Sample records for ipl doe ch

  1. Final Report for DOE Project DE-FC07-99CH11010

    SciTech Connect (OSTI)

    Jed Randall; Robert Kean

    2003-10-22T23:59:59.000Z

    Department of Energy award number DE-FC07-99CH11010, Enhanced Utilization of Corn Based Biomaterials, supported a technology development program sponsored by Cargill Dow LLC from September 30, 1999 through June 30, 2003. The work involved fundamental scientific studies on poly lactic acid (PLA), a new environmentally benign plastic material from renewable resources. DOE funds supported academic research at the Colorado School of Mines and the National Renewable Energy Laboratory (NREL), and industry cost share was directed towards applied research into new product development utilizing the fundamental information generated by the academic partners. Under the arrangement of the grant, the fundamental information is published so that other companies can utilize it in evaluating the applicability of PLA in their own products. The overall project objective is to increase the utilization of PLA, a renewable resource based plastic, currently produced from fermented corn sugar.

  2. DOE Selects CH2M Hill Plateau Remediation Company for Plateau...

    Energy Savers [EERE]

    contractor for DOE's Hanford Site in southeastern Washington State. The contract is a cost-plus award-fee contract valued at approximately 4.5 billion over ten years (a...

  3. Joint DOE-CH2M News Release Media Contact: For Immediate...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mark.heeter@rl.doe.gov WORKERS REMOVE LAST PENCIL TANK FROM KEY AREA OF HANFORD'S PLUTONIUM FINISHING PLANT Removal of contaminated pencil tanks brings facility one step closer...

  4. Joint DOE-CH2M News Release Media Contact: For Immediate Release:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home as Ready for(SC) JettingChemistryJohnDOEJoin

  5. The Reaction of bis(1,2,4-tri-t-butylcyclopentadienyl)ceriumbenzyl, Cp'2CeCH2Ph with Methylhalides: a Metathesis Reaction that does not proceed by a Metathesis Transition State

    SciTech Connect (OSTI)

    Werkema, Evan; Andersen, Richard; Maron, Laurent; Eisenstein, Odile

    2009-09-02T23:59:59.000Z

    The experimental reaction between [1,2,4-(Me3C)3C5H2]2CeCH2Ph and CH3X, X = F, Cl, Br, and I, yields the metathetical exchange products, [1,2,4-(Me3C)3C5H2]2CeX and CH3CH2Ph. The reaction is complicated by the equilibrium between the benzyl derivative and the metallacycle [[1,2,4-(Me3C)3C5H2] [(Me3C)2C5H2C(CH3)2CH2]Ce, plus toluene since the metallacycle reacts with CH3X. Labelling studies show that the methyl group of the methylhalide is transferred intact to the benzyl group. The mechanism, as revealed by DFT calculations on (C5H5)2CeCH2Ph and CH3F, does not proceed by way of a four-center mechanism, (sigma-bond metathesis) but a lower barrier process involves a haptotropic shift of the Cp2Ce fragment so that at the transition state the para-carbon of the benzene ring is attached to the Cp2Ce fragment while the CH2 fragment of the benzyl group attacks CH3F that is activated by coordination to the metal ion. As a result the mechanism is classified as an associative interchange process.

  6. DOE-STD-1128-98 CH 1; Guide of Good Practices for Occupational Radiological Protection in Plutonium Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No Significant Impact610-9464-941 February 2005 DOE STANDARD

  7. Towards an InTerdIscIplInary approach To nexT-GeneraTIon BIofuels EnvironmEntal, tEchno-Economic, and GovErnancE

    E-Print Network [OSTI]

    Iglesia, Enrique

    Towards an InTerdIscIplInary approach To nexT-GeneraTIon BIofuels EnvironmEntal, t. 2010. The Ecological Impact of Biofuels. Pages 351-377 in D. J. Futuyma, H. B. Shafer, and D. Huffer, S., Roche, C.M., Blanch, H.W., and Clark, D.S. (2012). Escherichia coli for biofuel production

  8. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-08-15T23:59:59.000Z

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  9. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2004-10-01T23:59:59.000Z

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  10. CH-TRU Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-10-15T23:59:59.000Z

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  11. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-05-01T23:59:59.000Z

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  12. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-11-20T23:59:59.000Z

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  13. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-06-20T23:59:59.000Z

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  14. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2006-01-18T23:59:59.000Z

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  15. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2006-09-15T23:59:59.000Z

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  16. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-01-15T23:59:59.000Z

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codesand corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  17. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-03-15T23:59:59.000Z

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  18. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2007-08-15T23:59:59.000Z

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  19. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2007-06-15T23:59:59.000Z

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  20. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2006-08-15T23:59:59.000Z

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  1. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2006-12-20T23:59:59.000Z

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  2. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2007-02-15T23:59:59.000Z

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  3. CH-TRU Waste Content Codes (CH TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2004-12-01T23:59:59.000Z

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  4. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2007-09-20T23:59:59.000Z

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  5. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2006-06-20T23:59:59.000Z

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  6. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-12-15T23:59:59.000Z

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  7. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-01-30T23:59:59.000Z

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  8. STATEMENT OF CONSIDERATIONS REQUEST BY EATON CORPORATION FOR...

    Broader source: Energy.gov (indexed) [DOE]

    FR IPL DOE CH 630 252 2779 TO RGCP-HO P.02-03 * * STATEMENT OF CONSIDERATIONS REQUEST BY EATON CORPORATION FOR AN ADVANCE WAIVER OF PATENT RIGHTS UNDER DOE COOPERATIVE AGREEMENT...

  9. STATEMENT OF CONSIDERATIONS REQUEST BY PRAXAIR, INC. FOR AN ADVANCE...

    Broader source: Energy.gov (indexed) [DOE]

    IPL DOE CH 630 252 2779 TO AGCP-HQ P.0204 * * STATEMENT OF CONSIDERATIONS REQUEST BY PRAXAIR, INC. FOR AN ADVANCE WAIVER OF PATENT RIGHTS UNDER ITS SUBCONTRACT WITH THE GLASS...

  10. CH Packaging Operations Manual

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2007-05-15T23:59:59.000Z

    Introduction - This procedure provides instructions forassembling the following CH packaging payload: Drum payload assembly Standard Waste Box (SWB) assembly Ten-Drum Overpack (TDOP)

  11. CH Packaging Operations Manual

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2006-12-18T23:59:59.000Z

    Introduction - This procedure provides instructions forassembling the following CH packaging payload: Drum payload assembly Standard Waste Box (SWB) assembly Ten-Drum Overpack (TDOP)

  12. CH Packaging Operations Manual

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2007-08-22T23:59:59.000Z

    This procedure provides instructions forassembling the following CH packaging payload: Drum payload assembly Standard Waste Box (SWB) assembly Ten-Drum Overpack (TDOP)

  13. CH Packaging Operations Manual

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2007-11-29T23:59:59.000Z

    This procedure provides instructions forassembling the following CH packaging payload: Drum payload assembly Standard Waste Box (SWB) assembly Ten-Drum Overpack (TDOP)

  14. CH-TRU Waste Content Codes

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2008-01-16T23:59:59.000Z

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).

  15. Voluntary Protection Program Onsite Review, CH2M WG LLC, Idaho Cleanup Project – March 2014

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether CH2M WG LLC, Idaho Cleanup Project is performing at a level deserving DOE-VPP Star recognition.

  16. Safety Evaluation Report of the Waste Isolation Pilot Plant Contact Handled (CH) Waste Documented Safety Analysis

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-09-01T23:59:59.000Z

    This Safety Evaluation Report (SER) documents the Department of Energy’s (DOE's) review of Revision 9 of the Waste Isolation Pilot Plant Contact Handled (CH) Waste Documented Safety Analysis, DOE/WIPP-95-2065 (WIPP CH DSA), and provides the DOE Approval Authority with the basis for approving the document. It concludes that the safety basis documented in the WIPP CH DSA is comprehensive, correct, and commensurate with hazards associated with CH waste disposal operations. The WIPP CH DSA and associated technical safety requirements (TSRs) were developed in accordance with 10 CFR 830, Nuclear Safety Management, and DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports.

  17. CH E 2421 Chemical Engineering Thermodynamics I CH E 3322 Chemical Engineering Thermodynamics II

    E-Print Network [OSTI]

    Zhang, Yuanlin

    CH E 2421 Chemical Engineering Thermodynamics I CH E 3322 Chemical Engineering Thermodynamics II CH E 3330 Engineering Materials Science CH E 4342 Polymer Physics Engineering Thermodynamics I M E 3311 Materials Science M E 3322 Engineering Thermodynamics II M

  18. CH-TRUCON Rev. 21, January 2008

    Office of Environmental Management (EM)

    DOEWIPP 01-3194 Rev. 21 CH-TRU WASTE CONTENT CODES (CH-TRUCON) Revision 21 January 2008 This document supercedes DOEWIPP 01-3194, Revision 20 CH-TRUCON, Rev. 21, January 2008...

  19. NostalgisCH Anton Nijholt

    E-Print Network [OSTI]

    Nijholt, Anton

    CH stuk te schrijven over een periode van voor 2006 enerzijds interessant, anderzijds ook een beetje een stuk van wiens leven dan ook automatisch te reconstrueren, wellicht vanuit een bepaald

  20. Lecture Ch. 8 Cloud Classification

    E-Print Network [OSTI]

    Russell, Lynn

    clouds Middle clouds Grayish, block the sun, sometimes patchy Sharp outlines, rising, bright white1 Lecture Ch. 8 · Cloud Classification ­ Descriptive approach to clouds · Drop Growth and Precipitation Processes ­ Microphysical characterization of clouds · Complex (i.e. Real) Clouds ­ Examples

  1. co2_ch4exchange | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :,2013 NETL CO2 CaptureTransport12

  2. 4, 31953227, 2007 Modelling CH4

    E-Print Network [OSTI]

    Boyer, Edmond

    Interactive Discussion EGU 1 Introduction Together with water vapour and carbon dioxide (CO2), CH4, hydrology, soil physical properties, vegetation type and NPP.15 For Kytalyk the simulated CH4 fluxes show

  3. EDUCATIONALIMPACTSTATEMENT C.H. Nash Museum

    E-Print Network [OSTI]

    Dasgupta, Dipankar

    EDUCATIONALIMPACTSTATEMENT CHUCALISSA C.H. Nash Museum The UniversiTy of MeMphis 1987 Indian of the C.H. Nash Museum at Chucalissa, a division of The University of Memphis, is to protect and interpret and present Native American and traditional cultures. CHUCALISSA FACTS · Since 1962, both the C.H. Nash Museum

  4. CH

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience, and8 FY0LinkA Look

  5. ARM - Datastreams - nfov2ch

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492airDatastreamsncepgfsnausfc Documentation XDC documentation Data QualityDatastreamsnfov2ch Documentation

  6. Methanogenic Conversion of CO2 Into CH4

    SciTech Connect (OSTI)

    Stevens, S.H., Ferry, J.G., Schoell, M.

    2012-05-06T23:59:59.000Z

    This SBIR project evaluated the potential to remediate geologic CO2 sequestration sites into useful methane gas fields by application of methanogenic bacteria. Such methanogens are present in a wide variety of natural environments, converting CO2 into CH4 under natural conditions. We conclude that the process is generally feasible to apply within many of the proposed CO2 storage reservoir settings. However, extensive further basic R&D still is needed to define the precise species, environments, nutrient growth accelerants, and economics of the methanogenic process. Consequently, the study team does not recommend Phase III commercial application of the technology at this early phase.

  7. CH2M HILL Plateau Remediation Company have

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r k C o'IUHopper3 Environmental CH2M

  8. DOE Awards New York Decommissioning Services Contract

    Broader source: Energy.gov [DOE]

    West Valley, NY -- The Department of Energy (DOE) today awarded a contract to CH2M Hill-B&W West Valley of Englewood, Colorado, for the Phase I Decommissioning and Facility Disposition activities at the West Valley Demonstration Project (WVDP).

  9. MArCh 2008 46 Introduction

    E-Print Network [OSTI]

    Feng, Xizhou

    Systems #12;MArCh 2008 47 4 US-Canada Power System Outage Task Force. Final Report on the August 14, 2003MArCh 2008 46 Introduction This article describes our ongoing efforts to develop a global modeling-resolution scalable models of complex socio-technical systems;i. Service-oriented architecture and delivery mechanism

  10. CH-{\\pi} interaction-induced deep orbital deformation in a benzene-methane weak binding system

    E-Print Network [OSTI]

    Li, Jianfu

    2015-01-01T23:59:59.000Z

    The nonbonding interaction between benzene and methane, called CH-{\\pi} interaction, plays an important role in physical, chemical, and biological fields. CH-{\\pi} interaction can decrease the system total energy and promote the formation of special geometric configurations. This work investigates systemically the orbital distribution and composition of the benzene-methane complex for the first time using ab initio calculation based on different methods and basis sets. Surprisingly, we find strong deformation in HOMO-4 and LUMO+2 induced by CH-{\\pi} interaction, extending the general view that nonbonding interaction does not cause orbital change of molecules.

  11. ARM - Datastreams - fullavhrr15ch4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492air Comments? We wouldDatastreamsdisdrometerch2 Documentation XDC documentation Data Qualitych2ch4ch2ch4

  12. Prof. Roger Wattenhofer http://www.dcg.ethz.ch

    E-Print Network [OSTI]

    @tik.ee.ethz.ch, ETZ G61.3, · Philipp Sommer: sommer@tik.ee.ethz.ch, ETZ G64.1 · Roger Wattenhofer: wattenhofer

  13. Risk management for CAT events Georg Ch. Pflug

    E-Print Network [OSTI]

    Pflug, Georg

    Outline Risk management for CAT events Georg Ch. Pflug 20.5.2005 Georg Ch. Pflug Risk management billion in reconstruction lending. Georg Ch. Pflug Risk management for CAT events #12;Outline Fundamentals, budget reallocation, additional taxation) Georg Ch. Pflug Risk management for CAT events #12;Outline

  14. DOE/OR-1066R5/02-03 8-1 8.1 INTRODUCTION

    E-Print Network [OSTI]

    Pennycook, Steve

    DOE/OR-1066R5/02-03 8-1 8. REPORTS 8.1 INTRODUCTION The purpose of this section is to address at sampling locations to reference values or to environmental standards, criteria, or permit limits. Other Monitoring Plan (EMP) Annually DOE 5400.1 Ch. IV All U.S. Department of Energy (DOE) facilities that conduct

  15. ARM - Datastreams - avhrr10ch4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492air Comments? We would loveDatastreamsassistch2 Documentation Data Quality Plots Citation DOI:ch2ch4

  16. ARM - Datastreams - avhrr12ch4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492air Comments? We would loveDatastreamsassistch2 Documentation Data Quality Plots Citationch41rad2ch2ch4

  17. ARM - Datastreams - avhrr15ch4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492air Comments? We would loveDatastreamsassistch2 Documentation Data Quality4rad Documentation XDC5ch2ch4

  18. ARM - Datastreams - fullavhrr15ch2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492air Comments? We wouldDatastreamsdisdrometerch2 Documentation XDC documentation Data Qualitych2ch4ch2

  19. PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073

    E-Print Network [OSTI]

    copies of this report from: U.S. Department of Energy Office of Scientific and Technical Information DOE how these are provided by the candidate PBX-M NBI system. I. INTRODUCTION The National CompactPREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PRINCETON PLASMA

  20. People's Physics Book Ch 7-1 The Big Idea

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    People's Physics Book Ch 7-1 The Big Idea The universe has many remarkable qualities, among them;People's Physics Book Ch 7-2 as just the two cars. In this case, internal forces include

  1. sp2 Carbon-Hydrogen Bond (C-H) Functionalization

    E-Print Network [OSTI]

    Yotphan, Sirilata

    2010-01-01T23:59:59.000Z

    C-C) bonds from carbon-hydrogen (C-H) bonds in organicof them is unusually short. Hydrogen atoms were included insp 2 Carbon-Hydrogen Bond (C-H) Functionalization By

  2. DOE HANDBOOK

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&D Project|StatementDOE FuelProgram |Guide for

  3. DOE-0336

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OF CALCIUMCOSTDOENuclear EnergyMeetingMetricDOE,to

  4. DOE-0344

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OF CALCIUMCOSTDOENuclear EnergyMeetingMetricDOE,to4

  5. J.-J. CH. MEYER* R. J. WIER,INGA**

    E-Print Network [OSTI]

    Wieringa, Roel

    F. DIGNUM J.-J. CH. MEYER* R. J. WIER,INGA** Free Choice and Contextually Permitted Actions the hospitality of Link5ping University during revision of this paper. **This research of J.-J.Ch.Meyer and R Academic Publishers. Printed in the Netherlands. #12;194 F.Dignurn, J.-J.Ch.Meyer, R.J. Wieringa Kamp [14

  6. Competitive CH and OD bond fission channels in the UV photodissociation of the deuterated hydroxymethyl radical CH2OD

    E-Print Network [OSTI]

    Reisler, Hanna

    Competitive C­H and O­D bond fission channels in the UV photodissociation of the deuterated hydroxymethyl radical CH2OD Lin Feng, Andrey V. Demyanenko, and Hanna Reisler Department of Chemistry January 2004 Photodissociation studies of the CH2OD radical in the region 28 000­41 000 cm 1 357­244 nm

  7. DOE Policy on Decommissioning DOE Facilities Under CERCLA | Department...

    Broader source: Energy.gov (indexed) [DOE]

    DOE Policy on Decommissioning DOE Facilities Under CERCLA DOE Policy on Decommissioning DOE Facilities Under CERCLA In May 1995, the Department of Energy (DOE) issued a policy in...

  8. ARM - Datastreams - aeri01ch2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492air Comments? We would love torwpprecipmom Documentation Data Quality Plotsrwpwindmom Documentationch1ch2

  9. ARM - Datastreams - avhrr10ch2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492air Comments? We would loveDatastreamsassistch2 Documentation Data Quality Plots Citation DOI:ch2

  10. ARM - Datastreams - avhrr12ch2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492air Comments? We would loveDatastreamsassistch2 Documentation Data Quality Plots Citationch41rad2ch2

  11. ARM - Datastreams - avhrr14ch2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492air Comments? We would loveDatastreamsassistch2 Documentation Data Quality Plotslacnau Documentation4ch2

  12. ARM - Datastreams - avhrr15ch2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492air Comments? We would loveDatastreamsassistch2 Documentation Data Quality4rad Documentation XDC5ch2

  13. ARM - Datastreams - fullavhrr12ch2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492air Comments? We wouldDatastreamsdisdrometerch2 Documentation XDC documentation Data Quality Plotsch4ch2

  14. ARM - Datastreams - fullavhrr14ch4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492air Comments? We wouldDatastreamsdisdrometerch2 Documentation XDC documentation Data Qualitych2ch4

  15. A Highly Reactive Mononuclear Non-Heme Manganese(IV)?Oxo Complex That Can Activate the Strong C?H Bonds of Alkanes

    SciTech Connect (OSTI)

    Wu, Xiujuan; Seo, Mi Sook; Davis, Katherine M.; Lee, Yong-Min; Chen, Junying; Cho, Kyung-Bin; Pushkar, Yulia N.; Nam, Wonwoo (Ewha); (Purdue)

    2012-03-15T23:59:59.000Z

    A mononuclear non-heme manganese(IV)-oxo complex has been synthesized and characterized using various spectroscopic methods. The Mn(IV)-oxo complex shows high reactivity in oxidation reactions, such as C-H bond activation, oxidations of olefins, alcohols, sulfides, and aromatic compounds, and N-dealkylation. In C-H bond activation, the Mn(IV)-oxo complex can activate C-H bonds as strong as those in cyclohexane. It is proposed that C-H bond activation by the non-heme Mn(IV)-oxo complex does not occur via an oxygen-rebound mechanism. The electrophilic character of the non-heme Mn(IV)-oxo complex is demonstrated by a large negative {rho} value of {approx}4.4 in the oxidation of para-substituted thioanisoles.

  16. Central Characterization Program (CCP) Contact-Handled (CH) TRU...

    Office of Environmental Management (EM)

    and Waste Information SystemWaste Data System (WWISWDS) Data Entry Central Characterization Program (CCP) Contact-Handled (CH) TRU Waste Certification and Waste Information...

  17. DOE-FLEX: DOE's Telework Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-02-11T23:59:59.000Z

    The order establishes the requirements and responsibilities for the Departments telework program. Cancels DOE N 314.1.

  18. People's Physics Book Ch 21-1 The Big Idea

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    People's Physics Book Ch 21-1 The Big Idea The nuclei of atoms are affected by three forces, the breaking apart of nuclei and it is responsible for atom bombs and nuclear power. A form of fission, where/tH #12;People's Physics Book Ch 21-2 Key Concepts · Some of the matter on Earth is unstable

  19. People's Physics book Ch 2-1 The Big Idea

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    People's Physics book Ch 2-1 The Big Idea Energy is a measure of the amount of, or potential for, often by heat or sound waves. #12;People's Physics book Ch 2-2 Key Applications · In "roller coaster of the bonding energy into energy that is used to power the body. This energy goes on to turn into kinetic energy

  20. People's Physics Book Ch 8-1 The Big Idea

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    People's Physics Book Ch 8-1 The Big Idea When any two bodies in the universe interact, they can an initial configuration and the final configuration · P = E/t Power delivered to or from a system components are conserved. #12;People's Physics Book Ch 8-2 Key Concepts · Impulse is how momentum

  1. DOE MENTOR-PROTÉGÉ

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    small business subcontracting goal, and statutory socio-economic goal 2 HISTORY OF DOE MENTOR-PROTG PROGRAM June 9, 1995 The DOE Mentor Protg Program Initiative was...

  2. DOE MENTOR-PROTÉGÉ

    Broader source: Energy.gov (indexed) [DOE]

    business subcontracting goal, and statutory socio-economic goals 2 HISTORY OF DOE MENTOR-PROTG PROGRAM June 9, 1995 The DOE Mentor Protg Program Initiative was...

