitor star or not. AIMS: By using a well studied and well defined sample of 95 dwarf stars we aim at further constraining the formation site(s) of Mn. METHODS: We derive Mn abundances through spectral synthesis of four Mn I lines at 539.4, 549.2, 601.3, and 601.6 nm. Stellar parameters and data for oxygen are taken from Bensby et al. (2003, 2004, 2005). RESULTS: When comparing our Mn abundances with O abundances for the same stars we find that the abundance trends in the stars with kinematics of the thick disk can be explained by metallicity dependent yields from SN II. We go on and combine our data for dwarf stars in the disks with data for dwarf and giant stars in the metal-poor thick disk and halo from the literature. We find that dwarf and giant stars show the same trends, which indicates that neither non-LTE nor evolutionary effects are a major concern for Mn. Furthermore, the [Mn/O] vs [O/H] trend in the halo is flat. CONCLUSIONS: We conclude that the simplest interpretation of our data is that Mn is most likely produced in SN II and that the Mn yields for such SNae must be metallicity dependent. Contribution from SN Ia in the metal-rich thin disk can not, however, be excluded.

S. Feltzing; M. Fohlman; T. Bensby

2007-03-19T23:59:59.000Z

159

Iron pages of HTSC  

Science Conference Proceedings (OSTI)

Experimental data are presented on the superconducting and electronic properties of iron-based high-temperature superconductors in the normal and superconducting states. The following topics are discussed: lattice structure; structure of magnetic vortices; magnetic penetration depth; Fermi surface; isotope effect; and critical magnetic fields both in oxide compounds of 1111 type and oxide-free compounds of 122, 111, and 011 types as a function of the doping level, temperature, and external pressure.

Gasparov, V. A., E-mail: vgasparo@issp.ac.r [Russian Academy of Sciences, Institute of Solid State Physics (Russian Federation)

2010-08-15T23:59:59.000Z

160

Differential Characterization of Ikperejere Iron shale and Iron ...  

Science Conference Proceedings (OSTI)

Kaolinite was found in the iron shale. Trace elements were Mn, Mg, Ti, Ca, Na .... High Temperature Exposure of Oil Well Cements · In-Situ EBSD Investigation of ...

Note: This page contains sample records for the topic "iron magnesium manganese" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Method for the Production of Mineral Wool andIron from Serpentine Ore  

NLE Websites -- All DOE Office Websites (Extended Search)

the Production of Mineral Wool and Iron from the Production of Mineral Wool and Iron from Serpentine Ore Overview This invention discloses a method to fabricate a product that has the potential to replace asbestos, which harbors health and environmental risks, with magnesium silicate-based mineral wools. The mineral wool product yields advantages similar to asbestos while eliminating its inherent detriments. Since the late 19th century and into the late 20th century, asbestos has been a commonly used building material for home and industrial use. The popularity of its use can be traced to advantages of high resistance to heat, aversion to electrical and chemical damage, high mechanical strength, and excellent acoustical properties. Despite those advantages, asbestos has been directly

162

Microbial reduction of iron ore  

DOE Patents (OSTI)

A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry.

Hoffmann, Michael R. (Pasadena, CA); Arnold, Robert G. (Pasadena, CA); Stephanopoulos, Gregory (Pasadena, CA)

1989-01-01T23:59:59.000Z

163

Microbial reduction of iron ore  

DOE Patents (OSTI)

A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry. 11 figs.

Hoffmann, M.R.; Arnold, R.G.; Stephanopoulos, G.

1989-11-14T23:59:59.000Z

164

Enzymes of respiratory iron oxidation  

DOE Green Energy (OSTI)

This report describes experimental progress in characterizing and identifying redox proteins in a number of iron-oxidizing bacteria. Sections of the paper are entitled (1) In Situ electrolysis was explored to achieve enhanced yields of iron-oxidizing bacteria, (2)Structure/function studies were performed on redox-active biomolecules from Thiobacillus ferrooxidans, (3) Novel redox-active biomolecules were demonstrated in other iron autotrophs, and (4) New probes of metalloprotein electron-transfer reactions were synthesized and characterized.

Blake, R. II.

1992-01-01T23:59:59.000Z

165

The Effect of Manganese Additions on the Reactive Evaporation of Chromium in Ni-Cr Alloys  

DOE Green Energy (OSTI)

Chromium is used as an alloy addition in stainless steels and nickel-chromium alloys to form protective chromium oxide scales. Chromium oxide undergoes reactive evaporation in high temperature exposures in the presence of oxygen and/or water vapor. The deposition of gaseous chromium species onto solid oxide fuel cell electrodes can reduce the efficiency of the fuel cell. Manganese additions to the alloy can reduce the activity of chromium in the oxide, either from solid solution replacement of chromium with manganese (at low levels of manganese) or from the formation of manganese-chromium spinels (at high levels of manganese). This reduction in chromium activity leads to a predicted reduction in chromium evaporation by as much as a factor of 35 at 800 C and 55 at 700 C. The results of evaporation loss measurements on nickel-chromium-manganese alloys are compared with the predicted reduction. Quantifying the effects of manganese additions on chromium evaporation should aid alloy development of metallic interconnects and balance-of-plant alloys.

Holcomb, Gordon R.; Alman, David E.

2004-10-20T23:59:59.000Z

166

Geochemistry of Magnesium Silicate Carbonation in an Aqueous Medium  

NLE Websites -- All DOE Office Websites (Extended Search)

Geochemistry of Magnesium Silicate Geochemistry of Magnesium Silicate Carbonation in an Aqueous Medium (Carbon Mineralization) Jon Benner, Deb Bergfeld, Dave Bish, Darrin Byler, Bill Carey, Steve Chipera, George Guthrie, Klaus Lackner, Hans Ziock Hydrology, Geochemistry, Geology Group Los Alamos National Laboratory LA-UR-01-4206 Approved for public release; distribution is unlimited George Guthrie gguthrie@lanl.gov 505-665-6340 Mineral Carbonation: Conversion of CO 2 into Carbonates * alkali carbonates too soluble * alkaline earth carbonates ideal sources: Ca-silicates (feldspar) Mg-silicates (olivine, serpentine, clays) Mg 2+ + CO 3 2- => MgCO 3 Mg 2 SiO 4 + 4H + => 2Mg 2+ + SiO 2(aq) Ultramafic rocks are an abundant Mg source (~0.2 km) 3 serpentine / GW-yr Challenges for Mineral-Carbonation

167

Switchable mirrors based on nickel-magnesium films  

DOE Green Energy (OSTI)

A new type of electrochromic mirror electrode based on reversible uptake of hydrogen in nickel magnesium alloy films is reported. Thin,magnesium-rich Ni-Mg films prepared on glass substrates by cosputtering from Ni and Mg targets are mirror-like in appearance and have low visible transmittance. Upon exposure to hydrogen gas or on reduction in alkaline electrolyte, the films take up hydrogen and become transparent. When hydrogen is removed, the mirror properties are recovered. The transition is believed to result from reversible formation of Mg2NiH4 and MgH2. A thin overlayer of palladium was found to enhance the kinetics of hydrogen insertion and extraction,and to protect the metal surface against oxidation.

Richardson,Thomas J.; Slack, Jonathan L.; Armitage, Robert D.; Kostecki, Robert; Farangis, Baker; Rubin, Michael D.

2001-01-16T23:59:59.000Z

168

Potential applications of wrought magnesium alloys for passenger vehicles  

DOE Green Energy (OSTI)

Vehicle weight reduction is one of the major means available for improving automotive fuel efficiency. Although high-strength steels, aluminum (Al), and polymers are already being used to achieve significant weight reductions, substantial additional weight reductions could be achieved by increased use of magnesium (Mg) and its alloys, which have very low density. Magnesium alloys are currently used in relatively small quantities for auto parts; use is generally limited to die castings, such as housings. The Center for Transportation Research at Argonne National Laboratory has performed a study for the Lightweight Materials Program within DOE`s Office of Transportation Materials to evaluate the suitability of wrought Mg and its alloys to replace steel or aluminum for automotive structural and sheet applications. This study identifies technical and economic barriers to this replacement and suggests R&D areas to enable economical large-volume use. Detailed results of the study will be published at a later date. Magnesium sheet could be used in body nonstructural and semi-structural applications, while extrusions could be used in such structural applications as spaceframes. Currently, Mg sheet has found limited use in the aerospace industry, where costs are not a major concern. The major barrier to greatly increased automotive use is high cost; two technical R&D areas are identified that could enable major reductions in costs. These are novel reduction technology and better hot-forming technology, possibly operating at lower temperatures and involving superplastic behavior.

Gaines, L.; Cuenca, R.; Stodolsky, F.; Wu, S.

1995-12-31T23:59:59.000Z

169

Hydrogen Storage Properties of Magnesium Base Nanostructured Composite Materials  

DOE Green Energy (OSTI)

In this work, nanostructured composite materials have been synthesized using the mechanical alloying process. The new materials produced have been investigated by X-ray diffraction (XRD), transition electron microscope (TEM), scanning electron microscope (SEM) and electron energy dispersion spectrum (EDS) for their phase compositions, crystal structure, grain size, particle morphology and the distribution of catalyst element. Hydrogen storage capacities and the hydriding-dehydriding kinetics of the new materials have been measured at different temperatures using a Sieverts apparatus. It is observed that mechanical alloying accelerates the hydrogenation kinetics of the magnesium based materials at low temperature, but a high temperature must be provided to release the absorbed hydrogen from the hydrided magnesium based materials. It is believed that the dehydriding temperature is largely controlled by the thermodynamic configuration of magnesium hydride. Doping Mg-Ni nano/amorphous composite materials with lanthanum reduces the hydriding and dehydriding temperature. Although the stability of MgH2 can not be easily reduced by ball milling alone, the results suggest the thermodynamic properties of Mg-Ni nano/amorphous composite materials can be alternated by additives such as La or other effective elements. Further investigation toward understanding the mechanism of additives will be rewarded.

AU, M

2004-04-30T23:59:59.000Z

170

Efficient One-Step Electrolytic Recycling of Low-Grade and Post-Consumer Magnesium Scrap  

SciTech Connect

Metal Oxygen Separation Technologies, Inc. (abbreviated MOxST, pronounced most) and Boston University (BU) have developed a new low-cost process for recycling post-consumer co-mingled and heavily-oxidized magnesium scrap, and discovered a new chemical mechanism for magnesium separations in the process. The new process, designated MagReGenTM, is very effective in laboratory experiments, and on scale-up promises to be the lowest-cost lowest-energy lowest-impact method for separating magnesium metal from aluminum while recovering oxidized magnesium. MagReGenTM uses as little as one-eighth as much energy as today's methods for recycling magnesium metal from comingled scrap. As such, this technology could play a vital role in recycling automotive non-ferrous metals, particularly as motor vehicle magnesium/aluminum ratios increase in order to reduce vehicle weight and increase efficiency.

Adam C. Powell, IV

2012-07-19T23:59:59.000Z

171

Proton conduction in electrolyte made of manganese dioxide for hydrogen gas sensor  

DOE Green Energy (OSTI)

We propose a network model of oxygen-pairs to store and conduct protons on the surface of manganese dioxide with a weak covalent bond like protons stored in pressured ice. The atomic distances of oxygen-pairs were estimated between 2.57 and 2.60 angstroms in crystal structures of ramsdellite-type and lambda-type manganese dioxides by using protonated samples and inelastic neutron scattering measurements. Good properties for a hydrogen gas sensor using electrolytes made of manganese dioxides that contain such oxygen-pairs were confirmed experimentally.

Koyanaka, Hideki [Kyoto University, Japan; Ueda, Yoshikatsu [Kyoto University, Japan; Takeuchi, K [Tokyo University of Science, Oshamanbe Hokkaido, Japan; Kolesnikov, Alexander I [ORNL

2012-01-01T23:59:59.000Z

172

MAGNESIUM MONO POTASSIUM PHOSPHATE GROUT FOR P-REACTOR VESSEL IN-SITU DECOMISSIONING  

Science Conference Proceedings (OSTI)

The objective of this report is to document laboratory testing of magnesium mono potassium phosphate grouts for P-Reactor vessel in-situ decommissioning. Magnesium mono potassium phosphate cement-based grout was identified as candidate material for filling (physically stabilizing) the 105-P Reactor vessel (RV) because it is less alkaline than portland cement-based grout (pH of about 12.4). A less alkaline material ({ash), and (4) Ceramicrete{reg_sign} magnesium mono potassium phosphate-based grouts prepared at Argonne National Laboratory. Boric acid was evaluated as a set retarder in the magnesium mono potassium phosphate mixes.

Langton, C.; Stefanko, D.

2011-01-05T23:59:59.000Z

173

Adsorption of Propane on the Magnesium Oxide (100) Surface and Synthesis of Anodized Aluminum Oxide.  

E-Print Network (OSTI)

??This work is divided into two parts: the adsorption of propane on the magnesium oxide (100) surface and the synthesis of anodized aluminum oxide. The… (more)

Felty, Michael John

2008-01-01T23:59:59.000Z

174

Investigation of manganese dioxide as an improved solid desiccant  

DOE Green Energy (OSTI)

This report describes the preparation of a series of manganese oxides and an analysis of their sorptive, structural, and surface characteristics as low-energetic desiccants for passive dehumidification and active desiccant cooling systems. A cusped Type III isotherm for the adsorption of water is reported for the first time. The data are interpreted as evidence of a first-order phase change from a two-dimensional gas to a liquid film in the first reversibly adsorbed layer. It appears that the water adsorption characteristics of MnO/sub 2/ compared to standard desiccants which exhibit Type II isotherms are due at least in part to differences in the physical topography and electronic properties of the desiccant substrates: MnO/sub 2/ is a p-type semiconductor with essentially-flat, monoenergetic surface structures, while standard desiccants like silica gel are electronic insulators with irregular, heteroenergetic surfaces.

Fraioli, A.V.

1983-03-01T23:59:59.000Z

175

Electron Correlation in Iron-Based Superconductors  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Correlation in Iron-Based Superconductors Print In 2008, the discovery of iron-based superconductors stimulated a worldwide burst of activity, leading to about two...

176

About The Iron and Steel Society  

Science Conference Proceedings (OSTI)

The IRON & STEEL SOCIETY (ISS) is a professional and technical society that provides opportunities for networking among iron and steel industry professionals ...

177

MANGANESE OXIDE AS A NEW CATHODE CATALYST IN MICROBIAL FUEL CELLS (MFCs).  

E-Print Network (OSTI)

??This study focused on manganese oxides with a cryptomelane-type octahedral molecular sieve (OMS-2) structure to replace platinum as a cathode catalyst in microbial fuel cells… (more)

Li, Xiang

2011-01-01T23:59:59.000Z

178

Fabrication and characterization of manganese ferrite nanospheres as a magnetic adsorbent of chromium  

Science Conference Proceedings (OSTI)

Manganese ferrite nanospheres constructed by nanoparticles were synthesized in high yield via a general, one-step, and templatefree solvothermal method. The product was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and ...

Li-Xia Yang, Feng Wang, Yan-Feng Meng, Qing-Hua Tang, Zi-Qi Liu

2013-01-01T23:59:59.000Z

179

C:\\Eco-SSLs\\Contaminant Specific Documents\\Manganese\\April 2007...  

NLE Websites -- All DOE Office Websites (Extended Search)

Toxicity in Field Grown Tea Plants and the Microdistribution of Manganese in the Leaf Tissues as Revealed by Electron Probe X-Ray Micrography. Soil Sci. Plant Nutr. 27(3):...

180

Iron Mountain Electromagnetic Results  

SciTech Connect

Iron Mountain Mine is located seventeen miles northwest of Redding, CA. After the completion of mining in early 1960s, the mine workings have been exposed to environmental elements which have resulted in degradation in water quality in the surrounding water sheds. In 1985, the EPA plugged ore stoops in many of the accessible mine drifts in an attempt to restrict water flow through the mine workings. During this process little data was gathered on the orientation of the stoops and construction of the plugs. During the last 25 years, plugs have begun to deteriorate and allow acidic waters from the upper workings to flow out of the mine. A team from Idaho National Laboratory (INL) performed geophysical surveys on a single mine drift and 3 concrete plugs. The project goal was to evaluate several geophysical methods to determine competence of the concrete plugs and orientation of the stopes.

Gail Heath

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "iron magnesium manganese" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Aluminum battery alloys  

DOE Patents (OSTI)

Aluminum alloys suitable for use as anode structures in electrochemical cells are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

Thompson, D.S.; Scott, D.H.

1984-09-28T23:59:59.000Z

182

Aluminum battery alloys  

SciTech Connect

Aluminum alloys suitable for use as anode structures in electrochemical cs are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

Thompson, David S. (Richmond, VA); Scott, Darwin H. (Mechanicsville, VA)

1985-01-01T23:59:59.000Z

183

Mechanisms of Iron and Slag Separation in Carbon Composite Iron ...  

Science Conference Proceedings (OSTI)

Chemical Enrichment of Precious Metals in Iron Sulfides Using Microwave Energy · Chloridizing ... Co-Gasification Behavior of Metallurgical Coke with High and Low Reactivity .... Thermal Plasma Torches for Metallurgical Applications.

184

Iron Edison Battery Company | Open Energy Information  

Open Energy Info (EERE)

Iron Edison Battery Company Iron Edison Battery Company Jump to: navigation, search Logo: Iron Edison Battery Company Name Iron Edison Battery Company Place Lakewood, Colorado Sector Bioenergy, Carbon, Efficiency, Hydro, Renewable Energy, Solar, Wind energy Product Nickel Iron (Ni-Fe) battery systems Year founded 2011 Number of employees 1-10 Phone number 202-681-4766 Website http://ironedison.com Region Rockies Area References Iron Edison Battery Company[1] Nickel Iron Battery Specifications[2] About the company and the owners[3] Nickel Iron Battery Association[4] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Iron Edison Battery Company is a company based in Lakewood, Colorado. Iron Edison is redefining off-grid energy storage using advanced

185

Real-time x-ray absorption spectroscopy of uranium, iron, and manganese in contaminated sediments during bioreduction  

E-Print Network (OSTI)

National Synchrotron Light Source (NSLS, Brookhaven NationalSynchrotron Light Source (NSLS), Brookhaven Nationalof Georgia). Use of the NSLS was supported by DOE under

Tokunaga, T.K.

2008-01-01T23:59:59.000Z

186

Real-time x-ray absorption spectroscopy of uranium, iron, and manganese in contaminated sediments during bioreduction  

E-Print Network (OSTI)

13ID-C at the Advanced Photon Source (APS, Argonne NationalSector 13), Advanced Photon Source (APS), Argonne National

Tokunaga, T.K.

2008-01-01T23:59:59.000Z

187

Energy in Iron and Steel  

Science Conference Proceedings (OSTI)

Energy Technologies and Carbon Dioxide Management: Energy in Iron and Steel ... today imposed by energy, raw materials supply and over supply in the market. ... Through the studies of CCT, TTT and X-ray analysis, it has been successfully ...

188

Iron catalyzed coal liquefaction process  

DOE Patents (OSTI)

A process is described for the solvent refining of coal into a gas product, a liquid product and a normally solid dissolved product. Particulate coal and a unique co-catalyst system are suspended in a coal solvent and processed in a coal liquefaction reactor, preferably an ebullated bed reactor. The co-catalyst system comprises a combination of a stoichiometric excess of iron oxide and pyrite which reduce predominantly to active iron sulfide catalysts in the reaction zone. This catalyst system results in increased catalytic activity with attendant improved coal conversion and enhanced oil product distribution as well as reduced sulfide effluent. Iron oxide is used in a stoichiometric excess of that required to react with sulfur indigenous to the feed coal and that produced during reduction of the pyrite catalyst to iron sulfide.

Garg, Diwakar (Macungie, PA); Givens, Edwin N. (Bethlehem, PA)

1983-01-01T23:59:59.000Z

189

Process for the synthesis of iron powder  

DOE Patents (OSTI)

A process for preparing iron powder suitable for use in preparing the iron-potassium perchlorate heat-powder fuel mixture used in thermal batteries, comprises preparing a homogeneous, dense iron oxide hydroxide precipitate by homogeneous precipitation from an aqueous mixture of a ferric salt, formic or sulfuric acid, ammonium hydroxide and urea as precipitating agent; and then reducing the dense iron oxide hydroxide by treatment with hydrogen to prepare the iron powder. 2 figs.

Welbon, W.W.

1983-11-08T23:59:59.000Z

190

Process for the synthesis of iron powder  

DOE Patents (OSTI)

A process for preparing iron powder suitable for use in preparing the iron-potassium perchlorate heat-powder fuel mixture used in thermal batteries, comprises preparing a homogeneous, dense iron oxide hydroxide precipitate by homogeneous precipitation from an aqueous mixture of a ferric salt, formic or sulfuric acid, ammonium hydroxide and urea as precipitating agent; and then reducing the dense iron oxide hydroxide by treatment with hydrogen to prepare the iron powder.

Not Available

1982-03-06T23:59:59.000Z

191

Process for the synthesis of iron powder  

DOE Patents (OSTI)

A process for preparing iron powder suitable for use in preparing the iron-potassium perchlorate heat-powder fuel mixture used in thermal batteries, comprises preparing a homogeneous, dense iron oxide hydroxide precipitate by homogeneous precipitation from an aqueous mixture of a ferric salt, formic or sulfuric acid, ammonium hydroxide and urea as precipitating agent; and then reducing the dense iron oxide hydroxide by treatment with hydrogen to prepare the iron powder.

Welbon, William W. (Belleair, FL)

1983-01-01T23:59:59.000Z

192

Process for removing technetium from iron and other metals  

DOE Patents (OSTI)

Technetium is a radioactive product of the nuclear fission process. During reprocessing of spent or partially spent fuel from nuclear reactors, the technetium can be released and contaminate other, otherwise good, metals. A specific example is equipment in gaseous diffusion uranium enrichment cascades which have been used to process fuel which was returned from reactors, so-called reactor returns. These returns contained volatile technetium compounds which contaminated the metals in the equipment. Present regulations require that technetium be removed before the metal can be re-used at non-radioactive sites. Removing the technetium from contaminated metals has two desirable results. First, the large amount of nonradioactive metal produced by the process herein described can be recycled at a much lower cost than virgin metal can be produced. Second, large amounts of radioactively contaminated metal can be reduced to relatively small amounts of radioactive slag and large amounts of essentially uncontaminated metal. A new and improved process for removing technetium from iron and other metals is described in which between 1/10 atom % and 5 atom % of manganese is added to the contaminated metal in order to replace the technetium.

Leitnaker, James M.; Trowbridge, Lee D.

1997-12-01T23:59:59.000Z

193

Low-temperature electron irradiation and annealing in pure magnesium  

Science Conference Proceedings (OSTI)

In this study of magnesium after 1.0 MeV electron irradiations at 1.55/sup 0/K, it has been observed that the damage production rate in Mg is (3.57 +- 0.03) x 10/sup -26/ ..cap omega..cm/(e/sup -/ cm/sup 2/). There is no evidence for thermal annealing up to 4/sup 0/K. The low temperature recovery in magnesium is found to consist of two broad substages between 4 to 14/sup 0/K, both of which exhibit evidence for correlated and uncorrelated recovery processes. The two substages are found to have very different frequency factors for annealing, and there is evidence that the recovery processes in the second substage are influenced by those in the first. A model for recovery is proposed using the split configuration in the plane which explains the first substage as being due to interstitial migration in the basal plane and the second to migration perpendicular to the plane.

Simester, J.H.

1982-01-01T23:59:59.000Z

194

Potassium, calcium, and magnesium in the tropics and subtropics  

SciTech Connect

The potential for increased food production in the world is undoubtedly greater than even the most optimistic surveys predict. Proper use of adequate amounts of potassium, calcium, and magnesium in fertilizers, soil amendments, crop residues and other byproducts, and minerals will be necessary if crop production potentials are to be realized. Use of these three plant nutrients with others will be an increasingly important part of the exploitation of natural resources as new lands of the tropics and subtropics are brought into production. Most of the increase in food production will come from more intensive use of lands already in production, however, and the soils of these lands will need larger amounts of all plant nutrients if high yields are to be reached and maintained. This report is intended to point out some of the complexities of the soil and fertilizer problems involving potassium, calcium, and magnesium. It is hoped that the information it contains will be helpful in the research, education, and development that will be required to point the way to increased food and crop production on soils of the tropics and subtropics throughout the world.

Munson, R.D.

1982-01-01T23:59:59.000Z

195

Argonne CNM News: Hollow Iron Oxide Nanoparticles for Lithium...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hollow Iron Oxide Nanoparticles for Lithium-Ion Battery Applications Hollow iron oxide nanoparticles Transmission electron micrograph of hollow iron oxide nanoparticles....

196

Iron/Iron Oxide Core/Shell Nanoparticles for MRI and Magnetic ...  

Science Conference Proceedings (OSTI)

Bulk Nanoceramics and Nanocomposites: Processed by Pulsed Electric Current ... Iron/Iron Oxide Core/Shell Nanoparticles for MRI and Magnetic Hyperthermia.

197

Experiments on sorption properties of gamma-manganese dioxide under isothermal conditions  

DOE Green Energy (OSTI)

To characterize promising solid desiccant materials for solar desiccant cooling applications, we measured the sorption properties of gamma-manganese dioxide under isothermal conditions using gravimetric methods. Tests were performed at 20/sup 0/C and 40/sup 0/C, a flow rate of about 110 cm/sup 3//min, a pressure of 1 atm, and relative humidities between 3% and 90%. We found the equilibrium water capacity of gamma-manganese dioxide to be much lower than that of silica gel (5% compared with 37% to 40%). The uncertainty in the manganese dioxide capacity calculation is relatively high (+-14%) because of the low sorption capacity of the small sample available (less than 0.3 g). Because of its low adsorption capacity, it cannot be used as a stand-alone desiccant in desiccant dehumidifiers. It may be used in composites with silica gel if its moisture diffusivity is considerably higher than that of silica gel. The moisture diffusivity in manganese dioxide and silica gel/manganese dioxide composites needs to be assessed and compared with that of silica gel for evaluating the composites as advanced desiccants.

Zangrando, F.; Choudhury, K.; Pesaran, A.A.

1986-05-01T23:59:59.000Z

198

Nanostructured lithium nickel manganese oxides for lithium-ion batteries.  

DOE Green Energy (OSTI)

Nanostructured lithium nickel manganese oxides were investigated as advanced positive electrode materials for lithium-ion batteries designated to power plug-in hybrid electric vehicles and all-electric vehicles. The investigation included material characterization and electrochemical testing. In cell tests, the Li{sub 1.375}Ni{sub 0.25}Mn{sub 0.75}O{sub 2.4375} composition achieved high capacity (210 mAh g{sup -1}) at an elevated rate (230 mA g{sup -1}), which makes this material a promising candidate for high energy density Li-ion batteries, as does its being cobalt-free and uncoated. The material has spherical morphology with nanoprimary particles embedded in micrometer-sized secondary particles, possesses a multiphase character (spinel and layered), and exhibits a high packing density (over 2 g cm{sup -3}) that is essential for the design of high energy density positive electrodes. When combined with the Li{sub 4}Ti{sub 5}O{sub 12} stable anode, the cell showed a capacity of 225 mAh g{sup -1} at the C/3 rate (73 mA g{sup -1}) with no capacity fading for 200 cycles. Other chemical compositions, Li{sub (1+x)}Ni{sub 0.25}Mn{sub 0.75}O{sub (2.25+x/2)} (0.32 {le} x {le} 0.65), were also studied, and the relationships among their structural, morphological, and electrochemical properties are reported.

Deng, H.; Belharouak, I.; Cook, R. E.; Wu, H.; Sun, Y.-K.; Amine, K.; Hanyang Univ.

2010-02-25T23:59:59.000Z

199

Climate VISION: Private Sector Initiatives: Magnesium: Resources and Links  

Office of Scientific and Technical Information (OSTI)

Plant Assessments Plant Assessments Greenhouse Gas Protocol (PDF 190 KB) Download Acrobat Reader Paper written by Bill Palmer, Cheminfo Services, Inc. Molten magnesium and its alloys are volatile substances that have a tendency to oxidize explosively in air and require surface protection in casting processes. Save Energy Now Assessments The Save Energy Now assessments program is one way for plants of all sizes to work with the DOE Industrial Technologies Program (ITP). Large plants are eligible to apply for a system level assessment on their steam, process heating, compressed air, fans, or pumping systems. Assessments are conducted over a three day site visit by teams of DOE Energy Experts and plant personnel. The plant personnel are trained to identify energy savings opportunities using the DOE software tools. Most plants find an average of

200

Climate VISION: Private Sector Initiatives: Magnesium: Resources and Links  

Office of Scientific and Technical Information (OSTI)

Software Tools Software Tools The magnesium industry intends to eliminate emissions of SF6 by evaluating and adopting environmentally friendly alternative protective cover gases. The industry may also seek to improve its energy efficiency and therefore reduce its CO2 emissions. DOE has developed the following software tools that may assist companies in such efforts. DOE BestPractices Software Tools DOE BestPractices offers a range of software tools and databases that help manufacturers assess their plant's steam, compressed air, motor, and process heating systems. DOE Plant Energy Profiler Industry experience has shown that many plant utility personnel do not have an adequate understanding of their energy cost structure and where the major focus should be for any energy savings program. This tool will

Note: This page contains sample records for the topic "iron magnesium manganese" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Theoretical analysis of two-gap superconductivity of magnesium diborades and iron pnictides in the generalized {alpha} model  

SciTech Connect

A generalized {alpha} model for computing the superconducting parameters of real two-band superconductors is proposed based on an analysis of the properties of two-band equations in the theory of superconductivity. Using this model, we calculate the heat capacity and optical properties of Ba(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2} superconducting compound and obtain the temperature dependences of the gaps and energies of the Leggett modes in the Mg{sub 1-x}Al{sub x}B{sub 2} superconducting system. Good quantitative coincidence of the calculated data and experimental results is demonstrated.

Maksimov, E. G. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Karakozov, A. E., E-mail: karakozov@mtu-net.ru [Russian Academy of Sciences, Vereshchagin Institute for High-Pressure Physics (Russian Federation); Gorshunov, B. P., E-mail: gorshunov@ran.gpi.ru [Russian Academy of Sciences, Prokhorov Institute of General Physics (Russian Federation); Ponomarev, Ya. G. [Moscow State University (Russian Federation); Zhukova, E. S. [Russian Academy of Sciences, Prokhorov Institute of General Physics (Russian Federation); Dressel, M. [Universitaet Stuttgart, 1. Physikalisches Institut (Germany)

2012-08-15T23:59:59.000Z

202

Direct Biohydrometallurgical Extraction of Iron from Ore  

Science Conference Proceedings (OSTI)

A completely novel approach to iron extraction was investigated, based on reductive leaching of iron by anaerobic bacteria. Microorganisms were collected from an anaerobic bog where natural seepage of dissolved iron was observed. This mixed culture was used to reduce insoluble iron in a magnetite ore to the soluble ferrous (Fe{sup +2}) state. While dissolution rates were slow, concentrations of dissolved iron as high as 3487 mg/l could be reached if sufficient time was allowed. A factorial study of the effects of trace nutrients and different forms of organic matter indicated that the best dissolution rates and highest dissolved iron concentrations were achieved using soluble carbohydrate (sucrose) as the bacterial food source, and that nutrients other than nitrogen, phosphorus, potassium, sodium, and acetate were not necessary. A key factor in reaching high levels of dissolved iron was maintaining a high level of carbon dioxide in solution, since the solubility of iron carbonates increases markedly as the quantity of dissolved carbon dioxide increases. Once the iron is dissolved, it has been demonstrated that the ferrous iron can then be electroplated from solution, provided that the concentration of iron is sufficiently high and the hydrogen ion concentration is sufficiently low. However, if the leaching solution is electrolyzed directly, organic matter precipitates at the cathode along with the metallic iron. To prevent this problem, the ferrous iron should be separated from the bulk solution in a more concentrated, purified form. One route to accomplishing this is to take advantage of the change in solubility of ferrous iron as a function of carbon dioxide concentration. By cycling the concentration of carbon dioxide in solution, it is possible to produce an iron-rich concentrate that should be suitable for electrolysis. This represents the first viable hydrometallurgical method for leaching iron directly from ore and producing metallic iron.

T.C. Eisele

2005-10-01T23:59:59.000Z

203

Microsoft Word - IronCore  

NLE Websites -- All DOE Office Websites (Extended Search)

November/December 2013 November/December 2013 Percolation Explains How Earth's Iron Core Formed The formation of Earth's metallic core, which makes up a third of our planet's mass, represents the most significant differentiation event in Earth's history. Earth's present layered structure with a metallic core and an overlying silicate mantle would have required mechanisms to separate iron alloy from a silicate phase. Percolation of liquid iron alloy moving through a solid silicate matrix (much as water percolates through porous rock, or even coffee grinds) has been proposed as a possible model for core formation (Figure 1). Many previous experimental results have ruled out percolation as a major core formation mechanism for Earth at the relatively lower pressure conditions in the upper mantle, but

204

Iron-Carbon Nuggets Coalescence: Influence of Slag's ...  

Science Conference Proceedings (OSTI)

Researches on Reduction Roasting of Low-grade Manganese Oxide Ores Using Biomass Charcoal as Reductant · Simulations for Optimising Plant Flowsheets ...

205

Iron Availability in the Southern Ocean  

NLE Websites -- All DOE Office Websites (Extended Search)

Iron Availability in the Southern Ocean Iron Availability in the Southern Ocean Print Friday, 21 June 2013 10:08 The Southern Ocean, circling the Earth between Antarctica and the...

