Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ionic transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Ionic transport in nanocapillary membrane systems Vikhram V. Swaminathan Larry R. Gibson II  

E-Print Network (OSTI)

. Keywords Membranes Á Nanostructures Á Nanofluidics Á Microfluidics Á Ion transport Á Electrokinetics Á lREVIEW Ionic transport in nanocapillary membrane systems Vikhram V. Swaminathan · Larry R. Gibson / Accepted: 23 May 2012 ? Springer Science+Business Media B.V. 2012 Abstract Species transport

2

Correlating Humidity-Dependent Ionically Conductive Surface Area with Transport Phenomena in Proton-Exchange Membranes  

SciTech Connect

The objective of this effort was to correlate the local surface ionic conductance of a Nafion? 212 proton-exchange membrane with its bulk and interfacial transport properties as a function of water content. Both macroscopic and microscopic proton conductivities were investigated at different relative humidity levels, using electrochemical impedance spectroscopy and current-sensing atomic force microscopy (CSAFM). We were able to identify small ion-conducting domains that grew with humidity at the surface of the membrane. Numerical analysis of the surface ionic conductance images recorded at various relative humidity levels helped determine the fractional area of ion-conducting active sites. A simple square-root relationship between the fractional conducting area and observed interfacial mass-transport resistance was established. Furthermore, the relationship between the bulk ionic conductivity and surface ionic conductance pattern of the Nafion? membrane was examined.

He, Qinggang; Kusoglu, Ahmet; Lucas, Ivan T.; Clark, Kyle; Weber, Adam Z.; Kostecki, Robert

2011-08-01T23:59:59.000Z

3

Ion Transport in Nanostructured Block Copolymer/Ionic Liquid Membranes  

E-Print Network (OSTI)

E. Ionic Liquids as Green Solvents: Progress and Prospectsthem attention as green solvents for synthesis and

Hoarfrost, Megan Lane

2012-01-01T23:59:59.000Z

4

Ionically Conducting Membranes for Hydrogen Production and Separation  

NLE Websites -- All DOE Office Websites (Extended Search)

IONICALLY CONDUCTING MEMBRANES IONICALLY CONDUCTING MEMBRANES FOR HYDROGEN PRODUCTION AND SEPARATION Presented by Tony Sammells Eltron Research Inc. Boulder, Colorado www.eltronresearch.com Presented at DOE Hydrogen Separations Workshop Arlington, Virginia September 8, 2004 ELTRON RESEARCH INC. TO BE DISCUSSED * Membranes for Hydrogen Production - Compositions - Feedstocks - Performance - Key Technical Hurdles * Membranes for Hydrogen Separation - Compositions - Ex Situ vs. In Situ WGS - Performance - Key Technical Hurdles ELTRON RESEARCH INC. OVERALL SCHEME FOR CONVERTING FEEDSTOCK TO HYDROGEN WITH SIMULTANEOUS CARBON DIOXIDE SEQUESTRATION Oxygen Transport Membrane Hydrogen Transport Membrane Natural Gas Coal Biomass Syngas CO/H 2 WGS H 2 O CO 2 /H 2 1618afs.dsf H 2 CO 2 ELTRON RESEARCH INC. INCENTIVES FOR OXYGEN TRANSPORT MEMBRANES FOR

5

IONICALLY CONDUCTING MEMBRANES FOR HYDROGEN PRODUCTION AND  

E-Print Network (OSTI)

operating experience. #12;ELTRON RESEARCH INC. Syngas Production Rate ­ 60 mL/min cm2 @ 900°C Equivalent O2IONICALLY CONDUCTING MEMBRANES FOR HYDROGEN PRODUCTION AND SEPARATION Presented by Tony Sammells for Hydrogen Production ­ Compositions ­ Feedstocks ­ Performance ­ Key Technical Hurdles · Membranes

6

Oxygen Transport Ceramic Membranes  

SciTech Connect

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, Moessbauer spectroscopy was used to study the local environmentals of LSFT with various level of oxygen deficiency. Ionic valence state, magnetic interaction and influence of Ti on superexchange are discussed Stable crack growth studies on Dense OTM bars provided by Praxair were done at elevated temperature, pressure and elevated conditions. Post-fracture X-ray data of the OTM fractured at 1000 C in environment were refined by FullProf code and results indicate a distortion of the parent cubic perovskite to orthorhombic structure with reduced symmetry. TGA-DTA studies on the post-fracture samples also indicated residual effect arising from the thermal and stress history of the samples. An electrochemical cell has been designed and built for measurements of the Seebeck coefficient as a function of temperature and pressure. The initial measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} are reported. Neutron diffraction measurements of the same composition are in agreement with both the stoichiometry and the kinetic behavior observed in coulometric titration measurements. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The COCO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

2004-10-01T23:59:59.000Z

7

Oxygen Transport Ceramic Membranes  

SciTech Connect

In this quarter a systematic analysis on the decomposition behavior of the OTM membranes at air and nitrogen were initiated to understand the structural and stoichiometric changes associated with elevated temperatures. Evaluation of the flexural strengths using 4-point bend test was also started for the dual phase membranes. Initial results on the synthesis of dual phase composite materials have been obtained. The measurements have focused on the compatibility of mixed conductors with the pure ionic conductors yttria stabilized zirconia (YSZ) and gadolinium doped ceria (GDC). The initial results obtained for three different mixed conductors suggest that (GDC) is the better choice. A new membrane permeation system has been designed and tested and sintering studies of biphasic systems are in progress.

S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

2006-05-01T23:59:59.000Z

8

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect

This report covers the following tasks: Task 1--Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints; Task 2--Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability; Task 3--Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres; Task 4--Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures; Task 5--Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability; and Task 6--Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2002-04-01T23:59:59.000Z

9

Oxygen Transport Membranes  

SciTech Connect

The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the small polaron conduction mechanism. Scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) were used to develop strategies to detect and characterize vacancy creation, dopant segregations and defect association in the oxygen conducting membrane material. The pO{sub 2} and temperature dependence of the conductivity, non-stoichiometry and thermal-expansion behavior of compositions with increasing complexity of substitution on the perovskite A and B sites were studied. Studies with the perovskite structure show anomalous behavior at low oxygen partial pressures (<10{sup -5} atm). The anomalies are due to non-equilibrium effects and can be avoided by using very strict criteria for the attainment of equilibrium. The slowness of the oxygen equilibration kinetics arises from two different mechanisms. In the first, a two phase region occurs between an oxygen vacancy ordered phase such as brownmillerite SrFeO{sub 2.5} and perovskite SrFeO{sub 3-x}. The slow kinetics is associated with crossing the two phase region. The width of the miscibility gap decreases with increasing temperature and consequently the effect is less pronounced at higher temperature. The preferred kinetic pathway to reduction of perovskite ferrites when the vacancy concentration corresponds to the formation of significant concentrations of Fe{sup 2+} is via the formation of a Ruddlesden-Popper (RP) phases as clearly observed in the case of La{sub 0.5}Sr{sub 0.5}FeO{sub 3-x} where LaSrFeO{sub 4} is found together with Fe. In more complex compositions, such as LSFTO, iron or iron rich phases are observed locally with no evidence for the presence of discrete RP phase. Fracture strength of tubular perovskite membranes was determined in air and in reducing atmospheric conditions. The strength of the membrane decreased with temperature and severity of reducing conditions although the strength distribution (Weibull parameter, m) was relatively unaltered. Surface and volume dominated the fracture origins and the overall fracture was purely transgranular. The dual phas

S. Bandopadhyay

2008-08-30T23:59:59.000Z

10

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect

This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2000-10-01T23:59:59.000Z

11

Catalyst containing oxygen transport membrane  

SciTech Connect

A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a high average pore diameter and the intermediate porous layer has a lower permeability and lower pore diameter than the porous support layer. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.

Christie, Gervase Maxwell; Wilson, Jamie Robyn; van Hassel, Bart Antonie

2012-12-04T23:59:59.000Z

12

Membrane Ion Channels and Ionic Hydration Energies [Abstract Only  

Science Journals Connector (OSTI)

25 November 1980 research-article Membrane Ion Channels and Ionic Hydration Energies [Abstract Only] D. T. Edmonds The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to Proceedings...

1980-01-01T23:59:59.000Z

13

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect

In the present quarter, oxygen transport perovskite ceramic membranes are evaluated for strength and fracture in oxygen gradient conditions. Oxygen gradients are created in tubular membranes by insulating the inner surface from the reducing environment by platinum foils. Fracture in these test conditions is observed to have a gradient in trans and inter-granular fracture as opposed to pure trans-granular fracture observed in homogeneous conditions. Fracture gradients are reasoned to be due to oxygen gradient set up in the membrane, variation in stoichiometry across the thickness and due to varying decomposition of the parent perovskite. The studies are useful in predicting fracture criterion in actual reactor conditions and in understanding the initial evolution of fracture processes.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2002-07-01T23:59:59.000Z

14

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect

In the present quarter, the possibility of using a more complex interfacial engineering approach to the development of reliable and stable oxygen transport perovskite ceramic membranes/metal seals is discussed. Experiments are presented and ceramic/metal interactions are characterized. Crack growth and fracture toughness of the membrane in the reducing conditions are also discussed. Future work regarding this approach is proposed are evaluated for strength and fracture in oxygen gradient conditions. Oxygen gradients are created in tubular membranes by insulating the inner surface from the reducing environment by platinum foils. Fracture in these test conditions is observed to have a gradient in trans and inter-granular fracture as opposed to pure trans-granular fracture observed in homogeneous conditions. Fracture gradients are reasoned to be due to oxygen gradient set up in the membrane, variation in stoichiometry across the thickness and due to varying decomposition of the parent perovskite. The studies are useful in predicting fracture criterion in actual reactor conditions and in understanding the initial evolution of fracture processes.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2003-01-01T23:59:59.000Z

15

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect

In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Processing of perovskites of LSC, LSF and LSCF composition for evaluation of mechanical properties as a function of environment are begun. The studies are to be in parallel with LSFCO composition to characterize the segregation of cations and slow crack growth in environmental conditions. La{sub 1-x}Sr{sub x}FeO{sub 3-d} has also been characterized for paramagnetic ordering at room temperature and the evolution of magnetic moments as a function of temperature are investigated. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2003-01-01T23:59:59.000Z

16

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect

Conversion of natural gas to liquid fuels and chemicals is a major goal for the Nation as it enters the 21st Century. Technically robust and economically viable processes are needed to capture the value of the vast reserves of natural gas on Alaska's North Slope, and wean the Nation from dependence on foreign petroleum sources. Technologies that are emerging to fulfill this need are all based syngas as an intermediate. Syngas (a mixture of hydrogen and carbon monoxide) is a fundamental building block from which chemicals and fuels can be derived. Lower cost syngas translates directly into more cost-competitive fuels and chemicals. The currently practiced commercial technology for making syngas is either steam methane reforming (SMR) or a two-step process involving cryogenic oxygen separation followed by natural gas partial oxidation (POX). These high-energy, capital-intensive processes do not always produce syngas at a cost that makes its derivatives competitive with current petroleum-based fuels and chemicals. This project has the following 6 main tasks: Task 1--Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. Task 2--Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. Task 3--Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. Task 4--Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. Task 5--Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. Task 6--Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2001-12-01T23:59:59.000Z

17

Ionic (Proton) Transport Hydrogen Separation Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

(Proton) (Proton) Transport Hydrogen Separation Systems Summary Session Participants -- Ionic Transport Balachandran, Balu Cornelius, Chris Fleming, Greg Glass, Robert Hartvigsen, Joseph Higgins, Richard King, David Paster, Mark Paul, Dilo Robbins, John Samells, Anthony Schwartz, Michael Schinski, Bill Smith, Ronald Van Bibber, Lawrence Zalesky, Rick Argonne National Laboratory Sandia National Laboratory Air Liquide Lawrence Livermore National Laboratory Cerametec, Inc. CeraMem Corporation Battelle, PNNL DOE Science Applications International Corporation ExxonMobil Eltron Research, Inc. ITN Energy Systems ChevronTexaco SRI Consulting SAIC ChevronTexaco Technology Ventures Performance Goals 4-5 years (5 years upper limit) (100,000 hrs is 12 years) High durability 250-350

