National Library of Energy BETA

Sample records for ipt sri cogeneration

  1. IPT SRI Cogeneration Inc | Open Energy Information

    Open Energy Info (EERE)

    IPT SRI Cogeneration Inc Jump to: navigation, search Name: IPT SRI Cogeneration Inc Place: California Phone Number: (408) 246-9040 Website: intpower.com Outage Hotline: (408)...

  2. Cogeneration

    SciTech Connect (OSTI)

    Hu, S.D.

    1985-01-01

    The purpose of this book is to assist in understanding cogeneration principles (including small power production), in evaluating cogeneration projects, and in making wise choices on cogeneration investments. Cogeneration presents an efficient way of utilizing limited energy resources because the same fuel source is used simultaneously to produce two forms of useful energy, including electricity and heat. Cogeneration also presents a good investment opportunity, for the prices of both electricity and heat and have been escalating manyfold during the past ten years. However, as with other investments, cogeneration involves market risks: the uneven and unpredictable interactions among the electric utility (the buyer), the cogenerator (the seller), and the public utility commission (the regulator) will largely determine the cogeneration market potential as well as the success of failure of many cogeneration projects. This book is intended to serve as a text on the perspicacity of cogeneration development; to identify the cogeneration market to provide guidelines on effective cogeneration system design, to evaluate cogeneration economics, to describe the electric utilities' and public utility commissions' roles in the cogeneration market, and to assist in making the cogeneration investment decision.

  3. Cogeneration Sourcebook

    SciTech Connect (OSTI)

    Payne, F.W.

    1985-01-01

    The Cogeneration Sourcebook contains information on cogeneration planning, financing, and technical improvements. Several new approaches to cogeneration are covered, including the growth of prepackaged and small-scale systems. Developmental concepts such as solar cogeneration systems, fuel cell cogeneration systems, and other renewable energy cogeneration systems. New techniques of financing cogeneration systems are discussed, as are regulatory procedures required for implementation.

  4. SRI'99

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11th U.S. National Synchrotron Radiation Instrumentation Conference (SRI'99) at the Stanford Linear Accelerator Center Stanford, California USA October 13-15, 1999 hosted.jpg (12134 bytes) Conference Chairs: Piero Pianetta, SSRL/Stanford Herman Winick, SSRL pianetta@slac.stanford.edu winick@slac.stanford.edu The 11th US National Synchrotron Radiation Instrumentation Conference (SRI'99) provides a forum for the presentation and discussion of recent developments relating to synchrotron radiation

  5. Planning cogeneration systems

    SciTech Connect (OSTI)

    Limaye, D.

    1984-01-01

    Major factors and considerations in the planning and evaluation of cogeneration systems are explained here. Coverage is provided of prefeasibility assessment, technical and economic feasibility evaluation, computerized systems design, cogeneration technologies and applications, and non-conventional technologies. Also discussed are fuel availability and price trends, financing and risk management in cogeneration projects, and practical considerations in cogeneration implementation.

  6. Cogeneration Chicago style

    SciTech Connect (OSTI)

    Not Available

    1994-11-01

    This article examines how a malt producer incorporated cogeneration into its facility. The topics of the article include a review of the melting process, selection of operating cycle, selection of a building to house the cogeneration system, an overview of the heat recovery, electric, equipment protection, and integrated control systems, and hydrostatic cogeneration system enhancement.

  7. SRI2007 Conference - Schedule

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photo Gallery Manuscript Submission Conference Schedule SRI2007 conference will feature oral and poster sessions on synchrotron-radiation related topics; sources, beamlines,...

  8. Opportunity for cogeneration

    SciTech Connect (OSTI)

    Manning, K.

    1996-10-01

    The Lethbridge Regional Hospital is a 264-bed acute care center that offered an excellent opportunity to use a cogeneration system to provide a substantial portion of the hospital`s electrical and steam requirements. Cogeneration is the cost-effective production of two useful forms of energy using a single energy source. The Lethbridge Regional Hospital cogeneration plant produces electrical energy and heat energy using natural gas as the single energy source. The cogeneration project has helped the facility save money on future utility bills, lowered operating costs and produced a cleaner source of power.

  9. SRI2007 Conference - Poster Download

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SRI Poster Download Click here to download poster (30MB pdf)

  10. Petbow Cogeneration Ltd | Open Energy Information

    Open Energy Info (EERE)

    Petbow Cogeneration Ltd Jump to: navigation, search Name: Petbow Cogeneration Ltd Place: United Kingdom Product: CHP systems. References: Petbow Cogeneration Ltd1 This article is...

  11. Biomass cogeneration. A business assessment

    SciTech Connect (OSTI)

    Skelton, J.C.

    1981-11-01

    This guide serves as an overview of the biomass cogeneration area and provides direction for more detailed analysis. The business assessment is based in part on discussions with key officials from firms that have adopted biomass cogeneration systems and from organizations such as utilities, state and federal agencies, and banks that would be directly involved in a biomass cogeneration project. The guide is organized into five chapters: biomass cogeneration systems, biomass cogeneration business considerations, biomass cogeneration economics, biomass cogeneration project planning, and case studies.

  12. SRI2007 Conference - Accommodations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accommodations SRI2007 Meeting Site Hilton Baton Rouge Capitol Center 201 Lafayette Street Baton Rouge, LA SRI2007 will be held at the Hilton Baton Rouge Capitol Center. This historic location in picturesque downtown Baton Rouge is adjacent to the Shaw Performing Arts Center and River Center Convention Center, less than five minutes from the state capitol and only three miles from LSU. A block of rooms has been set aside for conference attendees at the Hilton Baton Rouge Capitol Center. To

  13. Proceedings: 1986 EPRI cogeneration symposium

    SciTech Connect (OSTI)

    Limaye, D.R.

    1987-06-01

    On October 14-15, 1986, EPRI sponsored a Symposium on cogeneration to examine the major issues of current interest to utilities. The Symposium, held in Washington, DC, provided a forum for the review and exchange of information on the recent cogeneration experiences of utilities. Specific topics discussed were federal cogeneration regulations and their impacts on utilities, cogeneration trends and prospects, utility leadership in cogeneration ventures, strategic utility planning relative to cogeneration, small cogeneration: implications for utilities; and electric alternatives to cogeneration. Some of the critical issues relative to cogeneration from the utility perspective were explored in case studies, discussions and question/answer sessions. This report contains the 24 papers presented and discussed at the Symposium. They are processed separately for the data base.

  14. Heilongjiang Jiansanjiang Nongkensanjiang Cogeneration Co Ltd...

    Open Energy Info (EERE)

    Jiansanjiang Nongkensanjiang Cogeneration Co Ltd Jump to: navigation, search Name: Heilongjiang Jiansanjiang Nongkensanjiang Cogeneration Co Ltd. Place: Heilongjiang Province,...

  15. Cogeneration: Economics and politics

    SciTech Connect (OSTI)

    Prince, R.G.H.; Poole, M.L.

    1996-12-31

    Cogeneration is a well established process for supplying heat and electricity from a single fuel source. Its feasibility and implementation in any particular case depend on technical, economic and internal and external {open_quotes}cultural{close_quotes} factors, including government policies. This paper describes the current status of small scale industrial cogeneration in Australia. A model has been developed to analyse the technical and economic aspects of retrofitting gas turbine cogeneration in the size range 3 to 30MW to industrial sites. The model demonstrates that for typical Australian energy cost data, the payback and the size of the optimized cogeneration plant depend strongly on electricity buyback prices. Also reviewed are some of the {open_quotes}cultural{close_quotes} factors which often militate against an otherwise economic installation, and government policies which may retard cogeneration by concern about local air emissions or favor it as increasing efficiency of energy use and reducing greenhouse emissions. A case study of a small gas turbine plant in Australia is outlined. 2 refs., 2 figs.

  16. Why cogeneration developers should support cogeneration deferral riders

    SciTech Connect (OSTI)

    Spiewak, S.

    1987-04-01

    The author argues that excess capacity can increase retail rates, but deferral riders which allow utilities to offer lower rates to customers who might otherwise turn to cogeneration would optimize existing generating capacity. The author notes that encouraging cogeneration is only one goal of the Public Utility Regulatory Policies Act, while efficient use of powerplant capability is of equal importance. There will still be opportunities for cogenerators under the Cogeneration Deferral Tariff if they are patient because the concept of the tariff is to defer, not preclude cogeneration.

  17. Gas cogeneration systems are making headway in nontraditional cogeneration areas

    SciTech Connect (OSTI)

    Wimberly, J.J. IV; Long, S.W.; Dyer, J.B.

    1996-11-01

    This paper covers the addition of cogeneration to two distinct facilities. Case 1 is a large convention center in which overall utility costs had to be reduced. Case 2 is a large southeastern university that needed additional steam capacity. Each facility initially had different goals, but the solution is the same: cogeneration. This paper offers a step-by-step process by which cogeneration was proven to be the solution that each facility needed.

  18. SRI2007 Conference - Vendors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vendors The National Synchrotron Radiation Instrumentation Conference (SRI2007) will be hosted by the Louisiana State University J. Bennett Johnston, Sr., Center for Advanced Microstructures and Devices (CAMD/LSU) in Baton Rouge Louisiana on April 25-27, 2007. The conference will highlight new developments in synchrotron-radiation instrumentation; radiation sources, beamlines, techniques and experiments, and will be held at the Hilton Baton Rouge Capitol Center located in historic downtown Baton

  19. Integrating district cooling with cogeneration

    SciTech Connect (OSTI)

    Spurr, M.

    1996-11-01

    Chillers can be driven with cogenerated thermal energy, thereby offering the potential to increase utilization of cogeneration throughout the year. However, cogeneration decreases electric output compared to condensing power generation in power plants using a steam cycle (steam turbine or gas turbine combined cycle plants). The foregone electric production increases with increasing temperature of heat recovery. Given a range of conditions for key variables (such as cogeneration utilization, chiller utilization, cost of fuel, value of electricity, value of heat and temperature of heat recovered), how do technology alternatives for combining district cooling with cogeneration compare? This paper summarizes key findings from a report recently published by the International Energy Agency which examines the energy efficiency and economics of alternatives for combining cogeneration technology options (gas turbine simple cycle, diesel engine, steam turbine, gas turbine combined cycle) with chiller options (electric centrifugal, steam turbine centrifugal one-stage steam absorption, two-stage steam absorption, hot water absorption).

  20. Cogeneration/energy efficiency conference

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    Twenty one papers were presented at the Cogeneration/Energy Efficiency Conference held July 19-20, 1994 in Durham, North Carolina. The papers covered such topics as: what's in store for cogeneration technology and development; factors affecting future cogeneration and independent power projects; and energy efficiency innovations. A separate abstract was prepared for each paper for inclusion in the Energy Science and Technology Database.

  1. Corpus Christi Cogeneration LP | Open Energy Information

    Open Energy Info (EERE)

    Corpus Christi Cogeneration LP Jump to: navigation, search Name: Corpus Christi Cogeneration LP Place: Texas Phone Number: 408-995-5115 Website: www.calpine.com Outage Hotline:...

  2. Microgy Cogeneration Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    Microgy Cogeneration Systems Inc Jump to: navigation, search Name: Microgy Cogeneration Systems Inc Place: Tarrytown, New York Zip: 10591 Product: New York-based Microgy...

  3. SRW Cogeneration LP | Open Energy Information

    Open Energy Info (EERE)

    SRW Cogeneration LP Jump to: navigation, search Name: SRW Cogeneration LP Place: Texas Phone Number: 281-293-1000 Website: www.puc.texas.govindustryele Outage Hotline:...

  4. Mt Poso Cogeneration | Open Energy Information

    Open Energy Info (EERE)

    Poso Cogeneration Jump to: navigation, search Name: Mt Poso Cogeneration Place: Bakersfield, California Zip: 93308 Product: California-based project developer for the Mt Poso...

  5. Hunterdon Cogeneration LP | Open Energy Information

    Open Energy Info (EERE)

    Hunterdon Cogeneration LP Jump to: navigation, search Name: Hunterdon Cogeneration LP Place: New Jersey References: EIA Form EIA-861 Final Data File for 2010 - File220101 EIA...

  6. Qing an Cogeneration Plant | Open Energy Information

    Open Energy Info (EERE)

    Qing an Cogeneration Plant Jump to: navigation, search Name: Qing'an Cogeneration Plant Place: Heilongjiang Province, China Zip: 152400 Sector: Biomass Product: China-based biomass...

  7. ETEC cogeneration Power Pak

    SciTech Connect (OSTI)

    Zweig, H.R.; Wieseneck, H.C. . Rocketdyne Div.); Bunnell, J.W. )

    1989-01-01

    As the result of a cooperative effort between government, industry, and a major utility, an important cogeneration project became operational in July, 1988. At the Energy Technology Engineering Center (ETEC), a research, development and testing installation operated for the United States Department of Energy (DOE), a 26.9 megawatt turbine-generator added to the SCTI facility in a bottoming-cycle configuration recovers energy from the waste steam produced in the testing steam generators. This paper reports on this project, called Power Pak, which originated in 1980 with proposals to DOE for funding of a cogeneration addition, and encouragement by DOE to evaluate and pursue this and other energy conservation measures. This article presents a narrative history of the development of this project with lessons learned.

  8. Photoemission Spectroscopy at SRI2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photoemission Spectroscopy at SRI2013 Workshop on Photoemission Spectroscopy: The Upcoming Decades Organizers: Alexei Fedorov (ALS) and Peter Johnson (BNL) Tuesday, June 18, 2013 * Location TBD 9:00 a.m.-17:00 p.m. Workshop to take place during SRI 2013 in Washington, D.C., June 19-21, 2013

  9. Computer aided cogeneration feasibility analysis

    SciTech Connect (OSTI)

    Anaya, D.A.; Caltenco, E.J.L.; Robles, L.F.

    1996-12-31

    A successful cogeneration system design depends of several factors, and the optimal configuration can be founded using a steam and power simulation software. The key characteristics of one of this kind of software are described below, and its application on a process plant cogeneration feasibility analysis is shown in this paper. Finally a study case is illustrated. 4 refs., 2 figs.

  10. Blackburn Landfill Co-Generation Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Blackburn Landfill Co-Generation Biomass Facility Jump to: navigation, search Name Blackburn Landfill Co-Generation Biomass Facility Facility Blackburn Landfill Co-Generation...

  11. Cogeneration as a retrofit strategy

    SciTech Connect (OSTI)

    Meckler, M.

    1996-06-01

    The paper describes the retrofitting of cogeneration in industrial plants. The paper describes a cost analysis, feasibility analysis, prime movers, induction generation, developing load profile, and options and research. The prime movers discussed include gas turbines, back-pressure turbines, condensing turbines, extraction turbines, and single-stage turbines. A case history of an institutional-industrial application illustrates the feasibility and benefits of a cogeneration system.

  12. Compact cogeneration system

    SciTech Connect (OSTI)

    Cabral, R.E.

    1991-07-23

    This patent describes a compact heat exchanger for heating water with, and cleaning, the exhaust gas of an internal combustion engine of a cogeneration system. It comprises an outer shell having gas inlet means for entry of exhaust gas from the engine, gas outlet means for outflow of exhaust gas, water inlet means for entry of water to be heated, and water outlet means for outflow of water; a housing positioned within and spaced from the outer shell to form a flow channel therebetween; a coil in communication with the water inlet means and the water outlet means and positioned in the flow channel between the housing and the outer shell; catalytic converter material within the housing; wherein the housing is connected to the gas inlet means to receive exhaust gas from the engine and to direct the exhaust gas through the catalytic converter material.

  13. Reliable steam: To cogenerate or not to cogenerate?

    SciTech Connect (OSTI)

    Jaber, D.; Jones, T.; D'Anna, L.; Vetterick, R.

    1999-07-01

    Leading industrial companies and institutions are forever seeking new and better ways to reduce their expenses, reduce waste, meet environmental standards, and, in general, improve their bottom-line. One approach to achieving all of these goals is a 100 year-old concept, cogeneration. Many industrial and institutional plants need thermal energy, generally as steam, for manufacturing processes and heating. They also need electric power for motors, lighting, compressed air and air conditioning. Traditionally, these fundamental needs are met separately. Steam is produced with industrial boilers and electricity is purchased from a local utility company. However, these needs can be met at the same time with cogeneration, using the same heat source. Cogeneration is the concurrent production of electrical power and thermal energy from the same heat source. Large steam users commonly take advantage of cogeneration by using high pressure steam with a back pressure turbine to generate electricity, and extract lower pressure steam from the turbine exhaust for their process needs. This approach reduces their electric utility bills while still providing thermal energy for industrial processes. The result is also a more efficient process that uses less total heat and discharges less smoke up the stack. Newer technologies are making cogeneration opportunities available to smaller-sized thermal plants, and electric utility deregulation opportunities are causing many CEOs to seriously consider cogeneration in their manufacturing plants. Whether steam is created through cogeneration or separate generation, many opportunities exist to improve productivity in the distribution system, operation, and maintenance. These opportunities are captured by taking a systems approach, which is promoted by programs such as the Department of Energy's Steam Challenge.

  14. Clear Lake Cogeneration LP | Open Energy Information

    Open Energy Info (EERE)

    Cogeneration LP Jump to: navigation, search Name: Clear Lake Cogeneration LP Place: Idaho Phone Number: 281-474-7611 Outage Hotline: 281-474-7611 References: EIA Form EIA-861 Final...

  15. Assessment of replicable innovative industrial cogeneration applications

    SciTech Connect (OSTI)

    None, None

    2001-06-01

    This report provides a market assessment of innovative industrial DG cogeneration systems that are less than 1 MWe.

  16. Testimonials - Partnerships in Solar Technologies - SRI International |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Solar Technologies - SRI International Testimonials - Partnerships in Solar Technologies - SRI International Addthis Text Version The words "Office of Energy Efficiency & Renewable Energy, U.S. Department of Energy, EERE Partnership Testimonials," appear on the screen, followed by "Curtis Carlson, Vice Chairman for Innovation, SRI International" and footage of a man. Curtis Carlson: Innovation is everything today. We're in the, I call it, the

  17. Testimonials - Partnerships in Solar Technologies - SRI International...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    appear on the screen, followed by "Curtis Carlson, Vice Chairman for Innovation, SRI International" and footage of a man. Curtis Carlson: Innovation is everything today. ...

  18. Sri Balaji Biomass Power Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Sri Balaji Biomass Power Pvt Ltd Jump to: navigation, search Name: Sri Balaji Biomass Power Pvt Ltd Place: Secunderabad, Andhra Pradesh, India Zip: 500003 Sector: Biomass Product:...

  19. Assessment of Replicable Innovative Industrial Cogeneration Applications,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    June 2001 | Department of Energy Replicable Innovative Industrial Cogeneration Applications, June 2001 Assessment of Replicable Innovative Industrial Cogeneration Applications, June 2001 U.S. industrial facilities utilize a wide array of thermal process equipment, including hot water heaters, thermal liquid heaters, ovens, furnaces, kilns, dryers, chillers, and boilers. This report provides a market assessment of innovative industrial distributed generation cogeneration systems that are less

  20. Anqiu Shengyuan Biomass Cogeneration Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Anqiu Shengyuan Biomass Cogeneration Co Ltd Jump to: navigation, search Name: Anqiu Shengyuan Biomass Cogeneration Co Ltd Place: Anqiu, Shandong Province, China Zip: 262100 Sector:...

  1. Lianyungang Baoxin Biomass Cogeneration Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Lianyungang Baoxin Biomass Cogeneration Co Ltd Jump to: navigation, search Name: Lianyungang Baoxin Biomass Cogeneration Co Ltd Place: Jiangsu Province, China Sector: Biomass...

  2. Okeelanta Cogeneration Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Database Retrieved from "http:en.openei.orgwindex.php?titleOkeelantaCogenerationBiomassFacility&oldid397875" Feedback Contact needs updating Image needs updating...

  3. High-Efficiency Solar Cogeneration with Thermophotovoltaic &...

    Broader source: Energy.gov (indexed) [DOE]

    targeted 'Solar Cogeneration' technologies to maximize energy generation & energy efficiency from the building's solar insolation resources. Project presents a novel, low-cost...

  4. Potential for cogeneration in Maryland. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1993-03-01

    Cogeneration is a name given to energy systems that produce both electric power and useful thermal energy such as steam. While cogeneration markets have flourished in California, Texas, and some states, those in Maryland have not. A primary reason is that the industries that have been targeted in other states--e.g., oil refining, pulp and paper, chemicals, food processing--are not major elements of Maryland's industrial base. The study estimates the potential for future cogeneration in Maryland, both large units and small packaged systems, and assesses the potential impact of cogeneration systems on Maryland's energy needs between now and 2005. The study is presented in three volumes. Because of significant differences between large- and small-scale cogeneration, the analysis of these two systems was performed separately. This volume is a summary document presenting the findings from both studies.

  5. Cogeneration development and market potential in China

    SciTech Connect (OSTI)

    Yang, F.; Levine, M.D.; Naeb, J.; Xin, D.

    1996-05-01

    China`s energy production is largely dependent on coal. China currently ranks third in global CO{sub 2} emissions, and rapid economic expansion is expected to raise emission levels even further in the coming decades. Cogeneration provides a cost-effective way of both utilizing limited energy resources and minimizing the environmental impacts from use of fossil fuels. However, in the last 10 years state investments for cogeneration projects in China have dropped by a factor of 4. This has prompted this study. Along with this in-depth analysis of China`s cogeneration policies and investment allocation is the speculation that advanced US technology and capital can assist in the continued growth of the cogeneration industry. This study provides the most current information available on cogeneration development and market potential in China.

  6. Cogeneration of electricity: Cost-effective over long term

    SciTech Connect (OSTI)

    Barger, R.L.; Barham, J. )

    1991-08-01

    This article describes the determination of the cost-effectiveness of a cogeneration project five years after it became operational in 1984. The cogeneration project uses digester sludge gas from a wastewater treatment plant. The topics covered include the history of electrical cogeneration at the site, cogeneration economics in the short term and the long term, and the factors in cost-effectiveness.

  7. Cogeneration project slated for construction

    SciTech Connect (OSTI)

    Not Available

    1993-09-13

    Destec Energy Inc. plans to begin construction of a 212-Mw gas-fired cogeneration plant in Polk County, Fla., late this year. The Houston-based firm will perform engineering and constructionmanagement services for the $150-million, combined-cycle project, but will call for proposals for construction services later this year, says project manager Bob Taylor. The plant north of Tampa, is scheduled to go on line in early 1995. All its electrical output will be sold to Florida Power Co. under a 30-year contract and process steam will go to the host, US Agrichemical Co., a large phosphate producer and fertilizer manufacturer.

  8. Energy and economic implications of combining district cooling with cogeneration

    SciTech Connect (OSTI)

    Spurr, M.; Larsson, I.

    1995-12-31

    Chillers can be driven with cogenerated thermal energy, thereby offering the potential to increase utilization of cogeneration throughout the year. However, cogeneration decreases electric output compared to condensing power generation. The foregone electric production increases with increasing temperature of heat recovery. The economics of alternatives for combining district cooling with cogeneration depend on many variables, including cogeneration utilization, chiller utilization, value of electricity, value and temperature of heat recovered and other factors.

  9. Sri Lanka: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tons NA 2008 EIA Natural Gas Reserves 0 Cubic Meters (cu m) 131 2010 CIA World Factbook Oil Reserves 0 Barrels (bbl) 118 2010 CIA World Factbook Energy Maps featuring Sri Lanka...

  10. Sri Jayalakshmi Group | Open Energy Information

    Open Energy Info (EERE)

    Guntur District-based firm involved in the export of tobacco and manufacturing of textiles. The firm also owns a small hydro project. References: Sri Jayalakshmi Group1 This...

  11. Cogeneration: It may be the best investment you make this year

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    This flier highlights the benefits of cogeneration, cogeneration technologies, laws regulating cogeneration, and methods for financing cogeneration projects. Also includes a list of organizations to contact for more information.

  12. Cogeneration`s role in the emerging energy markets: A report from the University of Colorado

    SciTech Connect (OSTI)

    Swoboda, G.J.

    1997-10-01

    The utilities required to satisfy the university`s electrical, steam and chilled water needs are generated at the cogeneration facility located in the center of the main campus. The building housing this cogeneration facility was constructed in 1909, at this time it contained a cogeneration facility. The original facility produced 1/100 the capacity of the new facility, yet it was housed in the same area. This existing facility burned coal until April 16, 1932, when the last coal train to pass through the campus on the Colorado and Southern tracks whistled at the campus crossing at 8:45 in the evening. This signaled the end to the cogeneration era at the Boulder campus until September 27, 1992, when once again the university began commercial operation of the new cogeneration facility. Implementation of the Public Utilities Regulatory Policy Act of 1978 (PURPA) encouraged the development of cogeneration facilities due to their inherent energy efficiency. The federal government encouraged the development of cogeneration facilities by removing several major obstacles that historically deterred its full development. It was because of this act, coupled with the fact that the university is interested in energy conservation, reliable energy supply, has a large utility load and wishes to save money that they proceeded with their project. The paper describes the cogeneration system process and power options.

  13. Cogeneration system selection using the Navy's CELCAP code

    SciTech Connect (OSTI)

    Lee, T.Y.R.

    1988-08-01

    The performance of a cogeneration system is easily affected by several factors; number and type of engines used in the system, the manner in which the system is operated, and the electric and thermal load profile that the system has to supply. Other factors which the energy analyst must also consider are the electric utility rate structure, the price of fuel used in the cogeneration system, and the working habits of the people at the site. The evaluation of cogeneration energy systems for the purpose of selecting a configuration with the best performance requires a great amount of effort. A computer program to analyze a cogeneration system would greatly reduce the effort needed to evaluate cogeneration systems. Realizing the need for such a tool, the Naval Civil Engineering Laboratory developed such a cogeneration analysis computer program, Civil Engineering Laboratory Cogeneration Analysis Program (CELCAP), for the purpose of evaluating the performance of cogeneration systems on a life-cycle operating cost basis.

  14. Proceedings of the Gulf Coast Cogeneration Association spring conference

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    This book contains the proceedings of the Gulf Coast Cogeneration Association cogeneration conference held March 23, 1993. The topics of the papers contained in the conference proceedings include planning for additional capacity by electric utilities, fuel selection, fuel supply, competition and market pressures, power transmission and access to power transmission facilities, case studies of successful cogeneration projects.

  15. Cogeneration: Where will it fit in the deregulated market?

    SciTech Connect (OSTI)

    Fridman, M.

    1998-07-01

    Cogeneration due to potentially high efficiency can be very competitive in a deregulated market. Cogeneration can achieve extremely high levels of thermal efficiency, much higher than the most advanced and sophisticated combined cycle power plants generating only electric power. Thermal efficiency is one of the key factors in determining the power plant economics and feasibility. High efficiency means a lesser amount of fuel is used to generate the same amount of energy. In turn, burning a lesser amount of fuel means that fewer pollutants will be emitted. The paper first describes cogeneration plants, then discusses the importance of thermal load availability, cogeneration and distributed generation and other issues affecting cogeneration.

  16. Thermal tracking cogeneration -- A new or old idea? Cogeneration for multi-thermal loads

    SciTech Connect (OSTI)

    Geers, J.R.

    1998-04-01

    The idea of designing a cogeneration project that produces electricity based on the existing heating load is common to many cogeneration projects, but may be limiting the ultimate potential to the end user. Cogeneration which is developed as a power generator producing a small amount of steam for a host load is also common. However, the idea of designing a cogeneration facility to track multiple utility loads is not as common. Where the concept has been used, the projects have been very successful. This article has been written as a primer for professionals looking for ideas when performing analysis of a potential cogeneration project, and as a thought-provoker for end users. The authors will look at each of the possible loads, outline various technical considerations and factors, look at the factors impacting the economics, and lay out an approach that would provide assistance to those trying to analyze a cogeneration project without specialized engineering assistance. Regulatory, legal and financing issues are covered in other sources.

  17. Reliability of natural gas cogeneration systems

    SciTech Connect (OSTI)

    1995-12-01

    Cogeneration systems fueled by natural gas exceed the reliability of most central station power generating units, according to a study conducted by RINC Corporation for Gas Research Institute (GRI). In the study, researchers obtained operating data from 122 natural gas cogeneration units nationwide representing 2,200 megawatts (MW) of capacity and nearly 2 million hours of operating time at 37 facilities. Units were grouped into categories reflecting size (from 60 kilowatts to 100 MW), type of system (gas engine or gas turbine technology), use of emission controls, and type of thermal application. Various types and sizes of gas systems reported average availability factors ranging from 90.0 to 95.8 versus a weighted average of 85.9 percent for fossil-fuel steam, nuclear, and gas-turbine-based central station power generating units. Comparisons are based on study data and data reported by the North American Electric Reliability Council for utility power plants. Gas cogeneration can improve utility operations because as a group the relatively small, dispersed cogeneration units are more reliable than one or more large central station units of similar capacity.

  18. The success of cogeneration in Europe

    SciTech Connect (OSTI)

    Hunschofsky, H.

    1998-10-01

    The European engineers take a different approach to designing cogeneration plants. Instead of building large gas turbines or combined cycle plants whose main target is to produce electricity and then trying to utilize as much heat as possible, European engineers target the replacement of the base heat supply of certain, small scale entities. By focusing on the annual heat demand graph, the basic layout for maximum utilization is determined. If a plant can use all or a majority of the electricity, the by-product, produced in this combined process, the perfect requirements are a given. Today cogeneration is one of the prime technologies available to achieve two valuable goals: efficient usage of limited resources and air pollution reduction. In every major European country there is a non-profit organization promoting the usage of cogeneration and acting as a platform for the various interests involved. These national institutions are members of Cogen Europe, a non-profit organization based in Brussels, Belgium, whose main focus is to promote cogeneration to a multinational level.

  19. Cogeneration in the former Soviet Union

    SciTech Connect (OSTI)

    Horak, W.C.

    1997-07-01

    The former Soviet Union made a major commitment to Cogeneration. The scale and nature of this commitment created a system conceptually different from Cogeneration in the west. The differences were both in scale, in political commitment, and in socio economic impact. This paper addresses some of the largest scale Cogeneration programs, the technology, and the residual impact of these programs. The integration of the Cogeneration and nuclear programs is a key focus of the paper. Soviet designed nuclear power plants were designed to produce both electricity and heat for residential and industrial uses. Energy systems used to implement this design approach are discussed. The significant dependence on these units for heat created an urgent need for continued operation during the winter. Electricity and heat are also produced in nuclear weapons production facilities, as well as power plants. The Soviets also had designed, and initiated construction of a number of nuclear power plants {open_quotes}ATETs{close_quotes} optimized for production of heat as well as electricity. These were canceled.

  20. Energy generation and cogeneration from wood

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    The papers presented at the conference are included in this volume. Discussions from the four workshops are also provided. The subjects covered in the workshops are: materials handling; combustion technologies - pile, grate, and suspension systems; gasification and pyrolysis systems; and cogeneration. Separate abstracts for each paper have been prepared for inclusion in the Energy Data Base. (DMC)

  1. Sri Swarna Green Power SSGP | Open Energy Information

    Open Energy Info (EERE)

    Swarna Green Power SSGP Jump to: navigation, search Name: Sri Swarna Green Power (SSGP) Place: Hyderabad, Andhra Pradesh, India Zip: 500033 Sector: Wind energy Product:...

  2. Sri Sai Manasa Nature Tech Pvt Limited | Open Energy Information

    Open Energy Info (EERE)

    Sai Manasa Nature Tech Pvt Limited Jump to: navigation, search Name: Sri Sai Manasa Nature Tech Pvt Limited Place: Hyderabad, Andhra Pradesh, India Zip: 500072 Sector: Services...

  3. Hema Sri Power Projects Ltd HSPPL | Open Energy Information

    Open Energy Info (EERE)

    Hyderabad, Andhra Pradesh, India Sector: Biomass Product: Setting up biomass and waste-to-energy power projects. References: Hema Sri Power Projects Ltd. (HSPPL)1 This article...

  4. Sandia Energy - Sandia, SRI International Sign Pact to Advance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia and SRI International, an independent research and innovation center, will join forces to explore, test, and evaluate a broad range of hydrogen and natural gas fuel...

  5. Sri Lanka Credit to Connect | Open Energy Information

    Open Energy Info (EERE)

    Credit to Connect Location of project Sri Lanka Energy Services Lighting, Cooking and water heating, Space heating, Cooling Year initiated 2011 Organization Asian Development...

  6. Bibliography of industrial cogeneration, January 1985--May 1991

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    This bibliography was compiled to provide current base of information for those interested in industrial cogeneration and to promote effective application of cogeneration technologies in industry. It is concerned with all aspects of industrial cogeneration. It includes citation for the period of January 1985 through May 1991. Citations encompass federal and state government publication, published reports, books, journal articles, technical conference proceedings, and legal publications. Relevant citations were identified trough searches of computerized data bases, prior bibliographies of cogeneration publications, publication lists from industry associations and publishing companies, technical report lists, and journal indices.

  7. Assessment of the Technical Potential for Micro-Cogeneration...

    Open Energy Info (EERE)

    throughout the United States. The cogeneration devices are simulated with the computer program EnergyPlus using models developed by Annex 42, a working group of the...

  8. EIS-0201: Coyote Springs Cogeneration Project, Morrow County, Oregon

    Broader source: Energy.gov [DOE]

    This environmental impact statement analyzes the protential impacts of the Coyote Springs Cogeneration Project, a proposed natural gas-fired cogeneration power plant near Boardman, Oregon. The proposed power plant would be built on a 22-acre site in the Port of Morrow Industrial Park. The plant would have two combustion turbines that would generate 440 average megawatts of energy when completed.

  9. Comparison of efficiency: Cogeneration vs. utility-supplied energy

    SciTech Connect (OSTI)

    Kolanowski, B.F.

    1996-06-01

    In order to understand the benefits of cogeneration -- the on site production of electricity and hot water -- it is beneficial to know the overall efficiency of the energy media presently being used when compared to cogeneration. Virtually every commercial and industrial establishment purchases their electricity from the local utility company and heat their water by using on site boilers and hot water heaters fired by natural gas or propane -- which they also purchase from an outside supplier. When on-site cogeneration is compared to purchased power the results in fuel usage efficiency are: cogeneration -- 89.2%; purchased power -- 52.6%. The overall result of on site, properly applied cogeneration is an economical, environmental, and conservational tool that preserves an establishment`s cash, helps reduce pollution and conserves a precious natural resource.

  10. Improving cogeneration plant performance through effective maintenance strategies

    SciTech Connect (OSTI)

    Sheikh, S.M.

    1998-12-31

    Gas-fired cogeneration plants supplying power and thermal energy make up an increasing percentage of new fossil generation capacity additions, both in the US and overseas. These plants are popular, not only because they cost less to build, but also because they are highly efficient and their operation and maintenance costs are lower than plants using the traditional coal-based Rankine cycle. One of the methods being used to contain the initial cost of building cogeneration plants is to minimize redundancy both in the quantity of spare equipment specified for the various systems in the plants and in the design capacity of individual components. The overall effect of such a strategy may lead to reduced reliability and availability of the cogeneration plant in the long term. Operating cogeneration plants present a variety of technologies, equipment, and operating practices. While newer cogeneration plants routinely operate at a reliability of 90% or higher, older plants may not be able to achieve such performance due to excessive equipment breakdowns or inadequate maintenance strategies. By not having the appropriate maintenance programs in place, even newer cogeneration plants are vulnerable to deteriorating reliability and availability in the long term. This paper describes mechanisms for directing maintenance resources toward reducing current maintenance costs while maintaining high availability without sacrificing long-term reliability. The maintenance strategies discussed are those that can provide the maximum benefits for improving cogeneration plant reliability, availability, capacity, cost control, and safety.

  11. Cooling tower environmental considerations for cogeneration projects

    SciTech Connect (OSTI)

    Weaver, K.L.; Putnam, R.A.; Schott, G.A.

    1994-12-31

    Careful consideration must be given to the potential environmental impacts resulting from cooling tower operations in cogeneration projects. Concerns include visible plumes, fogging and icing of nearby roadways, emissions, water use, aesthetics, and noise. These issues must be properly addressed in order to gain public acceptance and allow for easier permitting of the facility. This paper discusses the various evaporative type cooling tower technologies from an environmental standpoint. In addition, typical concerns and questions raised by the public are presented, along with suggested guidelines for addressing these concerns. The use of modeling to predict the potential environmental impacts from cooling tower operations is sometimes required by regulatory agencies as a condition for obtaining approval for the facility. This paper discusses two of the models that are currently available for predicting cooling tower environmental impacts such as fogging, icing, salt deposition, and visible plumes. The lack of standardized models for cooling tower noise predictions, and the means by which the modeling requirements may be achieved are also addressed. An overview of the characteristics of cooling tower noise, the various measures used for noise control and the interdependency of the control measures and other cooling tower performance parameters are presented. Guidance is provided to design cost effective, low noise installations. The requirements for cooling tower impact assessments to support permitting of a cogeneration facility are also presented.

  12. Cogeneration trends in Europe history -- State of the art - Outlook

    SciTech Connect (OSTI)

    Hunschofsky, H.

    1998-07-01

    Cogeneration, the utilization of heat created while producing electricity from fossil fuels, is by no means a new technology. In 1926, 71 years ago, a brochure from MAN in Germany showed a heat recovery system for diesel engines. Despite the fact that cogeneration has existed for a long time, it took half a century and the first so called ``oil crisis'' in the 1970's for societies to become aware of limited energy resources. Environmental groups gave cogeneration an additional boost in the 1980's. Additionally, governments in the Western European Nations attracted cogeneration investors by not only providing subsidies and tax breaks but also regulating electricity prices. Although there has been much growth in the cogeneration market in the past years, the industry has still not reached its peak in Europe. A variety of studies have shown that there is still significant growth potential in the future: WWF (World Wildlife Fund) published a study in 1996 suggesting a target of 330 Twh of generation will be produced through cogeneration by the year 2005, a tripling of current generation. Due to the EU's belief that cogeneration is an optimal form of generation, it has developed a cogeneration strategy. As part of this strategy, the EC is promoting cogeneration so that it accounts for 20% of all European generation by the year 2010. These factors would give a variety of companies such as equipment suppliers, investment companies, utilities, consultants and energy brokers a wide range of opportunities in Europe. Detailed information and some hints will be given as to how to participate in this fast growing industry. Ways to overcome obstacles in those markets will be shown as well as the pros and cons of different entry strategies.