206

Classes and Grades of Ductile Iron  

Science Conference Proceedings (OSTI)

Table 1   Ductile iron properties of various industry and international standards...Table 1 Ductile iron properties of various industry and international standards Grade Tensile strength 0.2% offset yield

207

Biochemical and biophysical characterization of the manganese transport regulator (MntR) from Bacillus subtilis  

E-Print Network (OSTI)

of a Role for Iron in the Lyme Disease Pathogen. Sciencewas noted by discovery of the Lyme disease pathogen Borrelia

Golynskiy, Misha

2007-01-01T23:59:59.000Z

208

About The Associate for Iron and Steel Technology - TMS  

Science Conference Proceedings (OSTI)

ABOUT THE ASSOCIATION FOR IRON & STEEL TECHNOLOGY ... that provides opportunities for networking among iron and steel industry professionals and ...

209

Magnetism Governs Properties of Iron-Based ...  

Science Conference Proceedings (OSTI)

... a group of materials that conduct electricity without resistance at ... theoretical evidence demonstrating how magnetism controls basic aspects of iron ...

2011-04-06T23:59:59.000Z

210

Terahertz Properties of Lithium Iron Phosphate Glasses  

Science Conference Proceedings (OSTI)

Presentation Title, Terahertz Properties of Lithium Iron Phosphate Glasses ... Field Assisted Viscous Flow and Crystallization in a Sodium Aluminosilicate Glass.

211

Lithium Iron Phosphate Composites for Lithium Batteries  

The materials can be added at low cost without changing current scalable cathode ... Lithium Iron Phosphate Composites for Lithium Batteries ...

212

X-RAY ABSORPTION SPECTROSCOPY OF TRANSITION METAL-MAGNESIUM HYDRIDE FILMS  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectroscopy of Transition Metal-Magnesium Spectroscopy of Transition Metal-Magnesium Hydride Thin Films T. J. Richardson a, *, B. Farangis a , J. L. Slack a , P. Nachimuthu b , R. Pereira b , N. Tamura b , and M. Rubin a a Environmental Energy Technologies Division, b Advanced Light Source, Ernest Orlando Lawrence Berkeley National Laboratory Berkeley, California 94720, USA *Corresponding author, E-mail address: tjrichardson@lbl.gov Abstract Mixed metal thin films containing magnesium and a first-row transition element exhibit very large changes in both reflectance and transmittance on exposure to hydrogen gas. Changes in electronic structure and coordination of the magnesium and transition metal atoms during hydrogen absorption were studied using dynamic in situ transmission mode X-ray absorption

213

Near Net-Shaped Magnesium Aluminate Spinel by the Oxidation of ...  

Science Conference Proceedings (OSTI)

The ductile magnesium can endow the precursor with the green strength ..... by Oxidation of Melt Spun Ag-Ho-Ba-Cu Alloy Ribbon," Jpn. J. Appl. Phys., 27[2] ...

214

An experimental study of magnesium-isotope fractionation in chlorophyll-a photosynthesis  

E-Print Network (OSTI)

Geology, University of California, Davis, CA 95616. whcasey@ucdavis.edu keywords: photosynthesis, magnesium isotopes,Isotope Fractionation in Chlorophyll-a Photosynthesis Jay R. Black Department of Chemistry Department of Geology,

Black, J R; Yin, Q Z; Casey, W H

2006-01-01T23:59:59.000Z

215

Ligand iron catalysts for selective hydrogenation  

SciTech Connect

Disclosed are iron ligand catalysts for selective hydrogenation of aldehydes, ketones and imines. A catalyst such as dicarbonyl iron hydride hydroxycyclopentadiene) complex uses the OH on the five member ring and hydrogen linked to the iron to facilitate hydrogenation reactions, particularly in the presence of hydrogen gas.

Casey, Charles P. (Madison, WI); Guan, Hairong (Cincinnati, OH)

2010-11-16T23:59:59.000Z

216

Novel Nonflammable Electrolytes for Secondary Magnesium Batteries and High Voltage Electrolytes for Electrochemcial Supercapacitors  

Science Conference Proceedings (OSTI)

Magnesium has been used successfully in primary batteries, but its use in rechargeable cells has been stymied by the lack of suitable non-aqueous electrolyte that can conduct Mg+2 species, combined with poor stripping and plating properties. The development of a suitable cathode material for rechargeable magnesium batteries has also been a roadblock, but a nonflammable electrolyte is key. Likewise, the development of safe high voltage electrochemical supercapaitors has been stymied by the use of flammable solvents in the liquid electrolyte; to wit, acetonitrile. The purpose of the research conducted in this effort was to identify useful compositions of magnesium salts and polyphosphate solvents that would enable magnesium ions to be cycled within a secondary battery design. The polyphosphate solvents would provide the solvent for the magnesium salts while preventing the electrolyte from being flammable. This would enable these novel electrolytes to be considered as an alternative to THF-based electrolytes. In addition, we explored several of these solvents together with lithium slats for use as high voltage electrolytes for carbon-based electrochemical supercapacitors. The research was successful in that: 1) Magnesium imide dissolved in a phosphate ester solvent that contains a halogented phosphate ester appears to be the preferred electrolyte for a rechargeable Mg cell. 2) A combination of B-doped CNTs and vanadium phosphate appear to be the cathode of choice for a rechargeable Mg cell by virtue of higher voltage and better reversibility. 3) Magnesium alloys appear to perform better than pure magnesium when used in combination with the novel polyphosphate electrolytes. Also, this effort has established that Phoenix Innovationâ??s family of phosphonate/phosphate electrolytes together with specific lithium slats can be used in supercapacitor systems at voltages of greater than 10V.

Dr. Brian Dixon

2008-12-30T23:59:59.000Z

217

X-Ray Absorption Spectroscopy of Transition Metal-Magnesium Hydride Thin  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Absorption Spectroscopy of Transition Metal-Magnesium Hydride Thin X-Ray Absorption Spectroscopy of Transition Metal-Magnesium Hydride Thin Films Title X-Ray Absorption Spectroscopy of Transition Metal-Magnesium Hydride Thin Films Publication Type Journal Article LBNL Report Number LBNL-50574 Year of Publication 2002 Authors Richardson, Thomas J., Baker Farangis, Jonathan L. Slack, Ponnusamy Nachimuthu, Rupert C. C. Perera, Nobumichi Tamura, and Michael D. Rubin Journal Journal of Alloys and Compounds Volume 356-357 Start Page 204 Pagination 204-207 Date Published 08/2003 Keywords A. hydrogen storage materials, NEXAFS, thin film s; C. EXAFS, x-ray diffraction Abstract Mixed metal thin films containing magnesium and a first-row transition element exhibit very large changes in both reflectance and transmittance on exposure to hydrogen gas. Changes in electronic structure and coordination of the magnesium and transition metal atoms during hydrogen absorption were studied using dynamic in situ transmission mode X-ray absorption spectroscopy. Mg K-edge and Ni, Co, and Ti L-edge spectra reflect both reversible and irreversible changes in the metal environments. A significant shift in the nickel L absorption edge shows it to be an active participant in hydride formation. The effect on cobalt and titanium is much less dramatic, suggesting that these metals act primarily as catalysts for formation of magnesium hydride.

218

Kinetics of Chromium(III) Oxidation by Manganese(IV) Oxides Using  

E-Print Network (OSTI)

. This represents the first study to determine the chemical kinetics of Cr(III) oxidation on Mn-oxides. The results focusing on the "chemical" kinetics of Cr(III) oxidation on manganese oxides, i.e., the initial rates of Obtaining and Analyzing Kinetic Data. In Rates of Soil Chemical Processes, Sparks, D. L., Suarez, D. L., Eds

Sparks, Donald L.

219

MUTLI-OBJECTIVE OPTIMIZATION OF MICROSTRUCTURE IN WROUGHT MAGNESIUM ALLOYS  

SciTech Connect

The microstructural features that govern the mechanical properties of wrought magnesium alloys include grain size, crystallographic texture, and twinning. Several processes based on shear deformation have been developed that promote grain refinement, weakening of the basal texture, as well as the shift of the peak intensity away from the center of the basal pole figure - features that promote room temperature ductility in Mg alloys. At ORNL, we are currently exploring the concept of introducing nano-twins within sub-micron grains as a possible mechanism for simultaneously improving strength and ductility by exploiting a potential dislocation glide along the twin-matrix interface a mechanism that was originally proposed for face-centered cubic materials. Specifically, we have developed an integrated modeling and optimization framework in order to identify the combinations of grain size, texture and twin spacing that can maximize strength-ductility combinations. A micromechanical model that relates microstructure to material strength is coupled with a failure model that relates ductility to a critical shear strain and a critical hydrostatic stress. The micro-mechanical model is combined with an optimization tool based on genetic algorithm. A multi-objective optimization technique is used to explore the strength-ductility space in a systematic fashion and identify optimum combinations of the microstructural parameters that will simultaneously maximize the strength-ductility in the alloy.

Radhakrishnan, Balasubramaniam [ORNL; Gorti, Sarma B [ORNL; Simunovic, Srdjan [ORNL

2013-01-01T23:59:59.000Z

220

Convergent close-coupling calculations of positron-magnesium scattering  

SciTech Connect

The single-center convergent close-coupling method has been applied to positron-magnesium scattering at incident energies from 0.01 to 100 eV. Cross sections are presented for elastic scattering and excitation of 3 {sup 1}P, as well as for the total ionization and total scattering processes. We also provide an estimate of the positronium formation cross section. The results agree very well with the measurements of the total cross section by Stein et al. [Nucl. Instrum. Methods Phys. Res. Sect. B 143, 68 (1998)], and consistent with the positronium formation measurements of Surdutovich et al. [Phys. Rev. A 68, 022709 (2003)] for positron energies above the ionization threshold. For energies below the positronium formation threshold (0.8 eV) we find a large P-wave resonance at 0.17 eV. A similar resonance behavior was found by Mitroy and Bromley [Phys. Rev. Lett. 98, 173001 (2007)] at an energy of 0.1 eV.

Savage, Jeremy S.; Fursa, Dmitry V.; Bray, Igor [ARC Centre for Antimatter-Matter Studies, Curtin University of Technology, GPO Box U1987, Perth, WA 6845 (Australia)

2011-06-15T23:59:59.000Z

Note: This page contains sample records for the topic "iron magnesium manganese" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

REDUCTION OF URANIUM HEXAFLUORIDE RETENTION ON BEDS OF MAGNESIUM FLUORIDE USED FOR REMOVAL OF TECHNETIUM HEXAFLUORIDE  

SciTech Connect

The excessive loss of uranium incurred when discarding magnesium fluoride, (the adsorber used to selectively remove technetium hexafluoride from uranium hexafluoride streams) is a problem common to all volatility processes for recovering enriched uranium fuels. As a result of the work described, two schemes for the release of the uranium hexafluoride from the magnesium fluoride and its separation from the technetium hexafluoride are proposed. One scheme depends on preferential thermal desorption of the uranium hexafluoride at 350 deg C and the other on selective adsorption of the uranium hexafluoride on sodium fluoride pellets following the codesorption of the two hexafluorides with fluorine at 500 deg C from the magnesium fluoride pellets. These proposals are aimed at reducing the amount of retained uranium to less than 1 g per 1000 g of discardable magnesium fluoride. In the work reported, the deposition of uranium on magnesium fluoride as a function of heating, fluorination, and hydrogen fluoride pretreatment of the magnesium fluoride pellets prior to exposure to uranium hexafluoride was characterized in a series of gasometric studies. The dependence of the quantity of uranium hexafluoride adsorbed on pressure and temperature was also determined. The data show that physical adsorption is the mechanism for the deposition of most of the uranium hexafluoride on well- stabilized magnesium fluoride pellets. More than 90% of the adsorbate can be removed by heating to 350 deg C. Chemisorption (formation of a double salt) is probably not involved because of the small (<0.05) mole ratio of UF/sub 6//MgF/ sub 2/ observed. (auth)

Katz, S.

1964-01-31T23:59:59.000Z

222

MAGNESIUM MONO POTASSIUM PHOSPHATE GROUT FOR P-REACTOR VESSEL IN-SITU DECOMISSIONING  

SciTech Connect

The objective of this report is to document laboratory testing of magnesium mono potassium phosphate grouts for P-Reactor vessel in-situ decommissioning. Magnesium mono potassium phosphate cement-based grout was identified as candidate material for filling (physically stabilizing) the 105-P Reactor vessel (RV) because it is less alkaline than portland cement-based grout (pH of about 12.4). A less alkaline material ({<=} 10.5) was desired to address a potential materials compatibility issue caused by corrosion of aluminum metal in highly alkaline environments such as that encountered in portland cement grouts. Information concerning access points into the P-Reactor vessel and amount of aluminum metal in the vessel is provided elsewhere. Fresh and cured properties were measured for: (1) commercially blended magnesium mono potassium phosphate packaged grouts, (2) commercially available binders blended with inert fillers at SRNL, (3) grouts prepared from technical grade MgO and KH{sub 2}PO{sub 4} and inert fillers (quartz sands, Class F fly ash), and (4) Ceramicrete{reg_sign} magnesium mono potassium phosphate-based grouts prepared at Argonne National Laboratory. Boric acid was evaluated as a set retarder in the magnesium mono potassium phosphate mixes.

Langton, C.; Stefanko, D.

2011-01-05T23:59:59.000Z

223

Lightning arrestor connector lead magnesium niobate qualification pellet test procedures.  

SciTech Connect

Enhanced knowledge preservation for DOE DP technical component activities has recently received much attention. As part of this recent knowledge preservation effort, improved documentation of the sample preparation and electrical testing procedures for lead magnesium niobate--lead titanate (PMN/PT) qualification pellets was completed. The qualification pellets are fabricated from the same parent powders used to produce PMN/PT lightning arrestor connector (LAC) granules at HWF&T. In our report, the procedures for fired pellet surface preparation, electrode deposition, electrical testing and data recording are described. The dielectric measurements described in our report are an information only test. Technical reasons for selecting the electrode material, electrode size and geometry are presented. The electrical testing is based on measuring the dielectric constant and dissipation factor of the pellet during cooling from 280 C to 220 C. The most important data are the temperature for which the peak dielectric constant occurs (Curie Point temperature) and the peak dielectric constant magnitude. We determined that the peak dielectric constant for our procedure would be that measured at 1 kHz at the Curie Point. Both the peak dielectric constant and the Curie point parameters provide semi-quantitative information concerning the chemical and microstructural homogeneity of the parent material used for the production of PMN/PT granules for LACs. Finally, we have proposed flag limits for the dielectric data for the pellets. Specifically, if the temperature of the peak dielectric constant falls outside the range of 250 C {+-} 30 C we propose that a flag limit be imposed that will initiate communication between production agency and design agency personnel. If the peak dielectric constant measured falls outside the range 25,000 {+-} 10,000 we also propose that a flag limit be imposed.

Tuohig, W. (Honeywell FM& T, Kansas City, MO); Mahoney, Patrick A.; Tuttle, Bruce Andrew; Wheeler, Jill Susanne

2009-02-01T23:59:59.000Z

224

Water Quality Criteria Development for Iron  

Science Conference Proceedings (OSTI)

The current national water quality criterion for iron — a criterion continuous concentration of 1 mg Fe/L — was derived 25 years ago. Such ambient water quality criteria are typically derived from toxicity tests in which the reagent grade chemical is dissolved in clean laboratory water. However, due to the complexity of iron speciation in freshwater, adverse effects of iron precipitates on habitat quality, and access of organisms to food, standard toxicity assays may not adequately assess the...

2004-12-27T23:59:59.000Z

225

Molecular Interactions of Plutonium(VI) with Synthetic Manganese-Substituted Goethite  

E-Print Network (OSTI)

E. , Thesis, Reactions of Plutonium(VI) with the Iron Oxideof Uranium, Neptunium, Plutonium, Americium and Technetium;Molecular Interactions of Plutonium(VI) with Synthetic

Hu, Yung-Jin

2011-01-01T23:59:59.000Z

226

Iron Availability in the Southern Ocean  

NLE Websites -- All DOE Office Websites (Extended Search)

Iron Availability in the Southern Ocean Print The Southern Ocean, circling the Earth between Antarctica and the southernmost regions of Africa, South America, and Australia, is...

227

Crystal Structure of Iron-dependent Halogenase  

NLE Websites -- All DOE Office Websites (Extended Search)

Iron (brown) is coordinated by two histidines, a-ketoglutarate (grey sticks), water (cyan), and chloride (green). The structural analysis revealed a novel coordination...

228

Iron Control in Zinc Pressure Leach Processes  

Science Conference Proceedings (OSTI)

Consequently, the disposal of iron residues is an integral part of the design and operation of zinc refineries. Zinc has been recovered from sulfide concentrates ...

229

Lithium Insertion Chemistry of Some Iron Vanadates  

E-Print Network (OSTI)

in A. Nazri, G.Pistoia (Eds. ), Lithium batteries, Science &structure materials in lithium cells, for a lower limitLithium Insertion Chemistry of Some Iron Vanadates Sébastien

Patoux, Sebastien; Richardson, Thomas J.

2008-01-01T23:59:59.000Z

230

Carbon Emissions: Iron and Steel Industry  

U.S. Energy Information Administration (EIA)

Energy-Related Carbon Emissions for Selected Iron and Steel Industries, 1994. Besides steel mills and blast furnaces, the primary metals industry also ...

231

Method for producing iron-based catalysts  

DOE Patents (OSTI)

A method for preparing an acid catalyst having a long shelf-life is provided comprising doping crystalline iron oxides with lattice-compatible metals and heating the now-doped oxide with halogen compounds at elevated temperatures. The invention also provides for a catalyst comprising an iron oxide particle having a predetermined lattice structure, one or more metal dopants for said iron oxide, said dopants having an ionic radius compatible with said lattice structure; and a halogen bound with the iron and the metal dopants on the surface of the particle.

Farcasiu, Malvina (Pittsburgh, PA); Kaufman, Phillip B. (Library, PA); Diehl, J. Rodney (Pittsburgh, PA); Kathrein, Hendrik (McMurray, PA)

1999-01-01T23:59:59.000Z

232

Cycling Degradation of Lithium Iron Phosphate Cells  

Science Conference Proceedings (OSTI)

Abstract Scope, Significant improvement of electronic conductivity of lithium iron ... commercialization in many applications especially in plug-in electric vehicles.

233

Coordination Chemistry in magnesium battery electrolytes: how ligands affect their performance  

Science Conference Proceedings (OSTI)

Magnesium battery is potentially a safe, cost-effective, and high energy density technology for large scale energy storage. However, the development of magnesium battery has been hindered by the limited performance and the lack of fundamental understandings of electrolytes. Here, we present a coordination chemistry study of Mg(BH4)2 in ethereal solvents. The O donor denticity, i.e. ligand strength of the ethereal solvents which act as ligands to form solvated Mg complexes, plays a significant role in enhancing coulombic efficiency of the corresponding solvated Mg complex electrolytes. A new and safer electrolyte is developed based on Mg(BH4)2, diglyme and optimized LiBH4 additive. The new electrolyte demonstrates 100% coulombic efficiency, no dendrite formation, and stable cycling performance with the cathode capacity retention of ~90% for 300 cycles in a prototype magnesium battery.

Shao, Yuyan; Liu, Tianbiao L.; Li, Guosheng; Gu, Meng; Nie, Zimin; Engelhard, Mark H.; Xiao, Jie; Lu, Dongping; Wang, Chong M.; Zhang, Jiguang; Liu, Jun

2013-11-04T23:59:59.000Z

234

Cohesion enhancing effect of magnesium in aluminum grain boundary: A first-principles determination  

SciTech Connect

The effect of magnesium on grain boundary cohesion in aluminum was investigated by means of first-principles calculations using the Rice-Wang model [Rice and Wang, Mater. Sci. Eng. A 107, 23 (1989)]. It is demonstrated that magnesium is a cohesion enhancer with a potency of -0.11 eV/atom. It is further determined through electronic structure and bonding character analysis that the cohesion enhancing property of magnesium is due to a charge transfer mechanism which is unusually strong and overcomes the negative result of the size effect mechanism. Consistent with experimental results, this work clarifies the controversy and establishes that Mg segregation does not contribute to stress corrosion cracking in Al alloys.

Zhang Shengjun; Freeman, Arthur J. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208 (United States); Kontsevoi, Oleg Y. [Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208 (United States); Olson, Gregory B. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States)

2012-06-04T23:59:59.000Z

235

Influence of Si Co-doping on electrical transport properties of magnesium-doped boron nanoswords  

Science Conference Proceedings (OSTI)

Magnesium-doped boron nanoswords were synthesized via a thermoreduction method. The as-prepared nanoswords are single crystalline and {beta}-rhombohedral ({beta}-rh) phase. Electrical transport measurements show that variable range hopping conductivity increases with temperature, and carrier mobility has a greater influence than carrier concentration. These results are consistent with the three dimensional Mott's model (M. Cutler and N. F. Mott, Phys. Rev. 181, 1336 (1969)) besides a high density of localized states at the Fermi level compared with bulk {beta}-rh boron. Conductivity of Mg-doped boron nanoswords is significantly lower than that of ''pure'' (free of magnesium) boron nanoswords. Electron energy loss spectroscopy studies confirm that the poorer conductivity arises from silicon against magnesium doping.

Tian Yuan; Lu Hongliang; Tian Jifa; Li Chen; Hui Chao; Shi Xuezhao; Huang Yuan; Shen Chengmin; Gao Hongjun [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

2012-03-05T23:59:59.000Z

236

Geochemical Aspects of the Carbonation of Magnesium Silicates in an Aqueous Medium  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOCHEMICAL ASPECTS OF THE CARBONATION OF MAGNESIUM GEOCHEMICAL ASPECTS OF THE CARBONATION OF MAGNESIUM SILICATES IN AN AQUEOUS MEDIUM George D. Guthrie, Jr. (gguthrie@lanl.gov 505-665-6340) J. William Carey (bcarey@lanl.gov 505-667-5540) Deborah Bergfeld (debberrg@lanl.gov 505-667-1812) Darrin Byler (dbyler@lanl.gov 505-665-9562) Steve Chipera (chipera@lanl.gov 505-667-1110) Hans-Joachim Ziock (ziock@lanl.gov 505-667-7265) Hydrology, Geochemistry, & Geology Los Alamos National Laboratory Los Alamos, NM 87545 Klaus Lackner (ksl@lanl.gov 505-667-5694) Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM and Columbia University, New York, NY KEYWORDS: CO 2 sequestration, magnesium silicate, mineral carbonation INTRODUCTION The volume of carbon dioxide associated with the use of fossil fuels to produce

237

Iron mobilization in North African dust.  

SciTech Connect

Iron is an essential nutrient for phytoplankton. Although iron-containing dust mobilized from arid regions supplies the majority of the iron to the oceans, the key flux in terms of the biogeochemical response to atmospheric deposition is the amount of soluble or bioavailable iron. Atmospheric processing of mineral aerosols by anthropogenic pollutants (e.g. sulfuric acid) may transform insoluble iron into soluble forms. Previous studies have suggested higher iron solubility in smaller particles, as they are subject to more thorough atmospheric processing due to a longer residence time than coarse particles. On the other hand, the specific mineralogy of iron in dust may also influence the particulate iron solubility in size. Compared to mineral dust aerosols, iron from combustion sources could be more soluble, and found more frequently in smaller particles. Internal mixing of alkaline dust with iron-containing minerals could significantly reduce iron dissolution in large dust aerosols due to the buffering effect, which may, in contrast, yield higher solubility in smaller particles externally mixed with alkaline dust (Ito and Feng, 2010). Here, we extend the modeling study of Ito and Feng (2010) to investigate atmospheric processing of mineral aerosols from African dust. In contrast to Asian dust, we used a slower dissolution rate for African dust in the fine mode. We compare simulated fractional iron solubility with observations. The inclusion of alkaline compounds in aqueous chemistry substantially limits the iron dissolution during long-range transport to the Atlantic Ocean: only a small fraction of iron (<0.2%) dissolves from illite in coarsemode dust aerosols with 0.45% soluble iron initially. In contrast, a significant fraction (1-1.5%) dissolves in fine-mode dust aerosols due to the acid mobilization of the iron-containing minerals externally mixed with carbonate minerals. Consequently, the model generally reproduces higher iron solubility in smaller particles as suggested by measurements over the Atlantic Ocean. Our results imply that the dissolution of iron in African dust is generally slower than that in Asian dust. Conventionally, dust is assumed as the major supply of bioavailable iron with a constant solubility at 1-2% to the remote ocean. Therefore, the timing and location of the atmospheric iron input to the ocean with detailed modeling of atmospheric processing could be different from those previously assumed. Past and future changes in aerosol supply of bioavailable iron might play a greater role in the nutrient supply for phytoplankton production in the upper ocean, as global warming has been predicted to intensify stratification and reduce vertical mixing from the deep ocean. Thus the feedback of climate change through ocean uptake of carbon dioxide as well as via aerosol-cloud interaction might be modified by the inclusion of iron chemistry in the atmosphere.

Ito, A.; Feng, Y. (Environmental Science Division); (Research Inst. for Global Change)

2011-01-01T23:59:59.000Z

238

Improved efficiency in the sulfur dioxide-iodine hydrogen cycle through the use of magnesium oxide  

DOE Green Energy (OSTI)

The reaction of iodine with dry magnesium oxide and magnesium sulfite hexahydrate was studied experimentally as a possible means of improving the efficiency of the sulfur dioxide-iodine cycle. When no extra water was introduced, the maximum product yield was 67% obtained at 423 K. With excess water vapor, a nonporous plug was formed which prevented complete reaction. In the second case, maximum yield was 62% measured at 433 K showing that added water does not increase reaction products. This reaction gives an alternate route for producing hydrogen from water via the sulfur dioxide-iodine process.

Mason, C.F.V.; Bowman, M.G.

1981-01-01T23:59:59.000Z

239

Formation of manganese {delta}-doped atomic layer in wurtzite GaN  

Science Conference Proceedings (OSTI)

We describe the formation of a {delta}-doped manganese layer embedded within c-plane wurtzite gallium nitride using a special molecular beam epitaxy growth process. Manganese is first deposited on the gallium-poor GaN (0001) surface, forming a {radical}(3) Multiplication-Sign {radical}(3)-R30 Degree-Sign reconstructed phase. This well-defined surface reconstruction is then nitrided using plasma nitridation, and gallium nitride is overgrown. The manganese content of the {radical}(3) Multiplication-Sign {radical}(3)-R30 Degree-Sign phase, namely one Mn per each {radical}(3) Multiplication-Sign {radical}(3)-R30 Degree-Sign unit cell, implies that the MnGaN alloy layer has a Mn concentration of up to 33%. The structure and chemical content of the surface are monitored beginning from the initial growth stage up through the overgrowth of 20 additional monolayers (MLs) of GaN. An exponential-like drop-off of the Mn signal with increasing GaN monolayers, as measured by Auger electron spectroscopy, indicates that the highly concentrated Mn layer remains at the {delta}-doped interface. A model of the resultant {delta}-doped structure is formulated based on the experimental data, and implications for possible spintronic applications are discussed.

Shi Meng; Chinchore, Abhijit; Wang Kangkang; Mandru, Andrada-Oana; Liu Yinghao; Smith, Arthur R. [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701 (United States)

2012-09-01T23:59:59.000Z

240

Kinetic and morphological development of oxide-sulfide scales on manganese at 1,073 K  

Science Conference Proceedings (OSTI)

The corrosion behavior of manganese in controlled gas atmospheres of SO{sub 2}-CO{sub 2}-CO-N{sub 2} at 1073 K was studied. Under all conditions, the gas phase was slow to equilibrate, and catalysis of the gas affected the corrosion mechanism and resulting scale morphologies. Product scales invariably became detached from the metal during reaction, but the high manganese vapor pressure meant that no slowing of reaction resulted. Corrosion under conditions where MnS was the equilibrium reaction product led to the formation of a sulfide scale. At low p{sub s{sub 2}} values, this scale grew by reaction with either COS or SO{sub 2} according to parabolic kinetics. Gases with equilibrium compositions calculated to produce MnO, in fact corroded manganese to produce an inner layer of oxide plus sulfide, and an outer layer of MnO. The tendency to form sulfide was more marked at lower SO{sub 2} partial pressure and higher sulfur activities, the latter resulting from gas catalysis. These effects are due to the fact that SO{sub 2} is the principal reactant species.

McAdam, G.; Yound, D.J. (Univ. of New South Wales, Kensington (Australia))

1992-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "iron magnesium manganese" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Possible Processing of High Phosphorous Libyan Iron Ores  

Science Conference Proceedings (OSTI)

Abstract Scope, Libyan Iron ores reserve > 5.0 billion tons, with 48-55% Fe& 1.0 % P& Libyan Previous ... Differential Characterization of Ikperejere Iron shale and Iron Sandstone Deposit ... High Temperature Exposure of Oil Well Cements.

242

Shape effects of iron nanowires on hyperthermia treatment  

Science Conference Proceedings (OSTI)

This research discusses the influence ofmorphology of nanomagneticmaterials (one-dimensional iron nanowires and zero-dimensional iron nanoparticles) on heating efficiency of the hyperthermia treatment. One-dimensional iron nanowires, synthesized by reducing ...

Wei-Syuan Lin, Hong-Ming Lin, Hsiang-Hsin Chen, Yeu-Kuang Hwu, Yuh-Jing Chiou

2013-01-01T23:59:59.000Z

243

THE SOLAR FLARE IRON ABUNDANCE  

SciTech Connect

The abundance of iron is measured from emission line complexes at 6.65 keV (Fe line) and 8 keV (Fe/Ni line) in RHESSI X-ray spectra during solar flares. Spectra during long-duration flares with steady declines were selected, with an isothermal assumption and improved data analysis methods over previous work. Two spectral fitting models give comparable results, viz., an iron abundance that is lower than previous coronal values but higher than photospheric values. In the preferred method, the estimated Fe abundance is A(Fe) = 7.91 {+-} 0.10 (on a logarithmic scale, with A(H) = 12) or 2.6 {+-} 0.6 times the photospheric Fe abundance. Our estimate is based on a detailed analysis of 1898 spectra taken during 20 flares. No variation from flare to flare is indicated. This argues for a fractionation mechanism similar to quiet-Sun plasma. The new value of A(Fe) has important implications for radiation loss curves, which are estimated.

Phillips, K. J. H. [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking RH6 5NT (United Kingdom); Dennis, B. R., E-mail: kjhp@mssl.ucl.ac.uk, E-mail: Brian.R.Dennis@nasa.gov [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

2012-03-20T23:59:59.000Z

244

IRON COATED URANIUM AND ITS PRODUCTION  

DOE Patents (OSTI)

A method of applying a protective coating to a metallic uranium article is given. The method comprises etching the surface of the article with an etchant solution containlng chloride ions, such as a solution of phosphoric acid and hydrochloric acid, cleaning the etched surface, electroplating iron thereon from a ferrous ammonium sulfate electroplating bath, and soldering an aluminum sheath to the resultant iron layer.

Gray, A.G.

1960-03-15T23:59:59.000Z

245

Production of iron from metallurgical waste  

DOE Patents (OSTI)

A method of recovering metallic iron from iron-bearing metallurgical waste in steelmaking comprising steps of providing an iron-bearing metallurgical waste containing more than 55% by weight FeO and FeO equivalent and a particle size of at least 80% less than 10 mesh, mixing the iron-bearing metallurgical waste with a carbonaceous material to form a reducible mixture where the carbonaceous material is between 80 and 110% of the stoichiometric amount needed to reduce the iron-bearing waste to metallic iron, and as needed additions to provide a silica content between 0.8 and 8% by weight and a ratio of CaO/SiO.sub.2 between 1.4 and 1.8, forming agglomerates of the reducible mixture over a hearth material layer to protect the hearth, heating the agglomerates to a higher temperature above the melting point of iron to form nodules of metallic iron and slag material from the agglomerates by melting.

Hendrickson, David W; Iwasaki, Iwao

2013-09-17T23:59:59.000Z

246

Arsenic Remediation of Bangladesh Drinking Water using Iron-oxide...  

NLE Websites -- All DOE Office Websites (Extended Search)

Arsenic Remediation of Bangladesh Drinking Water using Iron-oxide Coated Coal Ash Title Arsenic Remediation of Bangladesh Drinking Water using Iron-oxide Coated Coal Ash...

247

Processing, Microstructure and Properties of Cast Irons and Cast ...  

Science Conference Proceedings (OSTI)

... Process Design of the Ductile Cast Iron Cylinder Head for Marine Diesel Engine ... Heavy Section Ductile Iron Castings for Use in Wind Turbine Generators.

248

Fundamental Research on the Characteristics of Sierra Leone Iron ...  

Science Conference Proceedings (OSTI)

Differential Characterization of Ikperejere Iron shale and Iron Sandstone Deposit · Direct Precipitation of Sr-doped LaP3O9 Thin Film Electrolytes for ...

249

Reconstruction of Gene Networks of Iron Response in Shewanella oneidensis  

Science Conference Proceedings (OSTI)

It is of great interest to study the iron response of the -proteobacterium Shewanella oneidensis since it possesses a high content of iron and is capable of utilizing iron for anaerobic respiration. We report here that the iron response in S. oneidensis is a rapid process. To gain more insights into the bacterial response to iron, temporal gene expression profiles were examined for iron depletion and repletion, resulting in identification of iron-responsive biological pathways in a gene co-expression network. Iron acquisition systems, including genes unique to S. oneidensis, were rapidly and strongly induced by iron depletion, and repressed by iron repletion. Some were required for iron depletion, as exemplified by the mutational analysis of the putative siderophore biosynthesis protein SO3032. Unexpectedly, a number of genes related to anaerobic energy metabolism were repressed by iron depletion and induced by repletion, which might be due to the iron storage potential of their protein products. Other iron-responsive biological pathways include protein degradation, aerobic energy metabolism and protein synthesis. Furthermore, sequence motifs enriched in gene clusters as well as their corresponding DNA-binding proteins (Fur, CRP and RpoH) were identified, resulting in a regulatory network of iron response in S. oneidensis. Together, this work provides an overview of iron response and reveals novel features in S. oneidensis, including Shewanella-specific iron acquisition systems, and suggests the intimate relationship between anaerobic energy metabolism and iron response.