18

Oxygen Transport Ceramic Membranes  

SciTech Connect

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. Thermogravimetric analysis (TGA) was carried out on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} to investigate oxygen deficiency ({delta}) of the sample. The TGA was performed in a controlled atmosphere using oxygen, argon, carbon monoxide and carbon dioxide with adjustable gas flow rates. In this experiment, the weight loss and gain of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} was directly measured by TGA. The weight change of the sample was evaluated at between 600 and 1250 C in air or 1000 C as a function of oxygen partial pressure. The oxygen deficiencies calculated from TGA data as a function of oxygen activity and temperature will be estimated and compared with that from neutron diffraction measurement in air. The LSFT and LSFT/CGO membranes were fabricated from the powder obtained from Praxair Specialty Ceramics. The sintered membranes were subjected to microstructure analysis and hardness analysis. The LSFT membrane is composed of fine grains with two kinds of grain morphology. The grain size distribution was characterized using image analysis. In LSFT/CGO membrane a lot of grain pullout was observed from the less dense, porous phase. The hardness of the LSFT and dual phase membranes were studied at various loads. The hardness values obtained from the cross section of the membranes were also compared to that of the values obtained from the surface. An electrochemical cell has been designed and built for measurements of the Seebeck coefficient as a function of temperature and pressure. Measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} as a function of temperature an oxygen partial pressure are reported. Further analysis of the dilatometry data obtained previously is presented. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The CO-CO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

S. Bandopadhyay; N. Nagabhushana; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

2005-02-01T23:59:59.000Z

19

Oxygen Transport Ceramic Membranes  

SciTech Connect

Ti doping on La{sub 1-x}Sr{sub x}FeO{sub 3-{delta}} (LSF) tends to increase the oxygen equilibration kinetics of LSF in lower oxygen activity environment because of the high valence state of Ti. However, the addition of Ti decreases the total conductivity because the acceptor ([Sr{prime}{sub La}]) is compensated by the donor ([Ti{sub Fe}{sup {sm_bullet}}]) which decreases the carrier concentration. The properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 1-x}Ti{sub x}O{sub 3-{delta}} (LSFT, x = 0.45) have been experimentally and theoretically investigated to elucidate (1) the dependence of oxygen occupancy and electrochemical properties on temperature and oxygen activity by thermogravimetric analysis (TGA) and (2) the electrical conductivity and carrier concentration by Seebeck coefficient and electrical measurements. In the present study, dual phase (La{sub 0.2}Sr{sub 0.8}Fe{sub 0.6}Ti{sub 0.4}O{sub 3-{delta}}/Ce{sub 0.9}Gd{sub 0.1}O{sub 2-{delta}}) membranes have been evaluated for structural properties such as hardness, fracture toughness and flexural strength. The effect of high temperature and slightly reducing atmosphere on the structural properties of the membranes was studied. The flexural strength of the membrane decreases upon exposure to slightly reducing conditions at 1000 C. The as-received and post-fractured membranes were characterized using XRD, SEM and TG-DTA to understand the fracture mechanisms. Changes in structural properties of the composite were sought to be correlated with the physiochemical features of the two-phases. We have reviewed the electrical conductivity data and stoichiometry data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} some of which was reported previously. Electrical conductivity data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCrF) were obtained in the temperature range, 752 {approx} 1055 C and in the pO{sub 2} range, 10{sup -18} {approx} 0.5 atm. The slope of the plot of log {sigma} vs. log pO{sub 2} is {approx} 1/5 in the p-type region, pO{sub 2} = 10{sup -5} {approx} 10{sup -1} atm. The pO{sub 2} at which the p-n transition is observed increases with increasing temperature. The activation energy for ionic conduction was estimated to be 0.86 eV from an Arrhenius plot of the minimum conductivity vs. reciprocal temperature. At temperatures below 940 C, a plateau in the conductivity isotherm suggests the presence of a two-phase region. Most likely, phase separation occurs to form a mixture of a perovskite phase and an oxygen vacancy ordered phase related to brownmillerite. Additional data for the oxygen non stoichiometry are presented.

S. Bandopadhyay; T. Nithyanantham

2006-12-31T23:59:59.000Z

20

Oxygen Transport Ceramic Membranes  

SciTech Connect

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped Ti-substituted perovskites, La{sub 0.7}Sr{sub 0.3}Mn{sub 1-x}Ti{sub x}O{sub 3}, with 0 {le} x {le} 0.20, were investigated by neutron diffraction, magnetization, electric resistivity, and magnetoresistance (MR) measurements. All samples show a rhombohedral structure (space group R3C) from 10 K to room temperature. At room temperature, the cell parameters a, c and the unit cell volume increase with increasing Ti content. However, at 10 K, the cell parameter a has a maximum value for x = 0.10, and decreases for x > 0.10, while the unit cell volume remains nearly constant for x > 0.10. The average (Mn,Ti)-O bond length increases up to x = 0.15, and the (Mn,Ti)-O-(Mn,Ti) bond angle decreases with increasing Ti content to its minimum value at x = 0.15 at room temperature. Below the Curie temperature TC, the resistance exhibits metallic behavior for the x {le} 0.05 samples. A metal (semiconductor) to insulator transition is observed for the x {ge} 0.10 samples. A peak in resistivity appears below TC for all samples, and shifts to a lower temperature as x increases. The substitution of Mn by Ti decreases the 2p-3d hybridization between O and Mn ions, reduces the bandwidth W, and increases the electron-phonon coupling. Therefore, the TC shifts to a lower temperature and the resistivity increases with increasing Ti content. A field-induced shift of the resistivity maximum occurs at x {le} 0.10 compounds. The maximum MR effect is about 70% for La{sub 0.7}Sr{sub 0.3}Mn{sub 0.8}Ti{sub 0.2}O{sub 3}. The separation of TC and the resistivity maximum temperature T{sub {rho},max} enhances the MR effect in these compounds due to the weak coupling between the magnetic ordering and the resistivity as compared with La{sub 0.7}Sr{sub 0.3}MnO{sub 3}. The bulk densities of the membranes were determined using the Archimedes method. The bulk density was 5.029 and 5.57 g/cc for LSFT and dual phase membranes, respectively. The microstructure of the dual phase membrane was analyzed using SEM. It is evident from the micrograph that the microstructure is composed of dual phases. The dense circular regions are enclosed by the less dense, continuous phase which accommodates most of the pores. The pores are normally aggregated and found clustered along the dense regions where as the dense regions do not have pores. Upon closer observation of the micrograph it is revealed that the dense region has a clear circular cleavage or crack as their boundary. The circular cleavage clearly encompasses a dense region and which consists of no pore or any flaw that is visible. The size distribution of the dense, discontinuous regions is varying from 5 to 20 {micro}m with a D{sub 50} of 15 {micro}m. The grain size distribution was estimated from the micrographs using image analysis and a unimodal distribution of grains was observed with an average grain size of 1.99 {micro}m. The chemical compositions of the membranes were analyzed using EDS analysis and no other impurities were observed. The XRD analysis was carried out for the membranes and the phase purity was confirmed. The fracture toughness of LSFT membranes at room temperature has to be calculated using the Vickers indentation method. An electrochemical cell has been designed and built for measurements of the ionic conductivity by the use of blocking electrodes. Preliminary measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} are reported. Modifications to the apparatus to improve the data quality have been completed. Electron microscopy studies of the origin of the slow kinetics on reduction of ferrites have been initiated. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradient

S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

2005-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "ionic transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Oxygen Transport Ceramic Membranes  

SciTech Connect

The present quarterly report describes some of the initial studies on newer compositions and also includes newer approaches to address various materials issues such as in metal-ceramic sealing. The current quarter's research has also focused on developing a comprehensive reliability model for predicting the structural behavior of the membranes in realistic conditions. In parallel to industry provided compositions, models membranes have been evaluated in varying environment. Of importance is the behavior of flaws and generation of new flaws aiding in fracture. Fracture mechanics parameters such as crack tip stresses are generated to characterize the influence of environment. Room temperature slow crack growth studies have also been initiated in industry provided compositions. The electrical conductivity and defect chemistry of an A site deficient compound (La{sub 0.55}Sr{sub 0.35}FeO{sub 3}) was studied. A higher conductivity was observed for La{sub 0.55}Sr{sub 0.35}FeO{sub 3} than that of La{sub 0.60}Sr{sub 0.40}FeO{sub 3} and La{sub 0.80}Sr{sub 0.20}FeO{sub 3}. Defect chemistry analysis showed that it was primarily contributed by a higher carrier concentration in La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. Moreover, the ability for oxygen vacancy generation is much higher in La{sub 0.55}Sr{sub 0.35}FeO{sub 3} as well, which indicates a lower bonding strength between Fe-O and a possible higher catalytic activity for La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. The program continued to investigate the thermodynamic properties (stability and phase separation behavior) and total conductivity of prototype membrane materials. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previous report listed initial measurements on a sample of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-x} prepared in-house by Praxair. Subsequently, a second sample of powder from a larger batch of sample were characterized and compared with the results from the previous batch.

S. Bandopadhyay; N. Nagabhushana; Thomas W. Eagar; Harold R. Larson; Raymundo Arroyave; X.-D Zhou; Y.-W. Shin; H.U. Anderson; Nigel Browning; Alan Jacobson; C.A. Mims

2003-11-01T23:59:59.000Z

22

Oxygen Transport Ceramic Membranes  

SciTech Connect

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, in situ neutron diffraction was used to characterize the chemical and structural properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} (here after as L2SF55T) specimen, which was subject to measurements of neutron diffraction from room temperature to 900 C. It was found that space group of R3c yielded a better refinement than a cubic structure of Pm3m. Oxygen occupancy was nearly 3 in the region from room temperature to 700 C, above which the occupancy decreased due to oxygen loss. Dense OTM bars provided by Praxair were loaded to fracture at varying stress rates. Studies were done at room temperature in air and at 1000 C in a specified environment to evaluate slow crack growth behavior. The X-Ray data and fracture mechanisms points to non-equilibrium decomposition of the LSFCO OTM membrane. The non-equilibrium conditions could probably be due to the nature of the applied stress field (stressing rates) and leads to transition in crystal structures and increased kinetics of decomposition. The formations of a Brownmillerite or Sr2Fe2O5 type structures, which are orthorhombic are attributed to the ordering of oxygen vacancies. The cubic to orthorhombic transitions leads to 2.6% increase in strains and thus residual stresses generated could influence the fracture behavior of the OTM membrane. Continued investigations on the thermodynamic properties (stability and phase-separation behavior) and total conductivity of prototype membrane materials were carried out. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previously characterization, stoichiometry and conductivity measurements for samples of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} were reported. In this report, measurements of the chemical and thermal expansion as a function of temperature and p{sub O2} are described.

S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

2004-05-01T23:59:59.000Z

23

Oxygen Transport Ceramic Membranes  

SciTech Connect

In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/ Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Existing facilities were modified for evaluation of environmental assisted slow crack growth and creep in flexural mode. Processing of perovskites of LSC, LSF and LSCF composition were continued for evaluation of mechanical properties as a function of environment. These studies in parallel to those on the LSFCO composition is expect to yield important information on questions such as the role of cation segregation and the stability of the perovskite structure on crack initiation vs. crack growth. Studies have been continued on the La{sub 1-x}Sr{sub x}FeO{sub 3-d} composition using neutron diffraction and TGA studies. A transition from p-type to n-type of conductor was observed at relative low pO{sub 2}, at which the majority carriers changed from the holes to electrons because of the valence state decreases in Fe due to the further loss of oxygen. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport. Data obtained at 850 C show that the stoichiometry in La{sub 0.2}Sr{sub 0.8}Fe{sub 0.8}Cr{sub 0.2}O{sub 3-x} vary from {approx}2.85 to 2.6 over the pressure range studied. From the stoichiometry a lower limit of 2.6 corresponding to the reduction of all Fe{sup 4+} to Fe{sup 3+} and no reduction of Cr{sup 3+} is expected.

S. Bandopadhyay; N. Nagabhushana

2003-08-07T23:59:59.000Z

24

Oxygen Transport Ceramic Membranes  

SciTech Connect

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, in situ neutron diffraction was used to characterize the chemical and structural properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} (here after as L2SF55T) specimen, which was subject to measurements of neutron diffraction from room temperature to 900 C in N{sub 2}. Space group of R3c was found to result in a better refinement and is used in this study. The difference for crystal structure, lattice parameters and local crystal chemistry for LSFT nearly unchanged when gas environment switched from air to N{sub 2}. Stable crack growth studies on Dense OTM bars provided by Praxair were done at room temperature in air. A bridge-compression fixture was fabricated to achieve stable pre-cracks from Vickers indents. Post fracture evaluation indicated stable crack growth from the indent and a regime of fast fracture. Post-fracture X-ray data of the OTM fractured at 1000 C in environment were refined by FullProf code and results indicate a distortion of the parent cubic perovskite to orthorhombic structure with reduced symmetry. TGA-DTA studies on the post-fracture samples also indicated residual effect arising from the thermal and stress history of the samples. The thermal and chemical expansion of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} were studied at 800 {le} T {le} 1000 C and at {approx} 1 x 10{sup -15} {le} pO{sub 2} {le} 0.21 atm. The thermal expansion coefficient of the sample was calculated from the dilatometric analysis in the temperature range between room temperature and 1200 C in air. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The CO-CO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

2004-05-01T23:59:59.000Z

25

Oxygen Transport Ceramic Membranes  

SciTech Connect

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the current research, the electrical conductivity and Seebeck coefficient were measured as a function of temperature in air. Based on these measurements, the charge carrier concentration, net acceptor dopant concentration, activation energy of conduction and mobility were estimated. The studies on the fracture toughness of the LSFT and dual phase membranes at room temperature have been completed and reported previously. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affects the mechanical properties. To study the effect of temperature on the membranes when exposed to an inert environment, the membranes (LAFT and Dual phase) were heat treated at 1000 C in air and N{sub 2} atmosphere and hardness and fracture toughness of the membranes were studied after the treatment. The indentation method was used to find the fracture toughness and the effect of the heat treatment on the mechanical properties of the membranes. Further results on the investigation of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appears to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model will serve to study ''frozen'' profiles in patterned or composite membranes.