  13. Improved global efficiency in industrial applications with cogeneration steam turbines

    SciTech Connect (OSTI)

    Hassan, A.; Alsthom, G.

    1998-07-01

    This paper focuses on medium steam turbine in the range of 10--80 MW and their application in cogeneration plants. The author summarizes the different steps which have led to the TM concept: good efficiency; competitive price; short delivery time; operation flexibility; ease of integration in a cogeneration process. The second part of the document shows two examples of integration of these turbines in cogeneration processes; one for acrilonitril (ACN) and polypropylene plant in Spain and the second for a textile plant in Taiwan.

  14. fabrication-polybenzimidazole-sri | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dioxide Project No.: FC26-07NT43090 SRI International is developing a high-temperature polymer membrane and designing a membrane module for pre-combustion capture of carbon...

  15. Sri Vel Bio Diesel Energy Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Vel Bio Diesel Energy Pvt Ltd Jump to: navigation, search Name: Sri Vel Bio Diesel Energy Pvt Ltd Place: Chennai, Tamil Nadu, India Zip: 600 083 Product: Focused on producing...

  16. The environmental benefits of cogeneration: A case study

    SciTech Connect (OSTI)

    Marietta, K.E.; Wachtler, J.N.

    1995-09-01

    As a case study of the environmental feasibility of a major renovation to the University of Minnesota`s steam service facilities demonstrates, cogeneration is an efficient method of energy production and reduces area-wide air emissions by reducing the demand and production levels at less efficient facilities in the region. To acknowledge this benefit and encourage efficient production, {open_quotes}cogeneration credits{close_quotes} should be granted to energy producers as an offset to point-source emissions. This paper will identify the projected reduction in area-wide emissions for the University`s cogeneration project and alternatives and will demonstrate the method used for calculating those emissions. Although regulators have not yet fully accepted the validity of cogeneration credits, attitudes are starting to change, and we can only persuade regulators to encourage efficient production by discussing the issue now and by developing ways to make these ideas effective.

  17. Industrial cogeneration optimization program. Final report, September 1979

    SciTech Connect (OSTI)

    Davis, Jerry; McWhinney, Jr., Robert T.

    1980-01-01

    This study program is part of the DOE Integrated Industry Cogeneration Program to optimize, evaluate, and demonstrate cogeneration systems, with direct participation of the industries most affected. One objective is to characterize five major energy-intensive industries with respect to their energy-use profiles. The industries are: petroleum refining and related industries, textile mill products, paper and allied products, chemicals and allied products, and food and kindred products. Another objective is to select optimum cogeneration systems for site-specific reference case plants in terms of maximum energy savings subject to given return on investment hurdle rates. Analyses were made that define the range of optimal cogeneration systems for each reference-case plant considering technology applicability, economic factors, and energy savings by type of fuel. This study also provides guidance to other parts of the program through information developed with regard to component development requirements, institutional and regulatory barriers, as well as fuel use and environmental considerations. (MCW)

  18. Urban Integrated Industrial Cogeneration Systems Analysis. Phase II final report

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    Through the Urban Integrated Industrial Cogeneration Systems Analysis (UIICSA), the City of Chicago embarked upon an ambitious effort to identify the measure the overall industrial cogeneration market in the city and to evaluate in detail the most promising market opportunities. This report discusses the background of the work completed during Phase II of the UIICSA and presents the results of economic feasibility studies conducted for three potential cogeneration sites in Chicago. Phase II focused on the feasibility of cogeneration at the three most promising sites: the Stockyards and Calumet industrial areas, and the Ford City commercial/industrial complex. Each feasibility case study considered the energy load requirements of the existing facilities at the site and the potential for attracting and serving new growth in the area. Alternative fuels and technologies, and ownership and financing options were also incorporated into the case studies. Finally, site specific considerations such as development incentives, zoning and building code restrictions and environmental requirements were investigated.

  19. Cogeneration systems and processes for treating hydrocarbon containing formations

    DOE Patents [OSTI]

    Vinegar, Harold J.; Fowler, Thomas David; Karanikas, John Michael

    2009-12-29

    A system for treating a hydrocarbon containing formation includes a steam and electricity cogeneration facility. At least one injection well is located in a first portion of the formation. The injection well provides steam from the steam and electricity cogeneration facility to the first portion of the formation. At least one production well is located in the first portion of the formation. The production well in the first portion produces first hydrocarbons. At least one electrical heater is located in a second portion of the formation. At least one of the electrical heaters is powered by electricity from the steam and electricity cogeneration facility. At least one production well is located in the second portion of the formation. The production well in the second portion produces second hydrocarbons. The steam and electricity cogeneration facility uses the first hydrocarbons and/or the second hydrocarbons to generate electricity.

  20. SEP Success Story: Biomass Burner Cogenerates Jobs and Electricity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste SEP Success Story: ... loan. | Courtesy of Helios USA, LLC. SEP Success Story: Not a Long Time Ago in an Energy ...

  1. EIS-0349: Cherry Point Co-generation Project

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to support BP West Coast Products, LLC proposal to construct and operate a 720-megawatt, natural-gas-fired, combined-cycle cogeneration facility on land adjacent to its BP Cherry Point Refinery.

  2. Cogeneration of water and power (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Conference: Cogeneration of water and power Citation Details In-Document Search Title: Cogeneration of water and power Need of pure water in areas of limited supply has driven the development of technologies to permit recycling of available water and to generate new water supplies by purifying saline resources. These technologies include sedimentation, filtration, softening, ion exchange, electrodialysis, reverse osmosis and distillation. Some of these developments serve needs of the power

  3. SEP Success Story: Biomass Burner Cogenerates Jobs and Electricity from

    Energy Savers [EERE]

    Lumber Mill Waste | Department of Energy Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste SEP Success Story: Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste December 6, 2011 - 11:20am Addthis Dale and Sharon Borgford, small business owners in Stevens County, WA, break ground with Peter Goldmark, Washington State Commissioner of Public Lands. The pair brought more than 75 jobs to the area with help from DOE's State Energy Program and the U.S.

  4. Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste |

    Energy Savers [EERE]

    Department of Energy Burner Cogenerates Jobs and Electricity from Lumber Mill Waste Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste December 6, 2011 - 3:57pm Addthis Dale and Sharon Borgford, small business owners in Stevens County, WA, break ground with Peter Goldmark, Washington State Commissioner of Public Lands. The pair brought more than 75 jobs to the area with help from DOE's State Energy Program and the U.S. Forest Service. | Photo courtesy of Washington DNR.

  5. Klickitat Cogeneration Project : Final Environmental Assessment.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration; Klickitat Energy Partners

    1994-09-01

    To meet BPA`s contractual obligation to supply electrical power to its customers, BPA proposes to acquire power generated by Klickitat Cogeneration Project. BPA has prepared an environmental assessment evaluating the proposed project. Based on the EA analysis, BPA`s proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 for the following reasons: (1)it will not have a significant impact land use, upland vegetation, wetlands, water quality, geology, soils, public health and safety, visual quality, historical and cultural resources, recreation and socioeconomics, and (2) impacts to fisheries, wildlife resources, air quality, and noise will be temporary, minor, or sufficiently offset by mitigation. Therefore, the preparation of an environmental impact statement is not required and BPA is issuing this FONSI (Finding of No Significant Impact).

  6. User Data Package (UDP) for Packaged Cogeneration Systems (PCS). Final report, December 1988-May 1990

    SciTech Connect (OSTI)

    Lee, T.Y.

    1990-05-01

    The User Data Package (UDP) for the Packaged Cogeneration System (PCS) has been developed to facilitate the transition of small decentralized cogeneration technology into the Naval shore establishment. The purpose of this UDP is to assist in the planning, design, procurement, operation, and maintenance phases for packaged cogeneration systems at Naval facilities. Several sources of information were used in the development of the UDP, including Navy documents, cogeneration industry reports, cogeneration literature, data from cogeneration installations, and electric and gas utility reports. The information provided in this UDP will enable Navy engineers to consider cogeneration options for facility installations, assist in the evaluation of PCS options, and aid in the selection of the most cost-effective and practical system. The information in the UDP will also assist in the procurement and operation of the PCS. Data to improve the management of contracts for the installation, operation, or maintenance of the cogeneration unit are also provided.

  7. Cogeneration: Economic and technical analysis. (Latest citations from the Compendex database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    The bibliography contains citations concerning economic and technical analysis of cogeneration systems. Topics include cogeneration power plants, design and operation of heat supply systems, waste heat and waste product utilization, and fossil fuel cogenerated power. Fuel cell cogeneration perspectives, gas turbine and steam turbine technology, district heating, protective relay and control systems, and market potential are discussed. (Contains 250 citations and includes a subject term index and title list.)

  8. Internal-use cogeneration: An often-overlooked opportunity

    SciTech Connect (OSTI)

    Orlando, J.A. )

    1993-03-01

    This article describes a means for industrial, institutional, and commercial energy users to reduce their costs through increased energy efficiency while providing resource management and environmental benefits. There is a significant opportunity for industrial, institutional, and commercial energy users to reduce their costs through the development of internal-use cogeneration systems. These cost reductions are the direct result of increased energy efficiency, providing both resource management and environmental benefits. While internal-use cogeneration may be cost effective, the development of the full potential for this option is hindered by electric utility resistance and counter-marketing and by the neglect of many state regulatory bodies. If the end user is to reap the benefits of this option, then he must develop an understanding of the technology and the developmental process, formulate reasonable expectations as to the benefits of cogeneration, and step forward to provide the initiative required to obtain those benefits. Similarly, the cogeneration industry must recognize the unique developmental issues that arise within the context of small displacement projects and develop the required engineering, financing, construction, and operating infrastructure. Finally, regulators must allow internal-use cogeneration to achieve its full, free-market potential.

  9. Evaluating the economic effectiveness of a cogeneration plant

    SciTech Connect (OSTI)

    Korik, L.; Yeaple, D.: Hajosy, M.

    1996-08-01

    Economic considerations constitute the major factor in the decision to build a cogeneration plant and to its eventual design - topics which have been the focus of many studies and papers. These economic concerns continue when the plant is built and on-line, thus plant operation must be geared to provide the customers` demand in the most economically effective manner possible. Unfortunately, the complexity of and high degree of interaction between the disparate components of a cogeneration plant oftentimes, make it difficult to conceptualize the plant configuration required to maximize plant economic performance for a given demand, Indeed, actions taken to increase the thermal performance of individual plant components can actually decrease the overall economic effectiveness of the plant as a whole in the context of converting fuels to sendouts. What is needed, then, is a way to meld the performance of individual plant components into a total plant performance index that accurately measures the economic effectiveness of the plant. This paper details such a method developed by the Cogeneration Management Company to accomplish the performance evaluation of its Medical Area Total Energy Plant which supplies electricity, steam, and chilled water to the Longwood. Medical Area in Boston, This method - which is easily adapted to a variety of cogeneration designs - addresses the aforementioned complexities in the assessing of a cogeneration plant`s effectiveness and results in simple-to-understand plant performance quantifications which have proved to be of great utility in ensuring the economically sound operation of MATEP.

  10. Environmental impact assessment in Sri Lanka: A progress report

    SciTech Connect (OSTI)

    Butler, J.W.

    1995-12-01

    The paper reports on progress by the Government of Sri Lanka in the implementation of a formal environmental impact assessment (EIA) requirement. The authors have recently conducted several activities in Sri Lanka intended to improve the analytical quality of EIA documents and the utility of the EIA process in government decisionmaking, with particular attention to the use of programmatic or sectoral EIAs. The U.S. Agency for International Development established a 5-year project, the Natural Resources and Environmental Policy Project (NAREPP), to provide training and technical assistance in EIA and related disiplines for the Central Environmental Authority (CEA), several other Sri Lanka government agencies, and the private sector. This activity has involved efforts to expand the technical expertise within Sri Lanka for conducting EIA, which include developing EIA courses and materials in cooperation with several universities and conducting intensive training programs for both government and private-sector environmental professionals. This EIA will focus on the selection of government-approved industrial estates throughout the country, on which most new industrial development projects are to be located. Further training programs in the use of current analytical methodologies for EIA were also developed and conducted. The effectiveness of these activities can be assessed by evaluating changes in the content and quality of subsequent EIA documents and in the extent to which such documents affect environmental decisionmaking in Sri Lanka. The authors discuss the role of the programmatic EIA in the industrial development program of Sri Lanka, remaining constraints on the EIA process, and recommendations for further improvement.

  11. Knowledge-based sizing of cogeneration plant in buildings

    SciTech Connect (OSTI)

    Williams, J.M.; Griffiths, A.J.; Knight, I.P.

    1998-10-01

    Cogeneration is now accepted as a cost-effective and environmentally friendly means of meeting some of a building`s heating and power needs. Cogeneration plants have been installed in many buildings throughout the United Kingdom. Because of commercial pressures, building owners and cogeneration companies are keen to reduce the time and money involved in sizing units, and a decision support tool has been developed to aid the engineer in selecting the unit size. An initial assessment of the sizing can be made with only knowledge of the building`s type, size, and location, which enables the model to be used in new build situations. For an existing building, the accuracy of the predictions can then be progressively improved by providing more information about the building`s energy use, enabling the optimum unit to be identified. This paper briefly describes the model and demonstrates its use through an example feasibility study.

  12. Historical impacts and future trends in industrial cogeneration

    SciTech Connect (OSTI)

    Bluestein, J.; Lihn, M.

    1999-07-01

    Cogeneration, also known as combined heat and power (CHP), is the combined sequential generation of electricity and thermal or electric energy. The technology has been known essentially since the first commercial generation of electricity as a high efficiency technology option. After a period of decline, its use increased significantly during the 1980s and it is receiving renewed interest lately as a means of increasing efficiency and reducing emissions of air pollutants including carbon emissions. New and developing technology options have added to this potential. Forecasts of future growth and efforts to stimulate cogeneration need to take into account the history of the technology, the factors that have driven it in the past, and factors which could stimulate or retard future growth. This paper reviews and analyzes these factors and looks toward the future potential for cogeneration.

  13. Tomorrow`s energy today for cities and counties: Cogeneration powers up cost-competitive energy

    SciTech Connect (OSTI)

    1995-11-01

    Cities and counties build many multi-million dollar facilities, and supplying energy to run these facilities is a long-term obligation for a community. Cogeneration offers local governments an opportunity to reduce the cost of providing electricity, heating, and cooling to their buildings. Sometimes cogeneration is combined with district heating and cooling systems. This kind of cogeneration results in system efficiencies as high as 70%--about twice the efficiency of a conventional power plant that produces only electricity! The article describes cogeneration combined with district cooling in Trenton, NJ, and cogeneration on a small scale in San Jose, California.

  14. Performance evaluation of a combined-cycle cogeneration system

    SciTech Connect (OSTI)

    Huang, F.F.; Naumowicz, T.

    1999-07-01

    A methodology for performance evaluation of a combined-cycle cogeneration system has been presented. Results for such a system using an advanced gas-turbine as the prime mover show that it is a very versatile system. It can produce a large power-to-heat ratio together with a high second-law efficiency over a wide range of process steam pressures. This work also demonstrates once again that the most appropriate and useful performance parameters for decision-making in cogeneration system design are the second-law efficiency and the power-to-heat ratio.

  15. Analysis of pure electrical and cogeneration steam power plants

    SciTech Connect (OSTI)

    Albar, A.F.

    1982-01-01

    General Electric's method of steam turbine performance was used with pure electrical and with cogeneration power plants at various flow rates. Comparisons were made for two cases: (1) the same amount of heat is added to each boiler and the amount of electrical power generated is compared; and (2) when each plant should produce the same amount of electric power and the amount of heat added to each boiler is compared. Cogeneration is energetically more efficient than pure electrical plant. Correlations for the dependence of heat rate, power generated, heat added to throttle flow ratio were obtained from this work.

  16. Cogeneration handbook for the textile industry. [Contains glossary

    SciTech Connect (OSTI)

    Garrett-Price, B.A.; Fassbender, L.L.; Moore, N.L.; Fassbender, A.G.; Eakin, D.E.; Gorges, H.A.

    1984-03-01

    The decision of whether to cogenerate involves several considerations, including technical, economic, environmental, legal, and regulatory issues. Each of these issues is addressed separately in this handbook. In addition, a chapter is included on preparing a three-phase work statement, which is needed to guide the design of a cogeneration system. In addition, an annotated bibliography and a glossary of terminology are provided. Appendix A provides an energy-use profile of the textile industry. Appendices B through O provide specific information that will be called out in subsequent chapters.

  17. Okeelanta Cogeneration Project: Electricity and steam from sugar cane

    SciTech Connect (OSTI)

    Schaberg, D.

    1994-12-31

    The Okeelanta Cogeneration Project is a Bagasse- and wood chip-fired cogeneration project with a net electrical output of approximately 70MW, located at the Okeelanta Corporation`s sugar mill in South Bay, Florida. The Project is comprised of three stoker type boilers each capable of producing 440,000 lbs/hr of steam at 1455 psia, 955F, and a single extraction/condensing steam turbine with a gross output of 75 MW. The electrical output will be sold to Florida Power and Light under the terms of an executed power purchase agreement and delivered at 138kV.

  18. SRS Marks Successful Operational Startup of New Biomass Cogeneration

    Energy Savers [EERE]

    Facility | Department of Energy Marks Successful Operational Startup of New Biomass Cogeneration Facility SRS Marks Successful Operational Startup of New Biomass Cogeneration Facility March 12, 2012 - 12:00pm Addthis Media Contacts Amy Caver (803) 952-7213 March 12, 2012 amy.caver@srs.gov CarolAnn Hibbard, (508) 661-2264 news@ameresco.com AIKEN, S.C. - Today, Under Secretary of Energy Thomas D'Agostino joined U.S. Representative Joe Wilson (R-SC) and other senior officials from the

  19. Cogeneration handbook for the petroleum refining industry. [Contains glossary

    SciTech Connect (OSTI)

    Fassbender, L.L.; Garrett-Price, B.A.; Moore, N.L.; Fassbender, A.G.; Eakin, D.E.; Gorges, H.A.

    1984-03-01

    The decision of whether to cogenerate involves several considerations, including technical, economic, environmental, legal, and regulatory issues. Each of these issues is addressed separately in this handbook. In addition, a chapter is included on preparing a three-phase work statement, which is needed to guide the design of a cogeneration system. In addition, an annotated bibliography and a glossary of terminology are provided. Appendix A provides an energy-use profile of the petroleum refining industry. Appendices B through O provide specific information that will be called out in subsequent chapters.

  20. Cogeneration handbook for the food processing industry. [Contains glossary

    SciTech Connect (OSTI)

    Eakin, D.E.; Fassbender, L.L.; Garrett-Price, B.A.; Moore, N.L.; Fasbender, A.G.; Gorges, H.A.

    1984-03-01

    The decision of whether to cogenerate involves several considerations, including technical, economic, environmental, legal, and regulatory issues. Each of these issues is addressed separately in this handbook. In addition, a chapter is included on preparing a three-phase work statement, which is needed to guide the design of a cogeneration system. In addition, an annotated bibliography and a glossary of terminology are provided. Appendix A provides an energy-use profile of the food processing industry. Appendices B through O provide specific information that will be called out in subsequent chapters.

  1. Cogeneration handbook for the pulp and paper industry. [Contains glossary

    SciTech Connect (OSTI)

    Griffin, E.A.; Moore, N.L.; Fassbender, L.L.; Garrett-Price, B.A.; Fassbender, A.G.; Eakin, D.E.; Gorges, H.A.

    1984-03-01

    The decision of whether to cogenerate involves several considerations, including technical, economic, environmental, legal, and regulatory issues. Each of these issues is addressed separately in this handbook. In addition, a chapter is included on preparing a three-phase work statement, which is needed to guide the design of a cogeneration system. In addition, an annotated bibliography and a glossary of terminology are provided. Appendix A provides an energy-use profile of the pulp and paper industry. Appendices B and O provide specific information that will be called out in subsequent chapters.

  2. Cogeneration handbook for the chemical process industries. [Contains glossary

    SciTech Connect (OSTI)

    Fassbender, A.G.; Fassbender, L.L.; Garrett-Price, B.A.; Moore, N.L.; Eakin, D.E.; Gorges, H.A.

    1984-03-01

    The desision of whether to cogenerate involves several considerations, including technical, economic, environmental, legal, and regulatory issues. Each of these issues is addressed separately in this handbook. In addition, a chapter is included on preparing a three-phase work statement, which is needed to guide the design of a cogeneration system. In addition, an annotated bibliography and a glossary of terminology are provided. Appendix A provides an energy-use profile of the chemical industry. Appendices B through O provide specific information that will be called out in subsequent chapters.

  3. fabrication-polybenzimidazole-sri | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fabrication and Scale-Up of Polybenzimidazole-Based Membrane System for Pre-Combustion Capture of Carbon Dioxide Project No.: FC26-07NT43090 SRI International is developing a high-temperature polymer membrane and designing a membrane module for pre-combustion capture of carbon dioxide (CO2) from integrated gasification combined cycle (IGCC)-derived synthesis gas (syngas). The membrane utilizes polybenzimidazole (PBI) fiber, a synthetic fiber with a very high melting point that also does not

  4. Microsoft Word - SRI2008_VLSPGM_final.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cover Page Nuclear Instrument and Methods SRI 2008 Conference Proceedings Title: Upgraded varied-line-space PGM beamline at CAMD Authors: Pingheng Zhou and Eizi Morikawa Contact author: Eizi Morikawa, eizi@lsu.edu, (225) 578-4604 Phone, (225) 578-6954 Fax Address: The J. Bennett Johnston Sr., Center for Advanced Microstructures and Devices, Louisiana State University, 6980 Jefferson Hwy, Baton Rouge, LA 70806, USA A reply to the referee's comments: All requested English corrections were made. 2

  5. Cogeneration: Economic and technical analysis. (Latest citations from the INSPEC database). NewSearch

    SciTech Connect (OSTI)

    Not Available

    1994-11-01

    The bibliography contains citations concerning economic and technical analyses of cogeneration systems. Topics include electric power generation, industrial cogeneration, use by utilities, and fuel cell cogeneration. The citations explore steam power station, gas turbine and steam turbine technology, district heating, refuse derived fuels, environmental effects and regulations, bioenergy and solar energy conversion, waste heat and waste product recycling, and performance analysis. (Contains a minimum of 120 citations and includes a subject term index and title list.)

  6. Cogeneration: Economic and technical analysis. (Latest citations from the INSPEC database). Published Search

    SciTech Connect (OSTI)

    1996-03-01

    The bibliography contains citations concerning economic and technical analyses of cogeneration systems. Topics include electric power generation, industrial cogeneration, use by utilities, and fuel cell cogeneration. The citations explore steam power station, gas turbine and steam turbine technology, district heating, refuse derived fuels, environmental effects and regulations, bioenergy and solar energy conversion, waste heat and waste product recycling, and performance analysis.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  7. Assessment of potential and existing problems concerning interface between electric utilities and cogenerators

    SciTech Connect (OSTI)

    Not Available

    1980-03-01

    The potential and existing problems concerning the interface between US electric utilities and cogenerators are considered by region. Also considered are regulatory barriers, rates and contracts, economic feasibility, and impact on system planning. Finally, the impact of the National Energy Act on the marketability potential of cogeneration is reviewed. The three appendixes summarize the utility meetings on cogeneration held in Washington, DC, Los Angeles, and Chicago.

  8. Sri Lanka-Rapid Assessment of City Emissions (RACE) for Low Carbon...

    Open Energy Info (EERE)

    Assessment of City Emissions (RACE) for Low Carbon Cities: Transport and Building Electricity Use Jump to: navigation, search Name Sri Lanka-Rapid Assessment of City Emissions...

  9. Sri Sai Krishna Hydro Energies Pvt Ltd SSK | Open Energy Information

    Open Energy Info (EERE)

    Krishna Hydro Energies Pvt Ltd SSK Jump to: navigation, search Name: Sri Sai Krishna Hydro Energies Pvt. Ltd. (SSK) Place: Hyderabad, Andhra Pradesh, India Zip: 500 033 Sector:...

  10. Assessment of cogeneration technologies for use at Department of Defense installations. Final report

    SciTech Connect (OSTI)

    Binder, M.J.; Cler, G.L.

    1996-01-01

    Cogeneration is the simultaneous generation of two types of energy, usually electricity and thermal energy, from a single energy source such as natural gas or diesel fuel. Cogeneration systems can be twice (or more) as efficient than conventional energy systems since both the electricity and the available thermal energy produced as a by-product of the electric generation, are used. This study identified cogeneration technologies and equipment capable of meeting Department of Defense (DOD) requirements for generation of electrical and thermal energy and described a wide range of successful cogeneration system configurations potentially applicable to DOD energy plants, including: cogeneration system prime movers, electrical generating equipment, heat recovery equipment, and control systems. State of the art cogeneration components are discussed in detail along with typical applications and analysis tools that are currently available to assist in the evaluation of potential cogeneration projects. A basic analysis was performed for 55 DOD installations to determine the economic benefits of cogeneration to the DOD. The study concludes that, in general, cogeneration systems can be a very cost effective method of providing the military with its energy needs.

  11. Optimal operational planning of cogeneration systems with thermal storage by the decomposition method

    SciTech Connect (OSTI)

    Yokoyama, R.; Ito, K.

    1995-12-01

    An optimal operational planning method is proposed for cogeneration systems with thermal storage. The daily operational strategy of constituent equipment is determined so as to minimize the daily operational cost subject to the energy demand requirement. This optimization problem is formulated as a large-scale mixed-integer linear programming one, and it is solved by means of the decomposition method. Effects of thermal storage on the operation of cogeneration systems are examined through a numerical study on a gas engine-driven cogeneration system installed in a hotel. This method is a useful tool for evaluating the economic and energy-saving properties of cogeneration systems with thermal storage.

  12. Small-scale biomass fueled cogeneration systems - A guidebook for general audiences

    SciTech Connect (OSTI)

    Wiltsee, G.

    1993-12-01

    What is cogeneration and how does it reduce costs? Cogeneration is the production of power -- and useful heat -- from the same fuel. In a typical biomass-fueled cogeneration plant, a steam turbine drives a generator, producing electricity. The plant uses steam from the turbine for heating, drying, or other uses. The benefits of cogeneration can mostly easily be seen through actual samples. For example, cogeneration fits well with the operation of sawmills. Sawmills can produce more steam from their waste wood than they need for drying lumber. Wood waste is a disposal problem unless the sawmill converts it to energy. The case studies in Section 8 illustrate some pluses and minuses of cogeneration. The electricity from the cogeneration plant can do more than meet the in-house requirements of the mill or manufacturing plant. PURPA -- the Public Utilities Regulatory Policies Act of 1978 -- allows a cogenerator to sell power to a utility and make money on the excess power it produces. It requires the utility to buy the power at a fair price -- the utility`s {open_quotes}avoided cost.{close_quotes} This can help make operation of a cogeneration plant practical.

  13. Gas engines provide cogeneration service for Fantoni MDF plant

    SciTech Connect (OSTI)

    Chellini, R.

    1996-12-01

    A large MDF (medium density fiberboard) plant recently started industrial production at the headquarters of Fantoni, in Osoppo (UDINE) Italy. Providing electric power and thermal energy to the process is a cogeneration plant based on four large spark-ignited gas engines. The new Osoppo MDF plant processes 800 m{sup 3} of finished boards per day in a manufacturing line that combines the most advanced technologies available from several European equipment manufacturers. The cogeneration plant features four type 12VA32G spark-ignited gas engines from Fincantieri`s Diesel Engine Division, driving 50Hz, 6.3 kV, 5400 kVA Ansaldo generators at 750 r/min. The turbocharged and intercooled engines are a spark-ignited version of the company`s A32 diesel. They feature 12 Vee-arranged cylinders with 320 mm bore and 390 mm stroke. 5 figs.

  14. Combined-cycle cogeneration to power oil refinery

    SciTech Connect (OSTI)

    Broeker, R.J.

    1986-11-01

    A cogeneration plant now under construction at an oil refinery in Martinez, California, is an example of how the energy industry has been responding to the fundamental economic and technological challenges it has been facing over the past ten years. The industry is re-examining cogeneration as one way of meeting the requirements of the Public Utilities Regulatory Policy Act. The new plant is located at Tosco Corporation's Avon Oil Refinery, 45 miles northeast of San Francisco. It was designed by Foster Wheeler to supply process steam for the refinery as well as for a water-treatment installation that will benefit the Contra Costa Water District. Electric power produced will be used primarily by the refinery, with the balance purchased by the Pacific Gas and Electric Company.

  15. Spatiotemporal evolution of dielectric driven cogenerated dust density waves

    SciTech Connect (OSTI)

    Sarkar, Sanjib; Bose, M. [Department of Physics, Jadavpur University, Kolkata 700032 (India)] [Department of Physics, Jadavpur University, Kolkata 700032 (India); Mukherjee, S. [FCIPT, Institute for Plasma Research, Gandhinagar 382428 (India)] [FCIPT, Institute for Plasma Research, Gandhinagar 382428 (India); Pramanik, J. [Kharagpur College, Kharagpur 721305, West Bengal (India)] [Kharagpur College, Kharagpur 721305, West Bengal (India)

    2013-06-15

    An experimental observation of spatiotemporal evolution of dust density waves (DDWs) in cogenerated dusty plasma in the presence of modified field induced by glass plate is reported. Various DDWs, such as vertical, oblique, and stationary, were detected simultaneously for the first time. Evolution of spatiotemporal complexity like bifurcation in propagating wavefronts is also observed. As dust concentration reaches extremely high value, the DDW collapses. Also, the oblique and nonpropagating mode vanishes when we increase the number of glass plates, while dust particles were trapped above each glass plates showing only vertical DDWs.

  16. Applications of cogeneration with thermal energy storage technologies

    SciTech Connect (OSTI)

    Somasundaram, S.; Katipamula, S.; Williams, H.R.

    1995-03-01

    The Pacific Northwest Laboratory (PNL) leads the U.S. Department of Energy`s Thermal Energy Storage (TES) Program. The program focuses on developing TES for daily cycling (diurnal storage), annual cycling (seasonal storage), and utility-scale applications [utility thermal energy storage (UTES)]. Several of these storage technologies can be used in a new or an existing power generation facility to increase its efficiency and promote the use of the TES technology within the utility and the industrial sectors. The UTES project has included a study of both heat storage and cool storage systems for different utility-scale applications. The study reported here has shown that an oil/rock diurnal TES system, when integrated with a simple gas turbine cogeneration system, can produce on-peak power for $0.045 to $0.06 /kWh, while supplying a 24-hour process steam load. The molten salt storage system was found to be less suitable for simple as well as combined-cycle cogeneration applications. However, certain advanced TES concepts and storage media could substantially improve the performance and economic benefits. In related study of a chill TES system was evaluated for precooling gas turbine inlet air, which showed that an ice storage system could be used to effectively increase the peak generating capacity of gas turbines when operating in hot ambient conditions.

  17. Victorias energy efficiency and cogeneration project. Final report

    SciTech Connect (OSTI)

    1998-10-31

    This report describes a two-phase energy project currently contemplated for joint implementation at the Victorias Milling Company, a large sugar mill and refinery on the island of Negros in the Visayas region of the Philippines. The Energy Efficiency (EE) phase is expected to reduce of eliminate VMC`s fossil fuel consumption, which will have a direct and substantial impact on carbon emissions. Phase I is an EE project which involves the installation of equipment to reduce steam and electricity demand in the factories. Phase II, will involve retrofitting and increasing the capacity of the steam and power generation systems, and selling power to the grid. By increasing efficiency and output, the cogeneration project will allow the factory to use only bagasse sugar cane fiber waste as fuel for energy needs. The cogeneration project will also eliminate VMC`s electricity purchases and supply additional power for the island, which will offset generation capacity expansion on the island and the Visayas region.

  18. Waste-to-Energy Cogeneration Project, Centennial Park

    SciTech Connect (OSTI)

    Johnson, Clay; Mandon, Jim; DeGiulio, Thomas; Baker, Ryan

    2014-04-29

    The Waste-to-Energy Cogeneration Project at Centennial Park has allowed methane from the closed Centennial landfill to export excess power into the the local utility’s electric grid for resale. This project is part of a greater brownfield reclamation project to the benefit of the residents of Munster and the general public. Installation of a gas-to-electric generator and waste-heat conversion unit take methane byproduct and convert it into electricity at the rate of about 103,500 Mwh/year for resale to the local utility. The sale of the electricity will be used to reduce operating budgets by covering the expenses for streetlights and utility bills. The benefits of such a project are not simply financial. Munster’s Waste-to Energy Cogeneration Project at Centennial Park will reduce the community’s carbon footprint in an amount equivalent to removing 1,100 cars from our roads, conserving enough electricity to power 720 homes, planting 1,200 acres of trees, or recycling 2,000 tons of waste instead of sending it to a landfill.

  19. BP Cherry Point Cogeneration Project, Draft Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2003-09-19

    BP West Coast Products, LLC (BP or the Applicant) proposes to construct and operate a nominal 720-megawatt (MW), natural-gas-fired, combined-cycle cogeneration facility next to the existing BP Cherry Point Refinery in Whatcom County, Washington. The Applicant also owns and operates the refinery, but the cogeneration facility and the refinery would be operated as separate business units. The cogeneration facility and its ancillary infrastructure would provide steam and 85 MW of electricity to meet the operating needs of the refinery and 635 MW of electrical power for local and regional consumption. The proposed cogeneration facility would be located between Ferndale and Blaine in northwestern Whatcom County, Washington. The Canadian border is approximately 8 miles north of the proposed project site. The Washington State Energy Facility Site Evaluation Council (EFSEC) has jurisdiction over the evaluation of major energy facilities including the proposed project. As such, EFSEC will recommend approval or denial of the proposed cogeneration facility to the governor of Washington after an environmental review. On June 3, 2002, the Applicant filed an Application for Site Certification (ASC No. 2002-01) with EFSEC in accordance with Washington Administrative Code (WAC) 463-42. On April 22, 2003, the Applicant submitted an amended ASC that included, among other things, a change from air to water cooling. With the submission of the ASC and in accordance with the State Environmental Policy Act (SEPA) (WAC 463-47), EFSEC is evaluating the siting of the proposed project and conducting an environmental review with this Environmental Impact Statement (EIS). Because the proposed project requires federal agency approvals and permits, this EIS is intended to meet the requirements under both SEPA and the National Environmental Policy Act (NEPA). The Bonneville Power Administration (Bonneville) and U.S. Army Corps of Engineers (Corps) also will use this EIS as part of their respective decision-making processes associated with the Applicant's request to interconnect to Bonneville's transmission system and proposed location of the project within wetland areas. Therefore, this Draft EIS serves as the environmental review document for SEPA and for NEPA as required by Bonneville for the interconnection and the Corps for its 404 individual permit. The EIS addresses direct, indirect, and cumulative impacts of the proposed project, and potential mitigation measures proposed by the Applicant, as well as measures recommended by EFSEC. The information and resulting analysis presented in this Draft EIS are based primarily on information provided by the Applicant in the ASC No. 2002-01 (BP 2002). Where additional information was used to evaluate the potential impacts associated with the proposed action, that information has been referenced. EFSEC's environmental consultant, Shapiro and Associates, Inc., did not perform additional studies during the preparation of this Draft EIS.

  20. Cogeneration at the University of Colorado and it`s role in the emerging energy markets

    SciTech Connect (OSTI)

    Swoboda, G.J.

    1996-12-31

    The author describes the development of the cogeneration system at the University of Colorado at Boulder campus, which was brought on line in 1992. The author reviews the history of power and utilities services for the campus. Prior to 1932, the campus maintained a coal fired cogeneration facility. In the 1980`s, evaluation of existing systems on campus, and changes in regulations for public utilities, prompted the campus to implement a new cogeneration facility, housed in the building originally used for this purpose. This facility allows the university to control this aspect of its needs, provides cheaper utilities, and allows the university to be directly involved in energy conservation.

  1. Industrial cogeneration case study No. 3: Mead Corporation Paper Mill, Kingsport, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1980-04-01

    The design, operation, performance, economics and energy efficiency of the 25,000 kW co-generating power plant at the Mead Co. paper mill in Kingsport, TN are described, and compared with the efficiency of producing only process heat at the plant while importing electric power from a local utility. It was established that on-site co-generation consumed 2/3 of the energy that would have been required for on-site process heat generation plus purchased off-site-generated electric power and that co-generation resulted in more than $2.8 million saved during the period from 1975 through 1978. (LCL)

  2. Solar cogeneration: Cimarron River station, Central Telephone and Utilities-Western Power

    SciTech Connect (OSTI)

    Harder, J.E.