Yang, Yunfeng [ORNL; Harris, Daniel P [ORNL; Luo, Feng [Clemson University; Joachimiak, Marcin [Clemson University; Wu, Liyou [University of Oklahoma; Dehal, Paramvir [Lawrence Berkeley National Laboratory (LBNL); Jacobsen, Janet [Lawrence Berkeley National Laboratory (LBNL); Yang, Zamin Koo [ORNL; Gao, Haichun [University of Oklahoma; Arkin, Adam [Lawrence Berkeley National Laboratory (LBNL); Palumbo, Anthony Vito [ORNL; Zhou, Jizhong [University of Oklahoma

2009-01-01T23:59:59.000Z

250

Pages that link to "Iron Edison Battery Company" | Open Energy...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Pages that link to "Iron Edison Battery Company" Iron Edison Battery Company Jump to: navigation, search What links here...

251

Changes related to "Iron Edison Battery Company" | Open Energy...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Changes related to "Iron Edison Battery Company" Iron Edison Battery Company Jump to: navigation, search This is a list...

252

Iron catalysis in oxidation by ozone - Energy Innovation Portal  

Bookmark Iron catalysis in oxidation by ozone - Energy Innovation Portal on Google; Bookmark Iron catalysis in oxidation by ozone - Energy Innovation ...

253

Climate VISION: Private Sector Initiatives: Iron and Steel: Resources...  

Office of Scientific and Technical Information (OSTI)

Industry Associations American Iron and Steel Institute For over a century, North American steel producers have worked as partners and members of the American Iron and Steel...

254

Fischer–Tropsch Synthesis: Characterization Rb Promoted Iron ...  

Science Conference Proceedings (OSTI)

Nov 1, 2007 ... Abstract Rubidium promoted iron Fischer–Tropsch synthesis (FTS) ... Keywords Fischer–Tropsch synthesis Á Iron catalyst Á. Rubidium Á Active ...

255

Preparations of rare earth-iron alloys by thermite reduction  

DOE Patents (OSTI)

An improved method for the preparation of high-purity rare earth-iron alloys by the aluminothermic reduction of a mixture of rare earth and iron fluorides.

Schmidt, Frederick A. (Ames, IA); Peterson, David T. (Ames, IA); Wheelock, John T. (Nevada, IA)

1986-09-16T23:59:59.000Z

256

Iron and Steel Energy Intensities  

U.S. Energy Information Administration (EIA) Indexed Site

If you are having trouble, call 202-586-8800 for help. Home > >Energy Users > Energy Efficiency Page > Iron and Steel Energy Intensities First Use of Energy Blue Bullet First Use/Value of Production Blue Bullet First Use/Ton of steel End Uses of Consumption Blue Bullet Total End Use/Value of Production Blue Bullet Total End Use/Ton of Steel Boiler Fuel as End Use Blue Bullet Boiler Fuel /Value of Production Blue Bullet Boiler Fuel /Ton of Steel Process Heating as End Use Blue Bullet Process Heating Fuel /Ton of Steel Blue Bullet Process Heating /Value of Production Machine Drive as End Use Blue Bullet Machine Drive Fuel/Ton of Steel Blue Bullet Machine Drive Fuel /Value of Production Expenditures Blue Bullet Purchased Fuel /Ton of Steel Blue Bullet Purchased Fuel /Value of Production

257

Dechlorination of TCE with palladized iron  

DOE Patents (OSTI)

The present invention relates to various methods, such as an above-ground method and an in-ground method, of using a palladized iron bimetallic system for the dechlorination of chlorinated organic compounds from effluents containing the same. The use of palladized iron bimetallic system results in the dechlorination of the chlorinated organic compound into environmentally safe reaction products. The present invention also provides kits, devices, and other instruments that use the above-mentioned palladized iron bimetallic system for the dechlorination of chlorinated organic compounds. 10 figs.

Fernando, Q.; Muftikian, R.; Korte, N.

1998-06-02T23:59:59.000Z

258

Relationship between blood manganese and blood pressure in the Korean general population according to KNHANES 2008  

SciTech Connect

Introduction: We present data on the association of manganese (Mn) level with hypertension in a representative sample of the adult Korean population who participated in the Korean National Health and Nutrition Examination Survey (KNHANES) 2008. Methods: This study was based on the data obtained by KNHANES 2008, which was conducted for three years (2007-2009) using a rolling sampling design involving a complex, stratified, multistage, probability-cluster survey of a representative sample of the noninstitutionalized civilian population of South Korea. Results: Multiple regression analysis after controlling for covariates, including gender, age, regional area, education level, smoking, drinking status, hemoglobin, and serum creatinine, showed that the beta coefficients of log blood Mn were 3.514, 1.878, and 2.517 for diastolic blood pressure, and 3.593, 2.449, and 2.440 for systolic blood pressure in female, male, and all participants, respectively. Multiple regression analysis including three other blood metals, lead, mercury, and cadmium, revealed no significant effects of the three metals on blood pressure and showed no effect on the association between blood Mn and blood pressure. In addition, doubling the blood Mn increased the risk of hypertension 1.828, 1.573, and 1.567 fold in women, men, and all participants, respectively, after adjustment for covariates. The addition of blood lead, mercury, and cadmium as covariates did not affect the association between blood Mn and the prevalence of hypertension. Conclusion: Blood Mn level was associated with an increased risk of hypertension in a representative sample of the Korean adult population. - Highlights: {yields} We showed the association of manganese with hypertension in Korean population. {yields} This study was based on the data obtained by KNHANES 2008. {yields} Blood manganese level was associated with an increased risk of hypertension.

Lee, Byung-Kook [Institute of Environmental and Occupational Medicine, Soonchunhyang University 646 Eupnae-ri, Shinchang-myun, Asan-si, Choongnam 336-745 (Korea, Republic of)] [Institute of Environmental and Occupational Medicine, Soonchunhyang University 646 Eupnae-ri, Shinchang-myun, Asan-si, Choongnam 336-745 (Korea, Republic of); Kim, Yangho, E-mail: yanghokm@nuri.net [Department of Occupational and Environmental Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, 290-3 Cheonha-Dong, Dong-Gu, Ulsan 682-060 (Korea, Republic of)] [Department of Occupational and Environmental Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, 290-3 Cheonha-Dong, Dong-Gu, Ulsan 682-060 (Korea, Republic of)

2011-08-15T23:59:59.000Z

259

Thermal treatment for recovery of manganese and zinc from zinc-carbon and alkaline spent batteries  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer We separated Zn from Mn in zinc-carbon and alkaline batteries after removal of Hg. Black-Right-Pointing-Pointer Almost total removal of Hg is achieved at low temperature in air. Black-Right-Pointing-Pointer Nitrogen atmosphere is needed to reduce zinc and to permit its volatilization. Black-Right-Pointing-Pointer A high grade Zn concentrate was obtained with a high recovery at 1000-1200 Degree-Sign C. Black-Right-Pointing-Pointer The grade of Mn in the residue was enhanced with complete recovery. - Abstract: The aim of this paper is the recovery of manganese and zinc from a mixture of zinc-carbon and alkaline spent batteries, containing 40.9% of Mn and 30.1% of Zn, after preliminary physical treatment followed by removal of mercury. Separation of the metals has been carried out on the basis of their different boiling points, being 357 Degree-Sign C and 906 Degree-Sign C the boiling point of mercury and zinc and 1564 Degree-Sign C the melting point of Mn{sub 2}O{sub 3}. Characterization by chemical analysis, TGA/DTA and X-ray powder diffraction of the mixture has been carried out after comminution sieving and shaking table treatment to remove the anodic collectors and most of chlorides contained in the mixture. The mixture has been roasted at various temperatures and resident times in a flow of air to set the best conditions to remove mercury that were 400 Degree-Sign C and 10 min. After that, the flow of air has been turned into a nitrogen one (inert atmosphere) and the temperatures raised, thus permitting the zinc oxide to be reduced to metallic zinc by the carbon present in the original mixture and recovered after volatilization as a high grade concentrate, while manganese was left in the residue. The recovery and the grade of the two metals, at 1000 Degree-Sign C and 30 min residence time, were 84% and 100% for zinc and 85% and 63% for manganese, respectively. The recovery of zinc increased to 99% with a grade of 97% at 1200 Degree-Sign C and 30 min residence time, while the recovery and grade of manganese were 86% and 87%, respectively, at that temperature. Moreover, the chlorinated compounds that could form by the combustion of the plastics contained in the spent batteries, are destroyed at the temperature required by the process.

Belardi, G. [Institute for Environmental Engineering and Geosciences (CNR) Area della Ricerca CNR, via Salaria km 29,300, Monterotondo, 00016 Rome (Italy); Lavecchia, R.; Medici, F. [Department of Chemical Engineering, Materials and Environment, Sapienza University of Rome, via Eudossiana 84, 00184 Rome (Italy); Piga, L., E-mail: luigi.piga@uniroma1.it [Department of Chemical Engineering, Materials and Environment, Sapienza University of Rome, via Eudossiana 84, 00184 Rome (Italy)

2012-10-15T23:59:59.000Z

260

Manganese-doped indium oxide and its application in organic light-emitting diodes  

SciTech Connect

Thin films of manganese-doped indium oxide (IMO) deposited by electron beam evaporation have been investigated as anodes in organic light-emitting diodes (OLEDs). The IMO films have a high work function of 5.35 eV, a desirable surface morphology with an average roughness of 1.1 nm, a high average optical transmittance of 87.2% in the visible region, and a maximum optical transmittance of 92% at 460 nm. It is demonstrated that an IMO anode can effectively improve hole injection at the anode/organic interface, resulting in OLEDs with an increased electroluminescent efficiency.

Liao Yaqin [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Graduate School of Chinese Academy of Sciences, Beijing 100080 (China); Lu Qipeng; Fan Yi; Liu Xingyuan [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China)

2011-07-11T23:59:59.000Z

Note: This page contains sample records for the topic "iron magnesium manganese" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Manganese-Aluminum-Based Magnets: Nanocrystalline t-MnAI Permanent Magnets  

Science Conference Proceedings (OSTI)

REACT Project: Dartmouth is developing specialized alloys with magnetic properties superior to the rare earths used in today’s best magnets. EVs and renewable power generators typically use rare earths to turn the axles in their electric motors due to the magnetic strength of these minerals. However, rare earths are difficult and expensive to refine. Dartmouth will swap rare earths for a manganese-aluminum alloy that could demonstrate better performance and cost significantly less. The ultimate goal of this project is to develop an easily scalable process that enables the widespread use of low-cost and abundant materials for the magnets used in EVs and renewable power generators.

None

2012-01-01T23:59:59.000Z

262

New Environmentally Friendly Dispersants for High Temperature Invert-Emulsion Drilling Fluids Weighted by Manganese Tetraoxide  

E-Print Network (OSTI)

This thesis provides a detailed evaluation of different environmentally friendly dispersants in invert-emulsion drilling fluids that can be used to drill wells under difficult conditions such as HPHT. The drilling fluid is weighted by manganese tetraoxide (Mn3O4) particles, which have a specific gravity of 4.8 and a mean particle diameter of ca1 micrometers. Manganese tetraoxide has different wetting properties and surface chemistry than other weighting agents. Hence, there is a need to find dispersants for manganese tetraoxide that give reduced sag, reduced rheology, and low fluid-loss at HPHT conditions. This is particularly important for deep wells with narrow operating windows between pore-pressure and fracture pressure gradients. The stricter global environmental regulations mandated the dispersants to be environmentally friendly, e.g. within OCNS group D or E. First, oil compatibility tests and particle settling time experiments were conducted on 31 dispersants. From the experiments, we identified 3 oil-compatible dispersants that gave the longest settling time in base oil and belonged to OCNS group D. We investigated the effectiveness of selected chemicals in dispersing manganese tetraoxide at HPHT conditions. 1.95 and 2.4 S.G. drilling fluid samples were first prepared and tested without any contaminant and then in the presence of rev dust and cement as contaminants. Drilling fluid samples were statically aged at 400 degrees F and 500 psi for 16 hours. Sag and rheological measurements were taken before and after aging to determine the effect of HPHT conditions on fluid properties. Then, HPHT dynamic filtration tests were done at 500 psi differential pressure and 300 degrees F to determine HPHT dynamic fluid-loss. We have found that one of the dispersants (nonionic) gives low rheology and reduced sag before and after static aging. It also gives the lowest fluid-loss of the selected dispersants. For 2.4 S.G. fluid without contaminants, 10-minute gel strength was reduced from 50 to 32 lb/100 ft^2, plastic viscosity from 37 to 25 cp, sag from 0.249 to 0.135 lbm/gal, and fluid-loss was reduced from 44.4 to 39.6 cm^3 with the addition of dispersant. This dispersant prevents agglomeration of particles, thereby reducing fluid rheology, sag, and fluid-loss.

Rehman, Abdul

2011-12-01T23:59:59.000Z

263

Why Sequence Freshwater Iron-Oxidizing Bacteria?  

NLE Websites -- All DOE Office Websites (Extended Search)

Freshwater Iron-Oxidizing Bacteria? Freshwater Iron-Oxidizing Bacteria? The goal of this project is to obtain complete genome sequences for six different freshwater iron (Fe)-oxidizing bacteria (FeOB). Four of these are oxygen-dependent iron-oxidizing β-proteobacteria, and three of these, Sideroxydans lithotrophicus, Gallionella capsiferriformans, and strain TW-2, are capable of chemolithoautotrophic growth (that is, obtaining energy by the oxidation of inorganic compounds) using Fe(II) as sole energy source under microaerobic (low-oxygen) conditions. The fourth organism, Leptothrix cholodnii, is a sheath-forming heterotrophic (i.e., using complex organic compounds for nutrition) organism that oxidizes both Fe(II) and Mn(II) and deposits a ferromanganic coating on its sheath. In addition,

264

BNL Blood Drives: Iron-rich foods  

NLE Websites -- All DOE Office Websites (Extended Search)

BNL Blood Drives: Iron-Rich Foods Blood Drive Home Seafood: Fish (cod, sardines, tuna, clams, oysters, shrimp) Poultry: Chicken, eggs, yolk Lean Red Meats: Beef, lamb, veal, pork,...

265

Solubility of carbon in nanocrystalline ?-iron  

Science Conference Proceedings (OSTI)

A thermodynamic model for nanocrystalline interstitial alloys is presented. The equilibrium solid solubility of carbon in ?-iron is calculated for given grain size. Inside the strained nanograins local variation of the carbon content is predicted. ...

Alexander Kirchner; Bernd Kieback

2012-01-01T23:59:59.000Z

266

Iron and the ecology of marine microbes  

E-Print Network (OSTI)

Iron is a cofactor of a number biochemical reactions that are essential for life. In the marine environment, this micronutrient is a scarce resource that limits processes of global importance such as photosynthesis and ...

Ventouras, Laure-Anne

2013-01-01T23:59:59.000Z

267

Removal of iron from impure graphites  

DOE Green Energy (OSTI)

Iron-impregnated and ash-rich graphites have been purified by leaching with gaseous I/sub 2/ at 900/sup 0/C. With addition of H/sub 2/, the rate of removal of impurity iron can be markedly increased and becomes comparable to that obtained with Cl/sub 2/. I/sub 2/ has an advantage in that it can also volatilize Ca and perhaps Ba and Sr.

Growcock, F.B.; Heiser, J.

1979-01-01T23:59:59.000Z

268

C:\Eco-SSLs\Final Guidance November 2003\Contaminant Specific\Iron\Eco-SSL for Iron.wpd  

NLE Websites -- All DOE Office Websites (Extended Search)

Iron Iron Interim Final OSWER Directive 9285.7-69 U. S. Environmental Protection Agency Office of Solid Waste and Emergency Response 1200 Pennsylvania Avenue, N.W. Washington, DC 20460 November 2003 This page intentionally left blank TABLE OF CONTENTS SUMMARY OF ECO-SSLs FOR IRON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ES - 1 1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 - 1 2.0 IRON GEOCHEMISTRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 - 1 2.1 Weathering Processes Affect on Iron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 - 3 2.2 Soil Conditions Affect on Iron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 - 4 3.0 EFFECTS OF IRON ON PLANTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 - 1 3.1 Essentiality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 - 1 3.2 General Effects

269

Effects of CO{sub 2} and nitrogen fertilization on growth and nutrient content of juvenile ponderosa pine  

DOE Green Energy (OSTI)

This data set presents measured values of plant diameter and height, biomass of plant components, and nutrient (carbon, nitrogen, phosphorus, sulfur, potassium, calcium, magnesium, boron, copper, iron, manganese, and zinc) concentrations from a study of the effects of carbon dioxide and nitrogen fertilization on ponderosa pine (Pinus ponderosa Dougl. ex Laws.) conducted in open-top chambers in Placerville, California, from 1991 through 1996. This data set contains values from 1991 through 1993.

Johnson, D.W. [Desert Research Inst., Reno, NV (United States). Biological Sciences Center]|[Univ. of Nevada, Reno, NV (United States). Coll. of Agriculture; Ball, J.T. [Desert Research Inst., Reno, NV (United States). Biological Sciences Center; Walker, R.F. [Univ. of Nevada, Reno, NV (United States). Coll. of Agriculture; Cushman, R.M. [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center

1998-03-01T23:59:59.000Z

270

An approach to modeling the cost-strength-weight tradeoff in aluminum and magnesium extrusions for automotive applications  

E-Print Network (OSTI)

In light of volatile fuel prices and tightening emissions regulations, automobile manufacturers have been increasingly considering the use of light-weight magnesium in their efforts to improve fuel economy. While mainly ...

Komander, Johann Kasper

2009-01-01T23:59:59.000Z

271

Identifying barriers to the availability and use of Magnesium Sulphate Injection in resource poor countries: A case study in Zambia  

E-Print Network (OSTI)

barriers to the availability and use of Magnesium Sulphateto identify barriers to the availability and use of MgSO4 infacilitators to the availability and use of MgSO4 identified

Ridge, Anna L; Bero, Lisa A; Hill, Suzanne R

2010-01-01T23:59:59.000Z

272

Tensile mechanical properties and strengthening mechanism of hybrid carbon nanotube and silicon carbide nanoparticle-reinforced magnesium alloy composites  

Science Conference Proceedings (OSTI)

AZ91 magnesium alloy hybrid composites reinforced with different hybrid ratios of carbon nanotubes (CNTs) and silicon carbide (SiC) nanoparticulates were fabricated by semisolid stirring assisted ultrasonic cavitation. The results showed that grains ...

Xia Zhou; Depeng Su; Chengwei Wu; Liming Liu

2012-01-01T23:59:59.000Z

273

Aluminum stimulates uptake of non-transferrin bound iron and transferrin bound iron in human glial cells  

SciTech Connect

Aluminum and other trivalent metals were shown to stimulate uptake of transferrin bound iron and nontransferrin bound iron in erytholeukemia and hepatoma cells. Because of the association between aluminum and Alzheimer's Disease, and findings of higher levels of iron in Alzheimer's disease brains, the effects of aluminum on iron homeostasis were examined in a human glial cell line. Aluminum stimulated dose- and time-dependent uptake of nontransferrin bound iron and iron bound to transferrin. A transporter was likely involved in the uptake of nontransferrin iron because uptake reached saturation, was temperature-dependent, and attenuated by inhibitors of protein synthesis. Interestingly, the effects of aluminum were not blocked by inhibitors of RNA synthesis. Aluminum also decreased the amount of iron bound to ferritin though it did not affect levels of divalent metal transporter 1. These results suggest that aluminum disrupts iron homeostasis in Brain by several mechanisms including the transferrin receptor, a nontransferrin iron transporter, and ferritin.

Kim, Yongbae [Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University (United States); Department of Preventive Medicine, Soonchunhyan University, Chunan City (Korea, Republic of) ; Olivi, Luisa [School of Pharmacy, Sahmyook University, Seoul (Korea, Republic of) ; Cheong, Jae Hoon [School of Pharmacy, Sahmyook University, Seoul (Korea, Republic of) ; Maertens, Alex [Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University (United States); Bressler, Joseph P. [Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University (United States) and Kennedy-Krieger Institute, Baltimore, MD 21205 (United States)]. E-mail: Bressler@kennedykrieger.org

2007-05-01T23:59:59.000Z

274

Iron Availability in the Southern Ocean  

NLE Websites -- All DOE Office Websites (Extended Search)

Iron Availability in the Southern Ocean Print Iron Availability in the Southern Ocean Print The Southern Ocean, circling the Earth between Antarctica and the southernmost regions of Africa, South America, and Australia, is notorious for its high-nutrient, low-chlorophyll areas, which are rich in nutrients-but poor in essential iron. Sea life is less abundant in these regions because the growth of phytoplankton-the marine plants that form the base of the food chain-is suppressed. A study by scientists from South Africa's Stellenbosch University, Princeton University, and the Advanced Light Source (ALS) suggests that it is not just a lack of iron, but a lack of iron in an easy-to-use form, that is affecting the ecosystems. The researchers sampled two north-south corridors across the Southern Ocean, traveling an easterly transect between the base of the South African National Antarctic Expeditions (SANAE IV) in Queen Maud Land and Cape Town, and a westerly transect between SANAE IV and South Georgia Island. Along the way they collected particles containing solid iron from a series of ocean systems with different characteristics.

275

Iron Availability in the Southern Ocean  

NLE Websites -- All DOE Office Websites (Extended Search)

Iron Availability in the Southern Ocean Print Iron Availability in the Southern Ocean Print The Southern Ocean, circling the Earth between Antarctica and the southernmost regions of Africa, South America, and Australia, is notorious for its high-nutrient, low-chlorophyll areas, which are rich in nutrients-but poor in essential iron. Sea life is less abundant in these regions because the growth of phytoplankton-the marine plants that form the base of the food chain-is suppressed. A study by scientists from South Africa's Stellenbosch University, Princeton University, and the Advanced Light Source (ALS) suggests that it is not just a lack of iron, but a lack of iron in an easy-to-use form, that is affecting the ecosystems. The researchers sampled two north-south corridors across the Southern Ocean, traveling an easterly transect between the base of the South African National Antarctic Expeditions (SANAE IV) in Queen Maud Land and Cape Town, and a westerly transect between SANAE IV and South Georgia Island. Along the way they collected particles containing solid iron from a series of ocean systems with different characteristics.

276

COPIES: Iron Range Legislative Delegation  

E-Print Network (OSTI)

Dear Legislators: We are pleased to present the annual report on our research regarding the health status of taconite workers and Iron Range community air quality. This report, as in the past, details the progress made by the University of Minnesota School of Public Health and the Natural Resources Research Institute (NRRI) in all research areas, including occupational exposure, mortality and incidence studies, the respiratory health survey of taconite workers and spouses and the environmental study of airborne particles. In addition, this report contains specific information regarding the assessment of mesothelioma as it pertains to exposure to mineral fibers, referred to as elongate mineral particles (EMP). For this report, the EMP measurement is a standard technique that identifies those fibers (EMP) considered long (over 5 microns). Although the research team felt this was the most important exposure to be assessed with the cases of mesothelioma, in the next several months there will be additional analyses that may provide further insight, including exposure to short EMP, silica and respirable dust. A final report is planned for the end of the year when all components are expected to be completed.

Sen Tony Lourey; Rep Tim Mahoney; Rep Sheldon Johnson; Rep David Dill; Rep Mary Murphy; Sen Tom Bakk; Rep John Persell; Rep Tom Anzelc; Sen Tom Saxhaug; Rep Carly Melin; Rep Jason Metsa

2013-01-01T23:59:59.000Z

277

Recycling Other MMCs  

Science Conference Proceedings (OSTI)

...Reinforcement Matrix alloys Boron fiber Aluminum, titanium Silicon carbide fiber Aluminum, titanium, magnesium, copper Graphite Fiber Aluminum, magnesium Aluminum oxide fiber Aluminum, magnesium Tungsten fiber Nickel, cobalt, iron...

278

Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector  

E-Print Network (OSTI)

scrap, pig iron or direct reduced iron using an electric arcsteel, pig iron or direct reduced iron using an electric arcbuilding materials). Direct reduced iron (DRI) is produced

Xu, T.T.

2011-01-01T23:59:59.000Z

279

Sol-gel preparation of lead magnesium niobate (PMN) powders and thin films  

DOE Patents (OSTI)

A method of preparing a lead magnesium niobium oxide (PMN), Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}, precursor solution by a solvent method wherein a liquid solution of a lead-complex PMN precursor is combined with a liquid solution of a niobium-complex PMN precursor, the combined lead- and niobium-complex liquid solutions are reacted with a magnesium-alkyl solution, forming a PMN precursor solution and a lead-based precipitate, and the precipitate is separated from the reacted liquid PMN precursor solution to form a precipitate-free PMN precursor solution. This precursor solution can be processed to form both ferroelectric powders and thin films. 3 figs.

Boyle, T.J.

1999-01-12T23:59:59.000Z

280

Sol-Gel Preparation Of Lead Magnesium Ni Obate (Pmn) Powdersand Thin Films  

DOE Patents (OSTI)

A method of preparing a lead magnesium niobium oxide (PMN), Pb(Mg.sub.1/3 Nb.sub.2/3)O.sub.3, precursor solution by a solvent method wherein a liquid solution of a lead-complex PMN precursor is combined with a liquid solution of a niobium-complex PMN precursor, the combined lead- and niobium-complex liquid solutions are reacted with a magnesium-alkyl solution, forming a PMN precursor solution and a lead-based precipitate, and the precipitate is separated from the reacted liquid PMN precursor solution to form a precipitate-free PMN precursor solution. This precursor solution can be processed to form both ferroelectric powders and thin films.

Boyle, Timothy J. (Albuquerque, NM)

1999-01-12T23:59:59.000Z

Note: This page contains sample records for the topic "iron magnesium manganese" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

SAFETY CONSIDERATIONS FOR HANDLING PLUTONIUM, URANIUM, THORIUM, THE ALKALI METALS, ZIRCONIUM, TITANIUM, MAGNESIUM, AND CALCIUM  

SciTech Connect

BS>This report compiles from various sources safety considerations for work with the special metals plutonium, uranium, thorium, the alkali group, magnesium, titanium, calcium, and zirconium. General criteria to be observed in handling all of these metals and their alloys are listed, as well as characteristics of individual metals with regard to health hazards, pyrophoricity, explosiveness, and other chemical reactions, in both handling and storage. (auth)

Stout, E.L. comp.

1957-09-01T23:59:59.000Z

282

Process for CO.sub.2 capture using a regenerable magnesium hydroxide sorbent  

DOE Patents (OSTI)

A process for CO.sub.2 separation using a regenerable Mg(OH).sub.2 sorbent. The process absorbs CO.sub.2 through the formation of MgCO.sub.3 and releases water product H.sub.2O. The MgCO.sub.3 is partially regenerated through direct contact with steam, which acts to heat the magnesium carbonate to a higher temperature, provide heat duty required to decompose the magnesium carbonate to yield MgO and CO.sub.2, provide an H.sub.2O environment over the magnesium carbonate thereby shifting the equilibrium and increasing the potential for CO.sub.2 desorption, and supply H.sub.2O for rehydroxylation of a portion of the MgO. The mixture is polished in the absence of CO.sub.2 using water product H.sub.2O produced during the CO.sub.2 absorption to maintain sorbent capture capacity. The sorbent now comprised substantially of Mg(OH).sub.2 is then available for further CO.sub.2 absorption duty in a cyclic process.

Siriwardane, Ranjani V; Stevens, Jr., Robert W

2013-06-25T23:59:59.000Z

283

Electron Correlation in Iron-Based Superconductors  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Correlation in Iron-Based Superconductors Print Electron Correlation in Iron-Based Superconductors Print In 2008, the discovery of iron-based superconductors stimulated a worldwide burst of activity, leading to about two preprints per day ever since. With a maximum superconducting transition temperature (so far) of 55 K, it is natural to wonder if studying the new materials will help uncover one of the deepest mysteries in modern physics-the mechanism of superconductivity in the copper-based "high-temperature superconductors." One clue lies in whether the electrons in the new superconductors are as highly correlated as they are in the high-temperature superconductors. A truly international North American/European/Asian collaboration working at the ALS has now reported results from a combination of x-ray absorption spectroscopy, resonant inelastic x-ray scattering, and systematic theoretical simulations of iron-based superconductors. The team was able to settle the correlations debate by showing that electrons in the iron-based families that were studied favor itinerant (delocalized) states with only moderate correlations.

284

Electron Correlation in Iron-Based Superconductors  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Correlation in Iron-Based Superconductors Print Electron Correlation in Iron-Based Superconductors Print In 2008, the discovery of iron-based superconductors stimulated a worldwide burst of activity, leading to about two preprints per day ever since. With a maximum superconducting transition temperature (so far) of 55 K, it is natural to wonder if studying the new materials will help uncover one of the deepest mysteries in modern physics-the mechanism of superconductivity in the copper-based "high-temperature superconductors." One clue lies in whether the electrons in the new superconductors are as highly correlated as they are in the high-temperature superconductors. A truly international North American/European/Asian collaboration working at the ALS has now reported results from a combination of x-ray absorption spectroscopy, resonant inelastic x-ray scattering, and systematic theoretical simulations of iron-based superconductors. The team was able to settle the correlations debate by showing that electrons in the iron-based families that were studied favor itinerant (delocalized) states with only moderate correlations.

285

Electron Correlation in Iron-Based Superconductors  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Correlation in Iron-Based Superconductors Print Electron Correlation in Iron-Based Superconductors Print In 2008, the discovery of iron-based superconductors stimulated a worldwide burst of activity, leading to about two preprints per day ever since. With a maximum superconducting transition temperature (so far) of 55 K, it is natural to wonder if studying the new materials will help uncover one of the deepest mysteries in modern physics-the mechanism of superconductivity in the copper-based "high-temperature superconductors." One clue lies in whether the electrons in the new superconductors are as highly correlated as they are in the high-temperature superconductors. A truly international North American/European/Asian collaboration working at the ALS has now reported results from a combination of x-ray absorption spectroscopy, resonant inelastic x-ray scattering, and systematic theoretical simulations of iron-based superconductors. The team was able to settle the correlations debate by showing that electrons in the iron-based families that were studied favor itinerant (delocalized) states with only moderate correlations.

286

Electron Correlation in Iron-Based Superconductors  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Correlation in Iron-Based Superconductors Print Electron Correlation in Iron-Based Superconductors Print In 2008, the discovery of iron-based superconductors stimulated a worldwide burst of activity, leading to about two preprints per day ever since. With a maximum superconducting transition temperature (so far) of 55 K, it is natural to wonder if studying the new materials will help uncover one of the deepest mysteries in modern physics-the mechanism of superconductivity in the copper-based "high-temperature superconductors." One clue lies in whether the electrons in the new superconductors are as highly correlated as they are in the high-temperature superconductors. A truly international North American/European/Asian collaboration working at the ALS has now reported results from a combination of x-ray absorption spectroscopy, resonant inelastic x-ray scattering, and systematic theoretical simulations of iron-based superconductors. The team was able to settle the correlations debate by showing that electrons in the iron-based families that were studied favor itinerant (delocalized) states with only moderate correlations.

287

Electron Correlation in Iron-Based Superconductors  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Correlation in Iron-Based Superconductors Print Electron Correlation in Iron-Based Superconductors Print In 2008, the discovery of iron-based superconductors stimulated a worldwide burst of activity, leading to about two preprints per day ever since. With a maximum superconducting transition temperature (so far) of 55 K, it is natural to wonder if studying the new materials will help uncover one of the deepest mysteries in modern physics-the mechanism of superconductivity in the copper-based "high-temperature superconductors." One clue lies in whether the electrons in the new superconductors are as highly correlated as they are in the high-temperature superconductors. A truly international North American/European/Asian collaboration working at the ALS has now reported results from a combination of x-ray absorption spectroscopy, resonant inelastic x-ray scattering, and systematic theoretical simulations of iron-based superconductors. The team was able to settle the correlations debate by showing that electrons in the iron-based families that were studied favor itinerant (delocalized) states with only moderate correlations.

288

Carbon Emissions: Iron and Steel Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Iron and Steel Industry Iron and Steel Industry Carbon Emissions in the Iron and Steel Industry The Industry at a Glance, 1994 (SIC Code: 3312) Total Energy-Related Emissions: 39.9 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 10.7% -- Nonfuel Emissions: 22.2 MMTC Total First Use of Energy: 1,649 trillion Btu -- Pct. of All Manufacturers: 7.6% Nonfuel Use of Energy: 886 trillion Btu (53.7%) -- Coal: 858 trillion Btu (used to make coke) Carbon Intensity: 24.19 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 39.9 Coal 22.7

289

Attrition and carbon formation on iron catalysts  

DOE Green Energy (OSTI)

A serious engineering problem that needs to be addressed in the scale-up of slurry-phase, Fischer-Tropsch reactors is attrition of the precipitated iron catalyst. Attrition, which can break down the catalyst into particles too small to filter, results from both mechanical and chemical forces. This study examines the chemical causes of attrition in iron catalysts. A bench-scale, slurry-phase CSTR is used to simulate operating conditions that lead to attrition of the catalyst. The average particle size and size distribution of the catalyst samples are used to determine the effect of slurry temperature, reducing gas, gas flow rate and time upon attrition of the catalyst. Carbon deposition, a possible contributing factor to attrition, has been examined using gravimetric analysis and TEM. Conditions affecting the rate of carbon deposition have been compared to those leading to attrition of the precipitated iron catalyst.

