Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ions miec oxides" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

AP-XPS Measures MIEC Oxides in Action  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AP-XPS Measures MIEC Oxides in AP-XPS Measures MIEC Oxides in Action AP-XPS Measures MIEC Oxides in Action Print Wednesday, 25 May 2011 00:00 Oxide materials with mixed ionic-electronic conductivity (MIEC) can conduct both electrons and oxygen ions. MIEC oxides have broad applications, including use in solid-oxide fuel cells, high-temperature electrolysis for synthetic fuel production, and oxygen-separating membranes for chemical processes or NOx-free combustion; however, their surface activity under reaction conditions has been difficult, if not impossible, to ascertain, until recently. A team from the University of Maryland and Sandia National Laboratories joined ALS scientists on Beamlines 9.3.2 and 11.0.2 to overcome the vacuum limitations of conventional XPS instruments using ambient-pressure x-ray photoelectron spectroscopy (AP-XPS), providing the first in situ measurements of local surface oxidation states and electric potential in active MIEC electrodes.

2

AP-XPS Measures MIEC Oxides in Action  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AP-XPS Measures MIEC Oxides in Action Print AP-XPS Measures MIEC Oxides in Action Print Oxide materials with mixed ionic-electronic conductivity (MIEC) can conduct both electrons and oxygen ions. MIEC oxides have broad applications, including use in solid-oxide fuel cells, high-temperature electrolysis for synthetic fuel production, and oxygen-separating membranes for chemical processes or NOx-free combustion; however, their surface activity under reaction conditions has been difficult, if not impossible, to ascertain, until recently. A team from the University of Maryland and Sandia National Laboratories joined ALS scientists on Beamlines 9.3.2 and 11.0.2 to overcome the vacuum limitations of conventional XPS instruments using ambient-pressure x-ray photoelectron spectroscopy (AP-XPS), providing the first in situ measurements of local surface oxidation states and electric potential in active MIEC electrodes.

3

AP-XPS Measures MIEC Oxides in Action  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AP-XPS Measures MIEC Oxides in Action Print AP-XPS Measures MIEC Oxides in Action Print Oxide materials with mixed ionic-electronic conductivity (MIEC) can conduct both electrons and oxygen ions. MIEC oxides have broad applications, including use in solid-oxide fuel cells, high-temperature electrolysis for synthetic fuel production, and oxygen-separating membranes for chemical processes or NOx-free combustion; however, their surface activity under reaction conditions has been difficult, if not impossible, to ascertain, until recently. A team from the University of Maryland and Sandia National Laboratories joined ALS scientists on Beamlines 9.3.2 and 11.0.2 to overcome the vacuum limitations of conventional XPS instruments using ambient-pressure x-ray photoelectron spectroscopy (AP-XPS), providing the first in situ measurements of local surface oxidation states and electric potential in active MIEC electrodes.

4

AP-XPS Measures MIEC Oxides in Action  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AP-XPS Measures MIEC Oxides in Action Print AP-XPS Measures MIEC Oxides in Action Print Oxide materials with mixed ionic-electronic conductivity (MIEC) can conduct both electrons and oxygen ions. MIEC oxides have broad applications, including use in solid-oxide fuel cells, high-temperature electrolysis for synthetic fuel production, and oxygen-separating membranes for chemical processes or NOx-free combustion; however, their surface activity under reaction conditions has been difficult, if not impossible, to ascertain, until recently. A team from the University of Maryland and Sandia National Laboratories joined ALS scientists on Beamlines 9.3.2 and 11.0.2 to overcome the vacuum limitations of conventional XPS instruments using ambient-pressure x-ray photoelectron spectroscopy (AP-XPS), providing the first in situ measurements of local surface oxidation states and electric potential in active MIEC electrodes.

5

AP-XPS Measures MIEC Oxides in Action  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

models of these materials for use in designing more efficient hydrogen gas production processes, like electrolysis, from renewable power sources, like water, allowing for...

6

Graphene oxide oxidizes stannous ions to synthesize tin sulfidegraphene nanocomposites with small crystal size for high performance lithium ion  

E-Print Network [OSTI]

Graphene oxide oxidizes stannous ions to synthesize tin sulfide­graphene nanocomposites with small September 2012 DOI: 10.1039/c2jm34864k This study reports a novel strategy of preparing graphene composites by employing graphene oxide as precursor and oxidizer. It is demonstrated that graphene oxide can oxidize

Cao, Guozhong

7

Transition metal-promoted oxygen ion conductors as oxidation catalyst  

SciTech Connect (OSTI)

A novel metal oxide composite catalyst for the complete oxidation of carbon monoxide and hydrocarbons was prepared by combining oxygen ion conducting materials with active transition metals. The oxygen ion conductors used were typical fluorite-type oxides, such as ceria, zirconia, and others. Active base metal catalysts, such as copper, were used as additives to promote the catalytic properties of oxygen ion conductors. The intimate contact of the two kinds of materials gave rise to a highly active oxidation catalyst. On Cu-Ce-O composite catalysts, 95% of carbon monoxide was oxidized by air at {approximately} 100 C. Complete methane oxidation on the same catalyst took place at {approximately} 550 C. When the stoichiometric amount of sulfur dioxide was sued to oxidize carbon monoxide, 96% of sulfur dioxide was reduced to elemental sulfur at temperatures above 460 C with 99% of sulfur dioxide conversion. This type of composite catalyst also showed excellent resistance to water poisoning.

Liu, W.; Sarofim, A. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Chemical Engineering; Flytzani-Stephanopoulos, M. [Tufts Univ., Medford, MA (United States). Dept. of Chemical Engineering

1994-12-31T23:59:59.000Z

8

Modification of epitaxial oxide films with ion implantation  

SciTech Connect (OSTI)

Ion implantation is used to modify the properties of oxide (YBCO and YSZ) thin films. Both superconducting and dielectric epitaxial oxide films, grown by laser ablation, are studied. The properties of the implanted oxide films are characterized by SIMS, XPS, DC resistivity and AC susceptibility measurements. By introducing reactive ions into superconducting oxide films, the conductivity of the material is inhibited possibly due to the interaction of the implanted ions with oxygen originally bound to the copper atoms. Al, Si, Ag and Ca ions are implanted into epitaxial YBCO films with injection energies ranging from 50--100 KeV and doses ranging from 1 {times} 10{sup 15}--1 {times} 10{sup 16}/cm{sup 2}. XPS analysis shows that the implanted Si ions form SiO{sub x}. The inhibition method has been applied to the fabrication of superconducting electronic devices, such as SQUIDs. Dielectric oxide films are doped by the implantation of conductive and nonconductive ions. YSZ films are doped with Ag and Si ions and the ions are found to increase the conductivity.

Hong, S.H.; Miller, J.R.; Ma, Q.Y.; Yang, E.S. [Columbia Univ., New York, NY (United States). Dept. of Electrical Engineering; Fenner, D.B. [AFR Inc., East Hartford, CT (United States); Yang, C.Y. [Santa Clara Univ., CA (United States). Microelectronics Lab.; Budnick, J.I. [Univ. of Connecticut, Storrs, CT (United States). Dept. of Physics

1996-11-01T23:59:59.000Z

9

Tin oxide-titanium oxide/graphene composited as anode materials for lithium-ion batteries  

Science Journals Connector (OSTI)

A tin oxide-titanium oxide/graphene (SnO2-TiO2.../G) ternary nanocomposite as high-performance anode for Li-ion batteries was prepared via a simple reflux method. ... The graphite oxide (GO) was reduced to graphene

Shan-Shan Chen; Xue Qin

2014-10-01T23:59:59.000Z

10

Use of ion conductors in the pyrochemical reduction of oxides  

DOE Patents [OSTI]

An electrochemical process and electrochemical cell for reducing a metal oxide are provided. First the oxide is separated as oxygen gas using, for example, a ZrO[sub 2] oxygen ion conductor anode and the metal ions from the reduction salt are reduced and deposited on an ion conductor cathode, for example, sodium ion reduced on a [beta]-alumina sodium ion conductor cathode. The generation of and separation of oxygen gas avoids the problem with chemical back reaction of oxygen with active metals in the cell. The method also is characterized by a sequence of two steps where an inert cathode electrode is inserted into the electrochemical cell in the second step and the metallic component in the ion conductor is then used as the anode to cause electrochemical reduction of the metal ions formed in the first step from the metal oxide where oxygen gas formed at the anode. The use of ion conductors serves to isolate the active components from chemically reacting with certain chemicals in the cell. While applicable to a variety of metal oxides, the invention has special importance for reducing CaO to Ca[sup o] used for reducing UO[sub 2] and PuO[sub 2] to U and Pu. 2 figures.

Miller, W.E.; Tomczuk, Z.

1994-02-01T23:59:59.000Z

11

Sodalite ion exchange in polyethylene oxide oligomer solvents Gina M. Canfield,a  

E-Print Network [OSTI]

Sodalite ion exchange in polyethylene oxide oligomer solvents Gina M. Canfield,a Michael Bizimisb and rare earth ions. Ethylene oxide-based oligomers (polyethylene glycol, polyethylene glycol methyl ether

Latturner, Susan

12

Method for providing oxygen ion vacancies in lanthanide oxides  

DOE Patents [OSTI]

A method for desulfurization of fuel gases resulting from the incomplete combustion of sulfur containing hydrocarbons whereby the gases are treated with lanthanide oxides containing large numbers of oxygen-ion vacancies providing ionic porosity which enhances the ability of the lanthanide oxides to react more rapidly and completely with the sulfur in the fuel gases whereby the sulfur in such gases is reduced to low levels suitable for fuels for firing into boilers of power plants generating electricity with steam turbine driven generators, gas turbines, fuel cells and precursors for liquid fuels such as methanol and the like.

Kay, D. Alan R. (4305 Lakeshore Rd., Burlington, CA); Wilson, William G. (820 Harden Dr., Pittsburgh, PA 15229)

1989-12-05T23:59:59.000Z

13

Solar-driven electrochemically assisted semiconductor-catalyzed iodide ion oxidation. Enhanced efficiency by oxide mixtures  

Science Journals Connector (OSTI)

Oxidation of iodide ion from an air-saturated solution under natural sunlight (900±50 W m?2) on the surfaces of TiO2, ZnO, Fe2O3, MoO3 and CeO2 enhances by 6 to 12-fold on application of a cathodic bias of ?0.2 t...

Chockalingam Karunakaran; Premkumar Anilkumar

2009-09-01T23:59:59.000Z

14

Hibiscus Protocatechuic Acid or Esculetin Can Inhibit Oxidative LDL Induced by Either Copper Ion or Nitric Oxide Donor  

Science Journals Connector (OSTI)

Hibiscus Protocatechuic Acid or Esculetin Can Inhibit Oxidative LDL Induced by Either Copper Ion or Nitric Oxide Donor ... Several groups using different flavonoids, such as quercetin, catechin, morin, rutin, fisetin, and gossypetin, also showed that flavonoids could inhibit copper-catalyzed and macrophage-mediated LDL oxidation (13?16). ... morin and fisetin 1 ?M; quercetin and gossypetin 2 ?M). ...

Miao-Jane Lee; Fen-Pi Chou; Tsui-Hwa Tseng; Ming-Hsun Hsieh; Ming-Cheng Lin; Chau-Jong Wang

2002-02-16T23:59:59.000Z

15

Comparative analysis of methods for ion-plasma sputter deposition and micro-arc oxidation  

Science Journals Connector (OSTI)

We describe the following advantages of micro-arc oxidation (MAO) over ion-plasma sputter deposition ... of operation by personnel. These advantages make micro-arc oxidation a promising technique for metallurgica...

M. V. Gerasimov

2007-11-01T23:59:59.000Z

16

Adaptable Silicon–Carbon Nanocables Sandwiched between Reduced Graphene Oxide Sheets as Lithium Ion Battery Anodes  

Science Journals Connector (OSTI)

Adaptable Silicon–Carbon Nanocables Sandwiched between Reduced Graphene Oxide Sheets as Lithium Ion Battery Anodes ... Despite rapidly growing interest in the application of graphene in lithium ion batteries, the interaction of the graphene with lithium ions and electrolyte species during electrochemical cycling is not fully understood. ...

Bin Wang; Xianglong Li; Xianfeng Zhang; Bin Luo; Meihua Jin; Minghui Liang; Shadi A. Dayeh; S. T. Picraux; Linjie Zhi

2013-01-02T23:59:59.000Z

17

Graphene/metal Oxide Nanocomposites for Li-ion Batteries  

Science Journals Connector (OSTI)

Our work focuses on preparing the graphene/metal oxide nanocomposites by facile methold and exploring the graphene/metal oxide composites with unique structural or compositions for...

Liang, Junfei; Li, Lidong; Guo, Lin

18

Persistent ion beam induced conductivity in zinc oxide nanowires  

SciTech Connect (OSTI)

We report persistently increased conduction in ZnO nanowires irradiated by ion beam with various ion energies and species. This effect is shown to be related to the already known persistent photo conduction in ZnO and dubbed persistent ion beam induced conduction. Both effects show similar excitation efficiency, decay rates, and chemical sensitivity. Persistent ion beam induced conduction will potentially allow countable (i.e., single dopant) implantation in ZnO nanostructures and other materials showing persistent photo conduction.

Johannes, Andreas; Niepelt, Raphael; Gnauck, Martin; Ronning, Carsten [Institute of Solid State Physics, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, 07743 Jena (Germany)

2011-12-19T23:59:59.000Z

19

Cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes  

DOE Patents [OSTI]

Novel cathode, electrolyte and oxygen separation materials are disclosed that operate at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes based on oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

Jacobson, Allan J; Wang, Shuangyan; Kim, Gun Tae

2014-01-28T23:59:59.000Z

20

Characterization of the reactive and dissociative behavior of transition metal oxide cluster ions in the gas phase  

Science Journals Connector (OSTI)

The reactive and dissociative behavior of molybdenum and tungsten oxide cluster ions has been studied in the gas phase using a triple quadrupole mass spectrometer. Cluster ions (MO3) n ...

Simin Maleknia; Jennifer Brodbelt…

1991-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "ions miec oxides" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Reduced Graphene Oxide Wrapped FeS Nanocomposite for Lithium-Ion Battery Anode with Improved Performance  

Science Journals Connector (OSTI)

Reduced Graphene Oxide Wrapped FeS Nanocomposite for Lithium-Ion Battery Anode with Improved Performance ... A new nanocomposite formulation of the FeS-based anode for lithium-ion batteries is proposed, where FeS nanoparticles wrapped in reduced graphene oxide (RGO) are produced via a facile direct-precipitation approach. ...

Ling Fei; Qianglu Lin; Bin Yuan; Gen Chen; Pu Xie; Yuling Li; Yun Xu; Shuguang Deng; Sergei Smirnov; Hongmei Luo

2013-05-14T23:59:59.000Z

22

In situ ion exchange preparation of Pt/carbon nanotubes electrode: Effect of two-step oxidation of carbon nanotubes  

SciTech Connect (OSTI)

Multi-walled carbon nanotubes (MWNTs) supported Pt electrode is prepared by in-situ ion exchange method. X-ray photoelectron spectroscopy (XPS) confirms that compared with the only electrochemical oxidation or chemical oxidation treatment, more carboxylic acid groups are produced on the surface of MWNTs treated by dual-oxidation, which involves both electrochemical oxidation and chemical oxidation. Transmission electron microscopy (TEM) shows that Pt nanoparticles deposited via in-situ ion exchange are highly dispersed on the MWNTs surface. Electrochemical measurements show that the resultant Pt/MWNTs electrode treated by dual-oxidation exhibits the largest electrochemical surface area and the highest activity for oxygen reduction reaction (ORR) among the investigated electrodes. This can be attributed to the fact that dual-oxidation treatment produces more carboxylic acid groups at the electroactive sites on MWNTs surface, which results in loading more Pt nanoparticles in the following ion exchange process.

Zhang, Sheng; Shao, Yuyan; Gao, Yunzhi; Chen, Guangyu; Lin, Yuehe; Yin, Geping

2011-12-01T23:59:59.000Z

23

Perchlorate Degradation Using Partially Oxidized Titanium Ions and Ion Exchange Membrane Hybrid System  

E-Print Network [OSTI]

. To enhance the overall rate of reaction, high concentrations of acid and Ti(III) are needed, but transport of hydrogen ions through the anion permeable membrane was observed and would be greater at higher acid concentrations. The proposed mathematical model...

Park, Sung Hyuk

2011-08-08T23:59:59.000Z

24

Tunneling oxide engineering by ion implantation of nitrogen for 3D vertical silicon pillar SONOS flash memory  

Science Journals Connector (OSTI)

The electrical characteristics of silicon-oxide-nitride-oxide-silicon (SONOS) flash memory with a 3D vertical silicon pillar structure were studied. As an alternative method for the formation of the tunneling oxide, nitrogen ion implantation was applied to thermally grown pure silicon dioxide with a low energy (5 keV). The devices show significant improvement in the erase characteristics compared to conventional tunneling oxide. Secondary ion mass spectrometry was used to analyze the nitrogen distribution within tunnel oxide, and the improved erase properties can be attributed to the incorporation of about 4.8% nitrogen (2 × 1021 atoms/cm3) into the tunnel oxide formed by nitrogen ion implantation.

Jae-Sub Oh; Seong-Dong Yang; Sang-Youl Lee; Young-Su Kim; Min-Ho Kang; Sung-Kyu Lim; Hi-Deok Lee; Ga-Won Lee

2013-01-01T23:59:59.000Z

25

Cation-substituted spinel oxide and oxyfluoride cathodes for lithium ion batteries  

DOE Patents [OSTI]

The present invention includes compositions and methods of making cation-substituted and fluorine-substituted spinel cathode compositions by firing a LiMn.sub.2-y-zLi.sub.yM.sub.zO.sub.4 oxide with NH.sub.4HF.sub.2 at low temperatures of between about 300 and 700.degree. C. for 2 to 8 hours and a .eta. of more than 0 and less than about 0.50, mixed two-phase compositions consisting of a spinel cathode and a layered oxide cathode, and coupling them with unmodified or surface modified graphite anodes in lithium ion cells.

Manthiram, Arumugam; Choi, Wongchang

2014-05-13T23:59:59.000Z

26

ZnWO4 nanocrystals/reduced graphene oxide hybrids: Synthesis and their application for Li ion batteries  

Science Journals Connector (OSTI)

ZnWO4..., as an environment-friendly and economic material, has the potential for Li ion batteries (LIB) application. In this paper,...4 supported on the reduced graphene oxide (RGO) to improve its LIB...4 nanocr...

Xiao Wang; BoLong Li; DaPeng Liu; HuanMing Xiong

2014-01-01T23:59:59.000Z

27

Ultrafine tin oxide on reduced graphene oxide as high-performance anode for sodium-ion batteries  

Science Journals Connector (OSTI)

Abstract Na-ion Battery is attractive alternative to Li-ion battery due to the natural abundance of sodium resource. Searching for suitable anode materials is one of the critical issues for Na-ion battery due to the low Na-storage activity of carbon materials. In this work, we synthesized a nanohybrid anode consisting of ultrafine SnO2 anchored on few-layered reduced graphene oxide (rGO) by a facile hydrothermal route. The SnO2/rGO hybrid exhibits a high capacity, long cycle life and good rate capability. The hybrid can deliver a high charge capacity of 324 mAh gSnO2?1 at 50 mA g?1. At 1600 mA g?1 (2.4C), it can still yield a charge capacity of 200 mAh gSnO2?1. After 100 cycles at 100 mA g?1, the hybrid can retain a high charge capacity of 369 mAh gSnO2?1. X-ray photoelectron spectroscopy, ex situ transmission electron microscopy and electrochemical impedance spectroscopy were used to investigate the origin of the excellent electrochemical Na-storage properties of SnO2/rGO.

Yandong Zhang; Jian Xie; Shichao Zhang; Peiyi Zhu; Gaoshao Cao; Xinbing Zhao

2015-01-01T23:59:59.000Z

28

Monolithic Nickel (II) Oxide Aerogels Using an Organic Epoxide: The Importance of the Counter Ion  

SciTech Connect (OSTI)

The synthesis and characterization of nickel (II) oxide aerogel materials prepared using the epoxide addition method is described. The addition of the organic epoxide propylene oxide to an ethanolic solution of NiCl{sub 2} 6H{sub 2}O resulted in the formation of an opaque light green monolithic gel and subsequent drying with supercritical CO{sub 2} gave a monolithic aerogel material of the same color. This material has been characterized using powder X-ray diffraction, electron microscopy, elemental analysis, and nitrogen adsorption/desorption analysis. The results indicate that the nickel (II) oxide aerogel has very low bulk density (98 kg/m{sup 3} ({approx}98 %porous)), high surface area (413 m{sup 2}/g), and has a particulate-type aerogel microstructure made up of very fine spherical particles with an open porous network. By comparison, a precipitate of Ni{sub 3}(NO{sub 3}){sub 2}(OH){sub 4} is obtained when the same preparation is attempted with the common Ni(NO{sub 3}){sub 2} 6H{sub 2}O salt as the precursor. The implications of the difference of reactivity of the two different precursors are discussed in the context of the mechanism of gel formation via the epoxide addition method. The synthesis of nickel (II) oxide aerogel, using the epoxide addition method, is especially unique in our experience. It is our first example of the successful preparation of a metal oxide aerogel using a metal divalent metal ion and may have implications for the application of this method to the preparation of aerogels or nanoparticles of other divalent metal oxides. To our knowledge this is the first report of a monolithic pure nickel (II) oxide aerogel materials.

Gash, A E; Satcher, J H; Simpson, R L

2004-01-13T23:59:59.000Z

29

Photoinduced Water Oxidation by a Tetraruthenium Polyoxometalate Catalyst: Ion-pairing and Primary Processes with Ru(bpy)32+ Photosensitizer  

Science Journals Connector (OSTI)

Photoinduced Water Oxidation by a Tetraruthenium Polyoxometalate Catalyst: Ion-pairing and Primary Processes with Ru(bpy)32+ Photosensitizer ... Two interrelated issues relevant to this behavior have been examined in detail: (i) the effects of ion pairing between the polyanionic catalyst and the cationic Ru(bpy)32+ sensitizer, and (ii) the kinetics of hole transfer from the oxidized sensitizer to the catalyst. ... This process competes appreciably with the primary photoreaction of the excited sensitizer with the sacrificial oxidant, even in high ionic strength media. ...

Mirco Natali; Michele Orlandi; Serena Berardi; Sebastiano Campagna; Marcella Bonchio; Andrea Sartorel; Franco Scandola

2012-06-11T23:59:59.000Z

30

Solid oxide fuel cells having porous cathodes infiltrated with oxygen-reducing catalysts  

DOE Patents [OSTI]

Solid-oxide fuel cells include an electrolyte and an anode electrically coupled to a first surface of the electrolyte. A cathode is provided, which is electrically coupled to a second surface of the electrolyte. The cathode includes a porous backbone having a porosity in a range from about 20% to about 70%. The porous backbone contains a mixed ionic-electronic conductor (MIEC) of a first material infiltrated with an oxygen-reducing catalyst of a second material different from the first material.

Liu, Meilin; Liu, Ze; Liu, Mingfei; Nie, Lifang; Mebane, David Spencer; Wilson, Lane Curtis; Surdoval, Wayne

2014-08-12T23:59:59.000Z

31

Significant influence of insufficient lithium on electrochemical performance of lithium-rich layered oxide cathodes for lithium ion batteries  

Science Journals Connector (OSTI)

Abstract With an aim to broaden the understanding of the factors that govern electrochemical performance of lithium-rich layered oxide, the influences of insufficient lithium on reversible capacity, cyclic stability and rate capability of the oxide as cathode of lithium ion battery are investigated in this study. Various concentrations of lithium precursor are introduced to synthesize a target composition Li[Li0.13Ni0.30Ni0.57]O2, and the resulting products are characterized with inductively coupled plasma spectrum, scanning electron microscope, X-ray diffraction, Raman spectroscopy, and electrochemical measurements. The results indicate that the lithium content in the resulting oxide decreases with reducing the concentration of lithium precursor from 10wt%-excess lithium to stoichiometric lithium, due to insufficient compensation for lithium volatilization during synthesis process at high temperature. However, all these oxides still exhibit typically structural and electrochemical characteristics of lithium-rich layered oxides. Interestingly, with decreasing the Li content in the oxide, its reversible capacity increases due to relatively higher content of active transition-metal ions, while the cyclic stability degrades severely because of structural instability induced by higher content of Mn3+ ions and deeper lithium extraction.

Xingde Xiang; Weishan Li

2014-01-01T23:59:59.000Z

32

Gas-phase activation of silane, disilane and germane by actinide ions; and collision induced dissociation of metal oxide ions in TOF-MS  

Science Journals Connector (OSTI)

Gas-phase reactions of selected actinide metal ions, An+, with silane, disilane and germane under minimally hyperthermal conditions were studied using a reflectron time-of-flight mass spectrometer (RTOF-MS). Both U+ and Np+ reacted with silane while Pu+ was comparatively inert. The primary reactions with silane yielded the silylenes, AnSiH2+; secondary reactions gave AnSi2H4+ and AnSi2H2+ (An=U, Np). With disilane, single- and double-dehydrogenation by An+ produced AnSi2H4+ and AnSi2H2+ for An=U and Np, while Pu+ and Am+ were inert. Oxo-ligation rendered plutonium reactive towards silane: UO+, NpO+ and PuO+ each dehydrogenated disilane to give AnOSi2H4+. With germane, selected lanthanide ions, M+?Ln+, were studied along with M+?An+. Germylenes, MGeH2+, were formed for M=Th, U, Np, Pu, Ce and Tb, while Am+ and Tm+ were inert. Secondary products were MGe2+ (M=Th, U, Np, Ce and Tb), ThGe3+ and ThGe4+. The results are assessed in the context of the electronic structures and energetics of the actinide (and lanthanide) ions. For comparison and to confirm consistency with previous studies, a few reactions of CH4 and C2H6 with actinide ions were examined. The nature of anomalous peaks at ion flight times corresponding to “tetrahydride” ions, “AnH4,” upon introduction of both reactive and inert gases into the reaction region was examined in detail. It was concluded that these aberrant peaks were due to high-energy collision induced dissociation of actinide oxide ions, AnO+, in the first field-free region of the RTOF-MS. The identification of this dissociation phenomenon nullifies a previous report of actinide hydride ions produced by reactions of An+ with ethylene oxide.

John K. Gibson

2002-01-01T23:59:59.000Z

33

ReaxFF Reactive Force Field for Solid Oxide Fuel Cell Systems with Application to Oxygen Ion Transport in Yttria-Stabilized Zirconia  

E-Print Network [OSTI]

ReaxFF Reactive Force Field for Solid Oxide Fuel Cell Systems with Application to Oxygen Ion through yttria-stabilized zirconia (YSZ) solid oxide fuel cell (SOFC) membranes. All parameters for Reax temperature, leading to applications as oxygen sensors and as membranes for high temperature solid oxide fuel

Goddard III, William A.

34

Observations of Oxygen Ion Behavior in the Lithium-Based Electrolytic Reduction of Uranium Oxide  

SciTech Connect (OSTI)

Parametric studies were performed on a lithium-based electrolytic reduction process at bench-scale to investigate the behavior of oxygen ions in the reduction of uranium oxide for various electrochemical cell configurations. Specifically, a series of eight electrolytic reduction runs was performed in a common salt bath of LiCl – 1 wt% Li2O. The variable parameters included fuel basket containment material (i.e., stainless steel wire mesh and sintered stainless steel) and applied electrical charge (i.e., 75 – 150% of the theoretical charge for complete reduction of uranium oxide in a basket to uranium metal). Samples of the molten salt electrolyte were taken at regular intervals throughout each run and analyzed to produce a time plot of Li2O concentrations in the bulk salt over the course of the runs. Following each run, the fuel basket was sectioned and the fuel was removed. Samples of the fuel were analyzed for the extent of uranium oxide reduction to metal and for the concentration of salt constituents, i.e., LiCl and Li2O. Extents of uranium oxide reduction ranged from 43 – 70% in stainless steel wire mesh baskets and 8 – 33 % in sintered stainless steel baskets. The concentrations of Li2O in the salt phase of the fuel product from the stainless steel wire mesh baskets ranged from 6.2 – 9.2 wt%, while those for the sintered stainless steel baskets ranged from 26 – 46 wt%. Another series of tests was performed to investigate the dissolution of Li2O in LiCl at 650 °C across various cathode containment materials (i.e., stainless steel wire mesh, sintered stainless steel and porous magnesia) and configurations (i.e., stationary and rotating cylindrical baskets). Dissolution of identical loadings of Li2O particulate reached equilibrium within one hour for stationary stainless steel wire mesh baskets, while the same took several hours for sintered stainless steel and porous magnesia baskets. Rotation of an annular cylindrical basket of stainless steel wire mesh accelerated the Li2O dissolution rate by more than a factor of six.

Steven D. Herrmann; Shelly X. Li; Brenda E. Serrano-Rodriguez

2009-09-01T23:59:59.000Z

35

Functionally Graded Cathodes for Solid Oxide Fuel Cells  

SciTech Connect (OSTI)

This DOE SECA project focused on both experimental and theoretical understanding of oxygen reduction processes in a porous mixed-conducting cathode in a solid oxide fuel cell (SOFC). Elucidation of the detailed oxygen reduction mechanism, especially the rate-limiting step(s), is critical to the development of low-temperature SOFCs (400 C to 700 C) and to cost reduction since much less expensive materials may be used for cell components. However, cell performance at low temperatures is limited primarily by the interfacial polarization resistances, specifically by those associated with oxygen reduction at the cathode, including transport of oxygen gas through the porous cathode, the adsorption of oxygen onto the cathode surface, the reduction and dissociation of the oxygen molecule (O{sub 2}) into the oxygen ion (O{sup 2-}), and the incorporation of the oxygen ion into the electrolyte. In order to most effectively enhance the performance of the cathode at low temperatures, we must understand the mechanism and kinetics of the elementary processes at the interfaces. Under the support of this DOE SECA project, our accomplishments included: (1) Experimental determination of the rate-limiting step in the oxygen reduction mechanism at the cathode using in situ FTIR and Raman spectroscopy, including surface- and tip-enhanced Raman spectroscopy (SERS and TERS). (2) Fabrication and testing of micro-patterned cathodes to compare the relative activity of the TPB to the rest of the cathode surface. (3) Construction of a mathematical model to predict cathode performance based on different geometries and microstructures and analyze the kinetics of oxygen-reduction reactions occurring at charged mixed ionic-electronic conductors (MIECs) using two-dimensional finite volume models with ab initio calculations. (4) Fabrication of cathodes that are graded in composition and microstructure to generate large amounts of active surface area near the cathode/electrolyte interface using a novel combustion chemical vapor deposition (CCVD) technique. (5) Application of advanced quantum chemical calculations to interpret measured spectroscopic information, as well as to guide design of high efficient cathode materials.

YongMan Choi; Meilin Liu

2006-09-30T23:59:59.000Z

36

Improved layered mixed transition metal oxides for Li-ion batteries  

E-Print Network [OSTI]

for rechargeable lithium batteries," Science 311(5763), 977-^ for Advanced Lithium-Ion Batteries," J. Electrochem. Soc.02 for lithium-ion batteries," Chem. Lett. , [3] Yabuuchi,

Doeff, Marca M.

2010-01-01T23:59:59.000Z

37

The effect of native oxide on ion-sputtering-induced nanostructure formation on GaSb surfaces  

SciTech Connect (OSTI)

We have investigated the influence of native oxides on ion-sputtering-induced nanostructure formation on GaSb using in situ low energy ion scattering spectroscopy (LEISS) and X-ray photoelectron spectroscopy (XPS). Comparing an oxygen-free sample with a native oxide sample, LEISS and XPS reveal the effect of oxygen in generating higher surface Ga fractions during early stages (fluences of 1 Multiplication-Sign 10{sup 15}-1 Multiplication-Sign 10{sup 16} cm{sup -2}) of low energy (<100 eV) Ar+ irradiation. Enhanced surface Ga and Ga{sub 2}O{sub 3} fractions were also observed on 'oxide free' samples exposed to air following irradiation. The results suggest preferential Ga oxidation and segregation on the top of the amorphous layer if oxygen is present on the surface. In addition, the native oxide also increases the fluence threshold for nanopatterning of GaSb surfaces by almost a factor of four during low energy irradiation.

El-Atwani, Osman [School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Allain, J. P. [School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Suslova, Anastassiya [School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

2012-12-17T23:59:59.000Z

38

Improved layered mixed transition metal oxides for Li-ion batteries  

SciTech Connect (OSTI)

Recent work in our laboratory has been directed towards development of mixed layered transition metal oxides with general composition Li[Ni, Co, M, Mn]O2 (M=Al, Ti) for Li ion battery cathodes. Compounds such as Li[Ni1/3Co1/3Mn1/3]O2 (often called NMCs) are currently being commercialized for use in consumer electronic batteries, but the high cobalt content makes them too expensive for vehicular applications such as electric vehicles (EV), plug-in hybrid electric vehicles (PHEVs), or hybrid electric vehicles (HEVs). To reduce materials costs, we have explored partial or full substitution of Co with Al, Ti, and Fe. Fe substitution generally decreases capacity and results in poorer rate and cycling behavior. Interestingly, low levels of substitution with Al or Ti improve aspects of performance with minimal impact on energy densities, for some formulations. High levels of Al substitution compromise specific capacity, however, so further improvements require that the Ni and Mn content be increased and Co correspondingly decreased. Low levels of Al or Ti substitution can then be used offset negative effects induced by the higher Ni content. The structural and electrochemical characterization of substituted NMCs is presented in this paper.

Doeff, Marca M.; Conry, Thomas; Wilcox, James

2010-03-05T23:59:59.000Z

39

Cobalt Carbonate/ and Cobalt Oxide/Graphene Aerogel Composite Anodes for High Performance Li-Ion Batteries  

Science Journals Connector (OSTI)

Cobalt Carbonate/ and Cobalt Oxide/Graphene Aerogel Composite Anodes for High Performance Li-Ion Batteries ... (1, 2) Commercial LIBs use graphite as the anode material with a low theoretical specific capacity of 372 mAh g–1, necessitating extensive research to develop substitute anode materials with higher energy/power densities for high performance LIBs to satisfy demanding applications like electric vehicles. ...

Mohammad Akbari Garakani; Sara Abouali; Biao Zhang; Curtis Alton Takagi; Zheng-Long Xu; Jian-qiu Huang; Jiaqiang Huang; Jang-Kyo Kim

2014-10-15T23:59:59.000Z

40

Ellipsometric, nuclear reaction analysis and high energy ion shadowing/blocking study of the oxidation of Fe(100)  

Science Journals Connector (OSTI)

The change in the ellipsometric parameter ? (??o) upon oxidation of various Ni and Fe single crystal surfaces has been related to absolute amounts of adsorbed oxygen, using nuclear reaction analysis (NRA). A linear relationship between ??o and oxygen uptake is found for coverages up to at least 1016 atoms/cm2. Using high energy ion scattering in combination with shadowing and blocking (HEIS-SB), the number of disordered Fe atoms on Fe(100) surfaces exposed to 0–2000 L O2 have been determined. Combining calibrated ellipsometry and HEIS-SB results we find that an oxide layer with average stoichiometry Fe0.95±0.07O forms. The oxide layer formed after exposure to 2000 L involves (5.0±0.5) × 1015 Fe atoms/cm2 which corresponds to 4.1±0.4 Fe(100) monolayers.

G.W.R. Leibbrandt; S. Deckers; M. Wiegel; F.H.P.M. Habraken

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ions miec oxides" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Ellipsometric, nuclear reaction analysis and high energy ion shadowing/blocking study of the oxidation of Fe(100)  

Science Journals Connector (OSTI)

The change in the ellipsometric parameter ? (??o) upon oxidation of various Ni and Fe single crystal surfaces has been related to absolute amounts of adsorbed oxygen, using nuclear reaction analysis (NRA). A linear relationship between ??o and oxygen uptake is found for coverages up to at least 1016 atoms/cm2. Using high energy ion scattering in combination with shadowing and blocking (HEIS-SB), the number of disordered Fe atoms on Fe(100) surfaces exposed to 0–2000 L O2 have been determined. Combining calibrated ellipsometry and HEIS-SB results we find that an oxide layer with average stoichiometry Fe0.95 ± 0.07O forms. The oxide layer formed after exposure to 2000 L involves (5.0 ± 0.5) × 1015 Fe atoms/cm2 which corresponds to 4.1 ± 0.4 Fe(100) monolayers.

G.W.R Leibbrandt; S Deckers; M Wiegel; F.H.P.M Habraken

1991-01-01T23:59:59.000Z

42

Metal oxide enhanced microfiltration for the selective removal of Co and Sr ions from nuclear laundry wastewater  

Science Journals Connector (OSTI)

Abstract The present study investigated the potential use of a hybridized adsorption/microfiltration system for the selective removal of hazardous cobalt and strontium ions from nuclear power plant laundry wastewater, which is essential for managing low-level radioactive wastes. A crystalline silicotitanate (CST) and four different iron oxides were fabricated and used as adsorbents, which had different crystal structures and adsorptive mechanisms, such as ion exchange and surface coordination. CST showed the greatest affinity for Co and Sr ions (e.g., the Freundlich isotherm constant, KF=23.5 mg/g and 33.9 mg/g, respectively, at pH 7) and its adsorption capacity was independent of solution pH (pH 5–9), whereas the iron oxides removed substantive amounts of Co ions at neutral and alkaline pH levels, but only marginal amounts of strontium. Background species (e.g., K+, Na+, Ca2+, and Mg2+) had no significant impact on the affinities of the adsorbents for Co and Sr ions. The selectivity coefficients of CST for both Co and Sr ions ranged from 3 to 130. CST and ferrihydrite adsorbents were successfully regenerated using NaCl and \\{HCl\\} solutions, respectively, and their post-regeneration adsorption capacities were unchanged without any sign of significant inactivation after multiple adsorption and regeneration cycles. The addition of adsorbents to the microfiltration system enhanced the membrane permeability (>30%), probably because the cobalt species were removed prior to precipitation at the membrane surface. Substantial and stable metal removals (>90% for both Co and Sr) were achieved during 50 h of continuous system operations.

Nuwan A. Weerasekara; Kwang-Ho Choo; Sang-June Choi

2013-01-01T23:59:59.000Z

43

Reduced graphene oxide/porous Si composite as anode for high-performance lithium ion batteries  

Science Journals Connector (OSTI)

Reduced graphene oxide/porous Si composite was fabricated through ... subsequent dispersing porous Si in the suspension of graphene oxide followed by reduced process. The electrochemical performance of the obtain...

Hua-Chao Tao; Xue-Lin Yang; Lu-Lu Zhang; Shi-Bing Ni

2014-08-01T23:59:59.000Z

44

Permeation of ethylene and ethane through sulfonated polysulfones and sulfonated poly(phenylene oxide) ion exchange membranes  

SciTech Connect (OSTI)

Permeation of ethylene and ethane is sulfonated poly(phenylene oxide), sulfonated bisphenol A polyarylethersulfone and sulfonated hexafluorobisphenol A polyarylethersulfone (6F-SPS) exchanged with Ag{sup +} ions were measured as a function of degree of sulfonation, temperature and trans membrane differential pressure. The data were compared with the permeation results for these membranes in acid form and alkaline metal salt form. Membranes exchanged with Ag{sup +} ions displayed enhanced etylene permeability and ethylene-ethane separation factors. The enhancement in transport of ethylene in ion exchange membranes is apparently related to an increase in ethylene solubility affected by complexation of ethylene with immobilized Ag{sup +} ions. A substantial increase in ethylene permeation rate and separation factor was observed when the feed gas was saturated with water vapors. Enhanced permeation/separation were attributed to an increase in the mobility of silver ions in water plasticized membranes. Membranes plasticized with glycerol exhibited high ethylene permeation rate and ethylene/ethane separation factors in dry feed gas streams that were comparable with permeation rates in water plasticized membranes.

Yurkovetsky, A.; Watterson, A. [Univ. of Massachusetts, Lowell, MA (United States); Bikson, B. [Innovative Membrane Systems, Inc., Norwood, MA (United States); Kharas, G.B. [DePaul Univ., Chicago, IL (United States)

1993-12-31T23:59:59.000Z

45

In-Situ Transmission Electron Microscopy Probing of Native Oxide and Artificial Layers on Silicon Nanoparticles for Lithium Ion Batteries  

SciTech Connect (OSTI)

Surface modification of silicon nanoparticle via molecular layer deposition (MLD) has been recently proved to be an effective way for dramatically enhancing the cyclic performance in lithium ion batteries. However, the fundamental mechanism as how this thin layer of coating function is not known, which is even complicated by the inevitable presence of native oxide of several nanometers on the silicon nanoparticle. Using in-situ TEM, we probed in detail the structural and chemical evolution of both uncoated and coated silicon particles upon cyclic lithiation/delithation. We discovered that upon initial lithiation, the native oxide layer converts to crystalline Li2O islands, which essentially increases the impedance on the particle, resulting in ineffective lithiation/delithiation, and therefore low coulombic efficiency. In contrast, the alucone MLD coated particles show extremely fast, thorough and highly reversible lithiation behaviors, which are clarified to be associated with the mechanical flexibility and fast Li+/e- conductivity of the alucone coating. Surprisingly, the alucone MLD coating process chemically changes the silicon surface, essentially removing the native oxide layer and therefore mitigates side reaction and detrimental effects of the native oxide. This study provides a vivid picture of how the MLD coating works to enhance the coulombic efficiency and preserve capacity and clarifies the role of the native oxide on silicon nanoparticles during cyclic lithiation and delithiation. More broadly, this work also demonstrated that the effect of the subtle chemical modification of the surface during the coating process may be of equal importance as the coating layer itself.

He, Yang; Piper, Daniela M.; Gu, Meng; Travis, Jonathan J.; George, Steven M.; Lee, Se-Hee; Genc, Arda; Pullan, Lee; Liu, Jun; Mao, Scott X.; Zhang, Jiguang; Ban, Chunmei; Wang, Chong M.

2014-10-27T23:59:59.000Z

46

Final purification of synthetic olive oil mill wastewater treated by chemical oxidation using ion exchange: Study of operating parameters  

Science Journals Connector (OSTI)

Abstract In this research work, ion exchange (IE) is presented as a suitable option for purification of olive oil mill wastewater (OMW) previously treated by means of a secondary treatment (OMWST). This pretreatment consisted in Fenton-like oxidation process, followed by coagulation–flocculation and filtration through olive stones. The parametric requirements for drinking water production or at least for public waterways discharge were achieved using a combination of two IE columns working in series at bench scale. The IE resins used in this study were Dowex Marathon C and Amberlite IRA-67. The effect of contact time, operating temperature and flow rate on simultaneous removal of sodium, total iron, chloride and phenols (the major pollutant species in OMWST) were investigated. Removal percentages of sodium, chloride and total iron increased with incrementing the contact time. Equilibrium was obtained in about 30 min for all ions and ion concentrations values determined were lower than the maximum levels for drinking water standards. On the other hand, adsorption efficiencies of sodium, total iron and chloride ions were found to be not considerably affected by the operating temperature. The highest phenols removal percentage (around 100%) was obtained in the first minutes for 298 K and 10 L/h.

M.D. Víctor-Ortega; J.M. Ochando-Pulido; G. Hodaifa; A. Martinez-Ferez

2014-01-01T23:59:59.000Z

47

Spinel LiMn(2)O(4)/Reduced Graphene Oxide Hybrid for High Rate Lithium Ion Batteries  

SciTech Connect (OSTI)

A well-crystallized and nano-sized spinel LiMn{sub 2}O{sub 4}/reduced graphene oxide hybrid cathode material for high rate lithium-ion batteries has been successfully synthesized via a microwave-assisted hydrothermal method at 200 C for 30 min without any post heat-treatment. The nano-sized LiMn{sub 2}O{sub 4} particles were evenly dispersed on the reduced graphene oxide template without agglomeration, which allows the inherent high active surface area of individual LiMn{sub 2}O{sub 4} nanoparticles in the hybrid. These unique structural and morphological properties of LiMn{sub 2}O{sub 4} on the highly conductive reduced graphene oxide sheets in the hybrid enable achieving the high specific capacity, an excellent high rate capability and stable cycling performance. An analysis of the cyclic voltammogram data revealed that a large surface charge storage contribution of the LiMn{sub 2}O{sub 4}/reduced graphene oxide hybrid plays an important role in achieving faster charge/discharge.

Bak, S.M.; Nam, K.; Lee, C.-W.; Kim, K.-H.; Jung, H.-C.; Yang, X-Q.; Kim, K.-B.

2011-10-04T23:59:59.000Z

48

Photocatalytic Synthesis of TiO2 and Reduced Graphene Oxide Nanocomposite for Lithium Ion Battery  

Science Journals Connector (OSTI)

In this work, we synthesized graphene oxide (GO) using the improved Hummers’ oxidation method. TiO2 nanoparticles can be anchored on the GO sheets via the abundant oxygen-containing functional groups such as epoxy, hydroxyl, carbonyl, and carboxyl groups ...

Jingxia Qiu; Peng Zhang; Min Ling; Sheng Li; Porun Liu; Huijun Zhao; Shanqing Zhang

2012-06-27T23:59:59.000Z

49

Cobalt oxide–graphene nanocomposite as anode materials for lithium-ion batteries  

Science Journals Connector (OSTI)

Composites of Co3O4/graphene nanosheets are prepared and characterized by X- ... behavior as anode materials of lithium-ion rechargeable batteries is investigated by galvanostatic discharge/charge measurements...

Guiling Wang; Jincheng Liu; Sheng Tang…

2011-12-01T23:59:59.000Z

50

Direct hybridization of tin oxide/graphene nanocomposites for highly efficient lithium-ion battery anodes  

Science Journals Connector (OSTI)

A facile direct hybridization route to prepare SnO2/graphene nanocomposites for Li-ion battery anode application is demonstrated. Uniform distribution of...2 nanoparticles on graphene layers was enabled by a one-...

Dong Ok Shin; Hun Park; Young-Gi Lee; Kwang Man Kim…

2014-06-01T23:59:59.000Z

51

High-resolution depth proling of ultrathin gate oxides using medium-energy ion scattering  

E-Print Network [OSTI]

areas, such as vacuum techniques, accelerator technology, and ion±solid interactions, to operate and can Nuclear Instruments and Methods in Physics Research B 183 (2001) 146±153 www

Gustafsson, Torgny

52

Oxide-ion conductivity in Cu {sub x}Ce{sub 1-x}O{sub 2-{delta}} (0 {<=} x {<=} 0.10)  

SciTech Connect (OSTI)

Up to 10 at.% of copper readily substitutes for cerium in ceria. It is found that at oxygen partial pressures between 0.21 atm and 10{sup -5} atm, Cu {sub x}Ce{sub 1-x}O{sub 2-{delta}} (0 {<=} x {<=} 0.10) solid solution behave as an oxide-ion electrolyte. Interestingly, Cu{sub 0.10}Ce{sub 0.90}O{sub 2-{delta}} exhibits the oxide-ion conductivity of ca. 10{sup -4} {omega}{sup -1} cm{sup -1} at 600 deg. C at an oxygen partial pressure of 10{sup -5} atm.