    1981-04-01

    The site-specific conceptual design progress is described for a solar central receiver cogeneration facility at a Kansas utility. The process is described which led to the selection of the preferred solar cogeneration facility. The status of the conceptual design is presented. The evaluation of system performance is described. A test program is described that is to determine the magnitude of impact that local environmental factors have on collector system performance and to measure the direct normal insolation at the cogeneration facility site. The system specification is appended. (LEW)

  3. Level: National Data; Row: NAICS Codes; Column: Usage within Cogeneration Technologies;

    Gasoline and Diesel Fuel Update (EIA)

    3 Number of Establishments by Usage of Cogeneration Technologies, 2006; Level: National Data; Row: NAICS Codes; Column: Usage within Cogeneration Technologies; Unit: Establishment Counts. Establishments with Any Cogeneration NAICS Technology Code(a) Subsector and Industry Establishments(b) in Use(c) In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know Total United States 311 Food 14,128 297

  4. Level: National Data; Row: NAICS Codes; Column: Usage within Cogeneration Technologies;

    Gasoline and Diesel Fuel Update (EIA)

    3 Number of Establishments by Usage of Cogeneration Technologies, 2010; Level: National Data; Row: NAICS Codes; Column: Usage within Cogeneration Technologies; Unit: Establishment Counts. Establishments with Any Cogeneration NAICS Technology Code(a) Selected Subsectors and Industry Establishments(b) in Use(c) In Use(d) Not in Use(e) Don't Know In Use(d) Not in Use(e) Don't Know In Use(d) Not in Use(e) Don't Know In Use(d) Not in Use(e) Don't Know In Use(d) Not in Use(e) Don't Know Total United

  5. AP and L sees window of opportunity to double revenue via cogeneration

    SciTech Connect (OSTI)

    Not Available

    1982-02-01

    The sale of cogenerated process steam to industries could allow Arkansas Power and Light to expand its operation from power generation to manufactured energy at double the revenue. Rising oil prices and pending gas deregulation are forcing industrial customers to look for alternative fuel supplies. Utilities must seize the opportunity to sell cogenerated steam before prospective customers decide to generate their own power and steam, although a user survey shows that industry is reluctant to commit the capital at this time. AP and L's system will join combined-cycle cogeneration and coal gasification. Four figures display the data developed during AP and L's continuing feasibility studies. (DCK)

  6. Decentralised optimisation of cogeneration in virtual power plants

    SciTech Connect (OSTI)

    Wille-Haussmann, Bernhard; Erge, Thomas; Wittwer, Christof

    2010-04-15

    Within several projects we investigated grid structures and management strategies for active grids with high penetration of renewable energy resources and distributed generation (RES and DG). Those ''smart grids'' should be designed and managed by model based methods, which are elaborated within these projects. Cogeneration plants (CHP) can reduce the greenhouse gas emissions by locally producing heat and electricity. The integration of thermal storage devices is suitable to get more flexibility for the cogeneration operation. If several power plants are bound to centrally managed clusters, it is called ''virtual power plant''. To operate smart grids optimally, new optimisation and model reduction techniques are necessary to get rid with the complexity. There is a great potential for the optimised management of CHPs, which is not yet used. Due to the fact that electrical and thermal demands do not occur simultaneously, a thermally driven CHP cannot supply electrical peak loads when needed. With the usage of thermal storage systems it is possible to decouple electric and thermal production. We developed an optimisation method based on mixed integer linear programming (MILP) for the management of local heat supply systems with CHPs, heating boilers and thermal storages. The algorithm allows the production of thermal and electric energy with a maximal benefit. In addition to fuel and maintenance costs it is assumed that the produced electricity of the CHP is sold at dynamic prices. This developed optimisation algorithm was used for an existing local heat system with 5 CHP units of the same type. An analysis of the potential showed that about 10% increase in benefit is possible compared to a typical thermally driven CHP system under current German boundary conditions. The quality of the optimisation result depends on an accurate prognosis of the thermal load which is realised with an empiric formula fitted with measured data by a multiple regression method. The key functionality of a virtual power plant is to increase the value of the produced power by clustering different plants. The first step of the optimisation concerns the local operation of the individual power generator, the second step is to calculate the contribution to the virtual power plant. With small extensions the suggested MILP algorithm can be used for an overall EEX (European Energy Exchange) optimised management of clustered CHP systems in form of the virtual power plant. This algorithm has been used to control cogeneration plants within a distribution grid. (author)

  7. Part-load cogeneration technology meets chilled water and steam requirements

    SciTech Connect (OSTI)

    Leach, M.D.

    1998-10-01

    Louisiana State University`s Energy Savings Performance Contract with CES/Way was a groundbreaking project that applied part-load cogeneration technology to a large university campus to meet chilled water and steam requirements for expansion needs. Simultaneously, the project provided these utilities at no additional out of pocket cost to the institution by using the innovative financing mechanism of performance contracting, in which project savings pay for the investment. In addition, the work is performed via a cogeneration system operating most of the year at part-load. This mechanical cogeneration project could also be termed a thermal cogeneration project, as it provides a dual thermal benefit from a single input energy source. Not only did the project achieve the projected energy savings, but the savings proved to be so dependable that the University opted for an early buyout of the project from CES/Way in 1994, after only about two years of documented savings.

  8. Modelling Residential-Scale Combustion-Based Cogeneration in Building Simulation

    SciTech Connect (OSTI)

    Ferguson, A.; Kelly, N.; Weber, A.; Griffith, B.

    2009-03-01

    This article describes the development, calibration and validation of a combustion-cogeneration model for whole-building simulation. As part of IEA Annex 42, we proposed a parametric model for studying residentialscale cogeneration systems based on both Stirling and internal combustion engines. The model can predict the fuel use, thermal output and electrical generation of a cogeneration device in response to changing loads, coolant temperatures and flow rates, and control strategies. The model is now implemented in the publicly-available EnergyPlus, ESP-r and TRNSYS building simulation programs. We vetted all three implementations using a comprehensive comparative testing suite, and validated the model's theoretical basis through comparison to measured data. The results demonstrate acceptable-to-excellent agreement, and suggest the model can be used with confidence when studying the energy performance of cogeneration equipment in non-condensing operation.

  9. Cogeneration: Economic and technical analysis. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1995-12-01

    The bibliography contains citations concerning economic and technical analysis of cogeneration systems. Topics include electric power and steam generation, dual-purpose and fuel cell power plants, and on-site power generation. Tower focus power plants, solar cogeneration, biomass conversion, coal liquefaction and gasification, and refuse derived fuels are examined. References cite feasibility studies, performance and economic evaluation, environmental impacts, and institutional factors. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  10. Cogeneration: Economic and technical analysis. (Latest citations from the NTIS data base). Published Search

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    The bibliography contains citations concerning economic and technical analysis of cogeneration systems. Topics include electric power and steam generation, dual-purpose and fuel cell power plants, and on-site power generation. Tower focus power plants, solar cogeneration, biomass conversion, coal liquefaction and gasification, and refuse derived fuels are discussed. References cite feasibility studies, performance and economic evaluation, environmental impacts, and institutional factors. (Contains 250 citations and includes a subject term index and title list.)

  11. Cogeneration: Economic and technical analysis. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    The bibliography contains citations concerning economic and technical analysis of cogeneration systems. Topics include electric power and steam generation, dual-purpose and fuel cell power plants, and on-site power generation. Tower focus power plants, solar cogeneration, biomass conversion, coal liquefaction and gasification, and refuse derived fuels are examined. References cite feasibility studies, performance and economic evaluation, environmental impacts, and institutional factors. (Contains 250 citations and includes a subject term index and title list.)

  12. Cogeneration: Economic and technical analysis. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The bibliography contains citations concerning economic and technical analysis of cogeneration systems. Topics include electric power and steam generation, dual-purpose and fuel cell power plants, and on-site power generation. Tower focus power plants, solar cogeneration, biomass conversion, coal liquefaction and gasification, and refuse derived fuels are examined. References cite feasibility studies, performance and economic evaluation, environmental impacts, and institutional factors. (Contains 250 citations and includes a subject term index and title list.)

  13. Nonrecovery cokemaking/cogeneration complex at Inland Steel scheduled to start up in mid-1998

    SciTech Connect (OSTI)

    Samways, N.L.

    1997-12-01

    A 1.33 million ton/year cokemaking/cogeneration power complex is under construction at the Indiana Harbor Works. The cokemaking plant consists of four batteries of nonrecovery type coke ovens representing a total of 268 ovens. The cogeneration energy facilities include: 16 heat recovery boilers; a steam turbine generator, and a flue gas desulfurization system. Start-up is scheduled for mid-1998. Both facilities are described.

  14. Cogeneration: Economic and technical analysis. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-11-01

    The bibliography contains citations concerning economic and technical analysis of cogeneration systems. Topics include electric power and steam generation, dual-purpose and fuel cell power plants, and on-site power generation. Tower focus power plants, solar cogeneration, biomass conversion, coal liquefaction and gasification, and refuse derived fuels are examined. References cite feasibility studies, performance and economic evaluation, environmental impacts, and institutional factors. (Contains 250 citations and includes a subject term index and title list.)

  15. The state of the United States cogeneration industry from a developer perspective

    SciTech Connect (OSTI)

    Nielsen, W.E.

    1996-12-31

    The paper presents opinions regarding the future of the cogeneration industry in the U.S. Background information on the non-utility U.S. power industry is summarized. The future of the wholesale electric markets and deregulation of the generation sector is discussed. The future of the retail market is related to issues of open access, stranded investment, and power marketing. A new growth period, spurred by deregulation, is predicted for U.S. cogeneration developers.

  16. High-Efficiency Solar Cogeneration with Thermophotovoltaic & Fiber-Optic

    Energy Savers [EERE]

    Daylighting | Department of Energy High-Efficiency Solar Cogeneration with Thermophotovoltaic & Fiber-Optic Daylighting High-Efficiency Solar Cogeneration with Thermophotovoltaic & Fiber-Optic Daylighting Credit: Creative Light Source, Inc. Credit: Creative Light Source, Inc. Lead Performer: Creative Light Source, Inc. DOE Funding: $1,724,521 (total for SBIR Phases I and 2) Cost Share: N/A Project Term: 7/28/14 - 7/28/16 Funding Opportunity Announcement: 2013 - Small Business

  17. Wheeling for cogeneration and small power-production facilities

    SciTech Connect (OSTI)

    Tiano, J.R.; Zimmer, M.J.

    1982-01-01

    New problems have arisen over the ability to wheel power from decentralized cogeneration and small generation sources between electric utilities or between industrial facilities within a common geographical area. This article explores the historical and current positions of the Federal Power Commission, now the Federal Energy Regulatory Commission (FERC) as it has interpreted its authority under Part II of the Federal Power Act to order the wheeling of electric power. The authors also outline and discuss related antitrust issues which often arise within the context of wheeling and the possibilities of recognizing potential antitrust violations as a factor in promoting wheeling arrangements. Concluding that Congress will not address the issue, they recommend the negotiation of wheeling rates by project sponsors to introduce flexibility and avoid more regulation and costly antitrust litigation. 21 references.

  18. System specification for Fort Hood Solar Cogeneration Facility

    SciTech Connect (OSTI)

    Not Available

    1981-05-01

    The characteristics and design and environmental requirements are specified for a solar cogeneration facility at the Fort Hood Army Base in Killeen, Texas. Characteristics of the system and major elements are described, and applicable standards, codes, laws and regulations are listed. Performance requirements for the total system and for each individual subsystem are presented. Survival requirements are given for various environmental extremes, with consideration given to lightning protection and effects of direct or adjacent lightning strikes. Air quality control standards are briefly mentioned. The facility operates in two principal modes: energy collection and energy utilization. The plant is capable of operating in either mode independently or in both modes simultaneously. The system is also operational in transitional and standby/inactive modes. (LEW)

  19. 1992 National census for district heating, cooling and cogeneration

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    District energy systems are a major part of the energy use and delivery infrastructure of the United States. With nearly 6,000 operating systems currently in place, district energy represents approximately 800 billion BTU per hour of installed thermal production capacity, and provides over 1.1 quadrillion BTU of energy annually -- about 1.3% of all energy used in the US each year. Delivered through more that 20,000 miles of pipe, this energy is used to heat and cool almost 12 billion square feet of enclosed space in buildings that serve a diverse range of office, education, health care, military, industrial and residential needs. This Census is intended to provide a better understanding of the character and extent of district heating, cooling and cogeneration in the United States. It defines a district energy system as: Any system that provides thermal energy (steam, hot water, or chilled water) for space heating, space cooling, or process uses from a central plant, and that distributes the energy to two or more buildings through a network of pipes. If electricity is produced, the system is a cogenerating facility. The Census was conducted through surveys administered to the memberships of eleven national associations and agencies that collectively represent the great majority of the nation`s district energy system operators. Responses received from these surveys account for about 11% of all district systems in the United States. Data in this report is organized and presented within six user sectors selected to illustrate the significance of district energy in institutional, community and utility settings. Projections estimate the full extent of district energy systems in each sector.

  20. Analysis of Homogeneous Charge Compression Ignition (HCCI) Engines for Cogeneration Applications

    SciTech Connect (OSTI)

    Aceves, S; Martinez-Frias, J; Reistad, G

    2004-04-30

    This paper presents an evaluation of the applicability of Homogeneous Charge Compression Ignition Engines (HCCI) for small-scale cogeneration (less than 1 MWe) in comparison to five previously analyzed prime movers. The five comparator prime movers include stoichiometric spark-ignited (SI) engines, lean burn SI engines, diesel engines, microturbines and fuel cells. The investigated option, HCCI engines, is a relatively new type of engine that has some fundamental differences with respect to other prime movers. Here, the prime movers are compared by calculating electric and heating efficiency, fuel consumption, nitrogen oxide (NOx) emissions and capital and fuel cost. Two cases are analyzed. In Case 1, the cogeneration facility requires combined power and heating. In Case 2, the requirement is for power and chilling. The results show that the HCCI engines closely approach the very high fuel utilization efficiency of diesel engines without the high emissions of NOx and the expensive diesel fuel. HCCI engines offer a new alternative for cogeneration that provides a unique combination of low cost, high efficiency, low emissions and flexibility in operating temperatures that can be optimally tuned for cogeneration systems. HCCI engines are the most efficient technology that meets the oncoming 2007 CARB NOx standards for cogeneration engines. The HCCI engine appears to be a good option for cogeneration systems and merits more detailed analysis and experimental demonstration.

  1. Evaluation of the heating operation and transmission district: Feasibility of cogeneration. Final report

    SciTech Connect (OSTI)

    Cable, J.H.; Gilday, L.T.; Moss, M.E.

    1995-11-01

    The General Services Administration, through its National Capital Region, operates a district heating system - called the Heating Operation and Transmission District - that provides steam to approximately 100 government buildings in Washington, D.C. HOTD is examining a host of options that will improve its ability to provide reliable, environmentally sound, and cost-effective service to its customers. This report evaluates one of those options - cogeneration, a technology that would enable HOTD to produce steam and electricity simultaneously. The study concluded that, under current regulations, cogeneration is not attractive economically because the payback period (15 years) exceeds Federal return-on-investment guidelines. However, if the regulatory environment changes to allow wheeling (transmission of power by a non-utility power producer to another user), cogeneration would be attractive; HOTD would save anywhere from $38 million to $118 million and the investment would pay back in 7 to 10 years. Although incorporating cogeneration into the HOTD system has no strong benefit at this time, the report recommends that GSA reevaluate cogeneration in one or two years because Federal regulations regarding wheeling are under review. It also recommends that GSA work with the District of Columbia government to develop standards for cogeneration.

  2. Cogeneration: Economic and technical analysis. (Latest citations from the INSPEC - The Database for Physics, Electronics, and Computing). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    The bibliography contains citations concerning economic and technical analyses of cogeneration systems. Topics include electric power generation, industrial cogeneration, use by utilities, and fuel cell cogeneration. The citations explore steam power station, gas turbine and steam turbine technology, district heating, refuse derived fuels, environmental effects and regulations, bioenergy and solar energy conversion, waste heat and waste product recycling, and performance analysis. (Contains a minimum of 104 citations and includes a subject term index and title list.)

  3. Evaluation of diurnal thermal energy storage combined with cogeneration systems. Phase 2

    SciTech Connect (OSTI)

    Somasundaram, S.; Brown, D.R.; Drost, M.K.

    1993-07-01

    This report describes the results of a study of thermal energy storage (TES) systems integrated with combined-cycle gas turbine cogeneration systems. Integrating thermal energy storage with conventional cogeneration equipment increases the initial cost of the combined system; but, by decoupling electric power and process heat production, the system offers two significant advantages. First, electric power can be generated on demand, irrespective of the process heat load profile, thus increasing the value of the power produced. Second, although supplementary firing could be used to serve independently varying electric and process heat loads, this approach is inefficient. Integrating TES with cogeneration can serve the two independent loads while firing all fuel in the gas turbine. An earlier study analyzed TES integrated with a simple-cycle cogeneration system. This follow-on study evaluated the cost of power produced by a combined-cycle electric power plant (CC), a combined-cycle cogeneration plant (CC/Cogen), and a combined-cycle cogeneration plant integrated with thermal energy storage (CC/TES/Cogen). Each of these three systems was designed to serve a fixed (24 hr/day) process steam load. The value of producing electricity was set at the levelized cost for a CC plant, while the value of the process steam was for a conventional stand-alone boiler. The results presented here compared the costs for CC/TES/Cogen system with those of the CC and the CC/Cogen plants. They indicate relatively poor economic prospects for integrating TES with a combined-cycle cogeneration power plant for the assumed designs. The major reason is the extremely close approach temperatures at the storage media heaters, which makes the heaters large and therefore expensive.

  4. Development of the first demonstration CFB boiler for gas and steam cogeneration

    SciTech Connect (OSTI)

    Fang, M; Luo, Z.; Li, X.; Wang, Q.; Shi, Z.; Ni, M.; Cen, K.

    1997-12-31

    To solve the shortage of gas and steam supply in the small towns of the country, a new gas steam cogeneration system has been developed. On the basis of the fundamental research on the system, a demonstration gas steam cogeneration system has been designed. As the phase 1 of the project, a 75t/h demonstration CFB boiler for gas steam cogeneration has been erected and operated at Yangzhong Thermal Power Plant of China. This paper introduces the first 75t/h demonstration CFB boiler for gas steam cogeneration. Due to the need of gas steam cogeneration process, the boiler has the features of high temperature cyclone separation, high solid recycle ratio, staged combustion and an external heat exchanger adjusting bed temperature and heat load. The operation results show that the boiler has wide fuel adaptability and the heating value of the coal changes from 14MJ/Kg to 25MJ/Kg. The heat load changes from 85t/h to 28t/h while steam parameter is maintained at the normal conditions. The combustion efficiency of the boiler attain 98%. The boiler design and operation experiences may be a guide to the design and operation of larger CFB units in the future.

  5. Deployment of GTHTR300 Cogeneration for Hydrogen and Electric Generation

    SciTech Connect (OSTI)

    Kazuhiko Kunitomi; Xing Yan; Isao Minatsuki

    2004-07-01

    JAERI (Japan Atomic Energy Research Institute) has started the design study on the GTHTR300-cogeneration (GTHTR300C) aiming at producing electricity by a helium gas turbine and hydrogen by a thermochemical water splitting method (IS process method). The GTHTR300C is a block type High Temperature Gas-cooled Reactor (HTGR) with its reactor thermal power of 600 MW and outlet coolant temperature of 950 deg. C. The Intermediate Heat Exchanger (IHX) is located between the reactor pressure vessel (RPV) and the gas turbine system. The heat capacity of the IHX is 170 MW and is used for hydrogen production. The balance of the reactor thermal power is used for electric generation. The GTHTR300C is designed based on existing technologies for the High Temperature Engineering Test Reactor (HTTR) and the helium turbine power conversion technology under development for the Gas Turbine High Temperature Reactor (GTHTR300). This paper describes the deployment of the GTHTR300C together with the original design features and advantages of the system. (authors)

  6. Verification test of a 25kW class SOFC cogeneration system

    SciTech Connect (OSTI)

    Yokoyama, H.; Miyahara, A.; Veyo, S.E.

    1997-12-31

    Osaka Gas and Tokyo Gas have high expectations for natural-gas-fueled Solid Oxide Fuel Cell (SOFC) cogeneration systems. SOFC offers many advantages for on-site cogeneration systems, such as high electrical efficiency, high quality by-product heat and low emissions. They are now executing a joint development program with Westinghouse Electric Corporation (hereinafter called as WELCO). This program is aimed to verify a 25kW class SOFC cogeneration system. This system, which was modified by replacing previous zirconia porous support tube cells (PST cells) with newly designed air electrode supported cells (AES cells), commenced operation on March 21, 1995. The system has been successfully operated for 13,100 hours as of February 7, 1997. This paper presents the performance evaluation of the new AES cells and the results of system operation at WELCO.

  7. Gas turbine based cogeneration facilities: Key issues to be addressed at an early design stage

    SciTech Connect (OSTI)

    Vandesteene, J.L.; De Backer, J.

    1998-07-01

    The basic design of a cogeneration facility implies much more than looking for a gas turbine generating set that matches the steam host heat demand, and making an economical evaluation of the project. Tractebel Energy Engineering (TEE) has designed, built and commissioned since the early nineties 350 MW of cogeneration facilities, mainly producing electricity and steam with natural gas fired gas turbines, which is the present most common option for industrial combined heat and power production. A standardized cogeneration design does not exist. Each facility has to be carefully adapted to the steam host's particular situation, and important technical issues have to be addressed at an early stage of plant design. Unexpected problems, expensive modifications, delays during execution of the project and possible long term operational limitations or drawbacks may result if these questions are left unanswered. This paper comments the most frequent questions on design values, required flexibility of the HRSG, reliability and backup, control system, connection to the grid

  8. Carbon dioxide recovery from cogeneration and energy projects: A technically, environmentally, and economically feasible option

    SciTech Connect (OSTI)

    Rushing, S.A.

    1997-12-31

    In this paper, the topics of carbon dioxide recovery from cogeneration projects and related industrial usage of carbon dioxide will be covered from North American and international perspectives. The CO{sub 2} recovery discussion will largely focus on one particular technology, namely the application of proprietary monoethanolamine (MEA) solvents, which have a very satisfactory record of performance in the cogeneration and power production industries. The US Federal Energy Act, the impetus behind the development of such projects, will be discussed along with its impacts on the feasibility of U.S. projects. This subject would be reviewed for other developed countries and developing economies as well. Moreover, capital and operating costs and requirements will be summarized for such plants, plus existing CO{sub 2} recovery (from cogeneration) projects will be identified.

  9. High-Efficiency Solar Cogeneration with T-PV and Fiber Optic Daylighting

    Office of Environmental Management (EM)

    DiMasi joseph@CreativeLightSource.com Creative Light Source, inc. High-Efficiency Solar Cogeneration with T-PV and Fiber Optic Daylighting 2015 Building Technologies Office Peer Review ‹#› Project Summary Timeline: Start date: August, 2014 Planned end date: July, 2016 Key Milestones: 1. Y1 prototype test-bed functional; 7/15 2. Full IR-PV cogeneration system; 3/16 3. Building Trials at customer facility; 6/16 Budget: Total DOE $ to date: $975,000 (P1 + P2, Y1) Total future DOE $: $750,000

  10. Exergetic, thermal, and externalities analyses of a cogeneration plant

    SciTech Connect (OSTI)

    Bailey, M.B.; Curtiss, P.; Blanton, P.H.; McBrayer, T.B.

    2006-02-15

    A thermodynamic study of an 88.4 MW cogeneration plant located in the United States is presented in this paper. The feedstock for this actual plant is culm, the waste left from anthracite coal mining. Before combustion in circulating fluidized bed boilers, the usable carbon within the culm is separated from the indigenous rock. The rock and ash waste from the combustion process fill adjacent land previously scared by strip mining. Trees and grass are planted in these areas as part of a land reclamation program. Analyses based on the first and second laws of thermodynamics using actual operating data are first presented to acquaint the reader with the plant's components and operation. Using emission and other relevant environmental data from the plant, all externalities study is outlined that estimates the plant's effect on the local population. The results show that the plant's cycle performs with a coefficient of utilization of 29% and all approximate exergetic efficiency of 34.5%. In order to increase these values, recommended improvements to the plant are noted. In addition, the externality costs associated with the estimated SO{sub 2} and NOx discharge from the culm fed plant are lower (85-95%) than those associated with a similarly sized coal fed plant. The plant's cycle efficiencies are lower than those associated with more modern technologies; such as all integrated gas turbine combined cycle. However, given the abundant, inexpensive supply of feedstock located adjacent to the plant and the environmental benefit of removing culm banks, the plant's existing operation is unique from an economical and environmental viewpoint.

  11. Design and construction of a Ringbom-Stirling cogeneration unit

    SciTech Connect (OSTI)

    Capata, R.; Dong, W.; Lucchetti, A.; Lucentini, M.; Masci, A.; Naso, V.

    1998-07-01

    A research team at University of Rome La Sapienza designed and developed a new Stirling Ringbom engine, named ULS-RSE 1, with the aim to make it simple and cheap, to accelerate the pre-commercialization process and facilitate the diffusion of Stirling technology. The engine is a by 2.5 kW mechanical power and about 9 kW thermal power unit, since it can operate as cogeneration unit. The heat source is a multi-fuel furnace of 14 kW thermal power with a combustion efficiency of 75%. In order to reduce its weight, the compressor device (power piston, cross-head, rod and cylinder) is made of Ergal, an aluminum alloy. The seal of the piston is a charged PTFE (bronze or graphite); the characteristics of this material are the long life and the high working performance (260 C, 600 bar and 10 m/s of mean piston speed). The hot section has no crank mechanism. The stainless steel displacer has a seal guide of Peek, preventing the effects of high working temperatures (about 1000 K). Two dampers are located at the top, in order to regulate the displacer piston stroke. The displacer free piston runs into a sort of stainless steel container, cylinder shaped. The corrugated nickel foil heat exchangers are located in the space between the hot section wall and the container. The regenerator, unusually long 12 cm, consists of a stainless steel foil matrix (thickness of 0.05 mm). To improve the thermal exchange in the hot and cold working spaces, external fins are also provided, respectively longitudinal and horizontal ones. The realization of a test bench is in progress.

  12. Feasibility of an appliance energy testing and labeling program for Sri Lanka

    SciTech Connect (OSTI)

    Biermayer, Peter; Busch, John; Hakim, Sajid; Turiel, Issac; du Pont, Peter; Stone, Chris

    2000-04-01

    A feasibility study evaluated the costs and benefits of establishing a program for testing, labeling and setting minimum efficiency standards for appliances and lighting in Sri Lanka. The feasibility study included: refrigerators, air-conditioners, flourescent lighting (ballasts & CFls), ceiling fans, motors, and televisions.

  13. Fuel price changes and the adoption of cogeneration in the U.K. and Netherlands

    SciTech Connect (OSTI)

    Bonilla, David

    2007-08-15

    Whenever industrial plants consume power and heat, there is a need to consider energy efficiency investment in a cogeneration plant. The author tests an empirical model employing application of cross-sectional time series to analyze the economic incentives influencing the adoption of energy-saving technology in the U.K. and Dutch manufacturing sectors. (author)

  14. What's needed next to refine the EU directive on cogeneration regulation

    SciTech Connect (OSTI)

    Verbruggen, Aviel

    2007-03-15

    Efforts to develop a more precise definition and measurement of cogenerated electricity than those contained in the European Union's 2004 Directive have made real progress, but additional improvements are needed to yield a better-founded, more transparent methodology. The author offers suggestions on how to complete this important job. (author)

  15. The adoption of a decentralized energy technology: The case of UK engine cogeneration

    SciTech Connect (OSTI)

    Strachan, N.D.; Dowlatabadi, H.

    1999-07-01

    Adoption of decentralized energy technologies will be crucial in the evolving structure of energy markets and the magnitude of future greenhouse gas emissions. This detailed analysis of the adoption of engine cogeneration gives insights into organizational decision making regarding the diffusion of a cost effective decentralized energy technology. Detailed site information on over 600 UK cogeneration installations was collected and analyzed for the six year period during which UK energy markets were in the process of deregulation. A detailed examination using standard investment criteria of the cogeneration schemes indicated that over 70% of investments were of questionable economic value to adopters. This was because these installations were below the calculated minimum economic size threshold. A key determinant of this size threshold was found to be the fixed costs of maintenance. Analysis of the financing of installations revealed that the largest fraction of poor investments occurred in energy services agreements between suppliers and adopters. The policy implications for decentralized energy technologies of a minimum size threshold and poor investment decisions by early adopters are discussed. Further research aims to explore postulated explanations for the observed decline in early adoption of UK engine cogeneration.

  16. External review of the thermal energy storage (TES) cogeneration study assumptions. Final report

    SciTech Connect (OSTI)

    Lai, B.Y.; Poirier, R.N.

    1996-08-01

    This report is to provide a detailed review of the basic assumptions made in the design, sizing, performance, and economic models used in the thermal energy storage (TES)/cogeneration feasibility studies conducted by Pacific Northwest Laboratory (PNL) staff. This report is the deliverable required under the contract.

  17. EIS-0221: Proposed York County Energy Partners Cogeneration Facility, York County, PA

    Broader source: Energy.gov [DOE]

    The Department of Energy prepared this environmental impact statement to assess the environmental and human health impacts associated with construction and operation of the York County Energy Partners, L.P. Cogeneration Facility on a 38- acre parcel in North Codorus Township, York County, Pennsylvania.

  18. Cogeneration technology alternatives study (CTAS). Volume V. Analytic approach and results. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    The Cogeneration Technology Altenatives Study (CTAS) provides data and information in the area of advanced energy conversion systems for industrial cogeneration applications in the 1985 to 2000 time period. Six current and thirty-six advanced energy conversion systems were defined and combined with appropriate balance-of-plant equipment. Twenty-six industrial processes were selected from among the high energy consuming industries to serve as a frame work for the study. Each conversion system was analyzed as a cogenerator with each industrial plant. Fuel consumption, costs, and environmental intrusion were evaluated and compared to corresponding traditional values. Various cogeneration strategies were analyzed and both topping and bottoming (using industrial by-product heat) applications were included. The advanced energy conversion technologies indicated reduced fuel consumption, costs, and emissions. Typically fuel energy savings of 10 to 25% were predicted compared to traditional on-site furnaces and utility electricity. With the variety of industrial requirements, each advanced technology had attractive applications. Overall, fuel cells indicated the greatest fuel energy savings and emission reductions. Gas turbines and combined cycles indicated high overall annual cost savings. Steam turbines and gas turbines produced high estimated returns. In some applications, diesels were most efficient. The advanced technologies used coal-derived fuels, or coal with advanced fluid bed combustion or on-site gasification systems. A description of the analysis employed and the results obtained are presented.

  19. EA-1605: Biomass Cogeneration and Heating Facilities at the Savannah River Site; Aiken, Allendale and Barnwell Counties, South Carolina

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) prepared this environmental assessment (EA) to analyze the potential environmental impacts of the proposed construction and operation of new biomass cogeneration and heating facilities at the Savannah River Site (SRS).

  20. DOE/EA-1605: Environmental Assessment for Biomass Cogeneration and Heating Facilities at the Savannah River Site (August 2008)

    Office of Environmental Management (EM)

    EA-1605 ENVIRONMENTAL ASSESSMENT FOR BIOMASS COGENERATION AND HEATING FACILITIES AT THE SAVANNAH RIVER SITE AUGUST 2008 U. S. DEPARTMENT OF ENERGY SAVANNAH RIVER OPERATIONS OFFICE SAVANNAH RIVER SITE DOE/EA-1605 ENVIRONMENTAL ASSESSMENT FOR BIOMASS COGENERATION AND HEATING FACILITIES AT THE SAVANNAH RIVER SITE AUGUST 2008 U.S. DEPARTMENT OF ENERGY SAVANNAH RIVER OPERATIONS OFFICE SAVANNAH RIVER SITE This page intentionally left blank - i - TABLE OF CONTENTS Page 1.0 INTRODUCTION

  1. Cogeneration: Economic and technical analysis. (Latest citations from the INSPEC: Information Services for the Physics and Engineering Communities data base). Published Search

    SciTech Connect (OSTI)

    Not Available

    1992-08-01

    The bibliography contains citations concerning economic and technical analyses of cogeneration systems. Topics include electric power generation, industrial cogeneration, use by utilities, and fuel cell cogeneration. The citations explore steam power station, gas turbine and steam turbine technology, district heating, refuse derived fuels, environmental effects and regulations, bioenergy and solar energy conversion, waste heat and waste product recycling, and performance analysis. (Contains a minimum of 89 citations and includes a subject term index and title list.)

  2. Cogeneration: Economic and technical analysis. (Latest citations from the INSPEC: Information Services for the Physics and Engineering Communities database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    The bibliography contains citations concerning economic and technical analyses of cogeneration systems. Topics include electric power generation, industrial cogeneration, use by utilities, and fuel cell cogeneration. The citations explore steam power station, gas turbine and steam turbine technology, district heating, refuse derived fuels, environmental effects and regulations, bioenergy and solar energy conversion, waste heat and waste product recycling, and performance analysis. (Contains a minimum of 102 citations and includes a subject term index and title list.)

  3. Assessment of the SRI Gasification Process for Syngas Generation with HTGR Integration -- White Paper

    SciTech Connect (OSTI)

    A.M. Gandrik

    2012-04-01

    This white paper is intended to compare the technical and economic feasibility of syngas generation using the SRI gasification process coupled to several high-temperature gas-cooled reactors (HTGRs) with more traditional HTGR-integrated syngas generation techniques, including: (1) Gasification with high-temperature steam electrolysis (HTSE); (2) Steam methane reforming (SMR); and (3) Gasification with SMR with and without CO2 sequestration.

  4. Electric co-generation units equipped with wood gasifier and Stirling engine

    SciTech Connect (OSTI)

    Bartolini, C.M.; Caresana, F.; Pelagalli, L.

    1998-07-01

    The disposal of industrial waste such as oil sludges, waste plastic, lubricant oils, paper and wood poses serious problems due to the ever increasing amount of material to be disposed of and to the difficulty in finding new dumping sites. The interest in energy recovery technologies is accordingly on the increase. In particular, large amounts of waste wood are simply burned or thrown away causing considerable environmental damage. In this context the co-generation technique represents one of the possible solutions for efficient energy conversion. The present paper proposes the employment of a Stirling engine as prime mover in a co-generation set equipped with a wood gasifier. A Stirling engine prototype previously developed in a joint project with Mase Generators, an Italian manufacturer of fixed and portable electrogenerators, is illustrated and its design is described.

  5. Kakira Sugar Works (1985) Limited, Kakira biomass cogeneration: Volume 3 -- Final report. Export trade information

    SciTech Connect (OSTI)

    1998-06-01

    This report, conducted by John H. Payne, Inc., was funded by the US Trade and Development Agency. The study concerns the technical and financial feasibility of the Kakira Sugar Works Limited to increase its capacity to 5,000 TCD and to sell its surplus power to the Uganda Electricity Board. This is Volume 3, the Purchase Energy Contract between Kakira Cogeneration Company Limited and Uganda Electricity Board.

  6. Partners assume risks, lower finance costs of delayed coker-cogeneration project in Chile

    SciTech Connect (OSTI)

    Alveal, E.D.; Karpenski, M.J.

    1997-03-31

    Foster Wheeler Power Systems Inc., and its partners--Petrox SA Refineria de Petroleo and Empresa Nacional de Petroleo (ENAP), the Chilean national oil company--closed on the financing of Petropower Energia Limitada, a $237 million financed combination delayed coker-cogeneration facility. The facility is now under construction adjacent to Petrox`s 84,000 b/d Talcahuano refinery, near Concepcion. In addition to the low interest rate of 7.36%--only 170 basis points over the 10 year US Treasury yield--the project was rated investment-grade by Standard and Poor`s. The Petropower project also has the distinction of having the longest term--18 years--for any project financing in Latin America. The project is unique in other ways: it is the Republic of Chile`s first public/private partnership and also the first project to combine petroleum coking technology with cogeneration technology in a single project financing. The paper discusses risk assumption, the Petropower project, organization, delayed coker facility, hydrotreater unit, cogeneration facility, environmental assessment, Chile`s changing market, and project benefit.

  7. Absence of correlation between Sry polymorphisms and XY sex reversal caused by the M.m. domesticus Y chromosome

    SciTech Connect (OSTI)

    Carlisle, C.; Nagamine, C.M. [Vanderbilt Univ., School of Medicine, Nashville, TN (United States)] [Vanderbilt Univ., School of Medicine, Nashville, TN (United States); Winkinig, H.; Weichenhan, D. [Medizinische Universitaet Zu Luebeck (Germany)] [Medizinische Universitaet Zu Luebeck (Germany)

    1996-04-01

    Mus musculus domesticus Y chromosomes (Y{sup DOM} Chrs) vary in their ability to induce testes in the strain C57BL/6J. In severe cases, XY females develop (XY{sup DOM} sex reversal). To identify the molecular basis for the sex reversal, a 2.7-kb region of Sry, the testis-determining gene, was sequenced from Y{sup DOM} Chrs linked to normal testis determination, transient sex reversal, and severe sex reversal. Four mutations were identified. However, no correlation exists between these mutations and severity of XY{sup DOM} sex reversal. RT-PCR identified Sry transcripts in XY{sup DOM} sex-reversed fetal gonads at 11 d.p.c., the age when Sry is hypothesized to function. In addition, no correlation exists between XY{sup DOM} sex reversal and copy numbers of pSx1, a Y-repetitive sequence whose deletion is linked to XY sex reversal. We conclude that SRY protein variants, blockade of Sry transcription, and deletion of pSx1 sequences are not the underlying causes of XY{sup DOM} sex reversal. 63 refs., 6 figs., 6 tabs.

  8. Assessment of the Technical Potential for Micro-Cogeneration in Small Commerical Buildings across the United States: Preprint

    SciTech Connect (OSTI)

    Griffith, B.

    2008-05-01

    This paper presents an assessment of the technical potential for micro-cogeneration in small commercial buildings throughout the United States. The cogeneration devices are simulated with the computer program EnergyPlus using models developed by Annex 42, a working group of the International Energy Agency's Energy Efficiency in Buildings and Community Systems (IEA/ECBCS). Although the Annex 42 models were developed for residential applications, this study applies them to small commercial buildings, assumed to have a total floor area of 500 m2 or less. The potential for micro-cogeneration is examined for the entire existing stock of small U.S. commercial buildings using a bottom-up method based on 1,236 EnergyPlus models.

  9. Feasibility study of wood-fired cogeneration at a Wood Products Industrial Park, Belington, WV. Phase II

    SciTech Connect (OSTI)

    Vasenda, S.K.; Hassler, C.C.

    1992-06-01

    Customarily, electricity is generated in a utility power plant while thermal energy is generated in a heating/cooling plant; the electricity produced at the power plant is transmitted to the heating/cooling plant to power equipments. These two separate systems waste vast amounts of heat and result in individual efficiencies of about 35%. Cogeneration is the sequential production of power (electrical or mechanical) and thermal energy (process steam, hot/chilled water) from a single power source; the reject heat of one process issued as input into the subsequent process. Cogeneration increases the efficiency of these stand-alone systems by producing these two products sequentially at one location using a small additional amount of fuel, rendering the system efficiency greater than 70%. This report discusses cogeneration technologies as applied to wood fuel fired system.

  10. An over view of excess heat production in the D/Pd system at SRI

    SciTech Connect (OSTI)

    Crouch-Baker, S.; Hauser, A.; Jevtic, N.

    1995-12-01

    Experiments have been undertaken to demonstrate and quantify the rate of heat production of palladium cathodes loaded electrochemically with deuterium. Excess heat has been observed in these experiments at SRI on more than 40 occasions in accurate and stable isothermal mass flow calorimeters. The excess power appears to be correlated with at least three criteria: the degree of deuterium loading (specified as the atomic ratio D/Pd), the Lime for which high loading is maintained, the interfacial current density. The correlation between excess heat production and these three variables will be discussed. In addition, the results of experiments designed to search for further products of the heat producing reaction will he reported.