Kohler, S.D.; Harrington, M.S.; Jackson, N.B. [Sandia National Labs., Albuquerque, NM (United States); Shroff, M.; Kalakkad, D.S.; Datye, A.K. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering

1994-08-01T23:59:59.000Z

290

Understanding the Chemistry of the Actinides in HL Waste Tank Systems: Actinide Speciation in Oxalic Acid Solutions in the Presence of Significant Quantities of Aluminum, Iron, and Manganese  

SciTech Connect

The overall goal of this research plan is to provide a thermodynamic basis for describing actinide speciation over a range of tank-like conditions, including elevated temperature, elevated OH- concentrations, and the presence of various organic ligands. With support from DOE?s EMSP program, we have made significant progress towards measuring thermodynamic parameters for actinide complexation as a function of temperature. We have used the needs of the ESP modelers to guide our work to date, and we have made important progress defining the effect of temperature for actinide complexation by organic, and for hydrolysis of the hexa- and pentvalent oxidation states.

Clark, Sue

2006-07-30T23:59:59.000Z

291

Marine Diatoms Survive Iron Droughts in the Ocean by Storing Iron in  

NLE Websites -- All DOE Office Websites (Extended Search)

Marine Diatoms Survive Iron Droughts in Marine Diatoms Survive Iron Droughts in the Ocean by Storing Iron in Ferritin Almost all organisms require iron as a co-factor in numerous metalloproteins and enzymes. In particular, phytoplankton, which are aquatic, free-drifting, single-celled organisms that can harvest energy from the sun, have an elevated demand for iron due to the large role it plays in their photosynthetic machinery. In 30-40% of the world's oceans iron concentrations are low enough to limit the growth of phytoplankton (Martin and Fitzwater 1988; Moore et al. 2002). New sources of iron to these regions are sporadic and typically include atmospheric dust deposition or weak upwelling of deep waters. figure 1 Figure 1: A light micrograph of the marine pennate diatom Pseudo-nitzschia multiseries. Shown are one whole cell and two partial cells connected at the cell tips in a chain. The brown components of the cells are the chloroplasts. Scale bar = 5 mm. (Image courtesy of K. Holtermann)

292

Importance of Iron Mineralogy to Aerosol Solubility: Potential Effects of  

NLE Websites -- All DOE Office Websites (Extended Search)

Importance of Iron Mineralogy to Importance of Iron Mineralogy to Aerosol Solubility: Potential Effects of Aerosol Source on Ocean Photosynthesis figure 1 Figure 1. Dust storm blowing glacial dusts from the Copper River Basin of southeast Alaska into the North Pacific Ocean, which depends on this and other external iron sources to support its biological communities. (Image: NASA MODIS satellite image, Nov. 1, 2006. http://earthobservatory.nasa.gov/IOTD/view.php?id=7094) Iron is one of the most important elements to life. Despite its paramount importance and relative abundance, dissolved iron concentrations are often very low, in part due to the formation of very stable iron minerals in most oxidizing environments. Since soluble iron is available to living organisms, iron deficiencies are widespread, and the factors that influence

293

Candidate anode materials for iron production by molten oxide electrolysis  

E-Print Network (OSTI)

Molten oxide electrolysis (MOE) has been identified by the American Iron and Steel Institute (AISI) as one of four possible breakthrough technologies to alleviate the environmental impact of iron and steel production. This ...

Paramore, James D

2010-01-01T23:59:59.000Z

294

Lab researchers achieve record pressure for solid iron  

NLE Websites -- All DOE Office Websites (Extended Search)

for solid iron. Lab researchers achieve record pressure for solid iron Breanna Bishop, LLNL, (925) 423-9802, bishop33@llnl.gov High Resolution Image Illustration of the...

295

Authority, polity, and tenuous elites in Iron Age Edom (Jordan)  

E-Print Network (OSTI)

the Iron Age in southern Jordan (Shef?eld), 47–54. knauf, e.at Tawilan in southern Jordan (Oxford). bienkowski, p.the Iron Age in southern Jordan: A framework. In Bienkowski,

Porter, Benjamin W.

2004-01-01T23:59:59.000Z

296

Electrochemical impedance spectroscopy studies of lithium diffusion in doped manganese oxide  

DOE Green Energy (OSTI)

Cathode performance is critical to lithium ion rechargeable battery performance; effects of doping lithium manganese oxide cathode materials on cathode performance are being investigated. In this paper, Li diffusion in Al-doped LiMn{sub 2}O{sub 4} was studied and found to be controlled by the quantity of Al dopant. Electrochemical cycling was conducted at 0.5mA/cm{sub 2}; electrochemical impedance spectra were taken at open circuit potential, with impedance being measured at 65 kHz-0.01 Hz. As the Al dopant level was increased, the Li diffusion rate decreased; this was attributed to the decreased lattice parameter of the doped oxide.

Johnson, B.J.; Doughty, D.H.; Voigt, J.A.; Boyle, T.J.

1996-06-01T23:59:59.000Z

297

Nano-sized Lithium Manganese Oxide Dispersed on Carbon Nanotubes for Energy Storage Applications  

Science Conference Proceedings (OSTI)

Nano-sized lithium manganese oxide (LMO) dispersed on carbon nanotubes (CNT) has been synthesized successfully via a microwave-assisted hydrothermal reaction at 200 C for 30 min using MnO{sub 2}-coated CNT and an aqueous LiOH solution. The initial specific capacity is 99.4 mAh/g at a 1.6 C-rate, and is maintained at 99.1 mAh/g even at a 16 C-rate. The initial specific capacity is also maintained up to the 50th cycle to give 97% capacity retention. The LMO/CNT nanocomposite shows excellent power performance and good structural reversibility as an electrode material in energy storage systems, such as lithium-ion batteries and electrochemical capacitors. This synthetic strategy opens a new avenue for the effective and facile synthesis of lithium transition metal oxide/CNT nanocomposite.

Bak, S.B.

2009-08-01T23:59:59.000Z

298

Lithium Iron Phosphate Composites for Lithium Batteries | Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium Iron Phosphate Composites for Lithium Batteries Technology available for licensing: Inexpensive, electrochemically active phosphate compounds with high functionality for...

299

Iron Catalysis in Oxidations by Ozone - Energy Innovation Portal  

Wind Energy; Partners (27) Visual Patent Search; Success Stories; News; Events; Industrial Technologies Iron Catalysis in Oxidations by Ozone Ames ...

300

Iron 'Veins' Are Secret of Promising New Hydrogen Storage ...  

Science Conference Proceedings (OSTI)

Iron 'Veins' Are Secret of Promising New Hydrogen Storage Material. ... International Journal of Hydrogen Energy, 36 (2011), pp. ...

2012-10-18T23:59:59.000Z

Note: This page contains sample records for the topic "iron magnesium manganese" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Investigation of the release of Si from SiO{sub 2} during the formation of manganese/ruthenium barrier layers  

SciTech Connect

The thermodynamic and structural stability of ruthenium-manganese diffusion barriers on SiO{sub 2} is assessed. A {approx}2 nm film composed of partially oxidized manganese (MnO{sub x} where x < 1) was deposited on a 3 nm thick Ru film and the Mn-MnO{sub x}/Ru/SiO{sub 2} structure was subsequently thermally annealed. X-ray photoelectron spectroscopy and secondary ion mass spectroscopy studies suggest the release and upward diffusion of Si from the dielectric substrate as a result of manganese-silicate formation at the Ru/SiO{sub 2} interface. The migration of Si up through the Ru film results in further manganese-silicate formation upon its interaction with the Mn-MnO{sub x} deposited layer.

McCoy, A. P.; Casey, P.; Bogan, J.; Byrne, C.; Hughes, G. [School of Physical Sciences, Dublin City University, Dublin 9 (Ireland)] [School of Physical Sciences, Dublin City University, Dublin 9 (Ireland)

2013-05-20T23:59:59.000Z

302

Iron distribution and phytoplankton iron limitation in the southern California Current System  

E-Print Network (OSTI)

chl L -1 ) in the southern offshore region. 1.3. Literaturedissolved iron concentrations at an offshore station (~700 km offshore San Diego, CA, July 2007, 29° 51’ N, 123 °

King, Andrew Luke

2008-01-01T23:59:59.000Z

303

Thermodynamic Analyses of Iron Oxides Redox Reactions  

Science Conference Proceedings (OSTI)

To clarify such confusions, the elementary thermodynamic data of various iron ... and water vapor are used to calculate the changes of thermodynamic quantities such as .... Heat Transfer Characteristic in a Slag Heat Recovery Chamber ... Numerical Simulation of Electro-magnetic Flow Control Phenomenon in a Tundish.

304

Tribology and Tool Wear of Hot Dip Galvanized Zinc Magnesium Alloys on Cold Rolled Steel Sheets  

SciTech Connect

Recently zinc based coatings on cold rolled steel with improved functionality in terms of forming and/or corrosion behaviour have been intensively investigated in the steel industry. One of the most promising products are zinc magnesium alloys produced in hot dip galvanizing process. These coatings were already introduced in construction industry a few years ago. With some modifications the improved properties of the coating are also interesting for automotive industry. In the present work the tribological potential of hot dip galvanized zinc magnesium coatings (HDG/ZM) produced at an industrial line under regular production, was studied in terms of sliding properties, adhesive and abrasive tool wear.First a short introduction into surface morphology of HDG/ZM will be given. For the tribological characterization of the material, which is the main topic of the contribution, different tests were performed on hot dip galvanised zinc magnesium material and results were compared with classic hot dip galvanized zinc coating (HDG/Z). The investigations are mainly based on the strip draw test which allows the determination of the friction coefficient directly by using a constant contact pressure. Deep drawing property was tested by forming model cups. The abrasive tool wear was tested using a standard test for material used in automotive industry. The adhesive tool wear was investigated by characterizing the coating material transferred to the tool in the strip draw test.All performed tests show an improved drawability of HDG/ZM compared to classical HDG/Z reference material. However the most promising difference between HDG/ZM and HDG/Z is that galling was found to be less for HDG/ZM than for HDG/Z. Therefore HDG/ZM is an interesting system not only with respect to corrosion protection but also in terms of tribology and provides clear advantages in formability.

Raab, A. E.; Berger, E.; Freudenthaler, J.; Leomann, F.; Walch, C. [Research and Development, Forming Technology voestalpine Stahl GmbH, Voest-Alpine Strasse 3, 4031 Linz (Austria)

2011-05-04T23:59:59.000Z

305

MAGNESIUM OXIDE AN ENGINEERED BARRIER 2009 EPA WIPP RECERTIFICATION FACT SHEET United States Environmental Protection Agency | Office of Air and Radiation (6608J) | June 2009  

E-Print Network (OSTI)

MAGNESIUM OXIDE ­ AN ENGINEERED BARRIER 2009 EPA WIPP RECERTIFICATION FACT SHEET United States Environmental Protection Agency | Office of Air and Radiation (6608J) | June 2009 http://www.epa.gov/radiation/wipp/index.html MAGNESIUM OXIDE ­ AN ENGINEERED BARRIER Why is MgO Used At WIPP? The U.S. Department of Energy (DOE

306

Conditions for making direct reduced iron, transition direct reduced iron and pig iron nuggets in a laboratory furnace - Temperature-time transformations  

Science Conference Proceedings (OSTI)

The pig iron nugget process is gaining in importance as an alternative to the traditional blast furnace. Throughout the process, self-reducing-fluxing dried greenballs composed of iron ore concentrate, reducing-carburizing agent (coal), flux (limestone) and binder (bentonite) are heat-treated. During the heat treatment, dried greenballs are first transformed into direct reduced iron (DRI), then to transition direct reduced iron (TDRI) and finally to pig iron nuggets. The furnace temperature and/or residence time and the corresponding levels of carburization, reduction and metallization dictate these transformations. This study involved the determination of threshold furnace temperatures and residence times for completion of all of the transformation reactions and pig iron nugget production. The experiments involved the heat treatment of self-reducing-fluxing dried greenballs at various furnace temperatures and residence times. The products of these heat treatments were identified by utilizing optical microscopy, apparent density and microhardness measurements.

Anameric, B.; Kawatra, S.K. [Michigan Technological University, Houghton, MI (United States). Dept. of Chemical Engineering

2007-02-15T23:59:59.000Z

307

Synthesis and characterization of AlPO{sub 4}-36 and MAPO-36 with different magnesium content  

Science Conference Proceedings (OSTI)

The objective of this work was to perform a systematic study regarding the effect of different synthesis parameters on the crystallization of AlPO{sub 4}-36 and MAPO-36 (aluminophosphate molecular sieve type 36, ATS, structure). MAPO-36 samples were synthesized from gels containing different magnesium contents in order to obtain catalysts with different degrees of acidity. Under the synthesis conditions employed in this work, the formation of AlPO{sub 4}-36 and MAPO-36 increased when the reaction mixture was aged at room temperature; however, small amounts of AlPO{sub 4}-5 always crystallize parallel to the ATS materials. The presence of magnesium in the reaction mixture can also favor the formation of the ATS structure; nevertheless, the synthesis of pure MAPO-36 from reaction mixtures having very low magnesium content was not possible under several conditions. Pseudoboehmite was a better aluminum source than aluminum isopropoxide for the formation of MAPO-36. A practically pure ATS structure was obtained from reaction mixtures containing molar fractions of Mg between 0.033 and 0.133. For higher magnesium contents, traces of another unidentified phase were detected. Energy-dispersive spectrometry analysis indicates a uniform chemical composition of the MAPO-36 particles, and Scanning electron microscopy shows that the ATS samples have a needlelike morphology. Thermogravimetric analysis of ATS samples reveals that the weight loss corresponding to the decomposition of protonated amine is linearly correlated with magnesium content in the solid up to 0.8 mmol of magnesium per gram of solid.

Machado, M.S.; Cardoso, D.; Perez-Pariente, J.; Sastre, E.

1999-11-01T23:59:59.000Z

308

Production of Boron Containing Iron-Based Alloys by Metallothermic ...  

Science Conference Proceedings (OSTI)

... studies were simulated by using FactSage 6.2 Thermochemical software in order to ... Co-Gasification Behavior of Metallurgical Coke with High and Low Reactivity ... Deformation Simulation of Copper Plates of Slab Continuous Casting Mold ... of Low-grade Manganese Oxide Ores Using Biomass Charcoal as Reductant.

309

Friction Stir Lap Welding of Magnesium Alloy to Steel: A Preliminary Investigation  

Science Conference Proceedings (OSTI)

An initial study was made to evaluate the feasibility of joining Magnesium alloy AZ31 sheet to galvanized steel sheet in lap configuration using friction stir welding (FSW). Two different automotive sheet steels were used for comparative evaluation of the dissimilar joining potential; a 0.8mm thick, electro galvanized (EG) mild steel, and a 1.5mm thick hot dipped galvanized (HDG) high-strength, low-alloy steel (HSLA). These steels were joined to 2.33mm thick AZ31B magnesium sheet. A single FSW tool design was used for both dissimilar welds, and process parameters were kept the same. Average peak load for the AZ31-1.5 mm steel weld joint in lap shear mode was found to be 6.3 ± 1.0 kN. For the AZ31-0.8 mm steel weld, joint strength was 5.1 ± 1.5 kN. Microstructural investigation indicates melting of the Zn coating at the interface and subsequent alloying with the Mg sheet resulting in formation of solidified Zn-Mg alloy layer at AZ31/steel interface.

Jana, Saumyadeep; Hovanski, Yuri; Grant, Glenn J.

2010-12-01T23:59:59.000Z

310

The Experience and Limitations of using Manganese Alkaline Primary Cells in a large Operational AUV  

E-Print Network (OSTI)

shall have sockets and spigots with push-in type integral rubber ring joints. Bends shall be uPVC and all other fittings shall be cast iron, all with similar push-in type joints. Copper pipes Pipes shall measured): 4 203 x 203 x 46Kg/m H-section beams with and including connector plates, etc. m 12 5 M16 x 190

Griffiths, Gwyn

311

Lithium-aluminum-iron electrode composition  

DOE Patents (OSTI)

A negative electrode composition is presented for use in a secondary electrochemical cell. The cell also includes an electrolyte with lithium ions such as a molten salt of alkali metal halides or alkaline earth metal halides that can be used in high-temperature cells. The cell's positive electrode contains a a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent in an alloy of aluminum-iron. Various binary and ternary intermetallic phases of lithium, aluminum and iron are formed. The lithium within the intermetallic phase of Al.sub.5 Fe.sub.2 exhibits increased activity over that of lithium within a lithium-aluminum alloy to provide an increased cell potential of up to about 0.25 volt.

Kaun, Thomas D. (Mokena, IL)

1979-01-01T23:59:59.000Z

312

Iron-sulfide redox flow batteries  

Science Conference Proceedings (OSTI)

Iron-sulfide redox flow battery (RFB) systems can be advantageous for energy storage, particularly when the electrolytes have pH values greater than 6. Such systems can exhibit excellent energy conversion efficiency and stability and can utilize low-cost materials that are relatively safer and more environmentally friendly. One example of an iron-sulfide RFB is characterized by a positive electrolyte that comprises Fe(III) and/or Fe(II) in a positive electrolyte supporting solution, a negative electrolyte that comprises S.sup.2- and/or S in a negative electrolyte supporting solution, and a membrane, or a separator, that separates the positive electrolyte and electrode from the negative electrolyte and electrode.

Xia, Guan-Guang; Yang, Zhenguo; Li, Liyu; Kim, Soowhan; Liu, Jun; Graff, Gordon L

2013-12-17T23:59:59.000Z

313

Magnetism and Superconductivity in Iron Pnictides  

Science Conference Proceedings (OSTI)

The discovery of high temperature superconductivity in iron pnictides and chalcogenides has resulted in surprising new insights into high temperature superconductivity and its relationship with magnetism. Here we provide an overview of some of what is known about these materials and in particular about the interplay of magnetism and superconductivity in them. Similarities and contrasts with cuprate superconductors are emphasized and the superconducting pairing is discussed within the framework of spin fluctuation induced pairing.

Singh, David J [ORNL

2012-01-01T23:59:59.000Z

314

Thin Wall Cast Iron: Phase II  

DOE Green Energy (OSTI)

The development of thin-wall technology allows the designers of energy consuming equipment to select the most appropriate material based on cost/material properties considerations, and not solely on density. The technology developed in this research project will permit the designers working for the automotive industry to make a better informed choice between competing materials and thin wall cast iron, thus decreasing the overall cost of the automobile.

Doru M. Stefanescu

2005-07-21T23:59:59.000Z

315

Seal welded cast iron nuclear waste container  

SciTech Connect

This invention identifies methods and articles designed to circumvent metallurgical problems associated with hermetically closing an all cast iron nuclear waste package by welding. It involves welding nickel-carbon alloy inserts which are bonded to the mating plug and main body components of the package. The welding inserts might be bonded in place during casting of the package components. When the waste package closure weld is made, the most severe thermal effects of the process are restricted to the nickel-carbon insert material which is far better able to accommodate them than is cast iron. Use of nickel-carbon weld inserts should eliminate any need for pre-weld and post-weld heat treatments which are a problem to apply to nuclear waste packages. Although the waste package closure weld approach described results in a dissimilar metal combination, the relative surface area of nickel-to-iron, their electrochemical relationship, and the presence of graphite in both materials will act to prevent any galvanic corrosion problem.

Filippi, Arthur M. (Pittsburgh, PA); Sprecace, Richard P. (Murrysville, PA)

1987-01-01T23:59:59.000Z

316

THE EFFECT OF SMECTITE ON THE CORROSION OF IRON METAL  

SciTech Connect

The combination of zero-valent iron and a clay-type amendment is often observed to have a synergistic effect on the rate of reduction reactions. In this paper, electrochemical techniques are used to determine the mechanism of interaction between the iron and smectite clay minerals. Iron electrodes coated with an evaporated smectite suspension (clay-modified iron electrodes, CMIEs) were prepared using five different smectites: SAz-1, SWa-1, STx-1, SWy-1, and SHCa-1. All the smectites were exchanged with Na+ and one sample of SWy-1 was also exchanged with Mg2+. Potentiodynamic potential scans and cyclic voltammograms were taken using the CMIEs and uncoated but passivated iron electrodes. These electrochemical experiments, along with measurements of the amount of Fe2+ and Fe3+ sorbed in the smectite coating, suggested that the smectite removed the passive layer of the underlying iron electrode during the evaporation process. Cyclic voltammograms taken after the CMIEs were biased at the active-passive transition potential for varying amounts of time suggested that the smectite limited growth of a passive layer, preventing passivation. These results are attributed to the Broensted acidity of the smectite as well as to its ability to sorb iron cations. Oxides that did form on the surface of the iron in the presence of the smectite when it was biased anodically seemed to be different than those that form on the surface of an uncoated iron electrode under otherwise similar conditions; this difference suggested that the smectite reacted with the Fe2+ formed from the oxidation of the underlying iron. No significant correlation could be found between the ability of the smectite to remove the iron passive film and the smectite type. The results have implications for the mixing of sediments and iron particles in permeable reactive barriers, underground storage of radioactive waste in steel canisters, and the use of smectite supports in preventing aggregation of nano-sized zero-valent iron.

Balko, Barbara A.; Bosse, Stephanie A.; Cade, Anne E.; Jones-Landry, Elise F.; Amonette, James E.; Daschbach, John L.

2012-04-24T23:59:59.000Z

317

Magnesium (Mg)  

Science Conference Proceedings (OSTI)

...J.L. Bernard, R. Caillat, and R. Darras, Progress in Nuclear Energy, Metallurgy and Fuels, Vol 2, Pergamon

318

The optical properties of magnesium oxide containing transition metal ions and defects produced by fast neutron irradiation  

Science Conference Proceedings (OSTI)

The photoluminescence (PL), its excitation (PLE) and optical absorption of MgO crystals containing transition metal ions and defects produced by fast neutron irradiation fluence up to 1020cm-2 (E>0.1 MeV) are investigated. Three ... Keywords: absorption, luminescence spectra, magnesium oxide, radiation defect, transition metal ions

Vera Skvortsova; Laima Trinkler

2010-11-01T23:59:59.000Z

319

Density Functional Theory Simulations Predict New Materials for Magnesium-Ion Batteries (Fact Sheet), NREL Highlights, Science  

SciTech Connect

Multivalence is identified in the light element, B, through structure morphology. Boron sheets exhibit highly versatile valence, and the layered boron materials may hold the promise of a high-energy-density magnesium-ion battery. Practically, boron is superior to previously known multivalence materials, especially transition metal compounds, which are heavy, expensive, and often not benign. Based on density functional theory simulations, researchers at the National Renewable Energy Laboratory (NREL) have predicted a series of stable magnesium borides, MgB{sub x}, with a broad range of stoichiometries, 2 < x < 16, by removing magnesium atoms from MgB{sub 2}. The layered boron structures are preserved through an in-plane topological transformation between the hexagonal lattice domains and the triangular domains. The process can be reversibly switched as the charge transfer changes with Mg insertion/extraction. The mechanism of such a charge-driven transformation originates from the versatile valence state of boron in its planar form. The discovery of these new physical phenomena suggests the design of a high-capacity magnesium-boron battery with theoretical energy density 876 mAh/g and 1550 Wh/L.

2011-10-01T23:59:59.000Z

320

Solar-thermal Water Splitting Using the Sodium Manganese Oxide Process & Preliminary H2A Analysis  

DOE Green Energy (OSTI)

There are three primary reactions in the sodium manganese oxide high temperature water splitting cycle. In the first reaction, Mn2O3 is decomposed to MnO at 1,500°C and 50 psig. This reaction occurs in a high temperature solar reactor and has a heat of reaction of 173,212 J/mol. Hydrogen is produced in the next step of this cycle. This step occurs at 700°C and 1 atm in the presence of sodium hydroxide. Finally, water is added in the hydrolysis step, which removes NaOH and regenerates the original reactant, Mn2O3. The high temperature solar�driven step for decomposing Mn2O3 to MnO can be carried out to high conversion without major complication in an inert environment. The second step to produce H2 in the presence of sodium hydroxide is also straightforward and can be completed. The third step, the low temperature step to recover the sodium hydroxide is the most difficult. The amount of energy required to essentially distill water to recover sodium hydroxide is prohibitive and too costly. Methods must be found for lower cost recovery. This report provides information on the use of ZnO as an additive to improve the recovery of sodium hydroxide.

Todd M. Francis, Paul R. Lichty, Christopher Perkins, Melinda Tucker, Peter B. Kreider, Hans H. Funke, Allan Lewandowski, and Alan W. Weimer

2012-10-24T23:59:59.000Z

Note: This page contains sample records for the topic "iron magnesium manganese" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Lithium/Manganese Dioxide (Li/MnO(2)) Battery Performance Evaluation: Final Report  

DOE Green Energy (OSTI)

In February 1997, under the auspices of the Product Realization Program, an initiative to develop performance models for lithium/manganese dioxide-based batteries began. As a part of this initiative, the performance characteristics of the cells under a variety of conditions were determined, both for model development and for model validation. As a direct result of this work, it became apparent that possible Defense Program (DP) uses for batteries based on this cell chemistry existed. A larger effort aimed at mapping the performance envelope of this chemistry was initiated in order to assess the practicality of this cell chemistry, not only for DP applications, but also for other uses. The work performed included an evaluation of the cell performance as a function of a number of variables, including cell size, manufacturer, current, pulse loads, constant current loads, safety, etc. In addition, the development of new evaluation techniques that would apply to any battery system, such as those related to reliability assessments began. This report describes the results of these evaluations.

Ingersoll, D.; Clark, N.H.

1999-04-01T23:59:59.000Z

322

Layered manganese oxide intergrowth electrodes for rechargeable lithium batteries: Part 1-substitution with Co or Ni  

DOE Green Energy (OSTI)

Lithium manganese oxides substituted with nickel or cobalt were characterized electrochemically in lithium cell configurations. The compounds studied were either single-phase layered structures with either primarily O2 or O3 stacking arrangements, or O2/O3 intergrowths, prepared from P2, P3 and P2/P3 sodium-containing precursors, respectively. The stacking arrangements are extremely sensitive to the Na/T. M. (T. M. = transition metal) ratios and the level of substitution. Phase diagrams showing the stability regions of the various arrangements for the Na-Ni-Mn-O system are presented. A possible correlation between vacancies and electrochemical performance is suggested. For high levels of substitution with Ni, fewer defects are possible for materials containing more O3 component and higher discharge capacities can be achieved, but spinel conversion upon cycling also occurs more rapidly as the O3 content increases. Intergrowths show intermediate behavior and represent a potential route towards designing stable, high capacity electrodes.

Dolle, Mickael; Patoux, Sebastien; Doeff, Marca M.

2004-09-08T23:59:59.000Z

323

Iron phosphate compositions for containment of hazardous metal waste  

DOE Patents (OSTI)

An improved iron phosphate waste form for the vitrification, containment and long-term disposition of hazardous metal waste such as radioactive nuclear waste is provided. The waste form comprises a rigid iron phosphate matrix resulting from the cooling of a melt formed by heating a batch mixture comprising the metal waste and a matrix-forming component. The waste form comprises from about 30 to about 70 weight percent P{sub 2}O{sub 5} and from about 25 to about 50 weight percent iron oxide and has metals present in the metal waste chemically dissolved therein. The concentration of iron oxide in the waste form along with a high proportion of the iron in the waste form being present as Fe{sup 3+} provide a waste form exhibiting improved chemical resistance to corrosive attack. A method for preparing the improved iron phosphate waste forms is also provided. 21 figs.

Day, D.E.

1998-05-12T23:59:59.000Z

324

Iron Corrosion Observations: Pu(VI)-Fe Reduction Studies  

Science Conference Proceedings (OSTI)

Iron and Pu Reduction: (1) Very different appearances in iron reaction products were noted depending on pH, brine and initial iron phase; (2) Plutonium was associated with the Fe phases; (3) Green rust was often noted at the higher pH; (4) XANES established the green rust to be an Fe2/3 phase with a bromide center; and (5) This green rust phase was linked to Pu as Pu(IV).

Reed, Donald T. [Los Alamos National Laboratory; Swanson, Juliet S. [Los Alamos National Laboratory; Richmann, Michael K. [Los Alamos National Laboratory; Lucchini, Jean-Francois [Los Alamos National Laboratory; Borkowski, Marian [Los Alamos National Laboratory

2012-09-11T23:59:59.000Z

325

MATHEMATICAL MODELING OF THE LITHIUM-ALUMINUM, IRON SULFIDE BATTERY  

E-Print Network (OSTI)

and J. Newman, Proc. Syrup. Battery Design and Optimization,123, 1364 (1976). Symp, Battery Design and Optimization, S.~ALUMINUM, IRON SULFIDE BATTERY Contents ACKNOWLEDGEMENTS

Pollard, Richard

2012-01-01T23:59:59.000Z

326

Regenerable Mixed Copper-Iron-Inert Support Oxygen ...  

Regenerable Mixed Copper-Iron-Inert Support Oxygen Carriers for Solid Fuel Chemical Looping Combustion Process Contact NETL Technology Transfer Group

327

Mathematical Modeling for Side-Blow Combustion Region in Iron ...  

Science Conference Proceedings (OSTI)

Presentation Title, Mathematical Modeling for Side-Blow Combustion Region in Iron Bath Reactor with H2-C Mixture Reduction. Author(s), Bo Zhang, Hong Xin.

328

Low Resistivity Contact to Iron-Pnicitide Superconductors ...  

Iron-pnictide based superconductors have a number of superior properties as compared to other known high temperature ... Geothermal; Hydrogen and Fuel ...

329

Strengthening Sintering of Refractory Iron Ore with Biomass Fuel  

Science Conference Proceedings (OSTI)

Presentation Title, Strengthening Sintering of Refractory Iron Ore with Biomass Fuel. Author(s), Xiaohui Fan, Zhiyun Ji, Min Gan, Xuling Chen, Wenqi Li. On-Site

330

Investigation on Modified Humic Substances Based Binders for Iron ...  

Science Conference Proceedings (OSTI)

Presentation Title, Investigation on Modified Humic Substances Based Binders for Iron ... An Electron Microscopy Study of Nanoscale Surface and Sub-Surface ...

331

Unusual 'Collapsing' Iron Superconductor Sets Record for Its ...  

Science Conference Proceedings (OSTI)

... superconductor that operates at the highest known temperature for a material in its class.* The discovery inches iron-based superconductors— ...

2012-02-07T23:59:59.000Z

332

The Investigation of Sponge Iron Production Parameters by Using ...  

Science Conference Proceedings (OSTI)

May 1, 2007 ... In the present work, the possibilities of coal-based sponge iron production for industrial applications by using domestic lignite coal were ...

333

Coal-based Direct Reduction of Iron Concentrate Pellets by ...  

Science Conference Proceedings (OSTI)

Presentation Title, Coal-based Direct Reduction of Iron Concentrate Pellets by Microwave Heating. Author(s), Wang Xia, Huang Zhucheng. On-Site Speaker ...

334

Spark Plasma Sintering of Iron and Titanium Powders by ...  

Science Conference Proceedings (OSTI)

Mixtures of titanium and iron powders were activated in kerosene by high-voltage electrical discharges with different electrical discharge numbers.

335

Recent Progress in Molten Oxide Electrolysis for Iron Production  

Science Conference Proceedings (OSTI)

Presentation Title, Recent Progress in Molten Oxide Electrolysis for Iron Production ... Concentrated Solar Power for Producing Liquid Fuels from CO2 and H2O.

336

Iron active electrode and method of making same  

DOE Green Energy (OSTI)

An iron active electrode and method of preparing same in which iron sulfate is calcined in an oxidizing atmosphere at a temperature in the range of from about 600/sup 0/C to about 850/sup 0/C for a time sufficient to produce an iron oxide with a trace amount of sulfate are described. The calcined material is loaded into an electrically conductive support and then heated in a reducing atmosphere at an elevated temperature to produce activated iron having a trace amount of sulfide which is formed into an electrode plate.

Jackovitz, J.F.; Seidel, J.; Pantier, E.A.

1981-04-16T23:59:59.000Z

337

Materials Sustainability: Digital Resource Center - Iron and Steel ...  

Science Conference Proceedings (OSTI)

Jul 3, 2008 ... ABSTRACT: Consumption of iron and steel scrap and the health of the scrap industry depend directly on the health of the steelmaking industry.

338

PRODUCTION OF IRON FROM METALLURGICAL WASTE - Energy Innovation Portal  

Building Energy Efficiency ... Solar Thermal; Startup ... heating the agglomerates to a higher temperature above the melting point of iron to form nodules of metallic ...

339

New Iron-based Superconductors Reinforce Link to ...  

Science Conference Proceedings (OSTI)

New Iron-based and Copper-Oxide High-Temperature Superconductors Share Key Magnetic Properties. For Immediate Release: May 28, 2008. ...

2011-05-04T23:59:59.000Z

340

Vitrification of DOE Problematic Wastes Using Iron Phosphate Glasses  

Science Conference Proceedings (OSTI)

Abstract Scope, This work is to formulate and optimize iron phosphate glass compositions which are suitable for vitrifying several specified Hanford HLW and  ...

Note: This page contains sample records for the topic "iron magnesium manganese" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Effect of the Raw Material Characteristic of Iron Concentrates on ...  

Science Conference Proceedings (OSTI)

It has important instructing function for China steel mills to import and use iron ... Numerical Simulation of Electromagnetic Fields in Microwave Gas Heating ...

342

Niobium Alloying in Grey Cast Iron for Vehicle Brake Discs  

Science Conference Proceedings (OSTI)

Presentation Title, Niobium Alloying in Grey Cast Iron for Vehicle Brake Discs. Author(s) ... Microtexture Analysis of a Hot Rolled Silicon Electric Steel · Niobium

343

Overview of DOE'S programs on aluminum and magnesium for automotive application  

DOE Green Energy (OSTI)

The U.S. Department of Energy will present an update and review of its programs in aluminum and magnesium for automotive and heavy-duty vehicle applications. While the main programs focused on vehicle materials are in the Office of Transportation Technologies, contributing efforts will be described in the DOE Office of Industrial Technologies and the DOE Office of Energy Research. The presentation will discuss materials for body/chassis and power train, and will highlight the considerable synergy among the efforts. The bulk of the effort is on castings, sheet, and alloys with a smaller focus on metal matrix composites. Cost reduction and energy savings are the overriding themes of the programs.