Gayen, Arup [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012 (India); Priolkar, K.R. [Department of Physics, Goa University, Taleigao Plateau, Goa 403206 (India); Shukla, A.K. [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012 (India); Ravishankar, N. [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India); Hegde, M.S. [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012 (India)]. E-mail: mshegde@sscu.iisc.ernet.in

2005-03-08T23:59:59.000Z

53

Modeling and simulation of Li-ion conduction in poly(ethylene oxide)  

E-Print Network [OSTI]

/discharge voltage depends on the current and resistance of all battery components. In most solid-state lithium as a solid polymer electrolyte (SPE) in thin-film batteries and its ionic conductivity is a key parameter-ion batteries, a thin-layer (0.02­0.2 mm) solid polymer electrolyte (SPE) is sandwiched between two electrodes

Averbuch, Amir

54

Stability of nanoclusters in 14YWT oxide dispersion strengthened steel under heavy ion-irradiation by atom probe tomography  

SciTech Connect (OSTI)

14YWT oxide dispersion strengthened (ODS) ferritic steel was irradiated with of 5 MeV Ni2+ ions, at 300 C, 450 C, and 600 C to a damage level of 100 dpa. The stability of Ti–Y–O nanoclusters was investigated by applying atom probe tomography (APT) in voltage mode, of the samples before and after irradiations. The average size and number density of the nanoclusters was determined using the maximum separation method. These techniques allowed for the imaging of nanoclusters to sizes well below the resolution limit of conventional transmission electron microscopy techniques. The most significant changes were observed for samples irradiated at 300 C where the size (average Guinier radius) and number density of nanoclusters were observed to decrease from 1.1 nm to 0.8 nm and 12 1023 to 3.6 1023, respectively. In this study, the nanoclusters are more stable at higher temperature.

Jianchao He; Farong Wan; Kumar Sridharan; Todd R. Allen; A. Certain; V. Shutthanandan; Y.Q. Wu

2014-12-01T23:59:59.000Z

55

The active dopant concentration in ion implanted indium tin oxide thin films  

Science Journals Connector (OSTI)

The effect of oxygen ion implantation on the electrical and optical properties of Sn?doped In2O3 (ITO) thin films sputter deposited from a planar magnetron source on glass substrates is described. The films were characterized as a function of the implanted dose (3×1013–1×1016 O+ cm?2) by Hall effect resistivity and optical transmission measurements. The dependencies observed are explained in terms of the deactivation of the Sn dopant and the removal of oxygen vacancies. In this way an estimate of the amount of electrically active Sn contributing to the carrier density in as?deposited films was obtained. Furthermore the accompanying changes in the band gap with decreasing free?carrier density could be explained quantitatively in terms of the Burstein–Moss effect.

T. J. Vink; M. H. F. Overwijk; W. Walrave

1996-01-01T23:59:59.000Z

56

Roles of Glutamates and Metal ions in a Rationally Designed Nitric Oxide Reductase Based on Myoglobin  

SciTech Connect (OSTI)

A structural and functional model of bacterial nitric oxide reductase (NOR) has been designed by introducing two glutamates (Glu) and three histidines (His) in sperm whale myoglobin. X-ray structural data indicate that the three His and one Glu (V68E) residues bind iron, mimicking the putative FeB site in NOR, while the second Glu (I107E) interacts with a water molecule and forms a hydrogen bonding network in the designed protein. Unlike the first Glu (V68E), which lowered the heme reduction potential by {approx}110 mV, the second Glu has little effect on the heme potential, suggesting that the negatively charged Glu has a different role in redox tuning. More importantly, introducing the second Glu resulted in a {approx}100% increase in NOR activity, suggesting the importance of a hydrogen bonding network in facilitating proton delivery during NOR reactivity. In addition, EPR and X-ray structural studies indicate that the designed protein binds iron, copper, or zinc in the FeB site, each with different effects on the structures and NOR activities, suggesting that both redox activity and an intermediate five-coordinate heme-NO species are important for high NOR activity. The designed protein offers an excellent model for NOR and demonstrates the power of using designed proteins as a simpler and more well-defined system to address important chemical and biological issues.

Y Lin; N Yeung; Y Gao; K Miner; S Tian; H Robinson; Y Lu

2011-12-31T23:59:59.000Z

57

Photoluminescence properties of Ho{sup 3+} ion in lithium-fluoroborate glass containing different modifier oxides  

SciTech Connect (OSTI)

Trivalent holmium (0.5 mol%) doped lithium fluoro-borate glasses with the chemical compositions 49.5Li{sub 2}B{sub 4}O{sub 7?}20BaF{sub 2?}10NaF?20MO (where M=Mg, Ca, Cd and Pb), 49.5Li{sub 2}B{sub 4}O{sub 7?}20BaF{sub 2?}10NaF?10MgO?10CaO and 49.5Li{sub 2}B{sub 4}O{sub 7?}20BaF{sub 2?}10NaF?10CdO?10PbO were synthesized and investigated their photoluminescence properties. The variation in chemical composition by varying modifier oxides causes changes in the structural spectroscopic behavior of Ho{sup 3+} ions. These changes are examined by UV-VIS- NIR and luminescence spectroscopic techniques. The visible luminescence spectra were obtained by exciting samples at 409 nm radiation.

Balakrishna, A., E-mail: ratnakaramsvu@gmail.com; Rajesh, D., E-mail: ratnakaramsvu@gmail.com; Ratnakaram, Y. C., E-mail: ratnakaramsvu@gmail.com [Department of Physics, S. V. University, Tirupati-517502 (India)

2014-04-24T23:59:59.000Z

58

Adsorption of Ni(II) on oxidized multi-walled carbon nanotubes: Effect of contact time, pH, foreign ions and PAA  

Science Journals Connector (OSTI)

The adsorption of Ni(II) on oxidized multi-walled carbon nanotubes (MWCNTs) as a function of contact time, pH and foreign ions in the absence and presence of polyacrylic acid (PAA) was studied using batch technique. The results indicated that adsorption of Ni(II) on oxidized \\{MWCNTs\\} increased from zero to ?99% at pH 2–9, and then maintained the high level with increasing pH. Kinetic data showed that the adsorption process achieved equilibrium within 2 h and experimental data were fitted well by the pseudo-second-order equation. A positive effect of PAA on Ni(II) adsorption was found at pH  8. The effect of addition sequences of PAA/Ni(II) on the adsorption of Ni(II) to PAA–MWCNT hybrids were also studied. The results indicated that the adsorption of Ni(II) was influenced by addition sequences obviously. The adsorption of Ni(II) on oxidized \\{MWCNTs\\} may be mainly attributed to surface complexation and ion exchange. Oxidized \\{MWCNTs\\} are suitable material in the solidification and pre-concentration of Ni(II) from aqueous solutions.

Shitong Yang; Jiaxing Li; Dadong Shao; Jun Hu; Xiangke Wang

2009-01-01T23:59:59.000Z

59

Enhanced rate capability of LiMn0.9Mg0.1PO4 nanoplates by reduced graphene oxide/carbon double coating for Li-ion batteries  

E-Print Network [OSTI]

March 2014 Available online 12 March 2014 Keywords: Li-ion battery LiMnPO4 Reduced graphene oxide ChargeEnhanced rate capability of LiMn0.9Mg0.1PO4 nanoplates by reduced graphene oxide/carbon double coating for Li-ion batteries Sungun Wi a , Jaewon Kim a , Seunghoon Nam a , Joonhyeon Kang a , Sangheon

Park, Byungwoo

60

TiO2-reduced graphene oxide nanocomposite for high-rate application of lithium ion batteries  

Science Journals Connector (OSTI)

TiO2-reduced graphene oxide nanocomposite has been synthesized by a...2 nanoparticle homogenously dispersed onto the reduced graphene oxide sheets. The electrochemistry performance has been...?1 at the rate of 10...

Chuchun Zheng; Chunhua He; Haiyan Zhang; Wenguang Wang; Xinling Lei

2014-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "ions miec oxides" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

SnO2-reduced graphene oxide nanoribbons as anodes for lithium ion batteries with enhanced cycling stability  

Science Journals Connector (OSTI)

A nanocomposite material of SnO2-reduced graphene oxide nanoribbons has been developed. In this composite, the reduced graphene oxide nanoribbons are uniformly coated by nanosized...2 that formed a thin layer of ...

Lei Li; Anton Kovalchuk; James M. Tour

2014-09-01T23:59:59.000Z

62

One-pot synthesis of SnO{sub 2}/reduced graphene oxide nanocomposite in ionic liquid-based solution and its application for lithium ion batteries  

SciTech Connect (OSTI)

Graphical abstract: - Highlights: • A facile and low-temperature method is developed for SnO{sub 2}/graphene composite. • Synthesis performed in a choline chloride-based ionic liquid. • The composite shows an enhanced cycling stability as anode for Li-ion batteries. • 4 nm SnO{sub 2} nanoparticles mono-dispersed on the surface of reduced graphene oxide. - Abstract: A facile and low-temperature method is developed for SnO{sub 2}/graphene composite which involves an ultrasonic-assistant oxidation–reduction reaction between Sn{sup 2+} and graphene oxide in a choline chloride–ethylene glycol based ionic liquid under ambient conditions. The reaction solution is non-corrosive and environmental-friendly. Moreover, the proposed technique does not require complicated infrastructures and heat treatment. The SnO{sub 2}/graphene composite consists of about 4 nm sized SnO{sub 2} nanoparticles with cassiterite structure mono-dispersed on the surface of reduced graphene oxide. As anode for lithium-ion batteries, the SnO{sub 2}/graphene composite shows a satisfying cycling stability (535 mAh g{sup ?1} after 50 cycles @100 mA g{sup ?1}), which is significantly prior to the bare 4 nm sized SnO{sub 2} nanocrsytals. The graphene sheets in the hybrid nanostructure could provide a segmentation effect to alleviate the volume expansion of the SnO{sub 2} and restrain the small and active Sn-based particles aggregating into larger and inactive clusters during cycling.

Gu, Changdong, E-mail: cdgu@zju.edu.cn; Zhang, Heng; Wang, Xiuli; Tu, Jiangping

2013-10-15T23:59:59.000Z

63

Temperature dependence of structural parameters in oxide-ion-conducting Nd{sub 9.33}(SiO{sub 4}){sub 6}O{sub 2}: single crystal X-ray studies from 295 to 900K  

SciTech Connect (OSTI)

Crystallographic space group, structural parameters and their thermal changes in oxide-ion-conducting Nd{sub 9.33}(SiO{sub 4}){sub 6}O{sub 2} were investigated using high-temperature single-crystal X-ray diffraction experiments in the temperature range of 295=oxide ions which belong to SiO{sub 4} tetrahedron indicated high rigidity of the tetrahedron in the structure, indicating that they form sp3 hybrid orbitals and the ligand oxygens do not take part in oxide-ion conductivity. Virtually full occupation of the 6h Nd site and highly anisotropic displacements of oxide ion inside the hexagonal channel were maintained over the temperature range examined. This result confirms that oxide-ion transport inside the hexagonal channel is the dominant process of conduction in the title compound.

Okudera, Hiroki [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, DE-70569 Stuttgart (Germany)]. E-mail: h.okudera@fkf.mpg.de; Yoshiasa, Akira [Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043 (Japan); Masubuchi, Yuuji [Material Science and Engineering, Graduate School of Engineering, Hokkaido University, N13, W8, Kita-ku, Sapporo, Hokkaido 060-8628 (Japan); Higuchi, Mikio [Material Science and Engineering, Graduate School of Engineering, Hokkaido University, N13, W8, Kita-ku, Sapporo, Hokkaido 060-8628 (Japan); Kikkawa, Shinichi [Material Science and Engineering, Graduate School of Engineering, Hokkaido University, N13, W8, Kita-ku, Sapporo, Hokkaido 060-8628 (Japan)

2004-12-01T23:59:59.000Z

64

A silicon nanoparticle/reduced graphene oxide composite anode with excellent nanoparticle dispersion to improve lithium ion battery performance  

Science Journals Connector (OSTI)

Composite anodes of Si nanoparticles (SiNPs) and reduced graphene oxide (RGO) sheets with highly dispersed...+...electrochemistry by becoming highly involved in the charge–discharge reaction mechanisms as indicat...

Rhet C. de Guzman; Jinho Yang; Mark Ming-Cheng Cheng…

2013-07-01T23:59:59.000Z

65

Effect of Pt loading on the photocatalytic reactivity of titanium oxide thin films prepared by ion engineering techniques  

Science Journals Connector (OSTI)

Platinum-loaded titanium oxide thin-film photocatalysts were prepared by using an ionized cluster beam (ICB) deposition method and a RF magnetron sputtering (RF-MS) deposition method as dry processes. From the...

Masato Takeuchi; Kouichirou Tsujimaru; Kenji Sakamoto…

66

Fundamental studies of perovskite related oxide thin films for oxygen electrocatalysis at intermediate temperatures  

E-Print Network [OSTI]

Discovering highly active and stable catalysts for electrochemical energy conversion and storage is essential to envision a new generation of renewable energy applications. Mixed ionic and electronic conductors (MIECs) ...

Lee, Dongkyu, Ph. D. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

67

175 MeV Au{sup +13} ion irradiation induced structural and morphological modifications in zinc oxide thin films  

SciTech Connect (OSTI)

Thin films of ZnO were deposited, on Si substrates, using the RF-sputtering technique and irradiated by the 175 MeV Au{sup +13} beams. The structural changes were investigated by x-ray diffraction (XRD) measurements. The particle size found to increase with the increasing ion fluence up to 1 Multiplication-Sign 10{sup 12} ion/cm{sup 2}. At highest irradiation fluence of 5 Multiplication-Sign 10{sup 12} ion/cm{sup 2} the average particle size decreases. The Raman spectroscopy measurements were performed to understand the local phonon mode of the samples. The surface morphology of the as-deposited and irradiated thin films is measured by the Atomic Force Microscopy (AFM).

Singh, Devendra [Materials Science Research Laboratory, Department of Physics, S. V. College, Aligarh 202001, UP (India); Sharma, Aditya [Materials Science Research Laboratory, Department of Physics, S. V. College, Aligarh 202001, UP (India) and Department of Applied Sciences and Humanities, Krishna Institute of Engineering and Technology, Ghaziabad-201206, U.P. (India); Varshney, Mayora; Verma, K. D. [Materials Science Research Laboratory, Department of Physics, S. V. College, Aligarh 202001, UP (India) and Department of Applied Sciences and Humanities, Krishna Institute of Engineering and Technolog (India); Kumar, Shalendra [School of Nano and Advanced Materials Engineering, Changwon National University, 9 Sarim-dong, Changwon- 641-773 (Korea, Republic of)

2013-02-05T23:59:59.000Z

68

Viscoelastic Properties, Ionic Conductivity, and Materials Design Considerations for Poly(styrene-b-ethylene oxide-b-styrene)-Based Ion Gel Electrolytes  

SciTech Connect (OSTI)

The viscoelastic properties and ionic conductivity of ion gels based on the self-assembly of a poly(styrene-b-ethylene oxide-b-styrene) (SOS) triblock copolymer (M{sub n,S} = 3 kDa, M{sub n,O} = 35 kDa) in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([EMI][TFSA]) were investigated over the composition range of 10-50 wt % SOS and the temperature range of 25-160 C. The poly(styrene) (PS) end-blocks associate into micelles, whereas the poly(ethylene oxide) (PEO) midblocks are well-solvated by this ionic liquid. The ion gel with 10 wt % SOS melts at 54 C, with the longest relaxation time exhibiting a similar temperature dependence to that of the viscosity of bulk PS. However, the actual values of the gel relaxation time are more than 4 orders of magnitude larger than the relaxation time of bulk PS. This is attributed to the thermodynamic penalty of pulling PS end-blocks through the PEO/[EMI][TFSA] matrix. Ion gels with 20-50 wt % SOS do not melt and show two plateaus in the storage modulus over the temperature and frequency ranges measured. The one at higher frequencies is that of an entangled network of PEO strands with PS cross-links; the modulus displays a quadratic dependence on polymer weight fraction and agrees with the prediction of linear viscoelastic theory assuming half of the PEO chains are elastically effective. The frequency that separates the two plateaus, {omega}{sub c}, reflects the time scale of PS end-block pull-out. The other plateau at lower frequencies is that of a congested micelle solution with PS cores and PEO coronas, which has a power law dependence on domain spacing similar to diblock melts. The ionic conductivity of the ion gels is compared to PEO homopolymer solutions at similar polymer concentrations; the conductivity is reduced by a factor of 2.1 or less, decreases with increasing PS volume fraction, and follows predictions based on a simple obstruction model. Our collective results allow the formulation of basic design considerations for optimizing the mechanical properties, thermal stability, and ionic conductivity of these gels.

Zhang, Sipei; Lee, Keun Hyung; Sun, Jingru; Frisbie, C. Daniel; Lodge, Timothy P. (UMM)

2013-03-07T23:59:59.000Z

69

Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study  

SciTech Connect (OSTI)

High voltage cathode materials Li-excess layered oxide compounds Li[Ni{sub x}Li{sub 1/3-2x/3}Mn{sub 2/3-x/3}]O{sub 2} (0 < x < 1/2) are investigated in a joint study combining both computational and experimental methods. The bulk and surface structures of pristine and cycled samples of Li[Ni{sub 1/5}Li{sub 1/5}Mn{sub 3/5}]O{sub 2} are characterized by synchrotron X-Ray diffraction together with aberration corrected Scanning Transmission Electron Microscopy (a-S/TEM). Electron Energy Loss Spectroscopy (EELS) is carried out to investigate the surface changes of the samples before/after electrochemical cycling. Combining first principles computational investigation with our experimental observations, a detailed lithium de-intercalation mechanism is proposed for this family of Li-excess layered oxides. The most striking characteristics in these high voltage high energy density cathode materials are (1) formation of tetrahedral lithium ions at voltage less than 4.45 V and (2) the transition metal (TM) ions migration leading to phase transformation on the surface of the materials. We show clear evidence of a new spinel-like solid phase formed on the surface of the electrode materials after high-voltage cycling. It is proposed that such surface phase transformation is one of the factors contributing to the first cycle irreversible capacity and the main reason for the intrinsic poor rate capability of these materials.

Xu, Bo; Fell, Christopher R.; Chi, Miaofang; Meng, Ying Shirley (ORNL); (Florida); (UCSD)

2011-09-06T23:59:59.000Z

70

Strain engineering of ultra-thin silicon-on-insulator structures using through-buried-oxide ion implantation and crystallization  

Science Journals Connector (OSTI)

We report a novel way of introducing strain in Ultra-Thin Body and Buried-Oxide (UTBB) SOI structures by Ge+ implant into the underlying Si substrate and the formation of localized SiGe regions underneath the buried oxide (BOX) by Crystallization. The localized SiGe regions result in local deformation of the ultra-thin Si. Compressive strain of up to ?0.55% and ?1.2% were detected by Nano-Beam Diffraction (NBD) at the center and the edge, respectively, of a 50 nm wide ultra-thin Si region located between two local SiGe regions. The under-the-BOX SiGe regions may be useful for strain engineering of ultra-thin body transistors formed on UTBB-SOI substrates.

Yinjie Ding; Ran Cheng; Qian Zhou; Anyan Du; Nicolas Daval; Bich-Yen Nguyen; Yee-Chia Yeo

2013-01-01T23:59:59.000Z

71

Operation of staged membrane oxidation reactor systems  

SciTech Connect (OSTI)

A method of operating a multi-stage ion transport membrane oxidation system. The method comprises providing a multi-stage ion transport membrane oxidation system with at least a first membrane oxidation stage and a second membrane oxidation stage, operating the ion transport membrane oxidation system at operating conditions including a characteristic temperature of the first membrane oxidation stage and a characteristic temperature of the second membrane oxidation stage; and controlling the production capacity and/or the product quality by changing the characteristic temperature of the first membrane oxidation stage and/or changing the characteristic temperature of the second membrane oxidation stage.

Repasky, John Michael

2012-10-16T23:59:59.000Z

72

High-performance tin oxide-nitrogen doped graphene aerogel hybrids as anode materials for lithium-ion batteries  

Science Journals Connector (OSTI)

Abstract Tin dioxide nanoparticles on nitrogen doped graphene aerogel (SnO2-NGA) hybrid are synthesized by one-step hydrothermal method and successfully applied in lithium-ion batteries as a free-standing anode. The electrochemical performance of SnO2-NGA hybrid is investigated by galvanostatic charge–discharge cycling, rate capability test, cyclic voltammetry and electrochemical impedance spectroscopy. It is found that the SnO2-NGA hybrid with freestanding spongy-like structure exhibit remarkable lithium storage capacity (1100 mAh g?1 after 100 cycles), good cycling stability and high rate capability. The outstanding performance is attributed to the uniform SnO2 nanoparticles, unique spongy-like structure and N doping defect for Li+ diffusion.

Chunhui Tan; Jing Cao; Abdul Muqsit Khattak; Feipeng Cai; Bo Jiang; Gai Yang; Suqin Hu

2014-01-01T23:59:59.000Z

73

Quantitative Determination of Deuterium Atom Concentration in Zinc Oxide Thin Films by Time-of-Flight Secondary Ion Mass Spectrometry  

SciTech Connect (OSTI)

ZnO is a wide-gap semiconductor with very interesting electronic properties.[1,2] Therefore, it has been extensively studied for many years. It has been found that even low centrations of hydrogen in ZnO film can considerably change its electronic behavior.[3-5] Quite a few papers have discussed this issue but it has not been fully understood. Lack of experimental data, especially quantitative data on hydrogen concentration in ZnO samples is an important reason. Dynamic SIMS is the best technique to determine concentration of hydrogen atoms in materials.[6-9] However, it is a very specific technique and the entation is mostly available in semiconductor industry. ToF-SIMS is a more versatile instrument and it is more available in universities and research institutes. Background hydrogen interference has been known to be a serious problem in quantifying hydrogen atoms in solid samples. Although SIMS is an ultra-high vacuum (UHV) technique, there are still some residual gases existing in vacuum chambers during analysis. Most of them are H2, H2O or CH4, which lead to a background that greatly interferes quantitative detection of hydrogen. Therefore, deuterium atoms have been intentionally introduced into the system to avoid this problem. Standard samples are very important for SIMS quantitative analysis. A common method to prepare such kind of standard samples is ion-implanting. Therefore, a set of standard D-ZnO samples were prepared by ion-implanting in our work. In this paper, we report using ToF-SIMS to quantitatively determine the concentration of deuterium atoms in a number of high-quality epitaxial ZnO films, with a set of standard samples as references. We are especially interested in the detection limit of deuterium concentration in ZnO. In addition, hydrogen background interference was also investigated.

Zhu, Zihua; Shutthanandan, V.; Li, Yuanjie; Chambers, Scott A.

2009-03-01T23:59:59.000Z

74

Strong reduction of V{sup 4+} amount in vanadium oxide/hexadecylamine nanotubes by doping with Co{sup 2+} and Ni{sup 2+} ions: Electron paramagnetic resonance and magnetic studies  

SciTech Connect (OSTI)

In this work we present a complete characterization and magnetic study of vanadium oxide/hexadecylamine nanotubes (VO{sub x}/Hexa NT's) doped with Co{sup 2+} and Ni{sup 2+} ions. The morphology of the NT's has been characterized by transmission electron microscopy, while the metallic elements have been quantified by the instrumental neutron activation analysis technique. The static and dynamic magnetic properties were studied by collecting data of magnetization as a function of magnetic field and temperature and by electron paramagnetic resonance. At difference of the majority reports in the literature, we do not observe magnetic dimers in vanadium oxide nanotubes. Also, we observed that the incorporation of metallic ions (Co{sup 2+}, S = 3/2 and Ni{sup 2+}, S = 1) decreases notably the amount of V{sup 4+} ions in the system, from 14-16% (nondoped case) to 2%-4%, with respect to the total vanadium atoms (fact corroborated by XPS experiments) anyway preserving the tubular nanostructure. The method to decrease the amount of V{sup 4+} in the nanotubes improves considerably their potential technological applications as Li-ion batteries cathodes.

Saleta, M. E.; Troiani, H. E.; Ribeiro Guevara, S.; Ruano, G.; Sanchez, R. D. [Centro Atomico Bariloche, CNEA, (8400) S. C. de Bariloche (Argentina); Malta, M. [Depto. de Cs. Exatas e da Terra, Univ. do Estado da Bahia, Cabula Salvador CP 2555 (Brazil); Torresi, R. M. [Instituto de Quimica, Universidad de Sao Paulo, Sao Paulo CP 26077, 05513-970 (Brazil)

2011-05-01T23:59:59.000Z

75

Excitation mechanism and thermal emission quenching of Tb ions in silicon rich silicon oxide thin films grown by plasma-enhanced chemical vapour deposition—Do we need silicon nanoclusters?  

SciTech Connect (OSTI)

In this work, we will discuss the excitation and emission properties of Tb ions in a Silicon Rich Silicon Oxide (SRSO) matrix obtained at different technological conditions. By means of electron cyclotron resonance plasma-enhanced chemical vapour deposition, undoped and doped SRSO films have been obtained with different Si content (33, 35, 39, 50 at. %) and were annealed at different temperatures (600, 900, 1100?°C). The samples were characterized optically and structurally using photoluminescence (PL), PL excitation, time resolved PL, absorption, cathodoluminescence, temperature dependent PL, Rutherford backscattering spectrometry, Fourier transform infrared spectroscopy and positron annihilation lifetime spectroscopy. Based on the obtained results, we discuss how the matrix modifications influence excitation and emission properties of Tb ions.

Podhorodecki, A., E-mail: artur.p.podhorodecki@pwr.wroc.pl; Golacki, L. W.; Zatryb, G.; Misiewicz, J. [Institute of Physics, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Wang, J.; Jadwisienczak, W. [School of EECS, Ohio University, Stocker Center 363, Athens, Ohio 45701 (United States); Fedus, K. [Institute of Physics, Nicholas Copernicus University, Grudziadzka 5/7, 87-100 Torun (Poland); Wojcik, J.; Wilson, P. R. J.; Mascher, P. [Department of Engineering Physics and Centre for Emerging Device Technologies, McMaster University, 1280 Main St. W, Hamilton, Ontario L8S4L7 (Canada)

2014-04-14T23:59:59.000Z

76

Mechanical, Electrical, and Optical Properties of (Pr,Ce)O[subscript 2] Solid Solutions: Kinetic Studies  

E-Print Network [OSTI]

Praseodymium doped cerium oxide (PCO) shows mixed ionic and electronic conducting (MIEC) characteristics at relatively high pO2 (e.g. air) and enhanced oxygen storage capacity (OSC), of interest for solid oxide fuel cell ...

Chen, Di

77

Staged membrane oxidation reactor system  

DOE Patents [OSTI]

Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

2012-09-11T23:59:59.000Z

78

Staged membrane oxidation reactor system  

DOE Patents [OSTI]

Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

2014-05-20T23:59:59.000Z

79

Staged membrane oxidation reactor system  

DOE Patents [OSTI]

Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

2013-04-16T23:59:59.000Z

80

Secondary ion emission from Si bombarded with large Ar cluster ions under UHV conditions  

Science Journals Connector (OSTI)

Si was bombarded with size-selected 40 keV Ar cluster ions and positive secondary ions were measured using the time-of-flight technique under high and ultra-high vacuum (HV and UHV respectively) conditions. Si+ ions were main species detected under the incidence of 40 keV Ar cluster ions, and the yields of Si cluster ions such as Si4+ were also extremely high under both conditions. On the other hand, oxidized secondary ions such as SiO+ were detected with high intensity only under the HV condition. The yield ratios of oxidized ions decreased in UHV to less than 1% of their values in HV. The effect of residual gas pressure on Si cluster ion yields is relatively low compared to oxidized ions, and the UHV condition is required to obtain accurate secondary ion yields.

Satoshi Ninomiya; Kazuya Ichiki; Yoshihiko Nakata; Yoshiro Honda; Toshio Seki; Takaaki Aoki; Jiro Matsuo

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ions miec oxides" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Nano-sized Li-Fe composite oxide prepared by a self-catalytic reverse atom transfer radical polymerization approach as an anode material for lithium-ion batteries  

SciTech Connect (OSTI)

A novel Self-catalytic Reverse Atom Transfer Radical Polymerization (RATRP) approach that can provide the radical initiator and the catalyst by the system itself is used to synthesize a nano-sized Li-Fe composite oxide powder in large scale. Its crystalline structure and morphology have been characterized by X-ray diffraction and scanning electron microscopy. The results reveal that the composite is composed of nano-sized LiFeO{sub 2} and Fe{sub 3}O{sub 4}. Its electrochemical properties are evaluated by charge/discharge measurements. The results show that the Li-Fe composite oxide is an excellent anode material for lithium-ion batteries with good cycling performance (1249 mAh g{sup -1} at 100th cycle) and outstanding rate capability (967 mAh g{sup -1} at 5 C). Such a self-catalytic RATRP approach provides a way to synthesize nano-sized iron oxide-based anode materials industrially with preferable electrochemical performance and can also be applied in other polymer-related area.

Yue, G.Q.; Liu, C.; Wang, D.Z. [CAS Key Laboratory of Materials for Energy Conversions, Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Hefei 230026 (China)] [CAS Key Laboratory of Materials for Energy Conversions, Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Hefei 230026 (China); Wang, Y.; Yuan, Q.F.; Xu, R.; Zhao, F.G. [Amperex Technology Ltd, Guanggong Dongguan 523080 (China)] [Amperex Technology Ltd, Guanggong Dongguan 523080 (China); Chen, C.H., E-mail: cchchen@ustc.edu.cn [CAS Key Laboratory of Materials for Energy Conversions, Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Hefei 230026 (China)

2010-09-15T23:59:59.000Z

82

Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries  

E-Print Network [OSTI]

Li-Rich Layered Oxides for Lithium Batteries. Nano Lett. 13,O 2 Cathode Material in Lithium Ion Batteries. Adv. Energysolvent decomposition in lithium ion batteries: first-

Lin, Feng

2014-01-01T23:59:59.000Z

83

Effects of a graphene nanosheet conductive additive on the high-capacity lithium-excess manganese–nickel oxide cathodes of lithium-ion batteries  

Science Journals Connector (OSTI)

This study examines the effects of a graphene nanosheet (GNS) conductive additive on the...?3) lithium-ion battery cathode containing 92 wt% Li1.1(Mn0.6Ni0.4)0.9O2...microspheres (approximately 6 ?m in diameter)....

Wen-Chin Chen; Cheng-Yu Hsieh; Yu-Ting Weng…

2014-11-01T23:59:59.000Z

84

Ion source  

DOE Patents [OSTI]

A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species.

Leung, Ka-Ngo (Hercules, CA); Ehlers, Kenneth W. (Alamo, CA)

1984-01-01T23:59:59.000Z

85

ALSNews Vol. 320  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The beam status in real time can be found on the ALS home page. In This Issue Cool Magnetic Molecules AP-XPS Measures MIEC Oxides in Action ALS Users' Meeting Update General...

86

E-Print Network 3.0 - antimony oxides Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

growth of the field oxide in the case of a LOCOS... deposition or removing, - oxide and nitride deposition or etching, - ion-implantationof boron, BF,, arsenic... isolation, -...

87

E-Print Network 3.0 - antimony pyrochlore-type oxides Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

growth of the field oxide in the case of a LOCOS... deposition or removing, - oxide and nitride deposition or etching, - ion-implantationof boron, BF,, arsenic... isolation, -...

88

E-Print Network 3.0 - activated yttrium oxide Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

copper oxide," G. Srinivasan, Guo-mei Wu, and T. T. Srinivasan, J... frequencies in transition metal ion substituted yttrium barium copper oxide superconductors," G. Srinivasan......

89

Selective ion source  

DOE Patents [OSTI]

A ion source is described wherein selected ions maybe extracted to the exclusion of unwanted ion species of higher ionization potential. Also described is a method of producing selected ions from a compound, such as P{sup +} from PH{sub 3}. The invention comprises a plasma chamber, an electron source, a means for introducing a gas to be ionized by electrons from the electron source, means for limiting electron energy from the electron source to a value between the ionization energy of the selected ion species and the greater ionization energy of an unwanted ion specie, and means for extracting the target ion specie from the plasma chamber. In one embodiment, the electrons are generated in a plasma cathode chamber immediately adjacent to the plasma chamber. A small extractor draws the electrons from the plasma cathode chamber into the relatively positive plasma chamber. The energy of the electrons extracted in this manner is easily controlled. The invention is particularly useful for doping silicon with P{sup +}, As{sup +}, and B{sup +} without the problematic presence of hydrogen, helium, water, or carbon oxide ions. Doped silicon is important for manufacture of semiconductors and semiconductor devices. 6 figs.

Leung, K.N.

1996-05-14T23:59:59.000Z

90

Selective ion source  

DOE Patents [OSTI]

A ion source is described wherein selected ions maybe extracted to the exclusion of unwanted ion species of higher ionization potential. Also described is a method of producing selected ions from a compound, such as P.sup.+ from PH.sub.3. The invention comprises a plasma chamber, an electron source, a means for introducing a gas to be ionized by electrons from the electron source, means for limiting electron energy from the electron source to a value between the ionization energy of the selected ion species and the greater ionization energy of an unwanted ion specie, and means for extracting the target ion specie from the plasma chamber. In one embodiment, the electrons are generated in a plasma cathode chamber immediately adjacent to the plasma chamber. A small extractor draws the electrons from the plasma cathode chamber into the relatively positive plasma chamber. The energy of the electrons extracted in this manner is easily controlled. The invention is particularly useful for doping silicon with P.sup.+, AS.sup.+, and B.sup.+ without the problematic presence of hydrogen, helium, water, or carbon oxide ions. Doped silicon is important for manufacture of semiconductors and semiconductor devices.

Leung, Ka-Ngo (Hercules, CA)

1996-01-01T23:59:59.000Z

91

Stability and Rate Capability of Al Substituted Lithium-Rich High-Manganese Content Oxide Materials for Li-Ion Batteries  

SciTech Connect (OSTI)

The structures, electrochemical properties and thermal stability of Al-substituted lithium-excess oxides, Li{sub 1.2}Ni{sub 0.16} Mn{sub 0.56}Co{sub 0.08-y}Al{sub y}O{sub 2} (y = 0, 0.024, 0.048, 0.08), are reported, and compared to the stoichiometric compounds, LiNi{sub z}Mn{sub z}Co{sub 1-2z}O{sub 2}. A solid solution was found up to at least y = 0.06. Aluminum substitution improves the poor thermal stability while preserving the high energy density of lithium-excess oxides. However, these high manganese compositions are inferior to the lithium stoichiometric materials, LiNi{sub z}Mn{sub z}Co{sub 1-2z}O{sub 2} (z = 0.333, 0.4), in terms of both power and thermal stability.

Li, Zheng; Chernova, Natasha A.; Feng, Jijun; Upreti, Shailesh; Omenya, Fredrick; Whittingham, M. Stanley (SUNY-Binghamton)

2012-03-15T23:59:59.000Z

92

Oxidative Transformation of Triclosan and Chlorophene by  

E-Print Network [OSTI]

Oxidative Transformation of Triclosan and Chlorophene by Manganese Oxides H U I C H U N Z H A N G of Technology, Atlanta, Georgia 30332 The antibacterial agents triclosan (5-chloro-2-(2,4- dichlorophenoxy(-MnO2 andMnOOH)yielding MnII ions. Both the initial reaction rate and adsorption of triclosan to oxide

Huang, Ching-Hua

93

Enhanced life ion source for germanium and carbon ion implantation  

SciTech Connect (OSTI)

Germanium and carbon ions represent a significant portion of total ion implantation steps in the process flow. Very often ion source materials that used to produce ions are chemically aggressive, especially at higher temperatures, and result in fast ion source performance degradation and a very limited lifetime [B.S. Freer, et. al., 2002 14th Intl. Conf. on Ion Implantation Technology Proc, IEEE Conf. Proc., p. 420 (2003)]. GeF{sub 4} and CO{sub 2} are commonly used to generate germanium and carbon beams. In the case of GeF{sub 4} controlling the tungsten deposition due to the de-composition of WF{sub 6} (halogen cycle) is critical to ion source life. With CO{sub 2}, the materials oxidation and carbon deposition must be controlled as both will affect cathode thermionic emission and anti-cathode (repeller) efficiencies due to the formation of volatile metal oxides. The improved ion source design Extended Life Source 3 (Eterna ELS3) together with its proprietary co-gas material implementation has demonstrated >300 hours of stable continuous operation when using carbon and germanium ion beams. Optimizing cogas chemistries retard the cathode erosion rate for germanium and carbon minimizes the adverse effects of oxygen when reducing gas is introduced for carbon. The proprietary combination of hardware and co-gas has improved source stability and the results of the hardware and co-gas development are discussed.

Hsieh, Tseh-Jen; Colvin, Neil; Kondratenko, Serguei [Axcelis Technologies, Inc. 108 Cherry Hill Drive, Beverly, MA 01915 (United States)

2012-11-06T23:59:59.000Z

94

GRAPHENE BASED ANODE MATERIALS FOR LITHIUM-ION BATTERIES.  

E-Print Network [OSTI]

??Improvements of the anode performances in Li-ions batteries are in demand to satisfy applications in transportation. In comparison with graphitic carbons, transition metal oxides as… (more)

Cheekati, Sree Lakshmi

2011-01-01T23:59:59.000Z

95

Phosphorus derivatives as electrolyte additives for lithium-ion battery: The removal of O2 generated from lithium-rich layered oxide cathode  

Science Journals Connector (OSTI)

Abstract Direct internal pressure measurements of the cylindrical Li-ion cells with a mixture of LiCoO2 and Li1.167Ni0.233Co0.1Mn0.467Mo0.033O2 (a solid solution between 0.4 Li2Mn0.8Ni0.1Mo0.1O3 and 0.6 LiNi0.4Co0.2Mn0.4O2) as cathode and graphite as anode have been performed during cell charging. Cell internal pressure at the end of charging is greatly reduced from 2.85 to 0.84–1.84 bar by adding a small amount of phosphorus derivatives such as triphenyl phosphine (TPP), ethyl diphenylphosphinite (EDP), and triethyl phosphite (TEP) into a carbonate-based electrolyte. The phosphorus derivatives are supposed to react with O2 generated from the decomposition of the Li2MnO3 component. The chemical states of additive molecules before and after the charging process have been characterized with a nuclear magnetic resonance (NMR) spectroscopy and gas chromatography–mass spectrometry (GC–MS). It has also been shown that those additives improve the cycle life when applied in coin full cells.

Dong Joon Lee; Dongmin Im; Young-Gyoon Ryu; Seoksoo Lee; Jaegu Yoon; Jeawoan Lee; Wanuk Choi; Insun Jung; Seungyeon Lee; Seok-Gwang Doo

2013-01-01T23:59:59.000Z

96

Radioactive ion detector  

DOE Patents [OSTI]

Apparatus for detecting the presence, in aqueous media, of substances which emit alpha and/or beta radiation and determining the oxidation state of these radioactive substances, that is, whether they are in cationic or anionic form. In one embodiment, a sensor assembly has two elements, one comprised of an ion-exchange material which binds cations and the other comprised of an ion-exchange material which binds anions. Each ion-exchange element is further comprised of a scintillation plastic and a photocurrent generator. When a radioactive substance to which the sensor is exposed binds to either element and emits alpha or beta particles, photons produced in the scintillation plastic illuminate the photocurrent generator of that element. Sensing apparatus senses generator output and thereby indicates whether cationic species or anionic species or both are present and also provides an indication of species quantity. 2 figs.

Bower, K.E.; Weeks, D.R.

1997-08-12T23:59:59.000Z

97

Radioactive ion detector  

DOE Patents [OSTI]

Apparatus for detecting the presence, in aqueous media, of substances which emit alpha and/or beta radiation and determining the oxidation state of these radioactive substances, that is, whether they are in cationic or anionic form. In one embodiment, a sensor assembly has two elements, one comprised of an ion-exchange material which binds cations and the other comprised of an ion-exchange material which binds anions. Each ion-exchange element is further comprised of a scintillation plastic and a photocurrent generator. When a radioactive substance to which the sensor is exposed binds to either element and emits alpha or beta particles, photons produced in the scintillation plastic illuminate the photocurrent generator of that element. Sensing apparatus senses generator output and thereby indicates whether cationic species or anionic species or both are present and also provides an indication of species quantity.

Bower, Kenneth E. (Los Alamos, NM); Weeks, Donald R. (Saratoga, CA)

1997-01-01T23:59:59.000Z

98

Oxygen ion conducting materials  

DOE Patents [OSTI]

An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

Vaughey, John (Elmhurst, IL); Krumpelt, Michael (Naperville, IL); Wang, Xiaoping (Downers Grove, IL); Carter, J. David (Bolingbrook, IL)

2003-01-01T23:59:59.000Z

99

Transition Metal Ions in the Gas Phase  

Science Journals Connector (OSTI)

For several years we have been studying the chemistry of atomic transition metal ions with simple organic molecules. This research was ... examining the consequences of oxidation and reduction of transition metal...

Douglas P. Ridge

1982-01-01T23:59:59.000Z

100

Classification of oxide glasses: A polarizability approach  

SciTech Connect (OSTI)

A classification of binary oxide glasses has been proposed taking into account the values obtained on their refractive index-based oxide ion polarizability {alpha}{sub O2-}(n{sub 0}), optical basicity {lambda}(n{sub 0}), metallization criterion M(n{sub 0}), interaction parameter A(n{sub 0}), and ion's effective charges as well as O1s and metal binding energies determined by XPS. Four groups of oxide glasses have been established: glasses formed by two glass-forming acidic oxides; glasses formed by glass-forming acidic oxide and modifier's basic oxide; glasses formed by glass-forming acidic and conditional glass-forming basic oxide; glasses formed by two basic oxides. The role of electronic ion polarizability in chemical bonding of oxide glasses has been also estimated. Good agreement has been found with the previous results concerning classification of simple oxides. The results obtained probably provide good basis for prediction of type of bonding in oxide glasses on the basis of refractive index as well as for prediction of new nonlinear optical materials.

Dimitrov, Vesselin [Department of Silicate Technology, University of Chemical Technology and Metallurgy, 8 Kl. Ohridski Blvd., Sofia 1756 (Bulgaria); Komatsu, Takayuki [Department of Chemistry, The Nagaoka University of Technology, 1603-1 Kamitomioka-cho, Nagaoka-shi, Niigata-ken 940-2188 (Japan)]. E-mail: komatsu@chem.nagaokaut.ac.jp

2005-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "ions miec oxides" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Degenerate cadmium oxide films for electronic devices  

Science Journals Connector (OSTI)

Highly conducting and transparent cadmium oxide films have been deposited on Corning 7059 glass substrates by ion-beam sputtering and by spray pyrolysis. The electrical and optical properties of CdO films prep...

T. L. Chu; Shirley S. Chu

102

Ion Colliders  

E-Print Network [OSTI]

High-energy ion colliders are large research tools in nuclear physics to study the Quark-Gluon-Plasma (QGP). The range of collision energy and high luminosity are important design and operational considerations. The experiments also expect flexibility with frequent changes in the collision energy, detector fields, and ion species. Ion species range from protons, including polarized protons in RHIC, to heavy nuclei like gold, lead and uranium. Asymmetric collision combinations (e.g. protons against heavy ions) are also essential. For the creation, acceleration, and storage of bright intense ion beams, limits are set by space charge, charge change, and intrabeam scattering effects, as well as beam losses due to a variety of other phenomena. Currently, there are two operating ion colliders, the Relativistic Heavy Ion Collider (RHIC) at BNL, and the Large Hadron Collider (LHC) at CERN.

Fischer, W

2015-01-01T23:59:59.000Z

103

Reversible photodeposition and dissolution of metal ions  

DOE Patents [OSTI]

A cyclic photocatalytic process for treating waste water containing metal and organic contaminants. In one embodiment of the method, metal ions are photoreduced onto the photocatalyst and the metal concentrated by resolubilization in a smaller volume. In another embodiment of the method, contaminant organics are first oxidized, then metal ions removed by photoreductive deposition. The present invention allows the photocatalyst to be recycled until nearly complete removal of metal ions and organic contaminants is achieved.

Foster, Nancy S. (Boulder, CO); Koval, Carl A. (Golden, CO); Noble, Richard D. (Boulder, CO)

1994-01-01T23:59:59.000Z

104

Metal Oxides  

Science Journals Connector (OSTI)

Metal oxides are the class of materials having the widest application in gas sensors. This chapter presents information related to the application of various metal oxides in gas sensors designed on different p...

Ghenadii Korotcenkov

2013-01-01T23:59:59.000Z

105

Ion transport membrane module and vessel system  

DOE Patents [OSTI]

An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

Stein, VanEric Edward (Allentown, PA); Carolan, Michael Francis (Allentown, PA); Chen, Christopher M. (Allentown, PA); Armstrong, Phillip Andrew (Orefield, PA); Wahle, Harold W. (North Canton, OH); Ohrn, Theodore R. (Alliance, OH); Kneidel, Kurt E. (Alliance, OH); Rackers, Keith Gerard (Louisville, OH); Blake, James Erik (Uniontown, OH); Nataraj, Shankar (Allentown, PA); Van Doorn, Rene Hendrik Elias (Obersulm-Willsbach, DE); Wilson, Merrill Anderson (West Jordan, UT)

2012-02-14T23:59:59.000Z

106

Ion transport membrane module and vessel system  

DOE Patents [OSTI]

An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel.The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

Stein, VanEric Edward (Allentown, PA); Carolan, Michael Francis (Allentown, PA); Chen, Christopher M. (Allentown, PA); Armstrong, Phillip Andrew (Orefield, PA); Wahle, Harold W. (North Canton, OH); Ohrn, Theodore R. (Alliance, OH); Kneidel, Kurt E. (Alliance, OH); Rackers, Keith Gerard (Louisville, OH); Blake, James Erik (Uniontown, OH); Nataraj, Shankar (Allentown, PA); van Doorn, Rene Hendrik Elias (Obersulm-Willsbach, DE); Wilson, Merrill Anderson (West Jordan, UT)

2008-02-26T23:59:59.000Z

107

Effect of Thermal Neutron Irradiation on Oxide Catalysts for the Decomposition of Nitrous Oxide  

Science Journals Connector (OSTI)

... alpha-particles which are produced by an (n, a) reaction with lithium-6 or boron-10 atoms. Nickel oxide contains excess oxygen ions as a £-type semiconductor and probably ...

YASUKAZU SAITO; YUKIO YONEDA; SHOJI MAKISHIMA

1959-02-07T23:59:59.000Z

108

E-Print Network 3.0 - award metal ion Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

-5 A number of recent experiments have sought to extend the realm of gas phase transition metal ion chemistry... to ex- amples where the ion occupies an oxidation state that...

109

Develop high energy high power Li-ion battery cathode materials : a first principles computational study  

E-Print Network [OSTI]

of the Layered, “Li-Excess” Lithium-Ion Battery Electrodeof the Layered, "Li-Excess" Lithium-Ion Battery ElectrodeCATION MIGRATION IN LITHIUM EXCESS NICKEL MANGANESE OXIDES

Xu, Bo; Xu, Bo

2012-01-01T23:59:59.000Z

110

Ion exchange purification of scandium  

DOE Patents [OSTI]

An improvement in purification of scandium through ion exchange chromatography is disclosed in which the oxidation potential of the eluting solution is altered by the addition of potassium chlorate or ammonium chloride so that removal of contaminants is encouraged. The temperature, pH and concentration of the eluent HEDTA are controlled in order to maintain the scandium in the column while minimizing dilution of the scandium band. Recovery of scandium is improved by pumping dilute scandium over the column prior to stripping the scandium and precipitation. This eliminates the HEDTA ion and other monovalent cations contaminating the scandium band. This method maximizes recovery of scandium while maintaining purity. 2 figs.