  11. Advanced cogeneration and absorption chillers potential for service to Navy bases. Final report

    SciTech Connect (OSTI)

    Andrews, J.W.; Butcher, T.A.; Leigh, R.W.; McDonald, R.J.; Pierce, B.L.

    1996-04-01

    The US military uses millions of Btu`s of thermal energy to heat, cool and deliver process thermal energy to buildings on military bases, much of which is transmitted through a pipeline system incorporating thousands of miles of pipe. Much of this pipeline system is in disrepair and is nearing the end of its useful life, and the boilers which supply it are old and often inefficient. In 1993, Brookhaven National Laboratory (BNL) proposed to SERDP a three-year effort to develop advanced systems of coupled diesel cogenerators and absorption chillers which would be particularly useful in providing a continuation of the services now provided by increasingly antiquated district systems. In mid-February, 1995, BNL learned that all subsequent funding for our program had been canceled. BNL staff continued to develop the Program Plan and to adhere to the requirements of the Execution Plan, but began to look for ways in which the work could be made relevant to Navy and DoD energy needs even without the extensive development plan formerly envisioned. The entire program was therefore re-oriented to look for ways in which small scale cogeneration and absorption chilling technologies, available through procurement rather than development, could provide some solutions to the problem of deteriorated district heating systems. The result is, we believe, a striking new approach to the provision of building services on military bases: in many cases, serious study should be made of the possibility that the old district heating system should be removed or abandoned, and small-scale cogenerators and absorption chillers should be installed in each building. In the remainder of this Summary, we develop the rationale behind this concept and summarize our findings concerning the conditions under which this course of action would be advisable and the economic benefits which will accrue if it is followed. The details are developed in the succeeding sections of the report.

  12. Cogeneration and Small Power Production Quarterly Report to the California Public Utilities Commission First Quarter 1984

    SciTech Connect (OSTI)

    1984-01-01

    At the end of the First Quarter of 1984, the number of signed contracts and letter agreements for cogeneration and small power production projects was 322, with a total estimated nominal capacity of 2,643 MW. Of these totals, 215 projects, capable of producing 640 MW, are operational. A map indicating the location of operational facilities under contract with PG and E is provided. Developers of cogeneration, solid waste, or biomass projects had signed 110 contracts with a potential of 1,467 MW. In total, 114 contracts and letter agreements had been signed with projects capable of producing 1,508 MW. PG and E also had under active discussion 35 cogeneration projects that could generate a total of 425 MW to 467 MW, and 11 solid waste or biomass projects with a potential of 94 MW to 114 MW. One contract had been signed for a geothermal project, capable of producing 80 MW. There were 7 solar projects with signed contracts and a potential of 37 MW, as well as 5 solar projects under active discussion for 31 MW. Wind farm projects under contract numbered 32, with a generating capability of 848 MW. Also, discussions were being conducted with 18 wind farm projects, totaling 490 MW. There were 101 wind projects of 100 kW or less with signed contracts and a potential of 1 MW, as well as 6 other small wind projects under active discussion. There were 64 hydroelectric projects with signed contracts and a potential of 148 MW, as well as 75 projects under active discussion for 316 MW. In addition, there were 31 hydroelectric projects, with a nominal capacity of 187 MW, that Pg and E was planning to construct.

  13. Cogeneration and Small Power Production Quarterly Report to the California Public Utilities Commission Fourth Quarter 1983

    SciTech Connect (OSTI)

    1983-01-01

    At the end of 1983, the number of signed contracts and letter agreements for cogeneration and small power production projects was 305, with a total estimated nominal capacity of 2,389 MW. Of these totals, 202 projects, capable of producing 566 MW, are operational (Table A). A map indicating the location of operational facilities under contract with PG and E is provided as Figure A. Developers of cogeneration, solid waste, or biomass projects had signed 101 contracts with a potential of 1,408 MW. In total, 106 contracts and letter agreements had been signed with projects capable of producing 1,479 MW. PG and E also had under active discussion 29 cogeneration projects that could generate a total of 402 MW to 444 MW, and 13 solid waste or biomass projects with a potential of 84 MW to 89 MW. One contract had been signed for a geothermal project, capable of producing 80 MW. There were 7 solar projects with signed contracts and a potential of 37 MW, as well as 3 solar projects under active discussion for 31 MW. Wind farm projects under contract numbered 28, with a generating capability of 618 MW. Also, discussions were being conducted with 14 wind farm projects, totaling 365 MW. There were 100 wind projects of 100 kW or less with signed contracts and a potential of 1 MW, as well as 8 other small wind projects under active discussion. There were 59 hydroelectric projects with signed contracts and a potential of 146 MW, as well as 72 projects under active discussion for 169 MW. In addition, there were 31 hydroelectric projects, with a nominal capacity of 185 MW, that PG and E was planning to construct. Table B displays the above information. In tabular form, in Appendix A, are status reports of the projects as of December 31, 1983.

  14. Cogeneration and beyond: The need and opportunity for high efficiency, renewable community energy systems

    SciTech Connect (OSTI)

    Gleason, T.C.J.

    1992-06-01

    The justification, strategies, and technology options for implementing advanced district heating and cooling systems in the United States are presented. The need for such systems is discussed in terms of global warming, ozone depletion, and the need for a sustainable energy policy. Strategies for implementation are presented in the context of the Public Utilities Regulatory Policies Act and proposed new institutional arrangements. Technology opportunities are highlighted in the areas of advanced block-scale cogeneration, CFC-free chiller technologies, and renewable sources of heating and cooling that are particularly applicable to district systems.

  15. Industrial cogeneration case study No. 2: American Cyanamid Chemical Company, Bound Brook, New Jersey

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    Within a project for evaluating the economics of cogeneration for industrial plants with an electrical capacity of 10,000 to 30,000 kW, the American Cyanamid plant at Bound Brook, NJ was selected for study. Built between 1915 and 1920 this power plant was converted in the 1960's from coal-fueling to oil and natural gas. Information is presented on the plant site, fuel usage, generation costs, comparative cost of purchasable electric power, equipment used, performance, and reliability and capital and maintenance costs. (LCL)

  16. 250 MW single train CFB cogeneration facility. Annual report, October 1993--September 1994

    SciTech Connect (OSTI)

    1995-02-01

    This Technical Progress Report (Draft) is submitted pursuant to the Terms and Conditions of Cooperative Agreement No. DE-FC21-90MC27403 between the Department of Energy (Morgantown Energy Technology Center) and York County Energy Partners, L.P. a wholly owned project company of Air Products and Chemicals, Inc. covering the period from January 1994 to the present for the York County Energy Partners CFB Cogeneration Project. The Technical Progress Report summarizes the work performed during the most recent year of the Cooperative Agreement including technical and scientific results.

  17. Cogeneration and Small Power Production Quarterly Report to the California Public Utilities Commission. Second Quarter 1984

    SciTech Connect (OSTI)

    1984-01-01

    At the end of the Second Quarter of 1984, the number of signed contracts and letter agreements for cogeneration and small power production projects was 334, with total estimated nominal capacity of 2,876 MW. Of these totals, 232 projects, capable of producing 678 MW, are operational (Table A). A map indicating the location of operational facilities under contract with PG and E is provided as Figure A. Developers of cogeneration projects had signed 80 contracts with a potential of 1,161 MW. Thirty-three contracts had been signed for solid waste/biomass projects for a total of 298 MW. In total, 118 contracts and letter agreements had been signed with cogeneration, solid waste, and biomass projects capable of producing 1,545 MW. PG and E also had under active discussion 46 cogeneration projects that could generate a total of 688 MW to 770 MW, and 13 solid waste or biomass projects with a potential of 119 MW to 139 MW. One contract had been signed for a geothermal project, capable of producing 80 MW. Two geothermal projects were under active discussion for a total of 2 MW. There were 8 solar projects with signed contracts and a potential of 37 MW, as well as 4 solar projects under active discussion for 31 MW. Wind farm projects under contract numbered 34, with a generating capability of 1,042 MW, Also, discussions were being conducted with 23 wind farm projects, totaling 597 MW. There were 100 wind projects of 100 kW or less with signed contracts and a potential of 1 MW, as well as 7 other small wind projects under active discussion. There were 71 hydroelectric projects with signed contracts and a potential of 151 MW, as well as 76 projects under active discussion for 505 MW. In addition, there were 18 hydroelectric projects, with a nominal capacity of 193 MW, that PG and E was planning to construct. Table B displays the above information. Appendix A displays in tabular form the status reports of the projects as of June 30, 1984.

  18. JV 38-APPLICATION OF COFIRING AND COGENERATION FOR SOUTH DAKOTA SOYBEAN PROCESSORS

    SciTech Connect (OSTI)

    Darren D. Schmidt

    2002-11-01

    Cogeneration of heat and electricity is being considered by the South Dakota Soybean Processors for its facility in Volga, South Dakota, and a new facility to be located in Brewster, Minnesota. The Energy & Environmental Research Center has completed a feasibility study, with 40% funding provided from the U.S. Department of Energy's Jointly Sponsored Research Program to determine the potential application of firing biomass fuels combined with coal and comparative economics of natural gas-fired turbines. Various biomass fuels are available at each location. The most promising options based on availability are as follows. The economic impact of firing 25% biomass with coal can increase return on investment by 0.5 to 1.5 years when compared to firing natural gas. The results of the comparative economics suggest that a fluidized-bed cogeneration system will have the best economic performance. Installation for the Brewster site is recommended based on natural gas prices not dropping below a $4.00/MMBtu annual average delivered cost. Installation at the Volga site is only recommended if natural gas prices substantially increase to $5.00/MMBtu on average. A 1- to 2-year time frame will be needed for permitting and equipment procurement.

  19. Cogeneration: A northwest medical facility`s answer to the uncertainties of deregulation

    SciTech Connect (OSTI)

    Almeda, R.; Rivers, J.

    1998-10-01

    Not so long ago, in the good old days, the energy supply to a health care facility was one of the most stable. The local utility provided what was needed at a reasonable cost. Now the energy industry is being deregulated. Major uncertainties exist in all parts of the energy industry. Since reasonably priced and readily available energy is mandatory for a health care facility operation, the energy industry uncertainties reverberate through the health care industry. This article reviews how the uncertainty of electric utility deregulation was converted to an opportunity to implement the ultimate energy conservation project--cogeneration. The project development was made essentially risk free by tailoring project development to deregulation. Costs and financial exposure were minimized by taking numerous small steps in sequence. Valley Medical Center, by persevering with the development of a cogeneration plant, has been able to reduce its energy costs and more importantly, stabilize its energy supply and costs for many years to come. This article reviews activities in two arenas, internal project development and external energy industry developments, by periodically updating each arena and showing how external developments affected the project.

  20. Analysis of an industrial cogeneration unit driven by a gas engine. Part 1: Experimental testing under full and part-load operating conditions

    SciTech Connect (OSTI)

    De Lucia, M.; Lanfranchi, C.

    1994-12-31

    This paper describes and analyzes an industrial cogeneration plant driven by a gas fueled reciprocating engine installed in a textile factory. It presents the results of experimental testing conducted under full and part-load operating conditions, as well as first-law energy considerations. The experimental tests conducted on the cogeneration unit proved the validity of the plant design and also enabled evaluation of part-load performance, which is the most common operating mode in cogeneration plants in the small-size industries which typical of central Italy.

  1. SRI2007

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of cultural, historical and entertainment opportunities. The Baton Rouge Metropolitan Airport, a twenty minute drive from the Hilton Capitol Center, is served by many major...

  2. Integration of Biorefineries and Nuclear Cogeneration Power Plants - A Preliminary Analysis

    SciTech Connect (OSTI)

    Greene, Sherrell R; Flanagan, George F; Borole, Abhijeet P

    2009-03-01

    Biomass-based ethanol and nuclear power are two viable elements in the path to U.S. energy independence. Numerous studies suggest nuclear power could provide a practical carbon-free heat source alternative for the production of biomass-based ethanol. In order for this coupling to occur, it is necessary to examine the interfacial requirements of both nuclear power plants and bioethanol refineries. This report describes the proposed characteristics of a small cogeneration nuclear power plant, a biochemical process-based cellulosic bioethanol refinery, and a thermochemical process-based cellulosic biorefinery. Systemic and interfacial issues relating to the co-location of either type of bioethanol facility with a nuclear power plant are presented and discussed. Results indicate future co-location efforts will require a new optimized energy strategy focused on overcoming the interfacial challenges identified in the report.

  3. The load-shedding scheme design for an integrated steelmaking cogeneration facility

    SciTech Connect (OSTI)

    Hsu, C.T.; Chen, C.S.; Chen, J.K.

    1997-05-01

    This paper develops the coordination of a load-shedding scheme for a large industrial customer with several cogenerator units. A detailed description of each design procedure is included. The loads are tripped by the underfrequency relays, to prevent the power system from collapse when the plant becomes isolated, due to a utility service outage. Different system fault cases have been selected to derive the proper formulation of a load-shedding scheme, according to the historical operation records. The key factors, such as frequency settings, number of load-shedding steps, size and location of the loads to be tripped, relay time delay, and the coordination with the generator protection scheme, were examined through the simulation of the transient stability program. The proper load-shedding scheme has been designed, and the related hardware has been installed in the plant, to keep the system from blackout when the disturbance occurs.

  4. 90 MW build/own/operate gas turbine combined cycle cogeneration project with sludge drying plant

    SciTech Connect (OSTI)

    Schroppe, J.T.

    1986-04-01

    This paper will discuss some of the unique aspects of a build/own/operate cogeneration project for an oil refinery in which Foster Wheeler is involved. The organization is constructing a 90 MW plant that will supply 55 MW and 160,000 lb/hr of 600 psi, 700F steam to the Tosco Corporation's 130,000 bd Avon Oil Refinery in Martinez, California. (The refinery is located about 45 miles northeast of San Francisco.) Surplus power production will be sold to the local utility, Pacific Gas and Electric Co. (PG and E). Many of the aspects of this project took on a different perspective, since the contractor would build, own and operate the plant.

  5. York County Energy Partners CFB Cogeneration Project. Annual report, [September 30, 1992--September 30, 1993

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    The Department of Energy, under the Clean Coal Technology program, proposes to provide cost-shared financial assistance for the construction of a utility-scale circulating fluidized bed technology cogeneration facility by York County Energy Partners, L.P (YCEP). YCEP, a project company of ir Products and Chemicals, Inc., would design, construct and operate a 250 megawatt (gross) coal-fired cogeneration facility on a 38-acre parcel in North Codorus Township, York County, Pennsylvania. The facility would be located adjacent to the P. H. Glatfelter Company paper mill, the proposed steam host. Electricity would be delivered to Metropolitan Edison Company. The facility would demonstrate new technology designed to greatly increase energy efficiency and reduce air pollutant emissions over current generally available commercial technology which utilizes coal fuel. The facility would include a single train circulating fluidized bed boiler, a pollution control train consisting of limestone injection for reducing emissions of sulfur dioxide by greater than 92 percent, selective non-catalytic reduction for reducing emissions of nitrogen oxides, and a fabric filter (baghouse) for reducing emissions of particulates. Section II of this report provides a general description of the facility. Section III describes the site specifics associated with the facility when it was proposed to be located in West Manchester Township. After the Cooperative Agreement was signed, YCEP decided to move the proposed site to North Codorus Township. The reasons for the move and the site specifics of that site are detailed in Section IV. This section of the report also provides detailed descriptions of several key pieces of equipment. The circulating fluidized bed boiler (CFB), its design scale-up and testing is given particular emphasis.

  6. Cogeneration and Small Power Production Quarterly Report to the California Public Utilities Commission Third Quarter 1983

    SciTech Connect (OSTI)

    1983-01-01

    In the Third Quarter of 1983, the number of signed contracts and committed projects rose from 240 to 258, with a total estimated nominal capacity of these projects of 1,547 MW. Of this nominal capacity, about 416 MW is operational, and the balance is under contract for development. A map indicating the location of operational facilities under contract with PG and E is provided. Of the 258 signed contracts and committed projects, 83 were cogeneration, solid waste, or biomass projects with a potential of 779 MW. PG and E also had under active discussion 38 cogeneration projects that could generate a total of 797 MW to 848 MW, and 19 solid waste/biomass projects with a potential of 152 MW to 159 MW. Two contracts have been signed with geothermal projects, capable of producing 83 MW. There are 6 solar projects with signed contracts and a potential of 36 MW, as well as 3 solar projects under active discussion for 31 MW. Wind farm projects under contract number 21, with a generating capability of 528 MW. Also, discussions are being conducted with 17 wind farm projects, totaling 257 to 262 MW. There are 94 wind projects of 100 kW or less with signed contracts and a potential of almost 1 MW, as well as 8 other small wind projects under active discussion. There are 50 hydroelectric projects with signed contracts and a potential of 112 MW, as well as 67 projects under active discussion for 175 MW. In addition, there are 31 hydroelectric projects, with a nominal capacity of 185 MW, that PG and E is planning to construct.

  7. Cogeneration and Small Power Production Quarterly Report to the California Public Utilities Commission Second Quarter 1983

    SciTech Connect (OSTI)

    1983-01-01

    In the Second Quarter of 1983, the number of signed contracts and committed projects rose from 223 to 240, with a total estimated nominal capacity of these projects of 1,449 MW. Of this nominal capacity, about 361 MW is operational, and the balance is under contract for development. A map indicating the location of currently operating facilities is provided as Figure A. Of the 240 signed contracts and committed projects, 75 were cogeneration, solid waste, or biomass projects with a potential of 740 MW. PG and E also had under active discussion 32 cogeneration projects that could generate a total of 858 MW to 921 MW, and 10 solid waste/biomass projects with a potential of 113 MW to 121 MW. Two contracts have been signed with geothermal projects, capable of producing 83 MW. There are 6 solar projects with signed contracts and a potential of 36 MW, as well as another solar project under active discussion for 30 MW. Wind farm projects under contract number 19, with a generating capability of 471 MW. Also, discussions are being conducted with 12 wind farm projects, totaling 273 to 278 MW. There are 89 wind projects of 100 kW or less with signed contracts and a potential of almost 1 MW, as well as 10 other projects under active discussion. There are 47 hydroelectric projects with signed contracts and a potential of 110 MW, as well as 65 projects under active discussion for 175 MW. In addition, there are 30 hydroelectric projects, with a nominal capacity of 291 MW, that PG and E is constructing or planning to construct. Table A displays the above information. In tabular form, in Appendix A, are status reports of the projects as of June 30, 1983.

  8. Industrial co-generation through use of a medium BTU gas from biomass produced in a high throughput reactor

    SciTech Connect (OSTI)

    Feldmann, H.F.; Ball, D.A.; Paisley, M.A.

    1983-01-01

    A high-throughput gasification system has been developed for the steam gasification of woody biomass to produce a fuel gas with a heating value of 475 to 500 Btu/SCF without using oxygen. Recent developments have focused on the use of bark and sawdust as feedstocks in addition to wood chips and the testing of a new reactor concept, the so-called controlled turbulent zone (CTZ) reactor to increase gas production per unit of wood fed. Operating data from the original gasification system and the CTZ system are used to examine the preliminary economics of biomass gasification/gas turbine cogeneration systems. In addition, a ''generic'' pressurized oxygen-blown gasification system is evaluated. The economics of these gasification systems are compared with a conventional wood boiler/steam turbine cogeneration system.

  9. A major cogeneration system goes in at JFK International Airport. Low-visibility privatization in a high-impact environment

    SciTech Connect (OSTI)

    Leibler, J.; Luxton, R.; Ostberg, P.

    1998-04-01

    This article describes the first major privatization effort to be completed at John F. Kennedy International Airport. The airport owner and operator, the Port Authority of New York and New Jersey, decided to seek private sector involvement in a capital-intensive project to expand and upgrade the airport`s heating and air conditioning facilities and construct a new cogeneration plant. Kennedy International Airport Cogeneration (KIAC) Partners, a partnership between Gas Energy Incorporated of New York and Community Energy Alternatives of New Jersey, was selected to develop an energy center to supply electricity and hot and chilled water to meet the airport`s growing energy demand. Construction of a 110 MW cogeneration plant, 7,000 tons of chilled water equipment, and 30,000 feet of hot water delivery piping started immediately. JFK Airport`s critical international position called for this substantial project to be developed almost invisibly; no interruption in heating and air conditioning service and no interference in the airport`s active operations could be tolerated. Commercial operation was achieved in February 1995.

  10. Bridgman Growth of Large SrI2:Eu2+ Single Crystals: A High-performance Scintillator for Radiation Detection Applications

    SciTech Connect (OSTI)

    Boatner, Lynn A; Ramey, Joanne Oxendine; Kolopus, James A; Hawrami, Rastgo; Higgins, William; Van Loef, Edgar; Glodo, J.; Shah, Kanai; Bhattacharya, P.; Tupitsyn, E; Groza, Michael; Burger, Arnold

    2013-01-01

    Single-crystal strontium iodide (SrI2) doped with relatively high levels (e.g., 3 - 6 %) of Eu2+ exhibits characteristics that make this material superior, in a number of respects, to other scintillators that are currently used for radiation detection. Specifically, SrI2:Eu2+ has a light yield that is significantly higher than LaBr3:Ce3+ -a currently employed commercial high-performance scintillator. Additionally, SrI2:Eu2+ is characterized by an energy resolution as high as 2.6% at the 137Cs gamma-ray energy of 662 keV, and there is no radioactive component in SrI2:Eu2+ - unlike LaBr3:Ce3+ that contains 138La. The Ce3+-doped LaBr3 decay time is, however, faster (30 nsec) than the 1.2 sec decay time of SrI2:Eu2+. Due to the relatively low melting point of strontium iodide (~515 oC), crystal growth can be carried out in quartz crucibles by the vertical Bridgman technique. Materials-processing and crystal-growth techniques that are specific to the Bridgman growth of europium-doped strontium iodide scintillators are described here. These techniques include the use of a porous quartz frit to physically filter the molten salt from a quartz antechamber into the Bridgman growth crucible and the use of a bent or bulb grain selector design to suppress multiple grain growth. Single crystals of SrI2:Eu2+ scintillators with good optical quality and scintillation characteristics have been grown in sizes up to 5.0 cm in diameter by applying these techniques. Other aspects of the SrI2:Eu2+ crystal-growth methods and of the still unresolved crystal-growth issues are described here.

  11. Impact of operating parameters changing on energy, environment and economic efficiencies of a lean burn gas engine used in a cogeneration plant

    SciTech Connect (OSTI)

    Lemoult, B.; Tazerout, M.; Rousseau, S.

    1998-07-01

    The facts that national electrical company Electricite de France (EDF) has a monopoly on electrical power production in France and an extensive installed base of nuclear power plants, explain the difficulty encountered in developing cogeneration technology in France. Cogeneration only really first appeared in this country in the early 1990's, with the liberalization of energy markets and the government's encouragement. Since then, the number of cogeneration plants has continuously increased and electrical generating capacity is now approximately 1,200 MWe. Turbine and reciprocating engines (most of which are natural gas fired) account respectively for about 55% and 45% of the installed power. Unlike other countries, such as Germany--which has about two thousand 500 kWe and smaller units--the future of low-power cogeneration in France is far from assured, and there are currently less than 10 such plants. To help develop this efficient technology for producing electrical power and hot water, the Ecole des Mines de Nantes purchased a 210 kWe cogeneration generator set in 1996. This facility provides all or part of the school's electrical and heat requirements during five months between November and March. This cogeneration facility is also used during the rest of the year to perform research experiments in the field of lean-burn natural gas combustion. Lastly, it is also used to provide training for industry in cogeneration technology. Within this context, work was undertaken to study the set's energy and emissions performance, in relation to such parameters as spark advance and air factor, and at various loads.

  12. Materials performance in the atmospheric fluidized-bed cogeneration air heater experiment

    SciTech Connect (OSTI)

    Natesan, K.; Podolski, W.; Wang, D.Y.; Teats, F.G.; Gerritsen, W.; Stewart, A.; Robinson, K.

    1991-02-01

    The Atmospheric Fluidized-Bed Cogeneration Air Heater Experiment (ACAHE) sponsored by the US Department of Energy (DOE) was initiated to assess the performance of various heat-exchanger materials to be used in fluidized-bed combustion air heater systems. Westinghouse Electric Corporation, through subcontracts with Babcock & Wilcox, Foster Wheeler, and ABB Combustion Engineering Systems, prepared specifications and hardware for the ACAHE tests. Argonne National Laboratory contracted with Rockwell International to conduct tests in the DOE atmospheric fluidized-bed combustion facility. This report presents an overview of the project, a description of the facility and the test hardware, the test operating conditions, a summary of the operation, and the results of analyzing specimens from several uncooled and cooled probes exposed in the facility. Extensive microstructural analyses of the base alloys, claddings, coatings, and weldments were performed on specimens exposed in several probes for different lengths of time. Alloy penetration data were determined for several of the materials as a function of specimen orientation and the exposure location in the combustor. Finally, the data were compared with earlier laboratory test data, and the long-term performance of candidate materials for air-heater applications was assessed.

  13. Materials performance in the atmospheric fluidized-bed cogeneration air heater experiment

    SciTech Connect (OSTI)

    Natesan, K.; Podolski, W.; Wang, D.Y.; Teats, F.G. ); Gerritsen, W.; Stewart, A.; Robinson, K. )

    1991-02-01

    The Atmospheric Fluidized-Bed Cogeneration Air Heater Experiment (ACAHE) sponsored by the US Department of Energy (DOE) was initiated to assess the performance of various heat-exchanger materials to be used in fluidized-bed combustion air heater systems. Westinghouse Electric Corporation, through subcontracts with Babcock Wilcox, Foster Wheeler, and ABB Combustion Engineering Systems, prepared specifications and hardware for the ACAHE tests. Argonne National Laboratory contracted with Rockwell International to conduct tests in the DOE atmospheric fluidized-bed combustion facility. This report presents an overview of the project, a description of the facility and the test hardware, the test operating conditions, a summary of the operation, and the results of analyzing specimens from several uncooled and cooled probes exposed in the facility. Extensive microstructural analyses of the base alloys, claddings, coatings, and weldments were performed on specimens exposed in several probes for different lengths of time. Alloy penetration data were determined for several of the materials as a function of specimen orientation and the exposure location in the combustor. Finally, the data were compared with earlier laboratory test data, and the long-term performance of candidate materials for air-heater applications was assessed.

  14. EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    SciTech Connect (OSTI)

    Unknown

    2001-12-01

    Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification, SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the US Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP designs emphasize on recovery and gasification of low-cost coal waste (culm) from coal clean operations and will assess blends of the culm and coal or petroleum coke as feedstocks. The project is being carried out in three phases. Phase I involves definition of concept and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II consists of an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III involves updating the original EECP design, based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 BPD coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania.

  15. EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    SciTech Connect (OSTI)

    Unknown

    2002-06-01

    Waste Processors Management, Inc. (WMPI), along with its subcontractors entered into a Cooperative Agreement with the USDOE, National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase 1 is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III updates the original EECP design based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report is WMPI's fourth quarterly technical progress report. It covers the period performance from January 1, 2002 through March 31, 2002.

  16. EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    SciTech Connect (OSTI)

    Unknown

    2003-01-01

    Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the U. S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the technoeconomic viability of building an Early Entrance Co-Production Plant (EECP) in the United States to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase I is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III updates the original EECP design based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from July 1, 2002 through September 30, 2002.

  17. 3M: Hutchinson Plant Focuses on Heat Recovery and Cogeneration During Plant-Wide Energy-Efficiency Assessment

    SciTech Connect (OSTI)

    Not Available

    2003-06-01

    3M performed a plant-wide energy efficiency assessment at its Hutchinson, Minnesota, plant to identify energy- and cost-saving opportunities. Assessment staff developed four separate implementation packages that represented various combinations of energy-efficiency projects involving chiller consolidation, air compressor cooling improvements, a steam turbine used for cogeneration, and a heat recovery boiler for two of the plant's thermal oxidizers. Staff estimated that the plant could save 6 million kWh/yr in electricity and more than 200,000 MMBtu/yr in natural gas and fuel oil, and avoid energy costs of more than$1 million during the first year.

  18. 3M: Hutchinson Plant Focuses on Heat Recovery and Cogeneration during Plan-Wide Energy-Efficiency Assessment

    SciTech Connect (OSTI)

    2003-06-01

    3M performed a plant-wide energy efficiency assessment at its Hutchinson, Minnesota, plant to identify energy- and cost-saving opportunities. Assessment staff developed four separate implementation packages that represented various combinations of energy-efficiency projects involving chiller consolidation, air compressor cooling improvements, a steam turbine used for cogeneration, and a heat recovery boiler for two of the plant's thermal oxidizers. Staff estimated that the plant could save 6 million kWh/yr in electricity and more than 200,000 MMBtu/yr in natural gas and fuel oil, and avoid energy costs of more than $1 million during the first year.

  19. Cogeneration and Small Power Production Quarterly Report to the California Public Utilities Commission Third Quarter - September 1982

    SciTech Connect (OSTI)

    1982-09-01

    In the Third Quarter of 1982, the number of signed contracts and committed projects rose from 148 to 173, with a total estimated nominal capacity of these projects of 922 MW. Of this nominal capacity, about 168 MW is operational, and the balance is under contract for development. Of the 173 signed contracts and committed projects, 61 were cogeneration and solid waste projects with a potential of 643 MW. PG and E also had under active discussion 28 cogeneration projects that could generate a total of 968 MW to 1,049 MW, and 10 solid waste projects with a potential of 90 MW to 95 MW. Wind projects under contract number 84, with a generating capability of 85 MW. Also, discussions are being conducted with 17 wind projects, totaling 83 MW. There are 23 hydroelectric projects with signed contracts and a potential of 95 MW, as well as 63 projects under active discussion for 169 MW. In addition, there are 25 hydroelectric projects, with a nominal capacity of 278 MW, that PG and E is constructing or planning to construct. Five contracts have been signed with projects, using other types of electric power generation, capable of producing 100 MW.

  20. Demonstration of an on-site PAFC cogeneration system with waste heat utilization by a new gas absorption chiller

    SciTech Connect (OSTI)

    Urata, Tatsuo

    1996-12-31

    Analysis and cost reduction of fuel cells is being promoted to achieve commercial on-site phosphoric acid fuel cells (on-site FC). However, for such cells to be effectively utilized, a cogeneration system designed to use the heat generated must be developed at low cost. Room heating and hot-water supply are the most simple and efficient uses of the waste heat of fuel cells. However, due to the short room-heating period of about 4 months in most areas in Japan, the sites having demand for waste heat of fuel cells throughout the year will be limited to hotels and hospitals Tokyo Gas has therefore been developing an on-site FC and the technology to utilize tile waste heat of fuel cells for room cooling by means of an absorption refrigerator. The paper describes the results of fuel cell cogeneration tests conducted on a double effect gas absorption chiller heater with auxiliary waste heat recovery (WGAR) that Tokyo Gas developed in its Energy Technology Research Laboratory.

  1. Absorption chiller optimization and integration for cogeneration and engine-chiller systems. Phase 1 - design. Topical report, April 1985-July 1986

    SciTech Connect (OSTI)

    Kubasco, A.J.

    1986-07-01

    A market study indicates a significant market potential for small commercial cogeneration (50-500 kW) over the next 20 years. The potential exists for 1500 installations per year, 80% of those would be a system composed of Engine-Generator and Heat Recovery Unit with the remainder requiring the addition of an Absorption Chiller. A preliminary design for an advanced Heat Recovery Unit (HRU) was completed. The unit incorporates the capability of supplementary firing of the exhaust gas from the new generation of natural gas fired lean burn reciprocating engines being developed for cogeneration applications. This gives the Heat Recovery Unit greater flexibility in following the thermal load requirements of the building. An applications and design criteria analysis indicated that this was a significant feature for the HRU as it can replace a standard auxiliary boiler thus affording significant savings to the building owner. A design for an advanced absorption chiller was reached which is 15% lower in cost yet 9% more efficient than current off-the-shelf units. A packaged cogeneration system cost and design analysis indicates that a nominal 254 kW cogeneration system incorporating advanced components and packaging concepts can achieve a selling price of less than $880/kW and $700/kW with and without an absorption chiller.

  2. EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    SciTech Connect (OSTI)

    John W. Rich

    2003-12-01

    Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the U. S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the United States to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase I is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III updates the original EECP design based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from July 1, 2003 through September 30, 2003. The DOE/WMPI Cooperative Agreement was modified on May 2003 to expand the project team to include Shell Global Solutions, U.S. and Uhde GmbH as the engineering contractor. The addition of Shell and Uhde strengthen both the technical capability and financing ability of the project. Uhde, as the prime EPC contractor, has the responsibility to develop a LSTK (lump sum turnkey) engineering design package for the EECP leading to the eventual detailed engineering, construction and operation of the proposed concept. Major technical activities during the reporting period include: (1) finalizing contractual agreements between DOE, Uhde and other technology providers, focusing on intellectual-property-right issues, (2) Uhde's preparation of a LSTK project execution plan and other project engineering procedural documents, and (3) Uhde's preliminary project technical concept assessment and trade-off evaluations.

  3. Cogeneration of Electricity and Potable Water Using The International Reactor Innovative And Secure (IRIS) Design

    SciTech Connect (OSTI)

    Ingersoll, D.T.; Binder, J.L.; Kostin, V.I.; Panov, Y.K.; Polunichev, V.; Ricotti, M.E.; Conti, D.; Alonso, G.

    2004-10-06

    The worldwide demand for potable water has been steadily growing and is projected to accelerate, driven by a continued population growth and industrialization of emerging countries. This growth is reflected in a recent market survey by the World Resources Institute, which shows a doubling in the installed capacity of seawater desalination plants every ten years. The production of desalinated water is energy intensive, requiring approximately 3-6 kWh/m3 of produced desalted water. At current U.S. water use rates, a dedicated 1000 MW power plant for every one million people would be required to meet our water needs with desalted water. Nuclear energy plants are attractive for large scale desalination application. The thermal energy produced in a nuclear plant can provide both electricity and desalted water without the production of greenhouse gases. A particularly attractive option for nuclear desalination is to couple a desalination plant with an advanced, modular, passively safe reactor design. The use of small-to-medium sized nuclear power plants allows for countries with smaller electrical grid needs and infrastructure to add new electrical and water capacity in more appropriate increments and allows countries to consider siting plants at a broader number of distributed locations. To meet these needs, a modified version of the International Reactor Innovative and Secure (IRIS) nuclear power plant design has been developed for the cogeneration of electricity and desalted water. The modular, passively safe features of IRIS make it especially well adapted for this application. Furthermore, several design features of the IRIS reactor will ensure a safe and reliable source of energy and water even for countries with limited nuclear power experience and infrastructure. The IRIS-D design utilizes low-quality steam extracted from the low-pressure turbine to boil seawater in a multi-effect distillation desalination plant. The desalination plant is based on the horizontal tube film evaporation design used successfully with the BN-350 nuclear plant in Aktau, Kazakhstan. Parametric studies have been performed to optimize the balance of plant design. Also, an economic analysis has been performed, which shows that IRIS-D should be able to provide electricity and clean water at highly competitive costs.

  4. High performance steam development. Final report, Phase No. 3: 1500{degree}F steam plant for industrial cogeneration prototype development tests

    SciTech Connect (OSTI)

    Duffy, T.; Schneider, P.

    1996-01-01

    As a key part of DOE`s and industry`s R&D efforts to improve the efficiency, cost, and emissions of power generation, a prototype High Performance Steam System (HPSS) has been designed, built, and demonstrated. The world`s highest temperature ASME Section I coded power plant successfully completed over 100 hours of development tests at 1500{degrees}F and 1500 psig on a 56,000 pound per hour steam generator, control valve and topping turbine at an output power of 5500 hp. This development advances the HPSS to 400{degrees}F higher steam temperature than the current best technology being installed around the world. Higher cycle temperatures produce higher conversion efficiencies and since steam is used to produce the large majority of the world`s power, the authors expect HPSS developments will have a major impact on electric power production and cogeneration in the twenty-first century. Coal fueled steam plants now produce the majority of the United States electric power. Cogeneration and reduced costs and availability of natural gas have now made gas turbines using Heat Recovery Steam Generators (HRSG`s) and combined cycles for cogeneration and power generation the lowest cost producer of electric power in the United States. These gas fueled combined cycles also have major benefits in reducing emissions while reducing the cost of electricity. Development of HPSS technology can significantly improve the efficiency of cogeneration, steam plants, and combined cycles. Figure 2 is a TS diagram that shows the HPSS has twice the energy available from each pound of steam when expanding from 1500{degrees}F and 1500 psia to 165 psia (150 psig, a common cogeneration process steam pressure). This report describes the prototype component and system design, and results of the 100-hour laboratory tests. The next phase of the program consists of building up the steam turbine into a generator set, and installing the power plant at an industrial site for extended operation.

  5. Energy conservation and electricity sector liberalization: Case-studies on the development of cogeneration, wind energy and demand-side management in the Netherlands, Denmark, Germany and the United Kingdom

    SciTech Connect (OSTI)

    Slingerland, S.

    1998-07-01

    In this paper, the development of cogeneration, wind energy and demand-side management in the Netherlands, Denmark, Germany and the United Kingdom are compared. It is discussed to what extent these developments are determined by the liberalization process. Three key liberalization variables are identified: unbundling, privatization and introduction of competition. The analysis suggests that unbundling prior to introduction of full competition in generation is particularly successful in stimulating industrial cogeneration; simultaneous introduction of competition and unbundling mainly stimulates non-cogeneration gas-based capacity; and introduction of competition in itself is likely to impede the development of district-heating cogeneration. Furthermore, it is argued that development of wind energy and demand-side management are primarily dependent on the kind of support system set up by policy makers rather than on the liberalization process. Negative impacts of introduction of competition on integrated resource planning and commercial energy services could nevertheless be expected.