  3. DOE Sustainability SPOtlight: Special Edition 2013 DOE Sustainability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Sustainability SPOtlight: Special Edition 2013 DOE Sustainability Awards DOE Sustainability SPOtlight: Special Edition 2013 DOE Sustainability Awards Newsletter highlights the...

  4. DOE's General Counsel Determines Sudan Act Does Not Bar Areva...

    Office of Environmental Management (EM)

    DOE's General Counsel Determines Sudan Act Does Not Bar Areva Enrichment Services LLC Loan Application DOE's General Counsel Determines Sudan Act Does Not Bar Areva Enrichment...

  5. Approved Module Information for CH2107, 2014/5 Module Title/Name: Physical Chemistry II Module Code: CH2107

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    : CH2107 School: Engineering and Applied Science Module Type: Standard Module New Module? No Module. ----- [Part 2: Physical Chemistry Laboratory]; Building on material from a number of modules in the 1st and 2Approved Module Information for CH2107, 2014/5 Module Title/Name: Physical Chemistry II Module Code

  6. Approved Module Information for CH3010, 2014/5 Module Title/Name: Catalysis Module Code: CH3010

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    Approved Module Information for CH3010, 2014/5 Module Title/Name: Catalysis Module Code: CH3010 School: Engineering and Applied Science Module Type: Standard Module New Module? No Module Credits: 10 in which available: BSc/MChem Applied Chemistry. BSc/MChem Chemistry. BEng/MEng Chemical Engineering. MEng

  7. Excitation functions for the reactions of Ar^+ with CH4, CD4, and CH2D2

    E-Print Network [OSTI]

    Wyatt, J. R.; Strattan, L. W.; Chivalak, S.; Hierl, Peter M.

    1975-01-01T23:59:59.000Z

    Integral reaction cross sections as a function of initial translational energy (0.4–30 eV c.m.) are reported for isotopic variants of the exoergic ion?molecule reaction Ar++CH4 ? ArH++CH3. The excitation functions, which maximize at about 5 e...

  8. NEPA REVIEW SCREENING FORM DOE/CX-00088 I. Project Title: CH2f...

    Broader source: Energy.gov (indexed) [DOE]

    of release of a haardous substance other than high-level radioactive waste and spent nuclear fuel, including treatment (such as encapsulation, physical or chemical separation,...

  9. Final Technical Report for DOE Grant DE-FG02-08CH11515

    SciTech Connect (OSTI)

    Bernstein, Dr. Ira Mark [University of Vermont

    2012-12-31T23:59:59.000Z

    The year 2008 resulted in 99 scans that were funded through NIH agencies. An additional 43 MRI scans were funded by industry. Over 250 scans were acquired by various investigators as ?pilot? data to be used for future grant applications. While these numbers are modest in comparison to most busy research MRI Centers, they are in line with that of a newly established MRI research facility. The initial 12-18 months of operation were primarily dedicated to establishing new IRB approved research studies, and acquiring pilot data for future grant applications. During the year 2009 the MRI Center continued to show positive growth with respect to funded studies and the number of scan sessions. The number of NIH sponsored scans increased to 242 and the number of industry funded studies climbed to 81. This more than doubled our numbers of funded scans over the previous year. In addition, 398 scans were acquired as pilot data; most of which were fMRI?s. The MRI Center continued to expand with additional researchers who were interested in probing the brain?s response to chronic pain. Other studies looked at regions of brain activation in patients with impulsivity disorders; including smokers. A large majority of the imaging studies were focused on the brain; however, the MRI Center continued to accommodate the needs of various types of investigators, who studied various types of human pathology. Studies of porcine cardiac function and myocardial perfusion were performed. Another study of ultra-fast acute abdominal MRI in children was underway; eventually leading to publication in AJR. These non-neuro type research projects allowed the MRI Center to expand upon the depth and breadth of service that has now become available to researchers at UVM. The UVM MRI Center became the first clinical/research site in North America to install dual radio frequency (RF) amplifiers on a 3T MRI system. The use of dual RF amplifiers helps to eliminate standing wave artifacts that are prevalent at 3T. Standing wave artifacts often rendered spine or abdominal 3T MR images to be poor quality or unreadable prior to the availability of multi-transmit. A research collaboration agreement with Philips Healthcare, Best, Netherlands allowed our site to have first use of the technology; while at the same time giving us the opportunity to provide critical feedback to Philips Healthcare about our experiences with multi-transmit. This dramatically improved image quality for 3T MRI sites across the US and the world. Philips has stationed an onsite MRI physicist at UVM to work collaboratively with researchers at the University of Vermont on various MRI related projects. He has worked collaboratively with UVM investigators toward the design and publication of several journal articles and abstracts during his time at UVM. As the MRI Center advanced through the year 2010, an additional MRI technologist and a MRI physicist were hired to accommodate the increased demand for MRI scanning and data processing expertise. This enabled us to not only expand our hours of operation; it also helped to augment our MRI pulse programming and data processing capabilities. Studies that used state-of-the-art MRI techniques like pseudo continuous arterial spin labeling (pCASL) allowed researchers from the Department of Obstetrics and Reproductive Services to obtain non-contrast brain perfusion values of women to help them to better understand the effects of preeclampsia. At year-end 2010 the MRI Center completed 303 NIH funded and 198 industry funded scans. The number of no charge pilot scans decreased to 189.

  10. DOE Cites CH2M Hill Hanford Group for Price-Anderson Violations |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout » ContactDepartmentEnvironmentalViolations

  11. DOE Cites CH2M Hill Hanford Group, Inc. for Price-Anderson Violations |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout » ContactDepartmentEnvironmentalViolationsDepartment of

  12. DOE Cites CH2M Hill Hanford for Violating Nuclear Safety Rules | Department

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout » ContactDepartmentEnvironmentalViolationsDepartment ofof

  13. DOE Cites CH2M-Washington Group Idaho for Price-Anderson Violations |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout » ContactDepartmentEnvironmentalViolationsDepartment

  14. DOE Selects CH2M Hill Plateau Remediation Company for Plateau Remediation

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »DepartmentLaboratory | Department of Energy

  15. Joint DOE-CH2M HILL News Release For Immediate Release:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron beamJoin HERO Mariners vs. TexasJoinSecurity For

  16. Joint DOE-CH2M HILL News Release For Immediate Release:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron beamJoin HERO Mariners vs. TexasJoinSecurity ForFor

  17. Joint DOE-CH2M HILL News Release Media Contact: For Immediate Release:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron beamJoin HERO Mariners vs. TexasJoinSecurity

  18. Joint DOE-CH2M HILL News Release Media Contact: For Immediate Release:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron beamJoin HERO Mariners vs. TexasJoinSecurityDestry

  19. DOE Cites CH2M Hill Hanford Group, Inc. for Price-Anderson Violations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&D Project for ETTPFeedstockDepartmentof

  20. DOE Cites CH2M-Washington Group Idaho for Price-Anderson Violations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&D Project for ETTPFeedstockDepartmentofDepartment of

  1. In late 2013, the U.S. Department of Energy (DOE), Office of River Protection ch

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other News Community Connections: Your link toina mininglate

  2. Evidence for Methane -Complexes in Reductive Elimination Reactions from TpRh(L)(CH3)H

    E-Print Network [OSTI]

    Jones, William D.

    , the methyl deuteride complex TpRh(L)(CH3)D is observed to rearrange to TpRh(L)(CH2D)H prior to loss of CH3D

  3. DOE Mentoring Program

    Broader source: Energy.gov [DOE]

    The Office of Learning and Workforce Development coordinates this mentoring program for DOE Federal Employees.

  4. DOE Lessons Learned

    Broader source: Energy.gov [DOE]

    DOE Lessons Learned Information Services Catches the Eye of Corporations and Educational Institutions

  5. DOE-FLEX: DOE's Telework Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-07-05T23:59:59.000Z

    The directive establishes the requirements and responsibilities for the Department’s telework program. Canceled by DOE O 314.1.

  6. JASPERSE CHEM 350 TEST 2 VERSION 3 Ch. 4 The Study of Chemical Reactions

    E-Print Network [OSTI]

    Jasperse, Craig P.

    carbons in the following structures as (R) or (S). CH3 H CH3 H HHO 15. Draw (R)-2-bromopentane 16. Draw

  7. JASPERSE CHEM 341 TEST 2 VERSION 3 Ch. 5 The Study of Chemical Reactions

    E-Print Network [OSTI]

    Jasperse, Craig P.

    of the chiral carbons in the following structures as (R) or (S). CH3 H CH3 H HHO 15. Draw (R)-2-bromopentane 16

  8. aliphatic ch bonds: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2015-01-01 39 H-atom high-n Rydberg time-of-flight spectroscopy of CH bond fission in acrolein dissociated at 193 nm Chemistry Websites Summary: H-atom high-n Rydberg...

  9. Imperial College London ChBE London Summer Program 2015

    E-Print Network [OSTI]

    Sherrill, David

    Imperial College London ChBE London Summer Program 2015 (June 28­July 31, 2015) 6 credit hours has taught the London Program twice and GTL twice. Deadline for first payment ($500) with application

  10. Lecture Ch. 5a Surface tension (Kelvin effect)

    E-Print Network [OSTI]

    Russell, Lynn

    1 Lecture Ch. 5a · Surface tension (Kelvin effect) ­ Hygroscopic growth (subsaturated humidity: · Expansion against pressure difference Surface Tension · By definition · By 1st Law (modified for surface) ­ Saturation · Chemical potential (Raoult effect) · Nucleation ­ Competition between surface and chemical

  11. Extension of DOE Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-03-18T23:59:59.000Z

    The following directives are extended until 3-18-06: DOE N 205.8, Cyber Security Requirements for Wireless Devices and Information Systems, dated 2-11-04; DOE N 205.9, Certification and Accreditation Process for Information Systems Including National Security Systems, dated 02-19-04; DOE N 205.10, Cyber Security Requirements for Risk Management, dated 02-19-04; DOE N 205.11, Security Requirements for Remote Access to DOE and Applicable Contractor Information Technology Systems, dated 2-19-04. DOE N 205.12, Clearing, Sanitizing, and Destroying Information System Storage Media, Memory Devices, and Other Related Hardware, dated 2-19-04.

  12. Analysis of the mouse embryonic stem cell regulatory networks obtained by ChIP-chip and ChIP-PET

    E-Print Network [OSTI]

    Mathur, Divya

    Background: Genome-wide approaches have begun to reveal the transcriptional networks responsible for pluripotency in embryonic stem (ES) cells. Chromatin Immunoprecipitation (ChIP) followed either by hybridization to a ...

  13. Vintage DOE: Accomplishments

    Broader source: Energy.gov [DOE]

    This vintage video, from the Office of Scientific and Technical Information and the U.S. Department of Energy Office of Science, does a great job detailing DOE's accomplishments.

  14. DOE-STD-1104

    Office of Environmental Management (EM)

    Implementation 1 DOE-STD-1104-2014 Roll-out AU Roll-out Contacts 2 Garrett Smith, Director, Nuclear Safety Basis and Facility Design, Office of Nuclear Safety (DOE...

  15. DOE Sustainability SPOtlight

    Broader source: Energy.gov [DOE]

    Newsletter highlights the recipients of the U.S. Department of Energy (DOE) Sustainability Performance Office (SPO) 2014 Sustainability Awards.

  16. Extension of DOE Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-02-24T23:59:59.000Z

    This Notice extends the following directives until 2/16/04: DOE N 205.2, Foreign National Access to DOE Cyber Systems, and DOE N 205.3, Password Generation, Protection, and Use, dated 11/23/99-7/1/00.

  17. Extension of DOE Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-02-12T23:59:59.000Z

    The following directives are extended until 8-12-04. DOE N 205.2, Foreign National Access to DOE Cyber Systems, dated 11/1/99. DOE N 205.3, Password Generation, Protection, and Use, dated 11/23/99.

  18. Extension of DOE Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-08-12T23:59:59.000Z

    The following directives are extended until 8-12-05: DOE N 205.2, Foreign National Access to DOE Cyber Security Systems, dated 11-1-99 and DOE N 205.3, Password Generation, Protection, and Use, dated 11-23-99. No cancellations.

  19. Extension of DOE Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-09-15T23:59:59.000Z

    Effective immediately, DOE N 205.2, Foreign National Access to DOE Cyber Systems, dated 11-1-99, and DOE N 205.3, Password Generation, Protection, and Use, dated 11-23-99, are extended until 9-30-06, unless sooner rescinded.

  20. NOx-Mediated Homogeneous Pathways for the Synthesis of Formaldehyde from CH4-O2 Mixtures

    E-Print Network [OSTI]

    Iglesia, Enrique

    CH4 conversion, because weaker C-H bonds in HCHO and CH3OH relative to CH4 lead to their fast that the O2 distribution along a reactor will not improve HCHO yields but may prove useful to inhibit NOx losses to less reactive N-compounds. 1. Introduction The practical conversion of remote natural gas

  1. DOE Testing Reveals Samsung Refrigerator Does Not Meet Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Articles DOE Energy Star Testing Reveals Inefficient ASKO Dishwasher Electrolux Gibson Air Conditioner and Equator Clothes Washer Fail DOE Energy Star Testing DOE Refers Four...

  2. Quantum Rate Coefficients and Kinetic Isotope Effect for the Reaction Cl + CH[subscript 4] ? HCl + CH[subscript 3] from Ring Polymer Molecular Dynamics

    E-Print Network [OSTI]

    Li, Yongle

    Thermal rate coefficients and kinetic isotope effect have been calculated for prototypical heavy–light–heavy polyatomic bimolecular reactions Cl + CH[subscript 4]/CD[subscript 4] ? HCl/DCl + CH[subscript 3]/CD[subscript ...

  3. Subthreshold Photoionization Spectra of CH3I Perturbed by SF6 C. M. Evansa,b

    E-Print Network [OSTI]

    Findley, Gary L.

    1 (1) Subthreshold Photoionization Spectra of CH3I Perturbed by SF6 C. M. Evansa,b , R. Reiningera spectra of pure CH3I (up to 200 mbar) and CH3I doped into SF6 (up to 1 bar). At the high pressures studied number density (pure CH3I) and SF6 number density (CH3I doped into SF6) shows a quadratic dependence

  4. DOE handbook electrical safety

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    Electrical Safety Handbook presents the Department of Energy (DOE) safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety guidance and information for DOE installations to effect a reduction or elimination of risks associated with the use of electrical energy. The objectives of this handbook are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  5. Bio390 Study Questions for S-N Ch. 2 --Blood 1. Know S-N's list of 10 general functions/properties of blood.

    E-Print Network [OSTI]

    Prestwich, Ken

    effects of temperature, pH, CO2, PO4 2-, and ionic strength on the ability of hemoglobin to bind oxygenBio390 Study Questions for S-N Ch. 2 -- Blood Spring '01 1. Know S-N's list of 10 general functions/properties tends to decrease as body size increases. How does a relatively high P50 serve as an adaptation in small

  6. DOE/CF-0088

    Office of Environmental Management (EM)

    used to effectively improve coordination between other parts of DOE. EM has developed 16 corporate performance measures to enable the program to monitor annual and life-cycle...

  7. DOE Electricity Advisory Committee

    Office of Environmental Management (EM)

    limiters (SCCL) or fault current limiters are a family of technologies that can be applied to utility power delivery systems to address the growing problems associated with DOE...

  8. DOE Technical Assistance Program

    Broader source: Energy.gov (indexed) [DOE]

    Designing Effective Residential Retrofit Programs eere.energy.gov The Parker Ranch installation in Hawaii DOE Technical Assistance Program Quality Assurance for Residential...

  9. DOE Building Technologies Program

    Energy Savers [EERE]

    501c3 * DOE will continue to support SEED, and Lawrence Berkeley National Laboratory (LBNL) will provide oversight of the code, while the permanent management plan is established...

  10. DOE Explosives Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-03-29T23:59:59.000Z

    This Manual describes DOE's explosives safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives.

  11. DOE Radiation Records Contacts List

    Broader source: Energy.gov [DOE]

    DOE radiation records contact list for individuals to obtain records of occupational exposure directly from a DOE site.

  12. DOE standard: Radiological control

    SciTech Connect (OSTI)

    Not Available

    1999-07-01T23:59:59.000Z

    The Department of Energy (DOE) has developed this Standard to assist line managers in meeting their responsibilities for implementing occupational radiological control programs. DOE has established regulatory requirements for occupational radiation protection in Title 10 of the Code of Federal Regulations, Part 835 (10 CFR 835), ``Occupational Radiation Protection``. Failure to comply with these requirements may lead to appropriate enforcement actions as authorized under the Price Anderson Act Amendments (PAAA). While this Standard does not establish requirements, it does restate, paraphrase, or cite many (but not all) of the requirements of 10 CFR 835 and related documents (e.g., occupational safety and health, hazardous materials transportation, and environmental protection standards). Because of the wide range of activities undertaken by DOE and the varying requirements affecting these activities, DOE does not believe that it would be practical or useful to identify and reproduce the entire range of health and safety requirements in this Standard and therefore has not done so. In all cases, DOE cautions the user to review any underlying regulatory and contractual requirements and the primary guidance documents in their original context to ensure that the site program is adequate to ensure continuing compliance with the applicable requirements. To assist its operating entities in achieving and maintaining compliance with the requirements of 10 CFR 835, DOE has established its primary regulatory guidance in the DOE G 441.1 series of Guides. This Standard supplements the DOE G 441.1 series of Guides and serves as a secondary source of guidance for achieving compliance with 10 CFR 835.

  13. Thermochemical Insight into the Reduction of CO to CH3OH with [Re(CO)]+ and [Mn(CO)]+ Complexes

    SciTech Connect (OSTI)

    Wiedner, Eric S.; Appel, Aaron M.

    2014-05-22T23:59:59.000Z

    To gain insight into thermodynamic barriers for reduction of CO into CH3OH, free energies for reduction of [CpRe(PPh3)(NO)(CO)]+ into CpRe(PPh3)(NO)(CH2OH) have been determined from experimental measurements. Using model complexes, the free energies for the transfer of H+, H–, and e– have been determined. A pKa of 10.6 was estimated for [CpRe(PPh3)(NO)(CHOH)]+ by measuring the pKa for the analogous [CpRe(PPh3)(NO)(CMeOH)]+. The hydride donor ability (?G°H–) of CpRe(PPh3)(NO)(CH2OH) was estimated to be 58.0 kcal mol–1, based on calorimetry measurements of the hydride transfer reaction between CpRe(PPh3)(NO)(CHO) and [CpRe(PPh3)(NO)(CHOMe)]+ to generate the methylated analog, CpRe(PPh3)(NO)(CH2OMe). Cyclic voltammograms recorded on CpRe(PPh3)(NO)(CMeO), CpRe(PPh3)(NO)(CH2OMe), and [CpRe(PPh3)(NO)(CHOMe)]+ displayed either a quasireversible oxidation (neutral species) or reduction (cationic species). These potentials were used as estimates for the oxidation of CpRe(PPh3)(NO)(CHO) or CpRe(PPh3)(NO)(CH2OH), or the reduction of [CpRe(PPh3)(NO)(CHOH)]+. Combination of the thermodynamic data permits construction of three-dimensional free energy landscapes under varying conditions of pH and PH2. The free energy for H2 addition (?G°H2) to [CpRe(PPh3)(NO)(CO)]+ (+15 kcal mol–1) was identified as the most significant thermodynamic impediment for the reduction of CO. DFT computations indicate that ?G°H2 varies by only 4.3 kcal mol–1 across a series of [CpXRe(L)(NO)(CO)]+, while the experimental ?G°H– values for the analogous series of CpRe(PPh3)(NO)(CHO) varies by 12.9 kcal mol–1. The small range of ?G°H2 values is attributed to a minimal change in the C–O bond polarization upon modification of the ancillary ligands, as determined from the computed atomic charges. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.

  14. DOE Explosives Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-01-09T23:59:59.000Z

    The Manual describes the Departments explosive safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives. Cancels DOE M 440.1-1. Canceled by DOE O 440.1B Chg 1.

  15. Ch.2 Solar Energy to Earth and the Seasons

    E-Print Network [OSTI]

    Pan, Feifei

    -Output Energy=Storage Change #12;Learning Objective Four: The Seasons #12;The Seasons SeasonalityCh.2 Solar Energy to Earth and the Seasons #12;Learning Objective One: The Solar System #12;Milky Aphelion ­ farthest, on July 4 152,083,000 km #12;Learning Objective Two: The Solar Energy #12;What

  16. People's Physics Book Ch13-1 The Big Ideas

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    People's Physics Book Ch13-1 The Big Ideas: The name electric current is given to the phenomenon of the power source, you need the total resistance of the circuit and the total current: Vtotal = ItotalRtotal. · Power is the rate that energy is released. The units for power are Watts (W), which equal Joules per

  17. People's Physics Book Ch 16-1 The Big Idea

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    People's Physics Book Ch 16-1 The Big Idea Modern circuitry depends on much more than just elements. An active circuit element needs an external source of power to operate. This differentiates them. base emitter collector Diodes have an arrow showing the direction of the flow. #12;People's Physics

  18. AT 351 Lab 3: Seasons and Surface Temperature (Ch. 3)

    E-Print Network [OSTI]

    Rutledge, Steven

    an important role in an area's local vertical temperature distribution. Below, Figure 1 shows the verticalAT 351 Lab 3: Seasons and Surface Temperature (Ch. 3) Question #1: Seasons (20 pts) A. In your own words, describe the cause of the seasons. B. In the Northern Hemisphere we are closer to the sun during

  19. Molecular Dynamics of Methanol Monocation (CH3OH+ ) in Strong

    E-Print Network [OSTI]

    Schlegel, H. Bernhard

    Molecular Dynamics of Methanol Monocation (CH3OH+ ) in Strong Laser Fields Bishnu Thapa and H surfaces of methanol neutral, monocation, and singlet and triplet dication were explored using the CBS in the presence of a 2.9 × 1014 W/cm2 800 nm laser field for methanol monocation on the ground state potential

  20. ChE 210A M. F. Doherty Thermodynamics

    E-Print Network [OSTI]

    Bigelow, Stephen

    ChE 210A M. F. Doherty Thermodynamics Instructor: Michael F. Doherty (mfd@engineering.ucsb.edu, 893 is an introduction to the fundamentals of classical and statistical thermodynamics. We focus on equilibrium are formulated using either classical or statistical thermodynamics, and these methods have found wide

  1. Lecture Ch. 2a Energy and heat capacity

    E-Print Network [OSTI]

    Russell, Lynn

    machine! Conservation of energy! Definition of energy! Uniqueness of work values! Q = 0,W = 0 ! "E = 0 ! E1 Lecture Ch. 2a · Energy and heat capacity ­ State functions or exact differentials ­ Internal energy vs. enthalpy · 1st Law of thermodynamics ­ Relate heat, work, energy · Heat/work cycles (and path

  2. Lecture Ch. 2a Energy and heat capacity

    E-Print Network [OSTI]

    Russell, Lynn

    of energy Definition of energy Uniqueness of work values Q = 0,W = 0 E = 0 E2 = E1 Q = 0 E = W Wrev1 Lecture Ch. 2a · Energy and heat capacity ­ State functions or exact differentials ­ Internal energy vs. enthalpy · 1st Law of thermodynamics ­ Relate heat, work, energy · Heat/work cycles (and path

  3. Enantioselective nickel catalysis : exploiting activated C-H bonds

    E-Print Network [OSTI]

    Bencivenga, Nicholas Ernest

    2012-01-01T23:59:59.000Z

    A method for the nickel-catalyzed cross-coupling between benzoxazole and secondary halides was explored. This method was to make use of the activated C-H bond found in benzoxazole at the 2-position to generate the nucleophilic ...