Herchenroeder, L.A.; Burkholder, H.R.

1990-10-23T23:59:59.000Z

111

E-Print Network 3.0 - area perovskite-type oxide Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of perovskite-type;it has... to understandwhy certain perovskite-type and rutile-type electrochromic oxides become absorbing under ion insertion... such as spectral and angular...

112

E-Print Network 3.0 - active complementary metal-oxide-semiconductor...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ion-implanted p and n dopants in germanium Summary: wavelength spectrum allowing optoelectronic integra- tion to enhance complementary-metal-oxide- semiconductor... lim- its in...

113

FAST ION STUDIES OF ION CYCLOTRON HEATING  

E-Print Network [OSTI]

FAST ION STUDIES OF ION CYCLOTRON HEATING IN THE PLT TOKAMAK Gregory Wayne Hammett;@1986 Gregory Wayne Hammett ALL RIGHTS RESERVED #12;Abstract Fast Ion Studies of Ion Cyclotron Heating about the physics of wave heating. Previous experiments have demonstrated that ion cyclotron heating

Hammett, Greg

114

secondary ion detection | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ion detection secondary ion detection Leads No leads are available at this time. Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. Abstract: As a...

115

NO.sub.x sensing devices having conductive oxide electrodes  

DOE Patents [OSTI]

A NO.sub.x sensing device includes at least one pair of spaced electrodes, at least one of which is made of a conductive oxide, and an oxygen-ion conducting material in bridging electrical communication with the electrodes.

Montgomery, Frederick C. (Oak Ridge, TN); West, David L. (Oak Ridge, TN); Armstrong, Timothy R. (Clinton, TN); Maxey, Lonnie C. (Powell, TN)

2010-03-16T23:59:59.000Z

116

Synthesis and structural properties of lithium titanium oxide powder  

Science Journals Connector (OSTI)

Recently, lithium titanium oxide material has gained renewed interest in electrodes for lithium ion rechargeable batteries. We investigated the influence of excess Li on the structural characteristics of lithium ...

Soo Ho Kim; Kwang Hoon Lee; Baek Seok Seong…

2006-11-01T23:59:59.000Z

117

Synthesis and electrochemical performance of LiNi0.6Co0.2Mn0.2O2/reduced graphene oxide cathode materials for lithium-ion batteries  

Science Journals Connector (OSTI)

A LiNi0.6Co0.2Mn0.2O2/reduced graphene oxide (RGO) composite with RGO content of 1.2 % was prepared by a simple spray-drying method instead of high-energy ball milling method. The composite has been characterized...

Peng Yue; Zhixing Wang; Qian Zhang; Guochun Yan; Huajun Guo; Xinhai Li

2013-10-01T23:59:59.000Z

118

GeOx/Reduced Graphene Oxide Composite as an Anode for Li-ion Batteries: Enhanced Capacity via Reversible Utilization of Li2O along with Improved Rate Performance  

SciTech Connect (OSTI)

A self-assembled GeOx/reduced graphene oxide (GeOx/RGO) composite, where GeOx nanoparticles were grown directly on reduced graphene oxide sheets, was synthesized via a facile one-step reduction approach and studied by X-ray diffraction, transmission electron microscopy, energy dispersive X-ray spectroscopy, electron energy loss spectroscopy elemental mapping, and other techniques. Electrochemical evaluation indicates that incorporation of reduced graphene oxide enhances both the rate capability and reversible capacity of GeOx, with the latter being due to the RGO enabling reversible utilization of Li2O. The composite delivers a high reversible capacity of 1600 mAhg-1 at a current density of 100 mAg-1, and still maintains a capacity of 410 mAhg-1 at a high current density of 20 Ag-1. Owing to the flexible reduced graphene oxide sheets enwrapping the GeOx particles, the cycling stability of the composite was also improved significantly. To further demonstrate its feasibility in practical applications, the synthesized GeOx/RGO composite anode was successfully paired with a high voltage LiNi0.5Mn1.5O4 cathode to form a full cell, which showed good cycling and rate performance.

Lv, Dongping; Gordin, Mikhail; Yi, Ran; Xu, Terrence (Tianren); Song, Jiangxuan; Jiang, Yingbing; Choi, Daiwon; Wang, Donghai

2014-09-01T23:59:59.000Z

119

Role of intermediate phase for stable cycling of Na7V4(P2O7)4PO4 in sodium ion battery  

Science Journals Connector (OSTI)

...LiMn2O4/reduced graphene oxide hybrid for high rate lithium ion batteries . J Mater Chem 21...rate lithium-ion batteries . Electrochem Commun...2011 ) Reduced graphene oxide supported...Liu ZP ( 2011 ) Graphene modified LiFePO4...power lithium ion batteries . J Mater Chem 21...

Soo Yeon Lim; Heejin Kim; Jaehoon Chung; Ji Hoon Lee; Byung Gon Kim; Jeon-Jin Choi; Kyung Yoon Chung; Woosuk Cho; Seung-Joo Kim; William A. Goddard III; Yousung Jung; Jang Wook Choi

2014-01-01T23:59:59.000Z

120

Polyoxometalate water oxidation catalysts and methods of use thereof  

DOE Patents [OSTI]

Homogeneous water oxidation catalysts (WOCs) for the oxidation of water to produce hydrogen ions and oxygen, and methods of making and using thereof are described herein. In a preferred embodiment, the WOC is a polyoxometalate WOC which is hydrolytically stable, oxidatively stable, and thermally stable. The WOC oxidized waters in the presence of an oxidant. The oxidant can be generated photochemically, using light, such as sunlight, or electrochemically using a positively biased electrode. The hydrogen ions are subsequently reduced to form hydrogen gas, for example, using a hydrogen evolution catalyst (HEC). The hydrogen gas can be used as a fuel in combustion reactions and/or in hydrogen fuel cells. The catalysts described herein exhibit higher turn over numbers, faster turn over frequencies, and/or higher oxygen yields than prior art catalysts.

Hill, Craig L.; Gueletii, Yurii V.; Musaev, Djamaladdin G.; Yin, Qiushi; Botar, Bogdan

2014-09-02T23:59:59.000Z

Note: This page contains sample records for the topic "ions miec oxides" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

C60 Secondary Ion Fourier Transform Ion Cyclotron Resonance Mass...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

C60 Secondary Ion Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. C60 Secondary Ion Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Abstract: Secondary...

122

Oxidation of Propane by Doped Nickel Oxides  

Science Journals Connector (OSTI)

... present study, however, indicate that in the absence of excess oxygen, direct oxidation of propane by the oxide lattice can occur.

D. W. McKEE

1964-04-11T23:59:59.000Z

123

Composite oxygen ion transport element  

SciTech Connect (OSTI)

A composite oxygen ion transport element that has a layered structure formed by a dense layer to transport oxygen ions and electrons and a porous support layer to provide mechanical support. The dense layer can be formed of a mixture of a mixed conductor, an ionic conductor, and a metal. The porous support layer can be fabricated from an oxide dispersion strengthened metal, a metal-reinforced intermetallic alloy, a boron-doped Mo.sub.5Si.sub.3-based intermetallic alloy or combinations thereof. The support layer can be provided with a network of non-interconnected pores and each of said pores communicates between opposite surfaces of said support layer. Such a support layer can be advantageously employed to reduce diffusion resistance in any type of element, including those using a different material makeup than that outlined above.

Chen, Jack C. (Getzville, NY); Besecker, Charles J. (Batavia, IL); Chen, Hancun (Williamsville, NY); Robinson, Earil T. (Mentor, OH)

2007-06-12T23:59:59.000Z

124

Oxygen ion-beam microlithography  

DOE Patents [OSTI]

A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used. 5 figures.

Tsuo, Y.S.

1991-08-20T23:59:59.000Z

125

Oxygen ion-beam microlithography  

DOE Patents [OSTI]

A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used.

Tsuo, Y. Simon (Lakewood, CO)

1991-01-01T23:59:59.000Z

126

Ion Monitoring  

DOE Patents [OSTI]

The apparatus and method provide a technique for significantly reducing capacitance effects in detector electrodes arising due to movement of the instrument relative to the item/location being monitored in ion detection based techniques. The capacitance variations are rendered less significant by placing an electrically conducting element between the detector electrodes and the monitored location/item. Improved sensitivity and reduced noise signals arise as a result. The technique also provides apparatus and method suitable for monitoring elongate items which are unsuited to complete enclosure in one go within a chamber. The items are monitored part by part as the pass through the instrument, so increasing the range of items or locations which can be successfully monitored.

Orr, Christopher Henry (Calderbridge, GB); Luff, Craig Janson (Calderbridge, GB); Dockray, Thomas (Calderbridge, GB); Macarthur, Duncan Whittemore (Los Alamos, NM)

2003-11-18T23:59:59.000Z

127

Manganese oxide helices, rings, strands, and films, and methods for their preparation  

DOE Patents [OSTI]

Methods for the preparation of mixed-valence manganese oxide compositions with quaternary ammonium ions are described. The compositions self-assemble into helices, rings, and strands without any imposed concentration gradient. These helices, rings, and strands, as well as films having the same composition, undergo rapid ion exchange to replace the quaternary ammonium ions with various metal ions. And the metal-ion-containing manganese oxide compositions so formed can be heat treated to form semi-conducting materials with high surface areas.

Suib, Steven L. (Storrs, CT); Giraldo, Oscar (Storrs, CT); Marquez, Manuel (Wheeling, IL); Brock, Stephanie (Detroit, MI)

2003-01-07T23:59:59.000Z

128

Lithium metal oxide electrodes for lithium batteries  

DOE Patents [OSTI]

An uncycled electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula Li.sub.(2+2x)/(2+x)M'.sub.2x/(2+x)M.sub.(2-2x)/(2+x)O.sub.2-.delta., in which 0.ltoreq.x<1 and .delta. is less than 0.2, and in which M is a non-lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. Methods of preconditioning the electrodes are disclosed as are electrochemical cells and batteries containing the electrodes.

Thackeray, Michael M. (Naperville, IL); Kim, Jeom-Soo (Naperville, IL); Johnson, Christopher S. (Naperville, IL)

2008-01-01T23:59:59.000Z

129

Electrospray ion source with reduced analyte electrochemistry  

DOE Patents [OSTI]

An electrospray ion (ESI) source and method capable of ionizing an analyte molecule without oxidizing or reducing the analyte of interest. The ESI source can include an emitter having a liquid conduit, a working electrode having a liquid contacting surface, a spray tip, a secondary working electrode, and a charge storage coating covering partially or fully the liquid contacting surface of the working electrode. The liquid conduit, the working electrode and the secondary working electrode can be in liquid communication. The electrospray ion source can also include a counter electrode proximate to, but separated from, said spray tip. The electrospray ion source can also include a power system for applying a voltage difference between the working electrodes and a counter-electrode. The power system can deliver pulsed voltage changes to the working electrodes during operation of said electrospray ion source to minimize the surface potential of the charge storage coating.

Kertesz, Vilmos; Van Berkel, Gary J

2013-07-30T23:59:59.000Z

130

ion microprobe | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

microprobe ion microprobe Leads No leads are available at this time. Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. Abstract: As a candidate...

131

EMSL - secondary ion detection  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

secondary-ion-detection en Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. http:www.emsl.pnl.govemslwebpublicationsmagnesium-behavior-and-struc...

132

Ion chromatographic analysis of oil shale leachates  

SciTech Connect (OSTI)

In the present work an investigation of the use of ion chromatography to determine environmentally significant anions present in oil shale leachates was undertaken. Nadkarni et al. have used ion chromatography to separate and quantify halogen, sulfur and nitrogen species in oil shales after combustion in a Parr bomb. Potts and Potas used ion chromatography to monitor inorganic ions in cooling tower wastewater from coal gasification. Wallace and coworkers have used ion chromatography to determine anions encountered in retort wastewaters. The ions of interest in this work were the ions of sulfur oxides including sulfite (SO{sub 3}{sup 2{minus}}), sulfate (SO{sub 4}{sup 2{minus}}), thiosulfate (S{sub 2}O{sub 3}{sup 2{minus}}), dithionite (S{sub 2}O{sub 4}{sup 2{minus}}), dithionate (S{sub 2}O{sub 6}{sup 2{minus}}), peroxyodisulfate (S{sub 2}O{sub 8}{sup 2{minus}}), and tetrathionate (S{sub 4}O{sub 6}{sup 2{minus}}), and thiocyanate (SCN{sup {minus}}), sulfide (S{sup 2{minus}}) hydrosulfide (HS{sup {minus}}), cyanide (CN{sup {minus}}), thiocyanate (SCN{sup {minus}}), and cyanate (OCN{sup {minus}}). A literature search was completed and a leaching procedure developed. 15 refs., 6 figs., 1 tab.

Butler, N.L.

1990-10-01T23:59:59.000Z

133

Improved Initial Performance of Si Nanoparticles by Surface Oxide Reduction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improved Initial Performance of Si Nanoparticles by Surface Oxide Reduction Improved Initial Performance of Si Nanoparticles by Surface Oxide Reduction for Lithium-Ion Battery Application Title Improved Initial Performance of Si Nanoparticles by Surface Oxide Reduction for Lithium-Ion Battery Application Publication Type Journal Article Year of Publication 2011 Authors Xun, Shidi, Xiangyun Song, Michael E. Grass, Daniel K. Roseguo, Z. Liu, Vincent S. Battaglia, and Gao Li Journal Electrochemical Solid-State Letters Volume 14 Start Page A61 Issue 5 Pagination A61-A63 Date Published 02/2001 Keywords Electrochemistry, elemental semiconductors, etching, lithium, nanoparticles, secondary cells, silicon, thermal analysis, transmission electron microscopy, X-ray photoelectron spectra Abstract This study characterizes the native oxide layer of Si nanoparticles and evaluates its effect on their performance for Li-ion batteries. x-ray photoelectron spectroscopy and transmission electron microscopy were applied to identify the chemical state and morphology of the native oxide layer. Elemental and thermogravimetric analysis were used to estimate the oxide content for the Si samples. Hydrofluoric acid was used to reduce the oxide layer. A correlation between etching time and oxide content was established. The initial electrochemical performances indicate that the reversible capacity of etched Si nanoparticles was enhanced significantly compared with that of the as-received Si sample.

134

Synthesis of carbon coated Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/reduced graphene oxide composite for high-performance lithium ion batteries  

SciTech Connect (OSTI)

Graphical abstract: Display Omitted Highlights: ? Carbon coated LVP nanoparticles strongly anchored on rGO surface are prepared. ? LVP@C/rGO exhibits high electrical conductivity. ? LVP@C/rGO shows excellent cycleability and rate capability between 3.0 and 4.8 V. -- Abstract: The carbon coated Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/reduced graphene oxide (LVP@C/rGO) composite is successfully synthesized by a conventional solid-state reaction, which is easily scaled up. LVP grains coated with a thin layer (?8 nm) of carbon are adhered to the surface of the rGO layer and/or enwrapped into the rGO sheets, which can facilitate the fast charge transfer within the whole electrode and to the current collector. As a cathode material, the LVP@C/rGO electrode delivers an initial discharge capacity of 177 mAh g{sup ?1} at 0.5 C with capacity retention of 96% during the 50th cycle in a wide voltage range of 3.0–4.8 V. A superior rate capability is also achieved, e.g., exhibiting a discharge capacity of 96 mAh g{sup ?1} at a high C rate of 10 C.

Wu, Keliang, E-mail: linxin66@126.com [Department of Petroleum and Chemical, Bayingolin Vocational and Technical College, Xinjiang Uygur Autonomous Region 841000 (China)] [Department of Petroleum and Chemical, Bayingolin Vocational and Technical College, Xinjiang Uygur Autonomous Region 841000 (China); Yang, Jinpeng [Department of Petroleum and Chemical, Bayingolin Vocational and Technical College, Xinjiang Uygur Autonomous Region 841000 (China)] [Department of Petroleum and Chemical, Bayingolin Vocational and Technical College, Xinjiang Uygur Autonomous Region 841000 (China)

2013-02-15T23:59:59.000Z

135

Asphalt Oxidation Kinetics and Pavement Oxidation Modeling  

E-Print Network [OSTI]

Most paved roads in the United States are surfaced with asphalt. These asphalt pavements suffer from fatigue cracking and thermal cracking, aggravated by the oxidation and hardening of asphalt. This negative impact of asphalt oxidation on pavement...

Jin, Xin

2012-07-16T23:59:59.000Z

136

Ion sources for ion implantation technology (invited)  

SciTech Connect (OSTI)

Ion sources for ion implantation are introduced. The technique is applied not only to large scale integration (LSI) devices but also to flat panel display. For LSI fabrication, ion source scheduled maintenance cycle is most important. For CMOS image sensor devices, metal contamination at implanted wafer is most important. On the other hand, to fabricate miniaturized devices, cluster ion implantation has been proposed to make shallow PN junction. While for power devices such as silicon carbide, aluminum ion is required. For doping processes of LCD fabrication, a large ion source is required. The extraction area is about 150 cm × 10 cm, and the beam uniformity is important as well as the total target beam current.

Sakai, Shigeki, E-mail: sakai-shigeki@nissin.co.jp; Hamamoto, Nariaki; Inouchi, Yutaka; Umisedo, Sei; Miyamoto, Naoki [Nissin Ion Equipment co., ltd, 575 Kuze-Tonoshiro-cho Minami-ku, Kyoto 601-8205 (Japan)] [Nissin Ion Equipment co., ltd, 575 Kuze-Tonoshiro-cho Minami-ku, Kyoto 601-8205 (Japan)

2014-02-15T23:59:59.000Z

137

Microfabricated Ion Traps  

E-Print Network [OSTI]

Ion traps offer the opportunity to study fundamental quantum systems with high level of accuracy highly decoupled from the environment. Individual atomic ions can be controlled and manipulated with electric fields, cooled to the ground state of motion with laser cooling and coherently manipulated using optical and microwave radiation. Microfabricated ion traps hold the advantage of allowing for smaller trap dimensions and better scalability towards large ion trap arrays also making them a vital ingredient for next generation quantum technologies. Here we provide an introduction into the principles and operation of microfabricated ion traps. We show an overview of material and electrical considerations which are vital for the design of such trap structures. We provide guidance in how to choose the appropriate fabrication design, consider different methods for the fabrication of microfabricated ion traps and discuss previously realized structures. We also discuss the phenomenon of anomalous heating of ions within ion traps, which becomes an important factor in the miniaturization of ion traps.

Marcus D. Hughes; Bjoern Lekitsch; Jiddu A. Broersma; Winfried K. Hensinger

2011-06-28T23:59:59.000Z

138

Electron Beam Ion Sources  

E-Print Network [OSTI]

Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of different time structures. In comparison to most of the other known ion sources, EBISs feature ion beams with very good beam emittances and a low energy spread. Furthermore, EBISs are excellent sources of photons (X-rays, ultraviolet, extreme ultraviolet, visible light) from highly charged ions. This chapter gives an overview of EBIS physics, the principle of operation, and the known technical solutions. Using examples, the performance of EBISs as well as their applications in various fields of basic research, technology and medicine are discussed.

Zschornacka, G; Thorn, A

2013-01-01T23:59:59.000Z

139

Mn3O4-Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Hailiang Wang,,  

E-Print Network [OSTI]

Mn3O4-Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries Hailiang Wang hybrid materials of Mn3O4 nanoparticles on reduced graphene oxide (RGO) sheets for lithium ion battery-cost, and environ- mentally friendly anode for lithium ion batteries. Our growth-on- graphene approach should offer

Cui, Yi

140

Ion Distribution And Electronic Stopping Power For Au ions In...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Distribution And Electronic Stopping Power For Au ions In Silicon Carbide. Ion Distribution And Electronic Stopping Power For Au ions In Silicon Carbide. Abstract: Accurate...

Note: This page contains sample records for the topic "ions miec oxides" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Direct electrochemical reduction of metal-oxides  

DOE Patents [OSTI]

A method of controlling the direct electrolytic reduction of a metal oxide or mixtures of metal oxides to the corresponding metal or metals. A non-consumable anode and a cathode and a salt electrolyte with a first reference electrode near the non-consumable anode and a second reference electrode near the cathode are used. Oxygen gas is produced and removed from the cell. The anode potential is compared to the first reference electrode to prevent anode dissolution and gas evolution other than oxygen, and the cathode potential is compared to the second reference electrode to prevent production of reductant metal from ions in the electrolyte.

Redey, Laszlo I. (Downers Grove, IL); Gourishankar, Karthick (Downers Grove, IL)

2003-01-01T23:59:59.000Z

142

Liners for ion transport membrane systems  

SciTech Connect (OSTI)

Ion transport membrane system comprising (a) a pressure vessel comprising an interior, an exterior, an inlet, an inlet conduit, an outlet, and an outlet conduit; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein the inlet and the outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; (c) a gas manifold having an interior surface wherein the gas manifold is in flow communication with the interior region of each of the planar ion transport membrane modules and with the exterior of the pressure vessel; and (d) a liner disposed within any of the inlet conduit, the outlet conduit, and the interior surface of the gas manifold.

Carolan, Michael Francis (Allentown, PA); Miller, Christopher Francis (Macungie, PA)

2010-08-10T23:59:59.000Z

143

Lithium Metal Oxide Electrodes For Lithium Cells And Batteries  

DOE Patents [OSTI]

A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0ion with an average trivalent oxidation state and with at least one ion being Mn or Ni, and where M' is one or more ion with an average tetravalent oxidation state. Complete cells or batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Downers Grove, IL); Kim, Jaekook (Naperville, IL)

2004-01-20T23:59:59.000Z

144

Lithium metal oxide electrodes for lithium cells and batteries  

DOE Patents [OSTI]

A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2M'O.sub.3 in which 0ion with an average trivalent oxidation state and with at least one ion being Mn or Ni, and where M' is one or more ion with an average tetravalent oxidation state. Complete cells or batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Oakbrook, IL)

2008-12-23T23:59:59.000Z

145

CONTROL-ORIENTED MODELING OF A SOLID-OXIDE FUEL CELL STACK USING AN LPV MODEL STRUCTURE  

E-Print Network [OSTI]

CONTROL-ORIENTED MODELING OF A SOLID-OXIDE FUEL CELL STACK USING AN LPV MODEL STRUCTURE Borhan M dynamic model of a solid oxide fuel cell stack. Using a detailed physical model as a starting point, we (usually air) on the cathode side. Solid-oxide fuel cells (SOFCs) utilize a ceramic oxygen-ion conducting

Sanandaji, Borhan M.

146

Experimental Findings On Minor Actinide And Lanthanide Separations Using Ion Exchange  

SciTech Connect (OSTI)

This project seeks to determine if inorganic or hybrid inorganic ion-exchange materials can be exploited to provide effective americium and curium separations. Specifically, we seek to understand the fundamental structural and chemical factors responsible for the selectivity of the tested ion-exchange materials for actinide and lanthanide ions. During FY13, experimental work focused in the following areas: (1) investigating methods to oxidize americium in dilute nitric acid with subsequent ion-exchange performance measurements of ion exchangers with the oxidized americium and (2) synthesis, characterization and testing of ion-exchange materials. Ion-exchange materials tested included alkali titanates, alkali titanosilicates, carbon nanotubes and group(IV) metal phosphonates. Americium oxidation testing sought to determine the influence that other redox active components may have on the oxidation of Am(III). Experimental findings indicated that Pu(IV) is oxidized to Pu(VI) by peroxydisulfate, but there are no indications that the presence of plutonium affects the rate or extent of americium oxidation at the concentrations of peroxydisulfate being used. Tests also explored the influence of nitrite on the oxidation of Am(III). Given the formation of Am(V) and Am(VI) in the presence of nitrite, it appears that nitrite is not a strong deterrent to the oxidation of Am(III), but may be limiting Am(VI) by quickly reducing Am(VI) to Am(V). Interestingly, additional absorbance peaks were observed in the UV-Vis spectra at 524 and 544 nm in both nitric acid and perchloric acid solutions when the peroxydisulfate was added as a solution. These peaks have not been previously observed and do not correspond to the expected peak locations for oxidized americium in solution. Additional studies are in progress to identify these unknown peaks. Three titanosilicate ion exchangers were synthesized using a microwave-accelerated reaction system (MARS?) and determined to have high affinities for lanthanide ions in dilute nitric acid. The K-TSP ion exchanger exhibited the highest affinity for lanthanides in dilute nitric acid solutions. The Ge-TSP ion exchanger shows promise as a material with high affinity, but additional tests are needed to confirm the preliminary results. On the other hand, carbon nanotubes and nitrogen-doped carbon nanotubes exhibited low, but measureable affinities for lanthanide ions in dilute nitric acid solutions (pH 3 and 6). The MWCNT exhibited much lower affinities than the K-TSP in dilute nitric acid solutions. However, the MWCNT are much more chemically stable in concentrated nitric acid solutions and, therefore, may be candidates for ion exchange in more concentrated nitric acid solutions.

Hobbs, D. T.; Shehee, T. C.; Clearfield, A.

2013-09-17T23:59:59.000Z

147

Single Ion Implantation  

ScienceCinema (OSTI)

On the equipment needed to implant ions in silicon and other materials. More information: http://newscenter.lbl.gov/f...

Thomas Schenkel

2010-01-08T23:59:59.000Z

148

Ion Surface Engineering  

E-Print Network [OSTI]

Ion Surface Engineering Southwest Research Institute® San Antonio, Texas surfaceengineering.swri.com #12;he ion surface engineering program at Southwest Research Institute (SwRI® ) is dedicated, and the Defense Advanced Research Projects Agency. SwRI's ion surface engineering activities include: s Thin

Chapman, Clark R.

149

The effect of Mn on the oxidation behavior and electrical conductivity of Fe–17Cr alloys in solid oxide fuel cell cathode atmosphere  

Science Journals Connector (OSTI)

Four Fe–17Cr alloys with various Mn contents between 0.0 and 3.0 wt.% are prepared for investigation of the effect of Mn content on the oxidation behavior and electrical conductivity of the Fe–Cr alloys for the application of metallic interconnects in solid oxide fuel cells (SOFCs). During the initial oxidation stage (within 1 min) at 750 °C in air, Cr is preferentially oxidized to form a layer of Cr2O3 type oxide in all the alloys, regardless the Mn content, with similar oxidation rate and oxide morphology. The subsequent oxidation of the Mn containing alloys is accelerated caused by the fast outward diffusion of Mn ions across the Cr2O3 type oxide layer to form Mn-rich (Mn, Cr)3O4 and Mn2O3 oxides on the top. After 700 h oxidation a multi-layered oxide scale is observed in the Mn containing alloys, which corresponds to a multi-stage oxidation kinetics in the alloys containing 0.5 and 1.0 wt.% of Mn. The oxidation rate and ASR of the oxide scale increase with the Mn content in the alloy changes from 0.0 to 3.0 wt.%. For the application of metallic interconnects in SOFCs, Mn-free Fe–17Cr alloy with conducting Cr free spinel coatings is preferred.

Bin Hua; Yonghong Kong; Wenying Zhang; Jian Pu; Bo Chi; Li Jian

2011-01-01T23:59:59.000Z

150

Oxidation of propylene over copper oxide catalysts  

E-Print Network [OSTI]

to the study of propylene oxidation. Dunlop (17) reported that small quantities of iron compounds substantially enhanced the catalytic activity of chromia-alumina catalysts with respect to propylene oxidation, Woodharn (72) has suggested that under... between 360 C and 430oC the rate of propane oxidation decreases as the teznperature is increased, and the rate of conversion to olefins, especially propylene, becomes progressively greater. Above 430 C the proportion of propane converted to ethylene in...

Billingsley, David Stuart

2012-06-07T23:59:59.000Z

151

Ion Sources - Cyclotron  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sources Sources The 88-Inch Cyclotron is fed by three Electron Cyclotron Resonance (ECR) high-charge-state ion sources, the ECR, the AECR, and VENUS, currently the most powerful ECR ion source in the world. Built to answer the demand for intense heavy ion beams, these high performance ion sources enable the 88-Inch Cyclotron to accelerate beams of ions from hydrogen to uranium. The ECR ion sources allow the efficient use of rare isotopes of stable elements, either from natural or enriched sources. A variety of metallic ion beams are routinely produced in our low temperature oven (up to 600°C) and our high temperature oven (up to 2100°C). Furthermore, the ability to produce "cocktails" (mixtures of beams) for the Berkeley Accelerator Space Effects (BASE) Facility adds tremendously to the flexibility of the 88-Inch Cyclotron.

152

Crater formation by single ions, cluster ions and ion "showers"  

E-Print Network [OSTI]

The various craters formed by giant objects, macroscopic collisions and nanoscale impacts exhibit an intriguing resemblance in shapes. At the same time, the arc plasma built up in the presence of sufficiently high electric fields at close look causes very similar damage on the surfaces. Although the plasma–wall interaction is far from a single heavy ion impact over dense metal surfaces or the one of a cluster ion, the craters seen on metal surfaces after a plasma discharge make it possible to link this event to the known mechanisms of the crater formations. During the plasma discharge in a high electric field the surface is subject to high fluxes (~1025 cm-2s-1) of ions with roughly equal energies typically of the order of a few keV. To simulate such a process it is possible to use a cloud of ions of the same energy. In the present work we follow the effect of such a flux of ions impinging the surface in the ‘‘shower’’ manner, to find the transition between the different mechanisms of crater formati...

Djurabekova, Flyura; Timko, Helga; Nordlund, Kai; Calatroni, Sergio; Taborelli, Mauro; Wuensch, Walter

2011-01-01T23:59:59.000Z

153

Ion exchange resins. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning preparation, regeneration, and applications of ion exchange resins. Applications include water and waste treatment; food processing; chemical recovery, separation, purification, and catalysis; desalination; and ore treatment and recovery. Methods are included for the processing of spent ion exchange resins and for protecting ion exchange resins from oxidation and chemical degradation. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1994-04-01T23:59:59.000Z

154

Lithium metal oxide electrodes for lithium cells and batteries  

DOE Patents [OSTI]

A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0ion with at least one ion being Mn or Ni, and where M' is one or more tetravalent ion. Complete cells or batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Downers Grove, IL); Kim, Jaekook (Naperville, IL)

2004-01-13T23:59:59.000Z

155

Total oxidation of carbon monoxide and methane over transition metal-fluorite oxide composite catalysts. I. Catalyst composition and activity  

SciTech Connect (OSTI)

A novel metal oxide composite catalyst for the total oxidation of carbon monoxide and methane was prepared by combining fluorite oxides with active transition metals. The fluorite oxides, such as ceria and zirconia, are oxygen-ion-conducting materials having catalytic properties usually at high temperatures. Active base metal catalysts, such as copper, were used as additives to promote the catalytic properties of these oxides. The contact of the two types of materials gave rise to a high active oxidation catalyst. At a space velocity of about 42,000 h{sup {minus}1}, complete carbon monoxide oxidation in air occurred at room temperature on the Au{sub 0.05}[Ce(La)]{sub 0.95}L{sub x} catalyst and at ca. 100{degrees}C on Cu-Ce-O composite catalysts. At the same space velocity, total oxidation of methane on the Cu-Ce-O catalyst doped with La{sub 2}O{sub 3} or SrO took place at ca. 550{degrees}C. The specific carbon monoxide oxidation activity of the Cu-Ce-O catalyst was several orders of magnitude higher than that of conventional copper-based catalysts and comparable or superior to platinum catalysts. This type of composite catalyst also showed excellent resistance to water vapor poisoning. The enhanced catalyst activity and stability resulted from strong interaction of the transition metal and fluorite oxide materials. 44 refs., 14 figs., 5 tabs.

Liu, W.; Flytzani-Stephanopoulos, F. [Tufts Univ., Medford, MA (United States)] [Tufts Univ., Medford, MA (United States)

1995-05-01T23:59:59.000Z

156

Cluster ion formation during sputtering processes: a complementary investigation by ToF-SIMS and plasma ion mass spectrometry  

Science Journals Connector (OSTI)

Plasma ion mass spectrometry using a plasma process monitor (PPM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) have been complementarily employed to investigate the sputtering and ion formation processes of Al-doped zinc oxide. By comparing the mass spectra, insights on ion formation and relative cross-sections have been obtained: positive ions as measured during magnetron sputtering by PPM are originating from the plasma while those in SIMS start at the surface leading to large differences in the mass spectra. In contrast, negative ions originating at the surface will be accelerated through the plasma sheath. They arrive at the PPM after traversing the plasma nearly collisionless as seen from the rather similar spectra. Hence, it is possible to combine the high mass resolution of ToF-SIMS to obtain insight for separating cluster ions, e.g. Znx and ZnOy, and the energy resolution of PPM to find fragmentation patterns for negative ions. While the ion formation processes during both experiments can be assumed to be similar, differences may arise due to the lower volume probed by SIMS. In the latter case, there is a chance of small target inhomogeneities being able to be enhanced and lower surface temperatures leading to less outgassing and, thus, retention of volatile compounds.

T Welzel; S Mändl; K Ellmer

2014-01-01T23:59:59.000Z

157

Modified cermet fuel electrodes for solid oxide electrochemical cells  

DOE Patents [OSTI]

An exterior porous electrode (10), bonded to a solid oxygen ion conducting electrolyte (13) which is in contact with an interior electrode (14), contains coarse metal particles (12) of nickel and/or cobalt, having diameters from 3 micrometers to 35 micrometers, where the coarse particles are coated with a separate, porous, multiphase layer (17) containing fine metal particles of nickel and/or cobalt (18), having diameters from 0.05 micrometers to 1.75 micrometers and conductive oxide (19) selected from cerium oxide, doped cerium oxide, strontium titanate, doped strontium titanate and mixtures thereof.

Ruka, Roswell J. (Churchill Boro, PA); Spengler, Charles J. (Murrysville, PA)

1991-01-01T23:59:59.000Z

158

Solid Oxide Fuel Cells  

Science Journals Connector (OSTI)

A Solid Oxide Fuel Cell (SOFC) is typically composed of two porous electrodes, interposed between an electrolyte made of a particular solid oxide ceramic material. The system originates from the work of Nernst...

Nigel M. Sammes; Roberto Bove; Jakub Pusz

2006-01-01T23:59:59.000Z

159

Ion photon emission microscope  

DOE Patents [OSTI]

An ion beam analysis system that creates microscopic multidimensional image maps of the effects of high energy ions from an unfocussed source upon a sample by correlating the exact entry point of an ion into a sample by projection imaging of the ion-induced photons emitted at that point with a signal from a detector that measures the interaction of that ion within the sample. The emitted photons are collected in the lens system of a conventional optical microscope, and projected on the image plane of a high resolution single photon position sensitive detector. Position signals from this photon detector are then correlated in time with electrical effects, including the malfunction of digital circuits, detected within the sample that were caused by the individual ion that created these photons initially.

Doyle, Barney L. (Albuquerque, NM)

2003-04-22T23:59:59.000Z

160

Ion Beam Materials Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities » Facilities » Ion Beam Materials Lab Ion Beam Materials Lab A new research frontier awaits! Our door is open and we thrive on mutually beneficial partnerships, collaborations that drive innovations and new technologies. April 12, 2012 Ion Beam Danfysik Implanter High Voltage Terminal. Contact Yongqiang Wang (505) 665-1596 Email Devoted to the characterization and modification of surfaces through the use of ion beams The Ion Beam Materials Laboratory (IBML) is a Los Alamos National Laboratory resource devoted to the characterization and modification of surfaces through the use of ion beams. The IBML provides and operates the core facilities, while supporting the design and implementation of specific apparati needed for experiments requested by users of the facility. The result is a facility with

Note: This page contains sample records for the topic "ions miec oxides" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Collection of ions  

DOE Patents [OSTI]

The apparatus and method provide an improved technique for detecting ions as the area from which ions are attracted to a detector is increased, consequently increasing the number of ions detected. This is achieved by providing the outer electrodes of the detector connected to the electrical potential, together with alternate intermediate electrodes. The other intermediate electrodes and preferably the housing are grounded. The technique renders such detection techniques more sensitive and gives them a lower threshold at which they can function.

Orr, Christopher Henry (Calderbridge, GB); Luff, Craig Janson (Calderbridge, GB); Dockray, Thomas (Calderbridge, GB); Macarthur, Duncan Whittemore (Los Alamos, NM); Bounds, John Alan (Los Alamos, NM); Koster, James E. (Los Alamos, NM)

2001-01-01T23:59:59.000Z

162

Niobium oxide compositions and methods for using same  

DOE Patents [OSTI]

The disclosure relates a niobium oxide useful in anodes of secondary lithium ion batteries. Such niobium oxide has formula Li.sub.xM.sub.1-yNb.sub.yNb.sub.2O.sub.7, wherein 0.ltoreq.x.ltoreq.3, 0.ltoreq.y.ltoreq.1, and M represents Ti or Zr. The niobium oxide may be in the form of particles, which may be carbon coated. The disclosure also relates to an electrode composition containing at least one or more niobium oxides of formula Li.sub.xM.sub.1-yNb.sub.yNb.sub.2O.sub.7. The disclosure further relates to electrodes, such as anodes, and batteries containing at least one or more niobium oxides of formula Li.sub.xM.sub.1-yNb.sub.yNb.sub.2O.sub.7. Furthermore, the disclosure relates to methods of forming the above.

Goodenough, John B; Han, Jian-Tao

2014-02-11T23:59:59.000Z

163

Helium Ion Microscope | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

other characterization capabilities. User Portal Name: Helium Ion Microscope Instrument ID: 34104 Availability: 10 hours a day, 5 days a week Facility: Quiet Wing Quick Specs...

164

EMSL - ion microprobe  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

microprobe en Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. http:www.emsl.pnl.govemslwebpublicationsmagnesium-behavior-and-structural-defects...

165

Ion current interface.  

E-Print Network [OSTI]

?? Abstract Abstract The reason to measure the ion current in a combustion engine is to extract combustion parameters in order to achieve closed loop… (more)

Johansson, Morgan

2005-01-01T23:59:59.000Z

166

Heavy Ion Event Displays  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The following images below depict real and simulated collisions of lead ions in the LHC experiments. Additional photos, video and information are available at these links:...

167

Oxidation State Specific Detection of Transuranic Ions in Solution  

Science Journals Connector (OSTI)

Technical Paper / Argonne National Laboratory Specialists’ Workshop on Basic Research Needs for Nuclear Waste Management / Fuel Cycle

James V. Beitz; Jan P. Hessler

168

Enhanced Oxide Ion Conductivity in Stabilized ?-Bi2O3  

Science Journals Connector (OSTI)

Studies by Battle et al.17 and Boyapati et al.19 suggested that in doped ?-Bi2O3 structures, the cations may shift from the 4a site to a 24e (x,0,0) site and a small amount of oxygen may occupy a second interstitial site, 48i, (1/2,x,x). ... The 32f oxygen interstitial sites (x,x,x) with x ? 0.37 are significantly closer to the vacant octahedral site in the center of the unit cell and, in fact, are approximately midway between the 8c (1/4,1/4,1/4) site and the (1/2,1/2,1/2) site. ...

Rita Punn; Antonio M. Feteira; Derek C. Sinclair; Colin Greaves

2006-11-09T23:59:59.000Z

169

High Current Ion Sources and Injectors for Heavy Ion Fusion  

E-Print Network [OSTI]

on Heavy Ion Inertial Fusion; Fusion Engineering and Design,Ion Inertial Fusion, Princeton, New Jersey, Sept. 6-9, 1995; in Fusion EngineeringIon Inertial Fusion, Princeton, New Jersey, Sept. 6-9, 1995; in Fusion Engineering

Kwan, Joe W.

2005-01-01T23:59:59.000Z

170

Negative ion detachment processes  

SciTech Connect (OSTI)

This paper discusses the following topics: H{sup {minus}} and D{sup {minus}} collisions with atomic hydrogen; collisional decomposition of SF{sub 6}{sup {minus}}; two-electron loss processes in negative ion collisions; associative electron detachment; and negative ion desorption from surfaces.

Champion, R.L.; Doverspike, L.D.

1990-10-01T23:59:59.000Z

171

Graphene-encapsulated mesoporous SnO2 composites as high performance anodes for lithium-ion batteries  

Science Journals Connector (OSTI)

Mesoporous metal oxides such as SnO2...exhibit a superior electrochemical performance as anode materials for lithium-ion batteries due to their large surface areas and ... collapse during the charge–discharge pro...

Shuhua Jiang; Wenbo Yue; Ziqi Gao; Yu Ren; Hui Ma…

2013-05-01T23:59:59.000Z

172

TiO2 nanoparticles on nitrogen-doped graphene as anode material for lithium ion batteries  

Science Journals Connector (OSTI)

Anatase TiO2...nanoparticles in situ grown on nitrogen-doped, reduced graphene oxide (rGO) have been successfully synthesized ... as an anode material for the lithium ion battery. The nanosized TiO2 particles wer...

Dan Li; Dongqi Shi; Zongwen Liu; Huakun Liu…

2013-04-01T23:59:59.000Z

173

Lithium Ion Accomplishments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lithium ion Battery Commercialization Lithium ion Battery Commercialization Johnson Controls-Saft Advanced Power Solutions, of Milwaukee, Wisconsin: Johnson Controls-Saft (JCS) will supply lithium-ion batteries to Mercedes for their S Class Hybrid to be introduced in October 2009. Technology developed with DOE support (the VL6P cell) will be used in the S Class battery. In May 2006, the Johnson Controls-Saft Joint Venture was awarded a 24 month $14.4 million contract by the DOE/USABC to develop a 40kW Li ion HEV battery system offering improved safety, low temperature performance, and cost. JCS has reported a 40% cost reduction of the 40kW system being developed in their DOE/USABC contract while maintaining performance. Lithium Ion Battery Material Commercialization Argonne National Laboratory has licensed cathode materials and associated processing

174

Ion mobility sensor system  

DOE Patents [OSTI]

An ion mobility sensor system including an ion mobility spectrometer and a differential mobility spectrometer coupled to the ion mobility spectrometer. The ion mobility spectrometer has a first chamber having first end and a second end extending along a first direction, and a first electrode system that generates a constant electric field parallel to the first direction. The differential mobility spectrometer includes a second chamber having a third end and a fourth end configured such that a fluid may flow in a second direction from the third end to the fourth end, and a second electrode system that generates an asymmetric electric field within an interior of the second chamber. Additionally, the ion mobility spectrometer and the differential mobility spectrometer form an interface region. Also, the first end and the third end are positioned facing one another so that the constant electric field enters the third end and overlaps the fluid flowing in the second direction.

Xu, Jun; Watson, David B.; Whitten, William B.

2013-01-22T23:59:59.000Z

175

Comparison of the Catalytic Oxidation Reaction on Graphene Oxide and Reduced Graphene Oxide  

E-Print Network [OSTI]

Comparison of the Catalytic Oxidation Reaction on Graphene Oxide and Reduced Graphene Oxide Laboratory (PAL), Pohang 790-784, Republic of Korea ABSTRACT: The capacities of graphene oxide (GO) and reduced graphene oxide (rGO) films grown on silicon substrate to cause the aniline to azobenzene oxidation

Kim, Sehun

176

Secondary ion coincidence in highly charged ion based secondary ion mass spectroscopy for process characterization  

SciTech Connect (OSTI)

Coincidence counting in highly charged ion based secondary ion mass spectroscopy has been applied to the characterization of selective tungsten deposition via disilane reduction of tungsten hexafluoride on a patterned SiO{sub 2}/Si wafer. The high secondary ion yield and the secondary ion emission from a small area produced by highly charged ions make the coincidence technique very powerful.

Hamza, A.V.; Schenkel, T.; Barnes, A.V.; Schneider, D.H. [Lawrence Livermore National Laboratory, University of California, Livermore, California, 94551 (United States)] [Lawrence Livermore National Laboratory, University of California, Livermore, California, 94551 (United States)

1999-01-01T23:59:59.000Z

177

Oxidation Resistant Graphite Studies  

SciTech Connect (OSTI)

The Very High Temperature Reactor (VHTR) Graphite Research and Development Program is investigating doped nuclear graphite grades exhibiting oxidation resistance. During a oxygen ingress accident the oxidation rates of the high temperature graphite core region would be extremely high resulting in significant structural damage to the core. Reducing the oxidation rate of the graphite core material would reduce the structural effects and keep the core integrity intact during any air-ingress accident. Oxidation testing of graphite doped with oxidation resistant material is being conducted to determine the extent of oxidation rate reduction. Nuclear grade graphite doped with varying levels of Boron-Carbide (B4C) was oxidized in air at nominal 740°C at 10/90% (air/He) and 100% air. The oxidation rates of the boronated and unboronated graphite grade were compared. With increasing boron-carbide content (up to 6 vol%) the oxidation rate was observed to have a 20 fold reduction from unboronated graphite. Visual inspection and uniformity of oxidation across the surface of the specimens were conducted. Future work to determine the remaining mechanical strength as well as graphite grades with SiC doped material are discussed.

W. Windes; R. Smith

2014-07-01T23:59:59.000Z

178

TVDG Ion Species  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Most Commonly Used Ions Most Commonly Used Ions Many other ions can be produced if required. Due to the number of available ions we have to know, in advance, what ions and LETs you plan to use. Please use the Time Request fill-in form to let us know which ions you will be using. In addition to the maximum energies, ranges and corresponding LETs listed below, lower energies are available for each ion. Charts for range and LET values as a function of energy can be seen by clicking on the links in the LET columns. Flux can be in the range of 1 particle/cm2/sec to greater than 1 · 106 particles/cm2/sec. In Silicon High LET Summary Low LET Summary In GaAs High LET Summary Low LET Summary How To Use The Charts Below Mass Max Energy Surface LET Range Surface LET Range Z Symbol AMU MeV MeV

179

Optical pumping of ions  

Science Journals Connector (OSTI)

Radiofrequency spectroscopy has been extended to positive ions with S ground states by means of optical pumping. The ions are stored in buffer gases or ion traps and are polarized directly by optical pumping or indirectly by spin exchange, change exchange, or Penning ionization with optically pumped atoms. The applied methods are described. The experiments can be divided into two categories: Collisional interactions of the polarized ions are investigated, like the exchange processes mentioned above, spin exchange with free electrons, spin depolarization and hyperfine density shifts in rare gases. For the two latter effects drastic differences are observed between atomic and ionic 2S12 states the explanations of which reveal the influence of the ionic charge on the interactions. The comparison of equivalent processes involving isoelectronic 2S or 2P configurations of atoms and ions provides a test of current collision theories. Precision rf spectroscopy of ionic ground states yields the 2S12 hyperfine structure splittings of 3He+ and group II ions with relative accuracies of up to 10?9, with further improvement possible. Direct and indirect optical pumping of 1S0 ions is used to determine nuclear magnetic moments, diamagnetic shielding coefficients, and chemical shifts. Applications and further developments of the present methods are discussed.

E.W. Weber

1977-01-01T23:59:59.000Z

180

Relating to ion detection  

DOE Patents [OSTI]

The apparatus and method provide a technique for improving detection of alpha and/or beta emitting sources on items or in locations using indirect means. The emission forms generate ions in a medium surrounding the item or location and the medium is then moved to a detecting location where the ions are discharged to give a measure of the emission levels. To increase the level of ions generated and render the system particularly applicable for narrow pipes and other forms of conduits, the medium pressure is increased above atmospheric pressure. STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

Orr, Christopher Henry (Calderbridge, GB); Luff, Craig Janson (Calderbridge, GB); Dockray, Thomas (Calderbridge, GB); Macarthur, Duncan Whittemore (Los Alamos, NM)

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ions miec oxides" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

METAL OXIDE NANOPARTICLES  

SciTech Connect (OSTI)

This chapter covers the fundamental science, synthesis, characterization, physicochemical properties and applications of oxide nanomaterials. Explains fundamental aspects that determine the growth and behavior of these systems, briefly examines synthetic procedures using bottom-up and top-down fabrication technologies, discusses the sophisticated experimental techniques and state of the art theory results used to characterize the physico-chemical properties of oxide solids and describe the current knowledge concerning key oxide materials with important technological applications.