S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

2005-11-01T23:59:59.000Z

26

Behavior of hydrophobic ionic liquids as liquid membranes on phenol removal: Experimental study and optimization  

E-Print Network (OSTI)

Room temperature ionic liquids show potential as an alternative to conventional organic membrane solvents mainly due to their properties of low vapor pressure, low volatility and they are often stable. In the present work, the technical feasibilities of room temperature ionic liquids as bulk liquid membranes for phenol removal were investigated experimentally. Three ionic liquids with high hydrophobicity were used and their phenol removal efficiency, membrane stability and membrane loss were studied. Besides that, the effects of several parameters, namely feed phase pH, feed concentration, NaOH concentration and stirring speeds on the performance of best ionic liquid membrane were also evaluated. Lastly, an optimization study on bulk ionic liquid membrane was conducted and the maximum phenol removal efficiency was compared with the organic liquid membranes. The preliminary study shows that high phenol extraction and stripping efficiencies of 96.21% and 98.10%, respectively can be achieved by ionic liquid memb...

Ng, Y S; Hashim, M A

2014-01-01T23:59:59.000Z

27

Composite oxygen transport membrane  

DOE Patents (OSTI)

A method of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. In the porous fuel oxidation layer and the optional porous surface exchange layer, A is Calcium and in the dense separation layer A is not Calcium and, preferably is Strontium. Preferred materials are (La.sub.0.8Ca.sub.0.2).sub.0.95Cr.sub.0.5Mn.sub.0.5O.sub.3-.delta. for the porous fuel oxidation and optional porous surface exchange layers and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer. The use of such materials allows the membrane to sintered in air and without the use of pore formers to reduce membrane manufacturing costs. The use of materials, as described herein, for forming the porous layers have application for forming any type of porous structure, such as a catalyst support.

Christie, Gervase Maxwell; Lane, Jonathan A.

2014-08-05T23:59:59.000Z

28

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect

This is the fifth quarterly report on a new study to develop a ceramic membrane/metal joint. Results of wetting experiments on commercially available Nickel based brazing alloys on perovskite surfaces are described. Additionally, experimental and numerical investigations on the strength of concentric ceramic/metal joints are presented.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2001-02-01T23:59:59.000Z

29

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect

This is the fourth quarterly report on a new study to develop a ceramic membrane/metal joint. The first experiments using the La-Sr-Fe-O ceramic are reported. Some of the analysis performed on the samples obtained are commented upon. A set of experiments to characterize the mechanical strength and thermal fatigue properties of the joints has been designed and begun. Finite element models of joints used to model residual stresses are described.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2000-07-01T23:59:59.000Z

30

Oxygen Transport Ceramic Membranes  

SciTech Connect

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the previous research, the reference point of oxygen occupancy was determined and verified. In the current research, the oxygen occupancy was investigated at 1200 C as a function of oxygen activity and compared with that at 1000 C. The cause of bumps at about 200 C was also investigated by using different heating and cooling rates during TGA. The fracture toughness of LSFT and dual phase membranes at room temperature is an important mechanical property. Vicker's indentation method was used to evaluate this toughness. Through this technique, a K{sub Ic} (Mode-I Fracture Toughness) value is attained by means of semi-empirical correlations between the indentation load and the length of the cracks emanating from the corresponding Vickers indentation impression. In the present investigation, crack propagation behavior was extensively analyzed in order to understand the strengthening mechanisms involved in the non-transforming La based ceramic composites. Cracks were generated using Vicker's indenter and used to identify and evaluate the toughening mechanisms involved. Preliminary results of an electron microscopy study of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Modeling of the isotopic transients on operating membranes (LSCrF-2828 at 900 C) and a ''frozen'' isotope profile have been analyzed in conjunction with a 1-D model to reveal the gradient in oxygen diffusivity through the membrane under conditions of high chemical gradients.

S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

2005-08-01T23:59:59.000Z

31

Oxygen Transport Ceramic Membranes  

SciTech Connect

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. The in situ electrical conductivity and Seebeck coefficient measurements were made on LSFT at 1000 and 1200 C over the oxygen activity range from air to 10{sup -15} atm. The electrical conductivity measurements exhibited a p to n type transition at an oxygen activity of 1 x 10{sup -10} at 1000 C and 1 x 10{sup -6} at 1200 C. Thermogravimetric studies were also carried out over the same oxygen activities and temperatures. Based on the results of these measurements, the chemical and mechanical stability range of LSFT were determined and defect structure was established. The studies on the fracture toughness of the LSFT and dual phase membranes exposed to air and N{sub 2} at 1000 C was done and the XRD and SEM analysis of the specimens were carried out to understand the structural and microstructural changes. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affect the mechanical properties. A complete transformation of fracture behavior was observed in the N{sub 2} treated LSFT samples. Further results to investigate the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Recent results on transient kinetic data are presented. The 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model is used to study ''frozen'' profiles in patterned or composite membranes.

S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

2005-02-01T23:59:59.000Z

32

Integrated inorganic membrane electrode assembly with layered double hydroxides as ionic conductors for anion exchange membrane water electrolysis  

Science Journals Connector (OSTI)

Abstract In this work, we report a novel integrated inorganic membrane electrode assembly (I2MEA) for anion exchange membrane (AEM) water electrolysis by using inorganic Mg-Al layered double hydroxides (Mg-Al LDHs) as an ionic conductor. Mg-Al \\{LDHs\\} synthesized by a two-step approach exhibit high hydroxide ion conductivity and superior stability. The resultant ionic conducting nanoparticles are cold-pressed to form a membrane and mixed with a non-precious electrocatalyst to form the catalyst layer onto each side of the membrane. As such, an I2MEA is formed and used in a water electrolysis setup. It is shown that the present water electrolysis results in a maximum current density of 208mAcm?2 with 0.1M NaOH as the electrolyte and a cutoff voltage of 2.2V at 70C. More impressively, using 0.1M Na2CO3 as the electrolyte, the \\{I2MEAs\\} can continuously electrolyze at 80mAcm?2 for 600 hours with a decay rate of as low as 100?Vh?1. This superior stability is attributed to the integrated structure that allows hydroxide ions to transport smoothly.

L. Zeng; T.S. Zhao

2015-01-01T23:59:59.000Z

33

Oxygen Transport Ceramic Membranes  

SciTech Connect

A non-agglomerated and nanocrystalline-sized powder was successfully produced using ethylene glycol nitrate methods. The LSFT powder prepared using this method exhibits well dispersed and nano-sized particles about 100-200 nm. The density of LSFT sintered at 1300 C was about 90% of the theoretical density at which is 100 C less than that of the previous LSFT which was sintered at 1400 C. The sample sintered at 1400 C exhibited the evidence of a liquid phase at the grain boundaries and 2nd phase formation which probably caused low mechanical stability. The electrical conductivity and Seebeck coefficient were measured as a function of temperature. The LSFT-CGO specimens were cut from the as sintered bars and used for the evaluation of Mechanical Properties after polishing. The effect of strain rate on the flexural strength of the LSFT-CGO test specimens was studied. Three strain rates 6, 60 and 600 {micro}m/ min were chosen for this study. It is observed from the results that with increasing cross head speed the membrane takes higher loads to fail. A reduction in the strength of the membrane was observed at 1000 C in N{sub 2}. Two different routes were investigated to synthesis GDC using either formate or carbonate precursors. The precursor and CGO particle morphologies were examined by scanning electron microscopy. The thermal decomposition behaviors of Ce(Gd)(HCOO){sub 3} and Ce(Gd)(CO{sub 3})(OH) were determined by thermogravimetric analysis (TGA) at a rate of 3 C/min in air. The X-ray powder diffraction patterns of the precursor and CGO were collected and nitrogen adsorption isotherms were measured. Conductivity measurements were made by AC impedance spectroscopy on sintered disks in air using platinum electrodes.

S. Bandopadhyay; T. Nithyanantham

2006-06-30T23:59:59.000Z

34

Membrane Transport Chloride Transport Across Vesicle and Cell  

E-Print Network (OSTI)

Membrane Transport Chloride Transport Across Vesicle and Cell Membranes by Steroid-Based Receptors-established that molecules which transport cations across cell membranes (cationophores) can have potent biological effects the formation of an ion pair.[4a­g] Anion transport by purely electroneutral systems is still quite rare.[4j

Smith, Bradley D.

35

Oxygen Transport Ceramic Membranes Quarterly Report  

E-Print Network (OSTI)

/Reaction rates in Ion 21 Transport Membranes using Isotope Tracer and Transient Kinetic Techniques CONCLUSIONS 30Oxygen Transport Ceramic Membranes Quarterly Report January 2003 ­ March 2003 Principal Authors on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane

Eagar, Thomas W.

36

Oxygen Transport Ceramic Membranes  

SciTech Connect

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and initial studies on newer composition of Ti doped LSF. Dense OTM bars provided by Praxair were loaded to fracture at varying stress rates. Studies were done at room temperature in air and at 1000 C in a specified environment to evaluate slow crack growth behavior. In addition, studies were also begun to obtain reliable estimates of fracture toughness and stable crack growth in specific environments. Newer composition of Ti doped LSF membranes were characterized by neutron diffraction analysis. Quench studies indicated an apparent correlation between the unit cell volume and oxygen occupancy. The studies however, indicated an anomaly of increasing Fe/Ti ratio with change in heat treatment. Ti doped LSF was also characterized for stoichiometry as a function of temp and pO{sub 2}. The non stoichiometry parameter {delta} was observed to increase almost linearly on lowering pO{sub 2} until a ideal stoichiometric composition of {delta} = 0.175 was approached.

S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; W.B. Yelon; H.U. Anderson; Alan Jacobson; C.A. Mims

2004-02-01T23:59:59.000Z

37

Ion transport membrane module and vessel system  

DOE Patents (OSTI)

An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

Stein, VanEric Edward (Allentown, PA); Carolan, Michael Francis (Allentown, PA); Chen, Christopher M. (Allentown, PA); Armstrong, Phillip Andrew (Orefield, PA); Wahle, Harold W. (North Canton, OH); Ohrn, Theodore R. (Alliance, OH); Kneidel, Kurt E. (Alliance, OH); Rackers, Keith Gerard (Louisville, OH); Blake, James Erik (Uniontown, OH); Nataraj, Shankar (Allentown, PA); Van Doorn, Rene Hendrik Elias (Obersulm-Willsbach, DE); Wilson, Merrill Anderson (West Jordan, UT)

2012-02-14T23:59:59.000Z

38

Ion transport membrane module and vessel system  

DOE Patents (OSTI)

An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel.The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

Stein, VanEric Edward (Allentown, PA); Carolan, Michael Francis (Allentown, PA); Chen, Christopher M. (Allentown, PA); Armstrong, Phillip Andrew (Orefield, PA); Wahle, Harold W. (North Canton, OH); Ohrn, Theodore R. (Alliance, OH); Kneidel, Kurt E. (Alliance, OH); Rackers, Keith Gerard (Louisville, OH); Blake, James Erik (Uniontown, OH); Nataraj, Shankar (Allentown, PA); van Doorn, Rene Hendrik Elias (Obersulm-Willsbach, DE); Wilson, Merrill Anderson (West Jordan, UT)

2008-02-26T23:59:59.000Z

39

High-Performance Ionic Diode Membrane for Salinity Gradient Power Generation  

Science Journals Connector (OSTI)

High-Performance Ionic Diode Membrane for Salinity Gradient Power Generation ... These processes can also capture energy from waste heat by generating artificial salinity gradients using synthetic solns., such as thermolytic salts. ... saline brines because of the higher power d. ...