  4. FIBER ORIENTATION MEASUREMENTS IN COMPOSITE MATERIALS , Ch. GERMAIN1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 FIBER ORIENTATION MEASUREMENTS IN COMPOSITE MATERIALS R. BLANC1 , Ch. GERMAIN1 , J.P. DA COSTA1 for the physical properties of composite materials. The theoretical parameters of a given reinforcement are usually. Our method has been successfully applied to the characterization of carbon reinforcement of composite

  5. Seismic Tomography: Definitions Lapo Boschi (lapo@erdw.ethz.ch)

    E-Print Network [OSTI]

    Boschi, Lapo

    Tomography Seismic tomography is the science of interpreting seismic measurements (seismograms) to derive; that is to say, solve the seismological inverse problem. Seismic data and their interpretation Seismic stationsSeismic Tomography: Definitions Lapo Boschi (lapo@erdw.ethz.ch) September 14, 2009 Seismic

  6. Open Source Ch Control System Toolkit and Web-Based

    E-Print Network [OSTI]

    Cheng, Harry H.

    Open Source Ch Control System Toolkit and Web-Based Control System Design for Teaching Automatic, and WCCDM for teaching automatic control of linear time-invariant systems is presented. With the CCST.20454 Keywords: control systems; Web-based education INTRODUCTION Automatic control has become a major

  7. Ch 20. Magnetism Liu UCD Phy1B 2012 1

    E-Print Network [OSTI]

    Yoo, S. J. Ben

    Ch 20. Magnetism Liu UCD Phy1B 2012 1 #12;I. MagnetI. Magnet Poles of a magnet: magnetic effect is strongest When the magnet is freely suspended North pole: pointing to north South pole: pointing to south Poles always come in pairs Liu UCD Phy1B 2012 2 #12;Magnetic MaterialsMagnetic Materials Magnetite Fe3O4

  8. 1997 by M. Kostic Ch.4: Probability and Statistics

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    1 ©1997 by M. Kostic Ch.4: Probability and Statistics Variations due to: · Measurement System. ©1997 by M. Kostic Statistical Measurement Theory · Sample - a set of measured data · Measurand - measured variable · (True) mean value: (x') xmean #12;2 ©1997 by M. Kostic Mean Value and Uncertainty x

  9. Lecture Ch. 5a Surface tension (Kelvin effect)

    E-Print Network [OSTI]

    Russell, Lynn

    1 Lecture Ch. 5a · Surface tension (Kelvin effect) ­ Hygroscopic growth (subsaturated humidity Surface Tension · By definition · By 1st Law (modified for surface area change) Kelvin Effect · Force: What happens to condensed H2O? ­ Precipitation processes Surface Thermodynamics · Surfaces require

  10. Radiological Protection for DOE Activities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-29T23:59:59.000Z

    Establishes radiological protection program requirements that, combined with 10 CFR 835 and its associated implementation guidance, form the basis for a comprehensive program for protection of individuals from the hazards of ionizing radiation in controlled areas. Extended by DOE N 441.3. Cancels DOE 5480.11, DOE 5480.15, DOE N 5400.13, DOE N 5480.11; please note: the DOE radiological control manual (DOE/EH-0256T)

  11. DOE-STD-5506-2007 DOE STANDARD

    E-Print Network [OSTI]

    DOE-STD-5506-2007 April 2007 DOE STANDARD Preparation of Safety Basis Documents for Transuranic on the Department of Energy Technical Standards Program Web Site at Http://tis.eh.doe.gov/techstds/ #12;DOE-STD-5506 STATEMENT A. Approved for public release; distribution is unlimited. #12;DOE-STD-5506-2007 ii Available

  12. Approved Module Information for CH1102, 2014/5 Module Title/Name: Organic Chemistry I Module Code: CH1102

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    : CH1102 School: Engineering and Applied Science Module Type: Standard Module New Module? No Module of Delivery Learning Hours Lecture: 12 hours Tutorial: 2 hours Lab Session: 16 hours Independent Study: 70 reading, tutorial support, supervised laboratory sessions Module Assessment Methods of Assessment

  13. Approved Module Information for CH3115, 2014/5 Module Title/Name: Inorganic Chemistry III Module Code: CH3115

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    Code: CH3115 School: Engineering and Applied Science Module Type: Standard Module New Module? No Module is provided. The fields of Homogeneous Catalysis and Heterogeneous Catalysis are introduced and basic aspects homogeneous and heterogenous catalytic process), hydroformylation (homogeneous catalysis), ammonia synthesis

  14. Identification of Transcription Factor Binding Sites Derived from Transposable Element Sequences Using ChIP-seq

    E-Print Network [OSTI]

    Jordan, King

    unnoticed using conservation screens. Here, we describe a simple pipeline method for using data generated through ChIP-seq to identify TE-derived TFBS. Key words: Transposable elements, ChIP-seq, gene regulation

  15. Salinity-induced hydrate dissociation: A mechanism for recent CH4 release on Mars

    SciTech Connect (OSTI)

    Madden, Megan Elwood [ORNL; Ulrich, Shannon M [ORNL; Onstott, Tullis [Princeton University; Phelps, Tommy Joe [ORNL

    2007-01-01T23:59:59.000Z

    Recent observations of CH4 in the Martian atmosphere suggest that CH4 has been added relatively recently. Several mechanisms for recent CH4 release have been proposed including subsurface biological methanogenesis, abiogenic hydrothermal and/or volcanic activity, dissociation of CH4 hydrates, atmospheric photolysis, or addition of organics via bolide impact. This study examines the effects of increasing salinity on gas hydrate stability and compares estimates of the Martian geothermal gradient to CH4 and CO2 hydrate stability fields in the presence of high salinity brines. The results demonstrate that salinity increases alone result in a significant decrease in the predicted hydrate stability zone within the Martian subsurface and may be a driving force in CH4 hydrate destabilization. Active thermal and/or pressure fluctuations are not required in order for CH4 hydrates to be the source of atmospheric CH4.

  16. Isomerization of Acetonitrile N-Methylide [CH3CNCH2]+ and N-Methylketenimine [CH3NCCH2]+ Radical Cations in the Gas Phase: Theoretical Study of the [C3,H5,N]+

    E-Print Network [OSTI]

    Nguyen, Minh Tho

    Isomerization of Acetonitrile N-Methylide [CH3CNCH2]·+ and N-Methylketenimine [CH3NCCH2]·+ Radical(d,p) basis set show that acetonitrile N-methylide [CH3CNCH2]·+, a·+, and N-methylketenimine [CH3NCCH2]·+, b with acetonitrile and methyl isocyanide to generate acetonitrile N-methylide [CH3-CtN-CH2]·+, a·+, and N

  17. Chem 350 Jasperse Ch. 3 Handouts 1 ALKANE NAMES (Memorize) (Sections 3.2)

    E-Print Network [OSTI]

    Jasperse, Craig P.

    C) Structure 1 Methane CH4 -162 H-(CH2)-H 2 Ethane C2H6 -89 H-(CH2)2-H 3 Propane C3H8 -42 H-(CH2)3-H 4 Butane C "Petroleum Gas" C2-C4 Propane C3 -42º Propane tanks, camping, etc. Gasoline C4-C9 30-180º

  18. Theoretical Studies of the sp2 C-H Bond Activation

    E-Print Network [OSTI]

    Burke, Kieron

    ring sp2 C-H bond and the methyl sp3 C-H bond are explored. The energies to form the 2 -(N products for both thorium and uranium systems with similar reaction energies of -15.8 kcal(IV) and uranium(IV) alkyl complexes (C5Me5)2AnR2 (where An ) Th, U; R ) CH3, CH2Ph, Ph) have proven

  19. Independent Activity Report, CH2M Hill Plateau Remediation Company- January 2011

    Broader source: Energy.gov [DOE]

    Review of the CH2M Hill Plateau Remediation Company Unreviewed Safety Question Procedure [ARPT-RL-2011-003

  20. DOE 2014 Biomass Conference

    Broader source: Energy.gov [DOE]

    Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels DOE 2014 Biomass Conference Jim Williams, Senior Manager, American Petroleum Institute

  1. DOE/EA-2002

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Western Area Power Administration's Right-of-Way Application for the Tucson-Apache 115-kV Transmission Line Tohono O'odham Nation, San Xavier District, Pima County, Arizona (DOE...

  2. DOE Corporate FEOSH

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) Federal Employee Occupational Safety and Health (FEOSH) Program web site is the connection to current safety and health news and issues: Departmental special emphasis initiatives, upcoming activities, resources, contacts, and much, much more.

  3. DOE Technical Assistance Program

    Broader source: Energy.gov (indexed) [DOE]

    Solid-State Solutions for Municipal Lighting: What You'll Need to Know eere.energy.gov The Parker Ranch installation in Hawaii DOE Technical Assistance Program Solid-State...

  4. Near-infrared electronic spectrum of CH2 Jennifer L. Gottfried and Takeshi Okaa)

    E-Print Network [OSTI]

    Oka, Takeshi

    Near-infrared electronic spectrum of CH2 ¿ Jennifer L. Gottfried and Takeshi Okaa) Department B1( u)X~ 2 A1 electronic transition of CH2 have been observed in the near infrared from 11 000 of CH2 was reported by our group in 1992 as the infrared vibration­ rotation spectrum of the 3 band

  5. 2001 by M. Kosticwww.kostic.niu.edu Ch.3: Measurement System Behavior

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    1 ©2001 by M. Kosticwww.kostic.niu.edu Ch.3: Measurement System Behavior · Ch.3: Measurement System) · Magnitude ratio (2nd O.S.) · Phase shift (2nd O.S.) · 2nd Order System (MathCAD) · The End ©2001 by M. Kosticwww.kostic.niu.edu Ch.3:MeasurementSystem Behavior #12;2 ©2001 by M. Kosticwww

  6. NETWORKS OF LAW ENCODING DIAGRAMS FOR UNDERSTANDING Peter C-H. Cheng

    E-Print Network [OSTI]

    Cheng, Peter

    NETWORKS OF LAW ENCODING DIAGRAMS FOR UNDERSTANDING SCIENCE. Peter C-H. Cheng ESRC Centre learning environments based on LEDs are considered. Cheng, P. C.-H. (1999). Networks of Law Encoding Diagrams for understanding science. European Journal of Psychology of Education, 14(2), 167-184. #12;P. C-H

  7. MODELING THE EMISSIONS OF NITROUS OXIDE (N20) AND METHANE (CH 4) FROM THE

    E-Print Network [OSTI]

    MODELING THE EMISSIONS OF NITROUS OXIDE (N20) AND METHANE (CH 4) FROM THE TERRESTRIAL BIOSPHERE;2 #12;MODELING THE EMISSIONS OF NITROUS OXIDE (N 20) AND METHANE (CH 4) FROM THE TERRESTRIAL BIOSPHERE cli- mate has on natural emissions of N2 0 and CH4 from the terrestrial biosphere to the atmosphere

  8. Interactions between wetlands CH4 emissions and climate at global scale

    E-Print Network [OSTI]

    Canet, Léonie

    emissions? Observations Introduction Tool Wetlands emissions [CH4 ]atmo Feedback Conclusion #12;[CO2 ]atmo e.g.: Climate (T) CO2 anthropogenic emissions wetlands CH4 emissions Under future climate change, Shindell et al. (2004) => +78% under climate change generated by 2xCO2 Introduction Tool Wetlands emissions [CH4

  9. Identifying a Collaborating DOE Laboratory Scientist | U.S. DOE...

    Office of Science (SC) Website

    Identifying a Collaborating DOE Laboratory Scientist DOE Office of Science Graduate Student Research (SCGSR) Program SCGSR Home Eligibility Benefits Participant Obligations How to...

  10. Does Doctrine Drive Technology or Does Technology Drive Doctrine?

    E-Print Network [OSTI]

    Blasko, Dennis

    2010-01-01T23:59:59.000Z

    Brief No. 4 September 2010 Does Doctrine Drive Technology orDoes Technology Drive Doctrine? Dennis Blasko Summary Wthat emphasizes strategy over technology and may hold some

  11. DOE Policy on Decommissioning DOE Facilities Under CERCLA

    Broader source: Energy.gov [DOE]

    In May 1995, the Department of Energy (DOE) issued a policy in collaboration with the Environmental Protection Agency (EPA) for decommissioning surplus DOE facilities consistent with the...

  12. Complete Phase I Tests As Described in the Multi-lab Test Plan for the Evaluation of CH3I Adsorption on AgZ

    SciTech Connect (OSTI)

    Bruffey, S. H. [ORNL; Jubin, R. T. [ORNL

    2014-09-30T23:59:59.000Z

    Silver-exchanged mordenite (AgZ) has been identified as a potential sorbent for iodine present in the off-gas streams of a used nuclear fuel reprocessing facility. In such a facility, both elemental and organic forms of iodine are released from the dissolver in gaseous form. These species of iodine must be captured with high efficiency for a facility to avoid radioactive iodine release above regulatory limits in the gaseous effluent of the plant. Studies completed at Idaho National Laboratory (INL) examined the adsorption of organic iodine in the form of CH3I by AgZ. Upon breakthrough of the feed gas through the sorbent bed, elemental iodine was observed in the effluent stream, despite the fact that the only source of iodine in the system was the CH3I in the feed gas.1 This behavior does not appear to have been reported previously nor has it been independently confirmed. Thus, as a result of these prior studies, multiple knowledge gaps relating to the adsorption of CH3I by AgZ were identified, and a multi-lab test plan, including Oak Ridge National Laboratory (ORNL), INL, Pacific Northwest National Laboratory (PNNL), and Sandia National Laboratories, was formulated to address each in a systematic way.2 For this report, the scope of work for ORNL was further narrowed to three thin-bed experiments that would characterize CH3I adsorption onto AgZ in the presence of water, NO, and NO2. Completion of these three-thin bed experiments demonstrated that organic iodine in the form of CH3I was adsorbed by reduced silver mordenite (Ag0Z) to a 50% higher loading than that of I2 when adsorbed from a dry air stream. Adsorption curves suggest different adsorption mechanisms for I2 and CH3I. In the presence of NO and NO2 gas, the loading of CH3I onto Ag0Z is suppressed and may be reversible. Further, the presence of NO and NO2 gas appears to oxidize CH3I to I2; this is indicated by an adsorption curve similar to that of I2 on Ag0Z. Finally, the loss of organic iodine loading capacity by Ag0Z in the presence of NOx is unaffected by the addition of water vapor to the gas stream; no marked additional loss in capacity or retention was observed.

  13. DOE Corporate Operating Experience Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-04-08T23:59:59.000Z

    The Order institutes a DOE wide program for the management of operating experience to prevent adverse operating incidents and facilitate the sharing of good work practices among DOE sites. Cancels DOE O 210.2.

  14. DOE Directives | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    DOE O 414.1D, Quality Assurance DOE G 414.1-2B Admin Change 1, Quality Assurance Program Guide DOE O 221.1A, Reporting Fraud, Waste and Abuse to the Office of the Inspector...

  15. de Lange Lab Chromatin Immunoprecipitation (ChIP)

    E-Print Network [OSTI]

    de Lange, Titia

    with cold PBS x 2. 7. Scrape cells in ~ 10 ml PBS into 50 ml conical tube . Spin down cells. 8. Combine cell. The remainder can be kept at 4ºC and reused, but add sodium azide before storage. ChIP Protocol Timeline Day 1IP) protocol 3 Preparing the lysate 1. Grow cells to subconfluence. Set up experiment for 10 IPs. For primary

  16. Ch 15. Thermodynamics Liu UCD Phy1B 2012 1

    E-Print Network [OSTI]

    Yoo, S. J. Ben

    Ch 15. Thermodynamics Liu UCD Phy1B 2012 1 #12;I The First Law of ThermodynamicsI. The First Law of Thermodynamics Closed system: U=Q-Wy Q U Internal energy: all the energy of the moleculesgy gy for an ideal gas1B 2012 2 #12;Thermodynamic ProcessesThermodynamic Processes Isothermal: T=0, U=0, Q=W Adiabatic: Q

  17. Efficiency of formation of CH{sub 3}O in the reaction of CH{sub 3}O{sub 2} with ClO

    SciTech Connect (OSTI)

    Biggs, P.; Canosa-Mas, C.E.; Frachebound, J.M. [Physical Chemistry Laboratory, Oxford (United Kingdom)] [Physical Chemistry Laboratory, Oxford (United Kingdom)

    1995-05-15T23:59:59.000Z

    Employing a discharge-flow apparatus the authors measure the branching ratio for the reaction of ClO with CH{sub 3}O{sub 2} to the formation of CH{sub 3}O. The CH{sub 3}O{sub 2} is formed in the stratosphere from the reaction of Cl with CH{sub 4}. This branching ratio is of interest to determine if a chain of reactions through it could be a contributor to the stratospheric decomposition of ozone.

  18. DOE explosives safety manual

    SciTech Connect (OSTI)

    Not Available

    1991-10-01T23:59:59.000Z

    The Department of Energy (DOE) policy requires that all DOE activities be conducted in a manner that protects the safety of the public and provides a safe and healthful workplace for employees. DOE has also prescribed that all personnel be protected in any explosives operation undertaken. The level of safety provided shall be at least equivalent to that of the best industrial practice. The risk of death or serious injury shall be limited to the lowest practicable minimum. DOE and contractors shall continually review their explosives operations with the aim of achieving further refinements and improvements in safety practices and protective features. This manual describes the Department's explosive safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives. It is intended to reflect the state-of-the-art in explosives safety. In addition, it is essential that applicable criteria and requirements for implementing this policy be readily available and known to those responsible for conducting DOE programs.

  19. DOE F 740-MX

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRU Waste Cleanup at1450.5B OMB3.2 DOE F580.1 DOE F

  20. DOE O 451

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014ContributingDOE Contract DOE Internationalwith 17O 451.1B Chg 3

  1. About | DOE Data Explorer

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Garyand TechnicalAbout About DOE Data Explorer The DOE

  2. DOE FOIA Request Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OF CALCIUMCOST MANAGEMENT REPORT Page of DOE2 DOE

  3. Feedback | DOE PAGES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget » FYU.S. DOE Office ofPublic Access Feedback

  4. Research by BNL investigators was performed under the auspices of the U.S. Department of Energy under Contract No. DE-AC02-DOE research on atmospheric aerosols

    E-Print Network [OSTI]

    of Energy under Contract No. DE-AC02- 98CH10886. BNL-62609 DOE research on atmospheric aerosols S.E. Schwartz NASA Aerosol Interdisciplinary Program Workshop, Columbia, MD, Oct. 30-Nov. 1, 1995, and ecosystem research. Atmospheric aerosols are the subject of a significant component of research within DOE

  5. DOE Corporate Operating Experience Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-06-12T23:59:59.000Z

    The Order establishes a DOE wide program for management of operating experience to prevent adverse operating incidents and to expand the sharing of good work practices among DOE sites. Canceled by DOE O 210.2A. Does not cancel other directives.

  6. Role of impact parameter in branching reactions: Chemical accelerator studies of the reaction Xe++CH4?XeCH3 ++H

    E-Print Network [OSTI]

    Miller, G. D.; Strattan, L. W.; Hierl, Peter M.

    1981-01-01T23:59:59.000Z

    Integral reaction cross sections and product velocity distributions have been measured for the ion–molecule reaction Xe+(CH4,H)XeCH3 + over the relative reactant translational energy range of 0.7–5.5 eV by chemical accelerator techniques...