FERNANDEZ-GARCIA,M.; RODGRIGUEZ, J.A.

2007-10-01T23:59:59.000Z

182

Stress dependent oxidation of sputtered niobium and effects on superconductivity  

SciTech Connect (OSTI)

We report on the suppression of room temperature oxidation of DC sputtered niobium films and the effects upon the superconductive transition temperature, T{sub c}. Niobium was sputter-deposited on silicon dioxide coated 150?mm wafers and permitted to oxidize at room temperature and pressure for up to two years. Resistivity and stress measurements indicate that tensile films greater than 400?MPa resist bulk oxidation with measurements using transmission electron microscope, electron dispersive X-ray spectroscopy, x-ray photoelectric spectroscopy, and secondary ion mass spectrometry confirming this result. Although a surface oxide, Nb{sub 2}O{sub 5}, consumed the top 6–10?nm, we measure less than 1 at. % oxygen and nitrogen in the bulk of the films after the oxidation period. T{sub c} measurements using a SQUID magnetometer indicate that the tensile films maintained a T{sub c} approaching the dirty superconductive limit of 8.4?K after two years of oxidation while maintaining room temperature sheet resistance. This work demonstrates that control over niobium film stress during deposition can prevent bulk oxidation by limiting the vertical grain boundaries ability to oxidize, prolonging the superconductive properties of sputtered niobium when exposed to atmosphere.

David Henry, M., E-mail: mdhenry@sandia.gov; Wolfley, Steve; Monson, Todd; Clark, Blythe G.; Shaner, Eric; Jarecki, Robert [Sandia National Labs, MESA Fabrication Facility PO Box 5800 MS 1084, Albuquerque, New Mexico 87185-1084 (United States)

2014-02-28T23:59:59.000Z

183

Transformation of carbon monoxide dimer surface structures on yttrium oxide modified by silver  

SciTech Connect (OSTI)

It has been established that introducing ions of silver(II) in yttrium(III) oxide leads to the formation of a significant concentration of a paramagnetic dimer species (CO)/sub 2/-in the course of the adsorption of carbon monoxide, and that these dimers exhibit high thermal stability and reactivity. Reactions are proposed for the formation of the dimer species (CO)/sub 2//sup 2 -/ and (CO)/sub 2//sup -/ on the surface of the Ag/Y/sub 2/O/sub 3/ catalyst that involve the reduction of the anion vacancies and a change in the oxidation state of the silver ions. Modifying the yttrium oxide with ionic silver leads to a marked decrease in the strength of the oxidative ability of the surface of the catalyst for CO, while the nature of the active sites of the yttrium oxide, which adsorbs CO in three forms, remains unchanged.

Vydrin, S.N.; Bobolev, A.V.; Loginov, A.Yu.

1987-09-10T23:59:59.000Z

184

Recent developments in zinc oxide target chemistry  

SciTech Connect (OSTI)

Zinc oxide targets irradiated with high energy protons at the Los Alamos Meson Physics Facility (LAMPF) contain a number of radioactive spallation products in quantities large enough to warrant recovery. This paper describes methods for recovering {sup 7}Be, {sup 46}Sc, and {sup 48}V from such targets and offers suggestions on possible ways to recover additional isotopes. The proposed methods are based on traditional precipitation and ion exchange techniques, are readily adaptable to hot cell use, and produce no hazardous waste components. The products are obtained in moderate to high yields and have excellent radiopurity.

Heaton, R.C.; Taylor, W.A.; Phillips, D.R.; Jamriska, D.J. Sr.; Garcia, J.B.

1994-04-01T23:59:59.000Z

185

HEAVY ION INERTIAL FUSION  

E-Print Network [OSTI]

Accelerators as Drivers for Inertially Confined Fusion, W.B.LBL-9332/SLAC-22l (1979) Fusion Driven by Heavy Ion Beams,OF CALIFORNIA f Accelerator & Fusion Research Division

Keefe, D.

2008-01-01T23:59:59.000Z

186

Focused ion beam system  

DOE Patents [OSTI]

A focused ion beam (FIB) system produces a final beam spot size down to 0.1 {mu}m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 m or less. 13 figs.

Leung, K.; Gough, R.A.; Ji, Q.; Lee, Y.Y.

1999-08-31T23:59:59.000Z

187

Ion Channels as Devices  

Science Journals Connector (OSTI)

Ion channels are proteins with a hole down ... biological function. Channels are devices in the engineering sense of the word and engineering analysis helps understand their function. In particular ... The curren...

Bob Eisenberg

2003-12-01T23:59:59.000Z

188

Ion manipulation device  

DOE Patents [OSTI]

An ion manipulation method and device is disclosed. The device includes a pair of substantially parallel surfaces. An array of inner electrodes is contained within, and extends substantially along the length of, each parallel surface. The device includes a first outer array of electrodes and a second outer array of electrodes. Each outer array of electrodes is positioned on either side of the inner electrodes, and is contained within and extends substantially along the length of each parallel surface. A DC voltage is applied to the first and second outer array of electrodes. A RF voltage, with a superimposed electric field, is applied to the inner electrodes by applying the DC voltages to each electrode. Ions either move between the parallel surfaces within an ion confinement area or along paths in the direction of the electric field, or can be trapped in the ion confinement area.

Anderson, Gordon A; Smith, Richard D; Ibrahim, Yehia M; Baker, Erin M

2014-09-16T23:59:59.000Z

189

Ion electric propulsion unit  

DOE Patents [OSTI]

An electron cyclotron resonance (ECR) thruster is disclosed having a plasma chamber which is electrically biased with a positive voltage. The chamber bias serves to efficiently accelerate and expel the positive ions from the chamber. Electrons follow the exiting ions, serving to provide an electrically neutral exhaust plume. In a further embodiment, a downstream shaping magnetic field serves to further accelerate and/or shape the exhaust plume.

Light, Max E; Colestock, Patrick L

2014-01-28T23:59:59.000Z

190

The Mechanical and Tribological Properties or Ion Implanted Ceramics  

E-Print Network [OSTI]

by Wei et al (1987a. b) has shown that ion beam mixing of some ceramic discs with Ti, Ni or Co can result in reduced coefficients of friction at 800°C in a simulated diesel exhaust environment. 1.1.3 Oxidation and Corrosion Surface films have long... the nuclear cross section will begin to dominate, the probability of scattering increases, and the ion will lose more of its energy in elastic atomic collisions. The collisions may result in "knock-on" of the target atoms, a process which requires...

Bull, Stephen John

1988-06-17T23:59:59.000Z

191

An embryo of protocell membrane: The capsule of graphene oxide  

E-Print Network [OSTI]

Many signs indicate that the graphene could widely occur on the early Earth. Here, we report a new theory that graphene might be an embryo of protocell membrane, and found several evidences. Firstly, the graphene oxide and phospholipid-graphene oxide composite would curl into capsules in strongly acidic saturated solution of Pb(NO3)2 at low temperature, providing a protective space for biochemical reactions. Secondly, L-animi acids exhibit higher reactivity than D-animi acids for graphene oxides in favor of the formation of left-handed proteins. Thirdly, monolayer graphene with nanopores prepared by unfocused 84Kr25+ has high selectivity for permeation of the monovalent metal ions (Rb+ > K+ > Cs+ > Na+ > Li+), but does not allow Cl- through, which could be attributed to the ion exchange of oxygen-containing groups on the rim of nanopores. It is similar to K+ channels, which would cause efflux of some ions from capsule of graphene oxides with the decrease of pH in the primitive ocean, creating a suitable inner...

Li, Zhan; Tian, Longlong; Bai, Jing; Zhao, Yang; Zhang, Xin; Cao, Shiwei; Qi, Wei; Qiu, Hongdeng; Wang, Suomin; Shi, Keliang; Xu, Youwen; Mingliang, Zhang; Liu, Bo; Yao, Huijun; Liu, Jie; Wu, Wangsuo; Wang, Xiaoli

2014-01-01T23:59:59.000Z

192

An embryo of protocell membrane: The capsule of graphene oxide  

E-Print Network [OSTI]

Many signs indicate that the graphene could widely occur on the early Earth. Here, we report a new theory that graphene might be an embryo of protocell membrane, and found several evidences. Firstly, the graphene oxide and phospholipid-graphene oxide composite would curl into capsules in strongly acidic saturated solution of Pb(NO3)2 at low temperature, providing a protective space for biochemical reactions. Secondly, L-animi acids exhibit higher reactivity than D-animi acids for graphene oxides in favor of the formation of left-handed proteins. Thirdly, monolayer graphene with nanopores prepared by unfocused 84Kr25+ has high selectivity for permeation of the monovalent metal ions (Rb+ > K+ > Cs+ > Na+ > Li+), but does not allow Cl- through, which could be attributed to the ion exchange of oxygen-containing groups on the rim of nanopores. It is similar to K+ channels, which would cause efflux of some ions from capsule of graphene oxides with the decrease of pH in the primitive ocean, creating a suitable inner condition for the origin of life. Consequently, the strongly acidic, high salinity and strong radiation as well as temperature changes in the early Earth, regarded as negative factors, would be indispensable for the origin of protocell. In short, graphene bred life, but digested gradually by the evolution.

Zhan Li; Chunmei Wang; Longlong Tian; Jing Bai; Yang Zhao; Xin Zhang; Shiwei Cao; Wei Qi; Hongdeng Qiu; Suomin Wang; Keliang Shi; Youwen Xu; Zhang Mingliang; Bo Liu; Huijun Yao; Jie Liu; Wangsuo Wu; Xiaoli Wang

2014-11-07T23:59:59.000Z

193

Stabilized chromium oxide film  

DOE Patents [OSTI]

Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150.ANG. are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

Garwin, Edward L. (Los Altos, CA); Nyaiesh, Ali R. (Palo Alto, CA)

1988-01-01T23:59:59.000Z

194

Stabilized chromium oxide film  

DOE Patents [OSTI]

Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150A are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

Nyaiesh, A.R.; Garwin, E.L.

1986-08-04T23:59:59.000Z

195

Ethylene Oxide Explosions  

Science Journals Connector (OSTI)

... THE occasional occurrence of ethylene oxide explosions during the fumigation of dried fruit has led us to undertake a detailed ... yielded results somewhat like those for acetaldehyde1,2.. Cool flames can be initiated in ethylene oxide – air mixtures in the neighbourhood of 330° C. at atmospheric pressure. ...

J. H. BURGOYNE; F. A. BURDEN

1948-07-31T23:59:59.000Z

196

Co3O4/Carbon Aerogel Hybrids as Anode Materials for Lithium-Ion Batteries with Enhanced Electrochemical Properties  

Science Journals Connector (OSTI)

Co3O4/Carbon Aerogel Hybrids as Anode Materials for Lithium-Ion Batteries with Enhanced Electrochemical Properties ... A facile hydrothermal and sol–gel polymerization route was developed for large-scale fabrication of well-designed Co3O4 nanoparticles anchored carbon aerogel (CA) architecture hybrids as anode materials for lithium-ion batteries with improved electrochemical properties. ... carbon aerogel; oxide; hybrid; mesoporous structure; lithium-ion battery ...

Fengbin Hao; Zhiwei Zhang; Longwei Yin

2013-08-08T23:59:59.000Z

197

Ion optics of RHIC EBIS  

SciTech Connect (OSTI)

RHIC EBIS has been commissioned to operate as a versatile ion source on RHIC injection facility supplying ion species from He to Au for Booster. Except for light gaseous elements RHIC EBIS employs ion injection from several external primary ion sources. With electrostatic optics fast switching from one ion species to another can be done on a pulse to pulse mode. The design of an ion optical structure and the results of simulations for different ion species are presented. In the choice of optical elements special attention was paid to spherical aberrations for high-current space charge dominated ion beams. The combination of a gridded lens and a magnet lens in LEBT provides flexibility of optical control for a wide range of ion species to satisfy acceptance parameters of RFQ. The results of ion transmission measurements are presented.

Pikin, A.; Alessi, J.; Beebe, E.; Kponou, A.; Okamura, M.; Raparia, D.; Ritter, J.; Tan, Y.; Kuznetsov, G.

2011-09-10T23:59:59.000Z

198

Oxidative Degradation of Monoethanolamine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxidative Degradation of Monoethanolamine Oxidative Degradation of Monoethanolamine Susan Chi Gary T. Rochelle* (gtr@che.utexas.edu, 512-471-7230) The University of Texas at Austin Department of Chemical Engineering Austin, Texas 78712 Prepared for presentation at the First National Conference on Carbon Sequestration, Washington, DC, May 14-17, 2001 Abstract Oxidative degradation of monoethanolamine (MEA) was studied under typical absorber condition of 55°C. The rate of evolution of NH 3 , which was indicative of the overall rate of degradation, was measured continuously in a batch system sparged with air. Dissolved iron from 0.0001 mM to 1 mM yields oxidation rates from 0.37 to 2 mM/hr in MEA solutions loaded with 0.4 mole CO 2 / mole MEA. Ethylenediaminetetraacetic acid (EDTA) and N,N-bis(2- hydroxyethyl)glycine effectively decrease the rate of oxidation in the presence of iron by 40 to

199

Oxide Heterogrowth on Ion-exfoliated Thin-film Complex Oxide Substrates  

SciTech Connect (OSTI)

Fabrication of a bilayer HfO{sub 2}/single-crystal LiNbO{sub 3} film is demonstrated using deep high-energy He{sup +} implantation in a LiNbO{sub 3} wafer, followed by HfO{sub 2} atomic layer deposition, and, then, selective etching exfoliation from the bulk LiNbO{sub 3} crystal. The properties and morphology of these exfoliated bilayer films are characterized using a set of thin-film probes. Pre-exfoliation film patterning and one model application, in surface-refractive-index tuning of guided waves in a free-standing LiNbO{sub 3} film, are also demonstrated.

Gang, O.; Chen, T.-L.; Kou, A.; Ofan, A.; Gaathon, O.; Osgood Jr., R.M.; Vanamurthy, L.; Bakhru, S.; Bakhru, H.

2009-11-02T23:59:59.000Z

200

Heavy Ions - Cyclotron  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Heavy Ions Heavy Ions Heavy ions used at the BASE Facility are accelerated in the form of "cocktails," named because of the fact that several heavy ions with the same mass-to-charge ratio are sent into the Cyclotron, which accelerates the ions while acting as a precision mass separator. The Control Room Operator then uses Cyclotron frequency to select only the desired ion, a process that takes about 2 minutes. We provide four standard cocktails: 4.5, 10, 16, and 30 MeV/nucleon. Depending on the cocktail, LETs from 1 to 100 MeV/(mg/cm^2) and flux levels of up to 1E7 ions/cm2-sec are available. Parts are tested in our vacuum chamber, and can be remotely positioned horizontally, vertically, or rotationally (y and z axes) with the motion table. An alignment laser is available to ensure the part is in the center of the beam. Mounting hardware is readily available. 12xBNC (F-F), 2x25-pin D (F-M or M-F), 4x40-pin flat ribbon (M-M), 4x50-pin flat ribbon (M-M), 12xSMA (F-F), and 2xEthernet vacuum feedthroughs are mounted upon request. (The 4x40-pin and 4x50-pin flat ribbon connectors are wired straight across, so you will need a F-F adapter to correct the pin numbers to normal.) Holes are provided through the cave shielding blocks for connecting additional test equipment, with a distance of approximately 10 feet from vacuum feedthrough to the top of the shielding block.

Note: This page contains sample records for the topic "ions miec oxides" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Silane discharge ion chemistry  

SciTech Connect (OSTI)

Silane dc, rf, and dc proximity discharges have been studied using mass spectroscopic measurements of the positive ions as a detailed diagnostic for the type of discharge used to produce hydrogenated amorphous silicon solar photovoltaic cells. The properties and quality of these films depends in a very complex way upon the interactions of the many reactive neutral and ion species in the discharge. Qualitative models of the ion chemical processes in these discharges have been developed from experimental measurements. Knowledge of the ion-molecule and electron-molecule collision cross sections is important to any attempt at understanding silane discharge chemistry. Consequently, the electron impact ionization cross sections for silane and disilane have been measured and for comparison purposes also for methane and ethane. In addition, the rate coefficients for charge exchange reactions of He , Ne , and Ar with silane, disilane, methane, and ethane have been measured as these are important to understanding discharges in inert gas-silane mixtures. A detailed quantitative model of the cathode sheath region of a silane dc discharge has been developed by extending the best recent calculation of the electron motion in the sheath to a self-consistent form which includes the ion motion. This model is used with comparison of silane dc discharge data to diagnose the ion chemistry occurring in the sheath region of silane dc discharge. The understanding of the discharge ion chemical processes that have been gained in this study represent an important step toward understanding the chemical and physical processes leading to film growth.

Chatham, R.H. III

1984-01-01T23:59:59.000Z

202

Radiation effects on the electrical properties of hafnium oxide based MOS capacitors.  

SciTech Connect (OSTI)

Hafnium oxide-based MOS capacitors were investigated to determine electrical property response to radiation environments. In situ capacitance versus voltage measurements were analyzed to identify voltage shifting as a result of changes to trapped charge with increasing dose of gamma, neutron, and ion radiation. In situ measurements required investigation and optimization of capacitor fabrication to include dicing, cleaning, metalization, packaging, and wire bonding. A top metal contact of 200 angstroms of titanium followed by 2800 angstroms of gold allowed for repeatable wire bonding and proper electrical response. Gamma and ion irradiations of atomic layer deposited hafnium oxide on silicon devices both resulted in a midgap voltage shift of no more than 0.2 V toward less positive voltages. This shift indicates recombination of radiation induced positive charge with negative trapped charge in the bulk oxide. Silicon ion irradiation caused interface effects in addition to oxide trap effects that resulted in a flatband voltage shift of approximately 0.6 V also toward less positive voltages. Additionally, no bias dependent voltage shifts with gamma irradiation and strong oxide capacitance room temperature annealing after ion irradiation was observed. These characteristics, in addition to the small voltage shifts observed, demonstrate the radiation hardness of hafnium oxide and its applicability for use in space systems.

Petrosky, J. C. (Air Force Institute of Technology, Wright-Patterson Air Force Base, OH); McClory, J. W. (Air Force Institute of Technology, Wright-Patterson Air Force Base, OH); Bielejec, Edward Salvador; Foster, J. C. (Air Force Institute of Technology, Wright-Patterson Air Force Base, OH)

2010-10-01T23:59:59.000Z

203

Ion temperature gradient driven turbulence with strong trapped ion resonance  

SciTech Connect (OSTI)

A theory to describe basic characterization of ion temperature gradient driven turbulence with strong trapped ion resonance is presented. The role of trapped ion granulations, clusters of trapped ions correlated by precession resonance, is the focus. Microscopically, the presence of trapped ion granulations leads to a sharp (logarithmic) divergence of two point phase space density correlation at small scales. Macroscopically, trapped ion granulations excite potential fluctuations that do not satisfy dispersion relation and so broaden frequency spectrum. The line width from emission due only to trapped ion granulations is calculated. The result shows that the line width depends on ion free energy and electron dissipation, which implies that non-adiabatic electrons are essential to recover non-trivial dynamics of trapped ion granulations. Relevant testable predictions are summarized.

Kosuga, Y., E-mail: kosuga@riam.kyushu-u.ac.jp [Institute for Advanced Study, Kyushu University, Fukuoka (Japan); Research Institute for Applied Mechanics, Kyushu University, Fukuoka (Japan); Itoh, S.-I. [Research Center for Plasma Turbulence, Kyushu University, Fukuoka (Japan); Research Institute for Applied Mechanics, Kyushu University, Fukuoka (Japan); Diamond, P. H. [CASS and CMTFO, University of California at San Diego, La Jolla, California 92093 (United States); WCI Center for Fusion Theory, National Fusion Research Institute, Daejeon (Korea, Republic of); Itoh, K. [National Institute for Fusion Science, Gifu (Japan); Research Center for Plasma Turbulence, Kyushu University, Fukuoka (Japan); Lesur, M. [Research Institute for Applied Mechanics, Kyushu University, Fukuoka (Japan)

2014-10-15T23:59:59.000Z

204

Feed gas contaminant control in ion transport membrane systems  

DOE Patents [OSTI]

Ion transport membrane oxidation system comprising an enclosure having an interior and an interior surface, inlet piping having an internal surface and adapted to introduce a heated feed gas into the interior of the enclosure, and outlet piping adapted to withdraw a product gas from the interior of the enclosure; one or more planar ion transport membrane modules disposed in the interior of the enclosure, each membrane module comprising mixed metal oxide material; and a preheater adapted to heat a feed gas to provide the heated feed gas to the inlet piping, wherein the preheater comprises an interior surface. Any of the interior surfaces of the enclosure, the inlet piping, and the preheater may be lined with a copper-containing metal lining. Alternatively, any of the interior surfaces of the inlet piping and the preheater may be lined with a copper-containing metal lining and the enclosure may comprise copper.

Carolan, Michael Francis (Allentown, PA); Minford, Eric (Laurys Station, PA); Waldron, William Emil (Whitehall, PA)

2009-07-07T23:59:59.000Z

205

Electrically switched cesium ion exchange. FY 1996 annual report  

SciTech Connect (OSTI)

An electrochemical method for metal ion separations, called Electrically Switched Ion Exchange, is described. Direct oxidation and reduction of an electroactive film attached to an electrode surface is used to load and unload the film with alkali metal cations. The electroactive films under investigation are Ni hexacyanoferrates, which are deposited on the surface by applying an anodic potential to a Ni electrode in a solution containing the ferricyanide anion. Reported film preparation procedures were modified to produce films with improved capacity and stability. Electrochemical behavior of the derivatized electrodes were investigated using cyclic voltammetry and chronocoulometry. The films show selectivity for Cs in concentrated sodium solutions. Raman spectroscopy was used to monitor changes in oxidation state of the film and imaging experiments have demonstrated that the redox reactions are spatially homogenous across the film. Requirements for a bench scale unit were identified.

Lilga, M.A.; Orth, R.J.; Sukamto, J.P.H. [Pacific Northwest National Lab., Richland, WA (United States); Schwartz, D.T.; Haight, S.M. [Washington Univ., Seattle, WA (United States); Genders, D. [Electrosynthesis Co., Inc., Cheektowaga, NY (United States)

1996-12-01T23:59:59.000Z

206

Phase-Transfer-Catalyzed Oxidations  

Science Journals Connector (OSTI)

Phase-transfer catalysis (PTC) offers many excellent opportunities for conducting oxidation reactions using inexpensive primary oxidants such as oxygen, sodium hypochlorite, hydrogen peroxide, electrooxidation...

Charles M. Starks; Charles L. Liotta; Marc E. Halpern

1994-01-01T23:59:59.000Z

207

Study of a liquid metal ion source for external ion injection into electron-beam ion source  

E-Print Network [OSTI]

Study of a liquid metal ion source for external ion injection into electron-beam ion source A into electron-beam ion source EBIS . It does not use a buffer gas and therefore it provides only a very small types of low-charged ion sources have been used for external ion injection into BNL electron-beam ion

208

Regenerative catalytic oxidation  

SciTech Connect (OSTI)

Currently Regenerative Thermal Oxidizers (R.T.O.`s) are an accepted technology for the control of volatile organic compounds (VOC`s) and hazardous air pollutants (HAP`s). This control technology, when introduced, offered substantial reductions in operating costs, especially auxiliary fuel requirements when compared to existing control technologies such as recuperative thermal and recuperative catalytic oxidizers. While these savings still exist, there is a demand for control of new and/or hybrid technologies, one of which is Regenerative Catalytic Oxidizers (R.C.O.`s). This paper will explore the development of regenerative catalytic oxidation from the theoretical stage through pilot testing through a commercial installation. The operating cost of R.C.O.`s will be compared to R.T.O.`s to verify the savings that are achievable through the use of regenerative catalytic oxidation. In the development of this technology, which is a combination of two (2) existing technologies, R.T.O.`s and catalysis, a second hybrid technology was explored and pilot tested. This is a combination R.C.O. for VOC and HAP control and simultaneous SCR (Selective Catalytic Reduction) for NOx (Oxides of Nitrogen) control. Based on the pilot and full scale testing, both regenerative catalytic oxidizers and systems which combine R.C.O. with SCR for both VOC and NOx reduction are economically viable and are in fact commercially available. 6 figs., 2 tabs.

Gribbon, S.T. [Engelhard Process Emission Systems, South Lyon, MI (United States)

1996-12-31T23:59:59.000Z

209

SOLID OXIDE PLANAR AND TUBULAR SOLID OXIDE FUEL  

E-Print Network [OSTI]

SOLID OXIDE PLANAR AND TUBULAR SOLID OXIDE FUEL CELLS Dynamic Simulation Approach Modular Approach · Parallel planes: PSOFC · Other: combustor, reformer Solid Oxide Fuel Cell Electrochemistry Cell Reactions · Slow pressure transients #12;Fuel Cell Assumptions · H2 electrochemically oxidized only · CO consumed

Mease, Kenneth D.

210

Asymmetric ion trap  

DOE Patents [OSTI]

An ion trap having two end cap electrodes disposed asymmetrically about a center of a ring electrode is disclosed. The inner surface of the end cap electrodes are conformed to an asymmetric pair of equipotential lines of the harmonic formed by the application of voltages to the electrodes. The asymmetry of the end cap electrodes allows ejection of charged species through the closer of the two electrodes which in turn allows for simultaneously detecting anions and cations expelled from the ion trap through the use of two detectors charged with opposite polarity. 4 figs.

Barlow, S.E.; Alexander, M.L.; Follansbee, J.C.

1997-12-02T23:59:59.000Z

211

Hydrogen ion microlithography  

DOE Patents [OSTI]

Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing. 6 figs.

Tsuo, Y.S.; Deb, S.K.

1990-10-02T23:59:59.000Z

212

Asymmetric ion trap  

DOE Patents [OSTI]

An ion trap having two end cap electrodes disposed asymmetrically about a center of a ring electrode. The inner surface of the end cap electrodes are conformed to an asymmetric pair of equipotential lines of the harmonic formed by the application of voltages to the electrodes. The asymmetry of the end cap electrodes allows ejection of charged species through the closer of the two electrodes which in turn allows for simultaneously detecting anions and cations expelled from the ion trap through the use of two detectors charged with opposite polarity.

Barlow, Stephan E. (Richland, WA); Alexander, Michael L. (Richland, WA); Follansbee, James C. (Pasco, WA)

1997-01-01T23:59:59.000Z

213

Syngas Oxidation Mechanism  

Science Journals Connector (OSTI)

A comprehensive analysis of synthesis gas (syngas) oxidation kinetics in wide ranges of temperature ... on the basis of the reaction mechanism of syngas ignition and combustion in air. A vast set of experimental ...

A. M. Starik; N. S. Titova; A. S. Sharipov…

2010-09-01T23:59:59.000Z

214

Parametrically Driven Ion Cyclotron Waves and Intense Ion Heating  

Science Journals Connector (OSTI)

Finite-amplitude plasma waves excited by plates outside a plasma column are shown to decay into other plasma waves and electrostatic ion cyclotron waves, accompanied by ion heating.

T. K. Chu; S. Bernabei; R. W. Motley

1973-07-23T23:59:59.000Z

215

Controlled CO preferential oxidation  

DOE Patents [OSTI]

Method is described for controlling the supply of air to a PROX (PReferential OXidation for CO cleanup) reactor for the preferential oxidation in the presence of hydrogen wherein the concentration of the hydrogen entering and exiting the PROX reactor is monitored, the difference there between correlated to the amount of air needed to minimize such difference, and based thereon the air supply to the PROX reactor adjusted to provide such amount and minimize such difference. 2 figs.

Meltser, M.A.; Hoch, M.M.

1997-06-10T23:59:59.000Z

216

Method of fabricating optical waveguides by ion implantation doping  

DOE Patents [OSTI]

A method for fabricating high-quality optical waveguides in optical quality oxide crystals by ion implantation doping and controlled epitaxial recrystallization is provided. Masked LiNbO/sub 3/ crystals are implanted with high concentrations of Ti dopant at ion energies of about 360 keV while maintaining the crystal near liquid nitrogen temperature. Ion implantation doping produces an amorphous, Ti-rich nonequilibrium phase in the implanted region. Subsequent thermal annealing in a water-saturated oxygen atmosphere at up to 1000/degree/C produces solid-phase epitaxial regrowth onto the crystalline substrate. A high-quality crystalline layer results which incorporates the Ti into the crystal structure at much higher concentrations than is possible by standard diffusion techniques, and this implanted region has excellent optical waveguiding properties.

Appleton, B.R.; Ashley, P.R.; Buchal, C.J.

1987-03-24T23:59:59.000Z

217

Oriented conductive oxide electrodes on SiO2/Si and glass  

DOE Patents [OSTI]

A thin film structure is provided including a silicon substrate with a layer of silicon dioxide on a surface thereof, and a layer of cubic oxide material deposited upon the layer of silicon dioxide by ion-beam-assisted-deposition, said layer of cubic oxide material characterized as biaxially oriented. Preferably, the cubic oxide material is yttria-stabilized zirconia. Additional thin layers of biaxially oriented ruthenium oxide or lanthanum strontium cobalt oxide are deposited upon the layer of yttria-stabilized zirconia. An intermediate layer of cerium oxide is employed between the yttria-stabilized zirconia layer and the lanthanum strontium cobalt oxide layer. Also, a layer of barium strontium titanium oxide can be upon the layer of biaxially oriented ruthenium oxide or lanthanum strontium cobalt oxide. Also, a method of forming such thin film structures, including a low temperature deposition of a layer of a biaxially oriented cubic oxide material upon the silicon dioxide surface of a silicon dioxide/silicon substrate is provided.

Jia, Quanxi (Los Alamos, NM); Arendt, Paul N. (Los Alamos, NM)

2001-01-01T23:59:59.000Z

218

Focused Ion Beam (FIB):  

Science Journals Connector (OSTI)

...al., 1990; Basile et al., 1992; Overwijk et al., 1993). Focused gallium ion...detailed descriptions are given elsewhere (Overwijk et al., 1993; Heaney et al., 2001...Kluwer Academic Publishers, 316 pp. Overwijk, M.H.E., van den Heuvel, F...

Richard WIRTH

219

Pulsed ion beam source  

DOE Patents [OSTI]

An improved pulsed ion beam source is disclosed having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center. 12 figs.

Greenly, J.B.

1997-08-12T23:59:59.000Z

220

Photo ion spectrometer  

DOE Patents [OSTI]

A method and apparatus for extracting for quantitative analysis ions of selected atomic components of a sample. A lens system is configured to provide a slowly diminishing field region for a volume containing the selected atomic components, enabling accurate energy analysis of ions generated in the slowly diminishing field region. The lens system also enables focusing on a sample of a charged particle beam, such as an ion beam, along a path length perpendicular to the sample and extraction of the charged particles along a path length also perpendicular to the sample. Improvement of signal to noise ratio is achieved by laser excitation of ions to selected autoionization states before carrying out quantitative analysis. Accurate energy analysis of energetic charged particles is assured by using a preselected resistive thick film configuration disposed on an insulator substrate for generating predetermined electric field boundary conditions to achieve for analysis the required electric field potential. The spectrometer also is applicable in the fields of SIMS, ISS and electron spectroscopy.

Gruen, Dieter M. (Downers Grove, IL); Young, Charles E. (Westmont, IL); Pellin, Michael J. (Naperville, IL)

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ions miec oxides" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Photo ion spectrometer  

DOE Patents [OSTI]

A method and apparatus are described for extracting for quantitative analysis ions of selected atomic components of a sample. A lens system is configured to provide a slowly diminishing field region for a volume containing the selected atomic components, enabling accurate energy analysis of ions generated in the slowly diminishing field region. The lens system also enables focusing on a sample of a charged particle beam, such as an ion beam, along a path length perpendicular to the sample and extraction of the charged particles along a path length also perpendicular to the sample. Improvement of signal to noise ratio is achieved by laser excitation of ions to selected auto-ionization states before carrying out quantitative analysis. Accurate energy analysis of energetic charged particles is assured by using a preselected resistive thick film configuration disposed on an insulator substrate for generating predetermined electric field boundary conditions to achieve for analysis the required electric field potential. The spectrometer also is applicable in the fields of SIMS, ISS and electron spectroscopy. 8 figs.

Gruen, D.M.; Young, C.E.; Pellin, M.J.

1989-08-08T23:59:59.000Z

222

Emergent Phenomena at Oxide Interfaces  

SciTech Connect (OSTI)

Transition metal oxides (TMOs) are an ideal arena for the study of electronic correlations because the s-electrons of the transition metal ions are removed and transferred to oxygen ions, and hence the strongly correlated d-electrons determine their physical properties such as electrical transport, magnetism, optical response, thermal conductivity, and superconductivity. These electron correlations prohibit the double occupancy of metal sites and induce a local entanglement of charge, spin, and orbital degrees of freedom. This gives rise to a variety of phenomena, e.g., Mott insulators, various charge/spin/orbital orderings, metal-insulator transitions, multiferroics, and superconductivity. In recent years, there has been a burst of activity to manipulate these phenomena, as well as create new ones, using oxide heterostructures. Most fundamental to understanding the physical properties of TMOs is the concept of symmetry of the order parameter. As Landau recognized, the essence of phase transitions is the change of the symmetry. For example, ferromagnetic ordering breaks the rotational symmetry in spin space, i.e., the ordered phase has lower symmetry than the Hamiltonian of the system. There are three most important symmetries to be considered here. (i) Spatial inversion (I), defined as r {yields} -r. In the case of an insulator, breaking this symmetry can lead to spontaneous electric polarization, i.e. ferroelectricity, or pyroelectricity once the point group belongs to polar group symmetry. (ii) Time-reversal symmetry (T) defined as t {yields} -t. In quantum mechanics, the time-evolution of the wave-function {Psi} is given by the phase factor e{sup -iEt/{h_bar}} with E being the energy, and hence time-reversal basically corresponds to taking the complex conjugate of the wave-function. Also the spin, which is induced by the 'spinning' of the particle, is reversed by time-reversal. Broken T-symmetry is most naturally associated with magnetism, since the spin operator changes sign with T-operation. (iii) Gauge symmetry (G), which is associated with a change in the phase of the wave-function as {Psi} {yields} e{sup i{theta}}{Psi}. Gauge symmetry is connected to the law of charge conservation, and broken G-symmetry corresponds to superconductivity/superfluidity. To summarize, the interplay among these electronic degrees of freedom produces various forms of symmetry breaking patterns of I, T, and G, leading to novel emergent phenomena, which can appear only by the collective behavior of electrons and cannot be expected from individual electrons. Figure 1 shows this schematically by means of several representative phenomena. From this viewpoint, the interfaces of TMOs offer a unique and important laboratory because I is already broken by the structure itself, and the detailed form of broken I-symmetry can often be designed. Also, two-dimensionality usually enhances the effects of electron correlations by reducing their kinetic energy. These two features of oxide interfaces produce many novel effects and functions that cannot be attained in bulk form. Given that the electromagnetic responses are a major source of the physical properties of solids, and new gauge structures often appear in correlated electronic systems, we put 'emergent electromagnetism' at the center of Fig. 1.

Hwang, H.Y.

2012-02-16T23:59:59.000Z

223

Synergistic Metal–Metal Oxide Nanoparticles Supported Electrocatalytic Graphene for Improved Photoelectrochemical Glucose Oxidation  

Science Journals Connector (OSTI)

Panels a and b in Figure 1 depict the schematic representation of mechanism of glucose oxidation at the graphene–WO3–Au hybrid membrane modified with glucose oxidase (GOD) enzyme. ... The efficiency improvement seems to be due to (1) the enhancement of electron transport through the TiO2 layer by inter-particle necking of primary TiO2 particles and (2) an increase in the recombination resistance at TiO2/QD/electrolyte interfaces by healing the surface states or managing the oxygen vacancies upon N-ion doping. ...

Anitha Devadoss; P. Sudhagar; Santanu Das; Sang Yun Lee; C. Terashima; K. Nakata; A. Fujishima; Wonbong Choi; Yong Soo Kang; Ungyu Paik

2014-03-09T23:59:59.000Z

224

Molten Salt Oxidation of mixed wastes  

SciTech Connect (OSTI)

Molten Salt Oxidation (MSO) can be characterized as a simple noncombustion process; the basic concept is to introduce air and wastes into a bed of molten salt, oxidize the organic wastes in the molten salt, use the heat of oxidation to keep the salt molten and remove the salt for disposal or processing and recycling. The process has been developed through bench-scale and pilot-scale testing, with successful destruction demonstration of a wide variety of hazardous and mixed (radioactive and hazardous) wastes including chemical warfare agents, combustible solids, halogenated solvents, polychlorinated biphenyls, plutonium-contaminated solids, uranium-contaminated solvents and fission product-contaminated oil. The MSO destruction efficiency of the hazardous organic constituents in the wastes exceeds 99.9999%. Radioactive species, such as actinides and rare earth fission products, are retained in the salt bath. These elements can be recovered from the spent salt using conventional chemical processes, such as ion exchange, to render the salt as nonradioactive and nonhazardous. This paper reviews the principles and capabilities of MSO, previous mixed waste studies, and a new US Department of Energy program to demonstrate the process for the treatment of mixed wastes.

Gay, R.L.; Navratil, J.D.; Newman, C. [Rockwell International Corp., Canoga Park, CA (United States). Rocketdyne Div.

1993-12-31T23:59:59.000Z

225

Infrared spectroscopic study of the adsorption of carbon monoxide on silica-supported copper oxide  

SciTech Connect (OSTI)

Adsorption of carbon monoxide at room temperature (0.1 to 50 Torr) on silica-supported copper oxide was studied by infrared spectroscopy. Catalysts were prepared by deposition-precipitation or impregnation. After calcination two types of adsorbed CO were identified showing absorption bands at 2136 +- 3 and 2204 +- 1 cm/sup -1/, which are ascribed to CO adsorbed on copper(II) oxide and on isolated copper(II) ions in the silica surface, respectively. Reduction and reoxidation removed the band at 2204 cm/sup -1/ with all samples and raised the intensity of the 2136-cm/sup -1/ band with the precipitated catalysts but not with the impregnation catalyst. Evidence is brought forward that the isolated copper ions are mobilized during reduction and generate new copper (oxide) surface. The change in background transmission of the samples could be used to obtain further information about the interaction of O/sub 2/ and CO with copper oxide.

De Jong, K.P.; Geus, J.W.; Joziasse, J.

1980-10-01T23:59:59.000Z

226

Modeling of Diesel Oxidation Catalyst  

Science Journals Connector (OSTI)

Modeling of Diesel Oxidation Catalyst ... Optimization of hydrocarbon (HC) oxidation over a diesel oxidation catalyst (DOC) requires consideration of (i) HC gas diffusion into the catalyst layer, (ii) HC gas adsorption and desorption from catalyst sites, and (iii) kinetics of the oxidation reaction. ... Mutagenicity of Diesel Engine Exhaust Is Eliminated in the Gas Phase by an Oxidation Catalyst but Only Slightly Reduced in the Particle Phase ...

Yasushi Tanaka; Takashi Hihara; Makoto Nagata; Naoto Azuma; Akifumi Ueno

2005-09-30T23:59:59.000Z

227

Oxidation of Mercury in Products of Coal Combustion  

SciTech Connect (OSTI)

Laboratory measurements of mercury oxidation during selective catalytic reduction (SCR) of nitric oxide, simulation of pilot-scale measurements of mercury oxidation and adsorption by unburned carbon and fly ash, and synthesis of new materials for simultaneous oxidation and adsorption of mercury, were performed in support of the development of technology for control of mercury emissions from coal-fired boilers and furnaces. Conversion of gas-phase mercury from the elemental state to water-soluble oxidized form (HgCl{sub 2}) enables removal of mercury during wet flue gas desulfurization. The increase in mercury oxidation in a monolithic V{sub 2}O{sub 5}-WO{sub 3}/TiO{sub 2} SCR catalyst with increasing HCl at low levels of HCl (< 10 ppmv) and decrease in mercury oxidation with increasing NH{sub 3}/NO ratio during SCR were consistent with results of previous work by others. The most significant finding of the present work was the inhibition of mercury oxidation in the presence of CO during SCR of NO at low levels of HCl. In the presence of 2 ppmv HCl, expected in combustion products from some Powder River Basin coals, an increase in CO from 0 to 50 ppmv reduced the extent of mercury oxidation from 24 {+-} 3 to 1 {+-} 4%. Further increase in CO to 100 ppmv completely suppressed mercury oxidation. In the presence of 11-12 ppmv HCl, increasing CO from 0 to {approx}120 ppmv reduced mercury oxidation from {approx}70% to 50%. Conversion of SO{sub 2} to sulfate also decreased with increasing NH{sub 3}/NO ratio, but the effects of HCl and CO in flue gas on SO{sub 2} oxidation were unclear. Oxidation and adsorption of mercury by unburned carbon and fly ash enables mercury removal in a particulate control device. A chemical kinetic mechanism consisting of nine homogeneous and heterogeneous reactions for mercury oxidation and removal was developed to interpret pilot-scale measurements of mercury oxidation and adsorption by unburned carbon and fly ash in experiments at pilot scale, burning bituminous coals (Gale, 2006) and blends of bituminous coals with Powder River Basin coal (Gale, 2005). The removal of mercury by fly ash and unburned carbon in the flue gas from combustion of the bituminous coals and blends was reproduced with satisfactory accuracy by the model. The enhancement of mercury capture in the presence of calcium (Gale, 2005) explained a synergistic effect of blending on mercury removal across the baghouse. The extent of mercury oxidation, on the other hand, was not so well described by the simulation, because of oversensitivity of the oxidation process in the model to the concentration of unburned carbon. Combined catalysts and sorbents for oxidation and removal of mercury from flue gas at low temperature were based on surfactant-templated silicas containing a transition metal and an organic functional group. The presence of both metal ions and organic groups within the pore structure of the materials is expected to impart to them the ability to simultaneously oxidize elemental mercury and adsorb the resulting oxidized mercury. Twelve mesoporous organosilicate catalysts/sorbents were synthesized, with and without metals (manganese, titanium, vanadium) and organic functional groups (aminopropyl, chloropropyl, mercaptopropyl). Measurement of mercury oxidation and adsorption by the candidate materials remains for future work.

Peter Walsh; Giang Tong; Neeles Bhopatkar; Thomas Gale; George Blankenship; Conrad Ingram; Selasi Blavo Tesfamariam Mehreteab; Victor Banjoko; Yohannes Ghirmazion; Heng Ban; April Sibley

2009-09-14T23:59:59.000Z

228

Cryogenic Ion Chemistry and Spectroscopy  

Science Journals Connector (OSTI)

Cryogenic Ion Chemistry and Spectroscopy ... His research focuses on developing and applying cryogenic ion processing for the characterization of hydrogen bonding motifs in macromolecules and activated organometallic catalysts. ... In this Account, we discuss how cryogenic cooling, mass selection, and reactive processing together provide a powerful way to characterize ion structures as well as rationally synthesize labile reaction intermediates. ...

Arron B. Wolk; Christopher M. Leavitt; Etienne Garand; Mark A. Johnson

2013-08-23T23:59:59.000Z

229

PII S0016-7037(98)00136-7 The kinetics of mixed Ni-Al hydroxide formation on clay and aluminum oxide minerals  

E-Print Network [OSTI]

PII S0016-7037(98)00136-7 The kinetics of mixed Ni-Al hydroxide formation on clay and aluminum. This finding indicates that the dissolution of clay and aluminum oxide minerals can be promoted by metal ions

Sparks, Donald L.

230

PPPL-3136 -Preprint Date: August 1995 Majority Ion Heating Near the Ion-ion Hybrid Layer in  

E-Print Network [OSTI]

magnetosonic waves in the ion cyclotron range of frequencies (ICRF) is discussed. Majority ion heating results1 PPPL-3136 - Preprint Date: August 1995 Majority Ion Heating Near the Ion-ion Hybrid Layer direct majority ion heating in a deuterium-tritium (D-T) reactor-grade plasma via absorption of fast

231

Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields  

E-Print Network [OSTI]

in Heavy Ion Fusion Science, Magnetic Fusion Energy, andin Heavy Ion Fusion Science, Magnetic Fusion Energy, and

Kwan, J.W.

2008-01-01T23:59:59.000Z

232

Fabrication of catalyzed ion transport membrane systems  

DOE Patents [OSTI]

Process for fabricating a catalyzed ion transport membrane (ITM). In one embodiment, an uncatalyzed ITM is (a) contacted with a non-reducing gaseous stream while heating to a temperature and for a time period sufficient to provide an ITM possessing anion mobility; (b) contacted with a reducing gaseous stream for a time period sufficient to provide an ITM having anion mobility and essentially constant oxygen stoichiometry; (c) cooled while contacting the ITM with the reducing gaseous stream to provide an ITM having essentially constant oxygen stoichiometry and no anion mobility; and (d) treated by applying catalyst to at least one of (1) a porous mixed conducting multicomponent metallic oxide (MCMO) layer contiguous with a first side of a dense layer of MCMO and (2) a second side of the dense MCMO layer. In another embodiment, these steps are carried out in the alternative order of (a), (d), (b), and (c).

Carolan, Michael Francis; Kibby, Charles Leonard

2013-06-04T23:59:59.000Z

233

Relativistic Heavy Ion Collider  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Relativistic Heavy Ion Collider Relativistic Heavy Ion Collider managed for the U.S. Department of Energy by Brookhaven Science Associates, founded by Stony Brook University and Battelle. managed for the U.S. Department of Energy by Brookhaven Science Associates, a company founded by Stony Brook University and Battelle 07/07 Brookhaven National Laboratory Funded by the U.S. Department of Energy, Brookhaven National Laboratory is a multipurpose research institution located on a 5,300-acre site on Long Island, New York. Six Nobel Prize-winning discoveries have been made at Brookhaven Lab. The Laboratory operates large-scale scientific facilities and performs research in physics, chemistry, biology, medicine, applied science, and

234

Characterizing Heavy Ion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Heavy Ion Heavy Ion Reactions in the 1980's Is there Treasure at the end of the Rainbow? & What happens and how do different modes compete? John Schiffer One of the three research areas for ATLAS, as stated in a 1984 document to Congress: Are there some new marvelous symmetries, hidden in resonances in heavier nuclei, beyond 12 C+ 12 C and its immediate vicinity? (s.c. linac work, pre-ATLAS) Other attempts to chase the rainbow 180 o elastic scattering of 12 C on 40 Ca shows structure Fusion of 16 O on 40 Ca does not. In the end, it seemed that these structures were sometimes present in alpha-particle nuclei, but almost never in others. Some optimists, continued the pursuit. We also looked at the total fusion cross section in systems that showed resonances in scattering.