Jun Gao; Wei Guo; Dan Feng; Huanting Wang; Dongyuan Zhao; Lei Jiang

2014-08-19T23:59:59.000Z

40

Gelled Ionic Liquid-Based Membranes: Achieving a 10,000 GPU Permeance for Post-Combustion Carbon Capture with Gelled Ionic Liquid-Based Membranes  

SciTech Connect

IMPACCT Project: Alongside Los Alamos National Laboratory and the Electric Power Research Institute, CU-Boulder is developing a membrane made of a gelled ionic liquid to capture CO2 from the exhaust of coal-fired power plants. The membranes are created by spraying the gelled ionic liquids in thin layers onto porous support structures using a specialized coating technique. The new membrane is highly efficient at pulling CO2 out of coal-derived flue gas exhaust while restricting the flow of other materials through it. The design involves few chemicals or moving parts and is more mechanically stable than current technologies. The team is now working to further optimize the gelled materials for CO2 separation and create a membrane layer that is less than 1 micrometer thick.

None

2011-02-02T23:59:59.000Z

Note: This page contains sample records for the topic "ionic transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Anion Exchange Membranes - Transport/Conductivity  

NLE Websites -- All DOE Office Websites (Extended Search)

Fundamental understanding Fundamental understanding * Driving membranes towards applications Anion Exchange Membranes - Transport/Conductivity High Priority * A need for a standard/available AEM (similar to Nafion in PEMs) * Define standard experimental conditions and protocols * A need for much more fundamental studies in transport mechanisms and mechanical properties * A need to develop much more new AEMs with alternative chemistries (new cation and backbone chemistries) Fundamental Studies * TRANSPORT * Conductivity (pure OH - hard to measure) * Water content, λ * Diffusion coefficients, NMR * Drag coefficients * Transference * Solubility * Fundamental transport mechanisms for anion and water transport * Computational Modeling * MORPHOLOGY/CHEMISTRY * Vibrational Spectroscopy: FTIR, Raman

42

Final Report for DE-FG02-93ER14376,Ionic Transport in Electrochemical Media  

SciTech Connect

This project was a molecular dynamics study of the relevant issues associated with the structure and transport of lithium in polymer electrolytes such as polyethylene oxide(PEO). In close collaboration with quantum chemist Larry Curtiss and neutron scatterers David Lee Price and Marie-Louise Saboungi at Argonne, we used molecular dynamics to study the local structure and dynamics and ion transport in the polymer. The studies elucidated the mechanism of Li transport in PEO, revealing that the rate limiting step is extremely sensitive to the magnitude of the torsion forces in the backbone of the polymer. Because the torsion forces are difficult to manipulate chemically, this makes it easier to understand why improving the conductivity of PEO based electrolytes has proven to be very difficult. We studied the transport properties of cations in ionic liquids as possible additives to polymer membranes for batteries and fuel cells and found preliminary indications that the transport is enhanced near phase separation in acid-ionic liquid mixtures.

J. W. Halley

2009-05-20T23:59:59.000Z

43

Liners for ion transport membrane systems  

SciTech Connect

Ion transport membrane system comprising (a) a pressure vessel comprising an interior, an exterior, an inlet, an inlet conduit, an outlet, and an outlet conduit; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein the inlet and the outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; (c) a gas manifold having an interior surface wherein the gas manifold is in flow communication with the interior region of each of the planar ion transport membrane modules and with the exterior of the pressure vessel; and (d) a liner disposed within any of the inlet conduit, the outlet conduit, and the interior surface of the gas manifold.

Carolan, Michael Francis (Allentown, PA); Miller, Christopher Francis (Macungie, PA)

2010-08-10T23:59:59.000Z

44

Characterization of a plasma membrane zinc transporter in rat brain  

E-Print Network (OSTI)

Ireland Ltd. Keywords: Ion transport; Membrane vesicles; Excitotoxicity; Zinc homeostasis; TransitionCharacterization of a plasma membrane zinc transporter in rat brain Robert A. Colvin* Department transport in the brain. This report provides convincing evidence of a zinc transporter in plasma membrane

45

Oxy-combustion: Oxygen Transport Membrane Development  

NLE Websites -- All DOE Office Websites (Extended Search)

combustion: Oxygen Transport combustion: Oxygen Transport Membrane Development Background The mission of the U.S. Department of Energy's (DOE) Existing Plants, Emissions & Capture (EPEC) Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. The EPEC R&D

46

Water uptake, ionic conductivity and swelling properties of anion-exchange membrane  

E-Print Network (OSTI)

occurs with negative excess volume of mixing. Percolative nature of the ion transport has been is reduced at the cathode to produce OH? , which transports through the anion-exchange membrane (AEM membrane, AEM can conduct ions only in the presence of water. In addition, water is one of the reactants

47

Ion transport through cell membrane channels  

E-Print Network (OSTI)

We discuss various models of ion transport through cell membrane channels. Recent experimental data shows that sizes of ion channels are compared to those of ions and that only few ions may be simultaneously in any single channel. Theoretical description of ion transport in such channels should therefore take into account interactions between ions and between ions and channel proteins. This is not satisfied by macroscopic continuum models based on Poisson-Nernst-Planck equations. More realistic descriptions of ion transport are offered by microscopic Brownian and molecular dynamics. One should also take into account a dynamical character of the channel structure. This is not yet addressed in the literature

Jan Gomulkiewicz; Jacek Miekisz; Stanislaw Miekisz

2007-06-05T23:59:59.000Z

48

Ion Transport Through Cell Membrane Channels Jan Gomulkiewicz1  

E-Print Network (OSTI)

1 Ion Transport Through Cell Membrane Channels Jan Gomulkiewicz1 , Jacek Mikisz2 , and Stanislaw various models of ion transport through cell membrane channels. Recent experimental data shows that sizes for the life of a cell. In particular, a fundamental phenomenon is a transport of ions through cell membranes

Miekisz, Jacek

49

Fabrication of catalyzed ion transport membrane systems  

DOE Patents (OSTI)

Process for fabricating a catalyzed ion transport membrane (ITM). In one embodiment, an uncatalyzed ITM is (a) contacted with a non-reducing gaseous stream while heating to a temperature and for a time period sufficient to provide an ITM possessing anion mobility; (b) contacted with a reducing gaseous stream for a time period sufficient to provide an ITM having anion mobility and essentially constant oxygen stoichiometry; (c) cooled while contacting the ITM with the reducing gaseous stream to provide an ITM having essentially constant oxygen stoichiometry and no anion mobility; and (d) treated by applying catalyst to at least one of (1) a porous mixed conducting multicomponent metallic oxide (MCMO) layer contiguous with a first side of a dense layer of MCMO and (2) a second side of the dense MCMO layer. In another embodiment, these steps are carried out in the alternative order of (a), (d), (b), and (c).

Carolan, Michael Francis; Kibby, Charles Leonard

2013-06-04T23:59:59.000Z

50

Membranes for nanometer-scale mass fast transport  

DOE Patents (OSTI)

Nanoporous membranes comprising single walled, double walled, and multiwalled carbon nanotubes embedded in a matrix material were fabricated for fluid mechanics and mass transfer studies on the nanometer scale and commercial applications. Average pore size can be 2 nm to 20 nm, or seven nm or less, or two nanometers or less. The membrane can be free of large voids spanning the membrane such that transport of material such as gas or liquid occurs exclusively through the tubes. Fast fluid, vapor, and liquid transport are observed. Versatile micromachining methods can be used for membrane fabrication. A single chip can comprise multiple membranes. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.

Bakajin, Olgica (San Leandro, CA); Holt, Jason (Berkeley, CA); Noy, Aleksandr (Belmont, CA); Park, Hyung Gyu (Oakland, CA)

2011-10-18T23:59:59.000Z

51

Advances in ion transport membrane technology for Syngas production  

Science Journals Connector (OSTI)

Abstract Ceramic, ion transport membranes for the production of Syngas (ITM Syngas) produce high pressure synthesis gas in a single unit operation from low pressure air and pre-reformed natural gas. Oxygen transport through ITM Syngas membranes occurs through a series of processes, including solid phase oxygen anion diffusion through the dense membrane and surface reactions on the air and reducing sides of the membrane. This paper focuses on the effect of adding porous layers to the syngas side or both sides of the membrane to increase the available surface area for the surface reactions. The highest fluxes are achieved by increasing the surface area on both sides of the membrane, indicating that both surface reactions are a significant resistance to oxygen transport.

C.F. Miller; Jack Chen; M.F. Carolan; E.P. Foster

2014-01-01T23:59:59.000Z

52

Low temperature thermal transport in partially perforated silicon nitride membranes.  

SciTech Connect

The thermal transport in partially trenched silicon nitride membranes has been studied in the temperature range from 0.3 to 0.6 K, with the transition edge sensor (TES), the sole source of membrane heating. The test configuration consisted of Mo/Au TESs lithographically defined on silicon nitride membranes 1 {micro}m thick and 6 mm{sup 2} in size. Trenches with variable depth were incorporated between the TES and the silicon frame in order to manage the thermal transport. It was shown that sharp features in the membrane surface, such as trenches, significantly impede the modes of phonon transport. A nonlinear dependence of thermal resistance on trench depth was observed. Partial perforation of silicon nitride membranes to control thermal transport could be useful in fabricating mechanically robust detector devices.

Yefremenko, V.; Wang, G.; Novosad, V.; Datesman, A.; Pearson, J.; Divan, R.; Chang, C. L.; Downes, T. P.; Mcmahon, J. J.; Bleem, L. E.; Crites, A. T.; Meyer, S. S.; Carlstrom, J. E.; Univ. of Chicago

2009-05-04T23:59:59.000Z

53

Membrane porters of ATP-binding cassette transport systems are polyphyletic  

E-Print Network (OSTI)

in Membrane porters of ATP-binding cassette transportin Membrane porters of ATP-binding cassette transportin Membrane porters of ATP-binding cassette transport

Wang, Bin

2010-01-01T23:59:59.000Z

54

Feed gas contaminant removal in ion transport membrane systems  

SciTech Connect

An oxygen ion transport membrane process wherein a heated oxygen-containing gas having one or more contaminants is contacted with a reactive solid material to remove the one or more contaminants. The reactive solid material is provided as a deposit on a support. The one or more contaminant compounds in the heated oxygen-containing gas react with the reactive solid material. The contaminant-depleted oxygen-containing gas is contacted with a membrane, and oxygen is transported through the membrane to provide transported oxygen.

Underwood, Richard Paul (Allentown, PA); Makitka, III, Alexander (Hatfield, PA); Carolan, Michael Francis (Allentown, PA)

2012-04-03T23:59:59.000Z

55

Structures for Three Membrane Transport Proteins Yield Functional Insights  

NLE Websites -- All DOE Office Websites (Extended Search)

Structures for Three Membrane Structures for Three Membrane Transport Proteins Yield Functional Insights Structures for Three Membrane Transport Proteins Yield Functional Insights Print Wednesday, 27 January 2010 00:00 Cells depend on contact with their outside environment in order to thrive. Two examples illustrate why: In one, information needed to guide cellular processes is constantly transmitted across cell membranes by specialized proteins, and in the other, maintaining the right gradient of ions across the membrane is a process critical to the life and death of a cell. Membrane transport proteins-functioning either as channels or transporters-are the gatekeepers that control contact with the world outside the cell by catalyzing the flow of ions and molecules across cell membranes. Malfunctioning transport proteins can lead to cancer, inflammatory, and neurological diseases. Despite their importance in cell function and in a multitude of physiological processes such as sensing pain, there are still many unknowns about how they function. Recently, in an impressive series of three papers in Nature and Science, researchers at the Oregon Health and Science University delineated the structures of three transporter proteins, one of which had never before been characterized structurally in such detail. The structures were solved using ALS Beamlines 5.0.2, 8.2.1, and 8.2.2.

56

Interfacial Water-Transport Effects in Proton-Exchange Membranes  

SciTech Connect

It is well known that the proton-exchange membrane is perhaps the most critical component of a polymer-electrolyte fuel cell. Typical membranes, such as Nafion(R), require hydration to conduct efficiently and are instrumental in cell water management. Recently, evidence has been shown that these membranes might have different interfacial morphology and transport properties than in the bulk. In this paper, experimental data combined with theoretical simulations will be presented that explore the existence and impact of interfacial resistance on water transport for Nafion(R) 21x membranes. A mass-transfer coefficient for the interfacial resistance is calculated from experimental data using different permeation cells. This coefficient is shown to depend exponentially on relative humidity or water activity. The interfacial resistance does not seem to exist for liquid/membrane or membrane/membrane interfaces. The effect of the interfacial resistance is to flatten the water-content profiles within the membrane during operation. Under typical operating conditions, the resistance is on par with the water-transport resistance of the bulk membrane. Thus, the interfacial resistance can be dominant especially in thin, dry membranes and can affect overall fuel-cell performance.

Kienitz, Brian; Yamada, Haruhiko; Nonoyama, Nobuaki; Weber, Adam

2009-11-19T23:59:59.000Z

57

Microscopic Transport in Mixtures of Room Temperature Ionic Liquids...  