  7. Approved Module Information for CH3102, 2014/5 Module Title/Name: Advances in Biomaterials Science Module Code: CH3102

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    Approved Module Information for CH3102, 2014/5 Module Title/Name: Advances in Biomaterials Science Module Code: CH3102 School: Engineering and Applied Science Module Type: Standard Module New Module of lectures, directed reading and tutorial support Module Assessment Methods of Assessment & associated

  8. A Single Transition State Serves Two Mechanisms. The Branching Ratio for CH2O-+ CH3Cl on Improved Potential Energy Surfaces

    E-Print Network [OSTI]

    Schlegel, H. Bernhard

    for this reaction has been studied by ab initio molecular dynamics (AIMD). The energies of transition states change of the potential energy surface around the transition state may vary the branching ratioA Single Transition State Serves Two Mechanisms. The Branching Ratio for CH2O·- + CH3Cl on Improved

  9. Formation and Characterization of Acetonitrile N-Methylide [CH3CNCH2]+ and N-Methylketenimine [CH3NCCH2]+ Radical Cations in the Gas Phase

    E-Print Network [OSTI]

    Nguyen, Minh Tho

    Formation and Characterization of Acetonitrile N-Methylide [CH3CNCH2]·+ and N-Methylketenimine [CH3 Palaiseau Cedex, France ReceiVed: July 24, 1997; In Final Form: NoVember 4, 1997 Acetonitrile N by ion-molecule reactions between ionized cyclobutanone or ionized ketene and acetonitrile or methyl

  10. DOE JGI Welcome Remarks

    SciTech Connect (OSTI)

    Bristow, Jim [DOE Joint Genome Institute

    2010-06-03T23:59:59.000Z

    Jim Bristow, Deputy Director of Programs at the DOE Joint Genome Institute, discusses the impact of advances in sequencing technologies on large genome centers on June 3, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM

  11. chApter 1. Introduction to Synthesis of Current Science 1 Regarding Cumulative Watershed Effects of Fuel

    E-Print Network [OSTI]

    Watershed Effects of Fuel Reduction Treatments Douglas F. Ryan chApter 2. Fire Regimes and Ecoregions 7 Robert G. Bailey chApter 3. Fuel Management in Forests of the Inland West 19 Russell T. Graham, Theresa B. Jain, Susan Matthews chApter 4. Tools for Fuel Management 69 Bob Rummer chApter 5. Fuel Management

  12. Contrasting wetland CH4 emission responses to simulated glacial atmospheric CO2 in temperate bogs and fens

    E-Print Network [OSTI]

    Gauci, Vincent

    Contrasting wetland CH4 emission responses to simulated glacial atmospheric CO2 in temperate bogs, glacial, Last Glacial Maximum (LGM), methane (CH4), peatland, wetland. Summary · Wetlands were the largest (n = 8 per treatment) and measured gaseous CH4 flux, pore water dissolved CH4 and volatile fatty acid

  13. ChEAS Data: The Chequamegon Ecosystem Atmosphere Study

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Davis, Kenneth J. [Penn State

    The Chequamegon Ecosystem-Atmosphere Study (ChEAS) is a multi-organizational research effort studying biosphere/atmosphere interactions within a northern mixed forest in Northern Wisconsin. A primary goal is to understand the processes controlling forest-atmosphere exchange of carbon dioxide and the response of these processes to climate change. Another primary goal is to bridge the gap between canopy-scale flux measurements and the global CO2 flask sampling network. The ChEAS flux towers participate in AmeriFlux, and the region is an EOS-validation site. The WLEF tower is a NOAA-CMDL CO2 sampling site. ChEAS sites are primarily located within or near the Chequamegon-Nicolet National Forest in northern Wisconsin, with one site in the Ottawa National Forest in the upper peninsula of Michigan. Current studies observe forest/atmosphere exchange of carbon dioxide at canopy and regional scales, forest floor respiration, photosynthesis and transpiration at the leaf level and use models to scale to canopy and regional levels. EOS-validation studies quantitatively assess the land cover of the area using remote sensing and conduct extensive ground truthing of new remote sensing data (i.e. ASTER and MODIS). Atmospheric remote sensing work is aimed at understanding atmospheric boundary layer dynamics, the role of entrainment in regulating the carbon dioxide mixing ratio profiles through the lower troposphere, and feedback between boundary layer dynamics and vegetation (especially via the hydrologic cycle). Airborne studies have included include balloon, kite and aircraft observations of the CO2 profile in the troposphere.

  14. Manganese Porphyrins Catalyze Selective C-H Bond Halogenations

    SciTech Connect (OSTI)

    Liu, Wei; Groves, John T

    2010-01-01T23:59:59.000Z

    We report a manganese porphyrin mediated aliphatic C?H bond chlorination using sodium hypochlorite as the chlorine source. In the presence of catalytic amounts of phase transfer catalyst and manganese porphyrin Mn(TPP)Cl 1, reaction of sodium hypochlorite with different unactivated alkanes afforded alkyl chlorides as the major products with only trace amounts of oxygenation products. Substrates with strong C?H bonds, such as neopentane (BDE =?100 kcal/mol) can be also chlorinated with moderate yield. Chlorination of a diagnostic substrate, norcarane, afforded rearranged products indicating a long-lived carbon radical intermediate. Moreover, regioselective chlorination was achieved by using a hindered catalyst, Mn(TMP)Cl, 2. Chlorination of trans-decalin with 2 provided 95% selectivity for methylene-chlorinated products as well as a preference for the C2 position. This novel chlorination system was also applied to complex substrates. With 5?-cholestane as the substrate, we observed chlorination only at the C2 and C3 positions in a net 55% yield, corresponding to the least sterically hindered methylene positions in the A-ring. Similarly, chlorination of sclareolide afforded the equatorial C2 chloride in a 42% isolated yield. Regarding the mechanism, reaction of sodium hypochlorite with the Mn{sup III} porphyrin is expected to afford a reactive Mn{sup V}?O complex that abstracts a hydrogen atom from the substrate, resulting in a free alkyl radical and a Mn{sup IV}—OH complex. We suggest that this carbon radical then reacts with a Mn{sup IV}—OCl species, providing the alkyl chloride and regenerating the reactive Mn{sup V}?O complex. The regioselectivity and the preference for CH{sub 2} groups can be attributed to nonbonded interactions between the alkyl groups on the substrates and the aryl groups of the manganese porphyrin. The results are indicative of a bent [Mn{sup v}?O---H---C] geometry due to the C—H approach to the Mn{sup v}?O (d??p?)* frontier orbital.

  15. L: Shape-based peak identification for ChIPSeq

    E-Print Network [OSTI]

    Valerie Hower; Steven N. Evans; Lior Pachter

    Abstract. We present a new algorithm for the identification of bound regions from ChIP-seq experiments. Our method for identifying statistically significant peaks from read coverage is inspired by the notion of persistence in topological data analysis and provides a non-parametric approach that is robust to noise in experiments. Specifically, our method reduces the peak calling problem to the study of tree-based statistics derived from the data. We demonstrate the accuracy of our method on existing datasets, and we show that it can discover previously missed regions and can more clearly discriminate between multiple binding events.

  16. Pyrolysis and Combustion of Acetonitrile (CH{sub 3}CN)

    SciTech Connect (OSTI)

    Britt, P.F.

    2002-05-22T23:59:59.000Z

    Acetonitrile (CH{sub 3}CN) is formed from the thermal decomposition of a variety of cyclic, noncyclic, and polymeric nitrogen-containing compounds such as pyrrole and polyacrylonitrile. The pyrolysis and combustion of acetonitrile have been studied over the past 30 years to gain a more detailed understanding of the complex mechanisms involved in the release of nitrogen-containing compounds such as hydrogen cyanide (HCN) in fires and nitrogen oxides (NOx) in coal combustion. This report reviews the literature on the formation of HCN and NOx from the pyrolysis and combustion of acetonitrile and discusses the possible products found in an acetonitrile fire.

  17. Final Report for the DOE Metal Hydride Center of Excellence

    Broader source: Energy.gov (indexed) [DOE]

    stable, the carbon aerogels are more widely available. For LiBH 4 confined in carbon aerogel, preliminary measurements of CH 4 formation during dehydrogenation showed that CH...

  18. 1979 DOE statistical symposium

    SciTech Connect (OSTI)

    Gardiner, D.A.; Truett T. (comps. and eds.)

    1980-09-01T23:59:59.000Z

    The 1979 DOE Statistical Symposium was the fifth in the series of annual symposia designed to bring together statisticians and other interested parties who are actively engaged in helping to solve the nation's energy problems. The program included presentations of technical papers centered around exploration and disposal of nuclear fuel, general energy-related topics, and health-related issues, and workshops on model evaluation, risk analysis, analysis of large data sets, and resource estimation.

  19. DOE/CF-0090

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014ContributingDOE ContractDepartment of4 Volume 1 Department

  20. DOE Energy Challenge Project

    SciTech Connect (OSTI)

    Frank Murray; Michael Schaepe

    2009-04-24T23:59:59.000Z

    Project Objectives: 1. Promote energy efficiency concepts in undergraduate and graduate education. 2. Stimulate and interest in pulp and paper industrial processes, which promote and encourage activities in the area of manufacturing design efficiency. 3. Attract both industrial and media attention. Background and executive Summary: In 1997, the Institute of Paper Science and Technology in conjunction with the U.S. Department of Energy developed a university design competition with an orientation to the Forest Products Industry. This university design competition is in direct alignment with DOE’s interests in instilling in undergraduate education the concepts of developing energy efficient processes, minimizing waste, and providing environmental benefits and in maintaining and enhancing the economic competitiveness of the U.S. forest products industry in a global environment. The primary focus of the competition is projects, which are aligned with the existing DOE Agenda 2020 program for the industry and the lines of research being established with the colleges comprising the Pulp and Paper Education and Research Alliance (PPERA). The six design competitions were held annually for the period 1999 through 2004.

  1. Laser photolysis, infrared fluorescence determination of CH3(nu3) vibrational deactivation by He, Ar, N2, CO, SF6, and (CH3)2CO

    SciTech Connect (OSTI)

    Donaldson, D.J.; Leone, S.R.

    1987-06-04T23:59:59.000Z

    Room temperature vibrational deactivation rate constants are reported for methyl radicals with antisymmetric stretch excitation, CH3(nu3) + M CH3 + M, where M = He, Ar, N2, CO, SF6, (CH3)2CO. Excimer laser photolysis of acetone at 193 nm is used to populate CH3(nu3), and time-resolved infrared emission from the CH stretch is used to follow the deactivation kinetics. The rate constants obtained are (+/-2sigma) (2.6 +/- 0.5) x 10 T (He, (6.8 +/- 0.7) x 10 T (Ar), (6.1 +/- 0.6) x 10 T (N2), (3.6 +/- 0.7) x 10 T (CO), (6.9 +/- 0.7) x 10 T (SF6), and (8.1 +/- 0.9) x 10 S (CH3COCH3) in units of cmT molecule s . The deactivation probability is not controlled by long-range forces due to the lone electron on the radical, but rather by the probabilities for intramode vibrational energy flow in CH3.

  2. DISSOCIATIVE RECOMBINATION OF VIBRATIONALLY COLD CH{sup +}{sub 3} AND INTERSTELLAR IMPLICATIONS

    SciTech Connect (OSTI)

    Thomas, R. D.; Kashperka, I.; Vigren, E.; Geppert, W. D.; Hamberg, M.; Larsson, M.; Af Ugglas, M.; Zhaunerchyk, V. [Department of Physics, Stockholm University, Albanova University Centre, SE-106 91 Stockholm (Sweden); Indriolo, N. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Yagi, K.; Hirata, S. [Department of Chemistry, University of Illinois, Urbana, IL 61801 (United States); McCall, B. J., E-mail: rdt@fysik.su.se [Departments of Chemistry, Astronomy, and Physics, University of Illinois, Urbana, IL 61801 (United States)

    2012-10-10T23:59:59.000Z

    CH{sup +}{sub 3} is an important molecular ion in the astrochemistry of diffuse clouds, dense clouds, cometary comae, and planetary ionospheres. However, the rate of one of the major destruction mechanisms of CH{sup +}{sub 3}, dissociative recombination (DR), has long been uncertain, hindering the use of CH{sup +}{sub 3} as an astrochemical probe. Here, we present the first absolute measurement of the DR of vibrationally cold CH{sup +}{sub 3}, which has been made using the heavy storage ring CRYRING in Stockholm, Sweden. From our collision-energy-dependent cross sections, we infer a thermal rate constant of k(T) = 6.97({+-} 0.03) Multiplication-Sign 10{sup -7}(T/300){sup -0.61({+-}0.01)} cm{sup 3} s{sup -1} over the region 10 K {<=} T {<=} 1000 K. At low collision energies, we have measured the branching fractions of the DR products to be CH{sub 3} (0.00{sup +0.01}{sub -0.00}), CH{sub 2} + H (0.35{sup +0.01}{sub -0.01}), CH + 2H (0.20{sup +0.02}{sub -0.02}), CH + H{sub 2} (0.10{sup +0.01}{sub -0.01}), and C + H{sub 2} + H (0.35{sup +0.01}{sub -0.02}), indicating that two or more C-H bonds are broken in 65% of all collisions. We also present vibrational calculations which indicate that the CH{sup +}{sub 3} ions in the storage ring were relaxed to the vibrational ground state by spontaneous emission during the storage time. Finally, we discuss the implications of these new measurements for the observation of CH{sup +}{sub 3} in regions of the diffuse interstellar medium where CH{sup +} is abundant.

  3. Extension of DOE Directives on Security

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-05-06T23:59:59.000Z

    The Notice extends the following directives until 12/31/02. DOE N 205.1, DOE N 205.2, DOE 205.3, DOE N 471.3, and DOE 473.6.

  4. Stoichiometry of CH4 and CO2 flux in a California Rice Paddy

    E-Print Network [OSTI]

    McMillan, Andrew M. S.; Goulden, Michael L.; Tyler, Stanley C.

    2007-01-01T23:59:59.000Z

    Measurements of carbon sequestration by long-term eddyemission versus carbon sequestration, Tellus, Ser. B,which to estimate carbon sequestration from F CH4 data since

  5. Isotopic constraints on off-site migration of landfill CH{sub 4}

    SciTech Connect (OSTI)

    Desrocher, S.; Lollar, B.S. [Univ. of Toronto, Ontario (Canada). Dept. of Geology

    1998-09-01T23:59:59.000Z

    Occurrences of CH{sub 4} in residential areas in the vicinity of the Beare Road landfill, Toronto, Canada, have raised public concern about potential off-site migration of CH{sub 4} from the landfill site. Carbon isotopic analysis of dissolved and gas phase CH{sub 4} at the Beare Road site, however, indicates that CH{sub 4} in the ground water systems in the vicinity of the landfill is related to naturally occurring microbial methanogenesis within these geologic units, rather than to contamination by landfill CH{sub 4}. CH{sub 4} gas in the landfill and landfill cover has {delta}{sup 13}C values typical of microbially produced gas. Concentrations of CH{sub 4} found in deep ground water in the Scarborough, Don, and Whitby Formations underlying the landfill are isotopically distinct from the landfill gases. They are isotopically and compositionally similar, however, to naturally occurring microbial CH{sub 4} identified in organic-rich glacial deposits throughout Ontario. The lack of any significant CH{sub 4} concentrations or concentration gradients in the upper tin zone between the landfill and the deep ground water aquifer is further evidence that no transport between the landfill and deep ground water is occurring.

  6. Bimetallic cleavage of aromatic C-H bonds by rare-earth-metal complexes

    E-Print Network [OSTI]

    Huang, W; Huang, W; Dulong, F; Khan, SI; Cantat, T; Diaconescu, PL

    2014-01-01T23:59:59.000Z

    of Aromatic C-H Bonds by Rare Earth Metal Complexes Wenliangone week prior to use. Rare earth metal oxides (scandium,

  7. alkane c-h bond: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    activation of functionalized hydrocarbons. II. CH and CCN bond activation of acetonitrile and benzonitrile. Open Access Theses and Dissertations Summary: ??Several...

  8. aliphatic c-h bond: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    activation of functionalized hydrocarbons. II. CH and CCN bond activation of acetonitrile and benzonitrile. Open Access Theses and Dissertations Summary: ??Several...

  9. arene c-h bonds: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    activation of functionalized hydrocarbons. II. CH and CCN bond activation of acetonitrile and benzonitrile. Open Access Theses and Dissertations Summary: ??Several...

  10. Site Office Contracting Officer E-mail address Ames Site Office Jackie York Jacquelyn.york@ch.doe.gov

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica HighSTARTOperationsInformation | NationalOffice

  11. DOE/ET/23002-T9 L 4 / POLY ACETYLENE, (CH)x, AS AN EMERGING MATERIAL FOR SOLAR

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OF CALCIUMCOSTDOENuclear1382 THE HUMANlviA,'{ ' - n13/14y

  12. DOE: Support Implementation of EEOICPA

    Broader source: Energy.gov [DOE]

    DOE’s primary role in the EEOICPA is to provide records to DOL, NIOSH and DOJ, to support claim processing, dose reconstruction and ultimately claim adjudication. The worker records provided by...

  13. Bimolecular reaction of CH{sub 3} + CO in solid p-H{sub 2}: Infrared absorption of acetyl radical (CH{sub 3}CO) and CH{sub 3}-CO complex

    SciTech Connect (OSTI)

    Das, Prasanta [Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Lee, Yuan-Pern, E-mail: yplee@mail.nctu.edu.tw [Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan (China)

    2014-06-28T23:59:59.000Z

    We have recorded infrared spectra of acetyl radical (CH{sub 3}CO) and CH{sub 3}-CO complex in solid para-hydrogen (p-H{sub 2}). Upon irradiation at 248 nm of CH{sub 3}C(O)Cl/p-H{sub 2} matrices, CH{sub 3}CO was identified as the major product; characteristic intense IR absorption features at 2990.3 (?{sub 9}), 2989.1 (?{sub 1}), 2915.6 (?{sub 2}), 1880.5 (?{sub 3}), 1419.9 (?{sub 10}), 1323.2 (?{sub 5}), 836.6 (?{sub 7}), and 468.1 (?{sub 8}) cm{sup ?1} were observed. When CD{sub 3}C(O)Cl was used, lines of CD{sub 3}CO at 2246.2 (?{sub 9}), 2244.0 (?{sub 1}), 1866.1 (?{sub 3}), 1046.7 (?{sub 5}), 1029.7 (?{sub 4}), 1027.5 (?{sub 10}), 889.1 (?{sub 6}), and 723.8 (?{sub 7}) cm{sup ?1} appeared. Previous studies characterized only three vibrational modes of CH{sub 3}CO and one mode of CD{sub 3}CO in solid Ar. In contrast, upon photolysis of a CH{sub 3}I/CO/p-H{sub 2} matrix with light at 248 nm and subsequent annealing at 5.1 K before re-cooling to 3.2 K, the CH{sub 3}-CO complex was observed with characteristic IR features at 3165.7, 3164.5, 2150.1, 1397.6, 1396.4, and 613.0 cm{sup ?1}. The assignments are based on photolytic behavior, observed deuterium isotopic shifts, and a comparison of observed vibrational wavenumbers and relative IR intensities with those predicted with quantum-chemical calculations. This work clearly indicates that CH{sub 3}CO can be readily produced from photolysis of CH{sub 3}C(O)Cl because of the diminished cage effect in solid p-H{sub 2} but not from the reaction of CH{sub 3} + CO because of the reaction barrier. Even though CH{sub 3} has nascent kinetic energy greater than 87 kJ mol{sup ?1} and internal energy ?42 kJ mol{sup ?1} upon photodissociation of CH{sub 3}I at 248 nm, its energy was rapidly quenched so that it was unable to overcome the barrier height of ?27 kJ mol{sup ?1} for the formation of CH{sub 3}CO from the CH{sub 3} + CO reaction; a barrierless channel for formation of a CH{sub 3}-CO complex was observed instead. This rapid quenching poses a limitation in production of free radicals via bimolecular reactions in p-H{sub 2}.

  14. DOE Average Results

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | DepartmentIOffshore WindEnergy's FY2016Appoints DOE

  15. DOE Challenge Home Verification

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | DepartmentIOffshoreDepartmentBegins DOE Challenge Home

  16. DOE F 5631

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRU Waste Cleanup at1450.5B OMB3.2 DOE F 473.23

  17. DOE F 5634

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRU Waste Cleanup at1450.5B OMB3.2 DOE F 473.2334 OMBCSCS

  18. DOE F 5634

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRU Waste Cleanup at1450.5B OMB3.2 DOE F 473.2334

  19. DOE F 5634

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRU Waste Cleanup at1450.5B OMB3.2 DOE F 473.23342

  20. DOE/CF-0084

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014ContributingDOE ContractDepartment of4 Volume 1 Department of

  1. DOE/CF-0085

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014ContributingDOE ContractDepartment of4 Volume 1 Department of2

  2. DOE/CF-0086

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014ContributingDOE ContractDepartment of4 Volume 1 Department of2

  3. DOE/CF-0088

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014ContributingDOE ContractDepartment of4 Volume 1 Department of28

  4. DOE/CF-0089

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014ContributingDOE ContractDepartment of4 Volume 1 Department of289

  5. DOE PAGES Beta

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePART I SECTIONPlasma PhysicsDOE Allocationportal

  6. space booklet_DOE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development1U C L E A R E N E R G Y DOE/NE-0071 U .