  6. Cogeneration and Small Power Production Quarterly Report to the California Public Utilities Commission First Quarter - March 1983

    SciTech Connect (OSTI)

    1983-03-01

    In the First Quarter of 1983, the number of signed contracts and committed projects rose from 204 to 224, with a total estimated nominal capacity of these projects of 1,246 MW. Of this nominal capacity, about 259 MW is operational, and the balance is under contract for development. Of the 224 signed contracts and committed projects, 70 were cogeneration and solid waste/biomass projects with a potential of 687 MW. PG and E also had under active discussion 30 cogeneration projects that could generate a total of 744 MW to 821 MW, and 12 solid waste/biomass projects with a potential of 118 MW to 126 MW. Two contracts have been signed with geothermal projects, capable of producing 83 MW. There are 6 solar projects with signed contracts and a potential of 36 MW, as well as another solar project under active discussion for 30 MW. Wind farm projects under contract number 17, with a generating capability of 330 MW. Also, discussions are being conducted with 9 wind farm projects, totaling 184 to 189 MW. There are 89 wind projects of 100 kW or less with signed contracts and a potential of almost 1 MW, as well as 9 other projects under active discussion. There are 38 hydroelectric projects with signed contracts and a potential of 103 MW, as well as 65 projects under active discussion for 183 MW. In addition, there are 29 hydroelectric projects, with a nominal capacity of 291 MW, that PG and E is constructing or planning to construct. Table A displays the above information. In tabular form, in Appendix A, are status reports of the projects as of March 31, 1983.

  7. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    SciTech Connect (OSTI)

    L.E. Demick

    2011-10-01

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  8. Guidelines to assist rural electric cooperatives to fulfill the requirements of Sections 201 and 210 of PURPA for cogeneration and small power production

    SciTech Connect (OSTI)

    Not Available

    1981-02-01

    These guidelines were designed to assist National Rural Electric Cooperative Association staff and consultants involved in the implementation of Sections 201 and 210 of the Public Utilities Regulatory Policies Act (PURPA). The guidelines were structured to meet anticipated use as: a self-contained legal, technical and economic reference manual helpful in dealing with small power producers and cogenerators; a roadmap through some of the less obvious obstacles encountered by utilities interacting with small power producers and cogenerators; a starting point for those utilities who have not yet formulated specific policies and procedures, nor developed rates for purchasing power from small power producers and cogenerators; a discussion vehicle to highlight key issues and increase understanding in workshop presentations to rural electric cooperatives; and an evolutionary tool which can be updated to reflect changes in the law as they occur. The chapters in these Guidelines contain both summary information, such as compliance checklists, and detailed information, such as cost rate calculations, on regulatory requirements, operational considerations, and rate considerations. The appendices contain more specific material, e.g. rural electric cooperative sample policy statements. (LCL)

  9. Economic and regulatory aspects of cogeneration: the implementation of Section 210 of the Public Utility Regulatory Policies Act of 1978

    SciTech Connect (OSTI)

    Vincent, J.W.

    1982-01-01

    In February of 1980 the Federal Energy Regulatory Commission (FERC) promulgated a set of rules that were to commence the implementation process of Section 210 of the Public Utility Regulatory Policies Act of 1978 (PURPA). Of particular interest to economists are the pricing provisions in the rules that pertain to integrating dispersed sources of electric power generation into conventional electric utility systems. The full avoided cost pricing provision couples a utility mandate to purchase power from qualified dispersed facilities (cogenerators, wind power, small hydro facilities, etc., hereafter denoted QFs) with the requirement that the price the utility pays for such purchases be equal to the full extent of the cost it avoids by not generating the power itself. The simultaneous purchase and sale billing scheme requires a utility to purchase the gross power output of a QF at the full avoided cost rate and simultaneously sell back to the QF its power requirement on the applicable retail tariff. Theoretical investigation of these two provisions reveals that, properly defined, they are consistent with improving economic signals with respect to electricity generation.

  10. Experimental observation of the behaviour of cogenerated dusty plasma using a bipolar pulsed direct current power supply

    SciTech Connect (OSTI)

    Sarkar, Sanjib; Bose, M. [Department of Physics, Jadavpur University, Kolkata 700032 (India); Pramanik, J. [Kharagpur College, Kharagpur 721305, West Bengal (India); Mukherjee, S. [FCIPT, Institute for Plasma Research, Gandhinagar 382428 (India)

    2013-02-15

    We have experimentally observed the behaviour of cogenerated dusts in unmagnetized plasma produced using a bipolar pulsed dc power supply. In this experiment, the dust particles have been generated through sputtering of graphite cathode and were stratified between two electrodes. This stratification of dust clouds has obtained at a typical range of plasma parameters, namely, 650 V (peak-to-peak) with 0.2 mbar pressure. In above condition, we detected the Taylor-like instability at the interface of two dusty clouds with different densities. A very less dust density (void like) region inside the lesser dust density portion is also noted. Again, it has been observed that a self excited dust density wave propagates towards the higher density dust fluid inside the system as well as a stationary band structure of thin multiple layers of dust particles when we apply a higher voltage (750 V peak-to-peak). The wavelength, phase velocity, and frequency of the excited wave have also been estimated.

  11. EARLY ENTRANCE CO-PRODUCTION PLANT-DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    SciTech Connect (OSTI)

    Unknown

    2002-07-01

    Waste Processors Management, Inc. (WMPI), along with its subcontractors entered into a Cooperative Agreement with the US Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase 1 is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase 2 is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase 3 updates the original EECP design based on results from Phase 2, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from April 1, 2002 through June 30, 2002.

  12. Proposal of a novel multifunctional energy system for cogeneration of coke, hydrogen, and power - article no. 052001

    SciTech Connect (OSTI)

    Jin, H.G.; Sun, S.; Han, W.; Gao, L.

    2009-09-15

    This paper proposes a novel multifunctional energy system (MES), which cogenerates coke, hydrogen, and power, through the use of coal and coke oven gas (COG). In this system, a new type of coke oven, firing coal instead of COG as heating resource for coking, is adopted. The COG rich in H{sub 2} is sent to a pressure swing adsorption (PSA) unit to separate about 80% of hydrogen first, and then the PSA purge gas is fed to a combined cycle as fuel. The new system combines the chemical processes and power generation system, along with the integration of chemical conversion and thermal energy utilization. In this manner, both the chemical energy of fuel and thermal energy can be used more effectively. With the same inputs of fuel and the same output of coking heat, the new system can produce about 65% more hydrogen than that of individual systems. As a result, the thermal efficiency of the new system is about 70%, and the exergy efficiency is about 66%. Compared with individual systems, the primary energy saving ratio can reach as high as 12.5%. Based on the graphical exergy analyses, we disclose that the integration of synthetic utilization of COG and coal plays a significant role in decreasing the exergy destruction of the MES system. The promising results obtained may lead to a clean coal technology that will utilize COG and coal more efficiently and economically.

  13. Development of a Novel Efficient Solid-Oxide Hybrid for Co-generation of Hydrogen and Electricity Using Nearby Resources for Local Application

    SciTech Connect (OSTI)

    Tao, Greg, G.; Virkar, Anil, V.; Bandopadhyay, Sukumar; Thangamani, Nithyanantham; Anderson, Harlan, U.; Brow, Richard, K.

    2009-06-30

    Developing safe, reliable, cost-effective, and efficient hydrogen-electricity co-generation systems is an important step in the quest for national energy security and minimized reliance on foreign oil. This project aimed to, through materials research, develop a cost-effective advanced technology cogenerating hydrogen and electricity directly from distributed natural gas and/or coal-derived fuels. This advanced technology was built upon a novel hybrid module composed of solid-oxide fuel-assisted electrolysis cells (SOFECs) and solid-oxide fuel cells (SOFCs), both of which were in planar, anode-supported designs. A SOFEC is an electrochemical device, in which an oxidizable fuel and steam are fed to the anode and cathode, respectively. Steam on the cathode is split into oxygen ions that are transported through an oxygen ion-conducting electrolyte (i.e. YSZ) to oxidize the anode fuel. The dissociated hydrogen and residual steam are exhausted from the SOFEC cathode and then separated by condensation of the steam to produce pure hydrogen. The rationale was that in such an approach fuel provides a chemical potential replacing the external power conventionally used to drive electrolysis cells (i.e. solid oxide electrolysis cells). A SOFC is similar to the SOFEC by replacing cathode steam with air for power generation. To fulfill the cogeneration objective, a hybrid module comprising reversible SOFEC stacks and SOFC stacks was designed that planar SOFECs and SOFCs were manifolded in such a way that the anodes of both the SOFCs and the SOFECs were fed the same fuel, (i.e. natural gas or coal-derived fuel). Hydrogen was produced by SOFECs and electricity was generated by SOFCs within the same hybrid system. A stand-alone 5 kW system comprising three SOFEC-SOFC hybrid modules and three dedicated SOFC stacks, balance-of-plant components (including a tailgas-fired steam generator and tailgas-fired process heaters), and electronic controls was designed, though an overall integrated system assembly was not completed because of limited resources. An inexpensive metallic interconnects fabrication process was developed in-house. BOP components were fabricated and evaluated under the forecasted operating conditions. Proof-of-concept demonstration of cogenerating hydrogen and electricity was performed, and demonstrated SOFEC operational stability over 360 hours with no significant degradation. Cost analysis was performed for providing an economic assessment of the cost of hydrogen production using the targeted hybrid technology, and for guiding future research and development.

  14. Conceptual design phase of a district heating and cooling plant with cogeneration to serve James Madison University and the Harrisonburg Electric Commission

    SciTech Connect (OSTI)

    Belcher, J.B.

    1995-12-31

    A unique opportunity for cooperation and community development exists in Harrisonburg, Virginia. James Madison University, located in Harrisonburg, is undergoing an aggressive growth plan of its academic base which also includes the physical expansion of its campus. The City of Harrisonburg is presently supplying steam to meet a portion of the heating needs of the existing James Madison campus from a city owned and operated waste-to-energy plant. In an effort of cooperation, Harrisonburg and James Madison University have now negotiated an agreement for the city to provide all of the heating and cooling requirements of the new campus expansion. In another unique turn of events, the local electrical power distributor, Harrisonburg Electric Commission, approached the city concerning the inclusion of cogeneration in the project in order to reduce and maintain existing electric rates thus further benefiting the community. Through the cooperation of these three entities, the conceptual design phase of the project has been completed. The plant design developed through this process includes 3,000 tons of chilled water capacity, an additional 64,000 lb/hr of steam capacity and 2.5 MW of cogeneration capacity. This paper describes the conceptual design process for this interesting project.

  15. EARLY ENTRANCE CO-PRODUCTION PLANT--DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    SciTech Connect (OSTI)

    John W. Rich

    2003-06-01

    Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the U. S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the technoeconomic viability of building an Early Entrance Co-Production Plant (EECP) in the United States to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase I is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III updates the original EECP design based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from January 1, 2003 through March 31, 2003. Phase I Task 6 activities of Preliminary Site Analysis were documented and reported as a separate Topical Report on February 2003. Most of the other technical activities were on hold pending on DOE's announcement of the Clean Coal Power Initiative (CCPI) awards. WMPI was awarded one of the CCPI projects in late January 2003 to engineer, construct and operate a first-of-kind gasification/liquefaction facility in the U.S. as a continued effort for the current WMPI EECP engineering feasibility study. Since then, project technical activities were focused on: (1) planning/revising the existing EECP work scope for transition into CCPI, and (2) ''jump starting'' all environmentally related work in pursue of NEPA and PA DEP permitting approval.

  16. SRI2007 Conference - Proceedings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    guidelines about manuscript preparation are provided at the Publishers website (elsevier.com). The format, font and layout are the same for the proceedings as the regular...

  17. SRI2007 Conference - Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hulbert SRC, Mark Bissen SSRL, Uwe Bergmann SSRL, Aaron Lindenberg SURF, Uwe Arp TJNL, Gwyn Williams CAMD, Amitava Roy CAMD, Eizi Morikawa CAMD, John Scott CAMD, Lee Ann Murphey...

  18. SRI2007 Conference - Workshops

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    instrumentation communities. Date: April 24 (Tuesday), morning half a day Chairperson: Victor P. Suller (CAMDDaresbury), and Jeff Corbett (SLAC) Objectives: Review the present...

  19. Dynamic model of Italy`s Progetto Energia cogeneration plants aims to better predict plant performance, cut start-up costs

    SciTech Connect (OSTI)

    1996-12-31

    Over the next four years, the Progetto Energia project will be building several cogeneration plants to help satisfy the increasing demands of Italy`s industrial users and the country`s demand for electrical power. Located at six different sites within Italy, these combined-cycle cogeneration plants will supply a total of 500 MW of electricity and 100 tons/hr of process steam to Italian industries and residences. To ensure project success, a dynamic model of the 50-MW base unit was developed. The goal established for the model was to predict the dynamic behavior of the complex thermodynamic system in order to assess equipment performance and control system effectiveness for normal operation and, more importantly, abrupt load changes. In addition to fulfilling its goals, the dynamic study guided modifications to controller logic that significantly improved steam drum pressure control and bypassed steam desuperheating performance simulations of normal and abrupt transient events allowed engineers to define optimum controller gain coefficients. The dynamic study will undoubtedly reduce the associated plant start-up costs and contribute to a smooth commercial plant acceptance. As a result of the work, the control system has already been through its check-out and performance evaluation, usually performed during the plant start-up phase. Field engineers will directly benefit from this effort to identify and resolve control system {open_quotes}bugs{close_quotes} before the equipment reaches the field. High thermal efficiency, rapid dispatch and high plant availability were key reasons why the natural gas combined-cycle plant was chosen. Other favorable attributes of the combined-cycle plant contributing to the decision were: Minimal environmental impact; a simple and effective process and control philosophy to result in safe and easy plant operation; a choice of technologies and equipment proven in a large number of applications.

  20. Experience in the commercial operation of the pilot asynchronized turbogenerator T3FA-110 at cogeneration plant-22 (TETs-22) of the Mosenergo Company

    SciTech Connect (OSTI)

    Zinakov, V. E.; Chernyshev, E. V.; Kuzin, G. A.; Voronov, V. K.; Labunets, I. A.

    2006-01-15

    Results of commercial operation of a world pioneer asynchronized turbogenerator T3FA-110 with a capacity of 11 MW and full air cooling at a cogeneration plant are presented. The turbogenerator developed jointly by the Electric Power Research Institute and the Elektrosila Company differs from traditional synchronous generators by the presence on the rotor of two mutually orthogonal windings, a two-channel reverse thyristor excitation system, and a special control system. The special features of design and control allow such generators to operate in the modes of both production and high consumption of reactive power at normal static and dynamic stability. This widens the range of regulation of the voltage level in the connected electric network and makes it possible to bring parallel-connected synchronous generators to optimum operation conditions. The generator can work without excitation for a long time at 70% load. Commercial operation of the pilot T3FA-110 turbogenerator started in December 2003 at TETs-22 of the Mosenergo Company and has proved its full correspondence to the design engineering parameters. A program of wide use of such turbogenerators in the United Power System of Russia (RAO 'EES Rossii' Co.) has been developed.

  1. Results of heat tests of the TGE-435 main boiler in the PGU-190/220 combined-cycle plant of the Tyumen' TETs-2 cogeneration plant

    SciTech Connect (OSTI)

    A.V. Kurochkin; A.L. Kovalenko; V.G. Kozlov; A.I. Krivobok

    2007-01-15

    Special features of operation of a boiler operating as a combined-cycle plant and having its own furnace and burner unit are descried. The flow of flue gases on the boiler is increased due to feeding of exhaust gases of the GTU into the furnace, which intensifies the convective heat exchange. In addition, it is not necessary to preheat air in the convective heating surfaces (the boiler has no air preheater). The convective heating surfaces of the boiler are used for heating the feed water, thus replacing the regeneration extractions of the steam turbine (HPP are absent in the circuit) and partially replacing the preheating of condensate (the LPP in the circuit of the unit are combined with preheaters of delivery water). Regeneration of the steam turbine is primarily used for the district cogeneration heating purposes. The furnace and burner unit of the exhaust-heat boiler (which is a new engineering solution for the given project) ensures utilization of not only the heat of the exhaust gases of the GTU but also of their excess volume, because the latter contains up to 15% oxygen that oxidizes the combustion process in the boiler. Thus, the gas temperature at the inlet to the boiler amounts to 580{sup o}C at an excess air factor a = 3.50; at the outlet these parameters are utilized to T{sub out} = 139{sup o}C and a{sub out} = 1.17. The proportions of the GTU/boiler loads that can actually be organized at the generating unit (and have been checked by testing) are presented and the proportions of loads recommended for the most efficient operation of the boiler are determined. The performance characteristics of the boiler are presented for various proportions of GTU/boiler loads. The operating conditions of the superheater and of the convective trailing heating surfaces are presented as well as the ecological parameters of the generating unit.

  2. SRI2007 Conference - Poster Session

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Poster Session There will be two poster sessions: Session 1 on Wednesday, April 25 and Session 2 on Thursday, April 26. Each session is from 4:15 p.m. - 6:00 p.m. Poster set-up for each session will begin at 11:30 a.m. and poster must be up by noon on the respective days. Posters in Session 1 must be disassembled by 11:30 a.m. on Thursday to allow for the set-up of posters in Session 2. Any posters from Session 1 remaining at 11:30 a.m. on Thursday will be discarded. Any posters from Session 2

  3. SRI2007 Conference - Travel Tips

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Getting to the Hilton Baton Rouge Capitol Center: From the Baton Rouge Metropolitan Airport (BTR) From the New Orleans International Airport (MSY) Shuttles to and from the Baton...

  4. SRI International | Open Energy Information

    Open Energy Info (EERE)

    Database. This company is involved in the following MHK Technologies: Electroactive Polymer Artificial Muscle EPAM This article is a stub. You can help OpenEI by expanding it....

  5. SRI2007 Conference - Local Attractions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    after 10 pm. (must be 21 after 10 pm) 214 Third Street, 225-346-6767 14. Mortorano's Italian Restaurant Food, Fun, Family and Friends is what you get at Motorano's Specializing...

  6. SRI2007 Conference - Manuscript Review

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    list will be posted at the conference) are requested to pick up manuscripts at the editorial office beginning Thursday, April 26th, for review. Please use this specified form...

  7. SRI2007 Conference - Contact Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Information For further information about the conference, please click on the following link. E-mail Ms. Lee Ann Murphey or contact Ms. Lee Ann Murphey CAMDLSU 6980...

  8. Cogeneration Technologies | Open Energy Information

    Open Energy Info (EERE)

    Biomass, Solar Product: Provides efficient systems in the fields of demand management, biofuel, biomass and solar CHP systems. Coordinates: 29.76045, -95.369784 Show Map...

  9. Uninterruptible power supply cogeneration system

    SciTech Connect (OSTI)

    Gottfried, C.F.

    1987-08-11

    A power system is described for providing an uninterruptible power supply comprising: a first generator means for supplying energy to a primary load; a second generator means connected to an electrical utility, the first and second generator means being connected by a common shaft, the first generator means being electrically isolated from the electrical utility; prime mover means connected to the common shaft, the prime mover means for supplying mechanical energy to the shaft; and controller means interposed electrically between the second generator means and the secondary external load, the controller means causing the second generator means to become disconnected from the secondary load upon interruptions in the secondary load.

  10. International Conference Synchrotron Radiation Instrumentation SRI `94

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    This report contains abstracts for the international conference on Synchrotron Radiation Instrumentation at Brookhaven National Laboratory.

  11. SriPower | Open Energy Information

    Open Energy Info (EERE)

    Hyderabad, Andhra Pradesh, India Zip: 500081 Sector: Solar Product: Hyderabad-based firm involved in development, installation and operation of Solar Projects. References:...

  12. Thermoacoustic co-generation unit. Final report

    SciTech Connect (OSTI)

    Swift, G.W.; Corey, J.

    1997-12-09

    The combination of a thermoacoustic engine with a STAR alternator promises to comprise a simple, reliable combustion-powered electric generator. In this CRADA, the authors married these two technologies for the first time, to learn what technical issues arise in the combination. The results are encouraging, but the work is not yet complete.

  13. CHP/Cogeneration | Open Energy Information

    Open Energy Info (EERE)

    Gas turbines also have very low emissions compared to other fossil-fuel based systems. Fuel Cell - these plants primarily produce power using Oil, Distillate Fuel Oil, Jet Fuel,...

  14. SEVENTH HARMONIC 20 GHz CO-GENERATOR

    SciTech Connect (OSTI)

    Hirshfield, Jay L

    2014-04-08

    To satisfy the need for multi-MW rf sources in frequency ranges where commercial sources do not exist, a study was undertaken on a class of devices based on gyro-harmonic frequency multiplication. This mechanism relies upon adding energy in gyrating motion to a linear electron beam that traverses a rotating-mode TE111-mode drive cavity in a dc magnetic field. The beam then drifts along the magnetic field into a second cavity, operating in the TEn11-mode tuned to the nth harmonic of the drive cavity. Studies of this configuration have been carried out for 2 < n < 7. Results are given for multi-MW, efficient operation of a 7th harmonic device operating at 20 GHz, and a 2nd harmonic device operating at 22.4 GHz.

  15. Assessment of Replicable Innovative Industrial Cogeneration Applicatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries Cooling, Heating, and Power for Industry:...

  16. High-Efficiency Solar Cogeneration with Thermophotovoltaic &...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Impact Buildings are categorically the largest energy consumer, and their 1 electricity demand is Lighting, often responsible for >40% their consumption. Modern electric ...

  17. INNOVATIVE HYBRID GAS/ELECTRIC CHILLER COGENERATION

    SciTech Connect (OSTI)

    Todd Kollross; Mike Connolly

    2004-06-30

    Engine-driven chillers are quickly gaining popularity in the market place (increased from 7,000 tons in 1994 to greater than 50,000 tons in 1998) due to their high efficiency, electric peak shaving capability, and overall low operating cost. The product offers attractive economics (5 year pay back or less) in many applications, based on areas cooling requirements and electric pricing structure. When heat is recovered and utilized from the engine, the energy resource efficiency of a natural gas engine-driven chiller is higher than all competing products. As deregulation proceeds, real time pricing rate structures promise high peak demand electric rates, but low off-peak electric rates. An emerging trend with commercial building owners and managers who require air conditioning today is to reduce their operating costs by installing hybrid chiller systems that combine gas and electric units. Hybrid systems not only reduce peak electric demand charges, but also allow customers to level their energy load profiles and select the most economical energy source, gas or electricity, from hour to hour. Until recently, however, all hybrid systems incorporated one or more gas-powered chillers (engine driven and/or absorption) and one or more conventional electric units. Typically, the cooling capacity of hybrid chiller plants ranges from the hundreds to thousands of refrigeration tons, with multiple chillers affording the user a choice of cooling systems. But this flexibility is less of an option for building operators who have limited room for equipment. To address this technology gap, a hybrid chiller was developed by Alturdyne that combines a gas engine, an electric motor and a refrigeration compressor within a single package. However, this product had not been designed to realize the full features and benefits possible by combining an engine, motor/generator and compressor. The purpose of this project is to develop a new hybrid chiller that can (1) reduce end-user energy costs, (2) lower building peak electric load, (3) increase energy efficiency, and (4) provide standby power. This new hybrid product is designed to allow the engine to generate electricity or drive the chiller's compressor, based on the market price and conditions of the available energy sources. Building owners can minimize cooling costs by operating with natural gas or electricity, depending on time of day energy rates. In the event of a backout, the building owner could either operate the product as a synchronous generator set, thus providing standby power, or continue to operate a chiller to provide air conditioning with support of a small generator set to cover the chiller's electric auxiliary requirements. The ability to utilize the same piece of equipment as a hybrid gas/electric chiller or a standby generator greatly enhances its economic attractiveness and would substantially expand the opportunities for high efficiency cooling products.

  18. Plymouth Cogeneration LP | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 15112 This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Average Rates No Rates Available References ...

  19. Morris Cogeneration LLC | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 54755 This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Average Rates Commercial: 0.0336kWh...

  20. Sri Lanka-DLR Cooperation | Open Energy Information

    Open Energy Info (EERE)

    Area Renewable Energy Topics Background analysis, Resource assessment Resource Type Softwaremodeling tools, Dataset, Maps Website http:www.dlr.dettdesktopde Program Start...

  1. Microsoft PowerPoint - CAMD_SRI_2010.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * 1.3 GeV electron storage ring that produces a broad spectrum of light from IR to VUV to X-rays * established with $25M Congressionally directed funding, operational 1992 * state budget $4 - $5M / yr * investment of ~$50M in beamlines / * investment of ~$50M in beamlines / instrumentation giving a total investment ~$175M M th 275 CAMD U f More than 275 CAMD Users from Louisiana Institutions Synchrotron Radiation Facilities in the US CHESS NSLS SRC SSRL ALS APS CHESS NSLS SURF CAMD Is the only

  2. Sri Chamundeswari Sugars Limited SCSL | Open Energy Information

    Open Energy Info (EERE)

    Karnataka-based producer of sugar that has also developed biomass plants including a biogas plant. Coordinates: 12.97092, 77.60482 Show Map Loading map......

  3. Company's cogeneration effort conserves fuel, cuts power costs

    SciTech Connect (OSTI)

    Kingston, W.J.

    1983-05-01

    Kodak Park is Eastman Kodak Company's largest manufacturing complex. As temperatures drop here, steam - created as a by-product in producing electricity - will heat some 200 buildings.

  4. List of CHP/Cogeneration Incentives | Open Energy Information

    Open Energy Info (EERE)

    using Renewable Fuels Geothermal Electric Photovoltaics Renewable Fuels Solar Water Heat Natural Gas Hydroelectric energy Small Hydroelectric Yes Alternative Energy Development...

  5. Low NOx combustion using cogenerated oxygen and nitrogen streams

    DOE Patents [OSTI]

    Kobayashi, Hisashi (Putnam Valley, NY); Bool, Lawrence E. (East Aurora, NY); Snyder, William J. (Ossining, NY)

    2009-02-03

    Combustion of hydrocarbon fuel is achieved with less formation of NOx by feeding the fuel into a slightly oxygen-enriched atmosphere, and separating air into oxygen-rich and nitrogen-rich streams which are fed separately into the combustion device.

  6. VEE-0088- In the Matter of CPKelco Cogeneration, et al.

    Broader source: Energy.gov [DOE]

    This Decision decides the merits of five Applications for Exception filed with the Office of Hearings and Appeals (OHA) of the U.S. Department of Energy (DOE) under theprovisions of 10 C.F.R. §...

  7. Does Cogeneration Make Sense for Me? | Open Energy Information

    Open Energy Info (EERE)

    University of Illinois at Chicago Phase: "Evaluate Options and Determine Feasibility" is not in the list of possible values (Bring the Right People Together, Create a...

  8. Energy efficiency opportunities in China. Industrial equipment and small cogeneration

    SciTech Connect (OSTI)

    1995-02-01

    A quick glance at comparative statistics on energy consumption per unit of industrial output reveals that China is one of the least energy efficient countries in the world. Energy waste not only impedes economic growth, but also creates pollution that threatens human health, regional ecosystems, and the global climate. China`s decision to pursue economic reform and encourage technology transfer from developed countries has created a window of opportunity for significant advances in energy efficiency. Policy changes, technical training, public education, and financing can help China realize its energy conservation potential.

  9. Solar Energy System and Cogeneration System Personal Property Tax Credit

    Broader source: Energy.gov [DOE]

    Eligible solar systems Solar energy is defined by D.C. Code § 34-1431 to mean "radiant energy, direct, diffuse, or reflected, received from the sun at wavelengths suitable for conversion into the...

  10. Characterization of solid waste conversion and cogeneration systems

    SciTech Connect (OSTI)

    1980-09-01

    The primary objective of the TASE program is to determine the probable consequences to the environment and to public health and safety resulting from widespread implementation of major solar and renewable resource technologies. The specific principal Phase I objective is to determine the levels of residuals most likely to result throughout the complete energy cycle from the utilization of each of the solar and renewable resource technologies. Three basic technologies for recovering energy from M SW are considered in this study. These are: (1) direct combustion using a waterwall incinerator in which the heat from burning refuse is converted to steam by circulating water in steel tubes jacketing the interior of the incinerator; (2) manufacture of a relatively uniform shredded, pulverized or pelleted refuse-derived fuel (RDF) for supplemental firing in a utility boiler; and (3) pyrolysis or destructive distillation of MSW to extract a low-Btu fuel gas. While resource recovery and energy recovery systems can be installed independently, the processes described here include both energy and resource recovery systems as well as necessary pollution control equipment for gaseous emissions. To meet the Phase I objective, LBL staff have characterized the individual application associated with each general technology; calculated operational residuals generated by each application; determined the input capital requirements and, when possible, annual operating input requirements; and have identified the technical and institutional constraints for the widespread implementation of each application. A description is presented of the energy and material development cycle required for the implementation of each technology. The capital requirements are compiled and presented in a SEAS system format.

  11. Advanced coal-fueled industrial cogeneration gas turbine system

    SciTech Connect (OSTI)

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; When, C.S.

    1992-06-01

    This report covers the activity during the period from 2 June 1991 to 1 June 1992. The major areas of work include: the combustor sub-scale and full size testing, cleanup, coal fuel specification and processing, the Hot End Simulation rig and design of the engine parts required for use with the coal-fueled combustor island. To date Solar has demonstrated: Stable and efficient combustion burning coal-water mixtures using the Two Stage Slagging Combustor; Molten slag removal of over 97% using the slagging primary and the particulate removal impact separator; and on-site preparation of CWM is feasible. During the past year the following tasks were completed: The feasibility of on-site CWM preparation was demonstrated on the subscale TSSC. A water-cooled impactor was evaluated on the subscale TSSC; three tests were completed on the full size TSSC, the last one incorporating the PRIS; a total of 27 hours of operation on CWM at design temperature were accumulated using candle filters supplied by Refraction through Industrial Pump Filter; a target fuel specification was established and a fuel cost model developed which can identify sensitivities of specification parameters; analyses of the effects of slag on refractory materials were conducted; and modifications continued on the Hot End Simulation Rig to allow extended test times.

  12. European Commission Impact Assessment Tools | Open Energy Information

    Open Energy Info (EERE)

    Publications, Softwaremodeling tools User Interface: Other Website: iatools.jrc.ec.europa.eubinviewIQToolWebHome.html IPTS-IA Tools Screenshot References: IPTS-IA Tools1...

  13. Microsoft Word - Sri_Lanka_10km_solar_country_report.doc

    Open Energy Info (EERE)

    of 5x5 km. Figure 1: The solar irradiance data is derived from Meteosat a 0 (red circle) and at 63 East (orange circle). The brightened area marks the quantitatively...

  14. U-Sries Disequilibra in Soils, Pena Blanca Natural Analog, Chihuahua, Mexico

    SciTech Connect (OSTI)

    D. French; E. Anthony; P. Goodell

    2006-03-16

    The Nopal I uranium deposit located in the Sierra Pena Blanca, Mexico. The deposit was mined in the early 1980s, and ore was stockpiled close by. This stockpile area was cleared and is now referred to as the Prior High Grade Stockpile (PHGS). Some of the high-grade boulders from the site rolled downhill when it was cleared in the 1990s. For this study soil samples were collected from the alluvium surrounding and underlying one of these boulders. A bulk sample of the boulder was also collected. Because the Prior High Grade Stockpile had no ore prior to the 1980s a maximum residence time for the boulder is about 25 years, this also means that the soil was at background as well. The purpose of this study is to characterize the transport of uranium series radionuclides from ore to the soil. Transport is characterized by determining the activities of individual radionuclides and daughter to parent ratios. Isotopes of the uranium series decay chain detected include {sup 210}Pb, {sup 234}U, {sup 230}Th, {sup 226}Ra, {sup 214}Pb, and {sup 214}Bi. Peak areas for each isotope are determined using gamma-ray spectroscopy with a Canberra Ge (Li) detector and GENIE 2000 software. The boulder sample is close to secular equilibrium when compared to the standard BL-5 (Beaver Lodge Uraninite from Canada). Results for the soils, however, indicate that some daughter/parent pairs are in secular disequilibrium. These daughter/parent (D/P) ratios include {sup 230}Th/{sup 234}U, which is greater than unity, {sup 226}Ra/{sup 230}Th, which is also greater than unity, and {sup 210}Pb/{sup 214}Bi, which is less than unity. The gamma-ray spectrum for organic material lacks {sup 230}Th peaks, but contains {sup 234}U and {sup 226}Ra, indicating that plants preferentially incorporate {sup 226}Ra. Our results, combined with previous studies require multistage history of mobilization of the uranium series radionuclides. Earlier studies at the ore zone could limit the time span for mobilization only to a few thousand years. The contribution of this study is that the short residence time of the ore at the Prior High Grade Stockpile requires a time span for mobilization of 20-30 years.

  15. LEED Certification Training & Attaintment | OpenEI Community

    Open Energy Info (EERE)

    LEED Certification Training & Attaintment Home > Groups > OpenEI Community Central Sri sri's picture Submitted by Sri sri(5) Member 18 February, 2013 - 00:44 Any one can give...

  16. Alternative schemes for production of chilled water and cogeneration of electricity at Ashley Plant

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    William Tao Associates, Inc. (TAO) evaluated alternative systems for the generation of Chilled Water at Ashley Plant. The generation of chilled water is necessary for several reason; initially as a source of revenue for St. Louis Thermal Energy Corporation (SLTEC), but more importantly as a necessary component of the Trash-to-Energy Plant proposed north of Ashley Plant. The chilled water system provides a base load for steam generated by the Trash-to-Energy Plant. The benefits include reduced tip-fees to the City of St. Louis, lower cost of energy to customers of both the district steam system and the proposed chilled water system, and will result in lower energy and operating costs for the system than if individual services are provided. This symbiotic relationship is main advantage of the Trash-to-Energy system. TAO provided preliminary engineering of the chilled water line route. The basic assumptions of an initial load of 10,000 tons with an ultimate load of 20,000 tons at a temperature difference of 16{degree}F remain. The findings of the pipeline study, although not incorporated into this document, remain valid. Assumptions include the following: An initial design load of 6000 tons which has the capability of growing to 20,000 tons; Incremental costs of steam generated by Ashley Plant and the Trash-to-Energy plant; The turbine room at Ashley Plant is suitable for gut rehab except for turbines No. 7 and No. 9 which should remain operational; and Daily chilled water flow and annual load profile. The paper describes the findings on 8 alternative chiller systems. Additional studies were performed on the following: chilled water storage; low-pressure absorption chiller for balancing plant steam loads; economizer cycle for chiller system; auxiliary equipment energy source; variable flow water pumps; and comparison to satellite chilled water plant study.

  17. Commercialization of coal-fired diesel engines for cogeneration and non-utility power markets

    SciTech Connect (OSTI)

    Wilson, R.P.; Rao, K.; Benedek, K.R.; Itse, D.; Parkinson, J.; Kimberley, J.; Balles, E.N.; Benson, C.E.; Smith, C.

    1992-01-01

    The primary objective of this METC project is to established practical, durable components compatible with clean coal slurry fuel and capable of low emissions. The components will be integrated into a coal power system for a 100-hr proof-of-concept test. The goal of this program is to advance the stationary coal-fueled diesel engine to the next plateau of technological readiness, and thus provide the springboard to commercialization.

  18. Commercialization of coal-fired diesel engines for cogeneration and non-utility power markets

    SciTech Connect (OSTI)

    Wilson, R.P.; Rao, K.; Benedek, K.R.; Itse, D.; Parkinson, J.; Kimberley, J.; Balles, E.N.; Benson, C.E.; Smith, C.

    1992-12-31

    The primary objective of this METC project is to established practical, durable components compatible with clean coal slurry fuel and capable of low emissions. The components will be integrated into a coal power system for a 100-hr proof-of-concept test. The goal of this program is to advance the stationary coal-fueled diesel engine to the next plateau of technological readiness, and thus provide the springboard to commercialization.

  19. Use of High Temperature Electrochemical Cells for Co-Generation of Chemicals and Electricity

    SciTech Connect (OSTI)

    Scott Barnett

    2007-09-30

    In this project, two key issues were addressed to show the feasibility of electrochemical partial oxidation (EPOx) in a SOFC. First, it was demonstrated that SOFCs can reliably operate directly with natural gas. These results are relevant to both direct-natural-gas SOFCs, where the aim is solely electrical power generation, and to EPOx. Second, it must be shown that SOFCs can work effectively as partial oxidation reactors, i.e, that they can provide high conversion efficiency of natural gas to syngas. The results of this study in both these areas look extremely promising. The main results are summarized briefly: (1) Stability and coke-free direct-methane SOFC operation is promoted by the addition of a thin porous inert barrier layer to the anode and the addition of small amounts of CO{sub 2} or air to the fuel stream; (2) Modeling results readily explained these improvements by a change in the gas composition at the Ni-YSZ anode to a non-coking condition; (3) The operation range for coke-free operation is greatly increased by using a cell geometry with a thin Ni-YSZ anode active layer on an inert porous ceramic support, i.e., (Sr,La)TiO{sub 3} or partially-stabilized zirconia (in segmented-in-series arrays); (4) Ethane and propane components in natural gas greatly increase coking both on the SOFC anode and on gas-feed tubes, but this can be mitigated by preferentially oxidizing these components prior to introduction into the fuel cell, the addition of a small amount of air to the fuel, and/or the use of ceramic-supported SOFC; (5) While a minimum SOFC current density was generally required to prevent coking, current interruptions of up to 8 minutes yielded only slight anode coking that caused no permanent damage and was completely reversible when the cell current was resumed; (6) Stable direct-methane SOFC operation was demonstrated under EPOx conditions in a 350 h test; (7) EPOx operation was demonstrated at 750 C that yielded 0.9 W/cm{sup 2} and a syngas production rate of 30 sccm/cm{sup 2}, and the reaction product composition was close to the equilibrium prediction during the early stages of cell testing; (8) The methane conversion to syngas continuously decreased during the first 100 h of cell testing, even though the cell electrical characteristics did not change, due to a steady decrease in the reforming activity of Ni-YSZ anodes; (9) The stability of methane conversion was substantially improved via the addition of a more stable reforming catalyst to the SOFC anode; (10) Modeling results indicated that a SOFC with anode barrier provides similar non-coking performance as an internal reforming SOFC, and provides a simpler approach with no need for a high-temperature exhaust-gas recycle pump; (11) Since there is little or no heat produced in the EPOx reaction, overall efficiency of the SOFC operated in this mode can, in theory, approach 100%; and (12) The combined value of the electricity and syngas produced allows the EPOx generator to be economically viable at a >2x higher cost/kW than a conventional SOFC.

  20. Advanced coal-fueled industrial cogeneration gas turbine system particle removal system development

    SciTech Connect (OSTI)

    Stephenson, M.