NLE Websites -- All DOE Office Websites (Extended Search)

andor storage of carbon dioxide. For these applications in addition to CO 2 sorption properties, also transport properties of the mixtures of CO 2 and ILs are of high...

58

How the Membrane Protein AmtB Transports Ammonia  

NLE Websites -- All DOE Office Websites (Extended Search)

How the Membrane Protein AmtB Transports Ammonia Print How the Membrane Protein AmtB Transports Ammonia Print Membrane proteins provide molecular-sized entry and exit portals for the various substances that pass into and out of cells. While life scientists have solved the structures of protein channels for ions, uncharged solutes, and even water, up to now they have only been able to guess at the precise mechanisms by which gases (such as NH3, CO2, O2, NO, N2O, etc.) cross biological membranes. But, with the first high-resolution structure of a bacterial ammonia transporter (AmtB), determined by a team in the Stroud group from the University of California, San Francisco, it is now known that this family of transporters conducts ammonia by stripping off the proton from the ammonium (NH4+) cation and conducting the uncharged NH3 "gas."

59

NETL: Gasification - Advanced Hydrogen Transport Membranes for Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Syngas Processing Systems Syngas Processing Systems Advanced Hydrogen Transport Membranes for Coal Gasification Praxair Inc. Project Number: FE0004908 Project Description Praxair is conducting research to develop hydrogen transport membrane (HTM) technology to separate carbon dioxide (CO2) and hydrogen (H2) in coal-derived syngas for IGCC applications. The project team has fabricated palladium based membranes and measured hydrogen fluxes as a function of pressure, temperature, and membrane preparation conditions. Membranes are a commercially-available technology in the chemical industry for CO2 removal and H2 purification. There is, however, no commercial application of membrane processes that aims at CO2 capture for IGCC syngas. Due to the modular nature of the membrane process, the design does not exhibit economy of scale-the cost of the system will increase linearly as the plant system scale increases making the use of commercially available membranes, for an IGCC power plant, cost prohibitive. For a membrane process to be a viable CO2 capture technology for IGCC applications, a better overall performance is required, including higher permeability, higher selectivity, and lower membrane cost.

60

Coupled ionic and electronic heat transport at the nanoscale.  

SciTech Connect

In modeling thermal transport in nanoscale systems, classical molecular dynamics (MD) explicitly represents phonon modes and scattering mechanisms, but electrons and their role in energy transport are missing. Furthermore, the assumption of local equilibrium between ions and electrons often fails at the nanoscale. We have coupled MD (implemented in the LAMMPS MD package) with a partial differential equation based representation of the electrons (implemented using finite elements). The coupling between the subsystems occurs via a local version of the two-temperature model. Key parameters of the model are calculated using the Time Dependent Density Functional Theory with either explicit or implicit energy flow. We will discuss application of this work in the context of the US DOE Center for Integrated Nanotechnologies (CINT).

Olmsted, David L.; Modine, Normand Arthur; Beck, M. J. (University of Kentucky); Jones, Reese E.; Hatcher, R. M. (Lockheed Martin Advanced Technology Laboratories); Templeton, Jeremy Alan; Wagner, Gregory John

2010-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "ionic transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Nanostructured Silicon Membranes for Control of Molecular Transport  

SciTech Connect

A membrane that allows selective transport of molecular species requires precise engineering on the nanoscale. Membrane permeability can be tuned by controlling the physical structure of the pores. Here, a combination of electron-beam and optical lithography, along with cryogenic deep reactive ion etching, has been used to fabricate silicon membranes that are physically robust, have uniform pore-sizes, and are directly integrated into a microfluidic network. Additional reductions in pore size were achieved using plasma enhanced chemical vapor deposition of silicon dioxide to coat membrane surfaces. Cross sectioning of the membranes using focused ion beam milling was used to determine the physical shape of the membrane pores before and after coating.

Srijanto, Bernadeta R [ORNL] [ORNL; Retterer, Scott T [ORNL] [ORNL; Fowlkes, Jason Davidson [ORNL] [ORNL; Doktycz, Mitchel John [ORNL] [ORNL

2010-01-01T23:59:59.000Z

62

Polymer anion-selective membranes for electrolytic splitting of water. Part II: Enhancement of ionic conductivity and performance under conditions of alkaline water electrolysis  

Science Journals Connector (OSTI)

An attempt was made to increase the ionic conductivity of novel, heterogeneous, anion-selective membranes by increasing the porosity of their surface skin. This was based on the addition of a water-soluble compon...

Jaromr Hnt; Martin Paidar; Jan Schauer; Jan itka

2012-08-01T23:59:59.000Z

63

DEVELOPMENT AND SELECTION OF IONIC LIQUID ELECTROLYTES FOR HYDROXIDE CONDUCTING POLYBENZIMIDAZOLE MEMBRANES IN ALKALINE FUEL CELLS  

SciTech Connect

Alkaline fuel cell (AFC) operation is currently limited to specialty applications such as low temperatures and pure H{sub 2}/O{sub 2} due to the corrosive nature of the electrolyte and formation of carbonates. AFCs are the cheapest and potentially most efficient (approaching 70%) fuel cells. The fact that non-Pt catalysts can be used, makes them an ideal low cost alternative for power production. The anode and cathode are separated by and solid electrolyte or alkaline porous media saturated with KOH. However, CO{sub 2} from the atmosphere or fuel feed severely poisons the electrolyte by forming insoluble carbonates. The corrosivity of KOH (electrolyte) limits operating temperatures to no more than 80?C. This chapter examines the development of ionic liquids electrolytes that are less corrosive, have higher operating temperatures, do not chemically bond to CO{sub 2}, and enable alternative fuels. Work is detailed on the IL selection and characterization as well as casting methods within the polybenzimidazole based solid membrane. This approach is novel as it targets the root of the problem (the electrolyte) unlike other current work in alkaline fuel cells which focus on making the fuel cell components more durable.

Fox, E.

2012-05-01T23:59:59.000Z

64

journal Solid State Ionics  

NLE Websites -- All DOE Office Websites (Extended Search)

Structural and transport properties of Nafion in hydrobromic Structural and transport properties of Nafion in hydrobromic acid solutions journal Solid State Ionics year month abstract p Proton exchange membranes are key solid state ion carriers in many relevant energy technologies including flow batteries fuel cells and solar fuel generators In many of these systems the membranes are in contact with electrolyte solutions In this paper we focus on the impact of different HBr a flow battery and exemplary acid electrolyte external concentrations on the conductivity of Nafion a perfluorosulfonic acid membrane that is commonly used in many energy related applications The peak and then decrease in conductivity is correlated with measured changes in the water and HBr content within the membrane In addition small angle x ray scattering is used to probe the nanostructure to

65

Ammonium Bicarbonate Transport in Anion Exchange Membranes for Salinity Gradient Energy  

Science Journals Connector (OSTI)

Ammonium Bicarbonate Transport in Anion Exchange Membranes for Salinity Gradient Energy ... Current status of ion exchange membranes for power generation from salinity gradients ...

Geoffrey M. Geise; Michael A. Hickner; Bruce E. Logan

2013-08-22T23:59:59.000Z

66

Hydrogen transport membranes for dehydrogenation reactions  

DOE Patents (OSTI)

A method of converting C.sub.2 and/or higher alkanes to olefins by contacting a feedstock containing C.sub.2 and/or higher alkanes with a first surface of a metal composite membrane of a sintered homogenous mixture of an Al oxide or stabilized or partially stabilized Zr oxide ceramic powder and a metal powder of one or more of Pd, Nb, V, Zr, Ta and/or alloys or mixtures thereof. The alkanes dehydrogenate to olefins by contact with the first surface with substantially only atomic hydrogen from the dehydrogenation of the alkanes passing through the metal composite membrane. Apparatus for effecting the conversion and separation is also disclosed.

Balachandran; Uthamalingam (Hinsdale, IL)

2008-02-12T23:59:59.000Z

67

Portlandite content and ionic transport properties of hydrated C{sub 3}S pastes  

SciTech Connect

This paper presents the results of a C{sub 3}S paste characterization study. The objective was to determine the parameters needed to model the process of degradation. The experimental study focused on determining the portlandite content and the ionic diffusion coefficients of C{sub 3}S paste. The molar C/S ratio of C-S-H in hydrated C{sub 3}S pastes was also investigated. The portlandite content was determined with an experimental method based on an electron microprobe analysis. This method leads to a portlandite mass content of 24.4 {+-} 2.3%. The diffusion coefficient of each ionic species was determined by inverse analysis of diffusion test data performed on hydrated C{sub 3}S samples using a multiionic transport model.

Henocq, P., E-mail: phenocq@simcotechnologies.com [SIMCO Technologies Inc., 1400, boul. du Parc-Technologique, Quebec, G1P 4R7 (Canada); Samson, E. [SIMCO Technologies Inc., 1400, boul. du Parc-Technologique, Quebec, G1P 4R7 (Canada); Marchand, J. [SIMCO Technologies Inc., 1400, boul. du Parc-Technologique, Quebec, G1P 4R7 (Canada); Department of Civil Engineering, Laval University, Quebec, G1K 7P4 (Canada)

2012-02-15T23:59:59.000Z

68

Electrochemical control of ion transport through a mesoporous carbon membrane  

SciTech Connect

The transport of fluids through nanometer scale channels typically on the order of 1 -100 nm often exhibit unique properties compared to the bulk fluid. These phenomena occur because the channel dimensions and molecular size become comparable to the range of several important forces including electrostatic and van der Waals forces. Small changes in properties such as the electric double layer or surface charge can significantly affect molecular transport through the channels. Based on these emerging properties, a variety of nanofluidic devices such as nanofluidic transistors, nanofluidic diodes or lab-on-a-chip devices have been developed3-7 with a diverse range of applications including water purification, biomolecular sensing, DNA separation, and rectified ion transport. Nanofluidic devices are typically fabricated using expensive lithography techniques or sacrificial templates. Here we report a carbon-based, three-dimensional nanofluidic transport membrane that enables gated, or on/off, control of the transport of organic molecular species and metal ions using an applied electrical potential. In the absence of an applied potential, both cationic and anionic molecules freely diffuse across the membrane via a concentration gradient. However, when an electrochemical potential is applied, the transport of ions through the membrane is inhibited.

Surwade, Sumedh P [ORNL] [ORNL; Chai, Songhai [ORNL] [ORNL; Choi, Jai-Pil [ORNL] [ORNL; Wang, Xiqing [ORNL] [ORNL; Lee, Jeseung [ORNL] [ORNL; Vlassiouk, Ivan V [ORNL] [ORNL; Mahurin, Shannon Mark [ORNL] [ORNL; Dai, Sheng [ORNL] [ORNL

2014-01-01T23:59:59.000Z

69

Feed gas contaminant control in ion transport membrane systems  

DOE Patents (OSTI)

Ion transport membrane oxidation system comprising an enclosure having an interior and an interior surface, inlet piping having an internal surface and adapted to introduce a heated feed gas into the interior of the enclosure, and outlet piping adapted to withdraw a product gas from the interior of the enclosure; one or more planar ion transport membrane modules disposed in the interior of the enclosure, each membrane module comprising mixed metal oxide material; and a preheater adapted to heat a feed gas to provide the heated feed gas to the inlet piping, wherein the preheater comprises an interior surface. Any of the interior surfaces of the enclosure, the inlet piping, and the preheater may be lined with a copper-containing metal lining. Alternatively, any of the interior surfaces of the inlet piping and the preheater may be lined with a copper-containing metal lining and the enclosure may comprise copper.

Carolan, Michael Francis (Allentown, PA); Minford, Eric (Laurys Station, PA); Waldron, William Emil (Whitehall, PA)

2009-07-07T23:59:59.000Z

70

Multicomponent Transport through Realistic Zeolite Membranes: Characterization & Transport in Nanoporous Networks  

SciTech Connect

These research studies focused on the characterization and transport for porous solids which comprise both microporosity and mesoporosity. Such materials represent membranes made from zeolites as well as for many new nanoporous solids. Several analytical sorption techniques were developed and evaluated by which these multi-dimensional porous solids could be quantitatively characterized. Notably an approach by which intact membranes could be studied was developed and applied to plate-like and tubular supported zeolitic membranes. Transport processes were studied experimentally and theoretically based on the characterization studies.