  7. DOE Energy Innovation Hubs

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of ScienceCurrent ProjectsResearch » DOE Energy

  8. DOE Challenge Home Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&D Project for ETTPFeedstockDepartment DOE

  9. DOE Organizational Chart

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractions and Policy (2009) | DepartmentDepartmentDOE, 201418

  10. DOE/EIS-0380

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No Significant6-2002DOE/EA-1313 Rev.79-SA-0190-SA-032 FISCAL

  11. DOE/EIS-0380

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No Significant6-2002DOE/EA-1313 Rev.79-SA-0190-SA-032 FISCAL3

  12. DOE/EIS-0380

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No Significant6-2002DOE/EA-1313 Rev.79-SA-0190-SA-032 FISCAL31

  13. DOE/ID-Number

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No Significant6-2002DOE/EA-13135 Final Environmental(July

  14. DOE/ID-Number

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No Significant6-2002DOE/EA-13135 Final

  15. DOE/ID-Number

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No Significant6-2002DOE/EA-13135 FinalUsed Fuel Disposal in

  16. DOE/ID-Number

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No Significant6-2002DOE/EA-13135 FinalUsed Fuel Disposal in310

  17. DOE/ID-Number

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No Significant6-2002DOE/EA-13135 FinalUsed Fuel Disposal

  18. DOE Exascale Initiative

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. DepartmentEnergy ThisStandardsSeptember 7, 2012DepartmentHudsonWestern DOE

  19. Cameron Salony, DOE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r8.05 CalendarINT'L. S C HOLARMedia

  20. DOE/BP-3828

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OF CALCIUMCOSTDOENuclear1 ofDOE Office of

  1. DOE/BP-4674

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OF CALCIUMCOSTDOENuclear1 ofDOE Office of

  2. DOE/EA-

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OF CALCIUMCOSTDOENuclear1 ofDOE Office of4 Volume1 FINAL

  3. DOE/EA-XXXX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OF CALCIUMCOSTDOENuclear1 ofDOE Office of4 Volume153049

  4. DOE/CF-0059

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdleBiologicalCrosscutting SuccessOperationalDOE Plans2 of 4)349

  5. DOE/CF-0086

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| Department ofDepartment9-92January 20,Department of Energy4-99 DOE-TSL-4-99

  6. DOE FILE NO.

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthNrr-osams ADMIN RCDBaseline0 0 0 0 0 DOE

  7. DOE's Offices of Environmental

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAboutStatement of Intent (SOI) between the US Dept of Energy (DOE)

  8. Thermal desorption of CH4 retained in CO2 ice

    E-Print Network [OSTI]

    R. Luna; C. Millan; M. Domingo; M. A. Satorre

    2008-01-21T23:59:59.000Z

    CO2 ices are known to exist in different astrophysical environments. In spite of this, its physical properties (structure, density, refractive index) have not been as widely studied as those of water ice. It would be of great value to study the adsorption properties of this ice in conditions related to astrophysical environments. In this paper, we explore the possibility that CO2 traps relevant molecules in astrophysical environments at temperatures higher than expected from their characteristic sublimation point. To fulfil this aim we have carried out desorption experiments under High Vacuum conditions based on a Quartz Crystal Microbalance and additionally monitored with a Quadrupole Mass Spectrometer. From our results, the presence of CH4 in the solid phase above the sublimation temperature in some astrophysical scenarios could be explained by the presence of several retaining mechanisms related to the structure of CO2 ice.

  9. Thermal desorption of CH4 retained in CO2 ice

    E-Print Network [OSTI]

    Luna, R; Domingo, M; Satorre, M A

    2008-01-01T23:59:59.000Z

    CO2 ices are known to exist in different astrophysical environments. In spite of this, its physical properties (structure, density, refractive index) have not been as widely studied as those of water ice. It would be of great value to study the adsorption properties of this ice in conditions related to astrophysical environments. In this paper, we explore the possibility that CO2 traps relevant molecules in astrophysical environments at temperatures higher than expected from their characteristic sublimation point. To fulfil this aim we have carried out desorption experiments under High Vacuum conditions based on a Quartz Crystal Microbalance and additionally monitored with a Quadrupole Mass Spectrometer. From our results, the presence of CH4 in the solid phase above the sublimation temperature in some astrophysical scenarios could be explained by the presence of several retaining mechanisms related to the structure of CO2 ice.

  10. TransCom model simulations of CH? and related species: linking transport, surface flux and chemical loss with CH? variability in the troposphere and lower stratosphere

    E-Print Network [OSTI]

    Patra, P. K.

    A chemistry-transport model (CTM) intercomparison experiment (TransCom-CH?) has been designed to investigate the roles of surface emissions, transport and chemical loss in simulating the global methane distribution. Model ...

  11. OD bond dissociation from the 3s state of deuterated hydroxymethyl radical ,,CH2OD...

    E-Print Network [OSTI]

    Reisler, Hanna

    O­D bond dissociation from the 3s state of deuterated hydroxymethyl radical ,,CH2OD... Lin Feng of the deuterated hydroxymethyl radical CH2OD is investigated on the lowest excited state, the 3s Rydberg state at these wavelengths. Comparison with the conical intersection calculations of Hoffman and Yarkony suggests that O­D

  12. Method of preparing (CH.sub.3).sub.3 SiNSO and byproducts thereof

    DOE Patents [OSTI]

    Spicer, Leonard D. (Salt Lake City, UT); Bennett, Dennis W. (Clemson, SC); Davis, Jon F. (Salt Lake City, UT)

    1984-01-01T23:59:59.000Z

    (CH.sub.3).sub.3 SiNSO is produced by the reaction of ((CH.sub.3).sub.3 Si).sub.2 NH with SO.sub.2. Also produced in the reaction are ((CH.sub.3).sub.3 Si).sub.2 O and a new solid compound [NH.sub.4 ][(CH.sub.3).sub.3 SiOSO.sub.2 ]. Both (CH.sub.3).sub.3 SiNSO and [NH.sub.4 ][(CH.sub.3).sub.3 SiOSO.sub.2 ] have fluorescent properties. The reaction of the subject invention is used in a method of measuring the concentration of SO.sub.2 pollutants in gases. By the method, a sample of gas is bubbled through a solution of ((CH.sub.3).sub.3 Si).sub.2 NH, whereby any SO.sub.2 present in the gas will react to produce the two fluorescent products. The measured fluorescence of these products can then be used to calculate the concentration of SO.sub.2 in the original gas sample. The solid product [NH.sub.4 ][(CH.sub.3).sub.3 SiOSO.sub.2 ] may be used as a standard in solid state NMR spectroscopy.

  13. People's Physics book 3e Ch 19-1 The Big Ideas

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    People's Physics book 3e Ch 19-1 The Big Ideas Heat is a form of energy transfer. It can change). Thermodynamics is the study of heat engines. Any engine or power plant obeys the laws of thermodynamics by the expanding gas. Work can be done on the gas in order to compress it. #12;People's Physics book 3e Ch 19

  14. People's Physics Book 3e Ch 14-1 The Big Idea

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    People's Physics Book 3e Ch 14-1 The Big Idea For static electric charges, the electromagnetic a loop of wire generate currents in that wire; this is how electric power generators work. Likewise field is pointing. Be sure to use your right hand! #12;People's Physics Book 3e Ch 14-2 o Right Hand

  15. RESEARCH ARTICLE Greenhouse gas emissions (CO2, CH4, and N2O) from several

    E-Print Network [OSTI]

    Wehrli, Bernhard

    RESEARCH ARTICLE Greenhouse gas emissions (CO2, CH4, and N2O) from several perialpine and alpine hydropower reservoirs by diffusion and loss in turbines T. Diem · S. Koch · S. Schwarzenbach · B. Wehrli · C investigated greenhouse gas emissions (CO2, CH4, and N2O) from reservoirs located across an altitude gradient

  16. Photodissociation spectroscopy and dynamics of the vinoxy (CH{sub 2}CHO) radical

    SciTech Connect (OSTI)

    Osborn, D.L.; Choi, H.; Neumark, D.M. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Berkeley Lab., CA (United States). Chemical Sciences Div.

    1995-11-01T23:59:59.000Z

    The photodissociation spectroscopy and dynamics of the vinoxy (CH{sub 2}CHO) radical have been studied using fast beam photofragment translational spectroscopy. The photodissociation cross section over the B{sup 2}A{double_prime} {l_arrow} X{sup 2}A{double_prime} band is measured, and photofragment translational energy and angular distributions are obtained at several excitation energies. For CH{sub 2}CHO, predissociation is observed over the entire band, including several transitions near the band origin which were seen previously in laser-induced fluorescence experiments. Two dissociation channels are seen: CH{sub 3} + CO and H + CH{sub 2}CO. The CH{sub 3} + CO channel was investigated in considerable detail and appears to proceed via internal conversion to the CH{sub 2}CHO ground state followed by isomerization to CH{sub 3}CO and subsequent dissociation. The translational energy distributions for this channel suggest an isomerization barrier in the range of 2 eV with respect to CH{sub 3} + CO products.

  17. DISCOVERY OF THE FIRST METHANOL (CH [subscript 3] OH) MASER IN THE ANDROMEDA GALAXY (M31)

    E-Print Network [OSTI]

    Sjouwerman, Loránt O.

    We present the first detection of a 6.7 GHz Class II methanol (CH[subscript 3]OH) maser in the Andromeda galaxy (M31). The CH[subscript 3]OH maser was found in a VLA survey during the fall of 2009. We have confirmed the ...

  18. SimpleMonitorUSBXPress User Guide Tobi Delbruck, tobi@ini.phys.ethz.ch

    E-Print Network [OSTI]

    Delbruck, Tobi

    SimpleMonitorUSBXPress User Guide Tobi Delbruck, tobi@ini.phys.ethz.ch Allows monitoring AER over at the University of Sevilla and the second by Tobi Delbruck at INI in Zurich. The firmware and host code is written. Last modified 8/20/2005 Under subversion https://svn.ini.unizh.ch/repos/avlsi/CAVIAR/wp5/USBAER

  19. Ligand Lone-Pair Influence on Hydrocarbon C-H Activation: A Computational Perspective

    SciTech Connect (OSTI)

    Ess, Daniel H; Gunnoe, T. Brent; Cundari, Thomas R; Goddard, William A; Periana, Roy A

    2010-01-01T23:59:59.000Z

    Mid to late transition metal complexes that break hydrocarbon C?H bonds by transferring the hydrogen to a heteroatom ligand while forming a metal?alkyl bond offer a promising strategy for C?H activation. Here we report a density functional (B3LYP, M06, and X3LYP) analysis of cis-(acac){sub 2}MX and TpM(L)X (M = Ir, Ru, Os, and Rh; acac = acetylacetonate, Tp = tris(pyrazolyl)borate; X = CH{sub 3}, OH, OMe, NH{sub 2}, and NMe{sub 2}) systems for methane C?H bond activation reaction kinetics and thermodynamics. We address the importance of whether a ligand lone pair provides an intrinsic kinetic advantage through possible electronic d{sub ?}?p{sub ?} repulsions for M?OR and M?NR{sub 2} systems versus M?CH{sub 3} systems. This involves understanding the energetic impact of the X ligand group on ligand loss, C?H bond coordination, and C?H bond cleavage steps as well as understanding how the nucleophilicity of the ligand X group, the electrophilicity of the transition metal center, and cis-ligand stabilization effect influence each of these steps. We also explore how spectator ligands and second- versus third-row transition metal centers impact the energetics of each of these C?H activation steps.

  20. A CH O Hydrogen Bond Stabilized Polypeptide Chain Reversal Motif at the C Terminus of Helices

    E-Print Network [OSTI]

    Babu, M. Madan

    A C­H· · ·O Hydrogen Bond Stabilized Polypeptide Chain Reversal Motif at the C Terminus of Helices of Science Bangalore 560012, India The serendipitous observation of a C­H· · ·O hydrogen bond mediated­N hydrogen bond involving the side- chain of residue T 2 4 and the N­H group of residue T þ 3. In as many

  1. Time-resolved dynamics in acetonitrile cluster anions CH3CN Ryan M. Young a

    E-Print Network [OSTI]

    Neumark, Daniel M.

    Time-resolved dynamics in acetonitrile cluster anions ðCH3CN�� n Ryan M. Young a , Graham B December 2009 a b s t r a c t Excited state dynamics of acetonitrile cluster anions, ðCH3CN�� n , were, antiparallel solvent molecules [19,20]. Evidence for two electron solvation motifs in acetonitrile also comes

  2. DOE-STD-1104 Requirements Crosswalk

    Office of Environmental Management (EM)

    09 to DOE-STD-1104-2014 Requirements Matrix - 1 - No. Section Page Number DOE-STD-1104-2009 Requirement DOE-STD-1104-2014 Requirements Comment Gen DOE-STD-1104-2009 was broadly...

  3. Introducing the DOE Sustainability Dashboard

    Broader source: Energy.gov [DOE]

    Please join us as we introduce DOE's new Sustainability Dashboard. This webinar will provide an overview and demonstration of the new Dashboard and offer an opportunity for questions.

  4. DOE F 4220-10

    Broader source: Energy.gov (indexed) [DOE]

    6. Contract, Grant, or Other Agreement No.: (Specify Type of Instrument) New Renewal Termination (See Inst) Modification (Total to date: ) Does this award result from an...

  5. presentations | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    International Activity Project Information Project Portfolio Publications Coal Gasification Magazine Solicitations FAQs Overview of DOE's C&CBTL Program (Dec 2014) The C&CBTL...

  6. receive DOE Early Career Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hydrological controls on carbon cycling in flood plain ecosystems into Earth System Models (ESM). "The DOE Early Career Research Award represents both a significant honor...

  7. seq | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    System, based on DOE's Integrated Safety Management System, the International Organization for Standardization (ISO) 14000 series, and the Occupational Health and Safety...

  8. DOE IDIQ ESPC Awarded Projects

    Broader source: Energy.gov [DOE]

    Excel spreadsheet summarizes the U.S. Department of Energy's (DOE) indefinite delivery, indefinite quantity (IDIQ) energy savings performance contract (ESPC) awarded projects.

  9. coal | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commercial Technologies for Coal Storage and Feed Preparation AlternativesSupplements to Coal - Feedstock Flexibility DOE Supported R&D for CoalBiomass Feed and Gasification...

  10. Reaction Dynamics of Phenyl Radicals (C6H5) with Propylene (CH3CHCH2) and Its Deuterated Isotopologues

    E-Print Network [OSTI]

    Kaiser, Ralf I.

    ARTICLES Reaction Dynamics of Phenyl Radicals (C6H5) with Propylene (CH3CHCH2) and Its Deuterated The reactions between phenyl radicals (C6H5) and propylene (CH3CHCH2) together with its D6- and two D3 atom) of the propylene molecule at the dCH2 unit to form a radical intermediate (CH3CHCH2C6H5

  11. DOE Leadership & Career Development Programs | Department of...

    Energy Savers [EERE]

    Development DOE Leadership & Career Development Programs DOE Leadership & Career Development Programs Senior Executive Service Candidate Development Program (SESCDP): This...

  12. Final Report to DOE

    SciTech Connect (OSTI)

    Ismail Gultepe

    2012-05-15T23:59:59.000Z

    This final report summarizes the accomplished goals and provide a list of the publications and presentations made during the project. The goals of the project were accomplished through the various publications submitted to Journals and presentations done at the DOE and international meetings and conferences. The 8 journal articles related to the goals of this project were accepted or submitted. The 23 presentations related to goals of the project were presented at the meetings. There were some minor changes regarding to project goals because of issues encountered during the analysis of the data. For example, a total water probe sensor mounted on the Convair-580 that can be used for defining mixed phase conditions and parameterization, had some problems to estimate magnitude of total water mass, and this resulted in issues providing an accurate parameterization for cloud fraction. Variability related aerosol number concentrations and their composition for direct and indirect effects were studied and published. Results were given to explain aerosol and ice microphysical effects on climate change studies. It is suggested that developed parameterizations should consider the variability in aerosol and ice parameters over the Arctic regions.

  13. DOE handbook: Design considerations

    SciTech Connect (OSTI)

    NONE

    1999-04-01T23:59:59.000Z

    The Design Considerations Handbook includes information and suggestions for the design of systems typical to nuclear facilities, information specific to various types of special facilities, and information useful to various design disciplines. The handbook is presented in two parts. Part 1, which addresses design considerations, includes two sections. The first addresses the design of systems typically used in nuclear facilities to control radiation or radioactive materials. Specifically, this part addresses the design of confinement systems and radiation protection and effluent monitoring systems. The second section of Part 1 addresses the design of special facilities (i.e., specific types of nonreactor nuclear facilities). The specific design considerations provided in this section were developed from review of DOE 6430.1A and are supplemented with specific suggestions and considerations from designers with experience designing and operating such facilities. Part 2 of the Design Considerations Handbook describes good practices and design principles that should be considered in specific design disciplines, such as mechanical systems and electrical systems. These good practices are based on specific experiences in the design of nuclear facilities by design engineers with related experience. This part of the Design Considerations Handbook contains five sections, each of which applies to a particular engineering discipline.

  14. ChBE 4505/4525 Chemical Process Design/Biochemical Process Design Basic Curriculum and Learning Outcomes.

    E-Print Network [OSTI]

    Sherrill, David

    Outcomes. Credit: 3-0-3 Instructor: Matthew J. Realff Textbook: Product & Process Design Principles, Third Edition, Wiley 2009. W.D. Seider, J.D. Seader, D.R. Lewin, S. Widagdo, Catalog Description: Principles Phen. II (ChBE 3210), Kinetics & Reactor Design (ChBE 4300), and separation processes (ChBE 3225

  15. Celebrating DOE'sCleanup

    E-Print Network [OSTI]

    .S. Department of Energy (DOE) and Brookhaven National Laboratory management (the Lab) will celebrate a momentousCelebrating DOE'sCleanup Accomplishments then,now,andtomorrow U.S. Department of Energy Brookhaven-by-shovel, system-by-system, and project-by-project, incremental but progressive achievements were made

  16. DOE's Roof Savings Calculator (RSC)

    E-Print Network [OSTI]

    Wang, Xiaorui "Ray"

    energy consumption, 2006 Source: Building Energy Data Book, U.S. DOE, Prepared by D&R International, Ltd and windows Source: Building Energy Data Book, U.S. DOE, Prepared by D&R International, Ltd., September 2008. Figure 3. Commercial energy loads attributed to envelope and windows Source: Building Energy Data Book, U

  17. au melange co2-ch4: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of natural gas production. Facing Paris-Sud XI, Universit de 11 Open top chambers and infrared lamps: A comparison of heating efficacy and CO2CH4 dynamics in a lake superior...

  18. 28 BIts&ChIps 17 november 2005 Energetiq Technology heeft een licht-

    E-Print Network [OSTI]

    Cambridge, University of

    28 · BIts&ChIps · 17 november 2005 Energetiq Technology heeft een licht- bron gelanceerd voor extreem ultravi- olet (EUV) metrologie. Deze Electrode- less Z-Pinch EUV-source, of EQ-10M, genereert EUV

  19. Hydrogen Storage in Carbon Nanotubes Through Formation of C-H...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds Print Two of the major challenges for humanity in the next 20 years are the shrinking availability of fossil...

  20. Preliminary Notice of Violation, CH2M-Washington Group Idaho...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LLC - EA-2007-03 June 14, 2007 Issued to CH2M-Washington Group Idaho, LLC, related to Radiation Protection Program Deficiencies at the Radioactive Waste Management Complex -...

  1. ChIMES: "Limited only by our imaginations" | Y-12 National Security...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sensors consist of an MRPs and a ferromagnetic wire. There are no moving parts, and the sensor communicates wirelessly with the detection system. Photo: ChIMES uses chemical...

  2. Intern experience at CH?M Hill, Inc.: an internship report

    E-Print Network [OSTI]

    Winter, William John, 1949-

    2013-03-13T23:59:59.000Z

    A review of the author's internship experience with CH?M HILL, Inc. during the period September 1975 through May 1976 is presented. During this nine month internship the author worked as an Engineer II in the Industrial Processes...

  3. STATEMENT OF CONSIDERATIONS REQUEST BY MlCH..t\\EL BROCKWELL ...

    Broader source: Energy.gov (indexed) [DOE]

    MlCH..tEL BROCKWELL (INVENTOR) FOR THE W .AJVER OF DOM ESTIC N'l'D FOREIGN RJG HTS TO AN IDENTIFIED INVENTION ENTITLED ''EXOTEN SIONED STRU CTURE AND METHOD FOR CONSTRUCTION,"...

  4. Flooding of the continental shelves as a contributor to deglacial CH4 rise

    E-Print Network [OSTI]

    Jones, Peter JS

    Flooding of the continental shelves as a contributor to deglacial CH4 rise ANDY RIDGWELL,1 MARK of the continental shelves that were exposed and vegetated during the glacial sea-level low stand and that can help

  5. CH2M HILL Plateau Remediation Company are

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r k C o'IUHopper3 Environmental

  6. Microsoft Word - 5yr08_ch00_index.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your HomeOverviewCleanupShipping Form3 A

  7. Ecological risks of DOE`s programmatic environmental restoration alternatives

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    This report assesses the ecological risks of the Department of Energy`s (DOE) Environmental Restoration Program. The assessment is programmatic in that it is directed at evaluation of the broad programmatic alternatives outlined in the DOE Implementation Plan. It attempts to (1) characterize the ecological resources present on DOE facilities, (2) describe the occurrence and importance of ecologically significant contamination at major DOE facilities, (3) evaluate the adverse ecological impacts of habitat disturbance caused by remedial activities, and (4) determine whether one or another of the programmatic alternatives is clearly ecologically superior to the others. The assessment focuses on six representative facilities: the Idaho National Engineering Laboratory (INEL); the Fernald Environmental Management Project (FEMP); the Oak Ridge Reservation (ORR), including the Oak Ridge National Laboratory (ORNL), Y-12 plant, and K-25 plant; the Rocky Flats Plant; the Hanford Reservation; and the Portsmouth Gaseous Diffusion Plant.

  8. PHOTOIONIZATION SPECTRA OF CH3I PERTURBED BY SF6: ELECTRON SCATTERING IN SF6 GAS

    E-Print Network [OSTI]

    Findley, Gary L.

    1 PHOTOIONIZATION SPECTRA OF CH3I PERTURBED BY SF6: ELECTRON SCATTERING IN SF6 GAS C. M. Evansa of SF6 perturbers (up to the perturber density 9.75 x 1019 cm-3 ) disclosed a red shift of autoionizing of the CH3I nd! Rydbergs (n=9,10,11,12), the electron scattering length of SF6 was found to be A = -0.484 nm

  9. 1997-2001 by M. Kostic Ch.5: Uncertainty/Error Analysis

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    1 ©1997-2001 by M. Kostic Ch.5: Uncertainty/Error Analysis · Introduction · Bias and Precision Summation/Propagation (Expanded Combined Uncertainty) · Problem 5-30 ©1997-2001 by M. Kostic Ch.5) at corresponding Probability (%P) Remember: u = d%P = t,%PS (@ %P); z=t=d/S #12;2 ©1997-2001 by M. Kostic Bias

  10. DOE Policies | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010ConferencingOperationalDOE Plans DOE PlansDOE

  11. DOE-TSPP-6, Coordination of DOE Technical Standards - July 2004...

    Broader source: Energy.gov (indexed) [DOE]

    (hereafter referred to collectively as "DOE Components") working to the latest revision of DOE Order 252.1, "Technical Standards Program." DOE-TSPP-6, Coordination of...