Carpenter, J.; Diamond, S.; Dillich, S.; Fitzsimmons, T.; Milliken, J.; Sklad, P.

1999-02-28T23:59:59.000Z

344

Elastic Properties and Internal Friction of Two Magnesium Alloys at Elevated Temperatures  

SciTech Connect

The elastic properties and internal friction of two magnesium alloys were studied from 25 C to 450 C using Resonant Ultrasound Spectroscopy (RUS). The Young's moduli decrease with increasing temperature. At 200 C, a change in the temperature dependence of the elastic constants is observed. The internal friction increases significantly with increasing temperature above 200 C. The observed changes in the temperature dependence of the elastic constants and the internal friction are the result of anelastic relaxation by grain boundary sliding at elevated temperatures. Elastic properties govern the behavior of a materials subjected to stress over a region of strain where the material behaves elastically. The elastic properties, including the Young's modulus (E), shear modulus (G), bulk modulus (B), and Poisson's ratio (?), are of significant interest to many design and engineering applications. The choice of the most appropriate material for a particular application at elevated temperatures therefore requires knowledge of its elastic properties as a function of temperature. In addition, mechanical vibration can cause significant damage in the automotive, aerospace, and architectural industries and thus, the ability of a material to dissipate elastic strain energy in materials, known as damping or internal friction, is also important property. Internal friction can be the result of a wide range of physical mechanisms, and depends on the material, temperature, and frequency of the loading. When utilized effectively in engineering applications, the damping capacity of a material can remove undesirable noise and vibration as heat to the surroundings. The elastic properties of materials can be determined by static or dynamic methods. Resonant Ultrasound Spectroscopy (RUS), used in this study, is a unique and sophisticated non-destructive dynamic technique for determining the complete elastic tensor of a solid by measuring the resonant spectrum of mechanical resonance for a sample of known geometry, dimensions, and mass. In addition, RUS allows determination of internal friction, or damping, at different frequencies and temperatures. Polycrystalline pure magnesium (Mg) exhibits excellent high damping properties. However, the poor mechanical properties limit the applications of pure Mg. Although alloying can improve the mechanical properties of Mg, the damping properties are reduced with additions of alloying elements. Therefore, it becomes necessary to study and develop Mg-alloys with simultaneous high damping capacity and improved mechanical properties. Moreover, studies involving the high temperature dynamic elastic properties of Mg alloys are limited. In this study, the elastic properties and internal friction of two magnesium alloys were studied at elevated temperatures using RUS. The effect of alloy composition and grain size was investigated. The wrought magnesium alloys AZ31 and ZK60 were employed. Table 1 gives the nominal chemical compositions of these two alloys. The ZK60 alloy is a commercial extruded plate with a T5 temper, i.e. solution-treated at 535 C for two hours, quenched in hot water, and aged at 185 C for 24 hours. The AZ31 alloy is a commercial rolled plate with a H24 temper, i.e. strain hardened and partially annealed.

Freels, M.; Liaw, P. K.; Garlea, E.; Morrell, J. S.; Radiovic, M.

2011-06-01T23:59:59.000Z

345

Analysis of the potential for new automotive uses of wrought magnesium  

DOE Green Energy (OSTI)

The Center for Transportation Research at Argonne National Laboratory has performed a study for the Lightweight Materials Program within the US Department of Energy`s Office of Transportation Materials to evaluate the suitability of wrought magnesium and its alloys to replace steel or aluminum for automotive structural and sheet applications. Vehicle weight reduction is one of the major means available for improving automotive fuel efficiency. Although high-strength steels, Al, and polymers are already being used to achieve significant weight reductions, substantial additional weight reductions could be achieved by increased use of Mg (whose density is less than one-fourth that of steel and only two-thirds that of Al). This study shows that Mg sheet could be used in automotive body nonstructural and semistructural applications, whereas extrusions could be used in such structural applications as spaceframes. The primary barrier to such uses of wrought Mg is high cost.

Gaines, L.; Cuenca, R.; Wu, S. [Argonne National Lab., IL (United States); Stodolsky, F. [Argonne National Lab., IL (United States)]|[Argonne National Lab., Washington, DC (United States)

1996-02-01T23:59:59.000Z

346

Iron-Air Rechargeable Battery: A Robust and Inexpensive Iron-Air Rechargeable Battery for Grid-Scale Energy Storage  

Science Conference Proceedings (OSTI)

GRIDS Project: USC is developing an iron-air rechargeable battery for large-scale energy storage that could help integrate renewable energy sources into the electric grid. Iron-air batteries have the potential to store large amounts of energy at low cost—iron is inexpensive and abundant, while oxygen is freely obtained from the air we breathe. However, current iron-air battery technologies have suffered from low efficiency and short life spans. USC is working to dramatically increase the efficiency of the battery by placing chemical additives on the battery’s iron-based electrode and restructuring the catalysts at the molecular level on the battery’s air-based electrode. This can help the battery resist degradation and increase life span. The goal of the project is to develop a prototype iron-air battery at significantly cost lower than today’s best commercial batteries.

None

2010-10-01T23:59:59.000Z

347

Multi-Objective Optimization of a Wrought Magnesium Alloy for High Strength and Ductility  

Science Conference Proceedings (OSTI)

An optimization technique is coupled with crystal plasticity based finite element (CPFE) computations to aid the microstructural design of a wrought magnesium alloy for improved strength and ductility. The initial microstructure consists of a collection of sub-micron sized grains containing deformation twins. The variables used in the simulations are crystallographic texture, and twin spacing within the grains. It is assumed that plastic deformation occurs mainly by dislocation slip on two sets of slip systems classified as hard and soft modes. The hard modes are those slip systems that are inclined to the twin planes and the soft mode consists of dislocation glide along the twin plane. The CPFE code calculates the stress-strain response of the microstructure as a function of the microstructural parameters and the length-scale of the features. A failure criterion based on a critical shear strain and a critical hydrostatic stress is used to define ductility. The optimization is based on the sequential generation of an initial population defined by the texture and twin spacing variables. The CPFE code and the optimizer are coupled in parallel so that new generations are created and analyzed dynamically. In each successive generation, microstructures that satisfy at least 90% of the mean strength and mean ductility in the current generation are retained. Multiple generation runs based on the above procedure are carried out in order to obtain maximum strength-ductility combinations. The implications of the computations for the design of a wrought magnesium alloy are discussed. Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy.

Radhakrishnan, Balasubramaniam [ORNL; Gorti, Sarma B [ORNL; Patton, Robert M [ORNL; Simunovic, Srdjan [ORNL

2013-01-01T23:59:59.000Z

348

Void trapping of hydrogen in sintered iron  

DOE Green Energy (OSTI)

The effect of void trapping of hydrogen in iron was studied using the gas-phase permeation technique. Iron membranes of controlled void density, varying from 92% to 98% were prepared by press and sintering of electrolytic iron powder. The presence of internal voids showed no effect on the steady state flux of hydrogen through the membrane. The effective diffusivity, obtained by the time lag method, increased with the increase of input hydrogen partial pressure. This disagreement with the prediction of the theory in literature was explained by the existence of hydrogen in both the diatomic gaseous form and as adsorbed hydrogen. This explanation was further confirmed by examining the dependence of trapped hydrogen concentration with pressure. The linear dependence of trapped hydrogen concentration in voids with external hydrogen partial pressure for samples of 96%, 94% and 92% dense were given respectively by C/sub g/ = (1.5 +- 0.2) x 10/sup 15/ P + (3.2 +- 0.5) x 10/sup 14/ atoms of H/c.c. C/sub g/ = (2.1 +- 0.6) x 10/sup 15/ P + (1.7 +- 0.5) x 10/sup 15/ atoms of H/c.c. C/sub g/ = (4.5 +- 0.3) x 10/sup 15/ P + (6.5 +- 0.2) x 10/sup 15/ atoms of H/c.c. The discrepancy between the reported values and the values predicted by theory was explained by the poisoning of some of the voids by surface oxides.

Wong, K.C.

1976-09-01T23:59:59.000Z

349

Unconventional temperature enhanced magnetism in iron telluride  

SciTech Connect

Discoveries of copper and iron-based high-temperature superconductors (HTSC)1-2 have challenged our views of superconductivity and magnetism. Contrary to the pre-existing view that magnetism, which typically involves localized electrons, and superconductivity, which requires freely-propagating itinerant electrons, are mutually exclusive, antiferromagnetic phases were found in all HTSC parent materials3,4. Moreover, highly energetic magnetic fluctuations, discovered in HTSC by inelastic neutron scattering (INS) 5,6, are now widely believed to be vital for the superconductivity 7-10. In two competing scenarios, they either originate from local atomic spins11, or are a property of cooperative spin-density-wave (SDW) behavior of conduction electrons 12,13. Both assume clear partition into localized electrons, giving rise to local spins, and itinerant ones, occupying well-defined, rigid conduction bands. Here, by performing an INS study of spin dynamics in iron telluride, a parent material of one of the iron-based HTSC families, we have discovered that this very assumption fails, and that conduction and localized electrons are fundamentally entangled. In the temperature range relevant for the superconductivity we observe a remarkable redistribution of magnetism between the two groups of electrons. The effective spin per Fe at T 10 K, in the2 antiferromagnetic phase, corresponds to S 1, consistent with the recent analyses that emphasize importance of Hund s intra-atomic exchange15-16. However, it grows to S 3/2 in the disordered phase, a result that profoundly challenges the picture of rigid bands, broadly accepted for HTSC.

Zalinznyak, I. [Brookhaven National Laboratory (BNL); Xu, Zhijun [ORNL; Tranquada, John M. [Brookhaven National Laboratory (BNL); Gu, G. D. [Brookhaven National Laboratory (BNL); Tsvelik, A. [Brookhaven National Laboratory (BNL); Stone, Matthew B [ORNL

2011-01-01T23:59:59.000Z

350

Charge exchange processes involving iron ions  

DOE Green Energy (OSTI)

A review and evaluation is given of the experimental data which are available for charge exchange processes involving iron ions and neutral H, H/sub 2/ and He. Appropriate scaling laws are presented, and their accuracy estimated for these systems. A bibliography is given of available data sources, as well as of useful data compilations and review articles. A procedure is recommended for providing single approximate formulae to the fusion community to describe total cross sections for electron capture by partially-stripped Fe/sup q+/ ions in collisions with H, H/sub 2/ and He, based on the scaling relationships suggested by Janev and Hvelplund.

Phaneuf, R.A.

1985-01-01T23:59:59.000Z

351

Suspension Hydrogen Reduction of Iron Oxide Concentrates  

DOE Green Energy (OSTI)

The objective of the project is to develop a new ironmaking technology based on hydrogen and fine iron oxide concentrates in a suspension reduction process. The ultimate objective of the new technology is to replace the blast furnace and to drastically reduce CO2 emissions in the steel industry. The goals of this phase of development are; the performance of detailed material and energy balances, thermochemical and equilibrium calculations for sulfur and phosphorus impurities, the determination of the complete kinetics of hydrogen reduction and bench-scale testing of the suspension reduction process using a large laboratory flash reactor.

H.Y. Sohn

2008-03-31T23:59:59.000Z

352

Chemical and structural investigations of the incorporation of metal manganese into ruthenium thin films for use as copper diffusion barrier layers  

Science Conference Proceedings (OSTI)

The incorporation of manganese into a 3 nm ruthenium thin-film is presented as a potential mechanism to improve its performance as a copper diffusion barrier. Manganese ({approx}1 nm) was deposited on an atomic layer deposited Ru film, and the Mn/Ru/SiO{sub 2} structure was subsequently thermally annealed. X-ray photoelectron spectroscopy studies reveal the chemical interaction of Mn with the SiO{sub 2} substrate to form manganese-silicate (MnSiO{sub 3}), implying the migration of the metal through the Ru film. Electron energy loss spectroscopy line profile measurements of the intensity of the Mn signal across the Ru film confirm the presence of Mn at the Ru/SiO{sub 2} interface.

McCoy, A. P.; Casey, P.; Bogan, J.; Hughes, G. [School of Physical Sciences, Dublin City University, Dublin 9 (Ireland); Lozano, J. G.; Nellist, P. D. [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom)

2012-12-03T23:59:59.000Z

353

Arsenic remediation of drinking water using iron-oxide coated coal bottom ash  

E-Print Network (OSTI)

using Iron-oxide Coated Coal Ash. In Arsenic Contaminationwater using  iron?oxide coated coal bottom ash  Johanna L.  using iron-oxide coated coal bottom ash JOHANNA L. MATHIEU

MATHIEU, JOHANNA L.

2010-01-01T23:59:59.000Z

354

New trends in industrial energy efficiency in the Mexico iron and steel industry  

E-Print Network (OSTI)

in the iron and steel industry" in 1997 ACEEE Summer Studyin the Mexican Iron and Steel industry are the B O F and theInternational Iron and Steel Industry, Brussels, pp. 47-48

Ozawa, Leticia; Martin, Nathan; Worrell, Ernst; Price, Lynn; Sheinbaum, Claudia

1999-01-01T23:59:59.000Z

355

Iron(II) Oxidation by SO 2 /O 2 in Uranium Leach Solutions  

Science Conference Proceedings (OSTI)

Aug 1, 2003 ... Oxidants are added in uranium leaching in acid media to convert iron(II) in solution to iron(III). Iron(III) has an important role in the leaching of ...

356

Electrically insulating phosphate coatings for iron powder based electromagnetic core applications  

E-Print Network (OSTI)

Powdered metals, such as iron, are a common building block for electromagnetic cores. An iron powder was reacted with phosphoric acid to create a layer of iron phosphate on each particle. This electrically insulating ...

Nolan, William Rane

2009-01-01T23:59:59.000Z

357

Energy efficiency and carbon dioxide emissions reduction opportunities in the U.S. Iron and Steel sector  

E-Print Network (OSTI)

scrap steel, pig iron, or direct reduced iron (DRI) using anfrom scrap and/or direct reduced iron (DRI, also calledAlternatives Direct reduced iron (DRI), hot briquetted

Worrell, Ernst; Martin, N.; Price, L.

1999-01-01T23:59:59.000Z

358

A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S.  

E-Print Network (OSTI)

Mt, net imported Direct-Reduced Iron (DRI) in 2006 was 2.61in Figure 3) pig iron, direct-reduced iron (DRI), pellets,of net imported direct reduced iron Energy used for the

Hasanbeigi, Ali

2012-01-01T23:59:59.000Z

359

Mixed metal films with switchable optical properties  

DOE Green Energy (OSTI)

Thin, Pd-capped metallic films containing magnesium and first row transition metals (Mn, Fe, Co) switch reversibly from their initial reflecting state to visually transparent states when exposed to gaseous hydrogen or following cathodic polarization in an alkaline electrolyte. Reversion to the reflecting state is achieved by exposure to air or by anodic polarization. The films were prepared by co-sputtering from one magnesium target and one manganese, iron, or cobalt target. Both the dynamic optical switching range and the speed of the transition depend on the magnesium-transition metal ratio. Infrared spectra of films in the transparent, hydrided (deuterided) states support the presence of the intermetallic hydride phases Mg3MnH7, Mg2FeH6, and Mg2CoH5.

Richardson, Thomas J.; Slack, Jonathan L.; Farangis, Baker; Rubin, Michael D.

2001-10-16T23:59:59.000Z

360

Iron isotopic fractionation during continental weathering  

SciTech Connect

The biological activity on continents and the oxygen content of the atmosphere determine the chemical pathways through which Fe is processed at the Earth's surface. Experiments have shown that the relevant chemical pathways fractionate Fe isotopes. Measurements of soils, streams, and deep-sea clay indicate that the {sup 56}Fe/{sup 54}Fe ratio ({delta}{sup 56}Fe relative to igneous rocks) varies from +1{per_thousand} for weathering residues like soils and clays, to -3{per_thousand} for dissolved Fe in streams. These measurements confirm that weathering processes produce substantial fractionation of Fe isotopes in the modern oxidizing Earth surface environment. The results imply that biologically-mediated processes, which preferentially mobilize light Fe isotopes, are critical to Fe chemistry in weathering environments, and that the {delta}{sup 56}Fe of marine dissolved Fe should be variable and negative. Diagenetic reduction of Fe in marine sediments may also be a significant component of the global Fe isotope cycle. Iron isotopes provide a tracer for the influence of biological activity and oxygen in weathering processes through Earth history. Iron isotopic fractionation during weathering may have been smaller or absent in an oxygen-poor environment such as that of the early Precambrian Earth.

Fantle, Matthew S.; DePaolo, Donald J.

2003-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "iron magnesium manganese" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Desulfurization mixture and process for desulfurizing pig iron  

SciTech Connect

Process and composition for desulfurizing pig iron in which the desulfurization agent consists essentially of calcium carbide, a gas-evolving component and fluorspar; the advantage of the process and composition is that it reduces dust pollution and danger of flaming in the handling of the slag after the desulfurization of pig iron.

Freissmuth, A.; Gmohling, W.; Rock, H.

1982-02-16T23:59:59.000Z

362

The release of iron during coal combustion. Milestone report  

Science Conference Proceedings (OSTI)

Iron plays an important role in the formation of both fly ash and deposits in many pulverized-coal-fired boilers. Several authors indicate that iron content is a significant indicator of the slagging propensity of a majority of US bituminous coals, in particular eastern bituminous coals. The pyritic iron content of these coals is shown to be a particularly relevant consideration. A series of investigations of iron release during combustion is reported for a suite of coals ranging in rank from lignite to low-volatile bituminous coal under combustion conditions ranging from oxidizing to inert. Experimental measurements are described in which, under selected conditions, major fractions of the iron in the coal are released within a 25 ms period immediately following coal devolatilization. Mechanistic interpretation of the data suggest that the iron is released as a consequence of oxygen attack on porous pyrrhotite particles. Experimental testing of the proposed mechanism reveals that the release is dependent on the presence of both pyrite in the raw coal and oxygen in the gas phase, that slow preoxidation (weathering) of the pyrite significantly inhibits the iron release, and that iron loss increases as oxygen penetration of the particle increases. Each observation is consistent with the postulated mechanism.

Baxter, L.L. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility

1995-06-01T23:59:59.000Z

363

EnvIRONment and Other Bath Smelting Processes for Treating ...  

Science Conference Proceedings (OSTI)

Although the American Iron and Steel Institute-Department of Energy program is ... definitely superior to the direct-reduced iron and scrap available on the ferrous market. ..... Based on in-house and independent analyses, it should be profitable to run an .... For more information, contact G. Brooks, University of Wollongong, ...

364

Study on Nucleation and Growth Mechanism of Iron Crystal Grain in ...  

Science Conference Proceedings (OSTI)

Presentation Title, Study on Nucleation and Growth Mechanism of Iron Crystal Grain in Coal-Based Shaft Furnace Direct Reduction Iron Pellets by Microwave ...

365

Trophic status of Chlamydomonas reinhardtii influences the impact of iron deficiency on photosynthesis  

E-Print Network (OSTI)

of iron de?ciency on photosynthesis Aimee M. Terauchi •rates by suppress- ing photosynthesis but increasing insteadal. 2007). In oxygenic photosynthesis, iron is a cofactor in

Terauchi, Aimee M.; Peers, Graham; Kobayashi, Marilyn C.; Niyogi, Krishna K.; Merchant, Sabeeha S.

2010-01-01T23:59:59.000Z

366

Electrochemical Deposition of Iron Nanoneedles on Titanium Oxide Nanotubes  

Science Conference Proceedings (OSTI)

Iron as a catalyst has wide applications for hydrogen generation from ammonia, photodecomposition of organics, and carbon nanotube growth. Tuning the size and shape of iron is meaningful for improving the catalysis efficiency. It is the objective of this work to prepare nanostructured iron with high surface area via electrochemical deposition. Iron nanoneedles were successfully electrodeposited on Ti supported TiO2 nanotube arrays in a chlorine-based electrolyte containing 0.15 M FeCl2 {center_dot} 4H2O and 2.0 M HCl. Transmission electron microscopic analysis reveals that the average length of the nanoneedles is about 200 nm and the thickness is about 10 nm. It has been found that a high overpotential at the cathode made of Ti/TiO2 nanotube arrays is necessary for the formation of the nanoneedles. Cyclic voltammetry test indicates that the electrodeposition of iron nanoneedles is a concentration-limited process.

Gan Y. X.; Zhang L.; Gan B.J.

2011-10-01T23:59:59.000Z

367

System and method for producing metallic iron nodules  

SciTech Connect

A method for producing metallic iron nodules by assembling a shielding entry system to introduce coarse carbonaceous material greater than 6 mesh in to the furnace atmosphere at location(s) where the temperature of the furnace atmosphere adjacent at least partially reduced reducible iron bearing material is between about 2200 and 2650.degree. F. (1200 and 1450.degree. C.), the shielding entry system adapted to inhibit emission of infrared radiation from the furnace atmosphere and seal the furnace atmosphere from exterior atmosphere while introducing coarse carbonaceous material greater than 6 mesh into the furnace to be distributed over the at least partially reduced reducible iron bearing material, and heating the covered at least partially reduced reducible iron bearing material in a fusion atmosphere to assist in fusion and inhibit reoxidation of the reduced material during fusion to assist in fusion and inhibit reoxidation of the reduced material in forming metallic iron nodules.

Bleifuss, Rodney L. (Grand Rapids, MN); Englund, David J. (Bovey, MN); Iwasaki, Iwao (Grand Rapids, MN); Lindgren, Andrew J. (Grand Rapids, MN); Kiesel, Richard F. (Hibbing, MN)

2011-09-20T23:59:59.000Z

368

Electrodeposited Manganese Oxides on Three-Dimensional Carbon Nanotube Substrate: Supercapacitive Behaviour in Aqueous and Organic Electrolytes  

Science Conference Proceedings (OSTI)

Thin amorphous manganese oxide layers with a thickness of 3-5nm are electrodeposited on a carbon nanotube (CNT) film substrate that has a three-dimensional nanoporous structure (denoted asMnO2/CNT electrode). For the purpose of comparison, manganese oxide films are also electrodeposited on a flat Pt-coated Si wafer substrate (denoted as MnO2 film electrode). The pseudocapacitive properties of the MnO2 film and MnO2/CNT electrodes are examined in both aqueous electrolyte (1.0M KCl) and nonaqueousorganic electrolyte (1.0M LiClO4 in propylene carbonate). While both types of electrode showpseudocapacitive behaviour in the aqueous electrolyte, only the MnO2/CNT electrode does so in the organic electrolyte, due to its high oxide/electrolyte interfacial area and improved electron conduction through the CNT substrate. Compared with the MnO2 film electrode, the MnO2/CNT electrode shows a much higher specific capacitance and better high-rate capability, regardless of the electrolyte used.Use of the organic electrolyte results in a ?6 times higher specific energy compared with that obtained with the aqueous electrolyte, while maintaining a similar specific power. The construction of a threedimensional nanoporous network structure consisting of a thin oxide layer on a CNT film substrate at the nm scale and the use of an organic electrolyte are promising approaches to improving the specific energyof supercapacitors.

Nam,K.W.; Yang,X.

2009-03-01T23:59:59.000Z

369

ITP Mining: Energy and Environmental Profile of the U.S. Mining Industry: Chapter 4: Iron  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 Iron The chemical element iron is the fourth most common element in the Earth's crust and the second most abundant metal. About five percent of the Earth's crust is composed of iron. The metal is chemically active and is found in nature combined with other elements in rocks and soils. In its natural state, iron is chemically bonded with oxygen, water, carbon dioxide, or sulfur in a variety of minerals. Forms of Iron Minerals, Ores, and Rocks Iron occurs mainly in iron-oxide ores. Some ores are a mixture of minerals rich in iron. Other iron ores are less rich and have a large number of impurities. The most important iron ore- forming minerals are: * Magnetite - Magnetite (Fe 3 O 4 ) forms magnetic black iron ore. There are large deposits of

370

Energy and Technolgy Assessment of Zinc and Magnesium Casting Plants, Technical Report Close-out, August 25,2006  

Science Conference Proceedings (OSTI)

Twin City Die Castings Company of Minneapolis, Minnesota, Twin City Die Castings Company was awarded project No. DE-FG36-05GO15097 to perform plant wide assessments of ten (10) die casting facilities that produce zinc and magnesium alloy castings in order to determine improvements and potential cost savings in energy use. Mr. Heider filled the role of team leader for the project and utilized the North American Die Casting Association (NADCA) to conduct audits at team participant plants so as to hold findings specific to each plant proprietary. The intended benefits of the project were to improve energy use through higher operational and process efficiency for the plants assessed. An improvement in energy efficiency of 5 – 15% was targeted. The primary objectives of the project was to: 1) Expand an energy and technology tool developed by the NADCA under a previous DOE project titled, “Energy and Technology Assessment for Die Casting Plants” for assessing aluminum die casting plants to be more specifically applicable to zinc and magnesium die casting facilities. 2) Conduct ten (10) assessments of zinc and magnesium die casting plants, within eight (8) companies, utilizing the assessment tool to identify, evaluate and recommend opportunities to enhance energy efficiency, minimize waste, and improve productivity. 3) Transfer the assessment tool to the die casting industry at large.

Twin City Die Castings Company; Tom Heider; North American Die Castings Association

2006-08-25T23:59:59.000Z

371

Removal of Filter Cake Generated by Manganese Tetraoxide Water-based Drilling Fluids  

E-Print Network (OSTI)

Three effective solutions to dissolve the filter cake created by water-based drilling fluids weighted with Mn3O4 particles were developed. Hydrochloric acid at concentration lower than 5 wt% can dissolve most of Mn3O4-based filter cake. Dissolving the filter cake in two-stage treatment of enzyme and organic acid was effective and eliminated the associated drawbacks of using HCl. Finally, combining low and safe concentration of HCl with an organic acid in one-stage treatment was very effective. Hydrochloric acid (10-wt%) dissolved 78 wt% of Mn3O4-based filter cake at 250°F after 28 hours soaking time. However, Chlorine gas was detected during the reaction of 5 to 15-wt% HCl with Mn3O4 particles. At 190°F, 1- and 4-wt% HCl dissolved most Mn3O4 particles (up to 70-wt% solubility). Their reactions with Mn3O4 particles followed Eq. 8 at 190°F, which further confirmed the absence of chlorine gas production at HCl concentrations lower than 5-wt%. EDTA and DTPA at high pH (12) and acetic, propionic, butyric, and gluconic acids at low pH (3-5) showed very low solubilities of Mn3O4 particles. GLDA, citric, oxalic, and tartaric acids produced large amount of white precipitation upon the reactions with Mn3O4 particles. Similarly, DTPA will produce damaging material if used to dissolve Mn3O4-based filter cake in sandstone formation. At 4-wt% acid concentration, lactic, glycolic, and formic acids dissolved Mn3O4 particles up to 76 wt% solubility at 190°F. Malonic acid at lower concentration (2-wt%) dissolved 54 wt% of Mn3O4 particles at 190°F. Manganese tetraoxide particles were covered with polymeric material (starch), which significantly reduced the solubility of filter cake in organic acids. Therefore, there was a need to remove Mn3O4-based filter cake in two-stage treatment. Enzyme-A (10-wt%) and Precursor of lactic acid (12.5-wt%) dissolved 84 wt% of the filter cake. An innovative approach led to complete solubility of Mn3O4 particles when low and safe concentration of HCl (1-wt%) combined with 4-wt% lactic acid at 190°F. HCl (1-wt%) combined with lactic acid (4-wt%), dissolved 85 wt% of the Mn3O4-based filter cake after 18-22 hours soaking time at 250°F in one stage treatment.

Al Mojil, Abdullah Mohammed A.

2010-08-01T23:59:59.000Z

372

Multiple hearth furnace for reducing iron oxide  

SciTech Connect

A multiple moving hearth furnace (10) having a furnace housing (11) with at least two moving hearths (20) positioned laterally within the furnace housing, the hearths moving in opposite directions and each moving hearth (20) capable of being charged with at least one layer of iron oxide and carbon bearing material at one end, and being capable of discharging reduced material at the other end. A heat insulating partition (92) is positioned between adjacent moving hearths of at least portions of the conversion zones (13), and is capable of communicating gases between the atmospheres of the conversion zones of adjacent moving hearths. A drying/preheat zone (12), a conversion zone (13), and optionally a cooling zone (15) are sequentially positioned along each moving hearth (30) in the furnace housing (11).

Brandon, Mark M. (Charlotte, NC); True, Bradford G. (Charlotte, NC)

2012-03-13T23:59:59.000Z

373

System and method for producing metallic iron  

SciTech Connect

A hearth furnace 10 for producing metallic iron material has a furnace housing 11 having a drying/preheat zone 12, a conversion zone 13, a fusion zone 14, and optionally a cooling zone 15, the conversion zone 13 is between the drying/preheat zone 12 and the fusion zone 14. A moving hearth 20 is positioned within the furnace housing 11. A hood or separation barrier 30 within at least a portion of the conversion zone 13, fusion zone 14 or both separates the fusion zone 14 into an upper region and a lower region with the lower region adjacent the hearth 20 and the upper region adjacent the lower region and spaced from the hearth 20. An injector introduces a gaseous reductant into the lower region adjacent the hearth 20. A combustion region may be formed above the hood or separation barrier.

Bleifuss, Rodney L. (Grand Rapids, MN); Englund, David J. (Bovey, MN); Iwasaki, Iwao (Grand Rapids, MN); Fosnacht, Donald R. (Hermantown, MN); Brandon, Mark M. (Charlotte, NC); True, Bradford G. (Charlotte, NC)

2012-01-17T23:59:59.000Z

374

Erosion of white cast irons and stellite  

SciTech Connect

The erosion behavior of dual-phase alloys containing large, hard carbides has been investigated. A series of high Cr-Mo white cast irons with a systematic variation of carbide volume fraction (CVF) and powder metallurgy specimens of Stellite 6 were eroded with alumina, crushed quartz and rounded quartz particles. These erodents were chosen because quartz has a hardness between that of the matrix and the Cr-rich carbides, whereas the hardness of alumina is comparable to that of the carbides. In addition, comparison of the results with crushed quartz and alumina allows an evaluation of the effect of particle hardness while the differences between the rounded and crushed quartz results can be attributed to the shape difference. For all erodents and alloys, the dependence of erosion on angle of incidence was weak. With alumina and rounded quartz erodents, the erosion rate increased with increasing CVF, while the reverse was true with crushed quartz. The crushed quartz erodent gave an erosion rate only slightly lower than that of alumina, indicating that the carbide erosion resistance is not a strong function of erodent particle hardness in this range of hardness. Scanning electron microscope (SEM) observations of the eroded surfaces showed that erosion of the highest-CVF white cast iron alloy with alumina or rounded quartz resulted in depression of the large primary carbides, while with crushed quartz many of the carbides protruded above the matrix. The SEM and erosion rate observations show that with crushed quartz the carbides are more erosion resistant than the eutectic matrix and that the carbides therfore contribute to erosion resistance, while with the other erodents the reverse is true. 17 refs., 15 figs., 2 tabs.

Aptekar, S.S.; Kosel, T.H.

1985-01-01T23:59:59.000Z

375

Theoretical Investigation of Hydrogen Adsorption and dissociation on Iron and Iron Carbide Surfaces Using the ReaxFF Reactive Force Field Method  

SciTech Connect

We have developed a ReaxFF reactive force field to describe hydrogen adsorption and dissociation on iron and iron carbide surfaces relevant for simulation of Fischer–Tropsch (FT) synthesis on iron catalysts. This force field enables large system (>>1000 atoms) simulations of hydrogen related reactions with iron. The ReaxFF force field parameters are trained against a substantial amount of structural and energetic data including the equations of state and heats of formation of iron and iron carbide related materials, as well as hydrogen interaction with iron surfaces and different phases of bulk iron. We have validated the accuracy and applicability of ReaxFF force field by carrying out molecular dynamics simulations of hydrogen adsorption, dissociation and recombination on iron and iron carbide surfaces. The barriers and reaction energies for molecular dissociation on these two types of surfaces have been compared and the effect of subsurface carbon on hydrogen interaction with iron surface is evaluated. We found that existence of carbon atoms at subsurface iron sites tends to increase the hydrogen dissociation energy barrier on the surface, and also makes the corresponding hydrogen dissociative state relatively more stable compared to that on bare iron. These properties of iron carbide will affect the dissociation rate of H{sub 2} and will retain more surface hydride species, thus influencing the dynamics of the FT synthesis process.

Zou, Chenyu; van Duin, Adri C.T.; Sorescu, Dan C.

2012-06-01T23:59:59.000Z

376

Iron aluminide alloy coatings and joints, and methods of forming  

DOE Patents (OSTI)

Disclosed is a method of joining two bodies together, at least one of the bodies being predominantly composed of metal, the two bodies each having a respective joint surface for joining with the joint surface of the other body, the two bodies having a respective melting point, includes the following steps: (a) providing aluminum metal and iron metal on at least one of the joint surfaces of the two bodies; (b) after providing the aluminum metal and iron metal on the one joint surface, positioning the joint surfaces of the two bodies in juxtaposition against one another with the aluminum and iron positioned therebetween; (c) heating the aluminum and iron on the juxtaposed bodies to a temperature from greater than or equal to 600 C to less than the melting point of the lower melting point body; (d) applying pressure on the juxtaposed surfaces; and (e) maintaining the pressure and the temperature for a time period effective to form the aluminum and iron into an iron aluminide alloy joint which bonds the juxtaposed surfaces and correspondingly the two bodies together. The method can also effectively be used to coat a body with an iron aluminide coating.

Wright, R.N.; Wright, J.K.; Moore, G.A.