    1994-03-01

    Solar Turbines developed a direct coal-fueled turbine system (DCFT) and tested each component in subscale facilities and the combustion system was tested at full-scale. The combustion system was comprised of a two-stage slagging combustor with an impact separator between the two combustors. Greater than 90 percent of the native ash in the coal was removed as liquid slag with this system. In the first combustor, coal water slurry mixture (CWM) was injected into a combustion chamber which was operated loan to suppress NO{sub x} formation. The slurry was introduced through four fuel injectors that created a toroidal vortex because of the combustor geometry and angle of orientation of the injectors. The liquid slag that was formed was directed downward toward an impaction plate made of a refractory material. Sixty to seventy percent of the coal-borne ash was collected in this fashion. An impact separator was used to remove additional slag that had escaped the primary combustor. The combined particulate collection efficiency from both combustors was above 95 percent. Unfortunately, a great deal of the original sulfur from the coal still remained in the gas stream and needed to be separated. To accomplish this, dolomite or hydrated lime were injected in the secondary combustor to react with the sulfur dioxide and form calcium sulfite and sulfates. This solution for the sulfur problem increased the dust concentrations to as much as 6000 ppmw. A downstream particulate control system was required, and one that could operate at 150 psia, 1850-1900{degrees}F and with low pressure drop. Solar designed and tested a particulate rejection system to remove essentially all particulate from the high temperature, high pressure gas stream. A thorough research and development program was aimed at identifying candidate technologies and testing them with Solar`s coal-fired system. This topical report summarizes these activities over a period beginning in 1987 and ending in 1992.

  1. Coyote Springs Cogeneration Project, Morrow County, Oregon: Draft Environmental Impact Statement.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1994-01-01

    BPA is considering whether to transfer (wheel) electrical power from a proposed privately-owned, combustion-turbine electrical generation plant in Oregon. The plant would be fired by natural gas and would use combined-cycle technology to generate up to 440 average megawatts (aMW) of energy. The plant would be developed, owned, and operated by Portland General Electric Company (PGE). The project would be built in eastern Oregon, just east of the City of Boardman in Morrow County. The proposed plant would be built on a site within the Port of Morrow Industrial Park. The proposed use for the site is consistent with the County land use plan. Building the transmission line needed to interconnect the power plant to BPA`s transmission system would require a variance from Morrow County. BPA would transfer power from the plant to its McNary-Slatt 500-kV transmission line. PGE would pay BPA for wheeling services. Key environmental concerns identified in the scoping process and evaluated in the draft Environmental Impact Statement (DEIS) include these potential impacts: (1) air quality impacts, such as emissions and their contributions to the {open_quotes}greenhouse{close_quotes} effect; (2) health and safety impacts, such as effects of electric and magnetic fields, (3) noise impacts, (4) farmland impacts, (5) water vapor impacts to transportation, (6) economic development and employment impacts, (7) visual impacts, (8) consistency with local comprehensive plans, and (9) water quality and supply impacts, such as the amount of wastewater discharged, and the source and amount of water required to operate the plant. These and other issues are discussed in the DEIS. The proposed project includes features designed to reduce environmental impacts. Based on studies completed for the DEIS, adverse environmental impacts associated with the proposed project were identified, and no evidence emerged to suggest that the proposed action is controversial.

  2. Advanced coal-fueled industrial cogeneration gas turbine system. Annual report, June 1991--June 1992

    SciTech Connect (OSTI)

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; When, C.S.

    1992-06-01

    This report covers the activity during the period from 2 June 1991 to 1 June 1992. The major areas of work include: the combustor sub-scale and full size testing, cleanup, coal fuel specification and processing, the Hot End Simulation rig and design of the engine parts required for use with the coal-fueled combustor island. To date Solar has demonstrated: Stable and efficient combustion burning coal-water mixtures using the Two Stage Slagging Combustor; Molten slag removal of over 97% using the slagging primary and the particulate removal impact separator; and on-site preparation of CWM is feasible. During the past year the following tasks were completed: The feasibility of on-site CWM preparation was demonstrated on the subscale TSSC. A water-cooled impactor was evaluated on the subscale TSSC; three tests were completed on the full size TSSC, the last one incorporating the PRIS; a total of 27 hours of operation on CWM at design temperature were accumulated using candle filters supplied by Refraction through Industrial Pump & Filter; a target fuel specification was established and a fuel cost model developed which can identify sensitivities of specification parameters; analyses of the effects of slag on refractory materials were conducted; and modifications continued on the Hot End Simulation Rig to allow extended test times.

  3. Comparative Gamma Spectroscopy with SrI2(Eu), GYGAG(Ce) and Bi-loaded Plastic Scintillators

    SciTech Connect (OSTI)

    Cherepy, N J

    2010-11-19

    We are developing new scintillator materials that offer potential for high resolution gamma ray spectroscopy at low cost. Single crystal SrI{sub 2}(Eu) offers {approx}3% resolution at 662 keV, in sizes of {approx}1 in{sup 3}. We have developed ceramics processing technology allowing us to achieve cubic inch scale transparent ceramic scintillators offering gamma spectroscopy performance superior to NaI(Tl). We fabricated a bismuth-loaded plastic scintillator that demonstrates energy resolution of {approx}8% at 662 keV in small sizes. Gamma ray spectroscopy can be used to identify the presence of weak radioactive sources within natural background. The ability to discriminate close-lying spectral lines is strongly dependent upon the energy resolution of the detector. In addition to excellent energy resolution, large volume detectors are needed to acquire sufficient events, for example, to identify a radioactive anomaly moving past a detector. We have employed a 'directed search' methodology for identifying potential scintillator materials candidates, resulting in the discovery of Europium-doped Strontium Iodide, SrI{sub 2}(Eu), Cerium-doped Gadolinium Garnet, GYGAG(Ce), and Bismuth-loaded Polymers. These scintillators possess very low self-radioactivity, offer energy resolution of 3-8% at 662 keV, and have potential to be grown cost-effectively to sizes similar to the most widely deployed gamma spectroscopy scintillator, Thallium-doped Sodium Iodide, NaI(Tl). In this study, gamma ray spectra of a variety of sources, were obtained employing SrI{sub 2}(Eu), GYGAG(Ce), Bi-loaded polymers, LaBr{sub 3}(Ce), and NaI(Tl). The effects of detector size, energy resolution, and background radioactivity (including self-radioactivity) on the ability to distinguish weak sources is quantified, based on a simple model, and qualitatively compared to laboratory data.

  4. Integrated Project Teams - An Essential Element of Project Management during Project Planning and Execution - 12155

    SciTech Connect (OSTI)

    Burritt, James G.; Berkey, Edgar

    2012-07-01

    Managing complex projects requires a capable, effective project manager to be in place, who is assisted by a team of competent assistants in various relevant disciplines. This team of assistants is known as the Integrated Project Team (IPT). he IPT is composed of a multidisciplinary group of people who are collectively responsible for delivering a defined project outcome and who plan, execute, and implement over the entire life-cycle of a project, which can be a facility being constructed or a system being acquired. An ideal IPT includes empowered representatives from all functional areas involved with a project-such as engineering design, technology, manufacturing, test and evaluation, contracts, legal, logistics, and especially, the customer. Effective IPTs are an essential element of scope, cost, and schedule control for any complex, large construction project, whether funded by DOE or another organization. By recently assessing a number of major, on-going DOE waste management projects, the characteristics of high performing IPTs have been defined as well as the reasons for potential IPT failure. Project managers should use IPTs to plan and execute projects, but the IPTs must be properly constituted and the members capable and empowered. For them to be effective, the project manager must select the right team, and provide them with the training and guidance for them to be effective. IPT members must treat their IPT assignment as a primary duty, not some ancillary function. All team members must have an understanding of the factors associated with successful IPTs, and the reasons that some IPTs fail. Integrated Project Teams should be used by both government and industry. (authors)

  5. H[sub 2]/Cl[sub 2] fuel cells for power and HCl production - chemical cogeneration

    DOE Patents [OSTI]

    Gelb, A.H.

    1991-08-20

    A fuel cell for the electrolytic production of hydrogen chloride and the generation of electric energy from hydrogen and chlorine gas is disclosed. In typical application, the fuel cell operates from the hydrogen and chlorine gas generated by a chlorine electrolysis generator. The hydrogen chloride output is used to maintain acidity in the anode compartment of the electrolysis cells, and the electric energy provided from the fuel cell is used to power a portion of the electrolysis cells in the chlorine generator or for other chlorine generator electric demands. The fuel cell itself is typically formed by a passage for the flow of hydrogen chloride or hydrogen chloride and sodium chloride electrolyte between anode and cathode gas diffusion electrodes. 3 figures.

  6. Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 6: Process Heat and Hydrogen Co-Generation PIRTs

    SciTech Connect (OSTI)

    Forsberg, Charles W; Gorensek, M. B.; Herring, S.; Pickard, P.

    2008-03-01

    A Phenomena Identification and Ranking Table (PIRT) exercise was conducted to identify potential safety-0-related physical phenomena for the Next Generation Nuclear Plant (NGNP) when coupled to a hydrogen production or similar chemical plant. The NGNP is a very high-temperature reactor (VHTR) with the design goal to produce high-temperature heat and electricity for nearby chemical plants. Because high-temperature heat can only be transported limited distances, the two plants will be close to each other. One of the primary applications for the VHTR would be to supply heat and electricity for the production of hydrogen. There was no assessment of chemical plant safety challenges. The primary application of this PIRT is to support the safety analysis of the NGNP coupled one or more small hydrogen production pilot plants. However, the chemical plant processes to be coupled to the NGNP have not yet been chosen; thus, a broad PIRT assessment was conducted to scope alternative potential applications and test facilities associated with the NGNP. The hazards associated with various chemicals and methods to minimize risks from those hazards are well understood within the chemical industry. Much but not all of the information required to assure safe conditions (separation distance, relative elevation, berms) is known for a reactor coupled to a chemical plant. There is also some experience with nuclear plants in several countries that have produced steam for industrial applications. The specific characteristics of the chemical plant, site layout, and the maximum stored inventories of chemicals can provide the starting point for the safety assessments. While the panel identified events and phenomena of safety significance, there is one added caveat. Multiple high-temperature reactors provide safety-related experience and understanding of reactor safety. In contrast, there have been only limited safety studies of coupled chemical and nuclear plants. The work herein provides a starting point for those studies; but, the general level of understanding of safety in coupling nuclear and chemical plants is less than in other areas of high-temperature reactor safety.

  7. Method and apparatus for electrokinetic co-generation of hydrogen and electric power from liquid water microjets

    DOE Patents [OSTI]

    Saykally, Richard J; Duffin, Andrew M; Wilson, Kevin R; Rude, Bruce S

    2013-02-12

    A method and apparatus for producing both a gas and electrical power from a flowing liquid, the method comprising: a) providing a source liquid containing ions that when neutralized form a gas; b) providing a velocity to the source liquid relative to a solid material to form a charged liquid microjet, which subsequently breaks up into a droplet spay, the solid material forming a liquid-solid interface; and c) supplying electrons to the charged liquid by contacting a spray stream of the charged liquid with an electron source. In one embodiment, where the liquid is water, hydrogen gas is formed and a streaming current is generated. The apparatus comprises a source of pressurized liquid, a microjet nozzle, a conduit for delivering said liquid to said microjet nozzle, and a conductive metal target sufficiently spaced from said nozzle such that the jet stream produced by said microjet is discontinuous at said target. In one arrangement, with the metal nozzle and target electrically connected to ground, both hydrogen gas and a streaming current are generated at the target as it is impinged by the streaming, liquid spray microjet.

  8. H.sub.2 /C.sub.12 fuel cells for power and HCl production - chemical cogeneration

    DOE Patents [OSTI]

    Gelb, Alan H. (Boston, MA)

    1991-01-01

    A fuel cell for the electrolytic production of hydrogen chloride and the generation of electric energy from hydrogen and chlorine gas is disclosed. In typical application, the fuel cell operates from the hydrogen and chlorine gas generated by a chlorine electrolysis generator. The hydrogen chloride output is used to maintain acidity in the anode compartment of the electrolysis cells, and the electric energy provided from the fuel cell is used to power a portion of the electrolysis cells in the chlorine generator or for other chlorine generator electric demands. The fuel cell itself is typically formed by a passage for the flow of hydrogen chloride or hydrogen chloride and sodium chloride electrolyte between anode and cathode gas diffusion electrodes, the HCl increa This invention was made with Government support under Contract No. DE-AC02-86ER80366 with the Department of Energy and the United States Government has certain rights thereto.

  9. EA-1858: Finding of No Significant Impact

    Broader source: Energy.gov [DOE]

    Nippon Paper Industries USA Company Biomass Cogeneration Project, Port Angeles, Clallam County, Washington

  10. Evaluation of Solar Grade Silicon Produced by the Institute of Physics and Technology: Cooperative Research and Development Final Report, CRADA Number CRD-07-211

    SciTech Connect (OSTI)

    Page, M.

    2013-02-01

    NREL and Solar Power Industries will cooperate to evaluate technology for producing solar grade silicon from industrial waste of the phosphorus industry, as developed by the Institute of Physics and Technology (IPT), Kazakhstan. Evaluation will have a technical component to assess the material quality and a business component to assess the economics of the IPT process. The total amount of silicon produced by IPT is expected to be quite limited (50 kg), so evaluations will need to be done on relatively small quantities (? 5 kg/sample).

  11. Environmental impact of geopressure - geothermal cogeneration facility on wetland resources and socioeconomic characteristics in Louisiana Gulf Coast region. Final report, October 10, 1983-September 31, 1984

    SciTech Connect (OSTI)

    Smalley, A.M.; Saleh, F.M.S.; Fontenot, M.

    1984-08-01

    Baseline data relevant to air quality are presented. The following are also included: geology and resource assessment, design well prospects in southwestern Louisiana, water quality monitoring, chemical analysis subsidence, microseismicity, geopressure-geothermal subsidence modeling, models of compaction and subsidence, sampling handling and preparation, brine chemistry, wetland resources, socioeconomic characteristics, impacts on wetlands, salinity, toxic metals, non-metal toxicants, temperature, subsidence, and socioeconomic impacts. (MHR)

  12. DOE - Fossil Energy:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Midland Cogeneration Venture Ltd. Partnership 1765 FE02-26-LNG 043002 Various Sources El Paso Merchant Energy, L.P. (Norway) 1780 FE02-59-NG 082902 Can Midland Cogeneration...

  13. Federal Energy-Saving Program Keeps Federal Government on Pace...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Navy designed and constructed a state-of-the-art cogeneration plant and Commander ... The Navy designed and constructed a state-of-the-art cogeneration plant and Commander ...

  14. Quality Assurance Guide for Project Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-06-27

    This Guide provides information to assist U.S. Department of Energy (DOE) Federal Project Directors (FPD) and their Integrated Project Teams (IPT) in carrying out their Quality Assurance (QA)-related roles and responsibilities.

  15. Integrated Project Team Guide for Formation and Implementation

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-02-03

    The guide provides detailed guidance of the preferred processes to form and implement an Integrated Project Team (IPT) in support of proper project execution as prescribed in DOE O 413.3B.

  16. Congeneration and utilities: Status and prospects: Final report

    SciTech Connect (OSTI)

    Limaye, D.R.; Jacobs, L.; McDonald, C.

    1988-11-01

    The cogeneration industry has grown and changed considerably since the passage of the Public Utility Regulatory Policies Act (PURPA) in 1978. It has moved from infancy to a major industry that must be addressed in electric utility resource planning. This report examines the utility perspective on cogeneration. The report begins with a brief outline of the history of the US cogeneration industry, including an in-depth look at recent developments. An assessment of the industry as it currently stands is then presented. This assessment includes a look at who is cogenerating now and who is likely to be cogenerating in the future. It also includes an analysis of the key market sensitivities and how they affect the individuals who must make the decisions to cogenerate. These discussions provide a framework for the central issue addressed in the next section: the effect of cogeneration on the electric utilities. After the alternative responses to cogeneration are outlined, the report details the impacts of cogeneration on utility planning and policy. Special utility concerns relative to cogeneration are raised including potential ratemaking approaches, the issue of cogeneration reliability and approaches to planning for it, and the costs and benefits of cogeneration to non-participant ratepayers. Next the planning and economic benefits which can accrue from utility ownership of and participation in cogeneration projects are discussed in the context of cogeneration as an electric utility opportunity. The final sections of the report define and classify various types of cogeneration technologies and outline the current status of EPRI's cogeneration research. 21 figs., 22 tabs.

  17. Energy Climate Solutions | Open Energy Information

    Open Energy Info (EERE)

    third party finance arranger and developer of distributed power, cogeneration, and energy efficiency projects for colleges and universities. Coordinates:...

  18. Guide to Combined Heat and Power Systems for Boiler Owners and Operators, July 2004

    Broader source: Energy.gov [DOE]

    This guide presents useful information for evaluating the viability of cogeneration for new or existing ICI boiler installations.

  19. EIS-0221: Record of Decision

    Broader source: Energy.gov [DOE]

    York County Energy Partners Cogeneration Facility of the Clean Coal Technology Demonstration Program in North Codorus Township, York County, Pennsylvania

  20. TWC Meeting Transcribed Flipcharts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 9, 2013 AY-102 Follow Up * Integrated Project Team (IPT) recommendations? - Update to TWC from IPT in March * Response to HAB Advice #263 * Field reports from Ecology (Michelle) - Send to TWC members (EnviroIssues) * Public involvement distribution of regular recent updates is important (e.g. public listserv) * Joint with PIC * IMs - Dirk, Vince, Liz Page 1 WESF FRAMING * Describe the different types of concrete & its uses on site. * What are the results of the evaluation of concrete

  1. Integrated Project Team RM | Department of Energy

    Energy Savers [EERE]

    Integrated Project Team RM Integrated Project Team RM The Integrated Project Team (IPT) is an essential element of the Department's acquisition process and will be utilized during all phases of a project life cycle. The IPT is a team of professionals representing diverse disciplines with the specific knowledge, skills, and abilities necessary to support the successful execution of projects. The Federal Project Directors (FPDs), contracting offices, safety and quality, legal, and engineering and

  2. Mini Grid Renewable Energy-Economic and Financial Analysis |...

    Open Energy Info (EERE)

    Energy Topics: Finance, Implementation, Market analysis, Background analysis Website: web.worldbank.orgWBSITEEXTERNALTOPICSEXTENERGY2EXTRENENERGYTK0,, Country: Sri Lanka,...

  3. Asian Development Outlook 2010 | Open Energy Information

    Open Energy Info (EERE)

    Turkmenistan, Uzbekistan, China, South Korea, Mongolia, Afghanistan, Bangladesh, Bhutan, India, Maldives, Pakistan, Sri Lanka, Nepal, Cambodia, Indonesia, Malaysia, Laos, Vietnam,...

  4. Low loss composition of BaxSryCa1-x-yTiO3: Ba0.12-0.25Sr0.35-0.47Ca0.32-0.53TiO3

    DOE Patents [OSTI]

    Xiang, Xiao-Dong (Alameda, CA); Chang, Hauyee (Berkeley, CA); Takeuchi, Ichiro (Albany, CA)

    2001-01-01

    A dielectric thin-film material for microwave applications, including use as a capacitor, the thin-film comprising a composition of barium strontium calcium and titanium of perovskite type (Ba.sub.x Sr.sub.y Ca.sub.1-x-y)TiO.sub.3. Also provided is a method for making a dielectric thin film of that formula over a wide compositional range through a single deposition process.

  5. DOE-EA-1605_fonsi_final.pdf

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Revised Finding of No Significant Impact for Biomass Cogeneration and Heating Facilities at the Savannah River Site Agency: U.S. Department of Energy Action: Revised Finding of No Significant Impact Summary: The Department of Energy (DOE) prepared an environmental assessment (EA) (DOE-EA-1605, Biomass Cogeneration and Heating Facilities) in August 2008 to evaluate the potential environmental impacts of the proposed construction and operation of new biomass cogeneration and heating facilities

  6. Design, Installation, and Field Verification of Integrated Active Desiccant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Rooftop Systems Combined with a Natural Gas Driven Cogeneration Package, 2008 | Department of Energy Design, Installation, and Field Verification of Integrated Active Desiccant Hybrid Rooftop Systems Combined with a Natural Gas Driven Cogeneration Package, 2008 Design, Installation, and Field Verification of Integrated Active Desiccant Hybrid Rooftop Systems Combined with a Natural Gas Driven Cogeneration Package, 2008 This report summarizes a research/demonstration project in which a

  7. EA-1605: Final Environmental Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Environmental Assessment EA-1605: Final Environmental Assessment Biomass Cogeneration and Heating Facilities at the Savannah River Site The U.S. Department of Energy (DOE) prepared this environmental assessment (EA) to analyze the potential environmental impacts of the proposed construction and operation of new biomass cogeneration and heating facilities at the Savannah River Site (SRS). PDF icon DOE/EA-1605: Environmental Assessment for Biomass Cogeneration and Heating Facilities at the

  8. S A V A N N A H R I V E R S I T E

    Energy Savers [EERE]

    www.srs.gov The Savannah River Site is owned by the U.S. Department of Energy, and is managed and operated by Savannah River Nuclear Solutions. Enterprise * SRS Past Reuse Success Biomass Cogeneration Facility FBI Evidence Examination Facility Biomass Cogeneration Facility Under an Energy Savings Performance Contract, Ameresco Federal Solutions has financed, constructed and is operating a biomass-fueled cogeneration facility and two smaller biomass heating plants at the Sa- vannah River Site

  9. EIS-0201: Final Environmental Impact Statement | Department of Energy

    Office of Environmental Management (EM)

    1: Final Environmental Impact Statement EIS-0201: Final Environmental Impact Statement Coyote Springs Cogeneration Project and Portland General Electric Company's Request for Transmission Service The Coyote Springs Cogeneration Project is a proposed natural gas-fired cogeneration power plant near Boardman, Oregon. The proposed power plant would be built on a g-hectare (22-acre) site in the Port of Morrow Industrial Park. The plant would have two combustion turbines that would generate 440

  10. Energy Spectrum | Open Energy Information

    Open Energy Info (EERE)

    Services Product: Brooklyn-based energy management conslutants with services including demand response, load control, cogeneration and rate analysis. Coordinates: 42.852755,...

  11. SPD SEIS Summary References | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Rev. 1, Carlsbad Field Office, Carlsbad, New Mexico. 92 DOE (U.S. Department of Energy), 2008e, Environmental Assessment for Biomass Cogeneration and Heating Facilities...

  12. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    ZGENUSE8 Imputed use of generated electricity 123- 123 ZVAR. ZCOGEN8 Imputed cogeneration system 125- 125 ZVAR. ZGRID8 Imputed deliver electricity to grid 127- 127 ZVAR....

  13. 100 Hour test of the pressurized woodchip-fired gravel bed combustor

    SciTech Connect (OSTI)

    Ragland, K.W.; Aerts, D.J.

    1994-08-01

    Combustion of wood chips in a packed bed combustor for a gas turbine cogeneration system is described. A discussion on flue gas emissions and mass balances is included.

  14. Advanced systems demonstration for utilization of biomass as an energy source. Volume II. Technical specifications

    SciTech Connect (OSTI)

    1980-10-01

    This volume contains all of the technical specifications relating to materials and construction of the biomass cogeneration facility in the state of Maine. (DMC)

  15. EA-1836: Finding of No Significant Impact | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to facilitiate installation and operations of a high-efficiency natural-gas-fired cogeneration facility - would result in no significant adverse impacts. Finding of No...

  16. combined heat power | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy within the DOE Advanced Manufacturing Office. CHP - sometimes referred to as cogeneration - provides a cost-effective, near-term opportunity to improve our nation's energy,...

  17. Rayana Paper Board Industries Ltd RPBIL | Open Energy Information

    Open Energy Info (EERE)

    Pradesh, India Zip: 272175 Product: Manufacturer of media and kraft paper with cogeneration activities References: Rayana Paper Board Industries Ltd. (RPBIL)1 This article...

  18. Nizam Deccan Sugars Ltd NDSL | Open Energy Information

    Open Energy Info (EERE)

    Andhra Pradesh, India Zip: 500 082 Product: Hyderabad based sugar company with cogeneration projects Coordinates: 17.6726, 77.5971 Show Map Loading map......

  19. USAJobs Search | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of electric public utilities; electric reliability; energy policy initiatives; and cogeneration and small power production facilities. Attorneys in OGC-Energy Markets advise the...

  20. DG Energy Solutions | Open Energy Information

    Open Energy Info (EERE)

    92101 Product: Develops owns and operates industrial, commercial and institutional cogeneration plants from 2-50MW. References: DG Energy Solutions1 This article is a stub. You...

  1. Power Generating Inc | Open Energy Information

    Open Energy Info (EERE)

    A privately held Texas corporation, which provides a direct-fired, biomass-fueled cogeneration system that generates electricity and process heat while consuming on-site...

  2. Federal Energy Management Program FY14 Budget At-a-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    term ends. The U.S. Navy Commander Fleet Activities Yokosuka features a 39 megawatt cogeneration plant financed through an ESPC. Photo Courtesy of the Federal Energy Management...

  3. Dongying Shengdong Machinery Company | Open Energy Information

    Open Energy Info (EERE)

    Name: Dongying Shengdong Machinery Company Place: China Product: EMC specialised in cogeneration and installing power stations to make use of various types of waste gases....

  4. Tarrytown, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Registered Energy Companies in Tarrytown, New York Andlinger Company Inc Microgy Cogeneration Systems Inc References US Census Bureau Incorporated place and minor civil...

  5. EcoGeneration Solutions LLC | Open Energy Information

    Open Energy Info (EERE)

    77070 Sector: Solar Product: Holds several technology companies in the fields of cogeneration and solar energy systems. Coordinates: 29.76045, -95.369784 Show Map Loading...

  6. Keld Energy | Open Energy Information

    Open Energy Info (EERE)

    United Kingdom Zip: CA10 1NN Sector: Biomass Product: Keld Energy has developed a novel highly efficient biomass fired co-generation process technology based upon...

  7. Iaco Agricola | Open Energy Information

    Open Energy Info (EERE)

    Grosso do Sul, Brazil Product: Iaco Agricola is a Grendene and Schmidt Group SPV to invest in an ethanol which already includes a cogeneration facility. References: Iaco...

  8. Areva Koblitz | Open Energy Information

    Open Energy Info (EERE)

    Brazil Zip: 01419-001 Product: The company operates as a generator and co-generator of energy with alternative sources, running several projects throughout Brazil. References:...

  9. Record of Decision (ROD) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0, 2003 EIS-0349: Record of Decision Electrical Interconnection of the BP Cherry Point Cogeneration Project October 31, 2003 EIS-0312: Record of Decision Fish and Wildlife...

  10. EIS-0349: Record of Decision | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    49: Record of Decision EIS-0349: Record of Decision Electrical Interconnection of the BP Cherry Point Cogeneration Project The Bonneville Power Administration (Bonneville) has...

  11. EA-1858: DOE Notice of Availability and Notice of Floodplain...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Action Nippon Paper Industries USA Company Biomass Cogeneration Project, Port Angeles, Washington The U.S. Department of Energy (DOE) is proposing to provide American...

  12. RAPID/Roadmap/7-FD-c | Open Energy Information

    Open Energy Info (EERE)

    Solar Tools Contribute Contact Us PURPA Qualifying Facility Certification Process (7-FD-c) If the facility is a cogeneration facility or a small power production facility the...

  13. Design, Installation, and Field Verification of Integrated Active...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design, Installation, and Field Verification of Integrated Active Desiccant Hybrid Rooftop Systems Combined with a Natural Gas Driven Cogeneration Package, 2008 Design, ...

  14. California's 20th congressional district: Energy Resources |...

    Open Energy Info (EERE)

    California. Registered Energy Companies in California's 20th congressional district BioEnergy Solutions BES Castle Cooke Inc Great Valley Ethanol LLC Mt Poso Cogeneration Pacific...

  15. Cosan Bioenergia | Open Energy Information

    Open Energy Info (EERE)

    Cosan Bioenergia Jump to: navigation, search Name: Cosan Bioenergia Place: Sao Paulo, Brazil Product: Sao Paulo-based Cosan subsidiary to develop cogeneration plants from bagasse...

  16. Endesa Cogeneracion y Renovables ECYR | Open Energy Information

    Open Energy Info (EERE)

    ECYR Jump to: navigation, search Name: Endesa Cogeneracion y Renovables (ECYR) Place: Spain Sector: Renewable Energy Product: Spain-based, cogeneration and renewable energy...

  17. Groupe Valeco | Open Energy Information

    Open Energy Info (EERE)

    Name: Groupe Valeco Place: Montpellier, France Zip: 34070 Sector: Biomass, Solar, Wind energy Product: Develops wind, solar, biomass and cogeneration projects in France....

  18. Opportunities with Fuel Cells

    Reports and Publications (EIA)

    1994-01-01

    The concept for fuel cells was discovered in the nineteenth century. Today, units incorporating this technology are becoming commercially available for cogeneration applications.

  19. BK Energia | Open Energy Information

    Open Energy Info (EERE)

    BK Energia Jump to: navigation, search Name: BK Energia Place: Brazil Sector: Biomass Product: This company belongs to the Grupo Brennand and Koblitz, and develops co-generation...

  20. New York's 18th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    of Westchester County (NY) ConEdison Solutions Jasper Energy LLC Malcolm Pirnie Mercury Energy formerly Aquus Energy Mercury Solar Systems Microgy Cogeneration Systems Inc...

  1. Mexico-Low-Carbon Development | Open Energy Information

    Open Energy Info (EERE)

    modal share of public urban transport and raising vehicle fuel efficiency; (b) generation of power in industry through cogeneration as a low cost power supply source, and...

  2. Jay Mahesh Sugar Industries Ltd | Open Energy Information

    Open Energy Info (EERE)

    Sugar Industries Ltd. Place: Maharashtra, India Zip: 431131 Product: Beed-based sugar mill with cogeneration project. References: Jay Mahesh Sugar Industries Ltd.1 This article...

  3. KCP Sugar Industries and Corporation Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd. Place: Chennai, Tamil Nadu, India Zip: 600006 Product: Chennai-based sugar mill with cogeneration project activities. Coordinates: 13.06397, 80.24311 Show Map...

  4. Gem Sugars Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd. Place: Bangalore, Karnataka, India Zip: 560 052 Product: Bangalore based sugar mill with cogeneration projects References: Gem Sugars Ltd.1 This article is a stub. You...

  5. Naranja Sahakari Sakkare Karkhane Limited NSSKL | Open Energy...

    Open Energy Info (EERE)

    Sakkare Karkhane Limited (NSSKL) Place: Karnataka, India Product: Karnataka based sugar mill with co-generation activities. References: Naranja Sahakari Sakkare Karkhane Limited...

  6. Nahar Spinning Mills Ltd NSML | Open Energy Information

    Open Energy Info (EERE)

    (NSML) Place: Ludhiana, Punjab, India Zip: 141 003 Product: Ludhiana-based spinning mill with cogeneration activities. Coordinates: 30.89314, 75.86938 Show Map Loading...

  7. Gayatri Sugars Ltd GSL | Open Energy Information

    Open Energy Info (EERE)

    Ltd. (GSL) Place: Hyderabad, Andhra Pradesh, India Product: Hyderabad-based sugar mill with cogeneration activities References: Gayatri Sugars Ltd. (GSL)1 This article is a...

  8. Siddeshwari Industries Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Muzaffarnagar, Uttar Pradesh, India Zip: 251001 Product: Muzaffarnagar based paper mill with cogeneration activities References: Siddeshwari Industries Pvt Ltd.1 This...

  9. NEET WORKSHOP REPORT

    Broader source: Energy.gov (indexed) [DOE]

    Figure 5: Performance of resilient communications less cogeneration capabilities and with command and control validation. Improved monitoring will allow for optimized operations,...

  10. ARCO Products Co-Watson | Open Energy Information

    Open Energy Info (EERE)

    Products Co-Watson Place: California Phone Number: (310) 816-8100 Facebook: https:www.facebook.compagesWatson-Cogeneration159391947415069 Outage Hotline: (310) 816-8100...

  11. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Applying new processes promise to drive down the cost of desalinated water, based on recentlymore improved thermal efficiencies and on capital cost reductions. Cogeneration with ...

  12. The market and technical potential for combined heat and power in the commercial/institutional sector

    SciTech Connect (OSTI)

    None, None

    2000-01-01

    Report of an analysis to determine the potential for cogeneration or combined heat and power (CHP) in the commercial/institutional market.

  13. Greenvironment plc formerly Greenvironment Oy | Open Energy Informatio...

    Open Energy Info (EERE)

    for the construction and operation of autonomous cogeneration plants for biogas and natural gas. References: Greenvironment plc (formerly Greenvironment Oy)1 This article is a...

  14. UNC Chapel Hill

    SciTech Connect (OSTI)

    2009-10-01

    This is a combined heat and power (CHP) project profile on a 32 MW cogeneration plant at UNC Chapel Hill in North Carolina.

  15. Grupo Cobra | Open Energy Information

    Open Energy Info (EERE)

    Cobra Jump to: navigation, search Name: Grupo Cobra Place: Madrid, Spain Zip: 28016 Sector: Wind energy Product: Madrid based who develops wind farms and cogeneration projetcs....

  16. EA-1605: Revised Finding of No Significant Impact | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an construct a new heating plant to be located adjacent to the existing primary Biomass Cogeneration Facility. The new heating plant would provide DOE with additional power...

  17. Click to Edit Master Title Style

    U.S. Energy Information Administration (EIA) Indexed Site

    Repower Coal Plant Cogeneration New Nuclear Alternative Energy Credits Coal-to-Gas Switch IGCC with CCS Biomass Wind White line represents price after including effects of tax ...

  18. FEMP Releases New Training Course on Energy Conservation Measures...

    Energy Savers [EERE]

    Course modules focus on four specific energy conservation measures (ECMs)-demand response, cogenerationCHP, irrigation efficiency improvements, and retro-commissioning-that are ...

  19. Punjab Energy Development Agency PEDA | Open Energy Information

    Open Energy Info (EERE)

    Biomass, Hydro, Solar Product: Punjab Energy Development Agency is involved with biogas plants, biomass, solar energy, small hydro, municipal solid waste, and cogeneration....

  20. Synagro Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    Zip: TX 77057 Product: Synagro, a residuals mangement company, also provides complete biogas cogeneration systems. References: Synagro Technologies Inc.1 This article is a stub....

  1. Tradewinds Forest Products | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Tradewinds Forest Products Place: Hawaii Product: Firm developing a cogeneration plant for a sugar mill in Hawaii. References: Tradewinds...

  2. Biomass Feasibility Analysis Report

    SciTech Connect (OSTI)

    Lipscomb, Brian

    2015-03-30

    Feasibility study to determine technical and economic viability of a co-generation biomass fuel power plant for the Confederated Salish and Kootenai Tribes.

  3. Southern Research Institute Visit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    initiates collaboration between Southern Research Institute(SRI) and LSU CAMD hosted visitors from the Southern Research Institute in Birmingham, Alabama, and researchers from LSU Tuesday, December 7, 2010. Interim Director Richard Kurtz gave a short tour of the CAMD facility. Later, presentations were given by SRI, and LSU researchers. The SRI, and CAMD presentations are listed below, in .pdf format. Southern Reaserch Engineering Capabilities Briefing 2010 Southern Research Institute

  4. Integrated Project Team RM

    Office of Environmental Management (EM)

    Integrated Project Team (IPT) Review Module March 2010 CD-0 This R O 0 Review Modul OFFICE OF Inte C CD-1 le was piloted F ENVIRO Standard R grated P Rev Critical Decis CD-2 M at the OR U 23 incorporated ONMENTAL Review Plan Project Te view Module sion (CD) Ap CD March 2010 33 Disposition in the Review L MANAGE n (SRP) eam (IPT e pplicability D-3 Project in 200 Module. EMENT T) CD-4 09. Lessons lea Post Ope arned have been eration n Standard Review Plan, 2 nd Edition, March 2010 i FOREWORD The

  5. Geospatial Toolkit | Open Energy Information

    Open Energy Info (EERE)

    Ghana, Guatemala, Honduras, India, Nepal, Nicaragua, Oaxaca, Pakistan, Sri Lanka, Turkey Cost: Free Southern Asia, Southern Asia, Southern Asia, South America, Eastern Asia,...

  6. Apollo Solar Lanka Limited ASLL | Open Energy Information

    Open Energy Info (EERE)

    Lanka Zip: 10250 Sector: Solar Product: Sri Lankan company that is developing both PV & thermal solar technologies. References: Apollo Solar Lanka Limited (ASLL)1 This article...

  7. Advance Patent Waiver W(A)2012-030

    Broader source: Energy.gov [DOE]

    This is a request by SRI INTERNATIONAL for a DOE Advance patent waiver of domestic and foreign patent rights under agreement DE-FE0000896.

  8. Microsoft Word - 2002_WREC_SWERA_full_paper.doc

    Open Energy Info (EERE)

    data from geostationary satellites we provide solar irradiance data for Cuba, El Salvador, Honduras, Nicaragua, Guatemala, Brazil, Ghana, Ethiopia, Kenya, China, Sri Lanka,...

  9. 17th Pan-American Synchrotron Radiation Instrumentation Conference

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    17th Pan-American Synchrotron Radiation Instrumentation Conference SRI2013 is now accepting abstract submissions (until March 31, 2013). June 19-21, 2013; Gaithersburg, Maryland, USA

  10. File:SWERA-201.pdf | Open Energy Information

    Open Energy Info (EERE)

    1,275 pixels, file size: 864 KB, MIME type: applicationpdf) Title Monthly Average Solar Resource for 2-axis tracking concentrating collectors for Sri Lanka Description...

  11. Geothermal Technologies Office: Download GETEM, August 2012 Beta

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Seychelles Sierra Leone Singapore Slovak Republic Slovenia South Africa South Korea Spain Sri Lanka Sudan Suriname Swaziland Sweden Switzerland Syria Taiwan Tanzania Thailand...

  12. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration Ames Research Center Moffett Field, California J. M. Livingston SRI International Menlo Park, California J. Braun and C. Rocken University Corporation for...

  13. Analysis of Technology Transfer in CDM Projects | Open Energy...

    Open Energy Info (EERE)

    countries, including Bolivia, Ecuador, Guatemala, Honduras, Indonesia, Kenya, Malaysia, Mexico, Pakistan, South Africa, Sri Lanka, Thailand and Vietnam and significantly lower...