235

InstructIons  

Broader source: Energy.gov (indexed) [DOE]

InstructIons InstructIons for AccessIng fedconnect PostIngs The registration process requires multiple steps prior to submission, so please plan in advance as late applications will not be accepted. Note that for some applications, a Letter of Intent must be filed prior to the final deadline. To access the complete postings, follow the below steps: 1. Go to https://www.FedConnect.net/ 2. Click on "Search Public Opportunities" 3. Select "Reference Number" in the Search Criteria drop down box and then enter the Reference Number of the funding opportunity you are interested in (DE-FOA-XXXXXXX), followed by clicking the "Search" button 4. Click on the appropriate link after search results are displayed

236

Chemical Shuttle Additives in Lithium Ion Batteries  

SciTech Connect (OSTI)

The goals of this program were to discover and implement a redox shuttle that is compatible with large format lithium ion cells utilizing LiNi{sub 1/3}Mn{sub 1/3}Co{sub 1/3}O{sub 2} (NMC) cathode material and to understand the mechanism of redox shuttle action. Many redox shuttles, both commercially available and experimental, were tested and much fundamental information regarding the mechanism of redox shuttle action was discovered. In particular, studies surrounding the mechanism of the reduction of the oxidized redox shuttle at the carbon anode surface were particularly revealing. The initial redox shuttle candidate, namely 2-(pentafluorophenyl)-tetrafluoro-1,3,2-benzodioxaborole (BDB) supplied by Argonne National Laboratory (ANL, Lemont, Illinois), did not effectively protect cells containing NMC cathodes from overcharge. The ANL-RS2 redox shuttle molecule, namely 1,4-bis(2-methoxyethoxy)-2,5-di-tert-butyl-benzene, which is a derivative of the commercially successful redox shuttle 2,5-di-tert-butyl-1,4-dimethoxybenzene (DDB, 3M, St. Paul, Minnesota), is an effective redox shuttle for cells employing LiFePO{sub 4} (LFP) cathode material. The main advantage of ANL-RS2 over DDB is its larger solubility in electrolyte; however, ANL-RS2 is not as stable as DDB. This shuttle also may be effectively used to rebalance cells in strings that utilize LFP cathodes. The shuttle is compatible with both LTO and graphite anode materials although the cell with graphite degrades faster than the cell with LTO, possibly because of a reaction with the SEI layer. The degradation products of redox shuttle ANL-RS2 were positively identified. Commercially available redox shuttles Li{sub 2}B{sub 12}F{sub 12} (Air Products, Allentown, Pennsylvania and Showa Denko, Japan) and DDB were evaluated and were found to be stable and effective redox shuttles at low C-rates. The Li{sub 2}B{sub 12}F{sub 12} is suitable for lithium ion cells utilizing a high voltage cathode (potential that is higher than NMC) and the DDB is useful for lithium ion cells with LFP cathodes (potential that is lower than NMC). A 4.5 V class redox shuttle provided by Argonne National Laboratory was evaluated which provides a few cycles of overcharge protection for lithium ion cells containing NMC cathodes but it is not stable enough for consideration. Thus, a redox shuttle with an appropriate redox potential and sufficient chemical and electrochemical stability for commercial use in larger format lithium ion cells with NMC cathodes was not found. Molecular imprinting of the redox shuttle molecule during solid electrolyte interphase (SEI) layer formation likely contributes to the successful reduction of oxidized redox shuttle species at carbon anodes. This helps to understand how a carbon anode covered with an SEI layer, that is supposed to be electrically insulating, can reduce the oxidized form of a redox shuttle.

Patterson, Mary

2013-03-31T23:59:59.000Z

237

Thermally Oxidized Silicon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Anneli Munkholm (Lumileds Lighting) and Sean Brennan (SSRL) Anneli Munkholm (Lumileds Lighting) and Sean Brennan (SSRL) Illustration of the silicon positions near the Si-SiO2 interface for a 4° miscut projected onto the ( ) plane. The silicon atoms in the substrate are blue and those in the oxide are red. The small black spots represent the translated silicon positions in the absence of static disorder. The silicon atoms in the oxide have been randomly assigned a magnitude and direction based on the static disorder value at that position in the lattice. The outline of four silicon unit cells is shown in black, whereas the outline of four expanded lattice cells in the oxide is shown in blue One of the most studied devices of modern technology is the field-effect transistor, which is the basis for most integrated circuits. At its heart

238

Oxidative Tritium Decontamination System  

SciTech Connect (OSTI)

The Princeton Plasma Physics Laboratory, Tritium Systems Group has developed and fabricated an Oxidative Tritium Decontamination System (OTDS), which is designed to reduce tritium surface contamination on various components and items. The system is configured to introduce gaseous ozone into a reaction chamber containing tritiated items that require a reduction in tritium surface contamination. Tritium surface contamination (on components and items in the reaction chamber) is removed by chemically reacting elemental tritium to tritium oxide via oxidation, while purging the reaction chamber effluent to a gas holding tank or negative pressure HVAC system. Implementing specific concentrations of ozone along with catalytic parameters, the system is able to significantly reduce surface tritium contamination on an assortment of expendable and non-expendable items. This paper will present the results of various experimentation involving employment of this system.

Charles A. Gentile; John J. Parker; Gregory L. Guttadora; Lloyd P. Ciebiera

2002-02-11T23:59:59.000Z

239

Methanol partial oxidation reformer  

DOE Patents [OSTI]

A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

Ahmed, Shabbir (Bolingbrook, IL); Kumar, Romesh (Naperville, IL); Krumpelt, Michael (Naperville, IL)

1999-01-01T23:59:59.000Z

240

Methanol partial oxidation reformer  

DOE Patents [OSTI]

A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

Ahmed, Shabbir (Bolingbrook, IL); Kumar, Romesh (Naperville, IL); Krumpelt, Michael (Naperville, IL)

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ions miec oxides" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Methanol partial oxidation reformer  

DOE Patents [OSTI]

A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

Ahmed, S.; Kumar, R.; Krumpelt, M.

1999-08-17T23:59:59.000Z

242

Methanol partial oxidation reformer  

DOE Patents [OSTI]

A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

Ahmed, S.; Kumar, R.; Krumpelt, M.

1999-08-24T23:59:59.000Z

243

Ion-beam superpinch  

Science Journals Connector (OSTI)

Intense nonrelativistic light-ion beams generated in magnetically insulated diodes can reach total beam currents large enough to confine charged fusion products within pinch channels which are formed by these beams if they are projected onto thermonuclear material. Furthermore, since the required beam currents are still below the critical Alfvén current, these pinch channels are magnetohydrodynamically stable. However, because the time these beams last is very short and of the order of 10 nsec, the thermonuclear target must have a density at least as large as solid-state density to satisfy the Lawson criterion. This large target density makes it necessary that the beam be focused down to a radius less than ? 10-2 cm, to balance the plasma pressure against the magnetic pressure. To make this focusing possible a new kind of a low-emittance intense ion source is proposed. It consists of pointlike pulsed dense plasma positioned in the field-free space behind a meshlike anode. The focusing itself can be done in three steps, first by sufficiently good ion optics, second by wall focusing, and third by radiation cooling. This inertial-confinement fusion concept avoids the problems of reaching this goal through highdensity target compression by ablative implosion.

F. Winterberg

1981-10-01T23:59:59.000Z

244

Negative ion source  

DOE Patents [OSTI]

A method and apparatus for providing a negative ion source accelerates electrons away from a hot filament electron emitter into a region of crossed electric and magnetic fields arranged in a magnetron configuration. During a portion of the resulting cycloidal path, the electron velocity is reduced below its initial value. The electron accelerates as it leaves the surface at a rate of only slightly less than if there were no magnetic field, thereby preventing a charge buildup at the surface of the emitter. As the electron traverses the cycloid, it is decelerated during the second, third, and fourth quadrants, then reeccelerated as it approaches the end of the fourth quadrant to regain its original velocity. The minimum velocity occurs during the fourth quadrant, and corresponds to an electron temperature of 200.degree. to 500.degree. for the electric and magnetic fields commonly encountered in the ion sources of magnetic sector mass spectrometers. An ion source using the above-described thermalized electrons is also disclosed.

Delmore, James E. (Idaho Falls, ID)

1987-01-01T23:59:59.000Z

245

LANL: Ion Beam Materials Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ion Beam Materials Laboratory (IBML) is a Los Ion Beam Materials Laboratory (IBML) is a Los Alamos National Laboratory resource devoted to materi- als research through the use of ion beams. Current major research areas include surface characterization through ion beam analysis techniques, surface modification and materials synthesis through ion implantation technology, and radiation damage stud- ies in gases, liquids, and solids. The laboratory's core is a 3.2 MV tandem ion accelerator and a 200 kV ion implanter together with several beam lines. Attached to each beam line is a series of experimental stations that support various research programs. The operation of IBML and its interactions with users are organized around core facilities and experimental stations. The IBML provides and operates the core facilities as well as supports

246

Resonance Ionization Laser Ion Sources  

E-Print Network [OSTI]

The application of the technique of laser resonance ionization to the production of singly charged ions at radioactive ion beam facilities is discussed. The ability to combine high efficiency and element selectivity makes a resonance ionization laser ion source (RILIS) an important component of many radioactive ion beam facilities. At CERN, for example, the RILIS is the most commonly used ion source of the ISOLDE facility, with a yearly operating time of up to 3000 hours. For some isotopes the RILIS can also be used as a fast and sensitive laser spectroscopy tool, provided that the spectral resolution is sufficiently high to reveal the influence of nuclear structure on the atomic spectra. This enables the study of nuclear properties of isotopes with production rates even lower than one ion per second and, in some cases, enables isomer selective ionization. The solutions available for the implementation of resonance laser ionization at radioactive ion beam facilities are summarized. Aspects such as the laser r...

Marsh, B

2013-01-01T23:59:59.000Z

247

Tetraalklylammonium polyoxoanionic oxidation catalysts  

DOE Patents [OSTI]

Alkanes are catalytically oxidized in air or oxygen using iron-substituted polyoxoanions (POAs) of the formula: H{sub e{minus}z}[(n-C{sub 4}H{sub 9}){sub 4}N]{sub z}(XM{sub 11}M{prime}O{sub 39}){sup {minus}e}. The M{prime} (e.g., iron(III)/iron(II)) reduction potential of the POAs is affected by selection of the central atom X and the framework metal M, and by the number of tetrabutyl-ammonium groups. Decreased Fe(III)/Fe(II) reduction potential has been found to correlate to increased oxidation activity.

Ellis, P.E.; Lyons, J.E.; Myers, H.K. Jr.; Shaikh, S.N.

1998-10-06T23:59:59.000Z

248

Tetraalykylammonium polyoxoanionic oxidation catalysts  

DOE Patents [OSTI]

Alkanes are catalytically oxidized in air or oxygen using iron-substituted polyoxoanions (POAs) of the formula: H.sub.e-z ›(n-C.sub.4 H.sub.9).sub.4 N!.sub.z (XM.sub.11 M'O.sub.39).sup.-e The M' (e.g., iron(III)/iron(II)) reduction potential of the POAs is affected by selection of the central atom X and the framework metal M, and by the number of tetrabutyl-ammonium groups. Decreased Fe(III)/Fe(II) reduction potential has been found to correlate to increased oxidation activity.

Ellis, Paul E. (Downingtown, PA); Lyons, James E. (Wallingford, PA); Myers, Jr., Harry K. (Cochranville, PA); Shaikh, Shahid N. (Media, PA)

1998-01-01T23:59:59.000Z

249

A Porphyrin-Stabilized Iridium Oxide Water Oxidation Catalyst  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Porphyrin-Stabilized Iridium Oxide Water Oxidation Catalyst Authors: Sherman, B. D., Pillai, S., Kodis, G., Bergkamp, J., Mallouk, T. E., Gust, D., Moore, T. A., and Moore, A. L....

250

A REVISED METHOD FOR ESTIMATING OXIDE BASICITY PER THE SMITH SCALE WITH EXAMPLE APPLICATION TO GLASS DURABILITY  

SciTech Connect (OSTI)

Previous researchers have developed correlations between oxide electronegativity and oxide basicity. The present paper revises those correlations using a newer method of calculating electronegativity of the oxygen anion. Basicity is expressed using the Smith {alpha} parameter scale. A linear relation was found between the oxide electronegativity and the Smith {alpha} parameter, with an R{sup 2} of 0.92. An example application of this new correlation to the durability of high-level nuclear waste glass is demonstrated. The durability of waste glass was found to be directly proportional to the quantity and basicity of the oxides of tetrahedrally coordinated network forming ions.

REYNOLDS JG

2011-07-27T23:59:59.000Z

251

Microstructural changes induced by low energy heavy ion irradiation in titanium silicon carbide  

E-Print Network [OSTI]

Microstructural changes induced by low energy heavy ion irradiation in titanium silicon carbide, and it was validated on irradiated silicon carbide. The swelling of Ti3SiC2 was estimated to 2.2 ±0 to these working conditions, non-oxide refractory ceramics are required as fuel cladding. Thus, carbides turn out

Boyer, Edmond

252

Crumpled Graphene-Encapsulated Si Nanoparticles for Lithium Ion Battery Anodes  

E-Print Network [OSTI]

Crumpled Graphene-Encapsulated Si Nanoparticles for Lithium Ion Battery Anodes Jiayan Luo, Xin Zhao Information ABSTRACT: Submicrometer-sized capsules made of Si nanoparticles wrapped by crumpled graphene dispersion of micrometer-sized graphene oxide (GO) sheets and Si nanoparticles were nebulized to form aerosol

Huang, Jiaxing

253

Short communication Hierarchical SiOx nanoconifers for Li-ion battery anodes with  

E-Print Network [OSTI]

oxide Li rechargeable battery Anode Nanoconifer Nanowire Thermal evaporation a b s t r a c t Silicon subShort communication Hierarchical SiOx nanoconifers for Li-ion battery anodes with structural through a simple thermal evaporation process.

Jo, Moon-Ho

254

Multiheteromacrocycles that Complex Metal Ions. Fourth Progress Report, 1 May 1977 -- 30 April 1978  

DOE R&D Accomplishments [OSTI]

Results are reported in a program to design, synthesize, and evaluate polycyclic host organic compounds for their abilities to complex and lipophilize guest metal ions. Work during the reporting period was devoted to synthesis and study of cyclohexametaphenylenes and cyclic phosphine oxides. (JRD)

Cram, D. J.

1978-01-15T23:59:59.000Z

255

Oxidative Reforming of Biodiesel Over Molybdenum (IV) Oxide  

E-Print Network [OSTI]

as potential feedstock in solid oxide fuel cells. Petroleum based fuels become scarcer daily, and biodiesel for use in solid oxide fuel cells. This cutting edge area of research continues to be important as energy prove useful for solid oxide fuel cells. METHODS Commercial molybdenum dioxide was used for all tests

Collins, Gary S.

256

Molecular Ion Beam Transportation for Low Energy Ion Implantation  

SciTech Connect (OSTI)

A joint research and development of steady state intense boron ion sources for 100's of electron-volt ion implanters has been in progress for the past five years. Current density limitation associated with extracting and transporting low energy ion beams result in lower beam currents that in turn adversely affects the process throughput. The transport channel with electrostatic lenses for decaborane (B{sub 10}H{sub 14}) and carborane (C{sub 2}B{sub 10}H{sub 12}) ion beams transportation was developed and investigated. The significant increase of ion beam intensity at the beam transport channel output is demonstrated. The transport channel simulation, construction and experimental results of ion beam transportation are presented.

Kulevoy, T. V.; Kropachev, G. N.; Seleznev, D. N.; Yakushin, P. E.; Kuibeda, R. P.; Kozlov, A. V.; Koshelev, V. A. [Institute for Theoretical and Experimental Physics, Moscow, 117218 (Russian Federation); Hershcovitch, A.; Johnson, B. M. [Brookhaven National Laboratory, Upton, New York 11973 (United States); Gushenets, V. I.; Oks, E. M. [High Current Electronics Institute Russian Academy of Sciences, Tomsk, 634055 (Russian Federation); Polozov, S. M. [Moscow Engineering Physics Institute, Kashirskoe sh. 31, Moscow, 115409 (Russian Federation); Poole, H. J. [PVI, Oxnard, California 93031-5023 (United States)

2011-01-07T23:59:59.000Z

257

Conceptual Design for the Pilot-Scale Plutonium Oxide Processing Unit in the Radiochemical Processing Laboratory  

SciTech Connect (OSTI)

This report describes a conceptual design for a pilot-scale capability to produce plutonium oxide for use as exercise and reference materials, and for use in identifying and validating nuclear forensics signatures associated with plutonium production. This capability is referred to as the Pilot-scale Plutonium oxide Processing Unit (P3U), and it will be located in the Radiochemical Processing Laboratory at the Pacific Northwest National Laboratory. The key unit operations are described, including plutonium dioxide (PuO2) dissolution, purification of the Pu by ion exchange, precipitation, and conversion to oxide by calcination.

Lumetta, Gregg J.; Meier, David E.; Tingey, Joel M.; Casella, Amanda J.; Delegard, Calvin H.; Edwards, Matthew K.; Jones, Susan A.; Rapko, Brian M.

2014-08-05T23:59:59.000Z

258

Highly oxidized superconductors  

DOE Patents [OSTI]

Novel superconducting materials in the form of compounds, structures or phases are formed by performing otherwise known synthesis in a highly oxidizing atmosphere rather than that created by molecular oxygen at atmospheric pressure or below. This leads to the successful synthesis of novel superconducting compounds which are thermodynamically stable at the conditions under which they are formed. 16 figs.

Morris, D.E.

1994-09-20T23:59:59.000Z

259

Highly Polarized Ion Sources for Electron Ion Colliders (EIC)  

SciTech Connect (OSTI)

The operation of the RHIC facility at BNL and the Electron Ion Colliders (EIC) under development at Jefferson Laboratory and BNL need high brightness ion beams with the highest polarization. Charge exchange injection into a storage ring or synchrotron and Siberian snakes have the potential to handle the needed polarized beam currents, but first the ion sources must create beams with the highest possible polarization to maximize collider productivity, which is proportional to a high power of the polarization. We are developing one universal H-/D- ion source design which will synthesize the most advanced developments in the field of polarized ion sources to provide high current, high brightness, ion beams with greater than 90% polarization, good lifetime, high reliability, and good power efficiency. The new source will be an advanced version of an atomic beam polarized ion source (ABPIS) with resonant charge exchange ionization by negative ions. An integrated ABPIS design will be prepared based on new materials and an optimized magnetic focusing system. Polarized atomic and ion beam formation, extraction, and transport for the new source will be computer simulated.

V.G. Dudnikov, R.P. Johnson, Y.S. Derbenev, Y. Zhang

2010-03-01T23:59:59.000Z

260

Compact ion accelerator source  

DOE Patents [OSTI]

An ion source includes a conductive substrate, the substrate including a plurality of conductive nanostructures with free-standing tips formed on the substrate. A conductive catalytic coating is formed on the nanostructures and substrate for dissociation of a molecular species into an atomic species, the molecular species being brought in contact with the catalytic coating. A target electrode placed apart from the substrate, the target electrode being biased relative to the substrate with a first bias voltage to ionize the atomic species in proximity to the free-standing tips and attract the ionized atomic species from the substrate in the direction of the target electrode.

Schenkel, Thomas; Persaud, Arun; Kapadia, Rehan; Javey, Ali

2014-04-29T23:59:59.000Z

Note: This page contains sample records for the topic "ions miec oxides" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

MEASUREMENT OF CONDUCTING ION MOBILITY AND CONCENTRATIONIN ION-CONTAINING POLYMERS.  

E-Print Network [OSTI]

??In this study, we focus on how to measure conducting ion mobility and conducting ion number density in ion-containing polymers. From a fundamental side, we… (more)

Choi, U Hyeok

2009-01-01T23:59:59.000Z

262

Development of Nitric Oxide Oxidation Catalysts for the Fast SCR Reaction  

SciTech Connect (OSTI)

This study was undertaken in order to assess the potential for oxidizing NO to NO{sub 2} in flue gas environments, with the aim of promoting the so-called fast SCR reaction. In principle this can result in improved SCR kinetics and reduced SCR catalyst volumes. Prior to commencing experimental work, a literature study was undertaken to identify candidate catalysts for screening. Selection criteria comprised (1) proven (or likely) activity for NO oxidation, (2) low activity for SO2 oxidation (where data were available), and (3) inexpensive component materials. Catalysts identified included supported base metal oxides, supported and unsupported mixed metal oxides, and metal ion exchanged ZSM-5 (Fe, Co, Cu). For comparison purposes, several low loaded Pt catalysts (0.5 wt% Pt) were also included in the study. Screening experiments were conducted using a synthetic feed gas representative of flue gas from coal-fired utility boilers: [NO] = 250 ppm, [SO{sub 2}] = 0 or 2800 ppm, [H{sub 2}O] = 7%, [CO{sub 2}] = 12%, [O{sub 2}] = 3.5%, balance = N{sub 2}; T = 275-375 C. Studies conducted in the absence of SO{sub 2} revealed a number of supported and unsupported metal oxides to be extremely active for NO oxidation to NO{sub 2}. These included known catalysts (Co{sub 3}O{sub 4}/SiO{sub 2}, FeMnO{sub 3}, Cr{sub 2}O{sub 3}/TiO{sub 2}), as well as a new one identified in this work, CrFeO{sub x}/SiO{sub 2}. However, in the presence of SO{sub 2}, all the catalysts tested were found to be severely deactivated with respect to NO oxidation. Of these, Co{sub 3}O{sub 4}/SiO{sub 2}, Pt/ZSM-5 and Pt/CeO{sub 2} showed the highest activity for NO oxidation in the presence of SO{sub 2} (based on peak NO conversions to NO{sub 2}), although in no cases did the NO conversion exceed 7%. Reactor studies indicate there are two components to SO{sub 2}-induced deactivation of Co{sub 3}O{sub 4}/SiO{sub 2}, corresponding to an irreversible deactivation due to sulfation of the surface of the Co{sub 3}O{sub 4} phase, together with a reversible inhibition due to competitive adsorption of SO{sub 2} with NO on the catalyst. In an effort to minimize the deactivating effect of SO{sub 2} on Co{sub 3}O{sub 4}/SiO{sub 2}, two synthetic approaches were briefly examined. These consisted of (1) the incorporation of highly dispersed Co(II) ions in silica, as a non-sulfating matrix, via the sol-gel preparation of CoO-SiO{sub 2}; and (2) the sol-gel preparation of a mixed metal oxide, CoO-Nb{sub 2}O{sub 5}-SiO{sub 2}, with the aim of exploiting the acidity of the niobium oxide to minimize SO2 adsorption. While both catalysts showed almost no activity for NO oxidation in the absence of SO{sub 2}, when SO{sub 2} was present low activity was observed, indicating that SO{sub 2} acts as a promoter for NO oxidation over these materials. The kinetics of NO oxidation over Co{sub 3}O{sub 4}/SiO{sub 2}, Pt/SiO{sub 2} and Pt/CeO{sub 2} were also examined. Co{sub 3}O{sub 4}/SiO{sub 2} was found to exhibit a higher apparent activation energy for NO oxidation than the Pt catalysts, while the combined reaction order in NO and O{sub 2} for the three catalysts was very close to one. CO{sub 2} was found to have no effect on the kinetics of NO oxidation over these catalysts. The presence of H{sub 2}O caused a decrease in NO conversion for both Co{sub 3}O{sub 4}/SiO{sub 2} and Pt/CeO{sub 2} catalysts, while no effect was observed for Pt/SiO{sub 2}. The inhibiting effect of water was reversible and is attributed to competitive adsorption with the reactants. In sum, this study has shown that a variety of base metal catalysts are very active for NO oxidation. However, all of the catalysts studied are strongly deactivated in the presence of 2800 ppm SO{sub 2} at typical flue gas temperatures; consequently improving catalyst resistance to SO{sub x} will be a pre-requisite if the fast SCR concept is to be applied to coal-fired flue gas conditions.

Mark Crocker

2005-09-30T23:59:59.000Z

263

Ultrafast Graphene Oxide Humidity Sensors  

Science Journals Connector (OSTI)

Ultrafast Graphene Oxide Humidity Sensors ... Graphene oxide can be exploited in humidity and temperature sensors with a number of convenient features such as flexibility, transparency and suitability for large-scale manufacturing. ... Here we show that the two-dimensional nature of graphene oxide and its superpermeability to water combine to enable humidity sensors with unprecedented response speed (?30 ms response and recovery times). ...

Stefano Borini; Richard White; Di Wei; Michael Astley; Samiul Haque; Elisabetta Spigone; Nadine Harris; Jani Kivioja; Tapani Ryhänen

2013-11-09T23:59:59.000Z

264

Doped palladium containing oxidation catalysts  

DOE Patents [OSTI]

A supported oxidation catalyst includes a support having a metal oxide or metal salt, and mixed metal particles thereon. The mixed metal particles include first particles including a palladium compound, and second particles including a precious metal group (PMG) metal or PMG metal compound, wherein the PMG metal is not palladium. The oxidation catalyst may also be used as a gas sensor.

Mohajeri, Nahid

2014-02-18T23:59:59.000Z

265

IonBeamMicroFab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ion Beam Manufacture of Microscale Ion Beam Manufacture of Microscale Tools and Components Manufacturing Technologies Sandia Manufacturing Science &Technology's Focused Ion Beam (FIB) laboratory provides an opportunity for research, development and prototyping. Currently, our scientists are devel- oping methods for ion beam sculpting microscale tools, components and devices. This includes shaping of specialty tools such as end-mills, turning tools and indenters. Many of these have been used in ultra-precision machining DOE applications. Additionally, staff are developing the capability to ion mill geo- metrically-complex features and substrates. This includes the ability to sputter predeter- mined curved shapes of various symmetries and periodicities. Capabilities and Expertise * Two custom-built focused ion beam sys-

266

Mini ion trap mass spectrometer  

DOE Patents [OSTI]

An ion trap is described which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10{sup 9} and commercial mass spectrometers requiring 10{sup 4} ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products. 10 figs.

Dietrich, D.D.; Keville, R.F.

1995-09-19T23:59:59.000Z

267

Mini ion trap mass spectrometer  

DOE Patents [OSTI]

An ion trap which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10.sup.9 and commercial mass spectrometers requiring 10.sup.4 ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products.

Dietrich, Daniel D. (Livermore, CA); Keville, Robert F. (Valley Springs, CA)

1995-01-01T23:59:59.000Z

268

Ion exchange technology assessment report  

SciTech Connect (OSTI)

In the execution of its charter, the SRS Ion Exchange Technology Assessment Team has determined that ion exchange (IX) technology has evolved to the point where it should now be considered as a viable alternative to the SRS reference ITP/LW/PH process. The ion exchange media available today offer the ability to design ion exchange processing systems tailored to the unique physical and chemical properties of SRS soluble HLW's. The technical assessment of IX technology and its applicability to the processing of SRS soluble HLW has demonstrated that IX is unquestionably a viable technology. A task team was chartered to evaluate the technology of ion exchange and its potential for replacing the present In-Tank Precipitation and proposed Late Wash processes to remove Cs, Sr, and Pu from soluble salt solutions at the Savannah River Site. This report documents the ion exchange technology assessment and conclusions of the task team.

Duhn, E.F.

1992-01-01T23:59:59.000Z

269

Ion exchange technology assessment report  

SciTech Connect (OSTI)

In the execution of its charter, the SRS Ion Exchange Technology Assessment Team has determined that ion exchange (IX) technology has evolved to the point where it should now be considered as a viable alternative to the SRS reference ITP/LW/PH process. The ion exchange media available today offer the ability to design ion exchange processing systems tailored to the unique physical and chemical properties of SRS soluble HLW`s. The technical assessment of IX technology and its applicability to the processing of SRS soluble HLW has demonstrated that IX is unquestionably a viable technology. A task team was chartered to evaluate the technology of ion exchange and its potential for replacing the present In-Tank Precipitation and proposed Late Wash processes to remove Cs, Sr, and Pu from soluble salt solutions at the Savannah River Site. This report documents the ion exchange technology assessment and conclusions of the task team.

Duhn, E.F.

1992-12-31T23:59:59.000Z

270

The Self-Improvement of Lithium-Ion Batteries | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Architecture and Viral Disease Architecture and Viral Disease RNA Folding: A Little Cooperation Goes a Long Way A New Phase in Cellular Communication Engineering Thin-Film Oxide Interfaces Novel Materials Become Multifunctional at the Ultimate Quantum Limit Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed The Self-Improvement of Lithium-Ion Batteries NOVEMBER 30, 2012 Bookmark and Share Amorphous titanium oxide nanotubes, upon lithium insertion in a Li-ion battery, self-create the highest capacity cubic lithium titanium oxide structure. The search for clean and green energy in the 21st century requires a better and more efficient battery technology. The key to attaining that goal may

271

RHIC | Relativistic Heavy Ion Collider  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

breakthrough accelerator could collide electrons with heavy ions or protons at nearly the speed of light to create "snapshots" of the force binding all visible matter. Accelerator...

272

Lithium manganese oxide films fabricated by electron beam directed vapor deposition  

E-Print Network [OSTI]

material for high energy den- sity battery applications.7,8 Lithium­transition metal oxide films can.2. After annealing in air at 700 °C, thin films grown with a low jet speed had a cubic spinel structure Li/Li-ion batteries. © 2008 American Vacuum Society. DOI: 10.1116/1.2823488 I. INTRODUCTION Thin film

Wadley, Haydn

273

Parallel Polarization EPR Characterization of the Mn(III) Center of Oxidized Manganese Superoxide  

E-Print Network [OSTI]

Parallel Polarization EPR Characterization of the Mn(III) Center of Oxidized Manganese Superoxide polarization CW-EPR to investigate the paramagnetic Mn3+ ion of the MnSOD enzyme from Escherichia coli with a positive axial zero-field splitting value, D, are arranged as shown in Figure 1. An EPR signal from the Mn

Miller, Anne-Frances

274

Tributylphosphate Extraction Behavior of Bismuthate-Oxidized Americium  

SciTech Connect (OSTI)

Higher oxidation states of americium have long been known; however, options for their preparation in acidic solution are limited. The conventional choice, silver-catalyzed peroxydisulfate, is not useful at nitric acid concentrations above about 0.3 M. We investigated the use of sodium bismuthate as an oxidant for Am3+ in acidic solution. Room-temperature oxidation produced AmO2 2+ quantitatively, whereas oxidation at 80 °C produced AmO2+ quantitatively. The efficacy of the method for the production of oxidized americium was verified by fluoride precipitation and by spectroscopic absorbance measurements. We performed absorbance measurements using a conventional 1 cm cell for high americium concentrations and a 100 cm liquid waveguide capillary cell for low americium concentrations. Extinction coefficients for the absorbance of Am3+ at 503 nm, AmO2+ at 514 nm, and AmO2 2+ at 666 nm in 0.1 M nitric acid are reported. We also performed solvent extraction experiments with the hexavalent americium using the common actinide extraction ligand tributyl phosphate (TBP) for comparison to the other hexavalent actinides. Contact with 30% tributyl phosphate in dodecane reduced americium; it was nevertheless extracted using short contact times. The TBP extraction of AmO2 2+ over a range of nitric acid concentrations is shown for the first time and was found to be analogous to that of uranyl, neptunyl, and plutonyl ions.

Mincher; Leigh R. Martin; Nicholas C. Schmitt

2008-08-01T23:59:59.000Z

275

Graphene and Graphene Oxide: Biofunctionalization and Applications...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Graphene Oxide: Biofunctionalization and Applications in Biotechnology. Graphene and Graphene Oxide: Biofunctionalization and Applications in Biotechnology. Abstract: Graphene...

276

Effect of chromium oxide as active site over TiO2-PILC for selective catalytic oxidation of NO  

Science Journals Connector (OSTI)

Abstract This study introduced TiO2-pillared clays (TiO2-PILC) as a support for the catalytic oxidation of NO and analyzed the performance of chromium oxides as the active site of the oxidation process. Cr-based catalysts were prepared by a wet impregnation method. It was found that the 10 wt.% chromium doping on the support achieved the best catalytic activity. At 350°C, the NO conversion was 61% under conditions of GHSV = 23600 hr?1. The BET data showed that the support particles had a mesoporous structure. H2-TPR showed that Cr(10)TiP (10 wt.% Cr doping on TiO2-PILC) clearly exhibited a smooth single peak. EPR and XPS were used to elucidate the oxidation process. During the NO + O2 adsorption, the intensity of evolution of superoxide ions (O2?) increased. The content of Cr3+ on the surface of the used catalyst was 40.37%, but when the used catalyst continued adsorbing NO, the Cr3+ increased to 50.28%. Additionally, O?/O? increased markedly through the oxidation process. The NO conversion decreased when SO2 was added into the system, but when the SO2 was removed, the catalytic activity recovered almost up to the initial level. FT-IR spectra did not show a distinct characteristic peak of SO42?.

Jingxin Zhang; Shule Zhang; Wei Cai; Qin Zhong

2013-01-01T23:59:59.000Z

277

Catalytic Reactor For Oxidizing Mercury Vapor  

DOE Patents [OSTI]

A catalytic reactor (10) for oxidizing elemental mercury contained in flue gas is provided. The catalyst reactor (10) comprises within a flue gas conduit a perforated corona discharge plate (30a, b) having a plurality of through openings (33) and a plurality of projecting corona discharge electrodes (31); a perforated electrode plate (40a, b, c) having a plurality of through openings (43) axially aligned with the through openings (33) of the perforated corona discharge plate (30a, b) displaced from and opposing the tips of the corona discharge electrodes (31); and a catalyst member (60a, b, c, d) overlaying that face of the perforated electrode plate (40a, b, c) opposing the tips of the corona discharge electrodes (31). A uniformly distributed corona discharge plasma (1000) is intermittently generated between the plurality of corona discharge electrode tips (31) and the catalyst member (60a, b, c, d) when a stream of flue gas is passed through the conduit. During those periods when corona discharge (1000) is not being generated, the catalyst molecules of the catalyst member (60a, b, c, d) adsorb mercury vapor contained in the passing flue gas. During those periods when corona discharge (1000) is being generated, ions and active radicals contained in the generated corona discharge plasma (1000) desorb the mercury from the catalyst molecules of the catalyst member (60a, b, c, d), oxidizing the mercury in virtually simultaneous manner. The desorption process regenerates and activates the catalyst member molecules.

Helfritch, Dennis J. (Baltimore, MD)

1998-07-28T23:59:59.000Z

278

Transport of trivalent and hexavalent chromium through different ion-selective membranes in acidic aqueous media  

SciTech Connect (OSTI)

The aim of this work was to evaluate the transport of trivalent and hexavalent chromium through anion- and cation-selective membranes using two- and three-compartment electrodialysis cells. Tests were done with acidic solutions of trivalent chromium ions, Cr{sup 3+}, and hexavalent chromium ions, Cr{sub 2}O{sub 7}{sup 2{minus}}. In each situation the transport of metallic ions through the membrane was evaluated. In the tests with trivalent chromium, Nafion 417 and Selemion CMT cation-selective membranes were used, and in the tests with hexavalent chromium, Selemion AMT membrane was used. The influence of SO{sub 4}{sup 2{minus}} ions and of the concentration of H{sup +} ions in the solutions was also analyzed. Results showed the oxidation of the Cr{sup 3+} ion at the anode and the reduction of the Cr{sub 2}O{sub 7}{sup 2{minus}} ion at the cathode. The maximum yield in the process was reached when hexavalent chromium solutions were used in the absence of sulfate ions and a Selemion AMT membrane in a three-compartment cell.

Costa, R.F.D.; Rodrigues, M.A.S.; Ferreira, J.Z. [LACOR-PPGEM-UFRGS, Porto Alegre (Brazil)

1998-06-01T23:59:59.000Z

279

Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques  

E-Print Network [OSTI]

Relationships in the Li-Ion Battery Electrode Material LiNiAl foil may be used for Li ion battery cathode materials andElectrode materials, Li ion battery, Na ion battery, X-ray

Doeff, Marca M.

2013-01-01T23:59:59.000Z

280

Electrospun and oxidized cellulose materials for environmental remediation of heavy metals in groundwater  

SciTech Connect (OSTI)

This chapter focuses on the use of modified cellulosic materials in the field of environmental remediation. Two different chemical methods were involved in fabricating oxidized cellulose (OC), which has shown promise as a metal ion chelator in environmental applications. Electrospinning was utilized to introduce a more porous structure into an oxidized cellulose matrix. FTIR and Raman spectroscopy were used to study both the formation of OC and its surface complexation with metal ions. IR and Raman spectroscopic data demonstrate the formation of characteristic carboxylic groups in the structure of the final products and the successful formation of OC-metal complexes. Subsequent field tests at the Field Research Site at Oak Ridge National Laboratory confirmed the value of OC for sorption of both U and Th ions.

Han, Dong [Stony Brook University (SUNY); Halada, Gary P. [Stony Brook University (SUNY); Spalding, Brian Patrick [ORNL; Brooks, Scott C [ORNL

2009-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "ions miec oxides" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Apparatus and method of dissociating ions in a multipole ion guide  

DOE Patents [OSTI]

A method of dissociating ions in a multipole ion guide is disclosed. A stream of charged ions is supplied to the ion guide. A main RF field is applied to the ion guide to confine the ions through the ion guide. An excitation RF field is applied to one pair of rods of the ion guide. The ions undergo dissociation when the applied excitation RF field is resonant with a secular frequency of the ions. The multipole ion guide is, but not limited to, a quadrupole, a hexapole, and an octopole.

Webb, Ian K.; Tang, Keqi; Smith, Richard D.; Ibrahim, Yehia M.; Anderson, Gordon A.

2014-07-08T23:59:59.000Z

282

Efficient reversible electrodes for solid oxide electrolyzer cells  

DOE Patents [OSTI]

An electrolyzer cell is disclosed which includes a cathode to reduce an oxygen-containing molecule, such as H2O, CO2, or a combination thereof, to produce an oxygen ion and a fuel molecule, such as H2, CO, or a combination thereof. An electrolyte is coupled to the cathode to transport the oxygen ion to an anode. The anode is coupled to the electrolyte to receive the oxygen ion and produce oxygen gas therewith. In one embodiment, the anode may be fabricated to include an electron-conducting phase having a perovskite crystalline structure or structure similar thereto. This perovskite may have a chemical formula of substantially (Pr(1-x)Lax)(z-y)A'yBO(3-.differential.), wherein 0.ltoreq.x.ltoreq.0.5, 0.ltoreq.y.ltoreq.0.5, and 0.8.ltoreq.z.ltoreq.1.1. In another embodiment, the cathode includes an electron-conducting phase that contains nickel oxide intermixed with magnesium oxide.

Elangovan, Singaravelu (South Jordan, UT); Hartvigsen, Joseph J. (Kaysville, UT)

2011-07-12T23:59:59.000Z

283

Identification and characterization of a bacterial hydrosulphide ion channel  

SciTech Connect (OSTI)

The hydrosulphide ion (HS{sup -}) and its undissociated form, hydrogen sulphide (H{sub 2}S), which are believed to have been critical to the origin of life on Earth, remain important in physiology and cellular signalling. As a major metabolite in anaerobic bacterial growth, hydrogen sulphide is a product of both assimilatory and dissimilatory sulphate reduction. These pathways can reduce various oxidized sulphur compounds including sulphate, sulphite and thiosulphate. The dissimilatory sulphate reduction pathway uses this molecule as the terminal electron acceptor for anaerobic respiration, in which process it produces excess amounts of H{sub 2}S. The reduction of sulphite is a key intermediate step in all sulphate reduction pathways. In Clostridium and Salmonella, an inducible sulphite reductase is directly linked to the regeneration of NAD{sup +}, which has been suggested to have a role in energy production and growth, as well as in the detoxification of sulphite. Above a certain concentration threshold, both H{sub 2}S and HS{sup -} inhibit cell growth by binding the metal centres of enzymes and cytochrome oxidase, necessitating a release mechanism for the export of this toxic metabolite from the cell. Here we report the identification of a hydrosulphide ion channel in the pathogen Clostridium difficile through a combination of genetic, biochemical and functional approaches. The HS{sup -} channel is a member of the formate/nitrite transport family, in which about 50 hydrosulphide ion channels form a third subfamily alongside those for formate (FocA) and for nitrite (NirC). The hydrosulphide ion channel is permeable to formate and nitrite as well as to HS{sup -} ions. Such polyspecificity can be explained by the conserved ion selectivity filter observed in the channel's crystal structure. The channel has a low open probability and is tightly regulated, to avoid decoupling of the membrane proton gradient.

Czyzewski, Bryan K.; Wang, Da-Neng (NYUSM)

2012-10-26T23:59:59.000Z

284

Laser acceleration of ion beams  

E-Print Network [OSTI]

We consider methods of charged particle acceleration by means of high-intensity lasers. As an application we discuss a laser booster for heavy ion beams provided, e.g. by the Dubna nuclotron. Simple estimates show that a cascade of crossed laser beams would be necessary to provide additional acceleration to gold ions of the order of GeV/nucleon.

I. A. Egorova; A. V. Filatov; A. V. Prozorkevich; S. A. Smolyansky; D. B. Blaschke; M. Chubaryan

2007-02-01T23:59:59.000Z

285

Cryogenic silicon surface ion trap  

E-Print Network [OSTI]

Trapped ions are pre-eminent candidates for building quantum information processors and quantum simulators. They have been used to demonstrate quantum gates and algorithms, quantum error correction, and basic quantum simulations. However, to realise the full potential of such systems and make scalable trapped-ion quantum computing a reality, there exist a number of practical problems which must be solved. These include tackling the observed high ion-heating rates and creating scalable trap structures which can be simply and reliably produced. Here, we report on cryogenically operated silicon ion traps which can be rapidly and easily fabricated using standard semiconductor technologies. Single $^{40}$Ca$^+$ ions have been trapped and used to characterize the trap operation. Long ion lifetimes were observed with the traps exhibiting heating rates as low as $\\dot{\\bar{n}}=$ 0.33 phonons/s at an ion-electrode distance of 230 $\\mu$m. These results open many new avenues to arrays of micro-fabricated ion traps.

Michael Niedermayr; Kirill Lakhmanskiy; Muir Kumph; Stefan Partel; Johannes Edlinger; Michael Brownnutt; Rainer Blatt

2014-03-20T23:59:59.000Z

286

Review of ion accelerators  

SciTech Connect (OSTI)

The field of ion acceleration to higher energies has grown rapidly in the last years. Many new facilities as well as substantial upgrades of existing facilities have extended the mass and energy range of available beams. Perhaps more significant for the long-term development of the field has been the expansion in the applications of these beams, and the building of facilities dedicated to areas outside of nuclear physics. This review will cover many of these new developments. Emphasis will be placed on accelerators with final energies above 50 MeV/amu. Facilities such as superconducting cyclotrons and storage rings are adequately covered in other review papers, and so will not be covered here.

Alonso, J.

1990-06-01T23:59:59.000Z

287

Nonlinear integrable ion traps  

SciTech Connect (OSTI)

Quadrupole ion traps can be transformed into nonlinear traps with integrable motion by adding special electrostatic potentials. This can be done with both stationary potentials (electrostatic plus a uniform magnetic field) and with time-dependent electric potentials. These potentials are chosen such that the single particle Hamilton-Jacobi equations of motion are separable in some coordinate systems. The electrostatic potentials have several free adjustable parameters allowing for a quadrupole trap to be transformed into, for example, a double-well or a toroidal-well system. The particle motion remains regular, non-chaotic, integrable in quadratures, and stable for a wide range of parameters. We present two examples of how to realize such a system in case of a time-independent (the Penning trap) as well as a time-dependent (the Paul trap) configuration.

Nagaitsev, S.; /Fermilab; Danilov, V.; /SNS Project, Oak Ridge

2011-10-01T23:59:59.000Z

288

Photo ion spectrometer  

DOE Patents [OSTI]

A charged particle spectrometer for performing ultrasensitive quantitative analysis of selected atomic components removed from a sample. Significant improvements in performing energy and angular refocusing spectroscopy are accomplished by means of a two dimensional structure for generating predetermined electromagnetic field boundary conditions. Both resonance and non-resonance ionization of selected neutral atomic components allow accumulation of increased chemical information. A multiplexed operation between a SIMS mode and a neutral atomic component ionization mode with EARTOF analysis enables comparison of chemical information from secondary ions and neutral atomic components removed from the sample. An electronic system is described for switching high level signals, such as SIMS signals, directly to a transient recorder and through a charge amplifier to the transient recorder for a low level signal pulse counting mode, such as for a neutral atomic component ionization mode.

Gruen, Dieter M. (Downers Grove, IL); Young, Charles E. (Westmont, IL); Pellin, Michael J. (Naperville, IL)

1989-01-01T23:59:59.000Z

289

Photo ion spectrometer  

DOE Patents [OSTI]

A charged particle spectrometer is described for performing ultrasensitive quantitative analysis of selected atomic components removed from a sample. Significant improvements in performing energy and angular refocusing spectroscopy are accomplished by means of a two dimensional structure for generating predetermined electromagnetic field boundary conditions. Both resonance and non-resonance ionization of selected neutral atomic components allow accumulation of increased chemical information. A multiplexed operation between a SIMS mode and a neutral atomic component ionization mode with EARTOF analysis enables comparison of chemical information from secondary ions and neutral atomic components removed from the sample. An electronic system is described for switching high level signals, such as SIMS signals, directly to a transient recorder and through a charge amplifier to the transient recorder for a low level signal pulse counting mode, such as for a neutral atomic component ionization mode. 12 figs.

Gruen, D.M.; Young, C.E.; Pellin, M.J.

1989-12-26T23:59:59.000Z

290

Ion irradiation damage in ilmenite under cryogenic conditions  

SciTech Connect (OSTI)

A natural single crystal of ilmenite was irradiated at 100 K with 200 keV Ar{sup 2+}. Rutherford backscattering spectroscopy and ion channeling with 2 MeV He{sup +} ions were used to monitor damage accumulation in the surface region of the implanted crystal. At an irradiation fluence of 1 {times} 10{sup 15} Ar{sup 2+} cm{sup {minus}2}, considerable near-surface He{sup +} ion dechanneling was observed, to the extent that ion yield from a portion of the aligned crystal spectrum reached the yield level of a random spectrum. This observation suggests that the near-surface region of the crystal was amorphized by the implantation. Cross-sectional transmission electron microscopy and electron diffraction on this sample confirmed the presence of a 150 mm thick amorphous layer. These results are compared to similar investigations on geikielite (MgTiO{sub 3}) and spinel (MgAl{sub 2}O{sub 4}) to explore factors that may influence radiation damage response in oxides.

Mitchell, J.N.; Yu, N.; Devanathan, R.; Sickafus, K.E.; Nastasi, M.A. [Los Alamos National Lab., NM (United States). Materials Science and Technology Div.; Nord, G.L. Jr. [Geological Survey, Reston, VA (United States)

1996-11-01T23:59:59.000Z

291

Solenoid and monocusp ion source  

DOE Patents [OSTI]

An ion source which generates hydrogen ions having high atomic purity incorporates a solenoidal permanent magnets to increase the electron path length. In a sealed envelope, electrons emitted from a cathode traverse the magnetic field lines of a solenoid and a monocusp magnet between the cathode and a reflector at the monocusp. As electrons collide with gas, the molecular gas forms a plasma. An anode grazes the outer boundary of the plasma. Molecular ions and high energy electrons remain substantially on the cathode side of the cusp, but as the ions and electrons are scattered to the aperture side of the cusp, additional collisions create atomic ions. The increased electron path length allows for smaller diameters and lower operating pressures.