1994-09-27T23:59:59.000Z

377

Iron aluminide alloy coatings and joints, and methods of forming  

DOE Patents (OSTI)

A method of joining two bodies together, at least one of the bodies being predominantly composed of metal, the two bodies each having a respective joint surface for joining with the joint surface of the other body, the two bodies having a respective melting point, includes the following steps: a) providing aluminum metal and iron metal on at least one of the joint surfaces of the two bodies; b) after providing the aluminum metal and iron metal on the one joint surface, positioning the joint surfaces of the two bodies in juxtaposition against one another with the aluminum and iron positioned therebetween; c) heating the aluminum and iron on the juxtaposed bodies to a temperature from greater than or equal to 600.degree. C. to less than the melting point of the lower melting point body; d) applying pressure on the juxtaposed surfaces; and e) maintaining the pressure and the temperature for a time period effective to form the aluminum and iron into an iron aluminide alloy joint which bonds the juxtaposed surfaces and correspondingly the two bodies together. The method can also effectively be used to coat a body with an iron aluminide coating.

Wright, Richard N. (Idaho Falls, ID); Wright, Julie K. (Idaho Falls, ID); Moore, Glenn A. (Idaho Falls, ID)

1994-01-01T23:59:59.000Z

378

TECHNOLOGY DEVELOPMENT FOR IRON AND COBALT FISCHER-TROPSCH CATALYSTS  

DOE Green Energy (OSTI)

The impact of activation procedure on the phase composition of precipitated iron Fischer-Tropsch (FT) catalysts has been studied. Catalyst samples taken during activation and FT synthesis have been characterized by Moessbauer spectroscopy. Formation of iron carbide is necessary for high FT activity. Hydrogen activation of precipitated iron catalysts results in reduction to predominantly metallic iron and Fe{sub 3}O{sub 4}. Metallic iron is not stable under FT 3 4 conditions and is rapidly converted to {epsilon}{prime}-Fe{sub 2.2}C. Activation with carbon monoxide or syngas 2.2 with low hydrogen partial pressure reduces catalysts to {chi}-Fe{sub 5}C{sub 2} and a small amount of 5 2 superparamagnetic carbide. Exposure to FT conditions partially oxidizes iron carbide to Fe{sub 3}O{sub 4}; however, catalysts promoted with potassium or potassium and copper maintain a constant carbide content and activity after the initial oxidation. An unpromoted iron catalyst which was activated with carbon monoxide to produce 94% {chi}-Fe{sub 5}C{sub 2}, deactivated rapidly as the carbide was oxidized to Fe{sub 3}O{sub 4}. No difference in activity, stability or deactivation rate was found for {chi}-Fe{sub 5}C{sub 2} and {epsilon}{prime}-Fe{sub 2.2}C.

Burtron H. Davis

1999-04-30T23:59:59.000Z

379

Transient Heat and Material Flow Modeling of Friction Stir Processing of Magnesium Alloy using Threaded Tool  

SciTech Connect

A three-dimensional transient computational fluid dynamics (CFD) model was developed to investigate the material flow and heat transfer during friction stir processing (FSP) in an AZ31B magnesium alloy. The material was assumed to be a non-Newtonian viscoplastic fluid, and the Zener-Hollomon parameter was used to describe the dependence of material viscosity on temperature and strain rate. The material constants used in the constitutive equation were determined experimentally from compression tests of the AZ31B Mg alloy under a wide range of strain rates and temperatures. A dynamic mesh method, combining both Lagrangian and Eulerian formulations, was used to capture the material flow induced by the movement of the threaded tool pin. Massless inert particles were embedded in the simulation domain to track the detailed history of material flow. The actual FSP was also carried out on a wrought Mg plate where temperature profiles were recorded by embedding thermocouples. The predicted transient temperature history was found to be consistent with that measured during FSP. Finally, the influence of the thread on the simulated results of thermal history and material flow was studied by comparing two models: one with threaded pin and the other with smooth pin surface.

Yu, Zhenzhen [ORNL; Zhang, Wei [ORNL; Choo, Hahn [ORNL; Feng, Zhili [ORNL

2012-01-01T23:59:59.000Z

380

Plutonium and americium recovery from spent molten-salt-extraction salts with aluminum-magnesium alloys  

Science Conference Proceedings (OSTI)

Development work was performed to determine the feasibility of removing plutonium and americium from spent molten-salt-extraction (MSE) salts using Al-Mg alloys. If the product buttons from this process are compatible with subsequent aqueous processing, the complex chloride-to-nitrate aqueous conversion step which is presently required for these salts may be eliminated. The optimum alloy composition used to treat spent 8 wt % MSE salts in the past yielded poor phase-disengagement characteristics when applied to 30 mol % salts. After a limited investigation of other alloy compositions in the Al-Mg-Pu-Am system, it was determined that the Al-Pu-Am system could yield a compatible alloy. In this system, experiments were performed to investigate the effects of plutonium loading in the alloy, excess magnesium, age of the spent salt on actinide recovery, phase disengagement, and button homogeneity. Experimental results indicate that 95 percent plutonium recoveries can be attained for fresh salts. Further development is required for backlog salts generated prior to 1981. A homogeneous product alloy, as required for aqueous processing, could not be produced.

Cusick, M.J.; Sherwood, W.G.; Fitzpatrick, R.F.

1984-04-23T23:59:59.000Z

Note: This page contains sample records for the topic "iron magnesium manganese" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Polymer Stable Magnesium Nanocomposites Prepared by Laser Ablation for Efficient Hydrogen Storage  

E-Print Network (OSTI)

Hydrogen is a promising alternative energy carrier that can potentially facilitate the transition from fossil fuels to sources of clean energy because of its prominent advantages such as high energy density (142 MJ per kg), great variety of potential sources (for example water, biomass, organic matter), and low environmental impact (water is the sole combustion product). However, due to its light weight, the efficient storage of hydrogen is still an issue investigated intensely. Various solid media have been considered in that respect among which magnesium hydride stands out as a candidate offering distinct advantages. Recent theoretical work indicates that MgH2 becomes less thermodynamically stable as particle diameter decreases below 2 nm. Our DFT (density functional theory) modeling studies have shown that the smallest enthalpy change, corresponding to 2 unit-cell thickness (1.6 {\\AA} Mg/3.0{\\AA} MgH2) of the film, is 57.7 kJ/molMg. This enthalpy change is over 10 kJ per molMg smaller than that of the bulk...

Makridis, S S; Panagakos, G; Kikkinides, E S; Stubos, A K; Wagener, P; Barcikowski, S

2013-01-01T23:59:59.000Z

382

Carbon Steel and Magnesium Oxide Dissolution for H-Canyon Process Applications  

DOE Green Energy (OSTI)

H Area Operations is planning to process plutonium-contaminated uranium metal scrap in its efforts to de-inventory excess nuclear materials. The Savannah River Technology Center (SRTC) performed flowsheet development to support the decision to process the scrap in H-Canyon using 2M nitric acid (HNO3) / 0.025M potassium fluoride (KF) and 2 g/L boron. The scrap will be charged to the H-Canyon dissolver via a stainless steel charging bundle with a carbon steel end cap that must dissolve in an appropriate time frame. Experimental work was performed with a range of potential materials to be used to fabricate the bundle end cap. Testing was conducted with samples of metal plate, wire, cans, rods, and rivets to assess their dissolution characteristics in 2M HNO3/ 0.025M KF and 2 g/L boron. Experiments also measured the amount of hydrogen gas generated during carbon steel dissolution using the above dissolver solution. Each material type and its associated dissolution characteristic relate to specific bundle end cap designs being considered. Supplemental studies were conducted to evaluate the behavior and effect of magnesium oxide (MgO) sand on dissolution of uranium metal in 2M HNO3/ 0.025M KF and 2 g/L boron. The potential exists for a small quantity of MgO to be introduced into the dissolution flowsheet due to the use of MgO sand to extinguish uranium metal fires.

PIERCE, RA

2004-04-12T23:59:59.000Z

383

Chemical and mechanical consequences of environmental barrier coating exposure to calcium-magnesium-aluminosilicate.  

Science Conference Proceedings (OSTI)

The success of Si-based ceramics as high-temperature structural materials for gas turbine applications relies on the use of environmental barrier coatings (EBCs) with low silica activity, such as Ba{sub 1-x}Sr{sub x}Al{sub 2}Si{sub 2}O{sub 8} (BSAS), which protect the underlying components from oxidation and corrosion in combustion environments containing water vapor. One of the current challenges concerning EBC lifetime is the effect of sandy deposits of calcium-magnesium-aluminosilicate (CMAS) glass that melt during engine operation and react with the EBC, changing both its composition and stress state. In this work, we study the effect of CMAS exposure at 1300 C on the residual stress state and composition in BSAS-mullite-Si-SiC multilayers. Residual stresses were measured in BSAS multilayers exposed to CMAS for different times using high-energy X-ray diffraction. Their microstructure was studied using a combination of scanning electron microscopy and transmission electron microscopy techniques. Our results show that CMAS dissolves the BSAS topcoat preferentially through the grain boundaries, dislodging the grains and changing the residual stress state in the topcoat to a nonuniform and increasingly compressive stress state with increasing exposure time. The presence of CMAS accelerates the hexacelsian-to-celsian phase transformation kinetics in BSAS, which reacts with the glass by a solution-reprecipitation mechanism. Precipitates have crystallographic structures consistent with Ca-doped celsian and Ba-doped anorthite.

Harder, B.; Ramirez-Rico, J.; Almer, J. D.; Kang, L.; Faber, K. (X-Ray Science Division); (NASA Glenn Research Center); (Univ. of Seville); (Rolls-Royce Corp.); (Northwestern Univ.)

2011-06-01T23:59:59.000Z

384

Iron-carbon compacts and process for making them  

DOE Patents (OSTI)

The present invention includes iron-carbon compacts and a process for making them. The process includes preparing a slurry comprising iron powder, furfuryl alcohol, and a polymerization catalyst for initiating the polymerization of the furfuryl alcohol into a resin, and heating the slurry to convert the alcohol into the resin. The resulting mixture is pressed into a green body and heated to form the iron-carbon compact. The compact can be used as, or machined into, a magnetic flux concentrator for an induction heating apparatus.

Sheinberg, Haskell (Santa Fe, NM)

2000-01-01T23:59:59.000Z

385

The development of precipitated iron catalysts with improved stability  

DOE Green Energy (OSTI)

Precipitated iron catalysts are expected to be used in the next generation of slurry reactors for the large-scale production of transportation fuels from synthesis gas. These reactors may operate at higher temperatures and lower H {sub 2}: CO ratios relative to the Sasol Arge reactor. The feasibility of iron catalysts has been demonstrated under relatively mild Arge-type conditions but not under the more severe slurry conditions. The goal of this program is to identify the chemical principles governing the deactivation of precipitated iron catalysts during Fischer-Tropsch synthesis and to use these chemical principles in the design of catalysts suitable for slurry reactors.

Shah, P.P.

1990-01-01T23:59:59.000Z

386

Third (March 2006) Coring and Analysis of Zero-Valent Iron Permeable Reactive Barrier, Monticello, Utah  

Energy.gov (U.S. Department of Energy (DOE))

Third (March 2006) Coring and Analysis of Zero-Valent Iron Permeable Reactive Barrier, Monticello, Utah

387

Dispersivity Testing of Zero-Valent Iron Treatment Cells: Monticello, Utah, November 2005 Through February 2008  

Energy.gov (U.S. Department of Energy (DOE))

Dispersivity Testing of Zero-Valent Iron Treatment Cells: Monticello, Utah, November 2005 Through February 2008

388

Percolation Explains How Earth's Iron Core Formed | Stanford Synchrotron  

NLE Websites -- All DOE Office Websites (Extended Search)

Percolation Explains How Earth's Iron Core Formed Percolation Explains How Earth's Iron Core Formed Wednesday, November 27, 2013 The formation of Earth's metallic core, which makes up a third of our planet's mass, represents the most significant differentiation event in Earth's history. Earth's present layered structure with a metallic core and an overlying silicate mantle would have required mechanisms to separate iron alloy from a silicate phase. Percolation of liquid iron alloy moving through a solid silicate matrix (much as water percolates through porous rock, or even coffee grinds) has been proposed as a possible model for core formation (Figure 1). Many previous experimental results have ruled out percolation as a major core formation mechanism for Earth at the relatively lower pressure conditions in the upper mantle, but until now experimental

389

Regenerable Mixed Copper-Iron-Inert Support Oxygen Carriers  

NLE Websites -- All DOE Office Websites (Extended Search)

Mixed Copper-Iron-Inert Support Oxygen Carriers Mixed Copper-Iron-Inert Support Oxygen Carriers for Solid Fuel Chemical Looping Combustion Process Contact NETL Technology Transfer Group techtransfer@netl.doe.gov December 2012 This patent-pending technology, "Regenerable Mixed Copper-Iron-Inert Support Oxygen Carriers for Solid Fuel Chemical Looping Combustion Process," provides a metal-oxide oxygen carrier for application in fuel combustion processes that use oxygen. This technology is available for licensing and/or further collaborative research with the U.S. Department of Energy's National Energy Technology Laboratory. Overview Patent Details U.S. Non-Provisional Patent Application No. 13/159,553; titled "Regenerable Mixed Copper-Iron-Inert Support Oxygen Carriers for Solid

390

Open Ocean Iron Fertilization for Scientific Study and Carbon Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

Ocean Iron Fertilization for Scientific Study and Carbon Sequestration Ocean Iron Fertilization for Scientific Study and Carbon Sequestration K. Coale coale@mlml.calstate.edu (831) 632-4400 Moss Landing Marine Laboratories 8272 Moss Landing Road Moss Landing, California 95039 USA Abstract The trace element iron has been recently shown to play a critical role in nutrient utilization, phytoplankton growth and therefore the uptake of carbon dioxide from the surface waters of the global ocean. Carbon fixation in the surface waters, via phytoplankton growth, shifts the ocean/atmosphere exchange equilibrium for carbon dioxide. As a result, levels of atmospheric carbon dioxide (a greenhouse gas) and iron flux to the oceans have been linked to climate change (glacial to interglacial transitions). These recent findings have led some to suggest that large scale

391

DOE - Office of Legacy Management -- Knoxville Iron Co - TN 07  

Office of Legacy Management (LM)

Knoxville Iron Co - TN 07 Knoxville Iron Co - TN 07 FUSRAP Considered Sites Site: KNOXVILLE IRON CO. (TN.07 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Knoxville , Tennessee TN.07-1 Evaluation Year: 1994 TN.07-2 TN.07-3 Site Operations: Melted uranium contaminated scrap metal in order to test industrial hygiene procedures in the mid-1950s. TN.07-1 Site Disposition: Eliminated - AEC license TN.07-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Limited Quantities of Uranium Contained in Slag Material TN.07-4 Radiological Survey(s): Yes - health and safety monitoring during operations only TN.07-4 Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to KNOXVILLE IRON CO.

392

The Iron Spin Transition in the Earth's Lower Mantle  

NLE Websites -- All DOE Office Websites (Extended Search)

The Iron Spin Transition in the The Iron Spin Transition in the Earth's Lower Mantle The Iron Spin Transition in the Earth's Lower Mantle Print Wednesday, 30 April 2008 00:00 It is now known that the iron present in minerals of the lower mantle of the Earth undergoes a pressure-induced transition with pairing of the spins of its 3d electrons. A team from the University of California, Berkeley, Tel Aviv University, and Lawrence Livermore National Laboratory has used x-ray diffraction at very high pressure to investigate the effects of this transition on the elastic properties of magnesiowüstite (Mg1-xFex)O, the second most abundant mineral in the Earth's lower mantle. The new results suggest that the effect of the spin-pairing transition on magnesiowüstite can be large enough to require a partial revision of the most accepted model of the lower mantle composition.

393

Arsenic Removal from Groundwater Using Iron Electrocoagulation: Effect of  

NLE Websites -- All DOE Office Websites (Extended Search)

Arsenic Removal from Groundwater Using Iron Electrocoagulation: Effect of Arsenic Removal from Groundwater Using Iron Electrocoagulation: Effect of Charge Dosage Rate Title Arsenic Removal from Groundwater Using Iron Electrocoagulation: Effect of Charge Dosage Rate Publication Type Journal Article Refereed Designation Refereed LBNL Report Number LBNL-6221E Year of Publication 2013 Authors Amrose, Susan, Ashok J. Gadgil, Venkat Srinivasan, Kristin Kowolik, Marc Muller, Jessica Huang, and Robert Kostecki Journal Joournal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering Volume 48 Issue 9 Pagination 1019-1030 Date Published 04/2013 Keywords arsenic, bangladesh, Cambodia, dosage rate, electrocoagulation, india, water treatment Abstract We demonstrate that electrocoagulation (EC) using iron electrodes can reduce arsenic below 10 μg/L in synthetic Bangladesh groundwater and in real groundwater from Bangladesh and Cambodia while investigating the effect of operating parameters that are often overlooked, such as charge dosage rate. We measure arsenic removal performance

394

The industrial ecology of the iron casting industry  

E-Print Network (OSTI)

Metal casting is an energy and materials intensive manufacturing process, which is an important U.S. industry. This study analyzes iron casting, in particular, for possible improvements that will result in greater efficiencies ...

Jones, Alissa J. (Alissa Jean)

2007-01-01T23:59:59.000Z

395

Method and system for producing metallic iron nuggets  

Science Conference Proceedings (OSTI)

A method and system for producing metallic iron nuggets may include providing multiple layers of agglomerates, such as briquettes, balls and extrusions, of a reducible mixture of reducing material (such as carbonaceous material) and of a reducible iron bearing material (such as iron oxide) on a hearth material layer (such as carbonaceous material) and providing a coarse overlayer of carbonaceous material over at least some of the agglomerates. Heating the agglomerates of reducible mixture to 1425.degree. C. or 1400.degree. C. or 1375.degree. C. results in formation of an intermediate product of one or more metallic iron nuggets, which may have a sulfur content of less than 0.03%, and slag, which may have less than 5% mass MgO, which may have a ratio of percent by weight sulfur in the slag over percent by weight sulfur in the metallic nuggets of at least about 12 or at least about 15.

Iwasaki, Iwao; Kiesel, Richard F.; Englund, David J; Hendrickson, Dave

2012-12-18T23:59:59.000Z

396

Iron-oxide catalyzed silicon photoanode for water splitting  

E-Print Network (OSTI)

This thesis presents an integrated study of high efficiency photoanodes for water splitting using silicon and iron-oxide. The fundamental limitations of silicon to water splitting applications were overcome by an ultrathin ...

Jun, Kimin

2011-01-01T23:59:59.000Z

397

The relationship between iron and nitrogen fixation in Trichodesmium spp.  

E-Print Network (OSTI)

Trichodesmium spp. are considered the dominant nitrogen (N) fixing cyanobacteria in tropical and subtropical oceans, regimes frequently characterized by low iron (Fe). Limited information exists about what levels of Fe ...

Chappell, Phoebe Dreux

2009-01-01T23:59:59.000Z

398

A BP neural network predictor model for desulfurizing molten iron  

Science Conference Proceedings (OSTI)

Desulfurization of molten iron is one of the stages of steel production process. A back-propagation (BP) artificial neural network (ANN) model is developed to predict the operation parameters for desulfurization process in this paper. The primary objective ...

Zhijun Rong; Binbin Dan; Jiangang Yi

2005-07-01T23:59:59.000Z

399

Stability and Reactivity of Iron Sulfide Films in Sour Environments  

Science Conference Proceedings (OSTI)

Abstract Scope, Iron sulfide scales form on steels in the presence of H2S, notably in the extreme environments that exist in the oil and gas fields. Our research ...

400

Synthesis of Monolithic Iron Incorporated Silica Aerogels by Ambient ...  

Science Conference Proceedings (OSTI)

With the Fe to Si molar ratio not exceeding 0.10, the bulk density of iron incorporated silica aerogels increased to 0.55g/cm3, while the porosity reduced to 76% ...

Note: This page contains sample records for the topic "iron magnesium manganese" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Iron Cycling and Redox Evolution in the Precambrian  

E-Print Network (OSTI)

from neodymium isotopes. Journal of Geology 105, 121-129.iron isotope fractionation in nature. Geology 29, 699-702.from neodymium isotopes. Journal of Geology 105, 121-129.

Planavsky, Noah John

2012-01-01T23:59:59.000Z

402

Automatic control in the iron and steel industry  

Science Conference Proceedings (OSTI)

Basic iron and steel production processes, starting in the blast furnace and followed by steelmaking and rolling procedures, have not been altered greatly, although there have been modifying developments in individual processes, such as a basic oxygen ...

T. Isobe

1970-01-01T23:59:59.000Z

403

Energy intensity in China's iron and steel sector  

E-Print Network (OSTI)

In this study, I examine the spatial and economic factors that influence energy intensity in China's iron and steel sector, namely industrial value added, renovation investment, coke consumption, and local coke supply. ...

Xu, Jingsi, M.C.P. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

404

Polymer-coated iron oxide nanoparticles for medical imaging  

E-Print Network (OSTI)

One of the most versatile and safe materials used in medicine are polymer-coated iron oxide nanoparticles. This dissertation describes several formulations for in vivo imaging applications. The paramagnetic polymer-coated ...

Chen, Suelin, Ph.D. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

405

Production of Molybdenum Containing Iron Based Alloys via ...  

Science Conference Proceedings (OSTI)

Chemical Enrichment of Precious Metals in Iron Sulfides Using Microwave Energy · Chloridizing ... Co-Gasification Behavior of Metallurgical Coke with High and Low Reactivity .... Thermal Plasma Torches for Metallurgical Applications.

406

CFD Model Development for Gaseous Reduction of Iron Ore Fines ...  

Science Conference Proceedings (OSTI)

Chemical Enrichment of Precious Metals in Iron Sulfides Using Microwave Energy · Chloridizing ... Co-Gasification Behavior of Metallurgical Coke with High and Low Reactivity .... Thermal Plasma Torches for Metallurgical Applications.

407

NOx Reduction by Sintering Flue Gas Circulation for Iron Ores  

Science Conference Proceedings (OSTI)

Chemical Enrichment of Precious Metals in Iron Sulfides Using Microwave Energy · Chloridizing ... Co-Gasification Behavior of Metallurgical Coke with High and Low Reactivity .... Thermal Plasma Torches for Metallurgical Applications.

408

LANSCE | Lujan Center | Highlights | Local iron displacements and  

NLE Websites -- All DOE Office Websites (Extended Search)

Local iron displacements and magnetoelastic coupling in a spin-ladder Local iron displacements and magnetoelastic coupling in a spin-ladder compound Hypothesis: Is magnetoelastic coupling in [FeX4]-based materials, an important ingredient in the emergence of superconductivity? Lujan Center: Combined Total Scattering and magnetic structure determination (HIPD-NPDF) The study of local, average and magnetic structure shows the existenceof highly correlated local iron (Fe) displacements in the spin-ladder iron chalcogenide BaFe2Se3. Built of ferromagnetic [Fe4] plaquettes, the magnetic ground state correlates with local displacements of the Fe atoms. Knowledge of these local displacements is essential for properly understanding the electronic structure of these systems. As with the copper oxide superconductors two decades ago, these

409

Spectroscopic Equilibrium of Iron in Metal-Rich Dwarfs  

E-Print Network (OSTI)

We analyze twenty five nearby metal-rich G and late-F dwarfs in order to verify whether the spectroscopic equilibrium (LTE) of iron lines satisfy the observational constraints imposed by the Infrared Flux Method (angular diameters) and Hipparcos parallaxes. The atmospheric parameters derived from iron lines (assuming LTE and employing 1D Kurucz model atmospheres) do not satisfy simultaneously both observational constraints, probably because classical modeling fails to reproduce the detailed line formation of FeI lines.

Jorge Melendez; Ivan Ramirez

2004-09-14T23:59:59.000Z

410

In Situ Iron Oxide Emplacement for Groundwater Arsenic Remediation  

E-Print Network (OSTI)

Iron oxide-bearing minerals have long been recognized as an effective reactive media for arsenic-contaminated groundwater remediation. This research aimed to develop a technique that could facilitate in situ oxidative precipitation of Fe3+ in a soil (sand) media for generating a subsurface iron oxide-based reactive barrier that could immobilize arsenic (As) and other dissolved metals in groundwater. A simple in situ arsenic treatment process was successfully developed for treating contaminated rural groundwater using iron oxide-coated sand (IOCS). Using imbibition flow, the system facilitated the dispersive transport of ferrous iron (Fe2+) and oxidant solutions in porous sand to generate an overlaying blanket where the Fe2+ was oxidized and precipitated onto the surface as ferric oxide. The iron oxide (FeOx) emplacement process was significantly affected by (1) the initial surface area and surface-bound iron content of the sand, (2) the pH and solubility of the coating reagents, (3) the stability of the oxidant solution, and (4) the chemical injection schedule. In contrast to conventional excavate-and-fill treatment technologies, this technique could be used to in situ replace a fresh iron oxide blanket on the sand and rejuvenate its treatment capacity for additional arsenic removal. Several bench-scale experiments revealed that the resultant IOCS could treat arsenic-laden groundwater for extended periods of time before approaching its effective life cycle. The adsorption capacity for As(III) and As(V) was influenced by (1) the amount of iron oxide accumulated on the sand surface, (2) the system pH, and (3) competition for adsorption sites from other groundwater constituents such as silicon (Si) and total dissolved solids (TDS). Although the IOCS could be replenished several times before exhaustion, the life cycle of the FeOx reactive barrier may be limited by the gradual loss of hydraulic conductivity induced by the imminent reduction of pore space over time.

Abia, Thomas Sunday

2011-12-01T23:59:59.000Z

411

Super-iron Nanoparticles with Facile Cathodic Charge Transfer  

Science Conference Proceedings (OSTI)

Super-irons contain the + 6 valence state of iron. One advantage of this is that it provides a multiple electron opportunity to store additional battery charge. A decrease of particle size from the micrometer to the nanometer domain provides a higher surface area to volume ratio, and opportunity to facilitate charge transfer, and improve the power, voltage and depth of discharge of cathodes made from such salts. However, super-iron salts are fragile, readily reduced to the ferric state, with both heat and contact with water, and little is known of the resultant passivating and non-passivating ferric oxide products. A pathway to decrease the super-iron particle size to the nano-domain is introduced, which overcomes this fragility, and retains the battery capacity advantage of their Fe(VI) valence state. Time and power controlled mechanosynthesis, through less aggressive, dry ball milling, leads to facile charge transfer of super-iron nanoparticles. Ex-situ X-ray Absorption Spectroscopy is used to explore the oxidation state and structure of these iron oxides during discharge and shows the significant change in stability of the ferrate structure to lower oxidation state when the particle size is in the nano-domain.

M Farmand; D Jiang; B Wang; S Ghosh; D Ramaker; S Licht

2011-12-31T23:59:59.000Z

412

Growth of purified calcium fluoride and magnesium fluoride and degradation of optical properties by defects  

SciTech Connect

This report describes the purification and crystal growth portion of the research undertaken in this program. Several new devices for conducting chemical operations in isolated environments were perfected. The precipitator/decanter system was the most important of these. Without it the very large number of precipitate washing cycles required would have been prohibitive due to the time required using the older design. The purification process improved the purity of both fluorides. Precipitation of the alkaline earth carbonates from an alkaline solution was extremely effective in removing alkali ions. The second stage of the process used ion-exchange to remove transition metal ions and to reduce the concentration of other alkaline earths. The third stage of the process was the precipitation and washing of the product fluoride which proved to be difficult because these fluorides form gels or sols when pure. At an ammonium fluoride concentration near 8M a satisfactory precipitate was obtained. Only after a long resting period could the precipitate be washed without converting to a gel or sol. Magnesium fluoride had a much greater tendency to form gels than the calcium salt. Crystal growth was attempted by a Stockbarger method using HF as the reactive gas. The remainder of this report describes the research on the effect of defects on the optical properties of optical materials. The Landau-Placzek ratio and the method for calculating its theoretical value is described. This establishes a comparison standard for studies of doped crystals discussed in the remaining chapters of this report. As part of the preparation of the crystals for optical studies the distribution coefficients for cadmium, calcium and lead were measured and are reported. 121 refs., 30 figs., 22 tabs.

Fredericks, W.J.; Collins, P.R.

1983-01-01T23:59:59.000Z

413

Automotive storage of hydrogen using modified magnesium hydrides. Final report, March 1976-March 1978  

DOE Green Energy (OSTI)

Metal hydrides can store more hydrogen per unit volume than normal high pressure or cryogenic techniques. Little energy is required to store the hydrogen in the hydride, and high stability at room temperature ensures low losses over long storage periods. Safety features of metal hydride storage are favorable. Because of its low weight and high hydrogen storage densities, modified magnesium hydride offers the greatest potential for automotive storage of hydrogen. Experimental and analytical work in this program has been directed toward the optimization of this storage system. Due to the relative stability of MgH/sub 2/, modifications of the MgMH/sub x/ (M = metal ion) have been made to decrease the dissociation temperature while retaining high hydrogen capacity. This parameter is crucial since vehicle exhaust will supply the thermal energy to dissociate the hydride in an automobile. System studies indicate that hydride dissociation temperature (T/sub D/) should be 200/sup 0/C to ensure uninterrupted fuel flow at all driving and idle conditions. From experimental data developed in this four task study, we conclude that alloys comprised of Mg, Cu and Ni have come closest to meeting the dissociation temperature goal. Small additions of rare-earth elements to the basic alloy also contribute to a reduction of T/sub D/. The best alloy developed in this program exhibits a T/sub D/ = 223/sup 0/C and a hydrogen capacity near four weight percent compared to a theoretical 7.65 percent for MgH/sub 2/. That alloy has been characterized for dissociation temperature, hydrogen capacity, kinetics, and P-C-T relationships. Dissociation temperature, hydrogen capacity and material cost are reported for each alloy tested in this program.

Rohy, D. A.; Nachman, J. F.; Hammer, A. N.; Duffy, T. E.

1979-01-01T23:59:59.000Z

414

Microstructure-strength relationships of heavily deformed magnesium-lithium composites containing steel fibers  

SciTech Connect

The successful development of deformation-processed metal-metal composites (DMMC) offers the potential for ductile, high-strength structural materials with high-temperature stability. An infiltration casting process was used to permeate steel wool preforms with molten magnesium-lithium (Mg-Li) alloys. The selected matrix alloys were hexagonal close packed (HCP) Mg-4wt%Li or body centered cubic (BCC) Mg-12wt%Li; the low carbon steel wool fibers were predominantly BCC ferrite. These cast HCP/BCC and BCC/BCC composites were deformed by rolling or by extrusion and swaging. Mechanical properties, microstructure, and texture development of the composites were characterized at various levels of deformation. The HCP/BCC composites had limited formability at temperatures up to 400 C while the BCC/BCC composites had excellent formability during sheet rolling at room temperature but limited formability during swaging at room temperature. The tensile strengths of these HCP/BCC and BCC/BCC composite materials increased moderately with deformation, though less than predicted from rule of mixtures (ROM) calculations. The microstructure was characterized to correlate the filament size to the deformation strain and mechanical properties of the composite material. Stereological measurements of the filament size were used to adjust ROM calculations to reflect the actual deformation strain in the fibers. However, the experimental strengths of these composite materials were still less than ROM predictions, possibly due to the presence of considerably large fibers. Of the many models used to describe the strengthening observed in DMMC materials, the Hall-Petch relationship adequately described the experimental data. Texture development was also characterized to explain the deformation characteristics of the composite materials. Chapters 2, 3 and 4 are not included here. They are being processed separately.

Jensen, J.

1997-10-08T23:59:59.000Z

415

Purification of silicon by the silicon fluoride transport process. Thermochemical study  

DOE Green Energy (OSTI)

A computer-assisted thermochemical equilibrium analysis was conducted for the silicon transport reaction: Si(s) + SiF/sub 4/(g) = (intermediates) = Si(s) + SiF/sub 4/(g). The calculations indicated that a substantial transport rate should be possible at temperatures of 1700/sup 0/K and one atmosphere pressure. Computations were made to determine whether the elemental impurities present in metallurgical-grade silicon would transfer in this process. It was concluded that aluminum, chromium, copper, iron, manganese, molybdenum, nickel, vanadium, and zirconium would not transfer, but that boron, magnesium, phosphorus, and titanium would transfer.

Rhein, R.A.

1979-04-15T23:59:59.000Z

416

Microstructural Characterization of Nodular Ductile Iron  

SciTech Connect

The objective of this study is to quantify the graphite particle phase in nodular ductile iron (NDI). This study provides the basis for initializing microstructure in direct numerical simulations, as part of developing microstructure-fracture response models. The work presented here is a subset of a PhD dissertation on spall fracture in NDI. NDI is an ideal material for studying the influence of microstructure on ductile fracture because it contains a readily identifiable second-phase particle population, embedded in a ductile metallic matrix, which serves as primary void nucleation sites. Nucleated voids grow and coalesce under continued tensile loading, as part of the micromechanisms of ductile fracture, and lead to macroscopic failure. For this study, we used 2D optical microscopy and quantitative metallography relationships to characterize the volume fraction, size distribution, nearest-neighbor distance, and other higher-order metrics of the graphite particle phase. We found that the volume fraction was {Phi} = 0.115, the average particle diameter was d{sub avg} = 25.9 {mu}m, the Weibull shape and scaling parameters were {beta} = 1.8 and {eta} = 29.1 {mu}m, respectively, the (first) nearest neighbor distance was L{sub nn} = 32.4 {mu}m, the exponential coefficients for volume fraction fluctuations was A{sub {Phi}} = 1.89 and B{sub {Phi}} = -0.59, respectively. Based on reaching a coefficient-of-variation (COV) of 0.01, the representative volume element (RVE) size was determined to be 8.9L{sub nn} (288 {mu}m).