  12. DOE Order 440. 1 B: Worker Protection Program for DOE (Including...

    Office of Environmental Management (EM)

    0. 1 B: Worker Protection Program for DOE (Including NNSA) Federal Employees DOE Order 440. 1 B: Worker Protection Program for DOE (Including NNSA) Federal Employees Stakeholders:...

  13. DOE-TSPP-8-2013, Converting DOE Technical Standards to Voluntary...

    Energy Savers [EERE]

    8-2013, Converting DOE Technical Standards to Voluntary Consensus Standards DOE-TSPP-8-2013, Converting DOE Technical Standards to Voluntary Consensus Standards Technical Standards...

  14. DOE Organization Chart- February 2015

    Broader source: Energy.gov [DOE]

    The DOE Organization Chart is a diagram of the U.S. Department of Energy’s structure along with the relationships and relative ranks of its parts and positions/jobs.

  15. IDIQ DOE ESPC Contract Modifications

    Broader source: Energy.gov [DOE]

    Documents display Amendment of Solicitation/Modification of Contract forms for indefinite-delivery, indefinite-quantity (IDIQ) U.S. Department of Energy (DOE) energy savings performance contracts (ESPCs).

  16. DOE Facilities Technology Partnering Programs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-12T23:59:59.000Z

    The Order establishes roles and responsibilities for the oversight, management and administration of technology partnerships and associated technology transfer mechanisms, and clarifies related policies and procedures. Does not cancel other directives.

  17. DOE Organization Chart- May 2015

    Broader source: Energy.gov [DOE]

    The DOE Organization Chart is a diagram of the U.S. Department of Energy’s structure along with the relationships and relative ranks of its parts and positions/jobs.

  18. DOE-Geothermal Data Repository

    Broader source: Energy.gov [DOE]

    Geothermal energy hidden in the subsurface can be more effectively targeted through precise heatflow and temperature data. The Energy Department makes all data from DOE-funded projects available free online through the National Geothermal Data System.

  19. DOE - Office of Legacy Management

    Office of Legacy Management (LM)

    remaining at the site be subject to a five-year review. The U.S. Department of Energy (DOE) is currently conducting the fourth five-year review at the Weldon Spring...

  20. DOE Hydrogen & Fuel Cell Overview

    Broader source: Energy.gov (indexed) [DOE]

    t t 1 | Fuel Cell Technologies Program eere.energy.gov Fuel Cell Technologies Program DOE Hydrogen & Fuel Cell Overview Dr. Sunita Satyapal Program Manager U S D f E Overview U.S....

  1. The DOE Feeds Families Festival

    Broader source: Energy.gov [DOE]

    Department of Energy employees took a moment to give back to the Washington, D.C. community by holding our first "DOE Feeds Families Festival" outside of the Forrestal Building.

  2. Site Battelle, btiment D 7 route de Drize CH1227 Carouge Tl. 022 379 06 46 Fax 022 379 06 39 www.unige.ch/energie

    E-Print Network [OSTI]

    Laemmli, Ulrich

    Energy Agency SDC: Swiss Agency for Development and Cooperation #12;Site Battelle, bâtiment D 7 route University of New York, Albany. o National Renewable Energy Laboratory à Golden. France : o Ecole des www.unige.ch/energie Groupe Energie ­ Institut Forel / Institut des sciences de l

  3. DOE limited standard: Operations assessments

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    Purpose of this standard is to provide DOE Field Element assessors with a guide for conducting operations assessments, and provide DOE Field Element managers with the criteria of the EM Operations Assessment Program. Sections 6.1 to 6.21 provide examples of how to assess specific areas; the general techniques of operations assessments (Section 5) may be applied to other areas of health and safety (e.g. fire protection, criticality safety, quality assurance, occupational safety, etc.).

  4. DOE Privacy Steering Committee Charter

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014ContributingDOE Contract DOE Internationalwith 17Oof

  5. Fourier Transform Spectroscopy of CH3OH: Rotation-Torsion-Vibration Structure for the CH3-Rocking and OH-Bending Modes

    SciTech Connect (OSTI)

    Lees, R M.; Xu, Li-Hong; Johns, Judy C.; Lu, Zhe; Winnewisser, Brenda P.; Sams, Robert L.

    2004-12-01T23:59:59.000Z

    High-resolution Fourier Transform Spectra of CH3OH have been investigated in the infrared region from 930 -1450 cm-1 in order to map the torsion-rotation energy manifolds associated with the v7 in-plane CH3 rock, the v11 out-of-plane CH3 rock, and the v6 OH bend. Upper-state term values have been determined from the assigned spectral subbands, and have been fitted to power-series expansions to obtain substate origins and effective B-values for the three modes. The substate origins have been grouped into related families according to systemic trends observed in the torsion-vibration energy map, but there are substantial differences from the traditional torsional patterns. There appears to be significant torsion-mediated spectral fractionation, and a variety of subbands of mixed torsion-vibration parentage have been observed. For example, coupling of the v6=1 OH bend to nearby torsionally excited (v1, vt) = (1,1) CH3-rock and (v8, vt) = (1,1) CO-stretch states introduces (v6, vt) = (1,0) ? (0,1) ''forbidden'' subbands into the spectrum and makes the v7+v12-v12 torsional hot band stronger than the v7 fundamental. The results suggest a picture of strong coupling the OH-bending, CH3-rocking and CO-stretching modes that modifies the traditional energy structure and raises interesting and provocative questions about the torsion-vibration identity of a number of the observed states.

  6. DOE Cooperative Research and Development Agreements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-11-06T23:59:59.000Z

    The order establishes policy, requirements, and responsibilities for the oversight, management, and administration of Cooperative Research and Development Agreement (CRADA) activities at DOE facilities. Cancels DOE O 483.1 Admin Chg 1 and DOE M 483.1-1.

  7. Annual DOE Occupational Radiation Exposure | 1977 Report

    Broader source: Energy.gov [DOE]

    The Tenth Annual Report of Radiation Exposures for DOE & DOE Contractor Employees analyzes occupational radiation exposures at the U.S. Department of Energy (DOE) and its contractor employees during 1977.

  8. Annual DOE Occupational Radiation Exposure | 1978 Report

    Broader source: Energy.gov [DOE]

    The Eleventh Annual Report of Radiation Exposures for DOE & DOE Contractor Employees analyzes occupational radiation exposures at the U.S. Department of Energy (DOE) and its contractor employees during 1978.

  9. Annual DOE Occupational Radiation Exposure | 1984 Report

    Broader source: Energy.gov [DOE]

    The Seventeenth Annual Report of Radiation Exposures for DOE & DOE Contractor Employees analyzes occupational radiation exposures at the U.S. Department of Energy (DOE) and its contractor employees during 1984.

  10. 2015 cross cutting | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (412) 386-4763 Fax: (412) 386-6486 E-mail: karen.lockhart@contr.netl.doe.gov submit USA.GOV | U.S. DEPARTMENT OF ENERGY | DOE OFFICE OF FOSSIL ENERGY DOE OFFICE OF ENERGY...

  11. Annual DOE Occupational Radiation Exposure | 1976 Report

    Broader source: Energy.gov [DOE]

    The Ninth Annual Report of Radiation Exposures for DOE & DOE Contractor Employees analyzes occupational radiation exposures at the U.S. Department of Energy (DOE) and its contractor employees during 1976.

  12. Annual DOE Occupational Radiation Exposure | 1985 Report

    Broader source: Energy.gov [DOE]

    The Eighteenth Annual Report of Radiation Exposures for DOE & DOE Contractor Employees analyzes occupational radiation exposures at the U.S. Department of Energy (DOE) and its contractor employees during 1985.

  13. Annual DOE Occupational Radiation Exposure | 1981 Report

    Broader source: Energy.gov [DOE]

    The Fourteenth Annual Report of Radiation Exposures for DOE & DOE Contractor Employees analyzes occupational radiation exposures at the U.S. Department of Energy (DOE) and its contractor employees during 1981.

  14. Annual DOE Occupational Radiation Exposure | 1986 Report

    Broader source: Energy.gov [DOE]

    The Nineteenth Annual Report of Radiation Exposures for DOE & DOE Contractor Employees analyzes occupational radiation exposures at the U.S. Department of Energy (DOE) and its contractor employees during 1986.

  15. Annual DOE Occupational Radiation Exposure | 1980 Report

    Broader source: Energy.gov [DOE]

    The Thirteenth Annual Report of Radiation Exposures for DOE & DOE Contractor Employees analyzes occupational radiation exposures at the U.S. Department of Energy (DOE) and its contractor employees during 1980.

  16. Annual DOE Occupational Radiation Exposure | 1979 Report

    Broader source: Energy.gov [DOE]

    The Twelfth Annual Report of Radiation Exposures for DOE & DOE Contractor Employees analyzes occupational radiation exposures at the U.S. Department of Energy (DOE) and its contractor employees during 1979.

  17. Annual DOE Occupational Radiation Exposure | 1982 Report

    Broader source: Energy.gov [DOE]

    The Fifteenth Annual Report of Radiation Exposures for DOE & DOE Contractor Employees analyzes occupational radiation exposures at the U.S. Department of Energy (DOE) and its contractor employees during 1982.

  18. Annual DOE Occupational Radiation Exposure | 1983 Report

    Broader source: Energy.gov [DOE]

    The Sixteenth Annual Report of Radiation Exposures for DOE & DOE Contractor Employees analyzes occupational radiation exposures at the U.S. Department of Energy (DOE) and its contractor employees during 1983.

  19. Policy Flash 2014-40 Implementation of DOE O 580.1A, DOE Energy...

    Energy Savers [EERE]

    4-40 Implementation of DOE O 580.1A, DOE Energy Personal Property Management Policy Flash 2014-40 Implementation of DOE O 580.1A, DOE Energy Personal Property Management Questions...

  20. "DOE O 450.2 INTEGRATED SAFETY MANAGEMENT AND DOE P 450.4A INTEGRATED...

    Office of Environmental Management (EM)

    "DOE O 450.2 INTEGRATED SAFETY MANAGEMENT AND DOE P 450.4A INTEGRATED SAFETY MANAGEMENT POLICY FAMILIAR LEVEL "DOE O 450.2 INTEGRATED SAFETY MANAGEMENT AND DOE P 450.4A INTEGRATED...

  1. Report of the DOE-DOE Workshop on Fuel Cells in Aviation: Workshop...

    Office of Environmental Management (EM)

    DOE-DOE Workshop on Fuel Cells in Aviation: Workshop Summary and Action Plan Report of the DOE-DOE Workshop on Fuel Cells in Aviation: Workshop Summary and Action Plan This report...

  2. DOE Occupational Radiation Exposure, 2001 report

    SciTech Connect (OSTI)

    none,

    2001-12-31T23:59:59.000Z

    The goal of the U.S. Department of Energy (DOE) is to conduct its operations, including radiological, to ensure the safety and health of all DOE employees, contractors, and subcontractors. The DOE strives to maintain radiation exposures to its workers below administrative control levels and DOE limits and to further reduce these exposures to levels that are “As Low As Reasonably Achievable” (ALARA). The 2001 DOE Occupational Radiation Exposure Report provides a summary and analysis of the occupational radiation exposure received by individuals associated with DOE activities. The DOE mission includes stewardship of the nuclear weapons stockpile and the associated facilities, environmental restoration of DOE, and energy research.

  3. CRAD, Feedback and Continuous Improvement - DOE Headquarters...

    Office of Environmental Management (EM)

    CRAD, Feedback and Continuous Improvement - DOE Headquarters - December 4, 2007 CRAD, Feedback and Continuous Improvement - DOE Headquarters - December 4, 2007 December 4, 2007...

  4. Memorandum Memorializing Ex Parte Communication, DOE impending...

    Broader source: Energy.gov (indexed) [DOE]

    The meeting was requested by AMCA International to introduce the association's leadership, standards, and experience in developing fan standards to DOE; to learn more about the DOE...

  5. DOE Approved Technical Standards | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Training Superseding DOE-STD-1060-93 (February 1993) | Replaced DOE-HDBK-1118-99 (October 1999) | Reaffirmed (January 2014) This guide provides contractor training...

  6. DOE Approved Technical Standards | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Superseding DOE-STD-1060-93 (February 1993) | Replaced DOE-HDBK-1118-99 (October 1999) | Reaffirmed (January 2014) This guide provides contractor training organizations with...

  7. DOE Approved Technical Standards | Department of Energy

    Energy Savers [EERE]

    safe operation of DOE's defense nuclear facilities. 03032004 DOE-STD-1181-2014 Facility Maintenance Management Functional Area Qualification Standard The Facility Maintenance...

  8. Maintenance Management Program for DOE Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-06-01T23:59:59.000Z

    To define the program for the management of cost-effective maintenance of Department of Energy (DOE) nuclear facilities. Guidance for compliance with this Order is contained in DOE G 433.1-1, Nuclear Facility Maintenance Management Program Guide for use with DOE O 433.1, which references Federal regulations, DOE directives, and industry best practices using a graded approach to clarify requirements and guidance for maintaining DOE-owned Government property. (Cancels DOE 4330.4B, Chapter II, Maintenance Management Program, dated 2-10-94.) Cancels DOE 4330.4B (in part). Canceled by DOE O 433.1A.

  9. NERSC/DOE NP Requirements Workshop Participants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Scale Computing and Storage Requirements for Nuclear Physics May 26-27, 2011 Name Organization Area DOE Program Managers Ted Barnes DOE Office of Nuclear Physics Nuclear...

  10. DOE Challenge Home Recommended Quality Management Provisions...

    Broader source: Energy.gov (indexed) [DOE]

    Recommended Quality Management Provisions DOE Challenge Home Recommended Quality Management Provisions DOE Challenge Home Recommended Quality Management Provisions. qm6-14-13.pdf...

  11. DOE Affirms National Interest Electric Transmission Corridor...

    Broader source: Energy.gov (indexed) [DOE]

    2, 2007 DOE Announces Membership of New Electricity Advisory Committee, April 17, 2008 Senior DOE Officials in Spain to Participate in World Petroleum Congress, July 1, 2008...

  12. DOE Program/Targets and Workshop Objectives

    Broader source: Energy.gov (indexed) [DOE]

    Nancy Garland DOE Hydrogen Program Fuel Cell Operation at Sub- Freezing Temperatures DOE ProgramTargets and Workshop Objectives Sub-Freezing Temperature Effects on Fuel Cells...

  13. DOE FEMA Videos | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    DOE FEMA Videos DOE FEMA Videos EMERGENCY RESPONSE TO A TRANSPORTATION ACCIDENT INVOLVING RADIOACTIVE MATERIAL This training video and user guide was designed to supplement the...

  14. doe_netl_completed_proj | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires mayYuan T. Lee'sdefault Sign In AboutDistrict HotDOE/NETL

  15. DOE Formally Commits 1 Billion to | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OF CALCIUMCOST MANAGEMENT REPORT Page of DOE2 DOE4#NEWS

  16. Insights into the structure of mixed CO2/CH4 in gas hydrates

    SciTech Connect (OSTI)

    Everett, Susan M [ORNL; Rawn, Claudia J [ORNL; Chakoumakos, Bryan C [ORNL; Keffer, David J. [University of Tennessee, Knoxville (UTK); Huq, Ashfia [ORNL; Phelps, Tommy Joe [ORNL

    2015-01-01T23:59:59.000Z

    The exchange of CO2 for CH4 in natural gas hydrates is an attractive approach to methane for energy production while simultaneously sequestering CO2. In addition to the energy and environmental implications, the solid solution of clathrate hydrate (CH4)1-x(CO2)x 5.75H2O provides a model system to study how the distinct bonding and shapes of CH4 and CO2 influence the structure and properties of the compound. High-resolution neutron diffraction was used to examine mixed CO2/CH4 gas hydrates. CO2-rich hydrates had smaller lattice parameters, which were attributed to the higher affinity of the CO2 molecule interacting with H2O molecules that form the surrounding cages, and resulted in a reduction in the unit cell volume. Experimental nuclear scattering densities illustrate how the cage occupants and energy landscape change with composition. These results provide important insights on the impact and mechanisms for exchanging CH4 and CO2.

  17. Off-resonance photoemission dynamics studied by recoil frame F1s and C1s photoelectron angular distributions of CH{sub 3}F

    SciTech Connect (OSTI)

    Stener, M., E-mail: stener@univ.trieste.it; Decleva, P. [Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via L. Giorgieri 1, I-34127 Trieste (Italy) [Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via L. Giorgieri 1, I-34127 Trieste (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali Unita'di Trieste, 34127 Trieste (Italy); CNR-IOM DEMOCRITOS, 34149 Trieste (Italy)] [Italy; Mizuno, T.; Yagishita, A. [Photon Factory, Institute of Materials Structure Science, KEK, Oho 1-1, Tsukuba 305-0801 (Japan)] [Photon Factory, Institute of Materials Structure Science, KEK, Oho 1-1, Tsukuba 305-0801 (Japan); Yoshida, H. [Department of Chemistry, Hiroshima University, Higashi-Hiroshima, Hirosima 739-8526 (Japan)] [Department of Chemistry, Hiroshima University, Higashi-Hiroshima, Hirosima 739-8526 (Japan)

    2014-01-28T23:59:59.000Z

    F1s and C1s photoelectron angular distributions are considered for CH{sub 3}F, a molecule which does not support any shape resonance. In spite of the absence of features in the photoionization cross section profile, the recoil frame photoelectron angular distributions (RFPADs) exhibits dramatic changes depending on both the photoelectron energy and polarization geometry. Time-dependent density functional theory calculations are also given to rationalize the photoionization dynamics. The RFPADs have been compared with the theoretical calculations, in order to assess the accuracy of the theoretical method and rationalize the experimental findings. The effect of finite acceptance angles for both ionic fragments and photoelectrons has been included in the calculations, as well as the effect of rotational averaging around the fragmentation axis. Excellent agreement between theory and experiment is obtained, confirming the good quality of the calculated dynamical quantities (dipole moments and phase shifts)

  18. DOE Global Energy Storage Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The DOE International Energy Storage Database has more than 400 documented energy storage projects from 34 countries around the world. The database provides free, up-to-date information on grid-connected energy storage projects and relevant state and federal policies. More than 50 energy storage technologies are represented worldwide, including multiple battery technologies, compressed air energy storage, flywheels, gravel energy storage, hydrogen energy storage, pumped hydroelectric, superconducting magnetic energy storage, and thermal energy storage. The policy section of the database shows 18 federal and state policies addressing grid-connected energy storage, from rules and regulations to tariffs and other financial incentives. It is funded through DOE’s Sandia National Laboratories, and has been operating since January 2012.

  19. DOE outlines complex cleanup options

    SciTech Connect (OSTI)

    Lobsenz, G.

    1994-02-25T23:59:59.000Z

    The Energy Department said last week it will consider four different strategies for cleanup of its nuclear weapons complex in a draft programmatic environmental impact statement due for release this summer. In an implementation plan released for public comment February 17, DOE also said the EIS would look at centralized, decentralized and regional approaches to management of six types of radioactive and hazardous wastes. Other issues to be addressed in the EIS are development of innovative cleanup technology, budgeting and prioritization, job cutbacks and worker retraining, waste minimization and community involvement in cleanup decisions. However, DOE said it had decided not to address spent nuclear fuel storage in the EIS, as had been previously planned. Instead, spent fuel storage options will be reviewed in another environmental study being done under court order for DOE's Idaho National Engineering Laboratory. Findings from the INEL study will be incorporated in the department-wide EIS for environmental restoration and waste management.

  20. Wyoming DOE EPSCoR

    SciTech Connect (OSTI)

    Gern, W.A.

    2004-01-15T23:59:59.000Z

    All of the research and human resource development projects were systemic in nature with real potential for becoming self sustaining. They concentrated on building permanent structure, such as faculty expertise, research equipment, the SEM Minority Center, and the School of Environment and Natural Resources. It was the intent of the DOE/EPSCoR project to permanently change the way Wyoming does business in energy-related research, human development for science and engineering careers, and in relationships between Wyoming industry, State Government and UW. While there is still much to be done, the DOE/EPSCoR implementation award has been successful in accomplishing that change and enhancing UW's competitiveness associated with coal utilization, electrical energy efficiency, and environmental remediation.

  1. DOE F 4220-10

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOE F 1300.2 Record Of00.830.1 DOE3220.10

  2. DOE Plans | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010ConferencingOperationalDOE Plans DOE Plans

  3. Newsletters | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project Taps HPCNew4 News ReleasesNewsletters

  4. DOE Order on Quality Assurance

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732 DOE F 243.2 Records Scheduling3-2008 DOE OIGInteractions

  5. DOE Form 1332.4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OF CALCIUMCOST MANAGEMENT REPORT Page of DOE2 DOE4# LABOR

  6. DOE Form 1332.7

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OF CALCIUMCOST MANAGEMENT REPORT Page of DOE2 DOE4#

  7. DOE F 4220-10

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments4 ChairsEnergy DOE Cites FluorDepartmentSeptemberA DOE F

  8. J. Chem. Thermodynamics 1996, 28, 521538 Volumetric properties for {(1-x)CO2+xCH4},

    E-Print Network [OSTI]

    Bodnar, Robert J.