William C. Conner

2007-08-02T23:59:59.000Z

71

Facilitated transport membrane hybrid systems for olefin purification  

SciTech Connect

A new membrane system has been developed by BP for refinery and chemical plant olefin purification and recovery. This facilitated transport system, coupled with distillation, offers lower capital and operating costs than conventional distillation alone. Initial results on lab scale hollow fiber devices indicate membrane flux ranging from 8.75 {times} 10{sup {minus}6} to 8 {times} 10{sup {minus}5} m{sup 3}/m{sup 2}/sec (2.5 to 23 scfd/ft{sub 2}) and selectivities from 150 to 300. Pilot plant experiments on propylene/propane and ethylene purge gas recovery over three to six months duration show membrane stability and product purity of 98.5% or greater using refinery grade propylene feed. Hybrid system optimization data for membranes and distillation indicate that using a side draw from the distillation tower provides advantages in terms of membrane area, purity of feed to the membrane, and low per-pass recovery coupled with high overall propylene recovery. Membrane performance data under various conditions are also presented. In addition to performance data, economic evaluation and energy savings are discussed.

Davis, J.C.; Valus, R.J.; Eshraghi, R.; Velikoff, A.E. [BP Research, Cleveland, OH (United States)

1993-01-01T23:59:59.000Z

72

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect

Eltron Research Inc., and team members, are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, ceramic, cermet (ceramic/metal), and thin film membranes were prepared, characterized, and evaluated for H{sub 2} transport. For selected ceramic membrane compositions an optimum range for transition metal doping was identified, and it was determined that highest proton conductivity occurred for two-phase ceramic materials. Furthermore, a relationship between transition metal dopant atomic number and conductivity was observed. Ambipolar conductivities of {approx}6 x 10{sup -3} S/cm were achieved for these materials, and {approx} 1-mm thick membranes generated H{sub 2} transport rates as high as 0.3 mL/min/cm{sup 2}. Cermet membranes during this quarter were found to have a maximum conductivity of 3 x 10{sup -3} S/cm, which occurred at a metal phase contact of 36 vol.%. Homogeneous dense thin films were successfully prepared by tape casting and spin coating; however, there remains an unacceptably high difference in shrinkage rates between the film and support, which led to membrane instability. Further improvements in high pressure membrane seals also were achieved during this quarter, and a maximum pressure of 100 psig was attained. CoorsTek optimized many of the processing variables relevant to manufacturing scale production of ceramic H{sub 2} transport membranes, and SCI used their expertise to deposit a range of catalysts compositions onto ceramic membrane surfaces. Finally, MTI compiled relevant information regarding Vision 21 fossil fuel plant operation parameters, which will be used as a starting point for assessing the economics of incorporating a H{sub 2} separation unit.

Shane E. Roark; Tony F. Sammells; Richard A. Mackay; Adam E. Calihman; Lyrik Y. Pitzman; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Mike J. Holmes; Aaron L. Wagner

2001-07-30T23:59:59.000Z

73

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect

Eltron Research Inc., and team members CoorsTek, McDermott Technology, Inc., Sued Chemie, Argonne National Laboratory and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, mixed proton/electron conductivity and hydrogen transport was measured as a function of metal phase content for a range of ceramic/metal (cermet) compositions. It was found that optimum performance occurred at 44 wt.% metal content for all compositions tested. Although each cermet appeared to have a continuous metal phase, it is believed that hydrogen transport increased with increasing metal content partially due to beneficial surface catalyst characteristics resulting from the metal phase. Beyond 44 wt.% there was a reduction in hydrogen transport most likely due to dilution of the proton conducting ceramic phase. Hydrogen separation rates for 1-mm thick cermet membranes were in excess of 0.1 mL/min/cm{sup 2}, which corresponded to ambipolar conductivities between 1 x 10{sup -3} and 8 x 10{sup -3} S/cm. Similar results were obtained for multiphase ceramic membranes comprised of a proton-conducting perovskite and electron conducting metal oxide. These multi-phase ceramic membranes showed only a slight improvement in hydrogen transport upon addition of a metal phase. The highest hydrogen separation rates observed this quarter were for a cermet membrane containing a hydrogen transport metal. A 1-mm thick membrane of this material achieved a hydrogen separation rate of 0.3 mL/min/cm{sup 2} at only 700 C, which increased to 0.6 mL/min/cm{sup 2} at 950 C.

Shane E. Roark; Tony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Alexandra Z. LaGuardia; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Mike J. Holmes; Aaron L. Wagner

2001-10-30T23:59:59.000Z

74

Ballistic electron transport in structured suspended semiconductor membranes  

SciTech Connect

We study ballistic electron transport in freely suspended AlAs/GaAs microstructures containing a high mobility two-dimensional electron gas with square lattice of antidots. We found that the magnetoresistance of the samples demonstrates commensurability oscillations both for the case of non-suspended and suspended devices. The temperature dependence of the commensurability oscillations is similar for both cases. However, the critical dc current, that suppresses these oscillations, in suspended samples is three times lower than in non-suspended ones. The observed phenomenon can be explained by peculiarities of the heat transport in membranes.

Pogosov, A. G.; Budantsev, M. V.; Zhdanov, E. Yu.; Pokhabov, D. A. [Institute of Semiconductor Physics SB RAS, Novosibirsk, Russia and Novosibirsk State University, Novosibirsk (Russian Federation)

2013-12-04T23:59:59.000Z

75

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect

Eltron Research Inc. and their team members are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, new cermet compositions were tested that demonstrated similar performance to previous materials. A 0.5-mm thick membrane achieved at H{sub 2} transport rate of 0.2 mL/min/cm{sup 2} at 950 C, which corresponded to an ambipolar conductivity of 3 x 10{sup -3} S/cm. Although these results were equivalent to those for other cermet compositions, this new composition might be useful if it demonstrates improved chemical or mechanical stability. Ceramic/ceramic composite membranes also were fabricated and tested; however, some reaction did occur between the proton- and electron-conducting phases, which likely compromised conductivity. This sample only achieved a H{sub 2} transport rate of {approx} 0.006 mL/min/cm{sup 2} and an ambipolar conductivity of {approx}4 x 10{sup -4} S/cm. Chemical stability tests were continued, and candidate ceramic membranes were found to react slightly with carbon monoxide under extreme testing conditions. A cermet compositions did not show any reaction with carbon monoxide, but a thick layer of carbon formed on the membrane surface. The most significant technical accomplishment this quarter was a new high-pressure seal composition. This material maintained a pressure differential across the membrane of {approx} 280 psi at 800 C, and is still in operation.

Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; George Farthing; Dan Rowley; Tim R. Armstrong; M.K. Ferber; Aaron L. Wagner; Jon P. Wagner

2002-07-30T23:59:59.000Z

76

Transport of Alkali Halides through a Liquid Organic Membrane Containing a Ditopic Salt-Binding Receptor  

E-Print Network (OSTI)

in the solid state as contact ion pairs. Transport experiments, using a supported liquid membrane and high saltTransport of Alkali Halides through a Liquid Organic Membrane Containing a Ditopic Salt and anion receptors. All transport systems exhibit the same qualitative order of ion selectivity; that is

Smith, Bradley D.

77

pH dependence and compartmentalization of zinc transported across plasma membrane of rat cortical neurons  

E-Print Network (OSTI)

pH dependence and compartmentalization of zinc transported across plasma membrane of rat corticalH dependence and compartmental- ization of zinc transported across plasma membrane of rat cortical neurons. Am; ion transport; transition elements; primary culture IT IS KNOWN THAT Zn2 can enter neurons by two

78

Membrane vesicles: A simplified system for studying auxin transport  

SciTech Connect

Indoleacetic acid (IAA), the auxin responsible for regulation of growth, is transported polarly in plants. Several different models have been suggested to account for IAA transport by cells and its accumulation by membrane vesicles. One model sees diffusion of IAA driven by a pH gradient. The anion of a lipophilic weak acid like IAA or butyrate accumulates in an alkaline compartment in accord with the size of the pH gradient The accumulation of IAA may be diminished by the permeability of its lipophilic anion. This anion leak may be blocked by NPA. With anion efflux blocked, a gradient of two pH units would support an IAA accumulation of less than 50-fold at equilibrium (2) Another model sees diffusion of IAA in parallel with a saturable symport (IAA[sup [minus

Goldsmith, M.H.M.

1989-01-01T23:59:59.000Z

79

E-Print Network 3.0 - aeruginosa membrane transport Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

U. The membrane-bound electron transport system of Methanosarcina species. J. Bioenerg. Biomembr... of methanophenazine and function of phenazines in ... Source: Dietrich,...

80

Lithium Ion Transport Mechanism in Ternary Polymer Electrolyte-Ionic Liquid Mixtures - A Molecular Dynamics Simulation Study  

E-Print Network (OSTI)

The lithium transport mechanism in ternary polymer electrolytes, consisting of PEO/LiTFSI and various fractions of the ionic liquid N-methyl-N-propylpyrrolidinium bis(trifluoromethane)sulfonimide, are investigated by means of MD simulations. This is motivated by recent experimental findings [Passerini et al., Electrochim. Acta 2012, 86, 330-338], which demonstrated that these materials display an enhanced lithium mobility relative to their binary counterpart PEO/LiTFSI. In order to grasp the underlying microscopic scenario giving rise to these observations, we employ an analytical, Rouse-based cation transport model [Maitra at al., PRL 2007, 98, 227802], which has originally been devised for conventional polymer electrolytes. This model describes the cation transport via three different mechanisms, each characterized by an individual time scale. It turns out that also in the ternary electrolytes essentially all lithium ions are coordinated by PEO chains, thus ruling out a transport mechanism enhanced by the presence of ionic-liquid molecules. Rather, the plasticizing effect of the ionic liquid contributes to the increased lithium mobility by enhancing the dynamics of the PEO chains and consequently also the motion of the attached ions. Additional focus is laid on the prediction of lithium diffusion coefficients from the simulation data for various chain lengths and the comparison with experimental data, thus demonstrating the broad applicability of our approach.

Diddo Diddens; Andreas Heuer

2012-11-14T23:59:59.000Z

Note: This page contains sample records for the topic "ionic transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Charge Transport through a Novel Zeolite Y Membrane by a Self-Exchange Process Hyunjung Lee and Prabir K. Dutta*  

E-Print Network (OSTI)

Charge Transport through a Novel Zeolite Y Membrane by a Self-Exchange Process Hyunjung Lee-photoresist-coated membranes were found. Accessibility of the intrazeolitic volume was examined by ion exchange and for optimally illuminated membranes was comparable to uncoated membranes. Charge transport through the membrane

Dutta, Prabir K.

82

Mixed Ionic/Electronic Conducting Ceramic Membranes for Oxygen-Assisted CO2 Reforming  

E-Print Network (OSTI)

Incorporating a SrFeCo0.5Ox (SFC) membrane into a CO2 reforming reactor doubles methane conversion with a powder Pt/ZrO2 catalyst. The deactivation of both Pt/ZrO2 and a Pt/CeZrO2 catalyst is also retarded substantially. Catalyst performance...

Slade, David

2010-03-29T23:59:59.000Z

83

ATP-binding cassette-like transporters are involved in the transport of lignin precursors across plasma and vacuolar membranes  

SciTech Connect

Lignin is a complex biopolymer derived primarily from the condensation of three monomeric precursors, the monolignols. The synthesis of monolignols occurs in the cytoplasm. To reach the cell wall where they are oxidized and polymerized, they must be transported across the cell membrane. However, the molecular mechanisms underlying the transport process are unclear. There are conflicting views about whether the transport of these precursors occurs by passive diffusion or is an energized active process; further, we know little about what chemical forms are required. Using isolated plasma and vacuolar membrane vesicles prepared from Arabidopsis, together with applying different transporter inhibitors in the assays, we examined the uptake of monolignols and their derivatives by these native membrane vesicles. We demonstrate that the transport of lignin precursors across plasmalemma and their sequestration into vacuoles are ATP-dependent primary-transport processes, involving ATP-binding cassette-like transporters. Moreover, we show that both plasma and vacuolar membrane vesicles selectively transport different forms of lignin precursors. In the presence of ATP, the inverted plasma membrane vesicles preferentially take up monolignol aglycones, whereas the vacuolar vesicles are more specific for glucoconjugates, suggesting that the different ATP-binding cassette-like transporters recognize different chemical forms in conveying them to distinct sites, and that glucosylation of monolignols is necessary for their vacuolar storage but not required for direct transport into the cell wall in Arabidopsis.

Miao, Y.C.; Liu, C.