Brainard, John Paul (Albuquerque, NM); Burns, Erskine John Thomas (Albuquerque, NM); Draper, Charles Hadley (Albuquerque, NM)

1997-01-01T23:59:59.000Z

292

Solenoid and monocusp ion source  

DOE Patents [OSTI]

An ion source which generates hydrogen ions having high atomic purity incorporates a solenoidal permanent magnets to increase the electron path length. In a sealed envelope, electrons emitted from a cathode traverse the magnetic field lines of a solenoid and a monocusp magnet between the cathode and a reflector at the monocusp. As electrons collide with gas, the molecular gas forms a plasma. An anode grazes the outer boundary of the plasma. Molecular ions and high energy electrons remain substantially on the cathode side of the cusp, but as the ions and electrons are scattered to the aperture side of the cusp, additional collisions create atomic ions. The increased electron path length allows for smaller diameters and lower operating pressures. 6 figs.

Brainard, J.P.; Burns, E.J.T.; Draper, C.H.

1997-10-07T23:59:59.000Z

293

Ion chamber based neutron detectors  

DOE Patents [OSTI]

A neutron detector with monolithically integrated readout circuitry, including: a bonded semiconductor die; an ion chamber formed in the bonded semiconductor die; a first electrode and a second electrode formed in the ion chamber; a neutron absorbing material filling the ion chamber; and the readout circuitry which is electrically coupled to the first and second electrodes. The bonded semiconductor die includes an etched semiconductor substrate bonded to an active semiconductor substrate. The readout circuitry is formed in a portion of the active semiconductor substrate. The ion chamber has a substantially planar first surface on which the first electrode is formed and a substantially planar second surface, parallel to the first surface, on which the second electrode is formed. The distance between the first electrode and the second electrode may be equal to or less than the 50% attenuation length for neutrons in the neutron absorbing material filling the ion chamber.

Derzon, Mark S; Galambos, Paul C; Renzi, Ronald F

2014-12-16T23:59:59.000Z

294

Ion–assisted sputter deposition  

Science Journals Connector (OSTI)

...formation of special micro- and nano-features...plasma of a vacuum arc of macroparticles...Microstruc- ture and oxidation resistance of Ti1-x-y-zAlxCryYzN...combined steered- arc/unbalanced-magnetron-sputter...UBM) and combined arc/unbalanced magnetron...High temperature oxidation of (Ti1-xAlx...

2004-01-01T23:59:59.000Z

295

Scaling the Ion Trap Quantum Processor  

Science Journals Connector (OSTI)

...atomic ion species to act as "refrigerator" ions to quench the...scale beyond the QCCD in a modular architecture, one can link separate...trapped ion technology. (A) Modular distributed...A major challenge in both modular quantum computer...

C. Monroe; J. Kim

2013-03-08T23:59:59.000Z

296

4th Generation ECR Ion Sources  

E-Print Network [OSTI]

4th Generation ECR Ion Sources Claude M Lyneis, D. Leitner,to developing a 4 th generation ECR ion source with an RFover current 3 rd generation ECR ion sources, which operate

Lyneis, Claude M.

2010-01-01T23:59:59.000Z

297

Ion Rings for Magnetic Fusion  

SciTech Connect (OSTI)

This Final Technical Report presents the results of the program, Ion Rings for Magnetic Fusion, which was carried out under Department of Energy funding during the period August, 1993 to January, 2005. The central objective of the program was to study the properties of field-reversed configurations formed by ion rings. In order to reach this objective, our experimental program, called the Field-reversed Ion Ring Experiment, FIREX, undertook to develop an efficient, economical technology for the production of field-reversed ion rings. A field-reversed configuration (FRC) in which the azimuthal (field-reversing) current is carried by ions with gyro-radius comparable to the magnetic separatrix radius is called a field-reversed ion ring. A background plasma is required for charge neutralization of the ring, and this plasma will be confined within the ring's closed magnetic flux. Ion rings have long been of interest as the basis of compact magnetic fusion reactors, as the basis for a high-power accelerator for an inertial fusion driver, and for other applications of high power ion beams or plasmas of high energy density. Specifically, the FIREX program was intended to address the longstanding question of the contribution of large-orbit ions to the observed stability of experimental FRCs to the MHD tilt mode. Typical experimental FRCs with s {approx} 2-4, where s is the ratio of separatrix radius to ion gyro-radius, have been stable to tilting, but desired values for a fusion reactor, s > 20, should be unstable. The FIREX ring would consist of a plasma with large s for the background ions, but with s {approx} 1 for the ring ions. By varying the proportions of these two populations, the minimum proportion of large-orbit ions necessary for stability could be determined. The incorporation of large-orbit ions, perhaps by neutral-beam injection, into an FRC has been advanced for the purpose of stabilizing, heating, controlling angular momentum, and aiding the formation of a reactor-scale FRC, and the FIREX program was intended to test the ideas behind this approach. We will describe in this report the technological development path and advances in physics understanding that allowed FIREX to reach a regime in which ion rings were reproducibly created with up to about half the current necessary to produce field reversal. Unfortunately, the experiments were limited to this level by a fundamental, unanticipated aspect of the physics of strong ion rings in plasma. The FIREX ring is a strongly anisotropic, current-carrying population of ions moving faster than the Alfven speed in the background plasma. The rapidly changing ring current excites very large-amplitude Alfven waves in the plasma, and these waves strongly affect the ring, causing rapid energy loss in a way that is not compatible with the success of the ring trapping scenario around which FIREX was designed. The result was that FIREX rings were always very short-lived. We will discuss the implication of these results for possible future use of large-orbit ions in FRCs. In short, it appears that a certain range of the parameters characterizing the ring Alfven mach number and distribution function must be avoided to allow the existence of a long-lived energetic ion component in an FRC. This report will explain why FIREX experimental results cannot be directly scaled to quantitatively predict this range for a particular FRC configuration. This will require accurate, three-dimensional simulations. FIREX results do constitute a very good dataset for validating such a code, and simulations already carried out during this program provide a guide to the important physics involved.

Greenly, John, B.

2005-07-31T23:59:59.000Z

298

Oxidation resistant alloys, method for producing oxidation resistant alloys  

DOE Patents [OSTI]

A method for producing oxidation-resistant austenitic alloys for use at temperatures below 800.degree. C. comprising of: providing an alloy comprising, by weight %: 14-18% chromium, 15-18% nickel, 1-3% manganese, 1-2% molybdenum, 2-4% silicon, 0% aluminum and the balance being iron; heating the alloy to 800.degree. C. for between 175-250 hours prior to use in order to form a continuous silicon oxide film and another oxide film. The method provides a means of producing stainless steels with superior oxidation resistance at temperatures above 700.degree. C. at a low cost

Dunning, John S. (Corvallis, OR); Alman, David E. (Salem, OR)

2002-11-05T23:59:59.000Z

299

Oxidation resistant alloys, method for producing oxidation resistant alloys  

DOE Patents [OSTI]

A method for producing oxidation-resistant austenitic alloys for use at temperatures below 800 C. comprising of: providing an alloy comprising, by weight %: 14-18% chromium, 15-18% nickel, 1-3% manganese, 1-2% molybdenum, 2-4% silicon, 0% aluminum and the balance being iron; heating the alloy to 800 C. for between 175-250 hours prior to use in order to form a continuous silicon oxide film and another oxide film. The method provides a means of producing stainless steels with superior oxidation resistance at temperatures above 700 C. at a low cost

Dunning, John S.; Alman, David E.

2002-11-05T23:59:59.000Z

300

High Current Ion Sources and Injectors for Heavy Ion Fusion  

SciTech Connect (OSTI)

Heavy ion beam driven inertial fusion requires short ion beam pulses with high current and high brightness. Depending on the beam current and the number of beams in the driver system, the injector can use a large diameter surface ionization source or merge an array of small beamlets from a plasma source. In this paper, we review the scaling laws that govern the injector design and the various ion source options including the contact ionizer, the aluminosilicate source, the multicusp plasma source, and the MEVVA source.

Kwan, Joe W.

2005-02-15T23:59:59.000Z

Note: This page contains sample records for the topic "ions miec oxides" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Simulation of ion beam transport through the 400 Kv ion implanter at Michigan Ion Beam Laboratory  

SciTech Connect (OSTI)

The Michigan Ion Beam Laboratory houses a 400 kV ion implanter. An application that simulates the ion beam trajectories through the implanter from the ion source to the target was developed using the SIMION Registered-Sign code. The goals were to have a tool to develop an intuitive understanding of abstract physics phenomena and diagnose ion trajectories. Using this application, new implanter users of different fields in science quickly understand how the machine works and quickly learn to operate it. In this article we describe the implanter simulation application and compare the parameters of the implanter components obtained from the simulations with the measured ones. The overall agreement between the simulated and measured values of magnetic fields and electric potentials is {approx}10%.

Naab, F. U.; Toader, O. F.; Was, G. S. [Department of Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109-2104 (United States)

2013-04-19T23:59:59.000Z

302

Study of Ion Cooling and Ejection from Two Stage Linear Quadrupole Ion Trap consisted of RFQ ion guides  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ion Cooling and Ejection from Two Stage Linear Quadrupole Ion Trap consisted of RFQ ion guides Ion Cooling and Ejection from Two Stage Linear Quadrupole Ion Trap consisted of RFQ ion guides Kozlovskiy V.I., Filatov V. V., Shchepunov (UNIRIB, O.R.A.U. Oak Ridge, TN, USA) V. A., Brusov V. S., Pikhtelev A. R., Zelenov V. V. Introduction The primary objective of this work concerns linear quadrupole ion traps, which are commonly used to interface a continuous ion beam from an external source with a mass analyzer, requiring bunched or pulsed beams. We assume that the ions prepared for mass analysis, are well spatially shaped, and normalized by ion kinetic energy. (Slava, I don't understand the meaning of the previous sentence - I wrote it as I interpreted what you are saying - I may be all wrong) In our work, such a device was developed and built to interface a source of continuous ion beams and a

303

Ion transport through cell membrane channels  

E-Print Network [OSTI]

We discuss various models of ion transport through cell membrane channels. Recent experimental data shows that sizes of ion channels are compared to those of ions and that only few ions may be simultaneously in any single channel. Theoretical description of ion transport in such channels should therefore take into account interactions between ions and between ions and channel proteins. This is not satisfied by macroscopic continuum models based on Poisson-Nernst-Planck equations. More realistic descriptions of ion transport are offered by microscopic Brownian and molecular dynamics. One should also take into account a dynamical character of the channel structure. This is not yet addressed in the literature

Jan Gomulkiewicz; Jacek Miekisz; Stanislaw Miekisz

2007-06-05T23:59:59.000Z

304

Ion Beams - Radiation Effects Facility / Cyclotron Institute...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ion Beams Available Beams Beam Change Times Measurements Useful Graphs Various ion beams have been developed specifically for the Radiation Effects Facility. These beams...

305

Oxidation states study of nickel in solid oxide fuel cell anode using x-ray full-field spectroscopic nano-tomography  

Science Journals Connector (OSTI)

Identifying the chemical state and coupling with morphological information in three dimensions are of great interest in energy storage materials which typically involve reduction-oxidation cycling and structural evolution. Here we apply x-ray nano-tomography with multiple x-ray energies to study oxidation states of nickel(Ni) and nickel oxide phases in Ni-yttria-stabilized zirconia (YSZ) a typical anodematerial of solid oxide fuel cells(SOFC). We present a method to quantitatively identify the nickel-based oxides from Ni-YSZ anodecomposite and obtain chemical mapping as well as associated microstructures at nanometer scale in three dimensions. NiO particles manually placed on a Ni-YSZ compositeanode were used for validation of the method while no nickel oxides were found to be present within the electrode structure as remnants of the cell fabrication process. The application of the method can be widely applied to energy storage materials including SOFCs Li-ion batteries and supercapacitors as well as other systems for oxidation and reduction study.

Yu-chen Karen Chen-Wiegart; William M. Harris; Jeffrey J. Lombardo; Wilson K. S. Chiu; Jun Wang

2012-01-01T23:59:59.000Z

306

Enhanced Thermal Conductivity Oxide Fuels  

SciTech Connect (OSTI)

the purpose of this project was to investigate the feasibility of increasing the thermal conductivity of oxide fuels by adding small fractions of a high conductivity solid phase.

Alvin Solomon; Shripad Revankar; J. Kevin McCoy

2006-01-17T23:59:59.000Z

307

Anodic oxidation of zircaloy-2  

Science Journals Connector (OSTI)

The anodic polarization of zircaloy-2 in different electrolytic baths has been investigated in order to obtain thick oxide films with properties suitable for wear applications.

A. Conte; A. Borello; A. Cabrini

1976-07-01T23:59:59.000Z

308

Heavy ion fusion--Using heavy ions to make electricity  

E-Print Network [OSTI]

for a practical fusion power reactor. HIF is the only fusionenter the reactor chamber, and focus Heavy Ion Fusion ontoengineering test reactor. The promise of fusion as a power

Celata, C.M.

2004-01-01T23:59:59.000Z

309

Plasma ion sources and ion beam technology inmicrofabrications  

SciTech Connect (OSTI)

For over decades, focused ion beam (FIB) has been playing a very important role in microscale technology and research, among which, semiconductor microfabrication is one of its biggest application area. As the dimensions of IC devices are scaled down, it has shown the need for new ion beam tools and new approaches to the fabrication of small-scale devices. In the meanwhile, nanotechnology has also deeply involved in material science research and bioresearch in recent years. The conventional FIB systems which utilize liquid gallium ion sources to achieve nanometer scale resolution can no longer meet the various requirements raised from such a wide application area such as low contamination, high throughput and so on. The drive towards controlling materials properties at nanometer length scales relies on the availability of efficient tools. In this thesis, three novel ion beam tools have been developed and investigated as the alternatives for the conventional FIB systems in some particular applications. An integrated focused ion beam (FIB) and scanning electron microscope (SEM) system has been developed for direct doping or surface modification. This new instrument employs a mini-RF driven plasma source to generate focused ion beam with various ion species, a FEI two-lens electron (2LE) column for SEM imaging, and a five-axis manipulator system for sample positioning. An all-electrostatic two-lens column has been designed to focus the ion beam extracted from the source. Based on the Munro ion optics simulation, beam spot sizes as small as 100 nm can be achieved at beam energies between 5 to 35 keV if a 5 {micro}m-diameter extraction aperture is used. Smaller beam spot sizes can be obtained with smaller apertures at sacrifice of some beam current. The FEI 2LE column, which utilizes Schottky emission, electrostatic focusing optics, and stacked-disk column construction, can provide high-resolution (as small as 20 nm) imaging capability, with fairly long working distance (25 mm) at 25 keV beam voltage. Such an integrated FIB/SEM dual-beam system will not only improve the accuracy and reproducibility when performing ion beam sculpting and direct implantation processes, but will also enable researchers to perform cross-sectioning, imaging, and analysis with the same tool. A major advantage of this approach is the ability to produce a wide variety of ion species tailored to the application.

Ji, Lili

2007-09-01T23:59:59.000Z

310

Heavy Ion Collisions at RHIC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

at Heavy Ion Colliders at Heavy Ion Colliders Theory Drivers & View from LHC Urs Achim Wiedemann CERN PH-TH NSAC Implementation Subcommittee Hearings 7 September 2012 Heavy Ion Physics - Main Tools of Theorists Understanding properties of hot and dense matter from the elementary interactions in QCD High Energy Physics String Theory Computational Physics Fluid Dynamics Dissipative fluid dynamic description * Based on: E-p conservation: 2 nd law of thermodynamics: * Sensitive to properties of matter that are calculated from first principles in quantum field theory - EOS: and sound velocity - transport coefficients: shear , bulk viscosity, conductivities ...

311

Three chamber negative ion source  

DOE Patents [OSTI]

It is an object of this invention provide a negative ion source which efficiently provides a large flux of negatively ionized particles. This invention provides a volume source of negative ions which has a current density sufficient for magnetic fusion applications and has electrons suppressed from the output. It is still another object of this invention to provide a volume source of negative ions which can be electrostatically accelerated to high energies and subsequently neutralized to form a high energy neutral beam for use with a magnetically confined plasma.

Leung, K.N.; Ehlers, K.W.; Hiskes, J.R.

1983-11-10T23:59:59.000Z

312

Graphene/Li-ion battery  

Science Journals Connector (OSTI)

Density function theory calculations were carried out to clarify storage states of Lithium (Li) ions in graphene clusters. The adsorption energy spin polarization charge distribution electronic gap surface curvature and dipole momentum were calculated for each cluster. Li-ion adsorbed graphene doped by one Li atom is spin polarized so there would be different gaps for different spin polarization in electrons. Calculation results demonstrated that a smaller cluster between each two larger clusters is preferable because it could improve grapheneLi-ion batteries; consequently the most proper graphene anode structure has been proposed.

Narjes Kheirabadi; Azizollah Shafiekhani

2012-01-01T23:59:59.000Z

313

Precise and ultrafast molecular sieving through graphene oxide membranes  

E-Print Network [OSTI]

There has been intense interest in filtration and separation properties of graphene-based materials that can have well-defined nanometer pores and exhibit low frictional water flow inside them. Here we investigate molecular permeation through graphene oxide laminates. They are vacuum-tight in the dry state but, if immersed in water, act as molecular sieves blocking all solutes with hydrated radii larger than 4.5A. Smaller ions permeate through the membranes with little impedance, many orders of magnitude faster than the diffusion mechanism can account for. We explain this behavior by a network of nanocapillaries that open up in the hydrated state and accept only species that fit in. The ultrafast separation of small salts is attributed to an 'ion sponge' effect that results in highly concentrated salt solutions inside graphene capillaries.

R. K. Joshi; P. Carbone; F. C. Wang; V. G. Kravets; Y. Su; I. V. Grigorieva; H. A. Wu; A. K. Geim; R. R. Nair

2014-01-14T23:59:59.000Z

314

Bipolar plating of metal contacts onto oxide interconnection for solid oxide electrochemical cell  

DOE Patents [OSTI]

Disclosed is a method of forming an adherent metal deposit on a conducting layer of a tube sealed at one end. The tube is immersed with the sealed end down into an aqueous solution containing ions of the metal to be deposited. An ionically conducting aqueous fluid is placed inside the tube and a direct current is passed from a cathode inside the tube to an anode outside the tube. Also disclosed is a multi-layered solid oxide fuel cell tube which consists of an inner porous ceramic support tube, a porous air electrode covering the support tube, a non-porous electrolyte covering a portion of the air electrode, a non-porous conducting interconnection covering the remaining portion of the electrode, and a metal deposit on the interconnection.

Isenberg, Arnold O. (Forest Hills Boro, PA)

1987-01-01T23:59:59.000Z

315

Advanced quadrupole ion trap instrumentation for low level vehicle emissions measurements. CRADA final report for number ORNL93-0238  

SciTech Connect (OSTI)

Quadrupole ion trap mass spectrometry has been evaluated for its potential use in vehicle emissions measurements in vehicle test facilities as an analyzer for the top 15 compounds contributing to smog generation. A variety of ionization methods were explored including ion trap in situ chemical ionization, atmospheric sampling glow discharge ionization, and nitric oxide chemical ionization in a glow discharge ionization source coupled with anion trap mass spectrometer. Emphasis was placed on the determination of hydrocarbons and oxygenated hydrocarbons at parts per million to parts per billion levels. Ion trap in situ water chemical ionization and atmospheric sampling glow discharge ionization were both shown to be amenable to the analysis of arenes, alcohols, aldehydes and, to some degree, alkenes. Atmospheric sampling glow discharge also generated molecular ions of methyl-t-butyl ether (MTBE). Neither of these ionization methods, however, were found to generate diagnostic ions for the alkanes. Nitric oxide chemical ionization, on the other hand, was found to yield diagnostic ions for alkanes, alkenes, arenes, alcohols, aldehydes, and MTBE. The ability to measure a variety of hydrocarbons present at roughly 15 parts per billion at measurement rates of 3 Hz was demonstrated. These results have demonstrated that the ion trap has an excellent combination of sensitivity, specificity, speed, and flexibility with respect to the technical requirements of the top 15 analyzer.

McLuckey, S.A.; Buchanan, M.V.; Asano, K.G.; Hart, K.J.; Goeringer, D.E. [Oak Ridge National Lab., TN (United States); Dearth, M.A. [Ford Motor Co., Dearborn, MI (United States). Environmental Research Consortium

1997-09-01T23:59:59.000Z

316

Physical properties of erbium implanted tungsten oxide filmsdeposited by reactive dual magnetron sputtering  

SciTech Connect (OSTI)

Amorphous and partially crystalline WO3 thin films wereprepared by reactive dual magnetron sputtering and successively implantedby erbium ions with a fluence in the range from 7.7 x 1014 to 5 x 1015ions/cm2. The electrical and optical properties were studied as afunction of the film deposition parameters and the ion fluence. Ionimplantation caused a strong decrease of the resistivity, a moderatedecrease of the index of refraction and a moderate increase of theextinction coefficient in the visible and near infrared, while theoptical band gap remained almost unchanged. These effects could belargely ascribed to ion-induced oxygen deficiency. When annealed in air,the already low resistivities of the implanted samples decreased furtherup to 70oC, whereas oxidation, and hence a strong increase of theresistivity, was observed at higher annealing temperatures.

Mohamed, Sodky H.; Anders, Andre

2006-11-08T23:59:59.000Z

317

Catalytic wet oxidation of phenolic wastes  

E-Print Network [OSTI]

Possible catalyst deactivation problems High capital, low operating Supercritical water oxidation (SCWO) Feasible only at high organic concentra- tions High Fast reaction, complete oxidation Severe reaction conditions, canosion problems... of milder reaction conditions and is much less energy intensive. Thus, catalytic wet oxidation would be an alternative to solvent extraction, supercritical water oxidation, homogeneous oxidation, and incineration. It should also be feasible at low...

Thomas, Brook James

1995-01-01T23:59:59.000Z

318

Reactions of 15-crown-5 and bis-15-crown-5 ethers with metal acetylacetonate ions in the gas phase  

SciTech Connect (OSTI)

A study was carried out on the ion-molecule reactions of ions arising in the dissociation of ferric, cobaltic, chromic, manganous, neodymium(II), gallium(III), and indium(III) acetylacetonates upon electron impact with 15-crown-5 and bis-15-crown-5. The ratio of the yields of (acac)x-1 /SUP M+L/ ions is determined by the case of reduction of M /SUP x+1+/ to M /SUP x+/ and for (acac)/sub 3/M complexes, this ratio decreases in the series Nd, In, GA > Cr > Fe, Co. The rate constant for the formation of acacCoL/sup +/ ions is greater than for acacFeL/sup +/ ions. The possibility of fixing transition metals in unstable oxidation states by crown ethers is demonstrated in the case of nickel.

Timofeev, O.S.; Bogatskii, A.V.; Gren, A.I.; Lobach, A.V.; Nekarsov, Y.S.; Zagorevskii, D.V.

1985-05-20T23:59:59.000Z

319

Low Temperature Constrained Sintering of Cerium Gadolinium Oxide Films for Solid Oxide Fuel Cell Applications  

E-Print Network [OSTI]

Temperature Solid Oxide Fuel Cells, In: S.C. Singhal and M.solidoxide.html, Tubular Solid Oxide Fuel Cell Technology,Oxide Films for Solid Oxide Fuel Cell Applications by Jason

Nicholas, Jason.D.

2007-01-01T23:59:59.000Z

320

Efficient Ion Heating via Finite-Larmor-Radius Ion-Cyclotron Waves in a Plasma  

Science Journals Connector (OSTI)

Ion heating by externally launched ion Bernstein waves is investigated in the ACT-1 hydrogen plasma. Detailed measurements of wave absorption and of the ion temperature profiles have clearly identified various heating layers near the ion-cyclotron harmonics of deuteriumlike and tritiumlike ions. The observed bulk ion heating with heating quality factor of 10 eV/W.(1010 cm-3) and the power balance estimates suggest excellent overall efficiency for finite-Larmor-radius-ion-cyclotron-resonance-frequency heating.

M. Ono; G. A. Wurden; K. L. Wong

1984-01-02T23:59:59.000Z

Note: This page contains sample records for the topic "ions miec oxides" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

ION Engineering | Open Energy Information  

Open Energy Info (EERE)

ION Engineering ION Engineering Jump to: navigation, search Name ION Engineering Place Boulder, Colorado Zip 80301 Sector Carbon Product ION is the first clean-tech company to successfully integrate ionic liquids in solutions to capture carbon and other contaminants from gases Coordinates 42.74962°, -109.714163° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.74962,"lon":-109.714163,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

322

Quantum Engineering with Trapped Ions  

Science Journals Connector (OSTI)

We describe how to manipulate, and characterize the motional state of a trapped ion. We also give a method to measure an arbitrary motional observable in a single shot.

J. F. Poyatos; S. A. Gardiner; R. Walser…

1997-01-01T23:59:59.000Z

323

Ion Implantation for Surface Engineering  

Science Journals Connector (OSTI)

Low energy accelerators are used widely for the modification of materials and in research on material properties. The ion implantation of semiconductors becomes an industrial application of major importance. T...

P. Mazzoldi

1992-01-01T23:59:59.000Z

324

Metal-Ion-Mediated Reactions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Metal-Ion-Mediated Reactions Metal-Ion-Mediated Reactions Metal-Ion-Mediated Reactions Print Monday, 19 December 2011 18:29 While mononuclear, polynuclear, and polymeric metal complexes are most often synthesized by the reaction of a metal precursor and a presynthesized organic ligand, it is also possible to generate the ligand in situ from an easily available organic compound. This approach allows the reactivity of the metal ion to activate a proligand, transforming it through an in situ reaction, sometimes providing coordination compounds with ligands not accessible by conventional organic synthesis. The intense interest in the reactivity of coordinated ligands is mainly due to the necessity of interpreting the mechanisms of homogeneous metal-catalyzed processes, in which a substrate is activated upon its coordination to one or more metal sites. A coordinated oxime group contains three active sites (C, N, O) for reactivity.

325

Neon Ion Beam Lithography (NIBL)  

E-Print Network [OSTI]

Existing techniques for electron- and ion-beam lithography, routinely employed for nanoscale device fabrication and mask/mold prototyping, do not simultaneously achieve efficient (low fluence) exposure and high resolution. ...

Winston, Donald

326

RHIC | Electron-Ion Collider  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

particle accelerator could collide electrons with heavy ions or protons at nearly the speed of light to create rapid-fire, high-resolution "snapshots" of the force binding all...

327

Communication: CO oxidation by silver and gold cluster cations: Identification of different active oxygen species  

SciTech Connect (OSTI)

The oxidation of carbon monoxide with nitrous oxide on mass-selected Au{sub 3}{sup +} and Ag{sub 3}{sup +} clusters has been investigated under multicollision conditions in an octopole ion trap experiment. The comparative study reveals that for both gold and silver cations carbon dioxide is formed on the clusters. However, whereas in the case of Au{sub 3}{sup +} the cluster itself acts as reactive species that facilitates the formation of CO{sub 2} from N{sub 2}O and CO, for silver the oxidized clusters Ag{sub 3}O{sub x}{sup +} (n= 1-3) are identified as active in the CO oxidation reaction. Thus, in the case of the silver cluster cations N{sub 2}O is dissociated and one oxygen atom is suggested to directly react with CO, whereas a second kind of oxygen strongly bound to silver is acting as a substrate for the reaction.

Popolan, Denisia M.; Bernhardt, Thorsten M. [Institute of Surface Chemistry and Catalysis, University of Ulm, Albert-Einstein-Allee 47, 89069 Ulm (Germany)

2011-03-07T23:59:59.000Z

328

Electro-catalytic oxidation device for removing carbon from a fuel reformate  

DOE Patents [OSTI]

An electro-catalytic oxidation device (ECOD) for the removal of contaminates, preferably carbonaceous materials, from an influent comprising an ECOD anode, an ECOD cathode, and an ECOD electrolyte. The ECOD anode is at a temperature whereby the contaminate collects on the surface of the ECOD anode as a buildup. The ECOD anode is electrically connected to the ECOD cathode, which consumes the buildup producing electricity and carbon dioxide. The ECOD anode is porous and chemically active to the electro-catalytic oxidation of the contaminate. The ECOD cathode is exposed to oxygen, and made of a material which promotes the electro-chemical reduction of oxygen to oxidized ions. The ECOD electrolyte is non-permeable to gas, electrically insulating and a conductor to oxidized. The ECOD anode is connected to the fuel reformer and the fuel cell. The ECOD electrolyte is between and in ionic contact with the ECOD anode and the ECOD cathode.

Liu, Di-Jia (Naperville, IL)

2010-02-23T23:59:59.000Z

329

Reactive Ion Benjamin A. Small  

E-Print Network [OSTI]

(torr) plasma etching reactive ion etching ion milling m cm 100µm µm #12;5 Mechanics ~40 mTorrE380 kHz, 13.56 MHz ~30 sccm #12;6 Chemistry X X X X F- F- F-F- X F-F- F- F- F- R++ R++ R++ #12;7 Chemistry before opening · Silanes are explosive in the atmosphere #12;13 Bibliography Campbell, Stephen A

Garmestani, Hamid

330

Turbulent transport of energetic ions  

SciTech Connect (OSTI)

Approaching ITER operation, the issue of anomalous transport of fast particles becomes more and more important. This is partly because the ITER heating and current drive system relies heavily on neutral beam injection. Moreover burning plasmas are heated by fast fusion {alpha} particles.Fusion {alpha} particles are characterised by a fixed energy and an isotropic velocity distribution. Therefore they have gyroradii one magnitude larger than the thermal ions. The dependency of the particle diffusion of {alpha} test particles on the Kubo number K = VExB{tau}c/{lambda}c (VExB mean E x B velocity, {tau}c, {lambda}c correlation time and length of the turbulent potential) is presented. For different turbulent regimes, different dependency of the diffusion on the gyroradius is found. For large Kubo numbers, the transport is found to remain constant for gyroradii up to the correlation length of the potential, whereas it is drastically reduced in the small Kubo number regime.In the second part, a model for beam ions injected along the equilibrium magnetic field is described. The beam ions are treated gyrokinetically in a self-consistent way with the equilibrium distribution function taken as a shifted Maxwellian. The implications of such a model for the Vlasov equation, the field equations, and the calculation of moments and fluxes are discussed. Linear and nonlinear results, obtained with the gyrokinetic flux tube code GENE show the existence of a new instability driven by fast beam ions. The instability has a maximum growth rate at perpendicular wave numbers of ky{rho}s {approx} 0.15 and depends mainly on the beam velocity and the density gradient of the beam ions. This instability leads to a replacement of bulk ion particle transport by fast ion particle transport, connected to a strongly enhanced heat flux. In the presence of this instability, the turbulent particle and heat transport is dominated by fast ions.

Dannert, Tilman; Hauff, Thilo; Jenko, Frank; Guenter, Sibylle [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

2006-11-30T23:59:59.000Z

331

Ion transport membrane module and vessel system with directed internal gas flow  

DOE Patents [OSTI]

An ion transport membrane system comprising (a) a pressure vessel having an interior, an inlet adapted to introduce gas into the interior of the vessel, an outlet adapted to withdraw gas from the interior of the vessel, and an axis; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region; and (c) one or more gas flow control partitions disposed in the interior of the pressure vessel and adapted to change a direction of gas flow within the vessel.

Holmes, Michael Jerome (Thompson, ND); Ohrn, Theodore R. (Alliance, OH); Chen, Christopher Ming-Poh (Allentown, PA)

2010-02-09T23:59:59.000Z

332

Free Energy for Protonation Reaction in Lithium-Ion Battery Cathode Materials  

Science Journals Connector (OSTI)

Free Energy for Protonation Reaction in Lithium-Ion Battery Cathode Materials ... The electrochemically inert layered defect-rocksalt compound Li2MnO3 has been structurally integrated with more electrochemically active layered compounds in order to enhance Li-ion-battery cathode stability. ... Cathodes of the material had a discharge capacity of 200 mA-h/g, based on the mass of the Li-Mn oxide; an electrode capacity of >140 mA-h/g was achieved on cycling in a room-temp. ...

R. Benedek; M. M. Thackeray; A. van de Walle

2008-08-06T23:59:59.000Z

333

Metal oxide films on metal  

DOE Patents [OSTI]

A structure including a thin film of a conductive alkaline earth metal oxide selected from the group consisting of strontium ruthenium trioxide, calcium ruthenium trioxide, barium ruthenium trioxide, lanthanum-strontium cobalt oxide or mixed alkaline earth ruthenium trioxides thereof upon a thin film of a noble metal such as platinum is provided.

Wu, Xin D. (Los Alamos, NM); Tiwari, Prabhat (Los Alamos, NM)

1995-01-01T23:59:59.000Z

334

Ethylene Oxide for Soil Sterilization  

Science Journals Connector (OSTI)

... , this method may be time-consuming, and in view of the physical properties of ethylene oxide (solubility in water and boiling point 12-5 C.) it was considered ... consists of making up an aqueous solution to supply 2 or 4 c.c. of ethylene oxide in a given amount of water, using pre-chilled glassware and water. The ...

R. E. ROSE; R. W. BAILEY

1952-04-26T23:59:59.000Z

335

Assessment of Potential for Ion Driven Fast Ignition  

E-Print Network [OSTI]

mm radius ion beams Fast Ignition (laser or fast ion pulse)deg half cone angle Fast Ignition (laser or fast ion pulse)ion beam pulses for fast ignition, laser generated ion beams

2005-01-01T23:59:59.000Z

336

Ultra Supercritical Steamside Oxidation  

SciTech Connect (OSTI)

Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions, which are goals of the U.S. Department of Energy's Advanced Power Systems Initiatives. Most current coal power plants in the U.S. operate at a maximum steam temperature of 538 C. However, new supercritical plants worldwide are being brought into service with steam temperatures of up to 620 C. Current Advanced Power Systems goals include coal generation at 60% efficiency, which require steam temperatures of up to 760 C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections. Initial results of this research are presented.

Holcomb, Gordon R.; Cramer, Stephen D.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Ziomek-Moroz, Malgorzata

2005-01-01T23:59:59.000Z

337

Surface analysis of Zircaloy-2 implanted with carbon before and after oxidation in air at 500 °C  

Science Journals Connector (OSTI)

Zircaloy-2 specimens were implanted with carbon ions in the fluence range from 1 × 1016 to 1 × 1018 ions/cm2, using a MEVVA source at an extraction voltage of 40 kV at a maximum temperature of 380 °C. The valences and depth profiles of elements in the implanted surface of Zircaloy-2 were analyzed by X-ray photoelectron spectroscopy and Auger electron spectroscopy, respectively. Scanning electron microscopy was used to examine the micro-morphology of samples. The color of the oxidized samples was checked with an optical scanner. Glancing-angle X-ray diffraction at 0.3° incident angles was employed to examine the phase transformations of implanted samples before and after oxidation in the air at 500 °C for 2 h. Before oxidation, at fluences less than 5 × 1016 ions/cm2, hexagonal zirconia (H-ZrO0.35) was present. At a fluence of 1 × 1017 ions/cm2, rhombohedral zirconia (R-Zr3O) appeared. When the fluence reached 1 × 1018 ions/cm2, cubic zirconium carbide was produced. There are many pits, both deep and shallow, in the sample surfaces, both prior to oxidation and after oxidation. Oxidation in the air at 500 °C gave rise to black surfaces on all samples. The X-ray diffraction results showed that monoclinic and tetragonal zirconia were present in the surface of as-received sample. For implanted samples, monoclinic and tetragonal zirconia are still present, while cubic zirconium carbide is produced at all fluences. The presence of ZrC is attributed to the high-temperature, long-time (2 h) exposure.

D.Q. Peng; X.D. Bai; F. Pan; H. Sun; B.S. Chen

2006-01-01T23:59:59.000Z

338

Orthogonal ion injection apparatus and process  

DOE Patents [OSTI]

An orthogonal ion injection apparatus and process are described in which ions are directly injected into an ion guide orthogonal to the ion guide axis through an inlet opening located on a side of the ion guide. The end of the heated capillary is placed inside the ion guide such that the ions are directly injected into DC and RF fields inside the ion guide, which efficiently confines ions inside the ion guide. Liquid droplets created by the ionization source that are carried through the capillary into the ion guide are removed from the ion guide by a strong directional gas flow through an inlet opening on the opposite side of the ion guide. Strong DC and RF fields divert ions into the ion guide. In-guide orthogonal injection yields a noise level that is a factor of 1.5 to 2 lower than conventional inline injection known in the art. Signal intensities for low m/z ions are greater compared to convention inline injection under the same processing conditions.

Kurulugama, Ruwan T; Belov, Mikhail E

2014-04-15T23:59:59.000Z

339

Perspective Ion Channels: From Conductance to Structure  

E-Print Network [OSTI]

membrane is an essen- tially insurmountable barrier for the flow of ions; therefore, ion transport is carried out by membrane-embedded specialized proteins in the form of transporters and ion channels a purely electrical concept to a structural dynamics view of ions in- teracting with a membrane protein

Bezanilla, Francisco

340

Lens system for a photo ion spectrometer  

DOE Patents [OSTI]

A lens system in a photo ion spectrometer for manipulating a primary ion beam and ionized atomic component is disclosed. The atomic components are removed from a sample by a primary ion beam using the lens system, and the ions are extracted for analysis. The lens system further includes ionization resistant coatings for protecting the lens system. 8 figs.

Gruen, D.M.; Young, C.E.; Pellin, M.J.

1990-11-27T23:59:59.000Z

Note: This page contains sample records for the topic "ions miec oxides" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Lens system for a photo ion spectrometer  

DOE Patents [OSTI]

A lens system in a photo ion spectrometer for manipulating a primary ion beam and ionized atomic component. The atomic components are removed from a sample by a primary ion beam using the lens system, and the ions are extracted for analysis. The lens system further includes ionization resistant coatings for protecting the lens system.

Gruen, Dieter M. (Downers Grove, IL); Young, Charles E. (Westmont, IL); Pellin, Michael J. (Napersville, IL)

1990-01-01T23:59:59.000Z

342

Thermodynamics of electromechanically coupled mixed ionic-electronic conductors: Deformation potential, Vegard strains, and flexoelectric effect  

Science Journals Connector (OSTI)

Strong coupling among external voltage, electrochemical potentials, concentrations of electronic and ionic species, and strains is a ubiquitous feature of solid state mixed ionic-electronic conductors (MIECs), the materials of choice in devices ranging from electroresistive and memristive elements to ion batteries and fuel cells. Here, we analyze in detail the electromechanical coupling mechanisms and derive generalized bias-concentration-strain equations for MIECs including contributions of concentration-driven chemical expansion, deformation potential, and flexoelectric effect. This analysis is extended toward the bias-induced strains in the uniform and scanning-probe-microscopy-like geometries. Notably, the contribution of the electron-phonon and flexoelectric coupling to the local surface displacement of the mixed ionic-electronic conductor caused by the electric field scanning probe microscope tip has not been considered previously. The developed thermodynamic approach allows evolving the theoretical description of mechanical phenomena induced by the electric fields (electromechanical response) in solid state ionics toward analytical theory and phase-field modeling of the MIECs in different geometries and under varying electrical, chemical, and mechanical boundary conditions.

A. N. Morozovska; E. A. Eliseev; A. K. Tagantsev; S. L. Bravina; Long-Qing Chen; S. V. Kalinin

2011-05-11T23:59:59.000Z

343

Nanostructured Solid Oxide Fuel Cell Electrodes  

E-Print Network [OSTI]

post-Doping of Solid Oxide Fuel Cell Cathodes,? P.h.D.and V. I. Birss, in Solid Oxide Fuel Cells (SOFC IX), S. C.Nanostructured Solid Oxide Fuel Cell Electrodes By Tal Zvi

Sholklapper, Tal Zvi

2007-01-01T23:59:59.000Z

344

Detection of oxidation in human serum lipoproteins  

E-Print Network [OSTI]

A method for the oxidation of lipoproteins in vitro was developed using the free radical initiator, 2,2?-azobis-(2-amidinopropane) dihydrochloride (AAPH). Following in vitro oxidation, the susceptibility to oxidation of the serum samples...

Myers, Christine Lee

2006-04-12T23:59:59.000Z

345

Observations of strong ion-ion correlations in dense plasmas  

SciTech Connect (OSTI)

Using simultaneous spectrally, angularly, and temporally resolved x-ray scattering, we measure the pronounced ion-ion correlation peak in a strongly coupled plasma. Laser-driven shock-compressed aluminum at ?3× solid density is probed with high-energy photons at 17.9?keV created by molybdenum He-? emission in a laser-driven plasma source. The measured elastic scattering feature shows a well-pronounced correlation peak at a wave vector of k=4Å{sup ?1}. The magnitude of this correlation peak cannot be described by standard plasma theories employing a linear screened Coulomb potential. Advanced models, including a strong short-range repulsion due to the inner structure of the aluminum ions are however in good agreement with the scattering data. These studies have demonstrated a new highly accurate diagnostic technique to directly measure the state of compression and the ion-ion correlations. We have since applied this new method in single-shot wave-number resolved S(k) measurements to characterize the physical properties of dense plasmas.

Ma, T., E-mail: ma8@llnl.gov; Pak, A.; Landen, O. L.; Le Pape, S.; Turnbull, D.; Döppner, T. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)] [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Fletcher, L.; Galtier, E.; Hastings, J.; Lee, H. J.; Nagler, B.; Glenzer, S. H. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)] [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Chapman, D. A. [Plasma Physics Group, AWE plc, Reading RG7 4PR (United Kingdom) [Plasma Physics Group, AWE plc, Reading RG7 4PR (United Kingdom); Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Falcone, R. W. [Physics Department, University of California, Berkeley, California 94720 (United States)] [Physics Department, University of California, Berkeley, California 94720 (United States); Fortmann, C. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States) [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Department of Physics and Astronomy, University of California, Los Angeles, California 90095 (United States); Gericke, D. O. [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)] [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Gregori, G.; White, T. G. [University of Oxford, Clarendon Laboratory, Oxford OX1 3PU (United Kingdom)] [University of Oxford, Clarendon Laboratory, Oxford OX1 3PU (United Kingdom); Neumayer, P. [Extreme Matter Institute, GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany)] [Extreme Matter Institute, GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany); Vorberger, J. [Max Planck Institut für Physik komplexer Systeme, Nötthnizer Straße 38, 01187 Dresden (Germany)] [Max Planck Institut für Physik komplexer Systeme, Nötthnizer Straße 38, 01187 Dresden (Germany); and others

2014-05-15T23:59:59.000Z

346

The use of synthetic hydrocalcite as a chloride-ion getter for a barrier aluminum anodization process  

SciTech Connect (OSTI)

Chloride ion contamination at parts per billion concentrations plaques electrochemists studying barrier anodic aluminum oxide film growth and anodic aluminum oxide capacitor manufacturers. Chloride ion contamination slows film growth and reduces film quality. We have demonstrated that synthetic hydrocalcite substantially reduces the detrimental effects of chloride ion contamination in an aqueous electrolyte commonly used to grow barrier anodic aluminum oxide. We have determined that problems arise if precautions are not taken when using synthetic hydrocalcite as a chloride-ion getter in an aqueous electrolyte. Synthetic hydrocalcite is somewhat hydrophobic. If this powder is added directly to an aqueous electrolyte, some powder disperses; some floats to the top of the bath and forms scum that locally impedes anodic film formation. Commercially available powder contains a wide range of particle sizes including submicrometer-sized particles that can escape through filters into the electrolyte and cause processing problems. These problems can be over come if (1) the getter is placed in filter bags, (2) a piece of filter paper is used to skim trace amounts of getter floating on the top of the bath, (3) dummy runs are performed to scavenge chloride-ion loaded getter micelles dispersed in the bath, and (4) substrates are rinsed with a strong stream of deionized water to remove trace amounts of powder after anodization.

Panitz, J.K.G.; Sharp, D.J.

1995-11-01T23:59:59.000Z

347

New manganese catalyst for light alkane oxidation  

DOE Patents [OSTI]

Aluminophosphates containing manganese in the structural framework are employed for the oxidation of alkanes, for example the vapor phase oxidation of methane to methanol.

Durante, Vincent A. (West Chester, PA); Lyons, James E. (Wallingford, PA); Walker, Darrell W. (Visalia, CA); Marcus, Bonita K. (Radnor, PA)

1994-01-01T23:59:59.000Z

348

Theoretical overview: Light ion lessons, heavy ion hopes  

SciTech Connect (OSTI)

Experiments using light ion beams of atomic masses A {approximately} 30 have been underway since 1986 at the Brookhaven AGS and the CERN SPS at the respective energies {radical}s {approximately} 5 A GeV and 20 A GeV. The first truly heavy ion runs with a gold beam began this spring at the AGS. In this talk I will survey our progress towards an understanding of nuclear collision dynamics, focusing on those issues that are relevant to Au+Au at the AGS. In view of what we have already learned from the light ion data, I will argue that the prospects for producing matter at extreme density in these experiments are excellent.

Gavin, S.

1992-12-31T23:59:59.000Z

349

Theoretical overview: Light ion lessons, heavy ion hopes  

SciTech Connect (OSTI)

Experiments using light ion beams of atomic masses A [approximately] 30 have been underway since 1986 at the Brookhaven AGS and the CERN SPS at the respective energies [radical]s [approximately] 5 A GeV and 20 A GeV. The first truly heavy ion runs with a gold beam began this spring at the AGS. In this talk I will survey our progress towards an understanding of nuclear collision dynamics, focusing on those issues that are relevant to Au+Au at the AGS. In view of what we have already learned from the light ion data, I will argue that the prospects for producing matter at extreme density in these experiments are excellent.

Gavin, S.

1992-01-01T23:59:59.000Z

350

Correlation among electronegativity, cation polarizability, optical basicity and single bond strength of simple oxides  

SciTech Connect (OSTI)

A suitable relationship between free-cation polarizability and electronegativity of elements in different valence states and with the most common coordination numbers has been searched on the basis of the similarity in physical nature of both quantities. In general, the cation polarizability increases with decreasing element electronegativity. A systematic periodic change in the polarizability against the electronegativity has been observed in the isoelectronic series. It has been found that generally the optical basicity increases and the single bond strength of simple oxides decreases with decreasing the electronegativity. The observed trends have been discussed on the basis of electron donation ability of the oxide ions and type of chemical bonding in simple oxides. - Graphical abstract: This figure shows the single bond strength of simple oxides as a function of element electronegativity. A remarkable correlation exists between these independently obtained quantities. High values of electronegativity correspond to high values of single bond strength and vice versa. It is obvious that the observed trend in this figure is closely related to the type of chemical bonding in corresponding oxide. Highlights: Black-Right-Pointing-Pointer A suitable relationship between free-cation polarizability and electronegativity of elements was searched. Black-Right-Pointing-Pointer The cation polarizability increases with decreasing element electronegativity. Black-Right-Pointing-Pointer The single bond strength of simple oxides decreases with decreasing the electronegativity. Black-Right-Pointing-Pointer The observed trends were discussed on the basis of type of chemical bonding in simple oxides.

Dimitrov, Vesselin, E-mail: vesselin@uctm.edu [Department of Silicate Technology, University of Chemical Technology and Metallurgy, 8, Kl. Ohridski Blvd., Sofia 1756 (Bulgaria)] [Department of Silicate Technology, University of Chemical Technology and Metallurgy, 8, Kl. Ohridski Blvd., Sofia 1756 (Bulgaria); Komatsu, Takayuki, E-mail: komatsu@mst.nagaokaut.ac.jp [Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka-cho, Nagaoka 940-2188 (Japan)] [Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka-cho, Nagaoka 940-2188 (Japan)

2012-12-15T23:59:59.000Z

351

Role of oxygen vacancies in water vapor chemisorption and CO oxidation on titania  

SciTech Connect (OSTI)

Titanium dioxide is widely used as support for various important catalysts. Although nonstoichiometric titania behaves as an n-type semiconductor, the nature of the defect sites is not yet fully understood. In the present investigation the water vapor adsorption and carbon monoxide oxidation on TiO[sub 2] is explained considering oxygen vacancies as the major defect. It is also shown that incorporation of an Al[sup 3+] ion in TiO[sub 2] reduces the concentration of oxygen ion vacancies and inhibits the transformation of anatase to rutile.