    J. Chem. Thermodynamics 1996, 28, 521­538 Volumetric properties for {(1-x)CO2+xCH4}, {(1-x)CO2+xN2, U.S.A. Densities r of pure CO2, CH4, and {(1-x)CO2+xCH4}, {(1-x)CO2+xN2}, and {(1-x)CH4+xN2} were from mole fraction x=0 to x=1. The results were obtained with a custom-designed, high-pressure, high-temperature

  9. Core-to-valence spectroscopic detection of the CH{sub 2}Br radical and element-specific femtosecond photodissociation dynamics of CH{sub 2}IBr

    SciTech Connect (OSTI)

    Attar, Andrew R.; Piticco, Lorena [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Leone, Stephen R. [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Physics, University of California, Berkeley, California 94720 (United States)

    2014-10-28T23:59:59.000Z

    Element-specific single photon photodissociation dynamics of CH{sub 2}IBr and core-to-valence absorption spectroscopy of CH{sub 2}Br radicals are investigated using femtosecond high-harmonic extreme ultraviolet (XUV) transient absorption spectroscopy. Photodissociation of CH{sub 2}IBr along both the C–I or C–Br reaction coordinates is observed in real-time following excitation at 266 nm. At this wavelength, C–I dissociation is the dominant reaction channel and C–Br dissociation is observed as a minor pathway. Both photodissociation pathways are probed simultaneously through individual 4d(I) N{sub 4/5} and 3d(Br) M{sub 4/5} core-to-valence transitions. The 3d(Br) M{sub 4/5} pre-edge absorption spectrum of the CH{sub 2}Br radical photoproduct corresponding to the C–I dissociation channel is characterized for the first time. Although the radical's singly occupied molecular orbital (SOMO) is mostly localized on the central carbon atom, the 3d(Br) ? ?{sup *}(SOMO) resonances at 68.5 eV and 69.5 eV are detected 2 eV below the parent molecule 3d(Br) ? ?{sup *}(LUMO) transitions. Core-to-valence XUV absorption spectroscopy provides a unique probe of the local electronic structure of the radical species in reference to the Br reporter atom. The measured times for C–I dissociation leading to I and I{sup *} atomic products are 48 ± 12 fs and 44 ± 4 fs, respectively, while the measured C–Br dissociation time leading to atomic Br is 114 ± 17 fs. The investigation performed here demonstrates the capability of femtosecond time-resolved core-level spectroscopy utilizing multiple reporter atoms simultaneously.

  10. DOE Collegiate Wind Competition (Presentation)

    SciTech Connect (OSTI)

    Jones, J.

    2014-02-01T23:59:59.000Z

    This presentation for the January Stakeholder Engagement and Outreach webinar outlines the expanded need for workers in the wind industry and provides an overview of the DOE Wind Competition (to be held in May 2014) and the guiding principles of the competition.

  11. Penn State DOE GATE Program

    SciTech Connect (OSTI)

    Anstrom, Joel

    2012-08-31T23:59:59.000Z

    The Graduate Automotive Technology Education (GATE) Program at The Pennsylvania State University (Penn State) was established in October 1998 pursuant to an award from the U.S. Department of Energy (U.S. DOE). The focus area of the Penn State GATE Program is advanced energy storage systems for electric and hybrid vehicles.

  12. DOE Peer Review, Washington, DC

    E-Print Network [OSTI]

    . Refrigeration system DOE National Labs: ORNL and LANL #12;Slide 4 GE GR & PSe Customer Participation Utility advisory council #12;Slide 5 GE GR & PSe Magnetic field strength Low High Magnetic rotor forging Yes No Magnetic stator teeth Yes No Performance Efficiency Reactive power capability System stability Design

  13. Observation of CH4 and other Non-CO2 Green House Gas Emissions from California

    SciTech Connect (OSTI)

    Fischer, Marc L.; Zhao, Chuanfeng; Riley, William J.; Andrews, Arlyn C.

    2009-01-09T23:59:59.000Z

    In 2006, California passed the landmark assembly bill AB-32 to reduce California's emissions of greenhouse gases (GHGs) that contribute to global climate change. AB-32 commits California to reduce total GHG emissions to 1990 levels by 2020, a reduction of 25 percent from current levels. To verify that GHG emission reductions are actually taking place, it will be necessary to measure emissions. We describe atmospheric inverse model estimates of GHG emissions obtained from the California Greenhouse Gas Emissions Measurement (CALGEM) project. In collaboration with NOAA, we are measuring the dominant long-lived GHGs at two tall-towers in central California. Here, we present estimates of CH{sub 4} emissions obtained by statistical comparison of measured and predicted atmospheric mixing ratios. The predicted mixing ratios are calculated using spatially resolved a priori CH{sub 4} emissions and surface footprints, that provide a proportional relationship between the surface emissions and the mixing ratio signal at tower locations. The footprints are computed using the Weather Research and Forecast (WRF) coupled to the Stochastic Time-Inverted Lagrangian Transport (STILT) model. Integral to the inverse estimates, we perform a quantitative analysis of errors in atmospheric transport and other factors to provide quantitative uncertainties in estimated emissions. Regressions of modeled and measured mixing ratios suggest that total CH{sub 4} emissions are within 25% of the inventory estimates. A Bayesian source sector analysis obtains posterior scaling factors for CH{sub 4} emissions, indicating that emissions from several of the sources (e.g., landfills, natural gas use, petroleum production, crops, and wetlands) are roughly consistent with inventory estimates, but livestock emissions are significantly higher than the inventory. A Bayesian 'region' analysis is used to identify spatial variations in CH{sub 4} emissions from 13 sub-regions within California. Although, only regions near the tower are significantly constrained by the tower measurements, CH{sub 4} emissions from the south Central Valley appear to be underestimated in a manner consistent with the under-prediction of livestock emissions. Finally, we describe a pseudo-experiment using predicted CH{sub 4} signals to explore the uncertainty reductions that might be obtained if additional measurements were made by a future network of tall-tower stations spread over California. These results show that it should be possible to provide high-accuracy estimates of surface CH{sub 4} emissions for multiple regions as a means to verify future emissions reductions.

  14. DOE

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4ConsumptionDOBEIA-0202(83/4Q)

  15. DOE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OF CALCIUM SULFATE: A REVIEWThisPLAN-46847 (2)6992

  16. 3 C E 301 Civil Engineering Systems * (fall or spring) 3 CH 302 Principles of Chemistry II * 3 CH 301 Principles of Chemistry I * 4 M 408D Seq, Series & Multivariable Calculus *

    E-Print Network [OSTI]

    Lightsey, Glenn

    S Probability & Statistics for Civil Engineers * 3 E M 306 Statics * 3 E M 319 Mechanics of Solids requirements. Approved Math/Science/ Engineering Science Elective ______________ Approved Science Elective3 C E 301 Civil Engineering Systems * (fall or spring) 3 CH 302 Principles of Chemistry II * 3 CH

  17. Ultrafast UV Pump/IR Probe Studies of C-H Activation in Linear, Cyclic, and Aryl Hydrocarbons

    E-Print Network [OSTI]

    Harris, Charles B.

    Ultrafast UV Pump/IR Probe Studies of C-H Activation in Linear, Cyclic, and Aryl Hydrocarbons, cyclic, and aromatic hydrocarbon solvents on a femtosecond to microsecond time scale. These results have revealed that the structure of the hydrocarbon substrate affects the final C-H bond activation step, which

  18. Energetics of C-H Bond Activation of Fluorinated Aromatic Hydrocarbons Using a [TpRh(CNneopentyl)] Complex

    E-Print Network [OSTI]

    Jones, William D.

    Energetics of C-H Bond Activation of Fluorinated Aromatic Hydrocarbons Using a [Tp activation of fluorinated aromatic hydrocarbons by [TpRh(CNneopentyl)] resulted in the formation of products of homogeneous transition-metal catalysts to activate and functionalize C-H bonds of hydrocarbons for industrial

  19. * Corresponding author. Fax: 0041-1-823-5210. E-mail address: peeters@eawag.ch (F. Peeters)

    E-Print Network [OSTI]

    Aeschbach-Hertig, Werner

    .M. Imboden , K. Rozanski , K. FroK hlich Swiss Federal Institute of Technology (ETH), CH-8600 Du( bendorf, Switzerland Swiss Federal Institute of Environmental Science and Technology (EAWAG), CH-8600 Du( bendorf International Atomic Energy Agency, Department of Research and Isotopes, Vienna, Austria Received 24 June 1998

  20. Synthesis, Structure, and Reactivity of O-Donor Ir(III) Complexes: C-H Activation Studies with Benzene

    E-Print Network [OSTI]

    Goddard III, William A.

    with Benzene Gaurav Bhalla, Xiang Yang Liu, Jonas Oxgaard, William A. Goddard, III, and Roy A. Periana. All the R-Ir-Py complexes undergo quantitative, intermolecular CH activation reactions with benzene to benzene to generate a discrete benzene complex, cis-R-Ir-PhH; and (D) rapid C-H cleavage. Kinetic isotope

  1. 2590 J. Am. Chem. SOC.1995,117, 2590-2599 The C-H Bond Energy of Benzene

    E-Print Network [OSTI]

    Ellison, Barney

    2590 J. Am. Chem. SOC.1995,117, 2590-2599 The C-H Bond Energy of Benzene Gustavo E. Davico ion with benzene and phenide ion with ammonia: c&6 +NH2- C6H5- +NH3. The ratio of these rate constants for derived. The enthalpy of deprotonationof benzene, the C-H bond dissociationenergy, and the electron

  2. Contract No. DE-AC02-07CH11358 Contract Modification No. 0145

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    H-11 H.8 PRIVACY ACT RECORDS H-12 H.9 ADDITIONAL DEFINITIONS H-12 H.10 SERVICE CONTRACT ACT OF 1965 (41 U.S.C. 35) H-14 Contract No. DE-AC02-07CH11358 Section H TOC...

  3. CH 5 MANAGEMENT PLAN.DOC 5-1 5 Management Plan

    E-Print Network [OSTI]

    CH 5 MANAGEMENT PLAN.DOC 5-1 5 Management Plan 5.1 Vision The Willamette Subbasin Plan Oversight drafted the following vision: Willamette Basin citizens from all walks of life prize and enjoy a quilt-work of natural areas, working landscapes, and distinctive communities, from the crest of the Coast Range

  4. LeTemps.ch I Des robots pour mieux comprendre l,volution 08011217:49

    E-Print Network [OSTI]

    Alvarez, Nadir

    LeTemps.ch I Des robots pour mieux comprendre l,volution LE TEMPs 08011217:49 biologie Vendredi6 janvier 2012 Des robots pour mieux comprendre l'6volution Par L'aldatoire entrerait en jeu Le d6'y parvenir en employant comme cobayes... des robots. Etude qu,ils publient cette semaine dans une

  5. Fractal characterisation of high-pressure and hydrogen-enriched CH4air turbulent premixed flames

    E-Print Network [OSTI]

    Gülder, �mer L.

    Fractal characterisation of high-pressure and hydrogen-enriched CH4­air turbulent premixed flames measurements were performed to obtain the flame front images, which were further analyzed for fractal of the flame front curvature as a function of the pressure. Fractal dimension showed a strong dependence

  6. *Email: findley@chem.ulm.edu Photoionization Spectra of CH3I Perturbed by SF6

    E-Print Network [OSTI]

    Findley, Gary L.

    1 *Email: findley@chem.ulm.edu (1) (2) (3) Photoionization Spectra of CH3I Perturbed by SF6: Electron Scattering in SF6 Gas C. M. Evansa,b , R. Reiningera and G. L. Findleya a Department of Chemistry in the presence of SF6 perturbers (up to the perturber density 9.75 x 1019 cm-3 ) disclosed a red shift

  7. Use of phytostabilisation to remediate mtal polluted dredged V Bert', Ch Lors2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Use of phytostabilisation to remediate métal polluted dredged sédiment V Bert', Ch Lors2 scale on dredged sédiments polluted with metals. A sédiment deposit contaminated with metals of waterways générâtes numerous dredged sédiment deposits. Due to the local intensive industrial history

  8. A liquid-crystal model for friction C.H. A. Cheng

    E-Print Network [OSTI]

    Shkoller, Steve

    for sliding friction. Dry friction between two sliding surfaces gen- erates granulation, resultingA liquid-crystal model for friction C.H. A. Cheng , L. H. Kellogg , S. Shkoller , and D. L, University of California, Davis, CA 95616 Contributed by D. L. Turcotte, November 19, 2007 Rate-and-state-friction

  9. Thursday, March 11, 2010 Pages to read: CH5, 407-422

    E-Print Network [OSTI]

    Toohey, Darin W.

    Acid Rain Thursday, March 11, 2010 Pages to read: CH5, 407-422 #12;Cap and Trade Working Already rain, to 7.6 million tons in 2008. #12;Overview of Acid Rain Phenomenon Most common term Agency announced that power plants across the country decreased emissions of SO2, a precursor to acid

  10. Modification No.0136 Contract No. DE-AC02-09CH11466

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    of the Princeton Plasma Physics Laboratory A Department of Energy National Laboratory Contract No. DE-AC02-09CH.2 Provide Effective and Efficient Science and Technology Project / Program / Facilities Management J-B-28 3 Financial Management System(s) J-B-42 6.2 Provide and Efficient, Effective, and Responsive Acquisition

  11. Ch. 13 Transform Coding My Coverage is Different from the Book

    E-Print Network [OSTI]

    Fowler, Mark

    1 Ch. 13 Transform Coding My Coverage is Different from the Book #12;2 Overview Transform. Block Diagram of Transform Coding "Fig. A" Often (but not always!) done on a block-by-block basis: · Non-Overlapped Blocks (most common) · Overlapped Blocks #12;3 Transform as Linear Operator We'll view transforms

  12. CH 4 INVENTORY.DOC 4-1 4 Inventory and Assessment of Conservation Efforts

    E-Print Network [OSTI]

    CH 4 INVENTORY.DOC 4-1 4 Inventory and Assessment of Conservation Efforts 4.1 Background According and imminent protections, and 3) current strategies implemented through specific projects. The inventory residents makes an inventory and assessment of this nature very difficult. It may therefore be helpful

  13. REMARQUES SUR LE MMOIRE DE MM. NAGAOKA ET HONDA; Par CH.-ED. GUILLAUME.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    621 REMARQUES SUR LE MÉMOIRE DE MM. NAGAOKA ET HONDA; Par CH.-ED. GUILLAUME. 11 est facile de voir que le plissement des courbes d'aimantation et d'allongement constaté par MM. Nagaoka et Honda et Honda indique un point singulier des alliages, ou s'il s'agit d'un fait fortuit. J'ajou- terai que

  14. REMARQUES SUR LE TRAVAIL DE MM. NAGAOKA ET HONDA ; Par M. CH.-D. GUILLAUME

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    633 REMARQUES SUR LE TRAVAIL DE MM. NAGAOKA ET HONDA ; Par M. CH.-ÉD. GUILLAUME Les recherches de MM. Nagaolia et Honda sur la inagnéto- striction donnent lieu à deux genres de remarques : les unes que pour une proportion insignifiante dans les résultats énoncés par MM. Nagaoka et Honda, et que les

  15. Temperature and peat type control CO2 and CH4 production in Alaskan permafrost peats

    E-Print Network [OSTI]

    Temperature and peat type control CO2 and CH4 production in Alaskan permafrost peats C . C . T R E Hampshire, Durham, NH, USA, 3 Department of Natural Resources and the Environment, University of New carbon (SOC) losses following perma- frost thaw in peat soils across Alaska. We compared the carbon

  16. Soil chemistry versus environmental controls on production of CH4 and CO2 in northern peatlands

    E-Print Network [OSTI]

    Williams, Christopher J.

    . B. YAVITT a , C. J. WILLIAMS b & R. K. WIEDER c a Department of Natural Resources, Cornell Rates of organic carbon mineralization (to CO2 and CH4) vary widely in peat soil. We transplanted four peat soils with different chemical composition into six sites with different environmental conditions

  17. Temperature Dependence of Scott Thermomagnetic Torque in N2, Ch4, and Hd

    E-Print Network [OSTI]

    Adair, Thomas W.

    1972-01-01T23:59:59.000Z

    curve'which has a maxi- mum value at a field-to-pressure .ratio (P/P) ~. The temperature dependence of (JI/P) ~ for N2 and CH4 has been measured, and from these data the value for the optimum ratio of preces- sion frequency to collision frequency...

  18. PREPARED FORTHE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DEAC0276CH03073

    E-Print Network [OSTI]

    , radial electric fields generated rf­induced fast loss utilized drive poloidal rotation thereby inducePREPARED FORTHE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE­AC02­76CH03073 PRINCETON PLASMA Electric Fields on ICRF Waves C.K. Phillips, J.C. Hosea, Ono, Wilson June 2001 #12; PPPL Reports Disclaimer

  19. The Drivetrain of Sustainability Powering innovation in Clean teCh

    E-Print Network [OSTI]

    California at Davis, University of

    The Drivetrain of Sustainability Powering innovation in Clean teCh iNSiDe: BUSiNeSS OF HeALTH CARe energy use, generation and storage, as well as other necessities of life, environmentally responsible of Management, I hope to participate in what many expect to be the next big chapter of the California Dream

  20. ChBE 4300 Kinetics and Reactor Design (required course) Credit: 3-0-3

    E-Print Network [OSTI]

    Sherrill, David

    , and (ii) reactor design for the homogeneous reaction systems. The design principles for ideal homogeneousChBE 4300 Kinetics and Reactor Design (required course) Credit: 3-0-3 Prerequisite in terms of reaction mechanisms, kinetics, and reactor design. Both homogeneous and heterogeneous reactions

  1. ChBE 4310 Bioprocess Engineering (required course) Credit: 3-0-3

    E-Print Network [OSTI]

    Sherrill, David

    Description: Integrating several ChBE core concepts, bioprocess engineering applies the engineering principles) or Biochemistry II (Chem 4511) minimum grade "D", and Kinetics and Reactor Design, minimum grade "C" Objectives: Specifically, after completing the course, students should be able to: 1.) Apply engineering principles

  2. EnvironMEntAl chEMiStry College of Natural Science and Mathematics

    E-Print Network [OSTI]

    Hartman, Chris

    EnvironMEntAl chEMiStry College of Natural Science and Mathematics Department of Chemistry education and research opportunities focused on the molecular scale as- pects of environmental science prepares students for careers in the environmental science and technology sector as specialists

  3. Learning Qualitative Relations in Physics with Law Encoding Diagrams Peter C-H. Cheng

    E-Print Network [OSTI]

    Cheng, Peter

    Learning Qualitative Relations in Physics with Law Encoding Diagrams Peter C-H. Cheng ESRC Centre that evaluates the effectiveness of Law Encoding Diagrams (LEDs) for learning qualitative relations in the domain of elastic colli- sions in physics. A LED is a representation that captures the laws or important relations

  4. SCIENTIFIC DISCOVERY WITH LAW ENCODING DIAGRAMS Peter C-H. Cheng

    E-Print Network [OSTI]

    Cheng, Peter

    - 1 - SCIENTIFIC DISCOVERY WITH LAW ENCODING DIAGRAMS Peter C-H. Cheng ESRC Centre for Research the concept of Law Encoding Diagrams, LEDs, and argues that they have had a role in scientific discovery the underlying relations of a law, or a system of simultaneous laws, in the structure of a diagram by the means

  5. 16. Wave-particle interaction Reading: Shu, Vol.II, Ch.29

    E-Print Network [OSTI]

    Pohl, Martin Karl Wilhelm

    16. Wave-particle interaction Reading: Shu, Vol.II, Ch.29 16.1 Landau damping We started our discussion of hydromagnetic waves with simple one-dimensional electrostatic fluctuations, the Langmuir waves, whose dispersion relation is = p = e2 ne 0 me Can the waves change plasma properties or, vice versa

  6. Large-Scale Quality Analysis of Published ChIP-seq Data

    E-Print Network [OSTI]

    Kundaje, Anshul

    ChIP-seq has become the primary method for identifying in vivo protein–DNA interactions on a genome-wide scale, with nearly 800 publications involving the technique appearing in PubMed as of December 2012. Individually and ...

  7. Effect of plastic deformation on the formation of acicular ferrite C.H. Lee a,1

    E-Print Network [OSTI]

    Cambridge, University of

    Effect of plastic deformation on the formation of acicular ferrite C.H. Lee a,1 , H deformation on the transformation of austenite to acicular ferrite in a FeÁ/MnÁ/SiÁ/C alloy steel containing non-metallic inclusions was investigated. The transformation to acicular ferrite is retarded

  8. High resolution spectroscopy of BaCH3,,X~ 2 A1...: Fine and hyperfine

    E-Print Network [OSTI]

    Ziurys, Lucy M.

    interactions were also resolved, arising from the spin of the barium nucleus. The complete data set has been these improvements, some of the simplest organometallic compounds such as methyl lithium (LiCH3) have not been in their crystalline state.7,8 In such environments, establishing the fundamental properties of a given molecule

  9. FL47CH15-Goldstein ARI 25 November 2014 9:45 Green Algae as Model

    E-Print Network [OSTI]

    Goldstein, Raymond E.

    FL47CH15-Goldstein ARI 25 November 2014 9:45 Green Algae as Model Organisms for Biological Fluid green algae, spanning from the unicellular Chlamydomonas to multicellular Volvox, have emerged as model of flagellar synchronization. Green algae are well suited to the study of such problems because of their range

  10. Fax +41 61 306 12 34 E-Mail karger@karger.ch

    E-Print Network [OSTI]

    Denver, Robert J.

    Fax +41 61 306 12 34 E-Mail karger@karger.ch www.karger.com At the Cutting Edge Neuroendocrinology in a blood-borne factor, while the db/db strain was deficient in the receptor for this factor [1­3]. Over

  11. BE12CH08-Zare ARI 22 April 2010 20:22 Microfluidic Platforms

    E-Print Network [OSTI]

    Zare, Richard N.