Springer, H K

2012-01-03T23:59:59.000Z

417

Insights into the Structure and Metabolic Function of Microbes That Shape Pelagic Iron-Rich Aggregates ( Iron Snow )  

SciTech Connect

Metaproteomics combined with total nucleic acid-based methods aided in deciphering the roles of microorganisms in the formation and transformation of iron-rich macroscopic aggregates (iron snow) formed in the redoxcline of an acidic lignite mine lake. Iron snow had high total bacterial 16S rRNA gene copies, with 2 x 109 copies g (dry wt)-1 in the acidic (pH 3.5) central lake basin and 4 x 1010 copies g (dry wt)-1 in the less acidic (pH 5.5) northern lake basin. Active microbial communities in the central basin were dominated by Alphaproteobacteria (36.6%) and Actinobacteria (21.4%), and by Betaproteobacteria (36.2%) in the northern basin. Microbial Fe-cycling appeared to be the dominant metabolism in the schwertmannite-rich iron snow, because cloning and qPCR assigned up to 61% of active bacteria as Fe-cycling bacteria (FeB). Metaproteomics revealed 70 unique proteins from central basin iron snow and 283 unique proteins from 43 genera from northern basin. Protein identification provided a glimpse into in situ processes, such as primary production, motility, metabolism of acidophilic FeB, and survival strategies of neutrophilic FeB. Expression of carboxysome shell proteins and RubisCO indicated active CO2 fixation by Fe(II) oxidizers. Flagellar proteins from heterotrophs indicated their activity to reach and attach surfaces. Gas vesicle proteins related to CO2-fixing Chlorobium suggested that microbes could influence iron snow sinking. We suggest that iron snow formed by autotrophs in the redoxcline acts as a microbial parachute, since it is colonized by motile heterotrophs during sinking which start to dissolve schwertmannite.

Lu, S [Friedrich Schiller University Jena, Jena Germany; Chourey, Karuna [ORNL; REICHE, M [Friedrich Schiller University Jena, Jena Germany; Nietzsche, S [Friedrich Schiller University Jena, Jena Germany; Shah, Manesh B [ORNL; Hettich, Robert {Bob} L [ORNL; Kusel, K [Friedrich Schiller University Jena, Jena Germany

2013-01-01T23:59:59.000Z

418

Atomistic modeling of nanowires, small-scale fatigue damage in cast magnesium, and materials for MEMS.  

Science Conference Proceedings (OSTI)

Lightweight and miniaturized weapon systems are driving the use of new materials in design such as microscale materials and ultra low-density metallic materials. Reliable design of future weapon components and systems demands a thorough understanding of the deformation modes in these materials that comprise the components and a robust methodology to predict their performance during service or storage. Traditional continuum models of material deformation and failure are not easily extended to these new materials unless microstructural characteristics are included in the formulation. For example, in LIGA Ni and Al-Si thin films, the physical size is on the order of microns, a scale approaching key microstructural features. For a new potential structural material, cast Mg offers a high stiffness-to-weight ratio, but the microstructural heterogeneity at various scales requires a structure-property continuum model. Processes occurring at the nanoscale and microscale develop certain structures that drive material behavior. The objective of the work presented in this report was to understand material characteristics in relation to mechanical properties at the nanoscale and microscale in these promising new material systems. Research was conducted primarily at the University of Colorado at Boulder to employ tightly coupled experimentation and simulation to study damage at various material size scales under monotonic and cyclic loading conditions. Experimental characterization of nano/micro damage will be accomplished by novel techniques such as in-situ environmental scanning electron microscopy (ESEM), 1 MeV transmission electron microscopy (TEM), and atomic force microscopy (AFM). New simulations to support experimental efforts will include modified embedded atom method (MEAM) atomistic simulations at the nanoscale and single crystal micromechanical finite element simulations. This report summarizes the major research and development accomplishments for the LDRD project titled 'Atomistic Modeling of Nanowires, Small-scale Fatigue Damage in Cast Magnesium, and Materials for MEMS'. This project supported a strategic partnership between Sandia National Laboratories and the University of Colorado at Boulder by providing funding for the lead author, Ken Gall, and his students, while he was a member of the University of Colorado faculty.

Dunn, Martin L. (University of Colorado, Boulder, CO); Talmage, Mellisa J. (University of Colorado, Boulder, CO); McDowell, David L., 1956- (,-Georgia Institute of Technology, Atlanta, GA); West, Neil (University of Colorado, Boulder, CO); Gullett, Philip Michael (Mississippi State University , MS); Miller, David C. (University of Colorado, Boulder, CO); Spark, Kevin (University of Colorado, Boulder, CO); Diao, Jiankuai (University of Colorado, Boulder, CO); Horstemeyer, Mark F. (Mississippi State University , MS); Zimmerman, Jonathan A.; Gall, K (Georgia Institute of Technology, Atlanta, GA)

2006-10-01T23:59:59.000Z

419

The influence of zeta potential and yield stress on the filtration characteristics of a magnesium hydroxide simulant  

Science Conference Proceedings (OSTI)

In the UK, irradiated fuels from Magnox reactors are often stored in water-filled ponds under alkaline conditions, so as to minimise corrosion of fuel cladding. This is important to prevent or reduce leakage of soluble fission products and actinides to the pond water. A variety of intermediate level wastes derived from Magnox materials are stored at power stations. Under these alkaline conditions, various species of magnesium are formed, of which magnesium hydroxide is the dominant material. The particle-fluid interactions are significant for the design and operation of facilities for hydraulic retrieval, filtration, dewatering and ion exchange treatment of fuel storage pond water and stored wet Magnox wastes. Here we describe a study of particulate properties and filtration characteristics of oxide particle simulants under laboratory conditions. Cake and medium resistance data were correlated across a range of pH conditions with electro-acoustic zeta potential and shear yield stress measurements, as a function of particle volume fractions. The influence of zeta potential on filtration properties arises directly from the interaction of particles within the sediment cake. (authors)

Biggs, Simon; Nabi, Rafiq; Poole, Colin [Leeds University/Nexia Solutions URA in Particle Science and Technology, Institute of Particle Science and Engineering, School of Process, Environmental and Materials Engineering, The University of Leeds, Leeds LS2 9JT (United Kingdom); Patel, Ashok [British Nuclear Group, Reactor Sites, Berkeley Centre, Berkeley, Gloucestershire, GL13 9PB (United Kingdom)

2007-07-01T23:59:59.000Z

420

Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Iron and Steel Industry in China  

E-Print Network (OSTI)

Potentials in the Iron and steel Industry in China. Reportfor the U.S. Iron and Steel Industry. An ENERGY STAR Guidein the U.S. Iron and Steel Industry. Report LBNL-41724.

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "iron magnesium manganese" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Flow-Assisted Alkaline Battery: Low-Cost Grid-Scale Electrical Storage using a Flow-Assisted Rechargeable Zinc-Manganese Dioxide Battery  

SciTech Connect

GRIDS Project: Traditional consumer-grade disposable batteries are made of Zinc and Manganese, 2 inexpensive, abundant, and non-toxic metals. But these disposable batteries can only be used once. If they are recharged, the Zinc in the battery develops filaments called dendrites that grow haphazardly and disrupt battery performance, while the Manganese quickly loses its ability to store energy. CUNY Energy Institute is working to tame dendrite formation and to enhance the lifetime of Manganese in order to create a long-lasting, fully rechargeable battery for grid-scale energy storage. CUNY Energy Institute is also working to reduce dendrite formation by pumping fluid through the battery, enabling researchers to fix the dendrites as they’re forming. The team has already tested its Zinc battery through 3,000 recharge cycles (and counting). CUNY Energy Institute aims to demonstrate a better cycle life than lithium-ion batteries, which can be up to 20 times more expensive than Zinc-based batteries.

2010-09-15T23:59:59.000Z

422

Ductile aluminide alloys for high temperature applications  

DOE Patents (OSTI)

Alloys are described which contain nickel, aluminum, boron, iron and in some instances manganese, niobium and titanium.

Liu, Chain T. (Oak Ridge, TN); Koch, Carl C. (Oak Ridge, TN)

1987-01-01T23:59:59.000Z

423

Mechanical Characterization of Nodular Ductile Iron  

SciTech Connect

The objective of this study is to characterize the strength and fracture response of nodular ductile iron (NDI) and its underlying ferritic matrix phase. Quasistatic and split Hopkinson pressure bar (SHPB) compression tests were performed on NDI and a model material for the NDI matrix phase (Fe-Si alloy). Smooth and notch round bar (NRB) samples were loaded in tension until fracture to determine strain-at-failure with varying stress triaxiality. Multiple tests were performed on each small and large smooth bar samples to obtain fracture statistics with sample size. Fracture statistics are important for initializing simulations of fragmentation events. Johnson-Cook strength models were developed for the NDI and the Fe-Si alloy. NDI strength model parameters are: A = 525 MPa, B = 650 MPa, n = 0.6, and C = 0.0205. The average SHPB experimental strain-rate of 2312/s was used for the reference strain-rate in this model. Fe-Si alloy strength model parameters are: A=560 MPa, B = 625 MPa, n = 0.5, and C = 0.02. The average SHPB experimental strain-rate of 2850/s was used for the reference strain-rate in this model. A Johnson-Cook failure model was developed for NDI with model parameters: D{sub 1} = 0.029, D{sub 2} = 0.44, D{sub 3} = -1.5, and D{sub 4} = D{sub 5} = 0. An exponential relationship was developed for the elongation-at-failure statistics as a function of length-scale with model parameters: S{sub f1} = 0.108, S{sub f2} = -0.00169, and L{sub m} = 32.4 {mu}m. NDI strength and failure models, including failure statistics, will be used in continuum-scale simulations of explosively-driven ring fragmentation. The Fe-Si alloy strength model will be used in mesoscale simulations of spall fracture in NDI, where the NDI matrix phase is captured explicitly.

Springer, H K

2012-01-03T23:59:59.000Z

424

The Iron Spin Transition in the Earth's Lower Mantle  

NLE Websites -- All DOE Office Websites (Extended Search)

The Iron Spin Transition in the Earth's Lower Mantle Print The Iron Spin Transition in the Earth's Lower Mantle Print It is now known that the iron present in minerals of the lower mantle of the Earth undergoes a pressure-induced transition with pairing of the spins of its 3d electrons. A team from the University of California, Berkeley, Tel Aviv University, and Lawrence Livermore National Laboratory has used x-ray diffraction at very high pressure to investigate the effects of this transition on the elastic properties of magnesiowüstite (Mg1-xFex)O, the second most abundant mineral in the Earth's lower mantle. The new results suggest that the effect of the spin-pairing transition on magnesiowüstite can be large enough to require a partial revision of the most accepted model of the lower mantle composition.

425

The Iron Spin Transition in the Earth's Lower Mantle  

NLE Websites -- All DOE Office Websites (Extended Search)

The Iron Spin Transition in the Earth's Lower Mantle Print The Iron Spin Transition in the Earth's Lower Mantle Print It is now known that the iron present in minerals of the lower mantle of the Earth undergoes a pressure-induced transition with pairing of the spins of its 3d electrons. A team from the University of California, Berkeley, Tel Aviv University, and Lawrence Livermore National Laboratory has used x-ray diffraction at very high pressure to investigate the effects of this transition on the elastic properties of magnesiowüstite (Mg1-xFex)O, the second most abundant mineral in the Earth's lower mantle. The new results suggest that the effect of the spin-pairing transition on magnesiowüstite can be large enough to require a partial revision of the most accepted model of the lower mantle composition.

426

The Iron Spin Transition in the Earth's Lower Mantle  

NLE Websites -- All DOE Office Websites (Extended Search)

The Iron Spin Transition in the Earth's Lower Mantle Print The Iron Spin Transition in the Earth's Lower Mantle Print It is now known that the iron present in minerals of the lower mantle of the Earth undergoes a pressure-induced transition with pairing of the spins of its 3d electrons. A team from the University of California, Berkeley, Tel Aviv University, and Lawrence Livermore National Laboratory has used x-ray diffraction at very high pressure to investigate the effects of this transition on the elastic properties of magnesiowüstite (Mg1-xFex)O, the second most abundant mineral in the Earth's lower mantle. The new results suggest that the effect of the spin-pairing transition on magnesiowüstite can be large enough to require a partial revision of the most accepted model of the lower mantle composition.

427

X-ray absorption spectroscopy on the calcium cofactor to the manganese cluster in photosynthetic oxygen evolution  

Science Conference Proceedings (OSTI)

Along with Mn, calcium and chloride ions are necessary cofactors for oxygen evolution in Photosystem II (PS II). To further test and verify whether Ca is close to the Mn cluster, the authors substituted strontium for Ca and probed from the Sr point of view for any nearby Mn. The extended X-ray absorption fine structure (EXAFS) of Sr-reactivated PS II indicates major differences between the intact and NH{sub 2}OH-treated samples. In intact samples, the Fourier transform of the Sr EXAFS shows a Fourier peak that is missing in inactive samples. This peak II is best simulated by two Mn neighbors at a distance of 3.5 Angstrom, confirming the proximity of Ca (Sr) cofactor to the Mn cluster. In addition, polarized Sr EXAFS on oriented Sr-reactivated samples shows this peak II is dichroic: large magnitude at 10 degrees (angle between the PS II membrane normal and the x-ray electric field vector) and small at 80 degrees. Analysis of the dichroism yields the relative angle between the Sr-Mn vector and membrane normal (23 degrees {+-} 4 degrees), and the isotropic coordination number for these layered samples. X-ray absorption spectroscopy has also been employed to assess the degree of similarity between the manganese cluster in PS II and a family of synthetic manganese complexes containing the distorted cubane [Mn{sub 4}O{sub 3}X] core (X = benzoate, acetate, methoxide, hydroxide, azide, fluoride, chloride or bromide). In addition, Mn{sub 4}O{sub 3}Cl complexes containing three or six terminal Cl ligands at three of the Mn were included in this study. The EXAFS method detects the small changes in the core structures as X is varied in this series, and serves to exclude these distorted cubanes of C3v symmetry as a topological model for the Mn catalytic cluster. The sulfur K-edge x-ray absorption near-edge structure (XANES) spectra for the amino acids cysteine, methionine, their corresponding oxidized forms cystine and methionine sulfoxide, and glutathione show distinct differences between the thiol and disulfide forms. Sulfur XANES is also used to detect changes (within 5%) of the thiol-to-disulfide ratio in whole human blood, plasma, and erythrocytes.

Cinco, Roehl M.

1999-12-16T23:59:59.000Z

428

Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

scrap steel, pig iron, or direct reduced iron (DRI) using anthe production of direct reduced iron (DRI). DRI is producedDirect current Direct reduced iron Electric arc furnace

Worrell, Ernst

2011-01-01T23:59:59.000Z

429

Influence of Iron Redox Transformations on Plutonium Sorption to Sediments  

SciTech Connect

Plutonium subsurface mobility is primarily controlled by its oxidation state, which in turn is loosely coupled to the oxidation state of iron in the system. Experiments were conducted to examine the effect of sediment iron mineral composition and oxidation state on plutonium sorption and oxidation state. A pH 6.3 vadose zone sediment containing iron oxides and iron-containing phyllosilicates was treated with various complexants (ammonium oxalate) and reductants (dithionite-citrate-bicarbonate) to selectively leach and/or reduce iron oxide and phyllosilicate phases. Mössbauer spectroscopy was used to identify initial iron mineral composition of the sediment and monitor dissolution and reduction of iron oxides. Sorption of Pu(V) was monitored over one week for each of six treated sediment fractions. Plutonium oxidation state speciation in the aqueous and solid phases was monitored using solvent extraction, coprecipitation, and XANES. Mössbauer spectroscopy showed that the sediment contained 25-30% hematite, 60-65% Al-goethite, and <10%Fe(III) in phyllosilicate; there was no detectable Fe(II). Upon reduction with a strong chemical reductant (dithionite-citrate buffer, DCB), much of the hematite and goethite disappeared and the Fe in the phyllosilicate reduced to Fe(II). The rate of sorption was found to correlate with the 1 fraction of Fe(II) remaining within each treated sediment phase. Pu(V) was the only oxidation state measured in the aqueous phase, irrespective of treatment, whereas Pu(IV) and much smaller amounts of Pu(V) and Pu(VI) were measured in the solid phase. Surface-mediated reduction of Pu(V) to Pu(IV) occurred in treated and untreated sediment samples; Pu(V) remained on untreated sediment surface for two days before reducing to Pu(IV). Similar to the sorption kinetics, the reduction rate was correlated with sediment Fe(II) concentration. The correlation between Fe(II) concentrations and Pu(V) reduction demonstrates the potential impact of changing iron mineralogy on plutonium subsurface transport through redox transition areas. These findings should influence the conceptual models of long-term stewardship of Pu contaminated sites that have fluctuating redox conditions, such as vadose zones or riparian zones.

Hixon, Amy E.; Hu, Yung-Jin; Kaplan, Daniel I.; Kukkadapu, Ravi K.; Nitsche, Heino; Qafoku, Odeta; Powell, Brian A.

2010-10-01T23:59:59.000Z

430

Recovery of iron oxide from coal fly ash  

DOE Patents (OSTI)

A high quality iron oxide concentrate, suitable as a feed for blast and electric reduction furnaces is recovered from pulverized coal fly ash. The magnetic portion of the fly ash is separated and treated with a hot strong alkali solution which dissolves most of the silica and alumina in the fly ash, leaving a solid residue and forming a precipitate which is an acid soluble salt of aluminosilicate hydrate. The residue and precipitate are then treated with a strong mineral acid to dissolve the precipitate leaving a solid residue containing at least 90 weight percent iron oxide.

Dobbins, Michael S. (Ames, IA); Murtha, Marlyn J. (Ames, IA)

1983-05-31T23:59:59.000Z

431

V-021: Cisco IronPort Web / Email Security Appliance Sophos Anti...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: Cisco IronPort Web Email Security Appliance Sophos Anti-Virus Multiple Vulnerabilities V-021: Cisco IronPort Web Email Security Appliance Sophos Anti-Virus Multiple...

432

Interactions of Fe(II) with the iron oxidizing bacterium Rhodopseudomonas palustris TIE-1  

E-Print Network (OSTI)

Microbial anaerobic iron oxidation has long been of interest to biologists and geologists, both as a possible mechanism for the creation of banded iron formations before the rise of oxygen, and as a model system for organisms ...

Bird, Lina J. (Lina Joana)

2013-01-01T23:59:59.000Z

433

Characterization of temperature profile in furnace and solubility of iron in silicon  

E-Print Network (OSTI)

A better understanding of the behavior of impurities, such as iron, in silicon can lead to increases in solar cell efficiency. The purpose of this thesis was to study the behavior of iron in silicon via three sub-tasks: ...

Modi, Vrajesh Y

2011-01-01T23:59:59.000Z

434

New trends in industrial energy efficiency in the Mexico iron and steel industry  

E-Print Network (OSTI)

de Ingeniería, U N A M . , Mexico Energy Analysis Program atIndustrial Energy Efficiency in the Mexico: Iron and Steelenergy consumption of the iron and steel industry is the feedstock. In Mexico,

Ozawa, Leticia; Martin, Nathan; Worrell, Ernst; Price, Lynn; Sheinbaum, Claudia

1999-01-01T23:59:59.000Z

435

Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Iron and Steel Industry in China  

E-Print Network (OSTI)

electricity and fuel prices differ between industries andelectricity and fuel efficiency improvements in the iron and steel industryprice of electricity paid by the iron and steel industry in

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

436

Evaluating the improvement of corrosion residual strength by adding 1.0 wt.% yttrium into an AZ91D magnesium alloy  

SciTech Connect

The influence of yttrium on the corrosion residual strength of an AZ91D magnesium alloy was investigated detailedly. Scanning electron microscope was employed to analyze the microstructure and the fractography of the studied alloys. The microstructure of AZ91D magnesium alloy is remarkably refined due to the addition of yttrium. The electrochemical potentiodynamic polarization curve of the studied alloy was performed with a CHI 660b electrochemical station in the three-electrode system. The result reveals that yttrium significantly promotes the overall corrosion resistance of AZ91D magnesium alloy by suppressing the cathodic reaction in corrosion process. However, the nucleation and propagation of corrosion pits on the surface of the 1.0 wt.% Y modified AZ91D magnesium alloy indicate that pitting corrosion still emerges after the addition of yttrium. Furthermore, stress concentration caused by corrosion pits should be responsible for the drop of corrosion residual strength although the addition of yttrium remarkably weakens the effect of stress concentration at the tip of corrosion pits in loading process.

Wang Qiang [Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun, 130025 (China); Liu Yaohui, E-mail: liuyaohui2005@yahoo.com [Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun, 130025 (China); Fang Shijie [Department of Mechanical and Electrical Engineering, Luoyang Institute of Science and Technology, Luoyang 471023 (China); Song Yulai; Zhang Dawei; Zhang Lina; Li Chunfang [Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun, 130025 (China)

2010-06-15T23:59:59.000Z

437

Gas Diffusion in Metals: Fundamental Study of Helium-Point Defect Interactions in Iron and Kinetics of Hydrogen Desorption from Zirconium Hydride  

E-Print Network (OSTI)

Steel irradiated in HFIR, as reproduced from Ref. [irons placed in HFIR. .. 97   Table 6-iron in HFIR. .. 102  

Hu, Xunxiang

2013-01-01T23:59:59.000Z

438

Electrochemical and structural characterization of titanium-substituted manganese oxides based on Na0.44MnO2  

DOE Green Energy (OSTI)

A series of titanium-substituted manganese oxides, Li{sub x}Ti{sub y}Mn{sub 1-y}O{sub 2} (y = 0.11, 0.22, 0.33, 0.44, and 0.55) with the Na{sub 0.44}MnO{sub 2} structure were prepared from Na{sub x}Ti{sub y}Mn{sub 1-y}O{sub 2} (x {approx} 0.44) precursors. The electrochemical characteristics of these compounds, which retain the unique double-tunnel structure during ion exchange, were examined in lithium/polymer electrolyte cells operating at 85 C. All of the substituted cathode materials intercalated lithium reversibly, with Li{sub x}Ti{sub 0.22}Mn{sub 0.78}O{sub 2} exhibiting the highest capacity in polymer cells, about 10-20% greater than that of unsubstituted Li{sub x}MnO{sub 2} made from Na{sub 0.44}MnO{sub 2}. In common with Li{sub x}MnO{sub 2}, the Ti-substituted materials exhibited good capacity retention over one hundred or more cycles, with some compositions exhibiting a fade rate of less than 0.03% per cycle.

Doeff, Marca M.; Richardson, Thomas J.; Hwang, Kwang-Taek

2004-03-01T23:59:59.000Z

439

A modeling approach for iron concentration in sand filtration effluent using adaptive neuro-fuzzy model  

Science Conference Proceedings (OSTI)

Effluent iron concentration is an important water quality criterion used for the assessment of the performance of rapid sand filters, in addition to other criteria. This study deals with the prediction of effluent iron concentrations by adaptive neuro-fuzzy ... Keywords: ANFIS, Effluent iron concentration, Modeling, Sand filtration

Mehmet Çakmakci; Cumali Kinaci; Mahmut Bayramo?lu; Y?lmaz Yildirim

2010-03-01T23:59:59.000Z

440

Porous iron and ferric oxide pellets for hydrogen storage: texture and transport characteristics  

Science Conference Proceedings (OSTI)

Materials for hydrogen storage based on the recovery reduction of Fe3O4 to iron and back iron oxidation to Fe3O4 by water vapor were studied. The preparation conditions for cylindrical pellets from ferric oxide/aluminium ... Keywords: hydrogen storage, inverse gas chromatography, steam iron process, transport parameters

Karel Soukup; Jan Rogut; Jacek Grabowski; Marian Wiatowski; Magdalena Ludwik-Parda?a; Petr Schneider; Olga Šolcová

2010-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "iron magnesium manganese" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Survey of Iron and Nickel Concentrations in PWR Primary Coolant  

Science Conference Proceedings (OSTI)

The concentrations of iron and nickel corrosion products in primary coolant water were measured at eleven different pressurized water reactors. Two reactors experienced anomalies in the axial power distribution during the cycles that were sampled. The axial power distribution anomalies appeared to be associated with high-coolant nickel concentrations early in the fuel cycle.

2001-07-27T23:59:59.000Z

442

Abundance Analysis of Planetary Host Stars I. Differential Iron Abundances  

E-Print Network (OSTI)

We present atmospheric parameters and iron abundances derived from high-resolution spectra for three samples of dwarf stars: stars which are known to host close-in giant planets (CGP), stars for which radial velocity data exclude the presence of a close-in giant planetary companion (no-CGP), as well as a random sample of dwarfs with a spectral type and magnitude distribution similar to that of the planetary host stars (control). All stars have been observed with the same instrument and have been analyzed using the same model atmospheres, atomic data and equivalent width modeling program. Abundances have been derived differentially to the Sun, using a solar spectrum obtained with Callisto as the reflector with the same instrumentation. We find that the iron abundances of CGP dwarfs are on average by 0.22 dex greater than that of no-CGP dwarfs. The iron abundance distributions of both the CGP and no-CGP dwarfs are different than that of the control dwarfs, while the combined iron abundances have a distribution which is very similar to that of the control dwarfs. All four samples (CGP, no-CGP, combined, control) have different effective temperature distributions. We show that metal enrichment occurs only for CGP dwarfs with temperatures just below solar and approximately 300 K higher than solar, whereas the abundance difference is insignificant at Teff around 6000 K.

U. Heiter; R. E. Luck

2003-07-16T23:59:59.000Z

443

Radiofrequency characterization of polydimethylsiloxane - iron oxide based nanocomposites  

Science Conference Proceedings (OSTI)

Colloidal iron oxide nanoparticles with diameters ranging from 15+/-1nm up to 29+/-3nm are used as pure dielectric fillers for nanoparticles-doped nanocomposites. We show that their superparamagnetic behavior allows them to increase the real dielectric ... Keywords: Magnetic nanoparticles, Nanocomposite, Polydimethylsiloxane, Radiofrequency

Ferruccio Pisanello, Rosa De Paolis, Daniela Lorenzo, Simone Nitti, Giuseppina Monti, Despina Fragouli, Athanassia Athanassiou, Liberato Manna, Luciano Tarricone, Massimo De Vittorio, Luigi Martiradonna

2013-11-01T23:59:59.000Z

444

Oxide Dispersion Strengthened Iron Aluminide by CVD Coated Powders  

SciTech Connect

This I &I Category2 program developed chemical vapor deposition (CVD) of iron, aluminum and aluminum oxide coated iron powders and the availability of high temperature oxidation, corrosion and erosion resistant coating for future power generation equipment and can be used for retrofitting existing fossil-fired power plant equipment. This coating will provide enhanced life and performance of Coal-Fired Boilers components such as fire side corrosion on the outer diameter (OD) of the water wall and superheater tubing as well as on the inner diameter (ID) and OD of larger diameter headers. The program also developed a manufacturing route for readily available thermal spray powders for iron aluminide coating and fabrication of net shape component by powder metallurgy route using this CVD coated powders. This coating can also be applid on jet engine compressor blade and housing, industrial heat treating furnace fixtures, magnetic electronic parts, heating element, piping and tubing for fossil energy application and automotive application, chemical processing equipment , heat exchanger, and structural member of aircraft. The program also resulted in developing a new fabrication route of thermal spray coating and oxide dispersion strengthened (ODS) iron aluminide composites enabling more precise control over material microstructures.

Asit Biswas Andrew J. Sherman

2006-09-25T23:59:59.000Z

445

Iron Recovery from Copper Slag through Oxidation-magnetic ...  

Science Conference Proceedings (OSTI)

Recovery of iron from the copper slag is very essential not only for recycling the valuable ... Characterization of High-arsenic Sludge in Copper Metallurgy Plant ... Characterization of Waste from Ornamental Stones for Use in Mortar ... Effect of Friction Stir Welding Speed and Post Weld Heat Treatment on the Microstructure

446

Iron Biomineralization: Implications on the Fate of Arsenic in Landfills  

E-Print Network (OSTI)

these arsenic-bearing solid residuals (ABSR) pass the Toxicity Characteristic Leaching Procedure (TCLP in our laboratory as well as other labs, has shown that the TCLP greatly underestimates the ABSR leaching concentrations of As. Iron reduction led to arsenic release into solution, where arsenic was reduced. #12;Figure

Cushing, Jim. M.

447

Superconducting composite with multilayer patterns and multiple buffer layers  

DOE Patents (OSTI)

An article of manufacture is described including a substrate, a patterned interlayer of a material selected from the group consisting of magnesium oxide, barium-titanium oxide or barium-zirconium oxide, the patterned interlayer material overcoated with a secondary interlayer material of yttria-stabilized zirconia or magnesium-aluminum oxide, upon the surface of the substrate whereby an intermediate article with an exposed surface of both the overcoated patterned interlayer and the substrate is formed, a coating of a buffer layer selected from the group consisting of cerium oxide, yttrium oxide, curium oxide, dysprosium oxide, erbium oxide, europium oxide, iron oxide, gadolinium oxide, holmium oxide, indium oxide, lanthanum oxide, manganese oxide, lutetium oxide, neodymium oxide, praseodymium oxide, plutonium oxide, samarium oxide, terbium oxide, thallium oxide, thulium oxide, yttrium oxide and ytterbium oxide over the entire exposed surface of the intermediate article, and, a ceramic superconductor. 5 figures.

Wu, X.D.; Muenchausen, R.E.

1993-10-12T23:59:59.000Z

448

Iron Aerogel and Xerogel Catalysts for Fischer-Tropsch Synthesis of Diesel Fuel  

SciTech Connect

Iron aerogels, potassium-doped iron aerogels, and potassium-doped iron xerogels have been synthesized and characterized and their catalytic activity in the Fischer-Tropsch (F-T) reaction has been studied. Iron aerogels and xerogels were synthesized by polycondensation of an ethanolic solution of iron(III) chloride hexahydrate with propylene oxide which acts as a proton scavenger for the initiation of hydrolysis and polycondensation. Potassium was incorporated in the iron aerogel and iron xerogel by adding aqueous K{sub 2}CO{sub 3} to the ethanolic solutions of the Fe(III) precursor prior to addition of propylene oxide. Fischer-Tropsch activities of the catalysts were tested in a fixed bed reactor at a pressure of 100 psi with a H{sub 2}:CO ratio of 2:1. Iron aerogels were found to be active for F-T synthesis, and their F-T activities increased on addition of a K containing promoter. Moessbauer spectroscopic data are consistent with an open, nonrigid iron(III) aerogel structure progressing to an iron carbide/metallic iron catalyst via agglomeration as the F-T synthesis proceeds in the course of a 35 h fixed bed reaction test.

Bali, S.; Huggins, F; Huffman, G; Ernst, R; Pugmire, R; Eyring, E

2009-01-01T23:59:59.000Z

449

V-021: Cisco IronPort Web / Email Security Appliance Sophos Anti-Virus  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

21: Cisco IronPort Web / Email Security Appliance Sophos 21: Cisco IronPort Web / Email Security Appliance Sophos Anti-Virus Multiple Vulnerabilities V-021: Cisco IronPort Web / Email Security Appliance Sophos Anti-Virus Multiple Vulnerabilities November 12, 2012 - 6:00am Addthis PROBLEM: Cisco IronPort Web / Email Security Appliance Sophos Anti-Virus Multiple Vulnerabilities PLATFORM: Cisco IronPort Email Security Appliances (C-Series and X-Series) running Sophos Engine versions 3.2.07.352_4.80 and prior. Cisco IronPort Web Security Appliances (S-Series) running Sophos Engine versions 3.2.07.352_4.80 and prior. ABSTRACT: Cisco Ironport Appliances Sophos Anti-Virus Vulnerabilities. REFERENCE LINKS: Cisco Security Advisory ID: cisco-sa-20121108-sophos Secunia Advisory SA51197 IMPACT ASSESSMENT: High DISCUSSION: Cisco has acknowledged some vulnerabilities in Cisco IronPort Web Security

450

V-021: Cisco IronPort Web / Email Security Appliance Sophos Anti-Virus  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: Cisco IronPort Web / Email Security Appliance Sophos 1: Cisco IronPort Web / Email Security Appliance Sophos Anti-Virus Multiple Vulnerabilities V-021: Cisco IronPort Web / Email Security Appliance Sophos Anti-Virus Multiple Vulnerabilities November 12, 2012 - 6:00am Addthis PROBLEM: Cisco IronPort Web / Email Security Appliance Sophos Anti-Virus Multiple Vulnerabilities PLATFORM: Cisco IronPort Email Security Appliances (C-Series and X-Series) running Sophos Engine versions 3.2.07.352_4.80 and prior. Cisco IronPort Web Security Appliances (S-Series) running Sophos Engine versions 3.2.07.352_4.80 and prior. ABSTRACT: Cisco Ironport Appliances Sophos Anti-Virus Vulnerabilities. REFERENCE LINKS: Cisco Security Advisory ID: cisco-sa-20121108-sophos Secunia Advisory SA51197 IMPACT ASSESSMENT: High DISCUSSION: Cisco has acknowledged some vulnerabilities in Cisco IronPort Web Security

451

Use of bimodal carbon distribution in compacts for producing metallic iron nodules  

SciTech Connect

A method for use in production of metallic iron nodules comprising providing a reducible mixture into a hearth furnace for the production of metallic iron nodules, where the reducible mixture comprises a quantity of reducible iron bearing material, a quantity of first carbonaceous reducing material of a size less than about 28 mesh of an amount between about 65 percent and about 95 percent of a stoichiometric amount necessary for complete iron reduction of the reducible iron bearing material, and a quantity of second carbonaceous reducing material with an average particle size greater than average particle size of the first carbonaceous reducing material and a size between about 3 mesh and about 48 mesh of an amount between about 20 percent and about 60 percent of a stoichiometric amount of necessary for complete iron reduction of the reducible iron bearing material.