Sengupta, G.; Chatterjee, R.N.; Maity, G.C. (Project and Development India Ltd. Sindri, Dhanbad, Bihar (India)); Satyanarayna, C.V.V. (RSIC, Bombay (India). Indian Inst. of Tech. Powai)

1995-03-01T23:59:59.000Z

352

Unique battery with an active membrane separator having uniform physico-chemically functionalized ion channels and a method making the same  

DOE Patents [OSTI]

The invention relates to a unique battery having an active, porous membrane and method of making the same. More specifically the invention relates to a sealed battery system having a porous, metal oxide membrane with uniform, physicochemically functionalized ion channels capable of adjustable ionic interaction. The physicochemically-active porous membrane purports dual functions: an electronic insulator (separator) and a unidirectional ion-transporter (electrolyte). The electrochemical cell membrane is activated for the transport of ions by contiguous ion coordination sites on the interior two-dimensional surfaces of the trans-membrane unidirectional pores. The membrane material is designed to have physicochemical interaction with ions. Control of the extent of the interactions between the ions and the interior pore walls of the membrane and other materials, chemicals, or structures contained within the pores provides adjustability of the ionic conductivity of the membrane.

Gerald, II, Rex E. (Brookfield, IL); Ruscic, Katarina J. (Chicago, IL); Sears, Devin N. (Spruce Grove, CA); Smith, Luis J. (Natick, MA); Klingler, Robert J. (Glenview, IL); Rathke, Jerome W. (Homer Glen, IL)

2012-02-21T23:59:59.000Z

353

In situ examination of tin oxide atomic layer deposition using quartz crystal microbalance and Fourier transform infrared techniques  

E-Print Network [OSTI]

-type semiconductor metal oxide that has many applications in various fields due to its special optical, electrical capacity anode for next gen- eration lithium ion batteries.3,4 SnO2 can also be used as a catalyst typically around 10-2 cm. The adsorp- tion of O2 from air removes the electron charge carriers from

George, Steven M.

354

Abstract No. pan0505 Sorption of Heavy Metal Contaminants onto Hydrated Ferric Oxides: Mechanistic Modeling using X-ray  

E-Print Network [OSTI]

Abstract No. pan0505 Sorption of Heavy Metal Contaminants onto Hydrated Ferric Oxides: Mechanistic. Hence, to understand the mobility and bioavailability of these metal contaminants, these sorption suggesting that sorption of these metal ions onto ferrihydrite can be described by one average type of site

Sparks, Donald L.

355

Processing of Non-PFP Plutonium Oxide in Hanford Plants  

SciTech Connect (OSTI)

Processing of non-irradiated plutonium oxide, PuO2, scrap for recovery of plutonium values occurred routinely at Hanford’s Plutonium Finishing Plant (PFP) in glovebox line operations. Plutonium oxide is difficult to dissolve, particularly if it has been high-fired; i.e., calcined to temperatures above about 400°C and much of it was. Dissolution of the PuO2 in the scrap typically was performed in PFP’s Miscellaneous Treatment line using nitric acid (HNO3) containing some source of fluoride ion, F-, such as hydrofluoric acid (HF), sodium fluoride (NaF), or calcium fluoride (CaF2). The HNO3 concentration generally was 6 M or higher whereas the fluoride concentration was ~0.5 M or lower. At higher fluoride concentrations, plutonium fluoride (PuF4) would precipitate, thus limiting the plutonium dissolution. Some plutonium-bearing scrap also contained PuF4 and thus required no added fluoride. Once the plutonium scrap was dissolved, the excess fluoride was complexed with aluminum ion, Al3+, added as aluminum nitrate, Al(NO3)3•9H2O, to limit collateral damage to the process equipment by the corrosive fluoride. Aluminum nitrate also was added in low quantities in processing PuF4.

Jones, Susan A.; Delegard, Calvin H.

2011-03-10T23:59:59.000Z

356

Characterization of an iodine-based ionic liquid ion source and studies on ion fragmentation  

E-Print Network [OSTI]

Electrosprays are a well studied source of charged droplets and ions. A specific subclass is the ionic liquid ion source (ILIS), which produce ion beams from the electrostatically stressed meniscus of ionic liquids. ILIS ...

Fedkiw, Timothy Peter

2010-01-01T23:59:59.000Z

357

Calculation of the ion transverse velocity distribution function under ion cyclotron resonance heating  

Science Journals Connector (OSTI)

The ion transverse velocity distribution functions and the fraction ? of ions heated above a certain energy W 1 are calculated as applied to the ion cyclotron resonance heating method of isotope s...

A. I. Karchevskii; E. P. Potanin

2004-06-01T23:59:59.000Z

358

Ion Heating in ATC Tokamak in the Ion-Cyclotron Range of Frequencies  

Science Journals Connector (OSTI)

Ion heating by irradiation of rf fields in the ion-cyclotron range of frequencies is investigated using several diagnostic techniques. It is shown that substantial heating of the bulk of the ions can be achieved by this method.

H. Takahashi; C. C. Daughney; R. A. Ellis; Jr.; R. J. Goldton; H. Hsuan; T. Nagashima; F. J. Paoloni; A. J. Sivo; S. Suckewer

1977-07-04T23:59:59.000Z

359

LITERATURE REVIEW FOR OXALATE OXIDATION PROCESSES AND PLUTONIUM OXALATE SOLUBILITY  

SciTech Connect (OSTI)

A literature review of oxalate oxidation processes finds that manganese(II)-catalyzed nitric acid oxidation of oxalate in precipitate filtrate is a viable and well-documented process. The process has been operated on the large scale at Savannah River in the past, including oxidation of 20 tons of oxalic acid in F-Canyon. Research data under a variety of conditions show the process to be robust. This process is recommended for oxalate destruction in H-Canyon in the upcoming program to produce feed for the MOX facility. Prevention of plutonium oxalate precipitation in filtrate can be achieved by concentrated nitric acid/ferric nitrate sequestration of oxalate. Organic complexants do not appear practical to sequester plutonium. Testing is proposed to confirm the literature and calculation findings of this review at projected operating conditions for the upcoming campaign. H Canyon plans to commence conversion of plutonium metal to low-fired plutonium oxide in 2012 for eventual use in the Mixed Oxide Fuel (MOX) Facility. The flowsheet includes sequential operations of metal dissolution, ion exchange, elution, oxalate precipitation, filtration, and calcination. All processes beyond dissolution will occur in HB-Line. The filtration step produces an aqueous filtrate that may have as much as 4 M nitric acid and 0.15 M oxalate. The oxalate needs to be removed from the stream to prevent possible downstream precipitation of residual plutonium when the solution is processed in H Canyon. In addition, sending the oxalate to the waste tank farm is undesirable. This report addresses the processing options for destroying the oxalate in existing H Canyon equipment.

Nash, C.

2012-02-03T23:59:59.000Z

360

Evidence of the ion's impact position effect on SEB in N-channel power MOSFETs  

SciTech Connect (OSTI)

Triggering of Single Event Burnout (SEB) in Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) is studied by means of experiments and simulations based on real structures. Conditions for destructive and nondestructive events are investigated through current duration observations. The effect of the ion's impact position is experimentally pointed out. Finally, further investigation with 2D MEDICI simulations show that the different regions of the MOSFET cell indeed exhibit different sensitivity with respect to burnout triggering.

Dachs, C.; Roubaud, F.; Palau, J.M.; Bruguier, G.; Gasiot, J. (Univ. Montpellier II (France). Centre d'Electronique de Montpellier); Tastet, P. (Centre National d'Etudes Spatiales, Toulouse (France))

1994-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "ions miec oxides" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

RHIC | Relativistic Heavy Ion Collider  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Relativistic Heavy Ion Collider Relativistic Heavy Ion Collider Photo of LINAC The Relativistic Heavy Ion Collider (RHIC) is a world-class particle accelerator at Brookhaven National Laboratory where physicists are exploring the most fundamental forces and properties of matter and the early universe. RHIC accelerates beams of particles (e.g., the nuclei of heavy atoms such as gold) to nearly the speed of light, and smashes them together to recreate a state of matter thought to have existed immediately after the Big Bang some 13.8 billion years ago. STAR and PHENIX, two large detectors located around the 2.4-mile-circumference accelerator, take "snapshots" of these collisions to reveal a glimpse of the basic constituents of visible matter, quarks and gluons. Understanding matter at

362

RHIC | Relativistic Heavy Ion Collider  

Broader source: All U.S. Department of Energy (DOE) Office Webpages

Brookhaven National Laboratory Brookhaven National Laboratory search U.S. Department of Energy logo Home RHIC Science News Images Videos For Scientists Björn Schenke 490th Brookhaven Lecture, 12/18 Join Björn Schenke of Brookhaven Lab's Physics Department for the 490th Brookhaven Lecture, titled 'The Shape and Flow of Heavy Ion Collisions,' on Wednesday, Dec. 18, at 4 p.m. in Berkner Hall. droplets Tiny Drops of Hot Quark Soup-How Small Can They Be? New analyses indicate that collisions of small particles with large gold nuclei at the Relativistic Heavy Ion Collider may be serving up miniscule servings of hot quark-gluon plasma. RHIC Physics RHIC is the first machine in the world capable of colliding ions as heavy as gold. The Spin Puzzle RHIC is the world's only machine capable of colliding beams of polarized

363

Heat transport through ion crystals  

E-Print Network [OSTI]

We study the thermodynamical properties of crystals of trapped ions which are laser cooled to two different temperatures in two separate regions. We show that these properties strongly depend on the structure of the ion crystal. Such structure can be changed by varying the trap parameters and undergoes a series of phase transitions from linear to zig-zag or helicoidal configurations. Thus, we show that these systems are ideal candidates to observe and control the transition from anomalous to normal heat transport. All structures behave as `heat superconductors', with a thermal conductivity increasing linearly with system size and a vanishing thermal gradient inside the system. However, zig-zag and helicoidal crystals turn out to be hyper sensitive to disorder having a linear temperature profile and a length independent conductivity. Interestingly, disordered 2D ion crystals are heat insulators. Sensitivity to disorder is much smaller in the 1D case.

Nahuel Freitas; Esteban Martinez; Juan Pablo Paz

2013-12-23T23:59:59.000Z

364

Quantum reservoirs with ion chains  

E-Print Network [OSTI]

Ion chains are promising platforms for studying and simulating quantum reservoirs. One interesting feature is that their vibrational modes can mediate entanglement between two objects which are coupled through the vibrational modes of the chain. In this work we analyse entanglement between the transverse vibrations of two heavy impurity defects embedded in an ion chain, which is generated by the coupling with the chain vibrations. We verify general scaling properties of the defects dynamics and demonstrate that entanglement between the defects can be a stationary feature of these dynamics. We then analyse entanglement in chains composed of tens of ions and propose a measurement scheme which allows one to verify the existence of the predicted entangled state.

B. G. Taketani; T. Fogarty; E. Kajari; Th. Busch; Giovanna Morigi

2014-02-06T23:59:59.000Z

365

Structure, adhesion, and stability of metal/oxide and oxide/oxide interfaces  

SciTech Connect (OSTI)

Studies of structural, electronic, and chemical properties of metal/oxide and oxide/oxide interfaces were performed on well-defined interfaces that created by depositing ultra-thin potassium and aluminum films and their oxides onto single crystal TiO[sub 2] and NiO surfaces. Work focused on determining the structure, growth mechanisms, and morphologies of metal and oxide films as they are deposited an single crystal oxide surfaces using RHEED and atomic force microscopy probing electronic structure, bonding and chemical interactions at the interfaces using x-ray and uv photoelectron spectroscopies (XPS, UPS) and Auger electron spectroscopy (AES), and understanding factors affecting stability and reactivity of the interface regions including the role of defects and impurities. Results indicate that kinetic effects have an important influence on interface structure and composition, and they also show that defects in the oxide substrate induce new electronic states at the interface which play a major role in cation-anion bonding and interface interactions. The results establish a link between electronic and chemical bonding properties and the interface structure and morphology, which is required to successfully manipulate the interfacial properties of advanced ceramic materials.

Lad, R.J.

1992-11-01T23:59:59.000Z

366

Ion Sources for High Energy Ion Implantation at BNL | U.S. DOE...  

Office of Science (SC) Website

Ion Sources for High Energy Ion Implantation at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science...

367

Relating to monitoring ion sources  

DOE Patents [OSTI]

The apparatus and method provide techniques for monitoring the position on alpha contamination in or on items or locations. The technique is particularly applicable to pipes, conduits and other locations to which access is difficult. The technique uses indirect monitoring of alpha emissions by detecting ions generated by the alpha emissions. The medium containing the ions is moved in a controlled manner frog in proximity with the item or location to the detecting unit and the signals achieved over time are used to generate alpha source position information.

Orr, Christopher Henry (Calderbridge, GB); Luff, Craig Janson (Calderbridge, GB); Dockray, Thomas (Calderbridge, GB); Macarthur, Duncan Whittemore (Los Alamos, NM); Bounds, John Alan (Los Alamos, NM)

2002-01-01T23:59:59.000Z

368

Pionic Fusion of Heavy Ions  

Science Journals Connector (OSTI)

We report the first experimental observation of the pionic fusion of two heavy ions. The 12C(12C,24Mg)?0 and 12C(12C,24Na)?+ cross sections have been measured to be 208±38 and 182±84 pb, respectively, at Ecm=137MeV. This cross section for heavy-ion pion production, at an energy just 6 MeV above the absolute energy-conservation limit, constrains possible production mechanisms to incorporate the kinetic energy of the entire projectile-target system as well as the binding energy gained in fusion.

D. Horn; G. C. Ball; D. R. Bowman; W. G. Davies; D. Fox; A. Galindo-Uribarri; A. C. Hayes; G. Savard; L. Beaulieu; Y. Larochelle; C. St-Pierre

1996-09-16T23:59:59.000Z

369

Grafted methylenediphosphonate ion exchange resins  

DOE Patents [OSTI]

An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorous. The pendent groups have the formula ##STR1## wherein R is hydrogen, a cation or mixtures thereof; and R.sup.1 is hydrogen or an C.sub.1 -C.sub.2 alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange resin are also disclosed.

Trochimcznk, Andrzej W. (Knoxbille, TN); Gatrone, Ralph C. (Plymouth, PA); Alexandratos, Spiro (Knoxville, TN); Horwitz, E. Philip (Naperville, IL)

1997-01-01T23:59:59.000Z

370

Grafted methylenediphosphonate ion exchange resins  

DOE Patents [OSTI]

An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorous. The pendent groups have the formula ##STR1## wherein R is hydrogen, a cation or mixtures thereof; and R.sup.1 is hydrogen or an C.sub.1 -C.sub.2 alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange-resin are also disclosed.

Trochimcznk, Andrzej W. (Knoxville, TN); Gatrone, Ralph C. (Plymouth, PA); Alexandratos, Spiro (Knoxville, TN); Horwitz, E. Philip (Naperville, IL)

1998-01-27T23:59:59.000Z

371

Central collisions of heavy ions  

SciTech Connect (OSTI)

This report describes the activities of the Heavy Ion Physics Group at the University of California, Riverside from October 1, 1990 to September 30, 1991. During this period, our program focuses on particle production at AGS energies, and correlation studies at the Bevalac in nucleus central collisions. We participated in the preparation of letters of intent for two RHIC experiments -- the OASIS proposal and the Di-Muon proposal -- and worked on two RHIC R D efforts -- a silicon strip detector project and a muon-identifier project. A small fraction of time was also devoted to physics programs outside the realm of heavy ion reactions by several individuals.

Fung, Sun-yiu.

1991-10-01T23:59:59.000Z

372

Single crystal oxide and oxide/oxide eutectic fibres for high temperature composites  

Science Journals Connector (OSTI)

The utilisation of fibre-reinforced metal, intermetallic and ceramic matrix composites (CMCs) in gas turbine engines offers the potential of improved fuel efficiency, higher operating temperature and greater thrust to weight ratio. The development of ceramic fibres with high strength, excellent strength retention at elevated temperatures and good creep resistance is essential to the successful implementation of composites in various high temperature components. Several single crystal oxide and oxide/oxide eutectic fibres have been developed to meet the demanding performance requirements. Recent progress made on developing these fibers will be discussed.

J.-M. Yang

2001-01-01T23:59:59.000Z

373

The catalytic oxidation of propane  

E-Print Network [OSTI]

THE CATALYTIC OXIDATION OP PROPANE A Thesis By Charles Frederick Sandersont * * June 1949 Approval as to style and content recommended: Head of the Department of Chemical Engineering THE CATALYTICi OXIDATTON OF PROPANE A Thesis By Charles... Frederick ;Sandersonit * June 1949 THE CATALYTIC OXIDATION OP PROPANE A Thesis Submitted to the Faculty of the Agricultural and Mechanical College of Texas in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Major...

Sanderson, Charles Frederick

2013-10-04T23:59:59.000Z

374

Ion mobility spectrometer with virtual aperture grid  

DOE Patents [OSTI]

An ion mobility spectrometer does not require a physical aperture grid to prevent premature ion detector response. The last electrodes adjacent to the ion collector (typically the last four or five) have an electrode pitch that is less than the width of the ion swarm and each of the adjacent electrodes is connected to a source of free charge, thereby providing a virtual aperture grid at the end of the drift region that shields the ion collector from the mirror current of the approaching ion swarm. The virtual aperture grid is less complex in assembly and function and is less sensitive to vibrations than the physical aperture grid.

Pfeifer, Kent B. (Los Lunas, NM); Rumpf, Arthur N. (Albuquerque, NM)

2010-11-23T23:59:59.000Z

375

Stored-Ion Collisional Relaxation to Equilibrium  

E-Print Network [OSTI]

is the ion mass in amu, T is the temperature in K, p is the ion density in cm and lnA is a shielding parameter. The simulations by Kho show that the mean ion energy is closely ap- proached in about one time constant, and that the high- energy tail... is the ion mass in amu, T is the temperature in K, p is the ion density in cm and lnA is a shielding parameter. The simulations by Kho show that the mean ion energy is closely ap- proached in about one time constant, and that the high- energy tail...

Church, David A.

1988-01-01T23:59:59.000Z

376

STABLE HIGH CONDUCTIVITY BILAYERED ELECTROLYTES FOR LOW TEMPERATURE SOLID OXIDE FUEL CELLS  

SciTech Connect (OSTI)

A bilayer electrolyte consisting of acceptor-doped ceria (on the fuel/reducing side) and cubic-stabilized bismuth oxide (on the oxidizing side) was developed. The bilayer electrolyte that was developed showed significant improvement in open-circuit potential versus a typical ceria based SOFC. Moreover, the OCP of the bilayer cells increased as the thickness of the bismuth oxide layer increased relative to the ceria layer. Thereby, verifying the bilayer concept. Although, because of the absence of a suitable cathode (a problem we are still working assiduously to solve), we were unable to obtain power density curves, our modeling work predicts a reduction in electrolyte area specific resistance of two orders of magnitude over cubic-stabilized zirconia and projects a maximum power density of 9 W/m{sup 2} at 800 C and 0.09 W/m{sup 2} at 500 C. Towards the development of the bilayer electrolyte other significant strides were made. Among these were, first, the development of a, bismuth oxide based, oxide ion conductor with the highest conductivity (0.56 S/cm at 800 C and 0.043 S/cm at 500 C) known to date. Second, a physical model of the defect transport mechanisms and the driving forces for the ordering phenomena in bismuth oxide and other fluorite systems was developed. Third, a model for point defect transport in oxide mixed ionic-electronic conductors was developed, without the typical assumption of a uniform distribution of ions and including the effect of variable loads on the transport properties of an SOFC (with either a single or bilayer electrolyte).

Eric D. Wachsman; Keith L. Duncan

2002-09-30T23:59:59.000Z

377

Sulfur-graphene oxide material for lithium-sulfur battery cathodes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sulfur-graphene oxide material for lithium-sulfur battery cathodes Sulfur-graphene oxide material for lithium-sulfur battery cathodes Theoretical specific energy and theoretical energy density Scanning electron micrograph of the GO-S nanocomposite June 2013 Searching for a safer, less expensive alternative to today's lithium-ion batteries, scientists have turned to lithium-sulfur as a possible chemistry for next-generation batteries. Li/S batteries have several times the energy storage capacity of the best currently available rechargeable Li-ion battery, and sulfur is inexpensive and nontoxic. Current batteries using this chemistry, however, suffer from extremely short cycle life-they don't last through many charge-discharge cycles before they fail. A research team led by Elton Cairns and Yuegang Zhang has developed a new

378

Crystalline to amorphous phase transition of tin oxide nanocrystals induced by SHI at low temperature  

SciTech Connect (OSTI)

Tin oxide (SnO{sub 2}) thin films were deposited using pulsed laser deposition (PLD) technique on Si substrates. The as-deposited films were irradiated using 100 MeV Ag ions at different fluences ranging from 3x10{sup 13} to 3x10{sup 14} ions/cm{sup 2} at an incidence angle of 75 deg. with respect to surface normal at liquid nitrogen (LN2) temperature. The as-deposited and irradiated films have been characterized using X-ray diffraction (XRD) and atomic force microscopy (AFM) techniques to study the modifications in structural and surface morphological properties. Nanocrystalline film become completely amorphous and nanograins of tin oxide disappeared from the surface as indicated by XRD spectra and AFM micrographs respectively.

Kumar, Vijay; Pratap, Deepti; Jain, Anshul; Agarwal, D. C.; Sulania, I.; Tripathi, A.; Chaudhary, R. J.; Chauhan, R. S. [Department of Physics, R.B.S. College, Agra, U.P.,-282 002 (India); Inter-University Accelerator Centre, New Delhi, -110 067 (India); UGC-DAE CSR, Khandwa Road, Indore, M.P., -452 017 (India); Department of Physics, R.B.S. College, Agra, U.P., -282 002 (India)

2012-06-05T23:59:59.000Z

379

A 10 GHz electron-cyclotron-resonance (ECR) ion source for ion-electron and ion-atom collision studies  

Science Journals Connector (OSTI)

In order to extend our investigations in the field of electronion collision studies involving ions in high charge states, we decided to build a newly designed 10 GHz Electron-Cyclotron-Resonance Ion Source. The n...

M. Liehr; M. Schlapp; E. Salzborn

1991-01-01T23:59:59.000Z

380

Mechanisms for covalent immobilization of horseradish peroxi-dase on ion beam treated polyethylene  

E-Print Network [OSTI]

The mechanism that provides the observed strong binding of biomolecules to polymer sur-faces modified by ion beams is investigated. The surface of polyethylene (PE) was modified by plasma immersion ion implantation with nitrogen ions. Structure changes including car-bonization and oxidation were observed in the modified surface layer of PE by Raman spec-troscopy, FTIR ATR spectroscopy, atomic force microscopy, surface energy measurement and XPS spectroscopy. An observed high surface energy of the modified polyethylene was attributed to the presence of free radicals on the surface. The surface energy decay with stor-age time after PIII treatment was explained by a decay of the free radical concentration while the concentration of oxygen-containing groups increased with storage time. Horseradish per-oxidase was covalently attached onto the modified PE surface. The enzymatic activity of co-valently attached protein remained high. A mechanism based on the covalent attachment by the reaction of protein with free r...

Kondyurin, Alexey V; Tilley, Jennifer M R; Nosworthy, Neil J; Bilek, Marcela M M; McKenzie, David R

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ions miec oxides" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Surface-Driven Sodium Ion Energy Storage in Nanocellular Carbon...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Surface-Driven Sodium Ion Energy Storage in Nanocellular Carbon Foams. Surface-Driven Sodium Ion Energy Storage in Nanocellular Carbon Foams. Abstract: Sodium ion (Na+) batteries...

382

Monte Carlo Modeling of Ion Beam Induced Secondary Electrons.  

E-Print Network [OSTI]

??Modeling ion beam induced secondary electron (iSE) production within matter for simulating ion beam induced images has been studied. When the complex nature of ion… (more)

Huh, Uk

2014-01-01T23:59:59.000Z

383

Engineering embedded metal nanoparticles with ion beam technology  

E-Print Network [OSTI]

2002) Engineering embedded metal nanoparticles with ion beam3 Engineering embedded metal nanoparticles with ion beamcompara- Engineering embedded metal nanoparticles with ion

Ren, Feng; Xiao, Xiang Heng; Cai, Guang Xu; Wang, Jian Bo; Jiang, Chang Zhong

2009-01-01T23:59:59.000Z

384

Are Cluster Ion Analysis Beams Good Choices for Hydrogen Depth...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cluster Ion Analysis Beams Good Choices for Hydrogen Depth Profiling Using Time-of-Flight Secondary Ion Mass Spectrometry? Are Cluster Ion Analysis Beams Good Choices for Hydrogen...

385

Structural Modification of Nanocrystalline Ceria by Ion Beams...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modification of Nanocrystalline Ceria by Ion Beams. Structural Modification of Nanocrystalline Ceria by Ion Beams. Abstract: Using energetic ions, we have demonstrated effective...

386

Magnetic preferential orientation of metal oxide superconducting materials  

DOE Patents [OSTI]

A superconductor comprised of a polycrystalline metal oxide such as YBa[sub 2]Cu[sub 3]O[sub 7[minus]X] (where 0 < X < 0.5) exhibits superconducting properties and is capable of conducting very large current densities. By aligning the two-dimensional Cu-O layers which carry the current in the superconducting state in the a- and b-directions, i.e., within the basal plane, a high degree of crystalline axes alignment is provided between adjacent grains permitting the conduction of high current densities. The highly anisotropic diamagnetic susceptibility of the polycrystalline metal oxide material permits the use of an applied magnetic field to orient the individual crystals when in the superconducting state to substantially increase current transport between adjacent grains. In another embodiment, the anisotropic paramagnetic susceptibility of rare-earth ions substituted into the oxide material is made use of as an applied magnetic field orients the particles in a preferential direction. This latter operation can be performed with the material in the normal (non-superconducting) state. 4 figs.

Capone, D.W.; Dunlap, B.D.; Veal, B.W.

1990-07-17T23:59:59.000Z

387

Oxide Film Aging on Alloy 22 in Halide Containing Solutions  

SciTech Connect (OSTI)

Passive and corrosion behaviors of Alloy 22 in chloride and fluoride containing solutions, changing the heat treatment of the alloy, the halide concentration and the pH of the solutions at 90 deg. C, was investigated. The study was implemented using electrochemical techniques, which included open circuit potential monitoring over time, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements carried out at open circuit and at passivity potentials. Corrosion rates obtained by EIS measurements after 24 h immersion in naturally aerated solutions were below 0.5 {mu}m/year. The corrosion rates were practically independent of solution pH, alloy heat treatment and halide ion nature and concentration. EIS low frequency resistance values increased with applied potential in the passive domain and with polarization time in pH 6 - 1 M NaCl at 90 deg. C. This effect was attributed to an increase in the oxide film thickness and oxide film aging. High frequency capacitance measurements indicated that passive oxide on Alloy 22 presented a double n-type/p-type semiconductor behavior in the passive potential range. (authors)

Rodriguez, Martin A.; Carranza, Ricardo M. [Dept. Materiales, Comision Nacional de Energia Atomica, Av. Gral. Paz 1499, Villa Maipu, 1650 (Argentina); Rebak, Raul B. [Lawrence Livermore National Laboratory, 7000 East Ave, L-631, Livermore, CA, 94550-9698 (United States)

2007-07-01T23:59:59.000Z

388

Electrochemical behavior of reactively sputtered iron-doped nickel oxide  

SciTech Connect (OSTI)

Iron-doped nickel oxide films were deposited by reactive sputtering from elemental and alloy targets in a 20% oxygen/argon atmosphere and were characterized for use as oxygen evolution catalysts. The incorporation of iron reduced the overpotential required for oxygen evolution by as much as 300 mV at a current density of 100 mA/cm{sup 2} compared to undoped nickel oxide deposited under similar conditions. Tafel slopes were reduced from 95 mV/dec in undoped NiO{sub x} films to less than 40 mV/dec for films containing 1.6 to 5.6 mole percent (m/o) iron, indicating a change in the rate-limiting step from the primary discharge of OH{sup {minus}} ions to the recombination of oxygen radicals. Resistivity, structural, and compositional measurements indicate that high oxygen content is necessary to gain the full benefit of the iron dopant. Initial tests in KOH indicate excellent long-term stability. A film deposited from the FeNi alloy target, which exhibited low oxygen overpotentials and a Tafel slope of 35 mV/dec, had not degraded appreciably following more than 7,000 h of operation at an anodic current density of 20 mA/cm{sup 2}. Taken together, the low oxygen evolution reaction overpotentials, the excellent stability in KOH, and the relative insensitivity to iron content indicative that reactively sputtered iron-doped nickel oxide is promising as an oxygen catalyst.

Miller, E.L.; Rocheleau, R.E. [Univ. of Hawaii, Honolulu, HI (United States)

1997-09-01T23:59:59.000Z

389

Magnetic preferential orientation of metal oxide superconducting materials  

DOE Patents [OSTI]

A superconductor comprised of a polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0oxide material permits the use of an applied magnetic field to orient the individual crystals when in the superconducting state to substantially increase current transport between adjacent grains. In another embodiment, the anisotropic paramagnetic susceptibility of rare-earth ions substituted into the oxide material is made use of as an applied magnetic field orients the particles in a preferential direction. This latter operation can be performed with the material in the normal (non-superconducting) state.

Capone, Donald W. (Bolingbrook, IL); Dunlap, Bobby D. (Bolingbrook, IL); Veal, Boyd W. (Downers Grove, IL)

1990-01-01T23:59:59.000Z

390

Morphology of Ion Exchange Membranes  

Science Journals Connector (OSTI)

......the HjO,- treatment of the ion exchange...and rinsed with water. After drying...Determined in sea water at 25 C by electrodialysis. Fig. 2. Neosepta...with deionized water, treated with...prepared by the treatment of the cation......

Yoshikazu HORI; Toru NAKATANI; Yukio MIZUTANI

1986-10-01T23:59:59.000Z

391

6 Ion Transport, Osmoregulation, and  

E-Print Network [OSTI]

177 6 Ion Transport, Osmoregulation, and Acid­Base Balance W.S. Marshall and M. Grosell CONTENTS I)............................................................................182 5. Skin and Opercular Membrane..................................................................................................183 2. Sea-Water Transport Mode -- Na+,K+-ATPase and Na+,K+, 2Cl­ Co-transport

Grosell, Martin

392

Fusion and Heavy Ion Reactions  

Science Journals Connector (OSTI)

......February 2004 research-article Articles Fusion and Heavy Ion Reactions David M. Brink...useful for understanding of sub-barrier fusion processes. The Christensen-Winther...potentials like the CW interaction give good fusion cross-sections near and for a few MeV......

David M. Brink

2004-02-01T23:59:59.000Z

393

Ion-induced nuclear radiotherapy  

DOE Patents [OSTI]

Ion-induced Nuclear Radiotherapy (INRT) is a technique for conducting radiosurgery and radiotherapy with a very high degree of control over the spatial extent of the irradiated volume and the delivered dose. Based upon the concept that low energy, ion induced atomic and nuclear reactions can be used to produce highly energetic reaction products at the site of a tumor, the INRT technique is implemented through the use of a conduit-needle or tube which conducts a low energy ion beam to a position above or within the intended treatment area. At the end of the conduit-needle or tube is a specially fabricated target which, only when struck by the ion beam, acts as a source of energetic radiation products. The inherent limitations in the energy, and therefore range, of the resulting reaction products limits the spatial extent of irradiation to a pre-defined volume about the point of reaction. Furthermore, since no damage is done to tissue outside this irradiated volume, the delivered dose may be made arbitrarily large. INRT may be used both as a point-source of radiation at the site of a small tumor, or as a topical bath of radiation to broad areas of diseased tissue.

Horn, Kevin M. (Albuquerque, NM); Doyle, Barney L. (Albuquerque, NM)

1996-01-01T23:59:59.000Z

394

Ion-induced nuclear radiotherapy  

DOE Patents [OSTI]

Ion-induced Nuclear Radiotherapy (INRT) is a technique for conducting radiosurgery and radiotherapy with a very high degree of control over the spatial extent of the irradiated volume and the delivered dose. Based upon the concept that low energy, ion induced atomic and nuclear reactions can be used to produce highly energetic reaction products at the site of a tumor, the INRT technique is implemented through the use of a conduit-needle or tube which conducts a low energy ion beam to a position above or within the intended treatment area. At the end of the conduit-needle or tube is a specially fabricated target which, only when struck by the ion beam, acts as a source of energetic radiation products. The inherent limitations in the energy, and therefore range, of the resulting reaction products limits the spatial extent of irradiation to a pre-defined volume about the point of reaction. Furthermore, since no damage is done to tissue outside this irradiated volume, the delivered dose may be made arbitrarily large. INRT may be used both as a point-source of radiation at the site of a small tumor, or as a topical bath of radiation to broad areas of diseased tissue. 25 figs.

Horn, K.M.; Doyle, B.L.

1996-08-20T23:59:59.000Z

395

Stopping of Ions in Nanomaterials  

SciTech Connect (OSTI)

The stopping of ions in solids is due to the energy loss as a result of the resistance to ion passage of the electronic and ionic nuclei in the material. When an ion penetrates a solid, it experiences a number of collisions. Energetic charged particles interact with both electrons and atoms in materials. Kinetic energy transfers to atoms can result in displacement of atoms from their original sites; thereby forming atomic-scale defects in the structure. Energy transfers to the target electrons (either bound or free) produces electron-hole pairs that can result in charging of pre-existing defects, localized electronic excitations, rupture of covalent and ionic bonds, enhanced defect and atomic diffusion, increased free energy, changes in phase transformation dynamics, as well as formation of atomic-scale defects. Such atomic collisions and ionization processes can modify the physical and chemical behavior of nanomaterials. This box will discuss irradiation-induced defect, address nanostructure engineering and radiation effects in nanomaterials, as well as the scientific challenges of ion-solid interactions.

Zhang, Yanwen; Weber, William J.

2010-01-01T23:59:59.000Z

396

Rapid thermal oxidation of silicon in mixtures of oxygen and nitrous oxide  

SciTech Connect (OSTI)

Oxidation in nitrous oxide by conventional hot wall furnace processing and by rapid thermal oxidation (RTO) has been a subject of much interest in recent years. RTO is a fundamentally different process than furnace oxidation, however, and the full effects of this type of processing on the oxidation kinetics are not well understood. Oxidation of silicon by RTO at a variety of pressures, temperatures, and oxidation gas mixtures has been studied. Although at lower temperatures (< 850 C) the atmospheric pressure oxidation rate in nitrous oxide is very close to that in oxygen, at higher temperatures the oxidation rate in nitrous oxide is much lower than that in oxygen. At lower pressures in a RTO process, the oxidation rate in nitrous oxide is higher than that in oxygen. The effect of the nitrogen incorporated in the oxide acting as a diffusion barrier has been proposed as the mechanism of temperature dependence for atmospheric pressure oxidation in nitrous oxide. This does not explain the effects seen at lower pressure,s however, The authors propose that some of the intermediate species produced in the decomposition of nitrous oxide into molecular nitrogen, molecular oxygen, and nitric oxide play a role in the initial stages of oxidation by RTO in nitrous oxide.

Grant, J.M.; Karim, Z. [Sharp Microelectronics Technology, Inc., Camas, WA (United States)

1996-12-01T23:59:59.000Z

397

In situ reduction and oxidation of nickel from solid oxide fuel cells in a Titan ETEM  

E-Print Network [OSTI]

In situ reduction and oxidation of nickel from solid oxide fuel cells in a Titan ETEM A. Faes1. C. Singhal, K. Kendall, High Temperature Solid Oxide Fuel Cell - Fundamentals, Design, Denmark antonin.faes@epfl.ch Keywords: In situ ETEM, nickel oxide, reduction, RedOx, SOFC Solid Oxide Fuel

Dunin-Borkowski, Rafal E.

398

Systematic study of metal ion sorption on selected geologic media. Annual report, October 1978-December 1979  

SciTech Connect (OSTI)

This report summarizes results of the past fifteen months of research in the programs Selection of Multiple Tracers for Enhanced Oil Recovery Systems and that portion of Ion Exchange Characteristics of Enhanced Oil Recovery Systems concerned with alkaline earth ion-alkali ion equilibria on clay minerals. Because of funding reductions, we have suspended further activity in these areas except for a small amount of research necessary to complete a few topics. This report therefore represents essentially a final report on these adsorption studies. An extensive study was completed of the distribution of Na(I) and Ca(II) ions between a common clay, montmorillonite, as well as several other clays, and a series of solutions of constant total ionic strength (I) with varying ionic strength fraction of sodium. Distribution coefficients for Sr(II) were determined for a variety of conditions on various clay minerals and oxides. In general for clay minerals, the values of D/sub Sr/ decrease sharply with salinity and except for kaolinite are fairly independent of pH. For adsorption of Sr(II) on oxides, values of D tend to depend only slightly on salinity but increase sharply with pH. For I/sup -/ adsorption on a large number of rocks and minerals, with few exceptions low values of D are found. Distribution coefficients have also been measured for Ni(II), Zn(II), Co(II), and Cd(II). For adsorption of these ions on montmorillonite, it was found that distribution coefficients were highly dependent on both pH and loading. For Cd(II) in solutions of high chloride concentration where Cd(II) forms chloride complexes, the values of D are lower than in non-complexing media. These adsorption studies serve to define conditions under which these ions may or may not serve as good tracers.

Meyer, R.E.; Burtch, F.W.

1980-06-01T23:59:59.000Z

399

Transparent conducting oxides and production thereof  

SciTech Connect (OSTI)

Transparent conducting oxides and production thereof are disclosed. An exemplary method of producing a transparent conducting oxide (TCO) material may comprise: providing a TCO target doped with either a high-permittivity oxide or a low-permittivity oxide in a process chamber. The method may also comprise depositing a metal oxide on the target in the process chamber to form a thin film having enhanced optical properties without substantially decreasing electrical quality.

Gessert, Timothy A.; Yoshida, Yuki; Coutts, Timothy J.

2014-06-10T23:59:59.000Z

400

Transparent conducting oxides and production thereof  

SciTech Connect (OSTI)

Transparent conducting oxides and production thereof are disclosed. An exemplary method of producing a transparent conducting oxide (TCO) material may comprise: providing a TCO target (110) doped with either a high-permittivity oxide or a low-permittivity oxide in a process chamber (100). The method may also comprise depositing a metal oxide on the target (110) to form a thin film having enhanced optical properties without substantially decreasing electrical quality.

Gessert, Timothy A; Yoshida, Yuki; Coutts, Timothy J

2014-05-27T23:59:59.000Z

Note: This page contains sample records for the topic "ions miec oxides" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Nonlinear ion concentration polarization : fundamentals and applications  

E-Print Network [OSTI]

Ion exchange membrane (IEM) is a functional material that has a permselectivity of ions. Two types of IEMs - anion exchange membrane (AEM) and cation exchange membrane (CEM) - are used in a variety of electrochemical ...

Kwak, Rhokyun

2013-01-01T23:59:59.000Z

402

On a cryogenic noble gas ion catcher  

E-Print Network [OSTI]

In-situ purification of the gas used as stopping medium in a noble gas ion catcher by operating the device at low temperatures of 60 to 150 K was investigated. Alpha-decay recoil ions from a 223Ra source served as energetic probes. The combined ion survival and transport efficiencies for 219Rn ions saturated below about 90 K, reaching 28.7(17) % in helium, 22.1(13) % in neon, and 17.0(10) % in argon. These values may well reflect the charge exchange and stripping cross sections during the slowing down of the ions, and thus represent a fundamental upper limit for the efficiency of noble gas ion catcher devices. We suggest the cryogenic noble gas ion catcher as a technically simpler alternative to the ultra-high purity noble gas ion catcher operating at room temperature.

P. Dendooven; S. Purushothaman; K. Gloos

2005-10-20T23:59:59.000Z

403

The Electron Beam Ion Source (EBIS)  

ScienceCinema (OSTI)

Brookhaven National Lab has successfully developed a new pre-injector system, called the Electron Beam Ion Source, for the Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory science programs. The first of several planned improvemen

Brookhaven Lab

2010-01-08T23:59:59.000Z

404

Ion acceleration in a plasma focus  

Science Journals Connector (OSTI)

The electric and magnetic fields associated with anomalous diffusion to the axis of a linear plasma discharge are used to compute representative ion trajectories. Substantial axial acceleration of the ions is demonstrated.

S. Peter Gary

1974-01-01T23:59:59.000Z

405

The Electron Beam Ion Source (EBIS)  

SciTech Connect (OSTI)

Brookhaven National Lab has successfully developed a new pre-injector system, called the Electron Beam Ion Source, for the Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory science programs. The first of several planned improvemen

Brookhaven Lab

2009-06-09T23:59:59.000Z

406

MIS-1 electron-beam ion source  

Science Journals Connector (OSTI)

The Institute of Nuclear Physics (INP) has developed and produced electron-beam multiply charged ion sources. These ion sources give the electron beam its high density in the ionization...3 A/cm2.... They produce...

V. G. Abdulmanov; N. S. Dikansky

2010-12-01T23:59:59.000Z

407

Mechanism of the monoclinic-to-tetragonal phase transition induced in zirconia and hafnia by swift heavy ions  

Science Journals Connector (OSTI)

Recent results demonstrated that defect formation or amorphization are not the only structural changes induced by swift heavy ions in crystalline materials and that under certain circumstances crystalline-to-crystalline phase transitions can also occur. For instance, it was found that both zirconia and hafnia transform from the monoclinic to the tetragonal phase with a kinetics involving a double ion impact process. In order to understand the origin of this ion-beam induced phase transition, the behavior of these twin oxides was analyzed and compared. In fact, the likeness of these materials offered the unique opportunity to impose drastic constraints on the possible models proposed to explain the creation of atomic displacements in the wake of swift heavy ions. This comparison clearly suggests that the thermal spike is the most appropriate process which governs the transition from the monoclinic to the tetragonal phase in zirconia and hafnia.

Abdenacer Benyagoub

2005-09-28T23:59:59.000Z

408

Systematic study of metal ion sorption on selected geologic media. Annual report, October 1978-December 1979. Part 1  

SciTech Connect (OSTI)

Results of research in selection of multiple tracers for enhanced oil recovery systems and ion exchange characteristics of enhanced oi recovery systems concerned with alkaline earth ion-alkali ion equilibria on clay minerals are summarized. An extensive study was completed of the distribution of Na(I) and Ca(II) ions between a common clay, montmorillonite, as well as several other clays, and a series of solutions of constant total ionic strength with varying ionic strength fraction of sodium. Equilibrium quotients for the exchange of sodium and calcium were then calculated and the effects of solution composition, of solution phase activity coefficients, of ionic strength, of degree of purification, and of source of clay were investigated. Distribution coefficients for Sr(II) were determined for a variety of conditions on various clay minerals and oxides. In general for clay minerals, the values of DSR decrease sharply independent of pH. 22 references.

Not Available

1980-06-01T23:59:59.000Z

409

Strangeness signals in heavy ion collisions  

SciTech Connect (OSTI)

The experimental data on strange meson and strange baryon production in relativistic heavy ion collisions are reviewed.

Remsberg, L.P.

1992-11-01T23:59:59.000Z

410

Strangeness signals in heavy ion collisions  

SciTech Connect (OSTI)

The experimental data on strange meson and strange baryon production in relativistic heavy ion collisions are reviewed.

Remsberg, L.P.

1992-01-01T23:59:59.000Z

411

RECENT PROGRESS IN HEAVY ION SOURCES  

E-Print Network [OSTI]

improved Bevalac Fusion reactors Vi Q) U .c. Laser, expl.into thermonuclear fusion reactors. A summary of ion sources

Clark, D.J.

2010-01-01T23:59:59.000Z

412

Ion channels and apoptosis in cancer  

Science Journals Connector (OSTI)

...Issue Ion channels, transporters and cancer compiled and edited by Mustafa B. A...Albrecht Schwab Ion channels and apoptosis in cancer Carl D. Bortner John A. Cidlowski e-mail...Issue Ion channels, transporters and cancer . Humans maintain a constant cell number...

2014-01-01T23:59:59.000Z

413

Accelerator development for heavy ion fusion  

SciTech Connect (OSTI)

Accelerator technology development is presented for heavy ion drivers used in inertial confinement fusion. The program includes construction of low-velocity ''test bed'' accelerator facilities, development of analytical and experimental techniques to characterize ion beam behavior, and the study of ion beam energy deposition.

Talbert, W.L. Jr.; Sawyer, G.A.

1980-01-01T23:59:59.000Z

414

Interaction of trapped ions with trapped atoms  

E-Print Network [OSTI]

In this thesis, I present results from two Paul-trap based ion traps carried out in the Vuleti? laboratory: the Atom-Ion trap for collision studies between cold atoms and cold ions, and the Cavity-Array trap for studying ...

Grier, Andrew T. (Andrew Todd)

2011-01-01T23:59:59.000Z

415

ION HEATING WITH RF FIELDS NEAR THE ION CYCLOTRON FREQUENCY J. D. Barter, J. C. Sprott  

E-Print Network [OSTI]

ION HEATING WITH RF FIELDS NEAR THE ION CYCLOTRON FREQUENCY by J. D. Barter, J. C. Sprott November. Our experiments of the past year, however, indicate that ion cyclotron resonance heating transmitted without consent of the author and major professor. #12;For several years we have been heating ions

Sprott, Julien Clinton

416

Oxidation State Changes of the Mn(4)Ca Cluster in Photosystem II  

SciTech Connect (OSTI)

A detailed electronic structure of the Mn{sub 4}Ca cluster is required before two key questions for understanding the mechanism of photosynthetic water oxidation can be addressed. They are whether all four oxidizing equivalents necessary to oxidize water to O{sub 2} accumulate on the four Mn ions of the oxygen-evolving complex, or do some ligand-centered oxidations take place before the formation and release of O{sub 2} during the S{sub 3} {yields} [S{sub 4}] {yields} S{sub 0} transition, and what are the oxidation state assignments for the Mn during S-state advancement. X-ray absorption and emission spectroscopy of Mn, including the newly introduced resonant inelastic X-ray scattering spectroscopy have been used to address these questions. The present state of understanding of the electronic structure and oxidation state changes of the Mn{sub 4}Ca cluster in all the S-states, particularly in the S{sub 2} to S{sub 3} transition, derived from these techniques is described in this review.

Yano, J.; Yachandra, V.K.

2009-06-04T23:59:59.000Z

417

Three-phase model for the reversible lithiation/delithiation of SnO anodes in Li-ion batteries  

E-Print Network [OSTI]

Using first-principles calculations, we propose a microscopic model to explain the reversible lithiation/delithiation of tin-oxide anodes in lithium-ion batteries. When the irreversible regime ends, the anode grains consist of layers of Li-oxide separated by Sn bilayers. During the following reversible lithiation, the Li-oxide undergoes two phase transformations that give rise to a Li-enrichment of the oxide and the formation of a SnLi composite. The anode grain structure stays layered and ordered with an effective theoretical reversible capacity of 4.5 Li per Sn atom. The predicted anode volume expansion and voltage profile agree well with experiments, contrary to existing models.