    BE12CH08-Zare ARI 22 April 2010 20:22 R E V I E W S IN A D V A N CE Microfluidic Platforms, genetic analysis Abstract Microfluidics, the study and control of the fluidic behavior in microstruc to analyze various types of intracellular components quantitatively. The microfluidic approach offers a rapid

  12. Charge-Separation in Uranium Diazomethane Complexes Leading to C-H Activation and Chemical Transformation

    E-Print Network [OSTI]

    Meyer, Karsten

    coordination and organometallic chemistry.1-3 The covalency in uranium ligand bonds is weaker thanCharge-Separation in Uranium Diazomethane Complexes Leading to C-H Activation and ChemicalVersity of California, San Diego, Department of Chemistry, 9500 Gilman DriVe, La Jolla, California 92093, and Uni

  13. Bennett's Ch. 17: `Even If...' Maile Holck, 11/16/04

    E-Print Network [OSTI]

    Fitelson, Branden

    1 Bennett's Ch. 17: `Even If...' Maile Holck, 11/16/04 Bennett begins this chapter by dismissing, but the material is fun and (possibly) more relevant to conditionals than Bennett wants to believe. §102. `Even': Preliminaries Bennett starts with Pollock's 1976 account of "even if" wherein: `even if' is an idiom

  14. Bennett's Ch 7: Indicative Conditionals Lack Truth Values Jennifer Zale, 10/12/04

    E-Print Network [OSTI]

    Fitelson, Branden

    Bennett's Ch 7: Indicative Conditionals Lack Truth Values Jennifer Zale, 10/12/04 §38. No Truth Ernest Adams (founder) Jackson Bennett Lycan Gibbard Edgington McDermott III. Requirements for joining. (cf. Jackson, who believes AC has Ramseyan `assertability' conditions PLUS truth conditions). Bennett

  15. Effect of Blast Design on Crack Response C.H. Dowding

    E-Print Network [OSTI]

    Effect of Blast Design on Crack Response C.H. Dowding Professor of Civil & Environmental to assess the effect of changes in blast design on the house response. Velocity response was measured some 11 velocity transducers and 3 crack sensors measured excitation and response for each blast

  16. Computer simulation study of liquid CH2F2 with a new effective pair potential model

    E-Print Network [OSTI]

    Mezei, Mihaly

    to reproduce the thermodynamic internal energy, density, heat capacity, vapor-liquid equilibrium and structuralComputer simulation study of liquid CH2F2 with a new effective pair potential model Pa potential model is proposed for computer simulations of liquid methylene fluoride and used in Monte Carlo

  17. Catalytic C-H Activation and Functionalization: Some Applications in Organic Synthesis

    E-Print Network [OSTI]

    Stoltz, Brian M.

    Non-hydro renewables Hydro power Natural Gas Transportation is Costly - CH4 major constituent,000 3,000 4,000 5,000 6,000 1970 1980 1990 2000 2010 2020 2030 Mtoe Oil Natural gas Coal Nuclear power of natural gas with 5-10% ethane - The energy efficiency of natural gas liquefaction and regasification add

  18. Joint CO2 and CH4 accountability for global warming Kirk R. Smitha,1,2

    E-Print Network [OSTI]

    Silver, Whendee

    the causes of global warming, because the amount of global warming occurring at any time is ac- tually dueJoint CO2 and CH4 accountability for global warming Kirk R. Smitha,1,2 , Manish A. Desaia,1 for global warming is its current annual emissions of greenhouse gases (GHGs)*. The second most common

  19. Pluto's Atmosphere Does Not Collapse

    E-Print Network [OSTI]

    Olkin, C B; Borncamp, D; Pickles, A; Sicardy, B; Assafin, M; Bianco, F B; Buie, M W; de Oliveira, A Dias; Gillon, M; French, R G; Gomes, A Ramos; Jehin, E; Morales, N; Opitom, C; Ortiz, J L; Maury, A; Norbury, M; Ribas, F B; Smith, R; Wasserman, L H; Young, E F; Zacharias, M; Zacharias, N

    2013-01-01T23:59:59.000Z

    Combining stellar occultation observations probing Pluto's atmosphere from 1988 to 2013 and models of energy balance between Pluto's surface and atmosphere, we conclude that Pluto's atmosphere does not collapse at any point in its 248-year orbit. The occultation results show an increasing atmospheric pressure with time in the current epoch, a trend present only in models with a high thermal inertia and a permanent N2 ice cap at Pluto's north rotational pole.

  20. Nancy Garland DOE Hydrogen Program

    E-Print Network [OSTI]

    commercialization decision by 2015 Fuel cell vehicles in showroom and hydrogen at fuel stations by 2020 #12;Hydrogen, and distributed combined heat and power applications. #12;DOE Hydrogen Program Budget $544DOT $37,301Earmarks (EE,830$30,000$29,432Storage R&D (EE) $14,363$25,325$22,564Production & Delivery R&D (EE) FY 05 Appropriations* ($000) FY 05

  1. One Panel One Roof, DOE Powering Solar Workforce | Department...

    Broader source: Energy.gov (indexed) [DOE]

    One Panel One Roof, DOE Powering Solar Workforce One Panel One Roof, DOE Powering Solar Workforce...

  2. The time evolution of a vortex-flame interaction observed via planar imaging of CH and OH

    SciTech Connect (OSTI)

    Nguyen, Quang-Viet; Paul, P.H.

    1996-05-01T23:59:59.000Z

    Planar laser-induced fluorescence imaging diagnostics of OH and CH are used to examine a premixed laminar flame subjected to a strong line-vortex pair. Results are reported for a fuel-rcih lamiar CH{sub 4}-air-N{sub 2} rod-stabilized flame. The flow studied was highly reproducible, which enabled the use of phase-sampled imaging to provide time-resolved image sequences. Image sequences are shown for a condition sufficient to produce localized extinction of the primary flame. Results indicate that a breakage in the CH front is not preceded by any distinct change in the OH front. The structure of the CH and OH profiles during the transient leading up to, and through the breakage of the CH front do not appear to be consistent with the concept of a strained laminar flame.

  3. Voluntary Protection Program Onsite Review, CH2M HILL B&W West...

    Office of Environmental Management (EM)

    the use of the Discovery Clocks is an excellent practice that CHBWV should share as a lesson learned with other DOE contractors and DOE-VPP participants. In keeping with its...

  4. Order Module--DOE O 440.1B, WORKER PROTECTION PROGRAM FOR DOE...

    Office of Environmental Management (EM)

    40.1B, WORKER PROTECTION PROGRAM FOR DOE (INCLUDING NNSA) FEDERAL EMPLOYEES Order Module--DOE O 440.1B, WORKER PROTECTION PROGRAM FOR DOE (INCLUDING NNSA) FEDERAL EMPLOYEES The...

  5. Order Module--DOE O 433.1B, MAINTENANCE MANAGEMENT PROGRAM FOR DOE NUCLEAR FACILITIES

    Broader source: Energy.gov [DOE]

    "The familiar level of this module is designed to summarize the basic information in DOE O 433.1B, Maintenance Management Program for DOE Nuclear Facilities. This Order canceled DOE O 433.1A. This...

  6. DOE Departmental Elements - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePART I SECTION ADMSEDOE /DOE Departmental

  7. DOE-STD-1091-96; DOE Standard Firearms Safety

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRUJuly3010-942-94 June 1994 DOE APPENDIX4491-961-96

  8. DOE Awards Management and Operating Contract for DOE's Waste Isolation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&D Project for ETTP DOE Awards ContractDepartmentPilot

  9. DOE Responses to DOE Challenge Home (formerly Builders Challenge) National

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractions and PolicyCybersecurityThis version ofDOE Response

  10. DOE-HDBK-1092-98; DOE Handbook Electrical Safety

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No Significant Impact for1-93 JANUARY092-98 January 1998 DOE

  11. DOE-HDBK-1132-99; DOE Handbook Design Considerations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No Significant Impact6 of 9 Radiological32-99 April 1999 DOE

  12. doe energy innovation hubs | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ .-detonation detectionDocument1 2 3DOE

  13. DOE Announced the EFRC Summit & Forum | U.S. DOE Office of Science...

    Office of Science (SC) Website

    DOE Announced the EFRC Summit & Forum Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements...

  14. DOEs Effort to Reduce Truck Aerodynamic Drag through Joint...

    Energy Savers [EERE]

    DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland. merit08salari.pdf More Documents & Publications DOEs Effort to Reduce...

  15. Rare-earth transition-metal gallium chalcogenides RE{sub 3}MGaCh{sub 7} (M=Fe, Co, Ni; Ch=S, Se)

    SciTech Connect (OSTI)

    Rudyk, Brent W.; Stoyko, Stanislav S.; Oliynyk, Anton O.; Mar, Arthur, E-mail: arthur.mar@ualberta.ca

    2014-02-15T23:59:59.000Z

    Six series of quaternary rare-earth transition-metal chalcogenides RE{sub 3}MGaCh{sub 7} (M=Fe, Co, Ni; Ch=S, Se), comprising 33 compounds in total, have been prepared by reactions of the elements at 1050 °C (for the sulphides) or 900 °C (for the selenides). They adopt noncentrosymmetric hexagonal structures (ordered Ce{sub 3}Al{sub 1.67}S{sub 7}-type, space group P6{sub 3}, Z=2) with cell parameters in the ranges of a=9.5–10.2 Å and c=6.0–6.1 Å for the sulphides and a=10.0–10.5 Å and c=6.3–6.4 Å for the selenides as refined from powder X-ray diffraction data. Single-crystal structures were determined for five members of the sulphide series RE{sub 3}FeGaS{sub 7} (RE=La, Pr, Tb) and RE{sub 3}CoGaS{sub 7} (RE=La, Tb). The highly anisotropic crystal structures consist of one-dimensional chains of M-centred face-sharing octahedra and stacks of Ga-centred tetrahedra all pointing in the same direction. Magnetic measurements on the sulphides reveal paramagnetic behaviour in some cases and long-range antiferromagnetic behaviour with low Néel temperatures (15 K or lower) in others. Ga L-edge XANES spectra support the presence of highly cationic Ga tetrahedral centres with a tendency towards more covalent Ga–Ch character on proceeding from the sulphides to the selenides. Band structure calculations on La{sub 3}FeGaS{sub 7} indicate that the electronic structure is dominated by Fe 3d-based states near the Fermi level. - Graphical abstract: The series of chalcogenides RE{sub 3}MGaS{sub 7}, which form for a wide range of rare-earth and transition metals (M=Fe, Co, Ni), adopt highly anisotropic structures containing chains of M-centred octahedra and stacks of Ga-centred tetrahedra. Display Omitted - Highlights: • Six series (comprising 33 compounds) of chalcogenides RE{sub 3}MGaCh{sub 7} were prepared. • They adopt noncentrosymmetric hexagonal structures with high anisotropy. • Most compounds are paramagnetic; some show antiferromagnetic ordering. • Ga L-edge XANES confirms presence of cationic Ga species.

  16. Dictionary - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1997 CRD: No DNFSB: No Related History Exemptions Standards Related to: DOE G 430.1-1 Chp 9, Operating Costs DOE G 430.1-1 Chp 19, Data Collection and Normalization for the...

  17. References - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1997 CRD: No DNFSB: No Related History Exemptions Standards Related to: DOE G 430.1-1 Chp 9, Operating Costs DOE G 430.1-1 Chp 19, Data Collection and Normalization for the...

  18. Kentucky DOE-EPSCoR Program

    SciTech Connect (OSTI)

    Stencel, J.M.; Ochsenbein, M.P.

    2003-04-14T23:59:59.000Z

    The KY DOE EPSCoR Program included efforts to impact positively the pipeline of science and engineering students and to establish research, education and business infrastructure, sustainable beyond DOE EPSCoR funding.

  19. Building Technologies Office: 179D DOE Calculator

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    179D DOE Calculator EERE Building Technologies Office 179D DOE Calculator Printable Version Bookmark and Share What is the 179D federal tax deduction? Section 179D of the...

  20. The DOE Virtual University (DVU) Icon

    Broader source: Energy.gov [DOE]

     The Office of Learning & Workforce Development launched a desktop icon for its virtual university.  The DOE Virtual University (DVU) icon is on most of the DOE desktops (most of HQ, except EIA...

  1. WINDExchange Webinar: The DOE Wind Vision

    Broader source: Energy.gov [DOE]

    DOE's WINDExchange initiative will host a webinar presenting the Wind Program's Wind Vision, an effort to update and expand the 2008 DOE 20% Wind Energy by 2030 report. Given the huge changes...

  2. DOE Natural Phenomena Hazards (NPH) Workshop

    Office of Environmental Management (EM)

    for the 10-Year Extreme Wind Update at the DOE Pantex Site Jim Nunley, John Baker, and Andrew Tinsley 8:30 a.m. Storm Water Modeling for the 10-Year Update at the DOE Pantex...

  3. DOE Cooperative Research and Development Agreements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-12T23:59:59.000Z

    To establish Department of Energy (DOE) policy, requirements, and responsibilities for the oversight, management, and administration of Cooperative Research and Development Agreement (CRADA) activities at DOE facilities. No cancellation.

  4. News & Updates - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Departmental Directives Program DRAFT - DOE G 580.1-1A, Personal Property DRAFT- DOE O 442.1B, Department of Energy Employee Concerns Program Recent Administrative Change 12-4-14...

  5. Extension of DOE N 206.3

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-03-22T23:59:59.000Z

    The Notice extends DOE N 206.3, Personal Identity Verification, dated 11-22-05, until March 22, 2007.

  6. DOE Publishes Supplemental Proposed Determination for Miscellaneous...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proposed Determination for Miscellaneous Residential Refrigeration Products DOE Publishes Supplemental Proposed Determination for Miscellaneous Residential Refrigeration Products...

  7. Supervisors` orientation to occupational safety in DOE

    SciTech Connect (OSTI)

    NONE

    1993-10-01T23:59:59.000Z

    This document presents OSHA regulations, safety and health guidelines pertinent to DOE and the first-line supervisor.

  8. DOE's way-out reactors

    SciTech Connect (OSTI)

    Marshall, E.

    1986-03-21T23:59:59.000Z

    The SP-100 reactor, envisioned long before Star Wars, was to power civilian structures such as the space station and orbiting commercial labs. According to the SDI Organization, it will be the cornerstone for SDI, used as a no-maintenance, general source of energy for the military's infrastructure - weapons scale power will come later. DOE wants to spend $72 in FY 1977 to design and build these reactors. Funding problems with Congress, as well as some of the technology and timetables are discussed here.

  9. Does Geometric Coupling Generates Resonances?

    E-Print Network [OSTI]

    I. C. Jardim; G. Alencar; R. R. Landim; R. N. Costa Filho

    2015-05-08T23:59:59.000Z

    Geometrical coupling in a co-dimensional one Randall-Sundrum scenario (RS) is used to study resonances of $p-$form fields. The resonances are calculated using the transfer matrix method. The model studied consider the standard RS with delta-like branes, and branes generated by kinks and domain-wall as well. The parameters are changed to control the thickness of the smooth brane. With this a very interesting pattern is found for the resonances. The geometrical coupling does not generate resonances for the reduced $p-$form in all cases considered.

  10. User's guide to DOE facilities

    SciTech Connect (OSTI)

    Not Available

    1984-01-01T23:59:59.000Z

    The Department of Energy's research laboratories represent valuable, often unique, resources for university and industrial scientists. It is DOE policy to make these laboratories and facilities available to qualified scientists. The answers to such questions as who are eligible, what and where are the facilities, what is the cost, when can they be used, are given. Data sheets are presented for each facility to provide information such as location, user contact, description of research, etc. A subject index refers to areas of research and equipment available.

  11. DOE eGuide Lite

    Broader source: Energy.gov [DOE]

    The DOE eGuide Lite teaches organizations the basics of better energy management. This includes understanding what kinds of energy they use, how they use it and how much of it they use. The eGuide Lite will also help organizations improve their understanding of energy costs and increase their awareness of options to reduce energy consumption. The eGuide Lite is based on the "learn-by-doing" model, and organizations who use this module will be guided through the steps of implementing basic energy management. The goal is that organizations who use this module will identify, plan and initiate sustainable energy improvements on an ongoing basis.

  12. DOE F 3305.2

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRU Waste Cleanup at1450.5B OMB Control4A DOE FDOE F2

  13. DOE F 3305.8

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRU Waste Cleanup at1450.5B OMB Control4A DOE FDOE F28

  14. DOE F 3450.1

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRU Waste Cleanup at1450.5B OMB Control4A DOE FDOE

  15. DOE F 3450.3

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRU Waste Cleanup at1450.5B OMB Control4A DOE FDOE4. 1.

  16. DOE F 3511.1

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRU Waste Cleanup at1450.5B OMB Control4A DOE FDOE4. 1.

  17. DOE F 3630.1

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRU Waste Cleanup at1450.5B OMB Control4A DOE FDOE4.

  18. DOE F 5639.3

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRU Waste Cleanup at1450.5B OMB3.2 DOE F 473.233425639.3

  19. Details | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasRelease Date: Contact: Shelley Martin, DOE National Energy

  20. index | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , .,Shreve; University67HybridicfDOE/NETL Advanced

  1. index | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , .,Shreve; University67HybridicfDOE/NETL

  2. index | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , .,Shreve; University67HybridicfDOE/NETLAir Quality

  3. index | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , .,Shreve; University67HybridicfDOE/NETLAir

  4. index | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , .,Shreve; University67HybridicfDOE/NETLAirAdvanced

  5. nccc | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , (Energy97,1996 http://www.eia.doe.gov N Y

  6. Index | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFP »summerlectures [ICO] Name LastsafetyEarth Day

  7. Index | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFP »summerlectures [ICO] Name LastsafetyEarth

  8. Index | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFP »summerlectures [ICO] Name

  9. DOE F 1340-3

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOE F 1300.2 Record Of Non-Standards59

  10. DOE FOIA 2012 Annual Report

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOE F 1300.2 Record Of00.830.10.43410

  11. DOE FOIA 2014_Annual Report

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOE F 1300.2 Record Of00.830.10.43410

  12. DOE N 203.1

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOE FitsEnergy All Departmental Elements

  13. stripperwell | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires mayYuan T.ExternalscriptEnv

  14. utr | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires mayYuan T.ExternalscriptEnv LANL NationalR I

  15. DOE F 4250.2

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014ContributingDOE Contract #DEAC13-02GJ794912 (7-83) (Formerly

  16. DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePART I SECTION ADMSEDOE /DOE

  17. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOffice ofHale Plan24, 2013 DOE-ID Operations

  18. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOffice ofHale Plan24, 2013 DOE-ID

  19. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOffice ofHale Plan24, 2013 DOE-ID26, 2013

  20. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOffice ofHale Plan24, 2013 DOE-ID26,

  1. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOffice ofHale Plan24, 2013 DOE-ID26,5, 2013

  2. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOffice ofHale Plan24, 2013 DOE-ID26,5,

  3. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOffice ofHale Plan24, 2013 DOE-ID26,5,6,

  4. DOE-ID Operations Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOffice ofHale Plan24, 2013 DOE-ID26,5,6,27,

  5. Searchable Videos Showcasing DOE Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook TwitterSearch-Comments Sign In About | Careers |

  6. Site Map | DOE Data Explorer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarship Fund3 Outlook forSDPPP Individual Permit:Site MapSite

  7. AAAR | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See the Energy Level79AJ01)8AJ01)Tables

  8. DOE Workshop - Deposition Velocity Status

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRUJuly 29, 2013SavannahRenewable Energy Delivering DOE's

  9. DOE-STD-1104 Acronyms

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRUJuly3010-942-94 June 1994 DOE04 Master Acronyms List

  10. DOE Form 1322.4

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&D Project|Statement |3250.1DOE Federal2.4 (09-13) All

  11. DOE Fuel Cell Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&D Project|StatementDOE Fuel Cell Technologies Office

  12. DOE Guidance-Category Rating

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&D Project|StatementDOE FuelProgram | Department27,

  13. Organization | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTest andOptimize carbon About »Organization NETL:

  14. archive | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires mayYuan T. Lee's CrossedMaterialsThermal

  15. awards | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires mayYuan T. Lee's CrossedMaterialsThermalPatentsaward

  16. ccpi | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires mayYuan T. Lee's www.rsc.org/loc Volume 8Power Initiative

  17. cctdp | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires mayYuan T. Lee's www.rsc.org/loc Volume 8Power

  18. cep | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires mayYuan T. Lee's www.rsc.org/loc Volume 8PowerClean

  19. citrix | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires mayYuan T. Lee's www.rsc.org/loc Volume 8PowerCleancf

  20. contact | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires mayYuan T. Lee's www.rsc.org/locContact NETL Technology

  1. contact | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires mayYuan T. Lee's www.rsc.org/locContact NETL

  2. contacts | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires mayYuan T. Lee's www.rsc.org/locContact NETLcontacts

  3. contacts | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires mayYuan T. Lee's www.rsc.org/locContact

  4. details | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires mayYuan T. Lee'sdefault Sign In About |defaultdetails

  5. error | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires mayYuan T. Lee'sdefault Sign Inemc2

  6. history | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires mayYuan T. Lee'sdefault Signhistory History In 2010, NETL

  7. iccs | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires mayYuan T. Lee'sdefault Signhistory History28/93 1.

  8. index | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires mayYuan T. Lee'sdefault Signhistory History28/93

  9. index | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires mayYuan T. Lee'sdefault Signhistory

  10. index | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires mayYuan T. Lee'sdefault SignhistoryGIFT Program Gift

  11. index | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires mayYuan T. Lee'sdefault SignhistoryGIFT Program GiftK-12

  12. index | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires mayYuan T. Lee'sdefault SignhistoryGIFT Program

  13. index | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires mayYuan T. Lee'sdefault SignhistoryGIFT ProgramNational

  14. index | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires mayYuan T. Lee'sdefault SignhistoryGIFT

  15. index | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires mayYuan T. Lee'sdefault SignhistoryGIFTNETL Fact Sheets

  16. index | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires mayYuan T. Lee'sdefault SignhistoryGIFTNETL Fact

  17. index | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires mayYuan T. Lee'sdefault SignhistoryGIFTNETL

  18. index | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires mayYuan T. Lee'sdefault SignhistoryGIFTNETLPublications

  19. index | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires mayYuan T. Lee'sdefault

  20. index | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires mayYuan T. Lee'sdefaultAnalytical Tools and Data Power