Iwasaki, Iwao

2012-10-16T23:59:59.000Z

452

Effect of thermal treatment on coke reactivity and catalytic iron mineralogy  

SciTech Connect

Iron minerals in coke can catalyze its gasification and may affect coke behavior in the blast furnace. The catalytic behavior of iron depends largely upon the nature of the iron-bearing minerals. To determine the mineralogical changes that iron could undergo in the blast furnace, cokes made from three coals containing iron present in different mineral forms (clays, carbonates, and pyrite) were examined. All coke samples were heat-treated in a horizontal furnace at 1373, 1573, and 1773 K and then gasified with CO{sub 2} at 1173 K in a fixed bed reactor (FBR). Coke mineralogy was characterized using quantitative X-ray diffraction (XRD) analysis of coke mineral matter prepared by low-temperature ashing (LTA) and field emission scanning electron microscopy combined with energy dispersive X-ray analysis (FESEM/EDS). The mineralogy of the three cokes was most notably distinguished by differing proportions of iron-bearing phases. During heat treatment and subsequent gasification, iron-containing minerals transformed to a range of minerals but predominantly iron-silicides and iron oxides, the relative amounts of which varied with heat treatment temperature and gasification conditions. The relationship between initial apparent reaction rate and the amount of catalytic iron minerals - pyrrhotite, metallic iron, and iron oxides - was linear and independent of heat treatment temperature at total catalyst levels below 1 wt %. The study showed that the coke reactivity decreased with increasing temperature of heat treatment due to decreased levels of catalytic iron minerals (largely due to formation of iron silicides) as well as increased ordering of the carbon structure. The study also showed that the importance of catalytic mineral matter in determining reactivity declines as gasification proceeds. 37 refs., 13 figs., 7 tabs.

Byong-chul Kim; Sushil Gupta; David French; Richard Sakurovs; Veena Sahajwalla [University of New South Wales, Sydney, NSW (Australia). Centre for Sustainable Materials Research and Technology

2009-07-15T23:59:59.000Z

453

X-ray and vibrational spectroscopy of manganese complexes relevant to the oxygen-evolving complex of photosynthesis  

SciTech Connect

Manganese model complexes, relevant to the oxygen-evolving complex (OEC) in photosynthesis, were studied with Mn K-edge X-ray absorption near-edge spectroscopy (XANES), Mn Kb X-ray emission spectroscopy (XES), and vibrational spectroscopy. A more detailed understanding was obtained of the influence of nuclearity, overall structure, oxidation state, and ligand environment of the Mn atoms on the spectra from these methods. This refined understanding is necessary for improving the interpretation of spectra of the OEC. Mn XANES and Kb XES were used to study a di-(mu)-oxo and a mono-(mu)-oxo di-nuclear Mn compound in the (III,III), (III,IV), and (IV,IV) oxidation states. XANES spectra show energy shifts of 0.8 - 2.2 eV for 1-electron oxidation-state changes and 0.4 - 1.8 eV for ligand-environment changes. The shifts observed for Mn XES spectra were approximately 0.21 eV for oxidation state-changes and only approximately 0.04 eV for ligand-environment changes. This indicates that Mn Kb XES i s more sensitive to the oxidation state and less sensitive to the ligand environment of the Mn atoms than XANES. These complimentary methods provide information about the oxidation state and the ligand environment of Mn atoms in model compounds and biological systems. A versatile spectroelectrochemical apparatus was designed to aid the interpretation of IR spectra of Mn compounds in different oxidation states. The design, based on an attenuated total reflection device, permits the study of a wide spectral range: 16,700 (600 nm) - 225

Visser, Hendrik

2001-05-16T23:59:59.000Z

454

Arsenic Removal by Photochemical Methods: Nanoparticulate Zerovalent Iron  

NLE Websites -- All DOE Office Websites (Extended Search)

Arsenic Removal by Photochemical Methods: Nanoparticulate Zerovalent Iron Arsenic Removal by Photochemical Methods: Nanoparticulate Zerovalent Iron and Heterogeneous Photocatalysis with TiO2 Speaker(s): Marta Litter Date: November 19, 2010 - 11:00am Location: 90-3122 Seminar Host/Point of Contact: Hugo Destaillats Arsenic in groundwater is a dramatic global problem due to the high incidence of arsenicosis or HACRE (Chronic Endemic Regional Hydro-arsenicism, Hidroarsenicismo Crónico Regional Endémico in Spanish), a severe illness causing skin lesions and cancer in extended regions of the world. For this reason, research on low-cost technologies for As removal to be applied in isolated, poor, rural locations is mandatory. This seminar will present a brief overview of arsenic pollution issues and mitigation needs in Latin America. It will also present results on As(V) removal using

455

Parkers-Iron Springs, Arkansas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Parkers-Iron Springs, Arkansas: Energy Resources Parkers-Iron Springs, Arkansas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.6081427°, -92.3320235° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.6081427,"lon":-92.3320235,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

456

What's in the Cage Matters in Iron Antimonide Thermoelectric Materials |  

NLE Websites -- All DOE Office Websites (Extended Search)

Novel Experiments on Cement Yield Concrete Results Novel Experiments on Cement Yield Concrete Results Watching a Glycine Riboswitch "Switch" Polyamorphism in a Metallic Glass Under Pressure, Vanadium Won't Turn Down the Volume New Nanoscale Engineering Breakthrough Points to Hydrogen-Powered Vehicles Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed What's in the Cage Matters in Iron Antimonide Thermoelectric Materials MARCH 29, 2007 Bookmark and Share Crystal structure of EuFe4Sb12 showing the cage confined Eu atoms (red) and Fe atoms (brown) surrounded by Sb tilted octahedral (Sb atoms are not shown). Thermoelectric materials such as iron antimonide have drawn intense interest because they offer a pollution-free source of electricity and a

457

TECHNOLOGY DEVELOPMENT FOR IRON FISCHER-TROPSCH CATALYSTS  

DOE Green Energy (OSTI)

The goal of the proposed work described in this Final Report was the development of iron-based Fischer-Tropsch catalysts that combined high activity, selectivity and life with physical robustness for slurry phase reactors that will produce either low-alpha or high-alpha products. The work described here has optimized the catalyst composition and pretreatment operation for a low-alpha catalyst. In parallel, work has been conducted to design a high-alpha iron catalyst that is suitable for slurry phase synthesis. Studies have been conducted to define the chemical phases present at various stages of the pretreatment and synthesis stages and to define the course of these changes. The oxidation/reduction cycles that are anticipated to occur in large, commercial reactors have been studied at the laboratory scale. Catalyst performance has been determined for catalysts synthesized in this program for activity, selectivity and aging characteristics.

Davis, B.H.

1998-07-22T23:59:59.000Z

458

The Viscosity of a Liquid Plutonium-Iron Eutectic Alloy  

SciTech Connect

The viscosity of a liquid plutonium-iron eutectic alloy, which contains 9.5 atom per cent iron and melts at 411 degrees C, was determined up to 808 degrees C at Mound Laboratory by an oscillating cup viscosimeter. This type of apparatus employed a right-circular cylindrical cup containing the liquid under investigation attached to a torsion fiber. The dampening effect of the liquid upon the normal oscillations of the pendululm was a function of the viscosity of the liquid. The amplitudes of the oscillations of the pendulum were measured by a photographic technique. The periods of the oscillations were determined by an automatic timing mechanism. The reliability of the viscosimeter was demonstrated by following the expected function of the viscosity of liquid lead and bismuth over a larger temperature range than was previously reported.

Wittenberg, L. J., Jones, L. V., Ofte, D.

1960-04-01T23:59:59.000Z

459

Iron aluminide alloys with improved properties for high temperature applications  

DOE Patents (OSTI)

An improved iron aluminide alloy of the DO[sub 3] type is described that has increased room temperature ductility and improved high elevated temperature strength. The alloy system further is resistant to corrosive attack in the environments of advanced energy conversion systems such as those using fossil fuels. The resultant alloy is relatively inexpensive as contrasted to nickel based and high nickel steels currently utilized for structural components. The alloy system consists essentially of 26--30 at. % aluminum, 0.5--10 at. % chromium, 0.02--0.3 at. % boron plus carbon, up to 2 at. % molybdenum, up to 1 at. % niobium, up to 0.5 at. % zirconium, up to 0.1 at. % yttrium, up to 0.5 at. % vanadium and the balance iron. 3 figs.

McKamey, C.G.; Liu, C.T.

1990-10-09T23:59:59.000Z

460

Iron aluminide alloys with improved properties for high temperature applications  

DOE Patents (OSTI)

An improved iron aluminide alloy of the DO.sub.3 type that has increased room temperature ductility and improved high elevated temperature strength. The alloy system further is resistant to corrosive attack in the environments of advanced energy corrosion systems such as those using fossil fuels. The resultant alloy is relatively inexpensive as contrasted to nickel based and high nickel steels currently utilized for structural components. The alloy system consists essentially of 26-30 at. % aluminum, 0.5-10 at. % chromium, 0.02-0.3 at. % boron plus carbon, up to 2 at. % molybdenum, up to 1 at. % niobium, up to 0.5 at. % zirconium, up to 0.1 at. % yttrium, up to 0.5 at. % vanadium and the balance iron.

McKamey, Claudette G. (Knoxville, TN); Liu, Chain T. (Oak Ridge, TN)

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "iron magnesium manganese" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Iron aluminide alloy container for solid oxide fuel cells  

DOE Patents (OSTI)

A container for fuel cells is made from an iron aluminide alloy. The container alloy preferably includes from about 13 to about 22 weight percent Al, from about 2 to about 8 weight percent Cr, from about 0.1 to about 4 weight percent M selected from Zr and Hf, from about 0.005 to about 0.5 weight percent B or from about 0.001 to about 1 weight percent C, and the balance Fe and incidental impurities. The iron aluminide container alloy is extremely resistant to corrosion and metal loss when exposed to dual reducing and oxidizing atmospheres at elevated temperatures. The alloy is particularly useful for containment vessels for solid oxide fuel cells, as a replacement for stainless steel alloys which are currently used.

Judkins, Roddie Reagan (Knoxville, TN); Singh, Prabhakar (Export, PA); Sikka, Vinod Kumar (Oak Ridge, TN)

2000-01-01T23:59:59.000Z

462

IRON-PHOSPHATE GLASS FOR IMMOBILIZATION OF RADIOACTIVE TECHNETIUM  

Science Conference Proceedings (OSTI)

Technetium-99 (Tc-99) can bring a serious environmental threat because of its high fission yield, long half-life, and high solubility and mobility in the ground water. The present work investigated the immobilization of Tc-99 (surrogated by Re) by heat-treating mixtures of an iron-phosphate glass with 1.5 to 6 wt.% KReO{sub 4} at {approx}1000 C. The Re retention in the glass was as high as {approx}1.2 wt. % while the loss of Re by evaporation during melting was {approx}50%. Re was uniformly distributed within the glass. The normalized Re release by the 7-day Product Consistency Test was {approx}0.39 g/m{sup 2}, comparable with that in phosphate-bonded ceramics and borosilicate glasses. These results suggest that iron-phosphate glass can provide a good matrix for immobilizing Tc-99.

KRUGER AA; HRMA PR; XU K; CHOI J; UM W; HEO J

2012-03-19T23:59:59.000Z

463

Method for heat treating iron-nickel-chromium alloy  

DOE Patents (OSTI)

A method for heat treating an age-hardenable iron-nickel-chromium alloy to obtain a bimodal distribution of gamma prime phase within a network of dislocations, the alloy consisting essentially of about 25% to 45% nickel, 10% to 16% chromium, 1.5% to 3% of an element selected from the group consisting of molybdenum and niobium, about 2% titanium, about 3% aluminum, and the remainder substantially all iron. To obtain optimum results, the alloy is heated to a temperature of 1025.degree. C. to 1075.degree. C. for 2-5 minutes, cold-worked about 20% to 60%, aged at a temperature of about 775.degree. C. for 8 hours followed by an air-cool, and then heated to a temperature in the range of 650.degree. C. to 700.degree. C. for 2 hours followed by an air-cool.

Merrick, Howard F. (Suffern, NY); Korenko, Michael K. (Rockville, MD)

1982-01-01T23:59:59.000Z

464

Iron aluminide useful as electrical resistance heating elements  

DOE Patents (OSTI)

The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

Sikka, Vinod K. (Oak Ridge, TN); Deevi, Seetharama C. (Oak Ridge, TN); Fleischhauer, Grier S. (Midlothian, VA); Hajaligol, Mohammad R. (Richmond, VA); Lilly, Jr., A. Clifton (Chesterfield, VA)

1997-01-01T23:59:59.000Z

465

Iron aluminide useful as electrical resistance heating elements  

DOE Patents (OSTI)

The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, {<=}1% Cr and either {>=}0.05% Zr or ZrO{sub 2} stringers extending perpendicular to an exposed surface of the heating element or {>=}0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, {<=}2% Ti, {<=}2% Mo, {<=}1% Zr, {<=}1% C, {<=}0.1% B, {<=}30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, {<=}1% rare earth metal, {<=}1% oxygen, {<=}3% Cu, balance Fe. 64 figs.

Sikka, V.K.; Deevi, S.C.; Fleischhauer, G.S.; Hajaligol, M.R.; Lilly, A.C. Jr.

1997-04-15T23:59:59.000Z

466

Iron aluminide useful as electrical resistance heating elements  

DOE Patents (OSTI)

The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

Sikka, Vinod K. (Oak Ridge, TN); Deevi, Seetharama C. (Oak Ridge, TN); Fleischhauer, Grier S. (Midlothian, VA); Hajaligol, Mohammad R. (Richmond, VA); Lilly, Jr., A. Clifton (Chesterfield, VA)

1999-01-01T23:59:59.000Z

467

Iron aluminide useful as electrical resistance heating elements  

DOE Patents (OSTI)

The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

Sikka, Vinod K. (Oak Ridge, TN); Deevi, Seetharama C. (Oak Ridge, TN); Fleischhauer, Grier S. (Midlothian, VA); Hajaligol, Mohammad R. (Richmond, VA); Lilly, Jr., A. Clifton (Chesterfield, VA)

2001-01-01T23:59:59.000Z

468

NETL: News Release - Clean Coal Technology Report Showcases Advanced Iron  

NLE Websites -- All DOE Office Websites (Extended Search)

April 6, 2000 April 6, 2000 Clean Coal Technology Report Showcases Advanced Iron Making Process, Benefits for the Environment Topical Report Profiles Blast Furnace Granular Coal Injection System; Now Available on DOE's Fossil Energy Web Site An advanced iron making technology demonstrated in the U.S. Department of Energy's Clean Coal Technology Program stands out for its potential to provide major environmental and financial benefits to the United States steel industry. Bethlehem Steel Topical Report The Energy Department has profiled the project in a topical report entitled Blast Furnace Granular Coal Injection System Demonstration Project. The report describes the federal government's partnership demonstration project with Bethlehem Steel Corporation, which tested a new method for reducing

469

Technology development for iron F-T catalysts. Final report  

DOE Green Energy (OSTI)

The objectives of this work were twofold. The first objective was to design and construct a pilot plant for preparing precipitated iron oxide F-T precursors and demonstrate that the rate of production from this plant is equivalent to 100 lbs/day of dried metal oxide. Secondly, these precipitates were to be used to prepare catalysts capable of achieving 88% CO + H{sub 2} conversion with {le} 5 mole percent selectivity to methane + ethane.

Frame, R.R.; Gala, H.B.

1994-08-01T23:59:59.000Z

470

Multimuon production in 280 GeV ?+ iron interactions  

Science Conference Proceedings (OSTI)

Results are presented on dimuon and trimuon final states in 280 GeV ?+ iron interactions. Both dimuon and trimuon data show clear evidence for open charm production and suggest strongly that the dominant production process is photon?gluon fusion. Similar amounts of elastic and inelastic (shower energy ?5 GeV) J/? production are measured in the trimuon sample. Elastic J/? production is consistent with photon?gluon fusion plus naive assumptions. Inelastic J/? production is inconsistent with this simple model

The European Muon Collaboration

1980-01-01T23:59:59.000Z

471

Pressure Effects on Two Superconducting Iron-based Families  

SciTech Connect

Insight into the mechanism of high-temperature superconductivity can be gained by pressure-dependent studies of structural, thermodynamics and transport data. The role of pressure may be complicated by the level of hydrostaticity. High-pressure studies on two iron-based families of RFeAsO (R = rare-earth metals) and AFe{sub 2}As{sub 2} (A = alkaline-earth metals) are reviewed here.

Safa-Sefat, Athena [ORNL

2011-01-01T23:59:59.000Z

472

Low resistivity contact to iron-pnictide superconductors  

DOE Patents (OSTI)

Method of making a low resistivity electrical connection between an electrical conductor and an iron pnictide superconductor involves connecting the electrical conductor and superconductor using a tin or tin-based material therebetween, such as using a tin or tin-based solder. The superconductor can be based on doped AFe.sub.2As.sub.2, where A can be Ca, Sr, Ba, Eu or combinations thereof for purposes of illustration only.

Tanatar, Makariy; Prozorov, Ruslan; Ni, Ni; Bud& #x27; ko, Sergey; Canfield, Paul

2013-05-28T23:59:59.000Z

473

THE MAGNESIUM ISOTOPOLOGUES OF MgH IN THE A {sup 2}{Pi}-X {sup 2}{Sigma}{sup +} SYSTEM  

Science Conference Proceedings (OSTI)

Using laboratory hollow cathode spectra we have identified lines of the less common magnesium isotopologues of MgH, {sup 25}MgH and {sup 26}MgH, in the A {sup 2}{Pi}-X {sup 2}{Sigma}{sup +} system. Based on the previous analysis of {sup 24}MgH, molecular lines have been measured and molecular constants derived for {sup 25}MgH and {sup 26}MgH. Term values and linelists, in both wavenumber and wavelength units, are presented. The A {sup 2}{Pi}-X {sup 2}{Sigma}{sup +} system of MgH is important for measuring the magnesium isotope ratios in stars. Examples of analysis using the new linelists to derive the Mg isotope ratio in a metal poor dwarf and giant are shown.

Hinkle, Kenneth H.; Wallace, Lloyd [National Optical Astronomy Observatories, P.O. Box 26732, Tucson, AZ 85726 (United States); Ram, Ram S.; Bernath, Peter F. [Department of Chemistry, University of York, Heslington, York YO10 5DD (United Kingdom); Sneden, Christopher [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Lucatello, Sara, E-mail: hinkle@noao.edu, E-mail: wallace@noao.edu, E-mail: rr662@york.ac.uk, E-mail: pbernath@odu.edu, E-mail: chris@verdi.as.utexas.edu, E-mail: sara.lucatello@oapd.inaf.it [INAF, Osservatorio Astronomico di Padova, Vicolo dell'Osservatorio 5, I-35122 Padova (Italy)

2013-08-15T23:59:59.000Z

474

Length-scale Effects in Cascade Damage Production in Iron  

SciTech Connect

Molecular dynamics simulations provide an atomistic description of the processes that control primary radiation damage formation in atomic displacement cascades. An extensive database of simulations describing cascade damage production in single crystal iron has been compiled using a modified version of the interatomic potential developed by Finnis and Sinclair. This same potential has been used to investigate primary damage formation in nanocrystalline iron in order to have a direct comparison with the single crystal results. A statistically significant number of simulations were carried out at cascade energies of 10 keV and 20 keV and temperatures of 100 and 600K to make this comparison. The results demonstrate a significant influence of nearby grain boundaries as a sink for mobile defects during the cascade cooling phase. This alters the residual primary damage that survives the cascade event. Compared to single crystal, substantially fewer interstitials survive in the nanograined iron, while the number of surviving vacancies is similar or slightly greater than the single crystal result. The fraction of the surviving interstitials contained in clusters is also reduced. The asymmetry in the survival of the two types of point defects is likely to alter damage accumulation at longer times.

Stoller, Roger E [ORNL; Osetskiy, Yury N [ORNL; Kamenski, Paul J [ORNL

2009-01-01T23:59:59.000Z

475

The development of precipitated iron catalysts with improved stability  

DOE Green Energy (OSTI)

The goal of this program is to identify the chemical principles governing the deactivation of precipitated iron catalysts during Fischer-Tropsch synthesis and to use these chemical principles in the design of catalysts suitable for slurry reactors. This report covers testing an iron catalyst. During the last quarter, a new precipitated iron catalyst was prepared and tested in the slurry autoclave reactor at various conditions. This catalyst did not noticeably deactivate during 1250 hours of testing. This quarter, the test was extended to include performance evaluations at different conversion levels ranging from 35 to 88% at 265 and 275{degree}C. The conversion levels were varied by changing the feed rate. The catalytic performance at different conversion intervals was then integrated to approximately predict performance in a bubble column reactor. The run was shut down at the end of 1996 hours because of a 24-hour-power outage. When the power was back on, the run was restarted from room temperature. Catalytic performance during the first 300 hours after the restart-up was monitored. Overall product distributions are being tabulated as analytical laboratory data are obtained. 34 figs., 3 tabs.

Not Available

1990-01-01T23:59:59.000Z

476

Mineral ecophysiological evidence for microbial activity in banded iron formation  

Science Conference Proceedings (OSTI)

The phosphorus composition of banded-iron formations (BIFs) has been used as a proxy for Precambrian seawater composition and the paleoeredox state of Earth's surface environment. However, it is unclear whether the phosphorus in BIFs originally entered the sediment as a sorbed component of the iron oxyhydroxide particles, or whether it was incorporated into the biomass of marine phytoplankton. We conducted high-resolution mineral analyses and report here the first detection of an Fe(III) acetate salt, as well as nanocrystals of apatite in association with magnetite, in the 2.48 Ga Dales Gorge Member of the Brockman Iron Formation (a BIF), Hamersley, Western Australia. The clusters of apatite are similar in size and morphology to biogenic apatite crystals resulting from biomass decay in Phanerozoic marine sediments, while the formation of an Fe(III) acetate salt and magnetite not only implies the original presence of biomass in the BIF sediments, but also that organic carbon likely served as an electron donor during bacterial Fe(III) reduction. This study is important because it suggests that phytoplankton may have played a key role in the transfer of phosphorus (and other trace elements) from the photic zone to the seafloor.

Li, Dr. Yi-Liang [University of Tennessee, Knoxville (UTK); Konhauser, Dr, Kurt [University of Alberta; Cole, David R [ORNL; Phelps, Tommy Joe [ORNL

2011-01-01T23:59:59.000Z

477

Performance and cycling of the iron-ion/hydrogen redox flow cell with  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance and cycling of the iron-ion/hydrogen redox flow cell with Performance and cycling of the iron-ion/hydrogen redox flow cell with various catholyte salts Title Performance and cycling of the iron-ion/hydrogen redox flow cell with various catholyte salts Publication Type Journal Article Year of Publication 2013 Authors Tucker, Michael C., Venkat Srinivasan, Philip N. Ross, and Adam Z. Weber Journal Journal of Applied Electrochemistry Volume 43 Issue 7 Pagination 637 - 644 Date Published 7/2013 ISSN 0021-891X Keywords battery, Flow battery, iron hydrogen cell, progress, redox flow cell Abstract A redox flow cell utilizing the Fe2+/Fe3+ and H-2/H+ couples is investigated as an energy storage device. A conventional polymer electrolyte fuel cell anode and membrane design is employed, with a cathode chamber containing a carbon felt flooded with aqueous acidic solution of iron salt. The maximum power densities achieved for iron sulfate, iron chloride, and iron nitrate are 148, 207, and 234 mW cm(-2), respectively. It is found that the capacity of the iron nitrate solution decreases rapidly during cycling. Stable cycling is observed for more than 100 h with iron chloride and iron sulfate solutions. Both iron sulfate and iron chloride solutions display moderate discharge polarization and poor charge polarization; therefore, voltage efficiency decreases dramatically with increasing current density. A small self-discharge current occurs when catholyte is circulating through the cathode chamber. As a result, a current density above 100 mA cm(-2) is required to achieve high Coulombic efficiency (> 0.9).

478

Snapshot of iron response in Shewanella oneidensis by gene network reconstruction  

Science Conference Proceedings (OSTI)

Background: Iron homeostasis of Shewanella oneidensis, a gamma-proteobacterium possessing high iron content, is regulated by a global transcription factor Fur. However, knowledge is incomplete about other biological pathways that respond to changes in iron concentration, as well as details of the responses. In this work, we integrate physiological, transcriptomics and genetic approaches to delineate the iron response of S. oneidensis. Results: We show that the iron response in S. oneidensis is a rapid process. Temporal gene expression profiles were examined for iron depletion and repletion, and a gene co-expression network was reconstructed. Modules of iron acquisition systems, anaerobic energy metabolism and protein degradation were the most noteworthy in the gene network. Bioinformatics analyses suggested that genes in each of the modules might be regulated by DNA-binding proteins Fur, CRP and RpoH, respectively. Closer inspection of these modules revealed a transcriptional regulator (SO2426) involved in iron acquisition and ten transcriptional factors involved in anaerobic energy metabolism. Selected genes in the network were analyzed by genetic studies. Disruption of genes encoding a putative alcaligin biosynthesis protein (SO3032) and a gene previously implicated in protein degradation (SO2017) led to severe growth deficiency under iron depletion conditions. Disruption of a novel transcriptional factor (SO1415) caused deficiency in both anaerobic iron reduction and growth with thiosulfate or TMAO as an electronic acceptor, suggesting that SO1415 is required for specific branches of anaerobic energy metabolism pathways. Conclusions: Using a reconstructed gene network, we identified major biological pathways that were differentially expressed during iron depletion and repletion. Genetic studies not only demonstrated the importance of iron acquisition and protein degradation for iron depletion, but also characterized a novel transcriptional factor (SO1415) with a role in anaerobic energy metabolism.

Yang, Yunfeng; Harris, Daniel P.; Luo, Feng; Xiong, Wenlu; Joachimiak, Marcin; Wu, Liyou; Dehal, Paramvir; Jacobsen, Janet; Yang, Zamin; Palumbo, Anthony V.; Arkin, Adam P.; Zhou, Jizhong

2008-10-09T23:59:59.000Z

479

Blood and hair lead in children with different extents of iron deficiency in Karachi  

SciTech Connect

Childhood iron deficiency has a high incidence in Pakistan. Some but not all studies have shown that dietary iron deficiency may cause increased absorption of lead as both compete for the same transporters in the small intestine. Therefore, children in Pakistan, residing in heavily polluted cities like Karachi may be prone to lead poisoning. This hypothesis was tested by investigating blood and hair lead concentrations in children from Karachi who were divided into four groups of iron status; normal, borderline iron deficiency, iron deficiency and iron deficiency anaemia. A prospective observational study was conducted where 269 children were categorized into four groups of iron status using the World Health Organization criteria and one based on soluble transferrin receptor measurements. Blood iron status was determined using a full blood count, serum iron, ferritin, transferrin saturation and soluble transferrin receptor measurements. Blood lead was determined by graphite atomic absorption spectroscopy, whereas hair lead was assessed using an inductively coupled plasma atomic emission spectroscopy technique. Blood lead concentrations were significantly higher in children with iron deficiency anaemia (mean [95% confidence intervals] were 24.9 [22.6-27.2] {mu}g/dL) compared to those with normal iron status (19.1 [16.8-21.4] {mu}g/dL) using WHO criteria. In contrast, hair lead content was not significantly different in children of different iron status. Our findings reinforce the importance of not only reducing environmental lead pollution but also the development of national health strategies to reduce childhood iron deficiency in Pakistan.

Ataur Rahman, Muhammad; Rahman, Bushra [Karachi Institute of Biotechnology and Genetic Engineering, University of Karachi, Karachi-75270 (Pakistan)] [Karachi Institute of Biotechnology and Genetic Engineering, University of Karachi, Karachi-75270 (Pakistan); Saeed Ahmad, Muhammad [School of Healthcare Science, Manchester Metropolitan University, Manchester M1 5GD (United Kingdom)] [School of Healthcare Science, Manchester Metropolitan University, Manchester M1 5GD (United Kingdom); Blann, Andrew [Department of Medicine, City Hospital, Birmingham B18 7QH, United Kingdom. (United Kingdom)] [Department of Medicine, City Hospital, Birmingham B18 7QH, United Kingdom. (United Kingdom); Ahmed, Nessar, E-mail: N.Ahmed@mmu.ac.uk [School of Healthcare Science, Manchester Metropolitan University, Manchester M1 5GD (United Kingdom)] [School of Healthcare Science, Manchester Metropolitan University, Manchester M1 5GD (United Kingdom)

2012-10-15T23:59:59.000Z

480

Degradation of organic and inorganic contaminants by zero valent iron  

E-Print Network (OSTI)

Reduction of trichloroethylene (TCE), chromium (VI), and 2,4 dinitrotoluene (2,4-DNT) by zero valent iron and palladized iron under anaerobic conditions was investigated. Reduction experiments of the contaminants were carried out individually and in combination. All three target contaminants were effectively reduced by both iron (Feo) and palladized iron (Pd/Fe'). However, the rate of reduction by Pd/Fe' was found to be much faster than that by Feo. The reduction of all the contaminants in mixed waste was found to be slower than in the individual experiments, but the difference was most significant in the 2,4-DNT reduction. This observation indicates that there may be a possibility of competition for reactive sites among the contaminants and precipitation resulting from CR(VI) reduction may coat iron surfaces, which may ultimately slow the whole zero valent metals (ZVMS) treatment process in remediating mixed waste sites. The 20 mg/L of CR(VI) was reduced below detection limits in 10 hours by Fe' and in 1.5 hours by the same amount of Pd/Fe' in individual experiment. An initial concentration of 20 mg/L of TCE was reduced below detection limits in 72 hours by Pd/Fe' whereas only 62% of TCE was reduced by the same amount of Fe' in 144 hours in individual experiment. The reaction orders of 1.84 and 2.04 for total TCE loss alone and in mixed waste by Fe' indicates that the reaction mechanisms are complex. The reduction of 72 mg/L of 2,4-DNT proceeded to below detection limits within 3 hours by both Fe' and Pd/Feo. The only product observed in the reduction of 2,4-DNT was 2,4-diaminotoluene (2,4-DAT). The 2,4-DAT produced accounted for 83-100% and only 42-54% of the initial mass of 2@4.DNT under anaerobic and aerobic conditions respectively. Since no degradation of 2,4-DAT alone occurred, these results indicate the possibility of other intermediates or products formation under aerobic conditions. Overall, the results demonstrated the potential application of ZVMs in reducing mixed wastes containing both inorganic and organic contaminant interactions before implementing a ZVMs treatment system, which may help in designing a proper remedial system.

Malla, Deepak Babu

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "iron magnesium manganese" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Versatile and Biomass Synthesis of Iron-based Nanoparticles Supported on Carbon Matrix with High Iron Content and Tunable Reactivity  

SciTech Connect

Iron-based nanoparticles supported on carbon (FeNPs{at}C) have enormous potential for environmental applications. Reported is a biomass-based method for FeNP{at}C synthesis that involves pyrolysis of bleached wood fiber pre-mixed with Fe{sub 3}O{sub 4} nanoparticles. This method allows synthesis of iron-based nanoparticles with tunable chemical reactivity by changing the pyrolysis temperature. The FeNP{at}C synthesized at a pyrolysis temperature of 500 C (FeNP{at}C-500) reacts violently (pyrophoric) when exposed to air, while FeNP{at}C prepared at 800 C (FeNP{at}C-800) remains stable in ambient condition for at least 3 months. The FeNPs in FeNP{at}C-800 are mostly below 50 nm in diameter and are surrounded by carbon. The immediate carbon layer (within 5-15 nm radius) on the FeNPs is graphitized. Proof-of-concept environmental applications of FeNPs{at}C-800 were demonstrated by Rhodamine 6G and arsenate (V) removal from water. This biomass-based method provides an effective way for iron-based nanoparticle fabrication and biomass utilization.

Zhang, Dongmao [ORNL; Shi, Sheldon Q [ORNL; Jiang, Dongping [Mississippi State University (MSU); Che, Wen [Mississippi State University (MSU); Gai, Zheng [ORNL; Howe, Jane Y [ORNL; More, Karren Leslie [ORNL; Arockiasamy, Antonyraj [Mississippi State University (MSU)

2012-01-01T23:59:59.000Z

482

Manganese and Ceria Sorbents for High Temperature Sulfur Removal from Biomass-Derived Syngas -- The Impact of Steam on Capacity and Sorption Mode  

Science Conference Proceedings (OSTI)

Syngas derived from biomass and coal gasification for fuel synthesis or electricity generation contains sulfur species that are detrimental to downstream catalysts or turbine operation. Sulfur removal in high temperature, high steam conditions has been known to be challenging, but experimental reports on methods to tackle the problem are not often reported. We have developed sorbents that can remove hydrogen sulfide from syngas at high temperature (700 C), both in dry and high steam conditions. The syngas composition chosen for our experiments is derived from statistical analysis of the gasification products of wood under a large variety of conditions. The two sorbents, Cu-ceria and manganese-based, were tested in a variety of conditions. In syngas containing steam, the capacity of the sorbents is much lower, and the impact of the sorbent in lowering H{sub 2}S levels is only evident in low space velocities. Spectroscopic characterization and thermodynamic consideration of the experimental results suggest that in syngas containing 45% steam, the removal of H{sub 2}S is primarily via surface chemisorptions. For the Cu-ceria sorbent, analysis of the amount of H{sub 2}S retained by the sorbent in dry syngas suggests both copper and ceria play a role in H{sub 2}S removal. For the manganese-based sorbent, in dry conditions, there is a solid state transformation of the sorbent, primarily into the sulfide form.

Cheah, S.; Parent, Y. O.; Jablonski, W. S.; Vinzant, T.; Olstad, J. L.

2012-07-01T23:59:59.000Z

483

Solvent Tuning of Properties of Iron-Sulfur Clusters in Proteins  

NLE Websites -- All DOE Office Websites (Extended Search)

Solvent Tuning of Properties of Solvent Tuning of Properties of Iron-Sulfur Clusters in Proteins Figur