  14. Advance Patent Waiver W(A)2012-031

    Broader source: Energy.gov [DOE]

    This is a request by SRI INTERNATIONAL for a DOE Advance patent waiver of domestic and foreign patent rights under agreement DE-NT0005578.

  15. MHK Technologies/Electroactive Polymer Artificial Muscle EPAM...

    Open Energy Info (EERE)

    that it uses SRI s Electroactive Polymer Artificial Muscle EPAM technology a rubbery material that can generate electricity by simply being stretched and allowed to return to its...

  16. Category:Programs | Open Energy Information

    Open Energy Info (EERE)

    Energy Authority in Sri Lanka Asian Institute of Technology Assessing Climate Change Impacts, Vulnerability and Adaptation: The Case of Pantabangan-Carranglan Watershed...

  17. This Week In Petroleum Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    outweigh the benefits, especially for net oil importers. In Bangladesh, Brazil, Brunei, India, Indonesia, Jordan, Malaysia, Burma (Myanmar), Pakistan, South Africa, Sri Lanka,...

  18. 17th Pan-American Synchrotron Radiation Instrumentation Conference

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    17th Pan-American Synchrotron Radiation Instrumentation Conference SRI2013 is now accepting abstract submissions (until March 31, 2013). June 19-21, 2013; Gaithersburg, Maryland,...

  19. SSRL HEADLINES December 2002

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wafers Using Synchrotron Radiation Holiday Greetings from the SSRL Director SPEAR3 Lehman Review Biannual Scientific Policy Committee Meeting SSRLUO-EC Meeting Latest SRI 2003...

  20. GBTL Workshop Attendees

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ripudaman Malhotra, SRI International Loula Merkel, Coskata, Inc. Liz Moore, DOE, Bioenergy Technologies Office Ashley Rose*, BCS Incorporated Bob Rozmiarek, Virent, Inc. ...

  1. Electromobiles Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd Place: Colombo, Sri Lanka Sector: Solar Product: Manufacturers of solar powered motor bikes and cars. Coordinates: 6.9272, 79.8722 Show Map Loading map......

  2. Research Teams - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Teams Research Teams Associates Greg Smith, Senior Research Chemist, SRI ... Colin Smith, Thermal Engineer, Jet Propulsion Laboratory Previously co-sponsored by ...

  3. Project Profile: Regenerative Carbonate-Based Thermochemical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation SRI Webpage pic The proposed TCES system is based on the ability of advanced sorbent materials to repeatedly undergo endothermic-exothermic gas-solid reaction cycles ...

  4. Integrated Project Team Guide for Formation and Implementation

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-02-03

    The guide provides detailed guidance of the preferred processes to form and implement an Integrated Project Team (IPT) in support of proper project execution as prescribed in DOE O 413.3B. Admin Chg 1 dated 10-22-2015.

  5. U.S. Department of Energy Acquisition Strategy Guide for Capital Asset Projects

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-07-22

    This guide serves as a tool for federal project directors (FPDs) and the Integrated Project Team (IPT) for developing a project acquisition strategy document. The DOE O 413.3A requires the development and approval of the acquisition strategy for projects with total project cost (TPC) of $20M or greater, as part of the Critical Decision-1 (CD-1), Approve L

  6. User antitrust suit alleges utility cabal limits buy-back

    SciTech Connect (OSTI)

    Efron, S.

    1984-10-15

    An antitrust suit against 90 Georgia electric utilities, charging that their monopoly of retail electricity sales should not preclude cogenerators and small power producers from selling surplus power to utilities elsewhere on the network, could set a national precedent allowing cogenerators to shop around for the best buy-back rate. Greensboro Lumber Co. charges that the utilities' refusal to wheel cogenerated power to potential purchasers represents a restraint of trade. The lumber company contends that cogenerators should sell to the wholesale market, where utilities have no state-granted monopoly. Attorneys for the two sides are unsure of the immediate outcome, but predict that antitrust action or threatened action could give cogenerators unfair leverage.

  7. Influence of district heating water temperatures on the fuel saving and reduction of ecological cost of the heat generation

    SciTech Connect (OSTI)

    Portacha, J.; Smyk, A.; Zielinski, A.; Misiewicz, L.

    1998-07-01

    Results of examinations carried out on the district heating water temperature influence in the cogeneration plant with respect to both the fuel economy and the ecological cost reduction of heat generation for the purposes of heating and hot service water preparation are presented in this paper. The decrease of water return temperature effectively contributes to the increase of fuel savings in all the examined cases. The quantitative savings depend on the outlet water temperature of the cogeneration plant and on the fuel type combusted at the alternative heat generating plant. A mathematical model and a numerical method for calculations of annual cogeneration plant performance, e.g. annual heat and electrical energy produced in cogeneration mode, and the annual fuel consumption, are also discussed. In the discussed mathematical model, the variable operating conditions of cogeneration plant vs. outside temperature and method of control can be determined. The thermal system of cogeneration plant was decomposed into subsystems so as to set up the mathematical model. The determination of subsystem tasks, including a method of convenient aggregation thereof is an essential element of numerical method for calculations of a specific cogeneration plant thermal system under changing conditions. Costs of heat losses in the environment, resulting from the pollutants emission, being formed in the fuel combustion process in the heat sources, were defined. In addition, the environment quantitative and qualitative pollution characteristics were determined both for the heat generation in a cogeneration plant and for an alternative heat-generating plant. Based on the calculations, a profitable decrease of ecological costs is achieved in the cogeneration economy even if compared with the gas-fired heat generating plant. Ecological costs of coal-fired heat generating plant are almost three time higher than those of the comparable cogeneration plant.

  8. Usage possibilities of diesel aggregate for room heating and electric energy production

    SciTech Connect (OSTI)

    Kegl, K.; Vor Ic, J.

    1998-07-01

    Article shows reasons for introduction of cogeneration generally. The present manner of heating and electricity connection at the Faculty of electrical engineering and computer science in Maribor is described. The idea is to build in the cogeneration complex in heating room next to the existent boilers. Gathered data of electricity and heat demand are presented. Paper deals with question of electrical, heat and fuel connections. Comparison between two types of cogeneration (motor and turbine) helps to make a decision: cogeneration with motor. Depending to the daily electricity demands diagram and arranged heating diagram the authors focused to the small cogeneration (around 200 kWe). Availability of natural gas at the placement of the cogeneration leads us to the gas motor but leaves the diesel engine possibility opened. A brief economical estimation includes common investment costs regarding to the savings of energy and fuel expenses. Payback time calculation gives precedence to the gas motor if diesel is used with motor instead of fuel oil. Except the energy savings there are greater benefits of the cogeneration: it can be good study case for students of electrotechnics as well as future mechanical engineers.

  9. Small-scale strength

    SciTech Connect (OSTI)

    Anderson, J.L.

    1995-11-01

    In the world of power project development there is a market for smaller scale cogeneration projects in the range of 1MW to 10MW. In the European Union alone, this range will account for about $25 Billion in value over the next 10 years. By adding the potential that exists in Eastern Europe, the numbers are even more impressive. In Europe, only about 7 percent of needed electrical power is currently produced through cogeneration installations; this is expected to change to around 15 percent by the year 2000. Less than one year ago, two equipment manufacturers formed Dutch Power Partners (DPP) to focus on the market for industrial cogeneration throughout Europe.

  10. Thermoeconomic analysis method for optimization of combined heat and power systems

    SciTech Connect (OSTI)

    Silveira, J.L.; Tuna, C.E.

    1999-07-01

    In this paper, a thermoeconomic analysis method based on the second Law of Thermodynamics and applied to analyze four cogeneration system is presented. The objective of the developed technique is to minimize the operating costs of the cogeneration plant, namely Exergetic Manufacturing Cost (EMC), assuming a fixed rate of electricity production and process steam in exergy base. In this study a comparison is made between four configurations. The cogeneration system consisted of a gas turbine with a heat recovery steam generator, without supplementary firing, has the lowest EMC.

  11. Biogas electric power generation: 25 kW or greater

    SciTech Connect (OSTI)

    Not Available

    1981-06-01

    A biogas cogeneration system consists basically of: an anaerobic digester to produce the gas, a prime mover which burns the gas and makes power, and recovery devices which capture engine waste heat. Guidance is given through the exercise of determining whether biogas cogeneration is worthwhile. Design, construction, and operation are covered in general. Theoretical and practical background on biogas cogeneration are given, and directions for collecting site data and a method for performing a preliminary economic analysis for a given operation are given. (LEW)

  12. table8.3_02.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    Number of Establishments by Usage of Cogeneration Technologies, 2002; Level: National Data; Row: NAICS Codes; Column: Usage within Cogeneration Technologies; Unit: Establishment Counts. NAICS Code(a) Subsector and Industry Establishments(b) Establishments with Any Cogeneration Technology in Use(c) In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know Total United States RSE Column Factors: 0 1 0.7 0.8 1.7 0.6 0.8 1.7 311 Food 15,089 443 131 13,850 1,109 80 13,729 1,280 311221 Wet Corn

  13. Industrial rotary engine development - application opportunities. Final report, January-November 1985

    SciTech Connect (OSTI)

    Guidry, J.D.

    1985-11-01

    The study examines the economic feasibility of manufacturing natural-gas rotary engines for cogeneration and industrial variable-speed applications. Cogeneration and variable speed potential is evaluated by market segment and projected to the year 2000. Market penetrations possible for natural gas rotary are estimated for each market segment. The benefits of manufacturing a natural-gas rotary engine for cogeneration and variable-speed applications to the energy consumer, to total energy conservation, the gas industry, and the natural-gas rotary engine manufacturer are also discussed. The study concludes that total benefits warrant a program to develop a natural-gas rotary engine for eventual sale.

  14. Dr

    Gasoline and Diesel Fuel Update (EIA)

    Dr. Dale M. Nesbitt 27121 Adonna Ct. Los Altos Hills, CA 94022 (650) 218-3069 Mobile (650) 948-3396 FAX dalenesbitt@att.net Page 2 March 22, 2012 Property of Dale M. Nesbitt All Rights Reserved Dr. Nesbitt began his career at the Xerox Palo Alto Research Center (PARC) as an analyst in the Management Systems Department (employee ID 70.) He moved to Stanford Research Institute (SRI) in 1974, where he worked on the seminal energy models the SRI-Gulf Model and the SRI World Energy Model and became

  15. Biomass One LP | Open Energy Information

    Open Energy Info (EERE)

    LP Jump to: navigation, search Name: Biomass One LP Place: White City, Oregon Product: Owner and operator of a 25MW wood fired cogeneration plant in Oregon. References: Biomass One...

  16. Energy Savings Performance Contract Success Stories

    Energy Savers [EERE]

    campus development. The project is currently expanding to almost 20 MW of cogeneration, including a 5.6 MW dual fuel engine and three 4.5 MW natural gas combustion...

  17. Energy options: Cogen V and retail wheeling alternatives technical conference

    SciTech Connect (OSTI)

    1996-12-31

    The Energy Options technical conference proceedings contains 265 papers, of which 17 were selected for the database. The conference was split into two primary topics: cogeneration and retail wheeling. Subtopics under cogeneration included: the state of cogeneration in the United States, case studies in facility ownership, fuels considerations for tomorrow, and plant design considerations for cogeneration systems. Retail wheeling alternatives subtopics included U.S. Federal Energy Regulatory Commission rulings, end-user options for retail wheeling, deregulation issues, and forecasting of electricity generating costs. Papers not selected for the database, while clearly pertinent topics of interest, consisted of viewgraphs which were judged not to have sufficient technical information and coherence without the corresponding presentation. However, some papers which did consist of viewgraphs were included.

  18. Molten carbonate fuel cell product design and improvement. Quarterly report, July 1--September 30, 1995

    SciTech Connect (OSTI)

    1995-12-31

    Objective is to establish by 1998 the commercial readiness of MW- class IMHEX{reg_sign} MCFC power plants for distributed generation, cogeneration, and compressor station applications. Various tasks are reported on.

  19. Cogen | Open Energy Information

    Open Energy Info (EERE)

    which was created to support the advancement of cogeneration in the Brazilian energy matrix. References: Cogen1 This article is a stub. You can help OpenEI by expanding it....

  20. Vector CoGen Inc | Open Energy Information

    Open Energy Info (EERE)

    CoGen Inc Jump to: navigation, search Name: Vector CoGen, Inc. Place: Carson City, Nevada Zip: 89706 Product: Vector CoGen produces micro-cogeneration systems for light commercial...

  1. National Association of Counties Webinar- Combined Heat and Power: Resiliency Strategies for Critical Facilities

    Broader source: Energy.gov [DOE]

    Combined heat and power (CHP), also known as cogeneration, is a method whereby energy is produced, and excess heat from the production process can be used for heating and cooling processes....

  2. Title 18 CFR 292 Regulations Under Sections 201 and 210 of the...

    Open Energy Info (EERE)

    Act of 1978 With Regard to Small Power Production and Cogeneration, Forms under Title 18: Conservation of Power and Water Resources of the U.S. Code of Federal Regulations, current...

  3. HOMER® Energy Modeling Software V2.67

    Energy Science and Technology Software Center (OSTI)

    2008-12-31

    The HOMER® energy modeling software is a tool for designing and analyzing hybrid power systems, which contain a mix of conventional generators, cogeneration, wind turbines, solar photovoltaic, hydropower, batteries, fuel cells, hydropower, biomass and other inputs.

  4. HOMER® Energy Modeling Software

    Energy Science and Technology Software Center (OSTI)

    2000-12-31

    The HOMER® energy modeling software is a tool for designing and analyzing hybrid power systems, which contain a mix of conventional generators, cogeneration, wind turbines, solar photovoltaic, hydropower, batteries, fuel cells, hydropower, biomass and other inputs.

  5. HOMER® Energy Modeling Software 2003

    Energy Science and Technology Software Center (OSTI)

    2003-12-31

    The HOMER® energy modeling software is a tool for designing and analyzing hybrid power systems, which contain a mix of conventional generators, cogeneration, wind turbines, solar photovoltaic, hydropower, batteries, fuel cells, hydropower, biomass and other inputs.

  6. HOMER® Energy Modeling Software V2.63

    Energy Science and Technology Software Center (OSTI)

    2003-12-31

    The HOMER® energy modeling software is a tool for designing and analyzing hybrid power systems, which contain a mix of conventional generators, cogeneration, wind turbines, solar photovoltaic, hydropower, batteries, fuel cells, hydropower, biomass and other inputs.

  7. HOMER® Energy Modeling Software V2.19

    Energy Science and Technology Software Center (OSTI)

    2008-12-31

    The HOMER® energy modeling software is a tool for designing and analyzing hybrid power systems, which contain a mix of conventional generators, cogeneration, wind turbines, solar photovoltaic, hydropower, batteries, fuel cells, hydropower, biomass and other inputs.

  8. HOMER® Energy Modeling Software V2.0

    Energy Science and Technology Software Center (OSTI)

    2003-12-31

    The HOMER® energy modeling software is a tool for designing and analyzing hybrid power systems, which contain a mix of conventional generators, cogeneration, wind turbines, solar photovoltaic, hydropower, batteries, fuel cells, hydropower, biomass and other inputs.

  9. HOMER® Energy Modeling Software V2.64

    Energy Science and Technology Software Center (OSTI)

    2003-12-31

    The HOMER® energy modeling software is a tool for designing and analyzing hybrid power systems, which contain a mix of conventional generators, cogeneration, wind turbines, solar photovoltaic, hydropower, batteries, fuel cells, hydropower, biomass and other inputs.

  10. HOMER® Energy Modeling Software V2.65

    Energy Science and Technology Software Center (OSTI)

    2008-12-31

    The HOMER® energy modeling software is a tool for designing and analyzing hybrid power systems, which contain a mix of conventional generators, cogeneration, wind turbines, solar photovoltaic, hydropower, batteries, fuel cells, hydropower, biomass and other inputs.

  11. CX-007358: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Integration of the University of Oregon’s Cogeneration Project CX(s) Applied: B1.7 Date: 12/01/2011 Location(s): Oregon Offices(s): Bonneville Power Administration

  12. Model Ordinance for Renewable Energy Projects

    Broader source: Energy.gov [DOE]

    The Oregon Department of Energy issued guidance to local governments to address wind, solar, geothermal, biomass, and co-generation project planning needs at the city and county level in July 2005...

  13. White Mountain Apache Tribe- 1994 Project

    Broader source: Energy.gov [DOE]

    The Fort Apache Timber Company (FATCO) has the opportunity to cogenerate electricity and thermal energy for the provision of its internal energy requirements. The proposed fuel supply for the...

  14. UK Energy Systems Ltd | Open Energy Information

    Open Energy Info (EERE)

    UK subsisidary of US firm. Focused on renewable energy projects and cogeneration power plants. The US arm owns and operates 26 LFG-to-energy plants totalling 60MW. References: UK...

  15. EIS-0349: Final Environmental Impact Statement | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BP West Coast Products, LLC proposes to construct and operate a 720-megawatt, natural-gas-fired, combined-cycle cogeneration facility on land adjacent to its BP Cherry Point...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Solar Energy System and Cogeneration System Personal Property Tax Credit Eligible solar systems Solar energy is defined by D.C. Code 34-1431 to mean "radiant energy, direct,...

  17. Keweenaw Bay Indian Community- 1995 Project

    Broader source: Energy.gov [DOE]

    A feasibility study was proposed for a 35 mW cogeneration plant by the Keweenaw Tribe of Michigan's Upper Peninsula. The study considered the relevant aspects of fuel availability, power sales agreements, transmission requirements, and environmental studies.

  18. Directory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12 1:43 PM Send Document Link Preliminary Feasibility of Valu-Added Products from Cogeneration and Hybrid Energy Systems in Wyoming Preliminary Feasibility of Valu-Added Products...

  19. CX-002459: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Michigan COGEN (Cogeneration) Project - Secondary ComplexCX(s) Applied: B5.1Date: 06/03/2010Location(s): MichiganOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  20. U. S. Department of Energy Savannah River Operations Office ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases DOE-SR News Releases SRS Breaks Ground for New Heating Plant at Biomass Cogeneration Facility SR-2015-04 Adobe Acrobat PDF Energy Department Adds Two Years to Liquid Waste...

  1. Slide 1

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... and 2-way EV charging? * Fuel-Grid: FossilCCS (or biomass) fuel-electricity cogeneration? ... Technology Portfolio Options: Fossil Fuels w CCS Nuclear Power Biopower Fuel Cells Wind ...

  2. CETI-07-26-05.doc

    Office of Scientific and Technical Information (OSTI)

    ... Combined Cycle Plant," Journal of Engineering for Gas ... Cogeneration & On-site Power 4 4 pp.80-91 (July - August ... systems are a waste management technique that can ...

  3. DOE Technology Validation Projects

    Broader source: Energy.gov [DOE]

    Stationary fuel cells can be used for backup power, power for remote locations, stand-alone power plants for towns and cities, distributed generation for buildings, and co-generation of heat and...

  4. CX-002142: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Cogeneration at M.C. Stiles Wastewater Treatment PlantCX(s) Applied: B5.1Date: 04/29/2010Location(s): Memphis, TennesseeOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  5. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Number of Establishments by Usage of Cogeneration Technologies, 1998;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within Cogeneration Technologies;" " Unit: Establishment Counts." ,,,"Establishments" " "," ",,"with Any"," Steam Turbines","Supplied","by Either","Conventional","Combustion","Turbines"," ","

  6. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments by Usage of Cogeneration Technologies, 2002; " " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within Cogeneration Technologies;" " Unit: Establishment Counts." " "," ",,," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal

  7. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments by Usage of Cogeneration Technologies, 2006;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within Cogeneration Technologies;" " Unit: Establishment Counts." ,,,"Establishments" ,,,"with Any"," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion

  8. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments by Usage of Cogeneration Technologies, 2010;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within Cogeneration Technologies;" " Unit: Establishment Counts." ,,,"Establishments" ,,,"with Any"," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion

  9. Table A52. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Total Inputs of Energy for Heat, Power, and Electricity Generation by Employment Size" " Categories and Presence of General Technologies and Cogeneration Technologies, 1994" " (Estimates in Trillion Btu)" ,,,,"Employment Size(a)" ,,,,,,,,"RSE" ,,,,,,,"1000 and","Row" "General/Cogeneration Technologies","Total","Under

  10. Microsoft Word - Norwich Final EA.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    36 FINAL ENVIRONMENTAL ASSESSMENT FOR THE NORWICH COGENERATION INITIATIVE, NORWICH, CONNECTICUT U.S. Department of Energy National Energy Technology Laboratory Morgantown, West Virginia March 2011 DOE/EA-1836 FINAL ENVIRONMENTAL ASSESSMENT FOR THE NORWICH COGENERATION INITIATIVE, NORWICH, CONNECTICUT U.S. Department of Energy National Energy Technology Laboratory Morgantown, West Virginia March 2011 DOE/EA-1836 iii March 2011 COVER SHEET Responsible Agency: U.S. Department of Energy (DOE or the

  11. Categorical Exclusion Determinations: B5.14 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Categorical Exclusion Determinations: B5.14 Existing Regulations B5.14: Combined heat and power or cogeneration systems Conversion to, replacement of, or modification of combined heat and power or cogeneration systems (the sequential or simultaneous production of multiple forms of energy, such as thermal and electrical energy, in a single integrated system) at existing facilities, provided that the conversion, replacement, or modification would not have the potential to cause a significant

  12. Categorical Exclusion Determinations: B5.8 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 Categorical Exclusion Determinations: B5.8 Existing Regulations B5.8: Import or export natural gas, with new cogeneration powerplant Approvals or disapprovals of new authorizations or amendments of existing authorizations to import or export natural gas under section 3 of the Natural Gas Act that involve new cogeneration powerplants (as defined in the Powerplant and Industrial Fuel Use Act of 1978, as amended) within or contiguous to an existing industrial complex and requiring generally less

  13. Response to several FOIA requests - Renewable Energy. | Department of

    Energy Savers [EERE]

    Energy Over the past several days I have had telephone conversations with Leonard Rawicz, an attorney in the Washington office of Skadden, Arps, Slate, Meagher and Flom. Mr. Rawicz is Washington counsel for Real Energy, a California cogeneration company (www.RealEnergv.com). Real Energy generates electricity and thermal energy on-site and at lower cost than the purchasers would pay to a local utility. This cogeneration system has been installed at several sites in California. Real Energy is

  14. EA-1605: Finding of No Significant Impact | Department of Energy

    Office of Environmental Management (EM)

    Finding of No Significant Impact EA-1605: Finding of No Significant Impact Biomass Cogeneration and Heating Facilities at the Savannah River Site, South Carolina The Department of Energy has prepared an environmental assessment (EA) (DOE/EA-1605) to analyze the potential environmental impacts of the proposed construction and operation of new biomass cogeneration and heating facilities located at the Savannah River Site (SRS). DOE has determined that the proposed action is not a major Federal

  15. EIS-0349: DOE Notice of Availability of the Record of Decision | Department

    Office of Environmental Management (EM)

    of Energy DOE Notice of Availability of the Record of Decision EIS-0349: DOE Notice of Availability of the Record of Decision BP Cherry Point Cogeneration Project, Washington and Oregon This notice announces the availability of the ROD to implement the proposed action identified in the BP Cherry Point Cogeneration Project Final Environmental Impact Statement (FEIS) (DOE/EIS-0349, August 2004). Under the proposed action, Bonneville will offer contract terms for interconnection of the BP

  16. EIS-0349: EPA Notice of Availability of the Final Environmental Impact

    Office of Environmental Management (EM)

    Statement | Department of Energy EPA Notice of Availability of the Final Environmental Impact Statement EIS-0349: EPA Notice of Availability of the Final Environmental Impact Statement BP Cherry Point Cogeneration Project, Whatcom County, Washington BP West Coast Products, LLC proposes to construct and operate a 720-megawatt, natural-gas-fired, combined-cycle cogeneration facility on land adjacent to its BP Cherry Point Refinery. This EIS assesses the existing natural and built environment,

  17. CX-011732: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    SRI International -Direct Low-Cost Production of Titanium Alloys CX(s) Applied: B3.6 Date: 12/05/2013 Location(s): California Offices(s): Advanced Research Projects Agency-Energy

  18. CX-008871: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    SRI International- Container-less Natural Gas Storage CX(s) Applied: B3.6 Date: 08/29/2012 Location(s): California Offices(s): Advanced Research Projects Agency-Energy

  19. File:SWERA-202.pdf | Open Energy Information

    Open Energy Info (EERE)

    File File history File usage Solar: monthly and annual average global horizontal (GHI) GIS data at 40km resolution for Sri Lanka from NREL Size of this preview: 776 600...

  20. File:SWERA-203.pdf | Open Energy Information

    Open Energy Info (EERE)

    search File File history File usage Solar: monthly and annual average latitude tilt GIS data at 40km for Sri Lanka from NREL Size of this preview: 776 600 pixels. Full...

  1. Project Profile: Regenerative Carbonate-Based Thermochemical Energy Storage System for Concentrating Solar Power

    Broader source: Energy.gov [DOE]

    The Department of Energy’s SunShot Initiative awarded Southern Research Institute (SRI) through the Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage (CSP: ELEMENTS) funding program.

  2. SSRL Meetings, Workshops & Training Archive | Stanford Synchrotron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oct 2003 SSRL Users' Meeting and Workshops (SSRL30) 16-19 Sep 2003 SSRL Structural Molecular Biology Summer School 25-29 Aug 2003 SRI 2003 9-13 Jun 2003 Stanford-Berkeley SR...

  3. SSRL HEADLINES September 2003

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SRI-03 SMB Summer School Well Received Free-electron Laser Conference Held in Tsukuba, Japan Plan Ahead for Beam Time in 2004 SSRL-Related User Publications Requested...

  4. DOE to Provide Nearly $8 Million to Safeguard the Nation's Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy disruptions due to cyber incidents on control systems. SRI International of Menlo Park, CA - selected for an award of up to 1.8 million from DOE (total DOEindustry shared...

  5. Project Profile: Helios: Understanding Solar Evolution through...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of solar records to provide objective and theory-based models enabling past PV ... SRI is conducting a series of data-driven case studies of solar technologies that describe ...

  6. TWC Meeting Transcribed Flipcharts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 10, 2013 DST AY-102 Next steps: * Consider developing advice for May committee review * Placeholder (May) for info from Steering Committee regarding IPT recommendations (if available) IMs: Dirk, Vince, Becky, David, Shelley Page 1 T-111 & Other SSTs with Decrease IMs: David & Dirk □ Decreasing Surface Level Plan - link to EnviroIssues to distribute to TWC * Definition of waste; consequence-basis o Potential follow up □ Documents for determining waste classification (Pfaff, Joni

  7. Critical Decision Handbook | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Critical Decision Handbook Critical Decision Handbook This Handbook is designed as a practical tool for the Office of Environmental Management (EM) Federal Project Directors (FPDs), Integrated Project Teams (IPTs), Technical Authority Board (TAB), and senior management to ensure that issues and risks that could challenge the success of EM projects are identified early and proactively addressed. PDF icon Critical Decision Handbook More Documents & Publications Standard Review Plan - Overview

  8. Microsoft PowerPoint - GW4-07pres.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cleanup Integration Status of Groundwater/ Vadose Zone Integrated Project Teams (IPTs) April, 2007 2 Discussion Topics Status of Integrated Project Teams * Groundwater/Vadose Zone Executive Council * Groundwater/Vadose Zone Integrated Project Team (Core Team) * B Area Integrated Project Team - Tank Farm and Waste Sites High Resolution Resistivity (HRR) investigation * T Area Integrated Project Team - New Tc-99 pump & treat system * Central Plateau Deep Vadose Zone Integrated Project Team

  9. Project Management Lessons Learned (PMLL) Repository | Department of Energy

    Energy Savers [EERE]

    Information Systems » Project Management Lessons Learned (PMLL) Repository Project Management Lessons Learned (PMLL) Repository The Department of Energy utilizes Project Management Lessons Learned (PMLL) in the execution of DOE capital asset projects to improve current and future projects. Integrated Project Team's (IPTs), both from the Contractor and Federal staff, submit the PMLLs during the execution of capital asset projects. These first-hand accounts address the challenges they encountered

  10. Lessons Learned | Department of Energy

    Energy Savers [EERE]

    Services » Project Management » Lessons Learned Lessons Learned The Department of Energy utilizes project management lessons learned (PMLL) in the execution of DOE capital asset projects to improve current and future projects. Integrated Project Team's (IPTs), both from the Contractor and Federal staff, submit the PMLLs during the execution of capital asset projects. These first-hand accounts address the challenges they encountered and the solutions they devised to achieve improvement. Per DOE

  11. Lessons Learned | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lessons Learned Lessons Learned The Department of Energy utilizes project management lessons learned (PMLL) in the execution of DOE capital asset projects to improve current and future projects. Integrated Project Team's (IPTs), both from the Contractor and Federal staff, submit the PMLLs during the execution of capital asset projects. These first-hand accounts address the challenges they encountered and the solutions they devised to achieve improvement. Per DOE O 413.3B, PMLL reports must be

  12. Project Profile: Helios: Understanding Solar Evolution through Text

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analytics | Department of Energy Helios: Understanding Solar Evolution through Text Analytics Project Profile: Helios: Understanding Solar Evolution through Text Analytics Logo of SRI International. SRI International, under the Solar Energy Evolution and Diffusion Studies (SEEDS) program, is developing a new system for large-scale text analytics, called Helios, to isolate and map recurring patterns of technology evolution through the inspection of thousands of published technical documents.

  13. Towards an integrated petrophysical tool for multiphase flow properties of core samples

    SciTech Connect (OSTI)

    Lenormand, R.

    1997-08-01

    This paper describes the first use of an Integrated Petrophysical Tool (IPT) on reservoir rock samples. The IPT simultaneously measures the following petrophysical properties: (1) Complete capillary pressure cycle: primary drainage, spontaneous and forced imbibitions, secondary drainage (the cycle leads to the wettability of the core by using the USBM index); End-points and parts of the relative permeability curves; Formation factor and resistivity index. The IPT is based on the steady-state injection of one fluid through the sample placed in a Hassler cell. The experiment leading to the whole Pc cycle on two reservoir sandstones consists of about 30 steps at various oil or water flow rates. It takes about four weeks and is operated at room conditions. Relative permeabilities are in line with standard steady-state measurements. Capillary pressures are in accordance with standard centrifuge measurements. There is no comparison for the resistivity index, but the results are in agreement with literature data. However, the accurate determination of saturation remains the main difficulty and some improvements are proposed. In conclusion, the Integrated Petrophysical Tool is as accurate as standard methods and has the advantage of providing the various parameters on the same sample and during a single experiment. The FIT is easy to use and can be automated. In addition, it can be operated in reservoir conditions.

  14. Strontium Iodide Instrument Development for Gamma Spectroscopy and Radioisotope Identification

    SciTech Connect (OSTI)

    Beck, P; Cherepy, Nerine; Payne, Stephen A.; Swanberg, E.; Nelson, K.; Thelin, P; Fisher, S E; Hunter, Steve; Wihl, B; Shah, Kanai; Hawrami, Rastgo; Burger, Arnold; Boatner, Lynn A; Momayezi, M; Stevens, K; Randles, M H; Solodovnikov, D

    2014-01-01

    Development of the Europium-doped Strontium Iodide scintillator, SrI2(Eu), has progressed significantly in recent years. SrI2(Eu) has excellent material properties for gamma ray spectroscopy: high light yield (>80,000 ph/MeV), excellent light yield proportionality, and high effective atomic number (Z=49) for high photoelectric cross-section. High quality 1.5 and 2 diameter boules are now available due to rapid advances in SrI2(Eu) crystal growth. In these large SrI2(Eu) crystals, optical self-absorption by Eu2+ degrades the energy resolution as measured by analog electronics, but we mitigate this effect through on-the-fly correction of the scintillation pulses by digital readout electronics. Using this digital correction technique we have demonstrated energy resolution of 2.9% FWHM at 662 keV for a 4 in3 SrI2(Eu) crystal, over 2.6 inches long. Based on this digital readout technology, we have developed a detector prototype with greatly improved radioisotope identification capability compared to Sodium Iodide, NaI(Tl). The higher resolution of SrI2(Eu) yields a factor of 2 to 5 improvement in radioisotope identification (RIID) error rate compared to NaI(Tl).

  15. Optimal Real-time Dispatch for Integrated Energy Systems

    SciTech Connect (OSTI)

    Firestone, Ryan Michael

    2007-05-31

    This report describes the development and application of a dispatch optimization algorithm for integrated energy systems (IES) comprised of on-site cogeneration of heat and electricity, energy storage devices, and demand response opportunities. This work is intended to aid commercial and industrial sites in making use of modern computing power and optimization algorithms to make informed, near-optimal decisions under significant uncertainty and complex objective functions. The optimization algorithm uses a finite set of randomly generated future scenarios to approximate the true, stochastic future; constraints are included that prevent solutions to this approximate problem from deviating from solutions to the actual problem. The algorithm is then expressed as a mixed integer linear program, to which a powerful commercial solver is applied. A case study of United States Postal Service Processing and Distribution Centers (P&DC) in four cities and under three different electricity tariff structures is conducted to (1) determine the added value of optimal control to a cogeneration system over current, heuristic control strategies; (2) determine the value of limited electric load curtailment opportunities, with and without cogeneration; and (3) determine the trade-off between least-cost and least-carbon operations of a cogeneration system. Key results for the P&DC sites studied include (1) in locations where the average electricity and natural gas prices suggest a marginally profitable cogeneration system, optimal control can add up to 67% to the value of the cogeneration system; optimal control adds less value in locations where cogeneration is more clearly profitable; (2) optimal control under real-time pricing is (a) more complicated than under typical time-of-use tariffs and (b) at times necessary to make cogeneration economic at all; (3) limited electric load curtailment opportunities can be more valuable as a compliment to the cogeneration system than alone; and (4) most of the trade-off between least-cost and least-carbon IES is determined during the system design stage; for the IES system considered, there is little difference between least-cost control and least-carbon control.

  16. Contribution to environmental impact of different uses of industrial districts

    SciTech Connect (OSTI)

    Corti, A.; Carnevale, E.

    2000-05-01

    Industrial districts are highly characteristic of Italian industry structure, with energy implication due to both electrical and thermal energy demand. The present study represents an environmental methodology approach applied to an area in the Tuscany region characterized by the presence of a high net power output cogeneration plant connected to paper mill processes. The cogeneration unit is based on a innovative gas turbine characterized by low atmospheric environmental impact. Additional impact due to cogeneration plant installation was evaluated in comparison with pollutant concentration levels due to existent energy conversion processes, using atmospheric diffusional models. A comparison was also made with respect to pollutant concentration contribute due to ordinary road and highway traffic emissions existent in the area.

  17. Puerto Rico`s EcoElectrica LNG/power project marks a project financing first

    SciTech Connect (OSTI)

    Lammers, R.; Taylor, S.

    1998-02-23

    On Dec. 15, 1997, Enron International and Kenetech Energy Services achieved financial close on the $670 million EcoElectrica liquefied natural gas terminal and cogeneration project proposed for Puerto Rico. The project involves construction of a liquefied natural gas terminal, cogeneration plant, and desalination unit on the southern coast of Puerto Rico, in the Penuelas/Guayanilla area. EcoElectrica will include a 500-mw, combined-cycle cogeneration power plant fueled mainly by LNG imported from the 400 MMcfd Atlantic LNG project on the island of Trinidad. Achieving financial close on a project of this size is always a time-consuming matter and one with a number of challenges. These challenges were increased by the unique nature of both the project and its financing--no project financing had ever before been completed that combined an LNG terminal and power plant. The paper discusses the project, financing details and challenges, key investment considerations, and integrated project prospects.

  18. Performance of Europium-Doped Strontium Iodide, Transparent Ceramics and Bismuth-loaded Polymer Scintillators

    SciTech Connect (OSTI)

    Cherepy, Nerine; Payne, Stephen A.; Sturm, Benjamin; ONeal, S P; Seeley, Zachary; Drury, Owen; Haselhorst, L K; Rupert, B. L.; Sanner, Robert; Thelin, P; Fisher, S E; Hawrami, Rastgo; Shah, Kanai; Burger, Arnold; Ramey, Joanne Oxendine; Boatner, Lynn A

    2011-01-01

    Recently discovered scintillators for gamma ray spectroscopy, single crystal SrI2(Eu), GYGAG(Ce) transparent ceramic and Bismuth-loaded plastics offer resolution and fabrication advantages compared to commercial scintillators, such as NaI(Tl) and standard PVT plastic. Energy resolution at 662 keV of 2.7% is obtained with SrI2(Eu), while 4.5% is obtained with GYGAG(Ce). A new transparent ceramic scintillator for radiographic imaging systems, GLO(Eu) offers high light yield of ~75,000 Ph/MeV, high stopping, and low radiation damage. Implementation of single crystal SrI2(Eu), Gd-based transparent ceramics, and Bi-loaded plastic scintillators can advance the state-of-the art in ionizing radiation detection systems.

  19. Non-equilibrium STLS approach to transport properties of single impurity Anderson model

    SciTech Connect (OSTI)

    Rezai, Raheleh Ebrahimi, Farshad

    2014-04-15

    In this work, using the non-equilibrium Keldysh formalism, we study the effects of the electronelectron interaction and the electron-spin correlation on the non-equilibrium Kondo effect and the transport properties of the symmetric single impurity Anderson model (SIAM) at zero temperature by generalizing the self-consistent method of Singwi, Tosi, Land, and Sjolander (STLS) for a single-band tight-binding model with Hubbard type interaction to out of equilibrium steady-states. We at first determine in a self-consistent manner the non-equilibrium spin correlation function, the effective Hubbard interaction, and the double-occupancy at the impurity site. Then, using the non-equilibrium STLS spin polarization function in the non-equilibrium formalism of the iterative perturbation theory (IPT) of Yosida and Yamada, and Horvatic and Zlatic, we compute the spectral density, the currentvoltage characteristics and the differential conductance as functions of the applied bias and the strength of on-site Hubbard interaction. We compare our spectral densities at zero bias with the results of numerical renormalization group (NRG) and depict the effects of the electronelectron interaction and electron-spin correlation at the impurity site on the aforementioned properties by comparing our numerical result with the order U{sup 2} IPT. Finally, we show that the obtained numerical results on the differential conductance have a quadratic universal scaling behavior and the resulting Kondo temperature shows an exponential behavior. -- Highlights: We introduce for the first time the non-equilibrium method of STLS for Hubbard type models. We determine the transport properties of SIAM using the non-equilibrium STLS method. We compare our results with order-U2 IPT and NRG. We show that non-equilibrium STLS, contrary to the GW and self-consistent RPA, produces the two Hubbard peaks in DOS. We show that the method keeps the universal scaling behavior and correct exponential behavior of Kondo temperature.