2010-12-28T23:59:59.000Z

84

NETL: Gasification - Development of Ion-Transport Membrane Oxygen  

NLE Websites -- All DOE Office Websites (Extended Search)

Feed Systems Feed Systems Recovery Act: Development of Ion-Transport Membrane Oxygen Technology for Integration in IGCC and Other Advanced Power Generation Systems Air Products and Chemicals, Inc. Project Number: FC26-98FT40343 Project Description Air Products and Chemicals, Inc. is developing, scaling-up, and demonstrating a novel air separation technology for large-scale production of oxygen (O2) at costs that are approximately one-third lower than conventional cryogenic plants. An Ion Transport Membrane (ITM) Oxygen plant co-produces power and oxygen. A phased technology RD&D effort is underway to demonstrate all necessary technical and economic requirements for scale-up and industrial commercialization. The ITM Oxygen production technology is a radically different approach to producing high-quality tonnage oxygen and to enhance the performance of integrated gasification combined cycle and other advanced power generation systems. Instead of cooling air to cryogenic temperatures, oxygen is extracted from air at temperatures synergistic with power production operations. Process engineering and economic evaluations of integrated gasification combined cycle (IGCC) power plants comparing ITM Oxygen with a state-of-the-art cryogenic air separation unit are aimed to show that the installed capital cost of the air separation unit and the installed capital of IGCC facility are significantly lower compared to conventional technologies, while improving power plant output and efficiency. The use of low-cost oxygen in combustion processes would provide cost-effective emission reduction and carbon management opportunities. ITM Oxygen is an enabling module for future plants for producing coal derived shifted synthesis gas (a mixture of hydrogen [H2] and carbon dioxide [CO2]) ultimately for producing clean energy and fuels. Oxygen-intensive industries such as steel, glass, non-ferrous metallurgy, refineries, and pulp and paper may also realize cost and productivity benefits as a result of employing ITM Oxygen.

85

Transport coefficients of the D1-D5-P system and the membrane paradigm  

Science Journals Connector (OSTI)

I discuss a correspondence between string theory and the black hole membrane paradigm in the context of the D1-D5-P system. By using the Kubo formula, I calculate transport coefficients of the effective string model induced by two kinds of minimal scalars. Then, I show that these transport coefficients exactly agree with the corresponding membrane transport coefficients of a five-dimensional near-extremal black hole with three charges.

Yuya Sasai

2012-01-11T23:59:59.000Z

86

Oxygen transport membrane system and method for transferring heat to catalytic/process reactors  

DOE Patents (OSTI)

A method and apparatus for producing heat used in a synthesis gas production is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the stream reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5.

Kelly, Sean M; Kromer, Brian R; Litwin, Michael M; Rosen, Lee J; Christie, Gervase Maxwell; Wilson, Jamie R; Kosowski, Lawrence W; Robinson, Charles

2014-01-07T23:59:59.000Z

87

Advanced Hydrogen Transport Membranes for Vision 21 Fossil Fuel Plants  

SciTech Connect

The objective of this project was to develop an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. A family of hydrogen separation membranes was developed including single phase mixed conducting ceramics, ceramic/ceramic composites, cermet membranes, cermet membranes containing a hydrogen permeable metal, and intermediate temperature composite layered membranes. Each membrane type had different operating parameters, advantages, and disadvantages that were documented over the course of the project. Research on these membranes progressed from ceramics to cermets to intermediate temperature composite layered membranes. During this progression performance was increased from 0.01 mL x min{sup -1} x cm{sup -2} up to 423 mL x min{sup -1} x cm{sup -2}. Eltron and team membranes not only developed each membrane type, but also membrane surface catalysis and impurity tolerance, creation of thin film membranes, alternative applications such as membrane promoted alkane dehydrogenation, demonstration of scale-up testing, and complete engineering documentation including process and mechanical considerations necessary for inclusion of Eltron membranes in a full scale integrated gasification combined cycle power plant. The results of this project directly led to a new $15 million program funded by the Department of Energy. This new project will focus exclusively on scale-up of this technology as part of the FutureGen initiative.

Carl R. Evenson; Shane E. Roark

2006-03-31T23:59:59.000Z

88

How the Membrane Protein AmtB Transports Ammonia  

NLE Websites -- All DOE Office Websites (Extended Search)

side of the membrane that recruits NH4+ and a narrower 20--long hydrophobic channel midway through the membrane that lowers the dissociation constant of NH4+, thereby forming...

89

Interfacial Water-Transport Effects in Proton-Exchange Membranes  

E-Print Network (OSTI)

MaterialsModelinginPemFuelCells,A CombinationModelIonomerMembranesforPem?FuelCells,"ElectrochimicaActa,

Kienitz, Brian

2010-01-01T23:59:59.000Z

90

Aquaporins comprise a family of water-transporting membrane proteins. All aquaporins are efficient water transporters, while  

E-Print Network (OSTI)

are efficient water transporters, while sustaining strict selectivity, even against protons, thereby maintaining509 Aquaporins comprise a family of water-transporting membrane proteins. All aquaporins. Further insights, particularly with respect to the dynamics of water permeation and the filter mechanism

de Groot, Bert

91

Numerical simulations of ion transport membrane oxy-fuel reactors for CO? capture applications  

E-Print Network (OSTI)

Numerical simulations were performed to investigate the key features of oxygen permeation and hydrocarbon conversion in ion transport membrane (ITM) reactors. ITM reactors have been suggested as a novel technology to enable ...

Hong, Jongsup

2013-01-01T23:59:59.000Z

92

Experimental characterization of an Ion Transport Membrane (ITM) reactor for methane oxyfuel combustion  

E-Print Network (OSTI)

Ion Transport Membranes (ITM) which conduct both electrons and oxygen ions have been investigated experimentally for oxygen separation and fuel (mostly methane) conversion purposes over the last three decades. The fuel ...

Apo, Daniel Jolomi

2012-01-01T23:59:59.000Z

93

Systems-level design of ion transport membrane oxy-combustion power plants  

E-Print Network (OSTI)

Oxy-fuel combustion, particularly using an integrated oxygen ion transport membrane (ITM), is a thermodynamically attractive concept that seeks to mitigate the penalties associated with CO 2 capture from power plants. ...

Mancini, Nicholas D. (Nicholas David)

2011-01-01T23:59:59.000Z

94

Transport properties of separating membranes MF-4SK during alkaline electrolysis of water  

Science Journals Connector (OSTI)

The transport properties of separating membranes MF-4SK are studied during electrolysis of H2O in solutions of KOH. The effective diffusion coefficients of molecules of KOH and H2O and the transfer coefficients o...

A. N. Ponomarev; Yu. L. Moskvin; S. D. Babenko

2007-03-01T23:59:59.000Z

95

Antibiotic assisted molecular ion transport across a membrane in real time  

E-Print Network (OSTI)

Antibiotic assisted molecular ion transport across a membrane in real time Jian Liu, Xiaoming Shang of various chemical and physical phenomena as well as applications such as solar energy conversion, catalysis

Eisenthal, Kenneth B.

96

Ion transport membrane module and vessel system with directed internal gas flow  

DOE Patents (OSTI)

An ion transport membrane system comprising (a) a pressure vessel having an interior, an inlet adapted to introduce gas into the interior of the vessel, an outlet adapted to withdraw gas from the interior of the vessel, and an axis; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region; and (c) one or more gas flow control partitions disposed in the interior of the pressure vessel and adapted to change a direction of gas flow within the vessel.

Holmes, Michael Jerome (Thompson, ND); Ohrn, Theodore R. (Alliance, OH); Chen, Christopher Ming-Poh (Allentown, PA)

2010-02-09T23:59:59.000Z

97

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect

During this quarter work was continued on characterizing the stability of layered composite membranes under a variety of conditions. Membrane permeation was tested up to 100 hours at constant pressure, temperature, and flow rates. In addition, design parameters were completed for a scale-up hydrogen separation demonstration unit. Evaluation of microstructure and effect of hydrogen exposure on BCY/Ni cermet mechanical properties was initiated. The fabrication of new cermets containing high permeability metals is reported and progress in the preparation of sulfur resistant catalysts is discussed. Finally, a report entitled ''Criteria for Incorporating Eltron's Hydrogen Separation Membranes into Vision 21 IGCC Systems and FutureGen Plants'' was completed.

Carl R. Evenson; Anthony F. Sammells; Richard T. Treglio; Jim Fisher; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Chandra Ratnasamy; Mahendra Sunkara; Jyothish Thangla; Clive Brereton; Warren Wolfs; James Lockhart

2005-01-28T23:59:59.000Z

98

Journal of Membrane Science 279 (2006) 608614 Direct measurement of nanofluxes and structural relaxations of  

E-Print Network (OSTI)

of the membrane are very important in explain- ing solvent swelling [8,9]. Besides water transport, the gas. For insufficiently hydrated Nafion® membranes, the proton transport is slow, and thus, the conversion efficiency. Originally, it was argued that the gas mainly permeates either through the hydrated ionic cluster region [10

99

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect

Eltron Research Inc., and team members, are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, it was demonstrated that increasing the transition metal loading in a model perovskite composition resulted in an increase in hydrogen flux. Improved flux corresponded to the emergence of additional phases in the ceramic membrane, and highest flux was achieved for a composite consisting of pseudo-cubic and rhombohedral perovskite phases. A 0.9-mm thick membrane of this material generated a hydrogen flux in excess of 0.1 mL/min/cm{sup 2}, which was approximately 35 times greater than analogs with lower transition metal levels. The dopant level and crystal structure also correlated with membrane density and coefficient of thermal expansion, but did not appear to affect grain size or shape. Additionally, preliminary ceramic-metal (cermet) composite membranes demonstrated a 10-fold increase in flux relative to analogous membranes composed of only the ceramic component. The hydrogen flux for these cermet samples corresponded to a conductivity of {approx} 10{sup -3} S/cm, which was consistent with the predicted proton conductivity of the ceramic phase. Increasing the sweep gas flow rate in test reactors was found to significantly increase hydrogen flux, as well as apparent material conductivity for all samples tested. Adding humidity to the feed gas stream produced a small increase in hydrogen flux. However, the catalyst on ceramic membrane surfaces did not affect flux, which suggested that the process was membrane-diffusion limited. Representative samples and fabrication processes were evaluated on the basis of manufacturing practicality. it was determined that optimum membrane densification occurs over a very narrow temperature range for the subject ceramics. Additionally, calcination temperatures currently employed result in powders that are difficult mill and screen. These issues must be addressed to improve large-scale fabricability.

Shane E. Roark; Tony F. Sammells; Adam E. Calihman; Lyrik Y. Pitzman; Pamela M. Van Calcar; Richard A. Mackay; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Tim R. Armstrong; Mike J. Holmes; Aaron L. Wagner

2001-04-30T23:59:59.000Z

100

Transport Modeling of Membrane Extraction of Chlorinated Hydrocarbon from Water for Ion Mobility Spectrometry  

SciTech Connect

Membrane-extraction Ion Mobility Spectrometry (ME-IMS) is a feasible technique for the continuous monitoring of chlorinated hydrocarbons in water. This work studies theoretically the time-dependent characteristics of sampling and detection of trichloroethylene (TCE). The sampling is configured so that aqueous contaminants permeate through a hollow polydimethylsiloxane (PDMS) membrane and are carried away by a transport gas flowing through the membrane tube into IMS analyzer. The theoretical study is based on a two-dimensional transient fluid flow and mass transport model. The model describes the TCE mixing in the water, permeation through the membrane layer, and convective diffusion in the air flow inside membrane tube. The effect of various transport gas flow rates on temporal profiles of IMS signal intensity is investigated. The results show that fast time response and high transport yield can be achieved for ME-IMS by controlling the flow rate in the extraction membrane tube. These modeled time-response profiles are important for determining duty cycles of field-deployable sensors for monitoring chlorinated hydrocarbons in water.

Zhang, Wei [ORNL; Du, Yongzhai [ORNL; Feng, Zhili [ORNL; Xu, Jun [ORNL

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ionic transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Transport of Gases in Carbon Molecular Sieve Membranes by Multinuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

"difficult" separations of gas mixtures such as carbon dioxide methane and ethane ethylene separations. While there are many reports on macroscopic transport properties of CMS...

102

A Complete Transport Validated Model on a Zeolite Membrane for Carbon Dioxide Permeance and Capture  

E-Print Network (OSTI)

The CO2 emissions from major industries cause serious global environment problems and their mitigation is urgently needed. The use of zeolite membranes is a very efficient way in order to capture CO2 from some flue gases. The dominant transport mechanism at low temperature andor high pressure is the diffusion through the membrane. This procedure can be divided in three steps: Adsorption of the molecules of the species in the surface of the membrane, then a driving force gives a path where the species follow inside the membrane and finally the species desorbed from the surface of the membrane. The current work is aimed at developing a simulation model for the CO2 transport through a zeolite membrane and estimate the diffusion phenomenon through a very thin membrane of 150 nm in a Wicke-Kallenbach cell. The cell is cylindrical in shape with diameter of 19 mm and consists of a retentate gas chamber, a permeate gas chamber which are separated by a cylindrical zeolite membrane. This apparatus have been modeled wit...