Pedersen, Andreas; Luisier, Mathieu

2015-01-01T23:59:59.000Z

418

Solid oxide electrochemical reactor science.  

SciTech Connect (OSTI)

Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful information to their continued development. This LDRD involved a collaboration between Sandia and the Colorado School of Mines (CSM) ins solid-oxide electrochemical reactors targeted at solid oxide electrolyzer cells (SOEC), which are the reverse of solid-oxide fuel cells (SOFC). SOECs complement Sandia's efforts in thermochemical production of alternative fuels. An SOEC technology would co-electrolyze carbon dioxide (CO{sub 2}) with steam at temperatures around 800 C to form synthesis gas (H{sub 2} and CO), which forms the building blocks for a petrochemical substitutes that can be used to power vehicles or in distributed energy platforms. The effort described here concentrates on research concerning catalytic chemistry, charge-transfer chemistry, and optimal cell-architecture. technical scope included computational modeling, materials development, and experimental evaluation. The project engaged the Colorado Fuel Cell Center at CSM through the support of a graduate student (Connor Moyer) at CSM and his advisors (Profs. Robert Kee and Neal Sullivan) in collaboration with Sandia.

Sullivan, Neal P. (Colorado School of Mines, Golden, CO); Stechel, Ellen Beth; Moyer, Connor J. (Colorado School of Mines, Golden, CO); Ambrosini, Andrea; Key, Robert J. (Colorado School of Mines, Golden, CO)

2010-09-01T23:59:59.000Z

419

Biaxially aligned buffer layers of cerium oxide, yttria stabilized zirconia, and their bilayers  

SciTech Connect (OSTI)

Biaxially aligned cerium oxide (CeO{sub 2}) and yttria stabilized zirconia (YSZ) films were deposited on Ni-based metal (Hastelloy C276) substrates held at room temperature using ion beam assisted (IBAD) magnetron deposition with the ion beam directed at 55{degree} to the normal of the film plane. In addition, we achieved, room-temperature epitaxial growth of CeO{sub 2} by bias sputtering to form biaxially aligned CeO{sub 2}/YSZ bilayers. The crystalline structure and in-plane orientation of films was investigated by x-ray diffraction techniques. Both the IBAD CeO{sub 2} and YSZ films, and the CeO{sub 2}/YSZ bilayers have a (111) pole in the ion beam direction. {copyright} {ital 1997 American Institute of Physics.}

Gnanarajan, S.; Katsaros, A.; Savvides, N. [CSIRO Telecommunications and Industrial Physics, Lindfield NSW 2070 (Australia)] [CSIRO Telecommunications and Industrial Physics, Lindfield NSW 2070 (Australia)

1997-05-01T23:59:59.000Z

420

Comparison Between Simulated And Experimental Au-ion Profiles...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

irradiation. The Au ion profiling was measured by secondary ion mass spectrometry (SIMS) and compared to the Au ion distribution predicted by the Stopping and Range of Ions in...

Note: This page contains sample records for the topic "ions miec oxides" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Improved Positive Electrode Materials for Li-ion Batteries  

E-Print Network [OSTI]

of the assembled Li-ion battery, such as the operating1-4: Schematic of a Li-ion battery. Li + ions are shuttledprocessing of active Li-ion battery materials. Various

Conry, Thomas Edward

2012-01-01T23:59:59.000Z

422

Ion dip spectroscopy of cold molecules and ions. Progress report  

SciTech Connect (OSTI)

During the past year, the main emphasis in this research program has been on multiphoton ionization spectroscopy of aromatic clusters. This is being pursued in addition to continuing work in areas of ion dip spectroscopy and ion fragmentation spectroscopy. The program has the overall objective of developing improved ultrasensitive molecular detection methods based on multiphoton laser spectroscopy. Photoionization techniques are employed due to their extreme sensitivity combined with mass selectivity. The combination of these two features has led to the current capability to study molecular clusters of specific sizes with high spectral resolution. Clusters are formed in abundance in a supersonic expansion, where they are excited and ionized by an ultraviolet laser beam. The studies reported here are principally based on simple resonant excitation of clusters, followed by one-photon ionization. For the naphthalene clusters, a single laser wavelength suffices for both excitation steps. Additional investigations have been carried out to measure excited state cluster ionization spectra and cluster ion fragmentation spectra. Results from these measurements are not yet sufficiently advanced to report in detail, however the preliminary data support the importance of recently proposed new fundamental ionization mechanisms in clusters. This brief report summarizes results described in more detail in the preprint titled: Resonant two-photon ionization spectroscopy of naphthalene clusters and the preprint titled: Resonance interactions in naphthalene clusters. It also briefly describes preliminary undisclosed results of current investigations.

Wessel, J.E.

1988-08-23T23:59:59.000Z

423

Oxygen-ion-beam-driven electrostatic ion cyclotron instability of hydrogen plasma  

SciTech Connect (OSTI)

The electrostatic ion cyclotron instability of hydrogen plasma driven by an oxygen ion beam and resulting turbulent heating of both ion species is investigated. The instability growth rate exceeds the oxygen ion gyrofrequency, so that the oxygen ions may be considered as unmagnetized during the process of waves growth. As a result the instability is developed due to inverse Landau damping of the ion cyclotron waves caused by thermal motion of oxygen ions across the magnetic field. The quasilinear analysis of the turbulent heating of both ion species resulted from their interactions with ion cyclotron turbulence indicates that this instability may be responsible for the observed anisotropic heating of auroral outflowing oxygen O{sup +} ions in the ionosphere.

Chibisov, D. V.; Mikhailenko, V. S.; Stepanov, K. N. [Kharkov National University, 61108 Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

424

Microbially-mediated method for synthesis of non-oxide semiconductor nanoparticles  

DOE Patents [OSTI]

The invention is directed to a method for producing non-oxide semiconductor nanoparticles, the method comprising: (a) subjecting a combination of reaction components to conditions conducive to microbially-mediated formation of non-oxide semiconductor nanoparticles, wherein said combination of reaction components comprises i) anaerobic microbes, ii) a culture medium suitable for sustaining said anaerobic microbes, iii) a metal component comprising at least one type of metal ion, iv) a non-metal component containing at least one non-metal selected from the group consisting of S, Se, Te, and As, and v) one or more electron donors that provide donatable electrons to said anaerobic microbes during consumption of the electron donor by said anaerobic microbes; and (b) isolating said non-oxide semiconductor nanoparticles, which contain at least one of said metal ions and at least one of said non-metals. The invention is also directed to non-oxide semiconductor nanoparticle compositions produced as above and having distinctive properties.

Phelps, Tommy J.; Lauf, Robert J.; Moon, Ji Won; Rondinone, Adam J.; Love, Lonnie J.; Duty, Chad Edward; Madden, Andrew Stephen; Li, Yiliang; Ivanov, Ilia N.; Rawn, Claudia Jeanette

2014-06-24T23:59:59.000Z

425

Hybrid deposition of thin film solid oxide fuel cells and electrolyzers  

DOE Patents [OSTI]

The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated. 8 figs.

Jankowski, A.F.; Makowiecki, D.M.; Rambach, G.D.; Randich, E.

1998-05-19T23:59:59.000Z

426

Hybrid deposition of thin film solid oxide fuel cells and electrolyzers  

DOE Patents [OSTI]

The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated.

Jankowski, Alan F. (Livermore, CA); Makowiecki, Daniel M. (Livermore, CA); Rambach, Glenn D. (Livermore, CA); Randich, Erik (Endinboro, PA)

1998-01-01T23:59:59.000Z

427

Hybrid deposition of thin film solid oxide fuel cells and electrolyzers  

DOE Patents [OSTI]

The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated.

Jankowski, Alan F. (Livermore, CA); Makowiecki, Daniel M. (Livermore, CA); Rambach, Glenn D. (Livermore, CA); Randich, Erik (Endinboro, PA)

1999-01-01T23:59:59.000Z

428

X-ray Photoelectron Spectroscopy Studies of Oxidized and Reduced CeO?(111) Surfaces  

SciTech Connect (OSTI)

We have studied the electronic structure of oxidized and reduced CeO? (111) surfaces using X-ray photoelectron spectroscopy (XPS). The 50 nm thick Co?(111) film was grown on a YSZ(111) substrate using oxygen plasma assisted molecular beam epitaxy (OPA-MBE). This film has been characterized using in-situ RHEED (reflection high energy electron diffraction) and ex-situ XRD (X-ray diffraction), HRTEM (high resolution transmission electron microscopy) and RBS (Rutherford backscattering spectroscopy). The lattice mismatch between CeO?(111) and YSZ(111) is less than 5% and yields a flat surface that is comprised of an equivalent number of Ce?? and O?? ions. Oxidation with O? at 773 K under UHV conditions was sufficient to fully oxidize the CeO?(111). Surface reduction was carried out by annealing in UHV at 973 K.

Engelhard, Mark H.; Azad, Samina; Peden, Charles HF; Thevuthasan, Suntharampillai

2004-12-01T23:59:59.000Z

429

Oxidants, Antioxidants and Cell Signaling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxidants, Antioxidants and Cell Signaling Oxidants, Antioxidants and Cell Signaling Speaker(s): Chandan K. Sen Date: February 17, 1998 - 12:00pm Location: 90-3148 Seminar Host/Point of Contact: Richard Sextro Reactive oxygen species represent a common mediator of environmental stress such as during physical exercise, ozone exposure, UV radiation and xenobiotic (pollutant) metabolism. Antioxidant defense systems protect against the ravages of such reactive species. In contrast to the conventional idea that reactive oxygen is mostly a trigger for oxidative damage of biological structures, now we know that low physiologically relevant concentration of reactive oxygen species can regulate a variety of key molecular mechanisms that may be linked with important processes such as immune response, cell-cell adhesion, cell proliferation, inflammation,

430

Graphite Oxidation Thermodynamics/Reactions  

SciTech Connect (OSTI)

The vulnerability of graphite-matrix spent nuclear fuel to oxidation by the ambient atmosphere if the fuel canister is breached was evaluated. Thermochemical and kinetic data over the anticipated range of storage temperatures (200 to 400 C) were used to calculate the times required for a total carbon mass loss of 1 mgcm-2 from a fuel specimen. At 200 C, the time required to produce even this small loss is large, 900,000 yr. However, at 400 C the time required is only 1.9 yr. The rate of oxidation at 200 C is negligible, and the rate even at 400 C is so small as to be of no practical consequence. Therefore, oxidation of the spent nuclear fuel upon a loss of canister integrity is not anticipated to be a concern based upon the results of this study.

Propp, W.A.

1998-09-01T23:59:59.000Z

431

ULTRA-LOW-ENERGY HIGH-CURRENT ION SOURCE  

E-Print Network [OSTI]

ULTRA-LOW-ENERGY HIGH-CURRENT ION SOURCE (ULEHIIS) Materialenergy, high-intensity ion source (ULEHIIS) for materials

Anders, Andre

2010-01-01T23:59:59.000Z

432

Boundary-Activated Dissociation of Peptide Ions in a Quadrupole Ion Trap  

Science Journals Connector (OSTI)

As with resonant excitation, the pulsed introduction of heavy gases (argon, xenon) extends the applicability of BAD when tandem mass spectrometry is performed on peptide ions. ... 22 The dipolar square wave causes the electrical center of the trapping field and the center of ions' oscillation to change instantly with no change in the spatial location of the ions. ... When an ion has a stable trajectory in the quadrupole ion trap, it can be considered to be oscillating in a pseudopotential well. ...

Richard W. Vachet; Gary L. Glish

1998-01-15T23:59:59.000Z

433

Review of polarized ion sources (invited)  

SciTech Connect (OSTI)

Recent progress in polarized ion sources development is reviewed. New techniques for production of polarized H{sup -} ion (proton), D{sup -} (D{sup +}), and {sup 3}He{sup ++} ion beams are discussed. Feasibility studies of these techniques are in progress at BNL and other laboratories. Polarized deuteron beams will be required for the polarization program at the Dubna Nuclotron and at the deuteron electric dipole moment experiment at BNL. Experiments with polarized {sup 3}He{sup ++} ion beams are a part of the experimental program at the future electron ion collider.

Zelenski, A. [Brookhaven National Laboratory, Upton, New York 11973 (United States)

2010-02-15T23:59:59.000Z

434

Aromatic-radical oxidation chemistry  

SciTech Connect (OSTI)

The research effort has focussed on discovering an explanation for the anomalously high CO{sub 2} concentrations observed early in the reaction sequence of the oxidation of cyclopentadiene. To explain this observation, a number of plausible mechanisms have been developed which now await experimental verification. One experimental technique for verifying mechanisms is to probe the reacting system by perturbing the radical concentrations. Two forms of chemical perturbation of the oxidation of cyclopentadiene were begun during this past year--the addition of NO{sub 2} and CO to the reacting mixture.

Glassman, I.; Brezinsky, K. [Princeton Univ., NJ (United States)

1993-12-01T23:59:59.000Z

435

Solid oxide fuel cell generator  

DOE Patents [OSTI]

A solid oxide fuel cell generator has a pair of spaced apart tubesheets in a housing. At least two intermediate barrier walls are between the tubesheets and define a generator chamber between two intermediate buffer chambers. An array of fuel cells have tubes with open ends engaging the tubesheets. Tubular, axially elongated electrochemical cells are supported on the tubes in the generator chamber. Fuel gas and oxidant gas are preheated in the intermediate chambers by the gases flowing on the other side of the tubes. Gas leakage around the tubes through the tubesheets is permitted. The buffer chambers reentrain the leaked fuel gas for reintroduction to the generator chamber.

Draper, Robert (Churchill Boro, PA); George, Raymond A. (Pittsburgh, PA); Shockling, Larry A. (Plum Borough, PA)

1993-01-01T23:59:59.000Z

436

Electrolytes for lithium ion batteries  

SciTech Connect (OSTI)

A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

2014-08-05T23:59:59.000Z

437

Ion plated electronic tube device  

DOE Patents [OSTI]

An electronic tube and associated circuitry which is produced by ion plating techniques. The process is carried out in an automated process whereby both active and passive devices are produced at very low cost. The circuitry is extremely reliable and is capable of functioning in both high radiation and high temperature environments. The size of the electronic tubes produced are more than an order of magnitude smaller than conventional electronic tubes.

Meek, T.T.

1983-10-18T23:59:59.000Z

438

Central collisions of heavy ions  

SciTech Connect (OSTI)

This report describes the activities of the Heavy Ion Physics Group at the University of California, Riverside from October 1, 1991 to September 30, 1992. During this period, the program focused on particle production at AGS energies, and correlation studies at the Bevalac in nucleus-nucleus central collisions. As part of the PHENIX collaboration, contributions were made to the Preliminary Conceptual Design Report (pCDR), and work on a RHIC silicon microstrip detector R D project was performed.

Fung, Sun-yiu.

1992-10-01T23:59:59.000Z

439

Laser photoelectron spectroscopy of ions  

SciTech Connect (OSTI)

This enterprise uses photoelectron spectroscopy to study the properties of negative ions and radicals. The essence of our experiment is to cross a 0.6 keV mass-selected ion beam (M{sup {minus}}) with the output of a CW laser, {Dirac h}{omega}{sub o}. The resultant detached photoelectrons with kinetic energy, KE, are energy analyzed by means of a set of electrostatic hemispherical analyzers. Analysis of the photoelectron spectra enables us to extract molecular electron affinities, vibrational frequencies and electronic splittings of the final radical, M, as well as the relative molecular geometries of ions (M{sup {minus}}) and radicals (M). We have scrutinized the two simplest nitrenes: methylnitrene (CH{sub 3}N) and phenylnitrene (C{sub 6}H{sub 5}N). By preparing the corresponding anions, CH{sub 3}N{sup {minus}} and C{sub 6}H{sub 5}N{sup {minus}}, we have studied these nitrene biradicals. Singlet methylnitrene is especially interesting since it is formally a transition state.''

Ellison, G.B.

1992-01-16T23:59:59.000Z

440

Ion Channel Engineering: Perspectives and Strategies  

Science Journals Connector (OSTI)

Abstract Ion channels facilitate the passive movement of ions down an electrochemical gradient and across lipid bilayers in cells. This phenomenon is essential for life and underlies many critical homeostatic processes in cells. Ion channels are diverse and differ with respect to how they open and close (gating) and to their ionic conductance/selectivity (permeation). Fundamental understanding of ion channel structure–function mechanisms, their physiological roles, how their dysfunction leads to disease, their utility as biosensors, and development of novel molecules to modulate their activity are important and active research frontiers. In this review, we focus on ion channel engineering approaches that have been applied to investigate these aspects of ion channel function, with a major emphasis on voltage-gated ion channels.

Prakash Subramanyam; Henry M. Colecraft

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ions miec oxides" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Properties of Ta{sub 2}O{sub 5} thin films prepared by ion-assisted deposition  

SciTech Connect (OSTI)

Graphical abstract: - Highlights: • Investigating the effect of ion-beam parameters on optical properties. • Exploring the effect of ion-beam parameters on structural properties. • Studying XRD patterns of Ta{sub 2}O{sub 5} films deposited at different ion energies. - Abstract: Tantalum penta-oxide (Ta{sub 2}O{sub 5}) thin films were deposited onto highly polished and clean, fused silica glass substrates via ion beam-assisted deposition at room temperature using a high-vacuum coater equipped with an electron beam gun. The effects of ion beam parameters, oxygen flow rate, and deposition rate on the optical and structural properties as well as the stress of Ta{sub 2}O{sub 5} films were studied. It has been revealed that Ta{sub 2}O{sub 5} thin films deposited at 300 eV ion beam energy, 60 ?A/cm{sup 2} ion current density, 20 sccm oxygen flow rate and 0.6 nm/s deposition rate demonstrated excellent optical, structural and compressive stress.

Farhan, Mansour S. [College of Engineering, Wasit University (Iraq); Zalnezhad, E., E-mail: erfan_zalnezhad@yahoo.com [Center of Advanced Manufacturing and Material Processing, Department of Engineering Design and Manufacture, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Bushroa, A.R. [Center of Advanced Manufacturing and Material Processing, Department of Engineering Design and Manufacture, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia)

2013-10-15T23:59:59.000Z

442

Standard test methods for chemical and mass spectrometric analysis of nuclear-grade gadolinium oxide (Gd2O3) powder  

E-Print Network [OSTI]

1.1 These test methods cover procedures for the chemical and mass spectrometric analysis of nuclear-grade gadolinium oxide powders to determine compliance with specifications. 1.2 The analytical procedures appear in the following order: Sections Carbon by Direct CombustionThermal Conductivity C1408 Test Method for Carbon (Total) in Uranium Oxide Powders and Pellets By Direct Combustion-Infrared Detection Method Total Chlorine and Fluorine by Pyrohydrolysis Ion Selective Electrode C1502 Test Method for Determination of Total Chlorine and Fluorine in Uranium Dioxide and Gadolinium Oxide Loss of Weight on Ignition 7-13 Sulfur by CombustionIodometric Titration Impurity Elements by a Spark-Source Mass Spectrographic C761 Test Methods for Chemical, Mass Spectrometric, Spectrochemical,Nuclear, and Radiochemical Analysis of Uranium Hexafluoride C1287 Test Method for Determination of Impurities In Uranium Dioxide By Inductively Coupled Plasma Mass Spectrometry Gadolinium Content in Gadolinium Oxid...

American Society for Testing and Materials. Philadelphia

2006-01-01T23:59:59.000Z

443

Ultrafast Infrared Heating Laser Pulse-Induced Micellization Kinetics of Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide) in  

E-Print Network [OSTI]

Ultrafast Infrared Heating Laser Pulse-Induced Micellization Kinetics of Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide) in Water Xiaodong Ye, Yijie Lu, Shilin Liu,*, Guangzhao Zhang, and Chi Wu-induced micellization of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (Pluronic PE10300) triblock

Liu, Shilin

444

Influence of Ionic Surfactants on the Aggregation of Poly(Ethylene Oxide)-Poly(Propylene Oxide)-Poly(Ethylene Oxide) Block Copolymers Studied by Differential Scanning and  

E-Print Network [OSTI]

Influence of Ionic Surfactants on the Aggregation of Poly(Ethylene Oxide)-Poly(Propylene Oxide)-Poly(Ethylene copolymers of poly(ethylene oxide) and poly(propylene oxide), EOnPOmEOn, and the ionic surfactants sodium the aggregates of all three polymers. Introduction Water-soluble poly(ethylene oxide)-poly(propylene oxide)- poly(ethylene

Loh, Watson

445

Using CrAIN Multilayer Coatings to Improve Oxidation Resistance...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coatings to Improve Oxidation Resistance of Steel Interconnects for Solid Oxide Fuel Cell Stacks. Using CrAIN Multilayer Coatings to Improve Oxidation Resistance of Steel...

446

Computational Modeling of Graphene Oxide Exfoliation and Lithium Storage Characteristics.  

E-Print Network [OSTI]

??Graphene oxide is a two dimensional material obtained by adsorption of oxygen or oxygen-containing groups on graphene. Stacked layers of graphene oxide constitute graphite oxide.… (more)

Mortezaee, Reza

2013-01-01T23:59:59.000Z

447

Solid oxide steam electrolysis for high temperature hydrogen production .  

E-Print Network [OSTI]

??This study has focused on solid oxide electrolyser cells for high temperature steam electrolysis. Solid oxide electrolysis is the reverse operation of solid oxide fuel… (more)

Eccleston, Kelcey L.

2007-01-01T23:59:59.000Z

448

Structure, adhesion, and stability of metal/oxide and oxide/oxide interfaces  

SciTech Connect (OSTI)

During the past six months, we have begun our studies of the fundamental properties of metal/oxide and oxide/oxide heterogeneous interfaces which are being prepared by epitaxial growth of ultra-thin-films on single crystal TiO{sub 2} and NiO surfaces. A new ultra-high vacuum film growth chamber was assembled and coupled to an existing surface analysis chamber; a sample transfer system, metal deposition sources, and a RHEED systems with microchannel plate detection were constructed and implemented. Atomic Force Microscopy was used to characterize and refine the preparation procedures for the single crystal surfaces. The electronic structure of stoichiometric, oxygen-deficient, and potassium-covered TiO{sub 2} (110) surfaces was investigated. Preliminary results on the Al/TiO{sub 2} (110) system have been obtained. Two graduate students have begun thesis research on the project. 6 figs.

Lad, R.J.

1991-01-01T23:59:59.000Z

449

Characterization of polymeric films subjected to lithium ion beam irradiation  

SciTech Connect (OSTI)

Two different polymeric materials that are candidate materials for use as binders for mixed uranium–plutonium oxide nuclear fuel pellets were subjected to Li ion beam irradiation, in order to simulate intense alpha irradiation. The materials (a polyethylene glycol 8000 and a microcrystalline wax) were then analyzed using a combination of mass spectrometry (MS) approaches and X-ray photoelectron spectroscopy (XPS). Samples of the irradiated PEG materials were dissolved in H2O and then analyzed using electrospray ionization-MS, which showed the formation of a series of small oligomers in addition to intact large PEG oligomers. The small oligomers were likely formed by radiation-induced homolytic scissions of the C–O and C–C bonds, which furnish radical intermediates that react by radical recombination with Hradical dot and OHradical dot. Surface analysis using SIMS revealed a heterogeneous surface that contained not only PEG-derived polymers, but also hydrocarbon-based entities that are likely surface contaminants. XPS of the irradiated PEG samples indicated the emergence of different carbon species, with peak shifts suggesting the presence of sp2 carbon atoms. Analysis of the paraffinic film using XPS showed the emergence of oxygen on the surface of the sample, and also a broadening and shifting of the C1s peak, demonstrating a change in the chemistry on the surface. The paraffinic film did not dissolve in either H2O or a H2O–methanol solution, and hence the bulk of the material could not be analyzed using electrospray. However a series of oligomers was leached from the bulk material that produced ion series in the ESI-MS analyses that were identified octylphenyl ethoxylate oligomers. Upon Li ion bombardment, these shifted to a lower average molecular weight, but more importantly showed the emergence of three new ion series that are being formed as a result of radiation damage. Surface analysis of the paraffinic polymers using SIMS produced spectra that were wholly dominated by hydrocarbon ion series, and no difference was observed between unirradiated and irradiated samples. The studies demonstrate that for the PEG-based polymers, direct evidence for radiolytic scission can be observed using ESI-MS, and suggests that both radiolytic pathways and efficiencies as a function of dose should be measurable by calibrating instrument response to the small oligomeric degradation products.

Gary S. Groenewold; W. Roger Cannon; Paul A. Lessing; Recep Avci; Muhammedin Deliorman; Mark Wolfenden; Doug W. Akers; J. Keith Jewell

2013-02-01T23:59:59.000Z

450

Perovskite catalysts for oxidative coupling  

DOE Patents [OSTI]

Perovskites of the structure A.sub.2 B.sub.2 C.sub.3 O.sub.10 are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.

Campbell, Kenneth D. (Charleston, WV)

1991-01-01T23:59:59.000Z

451

Perovskite catalysts for oxidative coupling  

DOE Patents [OSTI]

Perovskites of the structure A[sub 2]B[sub 2]C[sub 3]O[sub 10] are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.

Campbell, K.D.

1991-06-25T23:59:59.000Z

452

Solid oxide fuel cell generator  

DOE Patents [OSTI]

A solid oxide fuel cell generator has a plenum containing at least two rows of spaced apart, annular, axially elongated fuel cells. An electrical conductor extending between adjacent rows of fuel cells connects the fuel cells of one row in parallel with each other and in series with the fuel cells of the adjacent row. 5 figures.

Di Croce, A.M.; Draper, R.

1993-11-02T23:59:59.000Z

453

Isotopic tracer studies of oxygen transport through SiO2 films at 1000?°C using secondary ion mass spectrometry  

Science Journals Connector (OSTI)

Dry oxides (?8 ppm H2O) grown on Si(100) at 1000?°C at 1 atm using purified 1 6O2 and purified 1 8O2 were analyzed using secondary ion mass spectrometry.1 8O is observed at the interface in the bulk of the 1 6O oxide and at the surface in agreement with other recent reports. Our results show little lattice diffusion in agreement with Mikkelsen’s work [Appl. Phys. Lett. 4 5 1187 (1984)]. A previous report [J. Electrochem. Soc. 1 3 1 1944 (1984)] of appreciable lattice diffusion is due to higher water content.

C. J. Han; C. R. Helms

1986-01-01T23:59:59.000Z

454

Oxidation kinetics of aluminum diboride  

SciTech Connect (OSTI)

The oxidation characteristics of aluminum diboride (AlB{sub 2}) and a physical mixture of its constituent elements (Al+2B) were studied in dry air and pure oxygen using thermal gravimetric analysis to obtain non-mechanistic kinetic parameters. Heating in air at a constant linear heating rate of 10 °C/min showed a marked difference between Al+2B and AlB{sub 2} in the onset of oxidation and final conversion fraction, with AlB{sub 2} beginning to oxidize at higher temperatures but reaching nearly complete conversion by 1500 °C. Kinetic parameters were obtained in both air and oxygen using a model-free isothermal method at temperatures between 500 and 1000 °C. Activation energies were found to decrease, in general, with increasing conversion for AlB{sub 2} and Al+2B in both air and oxygen. AlB{sub 2} exhibited O{sub 2}-pressure-independent oxidation behavior at low conversions, while the activation energies of Al+2B were higher in O{sub 2} than in air. Differences in the composition and morphology between oxidized Al+2B and AlB{sub 2} suggested that Al{sub 2}O{sub 3}–B{sub 2}O{sub 3} interactions slowed Al+2B oxidation by converting Al{sub 2}O{sub 3} on aluminum particles into a Al{sub 4}B{sub 2}O{sub 9} shell, while the same Al{sub 4}B{sub 2}O{sub 9} developed a needle-like morphology in AlB{sub 2} that reduced oxygen diffusion distances and increased conversion. The model-free kinetic analysis was critical for interpreting the complex, multistep oxidation behavior for which a single mechanism could not be assigned. At low temperatures, moisture increased the oxidation rate of Al+2B and AlB{sub 2}, but both appear to be resistant to oxidation in cool, dry environments. - Graphical abstract: Isothermal kinetic data for AlB{sub 2} in air, showing a constantly decreasing activation energy with increasing conversion. Model-free analysis allowed for the calculation of global kinetic parameters despite many simultaneous mechanisms occurring concurrently. (a) Time–temperature plots, (b) conversion as a function of time, (c) Arrhenius plots used to calculate activation energies, and (d) activation energy as a function of conversion. Display Omitted - Highlights: • First reported kinetic parameters for AlB{sub 2} and Al+2B oxidation in air and O{sub 2}. • Possible mechanism of enhanced boron combustion presented. • Moisture sensitivity shown to be problematic for AlB{sub 2}, less for Al+2B.

Whittaker, Michael L., E-mail: michaelwhittaker2016@u.northwestern.edu [Department of Materials Science and Engineering, University of Utah, 122S. Central Campus Drive, Salt Lake City, UT 84112 (United States); Sohn, H.Y. [Department of Metallurgical Engineering, University of Utah, 135S 1460 E, Rm 00412, Salt Lake City, UT 84112 (United States); Cutler, Raymond A. [Ceramatec, Inc., 2425S. 900W., Salt Lake City, UT 84119 (United States)

2013-11-15T23:59:59.000Z

455

Role of Nitrous Oxide in Ambulatory Anaesthesia  

Science Journals Connector (OSTI)

As the oldest anaesthetic still in routine use, the continued role of nitrous oxide is frequently questioned. There are a few well-defined situations in which nitrous oxide is contraindicated or undesirable; i...

Sarah Billingham; Ian Smith

2014-12-01T23:59:59.000Z

456

Complex oxides useful for thermoelectric energy conversion  

DOE Patents [OSTI]

The invention provides for a thermoelectric system comprising a substrate comprising a first complex oxide, wherein the substrate is optionally embedded with a second complex oxide. The thermoelectric system can be used for thermoelectric power generation or thermoelectric cooling.

Majumdar, Arunava (Orinda, CA); Ramesh, Ramamoorthy (Moraga, CA); Yu, Choongho (College Station, TX); Scullin, Matthew L. (Berkeley, CA); Huijben, Mark (Enschede, NL)

2012-07-17T23:59:59.000Z

457

Rare Iron Oxide in Ancient Chinese Pottery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rare Iron Oxide in Ancient Chinese Pottery Rare Iron Oxide in Ancient Chinese Pottery Print Friday, 26 September 2014 14:37 Jian ware (or Tenmoku) ceramic bowls, famous for their...

458

NANO - "Green" metal oxides ... | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NANO - "Green" metal oxides ... Water and nano-sized particles isolated from trees, plants and algae are the ingredients of a new recipe for low-cost metal oxides that are widely...

459

Preparation of Highly Transparent TiO2-based Thin Film Photocatalysts by an Ion Engineering Method: Ionized Cluster Beam Deposition  

Science Journals Connector (OSTI)

Highly transparent TiO2 and TiO2-based binary oxide (TiO2/SiO2 and TiO2/B2O3) thin films of different TiO2 contents were successfully prepared by using an ion engineering technique as a dry process. These transpa...

Masato Takeuchi; Masakazu Anpo

2010-01-01T23:59:59.000Z

460

Ion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

field pinch R. N. Dexter, D. W. Kerst, T. W. Lovell, S. C. Prager, and J. C. Sprott, Fusion Technol. 19, 131 1991 are presented using two beam-based diagnostics: Charge...

Note: This page contains sample records for the topic "ions miec oxides" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Ion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

calibration The absolute calibration is performed with an integrating sphere (Optronics Laboratories model 455-8-1) whose spectral radiance is precisely known. The grating...

462

Vapor phase modifiers for oxidative coupling  

DOE Patents [OSTI]

Volatilized metal compounds retard vapor phase alkane conversion reactions in oxidative coupling processes that convert lower alkanes to higher hydrocarbons.

Warren, Barbara K. (Charleston, WV)

1991-01-01T23:59:59.000Z

463

High quality oxide films on substrates  

DOE Patents [OSTI]

A method is described for providing an oxide film of a material on the surface of a substrate using a reactive deposition of the material onto the substrate surface in the presence of a solid or liquid layer of an oxidizing gas. The oxidizing gas is provided on the substrate surface in an amount sufficient to dissipate the latent heat of condensation occurring during deposition as well as creating a favorable oxidizing environment for the material. 4 figures.

Ruckman, M.W.; Strongin, M.; Gao, Y.L.

1994-02-01T23:59:59.000Z

464

Hyponitrite Radical, a Stable Adduct of Nitric Oxide and Nitroxyl  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications: Sergei V. Lymar Publications: Sergei V. Lymar Hyponitrite Radical, a Stable Adduct of Nitric Oxide and Nitroxyl G. A. Poskrebyshev, V. Shafirovich and S. V. Lymar J. Am. Chem. Soc., ASAP Article Rate of ON-OO- Bond Homolysis and the Gibbs Energy of Formation of Peroxynitrite S. V. Lymar and G. A. Poskrebyshev J. Phys. Chem. A, 107, 7991-7996 (2003) Spin-Forbidden Deprotonation of Aqueous Nitroxyl (HNO) V. Shafirovich and S. V. Lymar J. Am. Chem. Soc., 125, 6547-6552 (2003) Hydroxyl Radical Formation by O-O Bond Homolysis in Peroxynitrous Acid S. V. Lymar, R. F. Khairutdinov and J. K. Hurst Inorg. Chem., 42, 5259-5266 (2003) Reactions of the Dihydroxylamine (HNO2-.) and Hydronitrite (NO22-.) Radical Ions S. V. Lymar, H. A. Schwarz and G. Czapski J. Phys. Chem. A, 106, 7245-7250 (2002)

465

Nitrous oxide emissions from wastewater treatment processes  

Science Journals Connector (OSTI)

...specific ammonia oxidation rate. Symbols represent...Research Council (ARC) for funding this...correlated to its ammonia oxidation rate. 51 Arp, D...1146/annurev.micro.61.080706.093449...1146/annurev.micro.61.080706.093449...2004 Anaerobic oxidation of inorganic nitrogen...

2012-01-01T23:59:59.000Z

466

REVERSIBLE SOLID OXIDE CELLS Mogens Mogensen1  

E-Print Network [OSTI]

The reversibility of solid oxide fuel cells (SOFC), i.e. that they could also work in the solid oxide electrolyser1 REVERSIBLE SOLID OXIDE CELLS Mogens Mogensen1 , Søren Højgaard Jensen1,2 , Anne Hauch1,3 , Ib Chorkendorff2 and Torben Jacobsen3 1 Fuel Cell and Solid State Chemistry Department Risø National Laboratory

467

Solid Oxide Electrolysis Cells Performance and Durability  

E-Print Network [OSTI]

Title: Solid Oxide Electrolysis Cells ­ Performance and Durability Department: Fuel Cells and SolidSolid Oxide Electrolysis Cells ­ Performance and Durability Anne Hauch Risø-PhD-37(EN) Risø : Images from transmission electron microscopy investigation of the H2 electrode for the solid oxide cell

468

Photo-oxides of Carcinogenic Hydrocarbons  

Science Journals Connector (OSTI)

... are involved in the biological action of carcinogenic hydrocarbons, we have attempted to isolate the photo-oxides of some of these hydrocarbons. Such ... -oxides of some of these hydrocarbons. Such photo-oxides would naturally be insoluble in water and hence would represent merely one stage in ...

J. W. COOK; R. MARTIN; E. M. F. ROE

1939-06-17T23:59:59.000Z

469

Dense high temperature ceramic oxide superconductors  

DOE Patents [OSTI]

Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.

Landingham, Richard L. (Livermore, CA)

1993-01-01T23:59:59.000Z

470

ORIGINAL ARTICLE Sulfur oxidizers dominate carbon fixation  

E-Print Network [OSTI]

). Methylotrophs and iron oxidizers were also active in plume waters and expressed key proteins for methane by bacteria (especially, alpha-, gamma- and epsilon-proteobacteria) that likely participate in the oxidationORIGINAL ARTICLE Sulfur oxidizers dominate carbon fixation at a biogeochemical hot spot in the dark

Hansell, Dennis

471

Nanotube Fabrication byNanotube Fabrication by Anodic Aluminum Oxide,Anodic Aluminum Oxide,  

E-Print Network [OSTI]

Nanotube Fabrication byNanotube Fabrication by Anodic Aluminum Oxide,Anodic Aluminum Oxide, Self-regulating phenomena in materials science: Self-assembly of nanopores during anodic oxidation of aluminum (AAO) Self combined anodic aluminum oxide (AAO) nanostructures with atomic layer deposition (ALD) to fabricate

Rubloff, Gary W.

472

Direct oxidation of hydrocarbons in a solid oxide fuel cell. I. Methane oxidation  

SciTech Connect (OSTI)

The performance of Cu cermets as anodes for the direct oxidation of CH{sub 4} in solid oxide fuel cells was examined. Mixtures of Cu and yttria-stabilized zirconia (YAZ) were found to give similar performance to Ni-YSZ cermets when H{sub 2} was used as the fuel, but did not deactivate in dry CH{sub 4}. While Cu-YSZ was essentially inert to methane, the addition of ceria to the anode gave rise to reasonable power densities and stable operation over a period of at least 3 days. Proof of direct oxidation of CH{sub 4} came from chemical analysis of the products leaving the cell. The major carbon-containing product was CO{sub 2}, with only traces of CO observed, and there was excellent agreement between the actual cell current and that predicted by the methane conversion. These results demonstrate that direct, electrocatalytic oxidation of dry methane is possible, with reasonable performance.

Park, S.; Craciun, R.; Vohs, J.M.; Gorte, R.J.

1999-10-01T23:59:59.000Z

473

Excitation of electrostatic ion-cyclotron waves by an ion beam in a two-ion component plasma  

SciTech Connect (OSTI)

An ion beam propagating through a magnetized plasma cylinder containing electrons, light positive potassium ions (K{sup +}), and heavy positive cesium ions (Cs{sup +}) drives electrostatic ion cyclotron (EIC) waves to instability via Cerenkov interaction. Two EIC wave modes are present, the K{sup +} and Cs{sup +} modes. The unstable wave frequencies and the growth rate of both the light positive ion and heavy positive ion modes increase with an increase in their relative ion concentrations. The growth rate of both the unstable modes (K{sup +} and Cs{sup +}) scales one-third power of the beam density. The real part of the frequency of both the unstable modes (K{sup +} and Cs{sup +}) increases with the beam energy and scales as almost one-half power of the beam energy. Numerical calculations of the growth rate and mode frequencies have been carried out for the parameters of the experiment of Suszcynsky et al. [J. Geophys. Res. 94, 8966 (1989)]. It is found that the unstable wave frequencies of both the light positive ion and heavy positive ion modes increase with the magnetic fields in accordance with the experimental observations.

Sharma, Jyotsna [Department of Physics, KIIT College of Engineering, Bhondsi Gurgaon 122102 (India); Sharma, Suresh C. [Department of Physics, Maharaja Agrasen Institute of Technology, PSP Area Plot No.-1, Sector-22, Rohini, Delhi 110086 (India)

2010-12-15T23:59:59.000Z

474

Nanocomposite reverse electrodialysis (RED) ion-exchange membranes for salinity gradient power generation  

Science Journals Connector (OSTI)

Abstract Despite the important role of ion-exchange membranes (IEMs) in reverse electrodialysis (RED) systems, the current absence of proper ion-exchange membranes delays the sustainable development of the RED process for salinity gradient power generation. This research presents the preparation of a new type of organic–inorganic nanocomposite cation exchange membrane and its performance characteristics. The combination of functionalized iron (III) oxide ( Fe 2 O 3 - SO 4 2 ? ) as an inorganic filler with the sulfonated poly (2,6-dimethyl-1,4-phenylene oxide) (sPPO) polymer matrix proved to have great potential for power generation by RED. The results showed that an optimal amount of Fe 2 O 3 - SO 4 2 ? (0.5–0.7 wt%) enhanced the key electrochemical properties of the ion-exchange membranes including a permselectivity up to 87.65% and an area resistance of 0.87 ? cm2. The nanocomposite membrane containing 0.7 wt% ( Fe 2 O 3 - SO 4 2 ? ) achieved a maximum power density (amount of power per unit membrane area) of 1.3 W m?2, which is relatively higher than that of the commercially available CSO (SelemionTM, Japan) membranes. The goal of the present work is to maximize the salinity gradient power generation by developing RED-specific nanocomposite IEMs. The results show the potential of the new design of the nanocomposite \\{IEMs\\} for viable energy generation by RED.

Jin Gi Hong; Yongsheng Chen

2014-01-01T23:59:59.000Z

475

Beyond Conventional Cathode Materials for Li-ion Batteries and Na-ion Batteries Nickel fluoride conversion materials and P2 type Na-ion intercalation cathodes /  

E-Print Network [OSTI]

active material for Li-ion battery, Fe2OF4. ElectrochemistryIron Fluoride, in a Li Ion Battery: A Solid-State NMR, X-raymaterials for Li-ion battery……………………………133 8.2. P2 type

Lee, Dae Hoe

2013-01-01T23:59:59.000Z

476

Sample inlet tube for ion source  

DOE Patents [OSTI]

An improved inlet tube is positioned within an aperture through the device to allow the passage of ions from the ion source, through the improved inlet tube, and into the interior of the device. The inlet tube is designed with a larger end and a smaller end wherein the larger end has a larger interior diameter than the interior diameter of the smaller end. The inlet tube is positioned within the aperture such that the larger end is pointed towards the ion source, to receive ions therefrom, and the smaller end is directed towards the interior of the device, to deliver the ions thereto. Preferably, the ion source utilized in the operation of the present invention is a standard electrospray ionization source. Similarly, the present invention finds particular utility in conjunction with analytical devices such as mass spectrometers.

Prior, David [Hermiston, OR; Price, John [Richland, WA; Bruce, Jim [Oceanside, CA

2002-09-24T23:59:59.000Z

477

Fast Transport of Mixed Ion-Chains  

E-Print Network [OSTI]

We investigate the dynamics of mixed-species ion crystals during transport between spatially distinct locations in a linear Paul trap in the diabatic regime. In a general mixed-species crystal, all degrees of freedom along the direction of transport are excited by an accelerating well, so unlike the case of same-species ions, where only the center-of-mass-mode is excited, several degrees of freedom have to be simultaneously controlled by the transport protocol. We design protocols that lead to low final excitations in the diabatic regime using invariant-based inverse-engineering for two different-species ions and also show how to extend this approach to longer mixed-species ion strings. Fast transport of mixed-species ion strings can significantly reduce the time overhead in certain architectures for scalable quantum information processing with trapped ions.

M. Palmero; R. Bowler; J. P. Gaebler; D. Leibfried; J. G. Muga

2014-06-29T23:59:59.000Z

478

New Type of Accelerator for Heavy Ions  

Science Journals Connector (OSTI)

A new device, called the heavy ion plasma accelerator (HIPAC), which may be capable of accelerating ions of any atomic number to energies sufficient to overcome the nuclear Coulomb barrier, is described. A closed potential well is created by filling a toroidal vacuum chamber with electrons; the electrons are contained by a magnetic field whose intensity is so low that its effect on the ions can be neglected. Ions are both accelerated and trappend in the well; the trapping effect allows sufficient time for the ions to become highly stripped by electron impact. The very large ion energies that can be achieved in this way would allow a wide variety of nuclear reactions to be studied, including inverse fission. The present primitive state of development of the HIPAC is described, and the future prospects assessed.

G. S. Janes; R. H. Levy; H. A. Bethe; B. T. Feld

1966-05-20T23:59:59.000Z

479

An (ultra) high-vacuum compatible sputter source for oxide thin film growth  

SciTech Connect (OSTI)

A miniaturised CF-38 mountable sputter source for oxide and metal thin film preparation with enhanced high-vacuum and ultra-high-vacuum compatibility is described. The all home-built sputtering deposition device allows a high flexibility also in oxidic sputter materials, suitable deposition rates for preparation of films in the nm- and the sub-monolayer regime and excellent reliability and enhanced cleanliness for usage in UHV chambers. For a number of technologically important – yet hardly volatile – materials, the described source represents a significant improvement over thermal deposition techniques like electron-beam- or thermal evaporation, as especially the latter are no adequate tool to prepare atomically clean layers of refractory oxide materials. Furthermore, it is superior to commercially available magnetron sputter devices, especially for applications, where highly reproducible sub-monolayer thin film preparation under very clean UHV conditions is required (e.g., for studying phase boundary effects in catalysis). The device in turn offers the usage of a wide selection of evaporation materials and special target preparation procedures also allow the usage of pressed oxide powder targets. To prove the performance of the sputter-source, test preparations with technologically relevant oxide components, comprising ZrO{sub 2} and yttrium-stabilized ZrO{sub 2}, have been carried out. A wide range of characterization methods (electron microscopy, X-ray photoelectron spectroscopy, low-energy ion scattering, atomic force microscopy, and catalytic testing) were applied to demonstrate the properties of the sputter-deposited thin film systems.

Mayr, Lukas; Köpfle, Norbert; Auer, Andrea; Klötzer, Bernhard; Penner, Simon [Institute for Physical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck (Austria)] [Institute for Physical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck (Austria)

2013-09-15T23:59:59.000Z

480

Novel Electrolytes for Lithium Ion Batteries  

SciTech Connect (OSTI)

We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have been investigating the thermal stability of novel electrolytes for lithium ion batteries, in particular borate based salts. Second, we have been investigating novel additives to improve the calendar life of lithium ion batteries. Third, we have been investigating the thermal decomposition reactions of electrolytes for lithium-oxygen batteries.

Lucht, Brett L

2014-12-12T23:59:59.000Z

Note: This page contains sample records for the topic "ions miec oxides" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Thermal Ion Dispersion | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Thermal Ion Dispersion Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Thermal Ion Dispersion Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geochemical Techniques Exploration Sub Group: Geochemical Data Analysis Parent Exploration Technique: Geochemical Data Analysis Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Thermal Ion Dispersion: Thermal Ion Dispersion (TID) is a method used by the precious-metals industry to determine the movement of hot, mineral-bearing waters through rocks, gravels, and soils. The survey involves collection of soil samples

482

Ion Acceleration by Short Chirped Laser Pulses  

E-Print Network [OSTI]

Direct laser acceleration of ions by short frequency-chirped laser pulses is investigated theoretically. We demonstrate that intense beams of ions with a kinetic energy broadening of about 1 % can be generated. The chirping of the laser pulse allows the particles to gain kinetic energies of hundreds of MeVs, which is required for hadron cancer therapy, from pulses of energies of the order of 100 J. It is shown that few-cycle chirped pulses can accelerate ions more efficiently than long ones, i.e. higher ion kinetic energies are reached with the same amount of total electromagnetic pulse energy.

Li, Jian-Xing; Keitel, Christoph H; Harman, Zoltán

2015-01-01T23:59:59.000Z

483

A Metal-Ion Coordinated Hybrid Multilayer  

Science Journals Connector (OSTI)

A Metal-Ion Coordinated Hybrid Multilayer ... Support of this work by the Israel Science Foundation and the Israel Ministry of Science (Tashtiot Infrastructure Program), is gratefully acknowledged. ...

Anat Hatzor; Tamar van der Boom-Moav; Shira Yochelis; Alexander Vaskevich; Abraham Shanzer; Israel Rubinstein

2000-04-21T23:59:59.000Z

484

Photo-Electrons and Negative Ions  

Science Journals Connector (OSTI)

2 December 1931 research-article Photo-Electrons and Negative Ions E. M. Wellish The Royal Society is collaborating with JSTOR to digitize, preserve, and extend...

1931-01-01T23:59:59.000Z