  20. HOMER: The Micropower Optimization Model

    SciTech Connect (OSTI)

    Not Available

    2004-03-01

    HOMER, the micropower optimization model, helps users to design micropower systems for off-grid and grid-connected power applications. HOMER models micropower systems with one or more power sources including wind turbines, photovoltaics, biomass power, hydropower, cogeneration, diesel engines, cogeneration, batteries, fuel cells, and electrolyzers. Users can explore a range of design questions such as which technologies are most effective, what size should components be, how project economics are affected by changes in loads or costs, and is the renewable resource adequate.

  1. Coal air turbine {open_quotes}CAT{close_quotes} program invention 604. Fourth quarter project report, July 1995--September 1995

    SciTech Connect (OSTI)

    Foster-Pegg, R.W.

    1995-10-31

    A coal air turbine `CAT` generates electric power and heat from coal combustion. The purpose of this project is the conceptual design of a `CAT` plant, and to make a comparison of the capital cost and and cost of power and steam from the `CAT` plant with power produced by alternate plants at the same site. Three configurations investigated include: condensing plant utilizing coal fuel and a condenser tower, or river, for cooling; a cogeneration plant utilizing coal and a steam turbine; and a cogeneration plant utilizing steam export and injection with waste coal fuel.

  2. Guide to Combined Heat and Power Systems for Boiler Owners and Operators

    SciTech Connect (OSTI)

    Oland, CB

    2004-08-19

    Combined heat and power (CHP) or cogeneration is the sequential production of two forms of useful energy from a single fuel source. In most CHP applications, chemical energy in fuel is converted to both mechanical and thermal energy. The mechanical energy is generally used to generate electricity, while the thermal energy or heat is used to produce steam, hot water, or hot air. Depending on the application, CHP is referred to by various names including Building Cooling, Heating, and Power (BCHP); Cooling, Heating, and Power for Buildings (CHPB); Combined Cooling, Heating, and Power (CCHP); Integrated Energy Systems (IES), or Distributed Energy Resources (DER). The principal technical advantage of a CHP system is its ability to extract more useful energy from fuel compared to traditional energy systems such as conventional power plants that only generate electricity and industrial boiler systems that only produce steam or hot water for process applications. By using fuel energy for both power and heat production, CHP systems can be very energy efficient and have the potential to produce electricity below the price charged by the local power provider. Another important incentive for applying cogeneration technology is to reduce or eliminate dependency on the electrical grid. For some industrial processes, the consequences of losing power for even a short period of time are unacceptable. The primary objective of the guide is to present information needed to evaluate the viability of cogeneration for new or existing industrial, commercial, and institutional (ICI) boiler installations and to make informed CHP equipment selection decisions. Information presented is meant to help boiler owners and operators understand the potential benefits derived from implementing a CHP project and recognize opportunities for successful application of cogeneration technology. Topics covered in the guide follow: (1) an overview of cogeneration technology with discussions about benefits of applying cogeneration technology and barriers to implementing cogeneration technology; (2) applicable federal regulations and permitting issues; (3) descriptions of prime movers commonly used in CHP applications, including discussions about design characteristics, heat-recovery options and equipment, fuels and emissions, efficiency, maintenance, availability, and capital cost; (4) electrical generators and electrical interconnection equipment; (5) cooling and dehumidification equipment; (6) thermodynamic cycle options and configurations; (7) steps for evaluating the technical and economic feasibility of applying cogeneration technology; and (8) information sources.

  3. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Monroe (MI)","Coal","DTE Electric Company",2944 2,"Donald C Cook","Nuclear","Indiana Michigan Power Co",2069 3,"Ludington","Pumped storage","Consumers Energy Co",1872 4,"Midland Cogeneration Venture","Natural gas","Midland Cogeneration

  4. EM is Leader in Use of Performance-Based Contracts to Save Energy and Money

    Office of Environmental Management (EM)

    | Department of Energy is Leader in Use of Performance-Based Contracts to Save Energy and Money EM is Leader in Use of Performance-Based Contracts to Save Energy and Money January 1, 2012 - 12:00pm Addthis A view of the biomass-fired cogeneration facility at the Savannah River Site. A view of the biomass-fired cogeneration facility at the Savannah River Site. WASHINGTON, D.C. - EM has been a leader in the use of performance-based contracts to reduce energy and water use and develop onsite

  5. Carlsbad Field Office P. O. Box 3090 Carlsbad, New Mexico 88221

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AUG 1 1 2011 Mr. John Kieling , Acli ng Bureau Chief Hazardous Waste Bureau New Mexico Environment Department 2905 Rodeo Park Drive Eas!, Building 1 Santa Fe, NM 87505-6303 Subject: Notification of Exceedance of a Disposal Room Volatile Orga nic Compound Monitoring Action Level for Carbon Tetrachloride Dear Me. Kieling: The purpose of th is letter is to notify you of the re ce ipt of validaled analytical resu lts for a volatile organic compound (VOC), carbon tetra chloride, which exceeded Ihe 50

  6. Meetings and Workshops Archive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    feed-image Digg: ALSBerkeleyLab Facebook Page: 208064938929 Flickr: advancedlightsource Twitter: AdvLightSource YouTube: AdvancedLightSource Meetings and Workshops Archive Photoemission Spectroscopy at SRI2013 Workshop on Photoemission Spectroscopy: The Upcoming Decades Organizers: Alexei Fedorov (ALS) and Peter Johnson (BNL) Tuesday, June 18, 2013 * Location TBD 9:00 a.m.-17:00 p.m. Workshop to take place during SRI 2013 in Washington, D.C., June 19-21, 2013 2013 IEEE International Symposium on

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File Name:","nga_epg0_vgth_sri_btucfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/nga_epg0_vgth_sri_btucfa.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"02/29/2016 7:34:42

  8. Uncommon commentaries [on energy subjects

    SciTech Connect (OSTI)

    1998-04-01

    Comments from several individuals are given on cogeneration expansion (Lindsay Audin); electric power system reliability in a deregulated market (Marija D. Ilic, MIT and Leonard S. Hyman, Salomon Smith Barney); demand size management (Robert J. Bradley, Jr., Cato Institute); and new questions about the competitive electric power market (Mike Sherman, Peregrine Energy Group).

  9. Molten carbonate fuel cell product design and improvement. Quarterly report, December 1994--March 1995

    SciTech Connect (OSTI)

    1995-08-01

    Primary objective is to establish the commercial readiness of MW- class IMHEX {reg_sign} MCFC power plants for distributed generation, cogeneration, and compressor station applications. The following tasks are reported: product definition/planning, system design/analysis, manufacturing process development, packaging/assembly, test facilities, and technology development/improvement/verification.

  10. Wood energy system design

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    This handbook, Wood Energy System Design, was prepared with the support of the Council of Great Lakes Governors and the US Department of Energy. It contains: wood fuel properties; procurement; receiving, handling, and storage; combustion; gasification; emission control; electric power generation and cogeneration; and case studies. (JF)

  11. Molten carbonate fuel cell product design & improvement - 2nd quarter, 1996. Quarterly report, April 1--June 30, 1996

    SciTech Connect (OSTI)

    1997-05-01

    The main objective of this project is to establish the commercial readiness of a molten carbonate fuel cell power plant for distributed power generation, cogeneration, and compressor station applications. This effort includes marketing, systems design and analysis, packaging and assembly, test facility development, and technology development, improvement, and verification.

  12. Industrial energy management and utilization

    SciTech Connect (OSTI)

    Witte, L.C.; Schmidt, P.S.; Brown, D.R.

    1988-01-01

    This book presents a study of the technical, economic and management principles of effective energy use. The authors report on: energy consumption, conservation, and resources. They present an analysis of thermal-fluid systems. Energy conservation in combustion systems. Heat exchangers, heat recovery, energy conservation in industrial buildings, and industrial cogeneration are discussed.

  13. Molten carbonate fuel cell product design & improvement - 2nd quarter, 1995. Quarterly report, April 1--June 30, 1996

    SciTech Connect (OSTI)

    1997-05-01

    The primary objective of this project is to establish, by 1998, the commercial readiness of MW-class molten carbonate fuel cell power plants for distributed power generation, cogeneration, and compressor station applications. Tasks include system design and analysis, manufacturing, packaging and assembly, test facility development, and technology development, improvement, and verification.

  14. CX-006959: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Installation of Traffic Signals on C-Road for the Biomass Cogeneration Facility Access RoadCX(s) Applied: B1.32Date: 09/22/2011Location(s): Aiken, South CarolinaOffice(s): Environmental Management, National Energy Technology Laboratory

  15. EIS-0204: Hermiston Generating Project, Hermiston, Oregon

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energys Bonneville Power Administration prepared this statement to analyze the alternatives and environmental and socioeconomic impacts thereof of transferring electrical power from a proposed privately-owned, combined cycle combustion turbine cogeneration plant in Oregon.

  16. DOE FINAL TECHNICAL REPORT RP

    SciTech Connect (OSTI)

    RUSS PETERMAN

    2012-01-01

    The City of Georgetown Utility Systems (GUS) patnered with the private sector, the American Public Power Association (APPA) and Southwestern University to design, construct, test and monitor a solar co-generation system directly connected to the GUS electric distribution system. This report consists of the Primary Technical Report and 3 attachments.

  17. Holographic technology could increase solar efficiency

    Broader source: Energy.gov [DOE]

    The Torrance, Calif.-based company is working on a product that could help solar energy producers get both kinds of energy out of the same sunlight -- potentially increasing a systems return. Using holographic thin-film, Luminit is working on a solar cogeneration system that also tracks sunlight across the sky without movable parts.

  18. CX-100556 Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Microturbine Applications for Distributed Cogeneration at NSF-Sponsored Facilities in the Arctic Award Number: DE-FOA-0901-1648 CX(s) Applied: A9 Federal Energy Management Program Date: 08/06/2014 Location(s): CO Office(s): Golden Field Office

  19. Guide to Combined Heat and Power Systems for Boiler Owners and Operators

    Office of Energy Efficiency and Renewable Energy (EERE)

    This guide presents useful information for evaluating the viability of cogeneration for new or existing industrial, commercial, or institutional (ICI) boiler installations. It is part of a suite of publications offered by the Department of Energy to improve steam system performance.

  20. Salish and Kootenai Tribes, Confederated Tribes of the Flathead Reservation- 2012 Project

    Broader source: Energy.gov [DOE]

    Under this project, the Confederated Salish and Kootenai Tribes (CSKT) will determine technical and economic feasibility of a woody-biomass-fueled co-generation plant that would utilize fuels generated by tribal forest management activities to provide electricity and heat to tribal buildings at the tribal headquarters in Pablo, Montana, and/or generate electricity for the wholesale market.

  1. Project Reports for Salish and Kootenai Tribes, Confederated Tribes of the Flathead Reservation- 2012 Project

    Broader source: Energy.gov [DOE]

    Under this project, the Confederated Salish and Kootenai Tribes (CSKT) will determine technical and economic feasibility of a woody-biomass-fueled co-generation plant that would utilize fuels generated by tribal forest management activities to provide electricity and heat to tribal buildings at the tribal headquarters in Pablo, Montana, and/or generate electricity for the wholesale market.

  2. CX-004027: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    State Energy Program - Cedar Rapids Linn County Solid Waste Agency Landfill Gas Cogeneration ProjectCX(s) Applied: B5.1Date: 10/08/2010Location(s): Cedar Rapids, IowaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  3. System for the co-production of electricity and hydrogen

    DOE Patents [OSTI]

    Pham, Ai Quoc (San Jose, CA); Anderson, Brian Lee (Lodi, CA)

    2007-10-02

    Described herein is a system for the co-generation of hydrogen gas and electricity, wherein the proportion of hydrogen to electricity can be adjusted from 0% to 100%. The system integrates fuel cell technology for power generation with fuel-assisted steam-electrolysis. A hydrocarbon fuel, a reformed hydrocarbon fuel, or a partially reformed hydrocarbon fuel can be fed into the system.

  4. CX-002678: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    South District County Waster and Sewer Department - lnstallation of Co-Generation Units 4 & 5 and Landfill Gas Pipeline ConstructionCX(s) Applied: B5.1Date: 06/07/2010Location(s): Miami-Dade County, FloridaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  5. EECBG Success Story: Saving Energy at 24/7 Wastewater Treatment Plant

    Broader source: Energy.gov [DOE]

    In the city of Longview, Texas, the wastewater treatment facility uses more electricity than any other public building. City officials were able to fund a new co-generation power plant and energy efficiency upgrades at the facility through a $781,900 Energy Efficiency and Conservation Block Grant (EECBG). Learn more.

  6. CX-001938: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Renewable Energy Enterprise Zones (REEZ) Boise County Woody Biomass Co-generation and Central Heating Plant (CHP) Feasibility StudyCX(s) Applied: A9, A11Date: 02/10/2010Location(s): Boise County, IdahoOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  7. One System Integrated Project Team Progress in Coordinating Hanford Tank Farms and the Waste Treatment Plant

    SciTech Connect (OSTI)

    Skwarek, Raymond J.; Harp, Ben J.; Duncan, Garth M.

    2013-12-18

    The One System Integrated Project Team (IPT) was formed at the Hanford Site in late 2011 as a way to improve coordination and itegration between the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and the Tank Operations Contractor (TOC) on interfaces between the two projects, and to eliminate duplication and exploit opportunities for synergy. The IPT is composed of jointly staffed groups that work on technical issues of mutal interest, front-end design and project definition, nuclear safety, plant engineering system integration, commissioning, planning and scheduling, and environmental, safety, health and quality (ESH&Q) areas. In the past year important progress has been made in a number of areas as the organization has matured and additional opportunities have been identified. Areas covered in this paper include: Support for development of the Office of Envirnmental Management (EM) framework document to progress the Office of River Protection's (ORP) River Protection Project (RPP) mission; Stewardship of the RPP flowsheet; Collaboration with Savannah River Site (SRS), Savannah River National Laboratory (SRNL), and Pacific Northwest National Laboratory (PNNL); Operations programs integration; and, Further development of the waste acceptance criteria.

  8. HIGH PRESSURE COAL COMBUSTION KINETICS PROJECT

    SciTech Connect (OSTI)

    Chris Guenther; Bill Rogers

    2001-09-15

    The HPCCK project was initiated with a kickoff meeting held on June 12, 2001 in Morgantown, WV, which was attended by all project participants. SRI's existing g-RCFR reactor was reconfigured to a SRT-RCFR geometry (Task 1.1). This new design is suitable for performing the NBFZ experiments of Task 1.2. It was decided that the SRT-RCFR apparatus could be modified and used for the HPBO experiments. The purchase, assembly, and testing of required instrumentation and hardware is nearly complete (Task 1.1 and 1.2). Initial samples of PBR coal have been shipped from FWC to SRI (Task 1.1). The ECT device for coal flow measurements used at FWC will not be used in the SRI apparatus and a screw type feeder has been suggested instead (Task 5.1). NEA has completed a upgrade of an existing Fluent simulator for SRI's RCFR to a version that is suitable for interpreting results from tests in the NBFZ configuration (Task 1.3) this upgrade includes finite-rate submodels for devolatilization, secondary volatiles pyrolysis, volatiles combustion, and char oxidation. Plans for an enhanced version of CBK have been discussed and development of this enhanced version has begun (Task 2.5). A developmental framework for implementing pressure and oxygen effects on ash formation in an ash formation model (Task 3.3) has begun.

  9. HIGH PRESSURE COAL COMBUSTION KINETICS PROJECT

    SciTech Connect (OSTI)

    Stefano Orsino

    2003-07-25

    NEA completed the CFD simulations for all NBFZ tests. SRI resumed work on HPBO experiments and conducted preliminary tests using the UCONN impactor. UCONN prepared several samples of char for cross-sectional analysis by SEM and characterization is underway. BU completed the NBFZ char characterization program. CBK model had been implemented into Fluent.

  10. BPA-2012-01350-FOIA Request

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    r ri S'&'ri H - Ex 6 11 TI I I.'ii. *. - I 1 24 r V I It9P H 41h I -J T 806 1: 4... I U Lol 7 - p ---.. I 41 7 It oil - Lol 5136.O5 I 1 In Aft- law 1200 X. I I I...

  11. CRC handbook of agricultural energy potential of developing countries

    SciTech Connect (OSTI)

    Duke, J.A.

    1986-01-01

    The contents of this book are: Introduction; Kenya; Korea (Republic of); Lesotho; Liberia; Malagasy; Malawi; Mali; Mauritania; Mexico, Mozambique, Nepal; Nicaragua; Niger; Nigeria; Pakistan; Panama; Paraguay; Peru; Philippines; Rwanda; Senegal; Sierra Leone; Somalia; Sri Lanka; Sudana; Surinam; Swaziland; Tanzania; Thailand; Togo; Uganda; Uruguay; Venezuela; Zaire; Zambia; Appendix I. Conventional and Energetic Yields; Appendix II, Phytomass Files; and References.

  12. Petropower energia project under way in Chile promises refiner better economics at lower cost

    SciTech Connect (OSTI)

    1996-12-31

    Construction of the Republic of Chile`s first public/private industrial partnership project is well under way. Ground was broken for the $232-million Petropower Energia Limitada project early this year, shortly after the final contract between the parties - Foster Wheeler Power Systems, Inc. (FWPS); Petrox S.A. Refineria de Petroleo and Empresa Nacional del Petroleo (ENAP) - was signed. The Petropower project, located adjacent to Petrox`s 84,000-b/d refinery in Talcahuano, represents the first project ever to combine petroleum coking technology with cogeneration technology in a single project financing. Petropower is 85% owned by FWPS, 7.5% by ENAP, the Chilean national oil company and parent of Petrox S.A. When completed in mid-1998, the Petropower project will enable Petrox to refine heavier crudes and enhance the refinery`s flexibility and economics. The project will consist of a delayed coking facility (a 12,000-b/d delayed coking unit and a 7,000-b/d hydrotreating plant) and a 67-MW (59 MW net) cogeneration plant. The coke produced will fuel a Foster Wheeler proprietary-design circulating fluidized-bed (CFB) boiler which will generate all the high-pressure steam and electric power needs of the Petrox refinery. This unit will be the first circulating fluidized-bed boiler to be built in Latin America. The cogeneration facility, using limestone as a reagent and equipped with a baghouse, will control SO{sub x} emissions from combustion of the green coke fuel and easily meet all Chilean environmental standards. Moreover, by constructing the cogeneration facility, Petrox will not have to proceed with capital improvements to existing facilities to ensure a reliable source of steam and electricity, resulting in substantial savings for Petrox. The cogeneration plant provides a permanent {open_quotes}disposal{close_quotes} for all coke produced by the delayed coker, thereby solving any future problems of unwanted or excess coke.

  13. Integrated Energy System Dispatch Optimization

    SciTech Connect (OSTI)

    Firestone, Ryan; Stadler, Michael; Marnay, Chris

    2006-06-16

    On-site cogeneration of heat and electricity, thermal and electrical storage, and curtailing/rescheduling demand options are often cost-effective to commercial and industrial sites. This collection of equipment and responsive consumption can be viewed as an integrated energy system(IES). The IES can best meet the sites cost or environmental objectives when controlled in a coordinated manner. However, continuously determining this optimal IES dispatch is beyond the expectations for operators of smaller systems. A new algorithm is proposed in this paper to approximately solve the real-time dispatch optimization problem for a generic IES containing an on-site cogeneration system subject to random outages, limited curtailment opportunities, an intermittent renewable electricity source, and thermal storage. An example demonstrates how this algorithm can be used in simulation to estimate the value of IES components.

  14. Fossil energy program. Progress report for May 1980

    SciTech Connect (OSTI)

    McNeese, L.E.

    1980-08-01

    This report - the seventieth of a series - is a compendium of monthly progress reports for the ORNL research and development programs that are in support of the increased utilization of coal and other fossil fuel alternatives to oil and gas as sources of clean energy. The projects reported this month include those for coal conversion development, chemical research and development, materials technology, component and process evaluation studies, technical support to major liquefaction projects, process analysis and engineering evaluations, fossil energy environmental analysis, coal preparation and waste utilization, coal preparation plant automation, technical support to the TVA fluidized bed combustion demonstration plant program, coal cogeneration/district heating plant assessment, atmospheric fluidized bed coal combustor for cogeneration, performance assurance system support and international energy technology assessment.

  15. Fossil energy program. Progress report for June 1980

    SciTech Connect (OSTI)

    McNeese, L.E.

    1980-08-01

    This report - the seventy-first of a series - is a compendium of monthly progress reports for the ORNL research and development programs that are in support of the increased utilization of coal and other fossil fuel alternatives to oil and gas as sources of clean energy. The projects reported this month include those for coal conversion development, chemical research and development, materials technology, component and process evaluation studies, technical support to major liquefaction projects, process analysis and engineering evaluation, fossil energy environmental analysis, coal preparation and waste utilization, coal preparation plant automation, atmospheric fluidized bed coal combustor for cogeneration, TVA fluidized combustion demonstration plant program technical support, coal cogeneration/district heating plant assessment, performance assurance system support, and international energy technology assessment.

  16. User's guide to SERICPAC: A computer program for calculating electric-utility avoided costs rates

    SciTech Connect (OSTI)

    Wirtshafter, R.; Abrash, M.; Koved, M.; Feldman, S.

    1982-05-01

    SERICPAC is a computer program developed to calculate average avoided cost rates for decentralized power producers and cogenerators that sell electricity to electric utilities. SERICPAC works in tandem with SERICOST, a program to calculate avoided costs, and determines the appropriate rates for buying and selling of electricity from electric utilities to qualifying facilities (QF) as stipulated under Section 210 of PURA. SERICPAC contains simulation models for eight technologies including wind, hydro, biogas, and cogeneration. The simulations are converted in a diversified utility production which can be either gross production or net production, which accounts for an internal electricity usage by the QF. The program allows for adjustments to the production to be made for scheduled and forced outages. The final output of the model is a technology-specific average annual rate. The report contains a description of the technologies and the simulations as well as complete user's guide to SERICPAC.

  17. Fossil Energy Program. Progress report for November 1979. [35 Wt % Illinois No. 6 coal with Wilsonville recycle solvent

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    This report - the sixty-fourth of a series - is a compendium of monthly progress reports for the ORNL research and development programs that are in support of the increased utilization of coal and other fossil fuel alternatives to oil and gas as sources of clean energy. The projects reported this month include those for coal conversion development, materials engineering, a coal equipment test program, an atmospheric fluid bed combustor for cogeneration, engineering studies and technical support, process and program analysis, environmental assessment studies, magnetic beneficiation of dry pulverized coal, technical support to the TVA fluid bed combustion program, coal cogeneration/district heating plant assessment, chemical research and development, and technical support to major liquefaction projects.

  18. Fossil Energy Program. Progress report for April 1980

    SciTech Connect (OSTI)

    McNeese, L.E.

    1980-06-01

    This report - the sixty-ninth of a series - is a compendium of monthly progress reports for the ORNL research and development programs that are in support of the increased utilization of coal and other fossil fuel alternatives to oil and gas as sources of clean energy. The projects reported this month include those for coal conversion development, chemical research and development, materials technology, component and process evaluation studies, technical support to major liquefaction projects, process analysis and engineering evaluations, fossil energy environmental analysis, coal preparation and waste utilization, coal preparation plant automation, atmospheric fluidized bed coal combustor for cogeneration, technical support to the TVA fluidized bed combustion demonstration plant program, coal cogeneration/district heating plant assessment, performance assurance system support, and international energy technology assessment.

  19. Final joint environmental assessment for the construction and routine operation of a 12-kilovolt (KV) overhead powerline right-of-way, and formal authorization for a 10-inch and 8-inch fresh water pipeline right-of-way, Naval Petroleum Reserve No. 1, Kern County, California

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    The purpose and need of the proposed action, which is the installation of an overhead powerline extension from an Naval Petroleum Reserve No. 1 (NPR-1) power source to the WKWD Station A, is to significantly reduce NPR-1`s overall utility costs. While the proposed action is independently justified on its own merits and is not tied to the proposed NPR-1 Cogeneration Facility, the proposed action would enable DOE to tie the NPR-1 fresh water pumps at Station A into the existing NPR-1 electrical distribution system. With the completion of the cogeneration facility in late 1994 or early 1995, the proposed action would save additional utility costs. This report deals with the environmental impacts of the construction of the powerline and the water pipeline. In addition, information is given about property rights and attaining permission to cross the property of proposed affected owners.

  20. One System Integrated Project Team: Retrieval and Delivery of Hanford Tank Wastes for Vitrification in the Waste Treatment Plant - 13234

    SciTech Connect (OSTI)

    Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.

    2013-07-01

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety-conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank wastes and for building and operating the WTP. The tank wastes are the result of Hanford's nearly fifty (50) years of plutonium production. In the intervening years, waste characteristics have been increasingly better understood. However, waste characteristics that are uncertain and will remain as such represent a significant technical challenge in terms of retrieval, transport, and treatment, as well as for design and construction of WTP. What also is clear is that the longer the waste remains in the tanks, the greater the risk to the environment and the people of the Pacific Northwest. The goal of both projects - tank operations and waste treatment - is to diminish the risks posed by the waste in the tanks at the earliest possible date. About two hundred (200) WTP and TOC employees comprise the IPT. Individual work groups within One System include Technical, Project Integration and Controls, Front-End Design and Project Definition, Commissioning, Nuclear Safety and Engineering Systems Integration, and Environmental Safety and Health and Quality Assurance (ESH and QA). Additional functions and team members will be added as the WTP approaches the operational phase. The team has undertaken several initiatives since its formation to collaborate on issues: (1) alternate scenarios for delivery of wastes from the tank farms to WTP; (2) improvements in managing Interface Control Documents; (3) coordination on various technical issues, including the Defense Nuclear Facilities Nuclear Safety Board's Recommendation 2010-2; (4) deployment of the SmartPlant{sup R} Foundation-Configuration Management System; and (5) preparation of the joint contract deliverable of the Operational Readiness Support Plan. (authors)

  1. One System Integrated Project Team: Retrieval And Delivery Of The Hanford Tank Wastes For Vitrification In The Waste Treatment Plant

    SciTech Connect (OSTI)

    Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.

    2012-12-20

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank wastes and for building and operating the WTP. The tank wastes are the result of Hanford's nearly fifty (50) years of plutonium production. In the intervening years, waste characteristics have been increasingly better understood. However, waste characteristics that are uncertain and will remain as such represent a significant technical challenge in terms of retrieval, transport, and treatment, as well as for design and construction ofWTP. What also is clear is that the longer the waste remains in the tanks, the greater the risk to the environment and the people of the Pacific Northwest. The goal of both projects - tank operations and waste treatment - is to diminish the risks posed by the waste in the tanks at the earliest possible date. About two hundred (200) WTP and TOC employees comprise the IPT. Individual work groups within One System include Technical, Project Integration & Controls, Front-End Design & Project Definition, Commissioning, Nuclear Safety & Engineering Systems Integration, and Environmental Safety and Health and Quality Assurance (ESH&QA). Additional functions and team members will be added as the WTP approaches the operational phase. The team has undertaken several initiatives since its formation to collaborate on issues: (1) alternate scenarios for delivery of wastes from the tank farms to WTP; (2) improvements in managing Interface Control Documents; (3) coordination on various technical issues, including the Defense Nuclear Facilities Nuclear Safety Board's Recommendation 2010-2; (4) deployment of the SmartPlant� Foundation-configuration Management System; and (5) preparation of the joint contract deliverable of the Operational Readiness Support Plan.

  2. Chemical inducible promoter used to obtain transgenic plants with a silent marker

    DOE Patents [OSTI]

    Aoyama, Takashi; Zuo, Jianru; Chua, Nam-Hai

    2004-08-31

    A chemically inducible promoter is described that may be used to transform plants, including tobacco and lettuce, with genes which are easily regulatable by adding the plants or plant cells to a medium containing an inducer of the promoter or by removing the plants or plant cells from such medium. The promoter described is one that is inducible by a glucocorticoid which is not endogenous to plants. Such promoters may be used with a variety of genes such as ipt or knotted1 to induce shoot formation in the presence of a glucocorticoid. The promoter may also be used with antibiotic or herbicide resistance genes which are then regulatable by the presence or absence of inducer rather than being constitutive. Other examples of genes which may be placed under the control of the inducible promoter are also presented.

  3. Chemical inducible promotor used to obtain transgenic plants with a silent marker

    DOE Patents [OSTI]

    Chua, Nam-Hai (Scarsdale, NY); Aoyama, Takashi (Shiga, JP)

    2000-01-01

    A chemically inducible promoter is described which may be used to transform plants with genes which are easily regulatable by adding plants or plant cells to a medium containing an inducer of the promoter or by removing the plants or plant cells from such medium. The promoter described is one which is inducible by a glucocorticoid which is not endogenous to plants. Such promoters may be used with a variety of genes such as ipt or knotted1 to induce shoot formation in the presence of a glucocorticoid. The promoter may also be used with antibiotic or herbicide resistance genes which are then regulatable by the presence or absence of inducer rather than being constitutive. Other examples of genes which may be placed under the control of the inducible promoter are also presented.

  4. Proceedings: Second Annual Pacific Northwest Alternative and Renewable Energy Resources Conference.

    SciTech Connect (OSTI)

    1980-01-01

    Papers presented at the conference are published in this volume. The purpose of the conference was to solicit regional cooperation in the promoting of near-term development of such alternative and renewable energy resources in the Pacific Northwest as: cogeneration; biomass; wind; small hydro; solar end-use applications; and geothermal direct heat utilization. Separate abstracts of selected papers were prepared for inclusion in the Energy Data Base.

  5. Load research manual. Volume 3. Load research for advanced technologies

    SciTech Connect (OSTI)

    Brandenburg, L.; Clarkson, G.; Grund, Jr., C.; Leo, J.; Asbury, J.; Brandon-Brown, F.; Derderian, H.; Mueller, R.; Swaroop, R.

    1980-11-01

    This three-volume manual presents technical guidelines for electric utility load research. Special attention is given to issues raised by the load data reporting requirements of the Public Utility Regulatory Policies Act of 1978 and to problems faced by smaller utilities that are initiating load research programs. The manual includes guides to load research literature and glossaries of load research and statistical terms. In Volume 3, special load research procedures are presented for solar, wind, and cogeneration technologies.

  6. Molten carbonate fuel cell product design and improvement. Quarterly report, January 1--March 30, 1996

    SciTech Connect (OSTI)

    1996-12-31

    Objective is to establish by 1998 the commercial readiness of MW- class IMHEX{reg_sign} MCFC power plants for distributed generation, cogeneration, and compressor station applications. This will require an advanced IMHEX{reg_sign} technology base, lower-cost manufacturing processes, verified balance-of-plant components, proven packaging and assembly approaches, demonstrated prototype power plants, finalized manufacturing and market distribution plans, and a committed commercialization team. Various tasks are reported on.

  7. Power generating system and method utilizing hydropyrolysis

    DOE Patents [OSTI]

    Tolman, R.

    1986-12-30

    A vapor transmission cycle is described which burns a slurry of coal and water with some of the air from the gas turbine compressor, cools and cleans the resulting low-Btu fuel gas, burns the clean fuel gas with the remaining air from the compressor, and extracts the available energy in the gas turbine. The cycle lends itself to combined-cycle cogeneration for the production of steam, absorption cooling, and electric power.

  8. ccpi-greenbrier | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Western Greenbrier Co-Production Demonstration Project - Project Brief [PDF-79KB] (Discontinued) Western Greenbrier Co-Generation, LLC, Rainelle, West Virginia PROJECT FACT SHEET Western Greenbrier Co-Production Demonstration Project (Discontinued) [PDF-1MB] (Aug 2008) PROGRAM PUBLICATIONS CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports Topical Report #24: Coal Utilization By-Products (Aug 2006) [PDF-1.6MB] Interim Reports Western Greenbrier

  9. Project Reports for White Mountain Apache Tribe- 2002 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The project will involve an examination of the feasibility of a cogeneration facility at the Fort Apache Timber Company (FATCO), an enterprise of the White Mountain Apache Tribe. FATCO includes a sawmill and a remanufacturing operation that process timber harvested on the tribe's reservation. The operation's main facility is located in the reservation's largest town, Whiteriver. In addition, the tribe operates an ancillary facility in the town of Cibeque on the reservation's west side.

  10. Sustainable development with clean coal

    SciTech Connect (OSTI)

    1997-08-01

    This paper discusses the opportunities available with clean coal technologies. Applications include new power plants, retrofitting and repowering of existing power plants, steelmaking, cement making, paper manufacturing, cogeneration facilities, and district heating plants. An appendix describes the clean coal technologies. These include coal preparation (physical cleaning, low-rank upgrading, bituminous coal preparation); combustion technologies (fluidized-bed combustion and NOx control); post-combustion cleaning (particulate control, sulfur dioxide control, nitrogen oxide control); and conversion with the integrated gasification combined cycle.

  11. Savannah River's Biomass Steam Plant Success with Clean and Renewable Energy

    Office of Environmental Management (EM)

    SRS Biomass Cogeneration Plant Tech Stage: Deployed (Operational) Energy Savings Performance Contract Project ID: Task Order No.-KL46299M The technical solution has been deployed to the A-Area at Savannah River Site. Page 1 of 2 Savannah River Site South Carolina Savannah River's Biomass Steam Plant Success with Clean and Renewable Energy Challenge In order to meet the federal energy and environmental management requirements in Presidential Executive Order 13423, DOE Order 430.2B, and the

  12. Applicant Location Requested DOE Funds Project Summary Feasibility Studies

    Broader source: Energy.gov (indexed) [DOE]

    Requested DOE Funds Project Summary Feasibility Studies Confederated Salish and Kootenai Tribes Pablo, MT $850,000 This project will evaluate the technical and economic viability of a co-generation biomass fuel power plant. The plant would use fuels from tribal forest management activities to provide between 2.5 to 20 megawatts (MW) of electricity to heat tribal buildings or sell on the wholesale market. Standing Rock Sioux Tribe Fort Yates, ND $430,982 This project will perform a feasibility

  13. Applicant Location Requested DOE Funds Project Summary Feasibility Studies

    Energy Savers [EERE]

    Requested DOE Funds Project Summary Feasibility Studies Confederated Salish and Kootenai Tribes Pablo, MT $850,000 This project will evaluate the technical and economic viability of a co-generation biomass fuel power plant. The plant would use fuels from tribal forest management activities to provide between 2.5 to 20 megawatts (MW) of electricity to heat tribal buildings or sell on the wholesale market. Standing Rock Sioux Tribe Fort Yates, ND $430,982 This project will perform a feasibility

  14. Stabilization solutions to hazardous metals laden waste

    SciTech Connect (OSTI)

    Kramer, M.

    1996-12-31

    This paper is limited to treatment of bottom and fly ash waste resulting from WTE and RTE Cogeneration plants, commonly known as trash burners. The body of the paper defines waste generation and conventional treatment schemes. This paper does not identify a best treatment, however, it does offer a general perspective of the treatments to lead the reader to further investigation. Advantages and disadvantages of the ash treatments is discussed in each treatment section. 29 refs., 1 fig.

  15. IECEC '91; Proceedings of the 26th Intersociety Energy Conversion Engineering Conference, Boston, MA, Aug. 4-9, 1991. Vol. 5 - Renewable resource systems, Stirling engines and applications, systems and cycles

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    Various papers on energy conversion engineering are presented. The general topics considered are: developments in nuclear power, energy from waste and biomass, system performance and materials in photovoltaics, solar thermal energy, wind energy systems, Stirling cycle analysis, Stirling cycle power, Stirling component technology, Stirling cooler/heat pump developments, Stirling engine concepts, Stirling engine design and optimization, Stirling engine dynamics and response, Stirling engine solar terrestrial, advanced cogeneration, AMTC, fossil fuel systems and technologies, marine energy.

  16. Forest Products | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forest Products Forest Products Purchased energy remains the third largest manufacturing cost for the forest products industry-despite its extensive use of highly efficient co-generation technology. The industry has worked with AMO to develop a range of resources for further improving energy efficiency. Some current R&D projects and Energy Management resources will benefit the forest products industry. Analytical Studies & Other Publications Manufacturing Energy and Carbon Footprints

  17. index | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Baseline Studies slider_Telephone-Pole-rd_Grid_NETL.jpg Baseline Studies Overview The NETL Baseline Studies for Fossil Energy Plants establish estimates for the cost and performance of combustion- and gasification-based power plants, as well as options for co-generating synthetic natural gas and fuels - all with and without carbon dioxide capture and storage - for several ranks of coal. These studies are considered to be the most comprehensive set of public data available for state-of-the-art

  18. 2014 Manufacturing Energy and Carbon Footprints: Definitions and Assumptions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Definitions and Assumptions A number of key terms are used to interpret the manufacturing energy and carbon footprints. The terms associated with the energy footprint analysis are defined below in alphabetical order. Key definitions and assumptions associated with the greenhouse gas (GHG) footprint analysis are shown on pages 12 and 13. Energy Footprint Analysis Definitions CHP/Cogeneration - The production of electrical energy and another form of useful energy (such as heat or steam) through

  19. NGNP Engineering Status

    SciTech Connect (OSTI)

    John Collins

    2010-08-01

    The objectives of Phase 1 Engineering and Design scope are to: 1) complete the initial design activities for a prototype nuclear reactor and plant that is capable of co-generating electricity, hydrogen, and process heat; 2) identify technological aspects of the NGNP that need further advancement by research and development activities; and 3) provide engineering support to the early licensing process, including technical input to white papers and developing the basis for future safety analyses.

  20. " by Census Region, Census Division, Industry Group, Selected Industries, and"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Census Division, Industry Group, Selected Industries, and" " Presence of Cogeneration Technologies, 1994: Part 1" " (Estimates in Trillion Btu)",," ",,,,,,," "," "," " ,,,"Steam Turbines",,,,"Steam Turbines" ,," ","Supplied by Either","Conventional",,,"Supplied by","One