Gkanas, Evangelos I; Stubos, Athanasios K; Makridis, Sofoklis S

2013-01-01T23:59:59.000Z

103

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect

Eltron Research Inc., and team members CoorsTek, Sued Chemie, and Argonne National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying composite membrane composition and microstructure to maximize hydrogen permeation without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, a composite metal membrane based on an inexpensive hydrogen permeable metal achieved permeation rates in excess of 25 mL/min/cm{sup 2}. Preliminary attempts to incorporate this metal into a cermet were successful, and a thick cermet membrane (0.83 mm) with 40 vol.% metal phase achieved a permeation rate of nearly 0.4 mL/min/cm{sup 2}. Increasing the metal phase content and decreasing membrane thickness should significantly increase permeation, while maintaining the benefits derived from cermets. Two-phase ceramic/ceramic composite membranes had low hydrogen permeability, likely due to interdiffusion of constituents between the phases. However, these materials did demonstrate high resistance to corrosion, and might be good candidates for other composite membranes. Temperature-programmed reduction measurements indicated that model cermet materials absorbed 2.5 times as much hydrogen than the pure ceramic analogs. This characteristic, in addition to higher electron conductivity, likely explains the relatively high permeation for these cermets. Incorporation of catalysts with ceramics and cermets increased hydrogen uptake by 800 to more than 900%. Finally, new high-pressure seals were developed for cermet membranes that maintained a pressure differential of 250 psi. This result indicated that the approach for high-pressure seal development could be adapted for a range of compositions. Other items discussed in this report include mechanical testing, new proton conducting ceramics, supported thin films, and alkane to olefin conversion.

Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Stewart R. Schesnack; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

2003-01-30T23:59:59.000Z

104

Advanced Hydrogen Transport Membranes for Vision 21 Fossil Fuel Plants  

SciTech Connect

During this quarter of the no cost extension a cermet composition referred to as EC101 containing a high permeability metal and a ceramic phase was prepared for sealing and permeability testing. Several different types of seals were developed and tested. In addition membrane surface stability was characterized.

Carl R. Evenson; Richard N. Kleiner; James E. Stephan; Frank E. Anderson

2006-01-31T23:59:59.000Z

105

NETL: Gasification - Recovery Act: Scale-Up of Hydrogen Transport Membranes  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery Act: Scale-Up of Hydrogen Transport Membranes for IGCC and FutureGen Plants Recovery Act: Scale-Up of Hydrogen Transport Membranes for IGCC and FutureGen Plants Eltron Research & Development Inc. Project Number: FC26-05NT42469 Project Description The Eltron Hydrogen Transport Membrane (HTM) technology uses composite metal alloy materials to separate H2 from coal-derived syngas (a mixture of H2, CO, CO2, and steam). Carbon dioxide on the feed side of the membrane remains at high pressure and in a concentrated form suitable for capture and re-use or storage. The Eltron HTM system is an enabling technology for the production of high purity H2 and the capture of CO2 at high pressure that is applicable to future integrated gasification combined cycle (IGCC) and central station H2 production plants. These novel membranes have an operating temperature of 280 to 440 degrees Celsius (°C), which is well-matched with emerging coal gas cleaning technologies and has the potential to significantly improve the overall efficiency and process economics for future gasification-based power, fuels, and chemical production plants. Eltron's membranes can withstand differential pressures of up to 1,000 pounds per square inch gauge (psig) without structural failure, allowing for successful integration into advanced, high-pressure coal gasification plants.

106

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect

Eltron Research Inc., and team members CoorsTek, McDermott Technology, inc., Sued Chemie, Argonne National Laboratory, and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur.

Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; George Farthing; Dan Rowley; Tim R. Armstrong; R.D. Carneim; P.F. Becher; C-H. Hsueh; Aaron L. Wagner; Jon P. Wagner

2002-04-30T23:59:59.000Z

107

Advanced Hydrogen Transport Membranes for Vision 21 Fossil Fuel Plants  

SciTech Connect

Eltron Research Inc. and team members CoorsTek, Sued Chemie, Argonne National Laboratory, and NORAM are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Currently, this project is focusing on four basic categories of dense membranes: (1) mixed conducting ceramic/ceramic composites, (2) mixed conducting ceramic/metal (cermet) composites, (3) cermets with hydrogen permeable metals, and (4) layered composites containing hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this final quarter of the no cost extension several planar membranes of a cermet composition referred to as EC101 containing a high permeability metal and a ceramic phase were prepared and permeability testing was performed.

Carl R. Evenson; Richard N. Kleiner; James E. Stephan; Frank E. Anderson

2006-04-30T23:59:59.000Z

108

Bioenergetics and mechanical actuation analysis with membrane transport experiments for use in biomimetic  

E-Print Network (OSTI)

Bioenergetics and mechanical actuation analysis with membrane transport experiments for use considers the mechanics and bioenergetics of a prototype nastic structure system consisting of an array by the hydrolysis of adenosine triphosphate. After reviewing the biochemistry and bioenergetics of the active

Giurgiutiu, Victor

109

Thorium ions transport across Tri-n-butyl phosphate-benzene based supported liquid membranes  

SciTech Connect

Transport of Th(IV) ions across tri-n-butyl phosphate (TBP) benzene based liquid membranes supported in microporous hydrophobic polypropylene film (MHPF) has been studied. Various parameters such as variation of nitric acid concentration in the feed, TBP concentration in the membrane, and temperature on the given metal ions transport have been investigated. The effects of nitric acid and TBP concentrations on the distribution coefficient were also studied, and the data obtained were used to determine the Th ions-TBP complex diffusion coefficient in the membrane. Permeability coefficients of Th(IV) ions were also determined as a function of the TBP and nitric acid concentrations. The optimal conditions for the transport of Th(IV) ions across the membrane are 6 mol{sm_bullet}dm{sup -3} HNO{sub 3} concentration, 2.188 mol {center_dot} dm{sup -3} TBP concentration, and 25{degrees}C. The stoichiometry of the chemical species involved in chemical reaction during the transport of Th(IV) ions has also been studied.

Rasul, G.; Chaudry, M.A. [Pakistan Institute of Nuclear Chemistry, Islamabad (Pakistan); Afzal, M. [Quaid-I-Azam Univ., Islamabad (Pakistan)

1995-12-01T23:59:59.000Z

110

Cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes  

DOE Patents (OSTI)

Novel cathode, electrolyte and oxygen separation materials are disclosed that operate at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes based on oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

Jacobson, Allan J; Wang, Shuangyan; Kim, Gun Tae

2014-01-28T23:59:59.000Z

111

Transport Properties and Performance of Polymer Electrolyte Membranes for the Hybrid Sulfur Electrolyzer  

E-Print Network (OSTI)

not consume fossil fuels or pro- duce CO2 while producing highly pure hydrogen.1-10 Gaseous SO2 fedTransport Properties and Performance of Polymer Electrolyte Membranes for the Hybrid Sulfur and Biological Systems Department, Albuquerque, New Mexico 87123, USA c Department of Materials Science

Weidner, John W.

112

Distributed Reforming of Renewable Liquids via Water Splitting using Oxygen Transport Membrane (OTM) (Presentation)  

NLE Websites -- All DOE Office Websites (Extended Search)

Reforming of Renewable Reforming of Renewable Liquids via Water Splitting using Oxygen Transport Membrane (OTM) * U. (Balu) Balachandran, T. H. Lee, C. Y. Park, and S. E. Dorris Energy Systems Division E-mail: balu@anl.gov * Work supported by the Hydrogen, Fuel Cells, and Infrastructure Technologies Program of DOE's Office of Energy Efficiency and Renewable Energy Presented at the Bio-derived Liquids Working Group (BILIWG) Meeting, Nov. 6, 2007. BILIWG Meeting, Nov. 6, 2007 2 Objective & Rationale Objective: Develop compact dense ceramic membrane reactors that enable the efficient and cost-effective production of hydrogen by reforming renewable liquid fuels using pure oxygen produced by water splitting and transported by an OTM. Rationale: Membrane technology provides the means to attack barriers to the

113

Simulation of Membrane and Cell Culture Permeability and Transport  

E-Print Network (OSTI)

for neutral and ionized species partitioning into the membrane - only non-ionized species. Donor bulk (D) Acceptor bulk (A) D w h w D w h w k i c N k o c N ?? = ? = ?+?? ? + ? + = == i 1p pKa-pHpj 1r pH1)r(jpKa Ux N x p 1s a s j rs b s 10101 1 cc c..., Kansas, 2006 Pgp expression in human SI Mouly, S., Paine, M.F. PharmRes-20(10):1595-1598 (2003) GPEN, Kansas, 2006 Talinolol Non-linear Dose Dependence Talinolol Dose Dependence de Mey et al. J. Cardio. Pharmacol. 26(6):879 (1995) 0 200 400 600 800 1000...

Bolger, Michael

2006-10-26T23:59:59.000Z

114

Quantitative description of ion transport via plasma membrane of yeast and small cells  

E-Print Network (OSTI)

Modelling of ion transport via plasma membrane needs identification and quantitative understanding of the involved processes. Brief characterisation of ion transport systems of a yeast cell (Pma1, Ena1, TOK1, Nha1, Trk1, Trk2, non-selective cation conductance) and estimates concerning the number of molecules of each transporter per a cell allow predicting the corresponding ion flows. Comparison of ion transport in small yeast cell and several animal cell types is provided and importance of cell volume to surface ratio is stressed. Role of cell wall and lipid rafts is discussed in aspect of required increase in spatial and temporary resolution of measurements. Conclusions are formulated to describe specific features of ion transport in a yeast cell. Potential directions of future research are outlined based on the assumptions.

Volkov, Vadim

2012-01-01T23:59:59.000Z

115

Quantitative description of ion transport via plasma membrane of yeast and small cells  

E-Print Network (OSTI)

Modelling of ion transport via plasma membrane needs identification and quantitative understanding of the involved processes. Brief characterisation of ion transport systems of a yeast cell (Pma1, Ena1, TOK1, Nha1, Trk1, Trk2, non-selective cation conductance) and estimates concerning the number of molecules of each transporter per a cell allow predicting the corresponding ion flows. Comparison of ion transport in small yeast cell and several animal cell types is provided and importance of cell volume to surface ratio is stressed. Role of cell wall and lipid rafts is discussed in aspect of required increase in spatial and temporary resolution of measurements. Conclusions are formulated to describe specific features of ion transport in a yeast cell. Potential directions of future research are outlined based on the assumptions.

Vadim Volkov

2012-12-18T23:59:59.000Z

116

FY08 MEMBRANE CHARACTERIZATION REPORT FOR HYBRID SULFUR ELECTROLYZER  

SciTech Connect

This report summarizes results from all of the membrane testing completed to date at the Savannah River National Laboratory (SRNL) for the sulfur dioxide-depolarized electrolyzer (SDE). Several types of commercially-available membranes have been analyzed for ionic resistance and sulfur dioxide transport including perfluorinated sulfonic acid (PFSA), sulfonated polyether-ketone-ketone (SPEKK), and polybenzimidazole membranes (PBI). Of these membrane types, the poly-benzimidazole membrane, Celtec-L, exhibited the best combination of characteristics for use in an SDE. Several experimental membranes have also been analyzed including hydrated sulfonated Diels-Alder polyphenylenes (SDAPP) membranes from Sandia National Laboratory, perfluorosulfonimide (PFSI) and sulfonated perfluorocyclobutyl aromatic ether (S-PFCB) prepared by Clemson University, hydrated platinum-treated PFSA prepared by Giner Electrochemical Systems (GES) and Pt-Nafion{reg_sign} 115 composites prepared at SRNL. The chemical stability, SO{sub 2} transport and ionic conductivity characteristics have been measured for several commercially available and experimental proton-conducting membranes. Commercially available PFSA membranes such as the Nafion{reg_sign} series exhibited excellent chemical stability and ionic conductivity in sulfur dioxide saturated sulfuric acid solutions. Sulfur dioxide transport in the Nafion{reg_sign} membranes varied proportionally with the thickness and equivalent weight of the membrane. Although the SO{sub 2} transport in the Nafion{reg_sign} membranes is higher than desired, the excellent chemical stability and conductivity makes this membrane the best commercially-available membrane at this time. Initial results indicated that a modified Nafion{reg_sign} membrane incorporating Pt nanoparticles exhibited significantly reduced SO{sub 2} transport. Reduced SO{sub 2} transport was also measured with commercially available PBI membrane and several experimental membranes produced at SNL and Clemson. These membranes also exhibit good chemical stability and conductivity in concentrated sulfuric acid solutions and, thus, serve as promising candidates for the SDE. Therefore, we recommend further testing of these membranes including electrolyzer testing to determine if the reduced SO{sub 2} transport eliminates the formation of sulfur-containing films at the membrane/cathode interface. SO{sub 2} transport measurements in the custom built characterization cell identified experimental limitations of the original design. During the last quarter of FY08 we redesigned and fabricated a new testing cell to overcome the previous limitations. This cell also offers the capability to test membranes under polarized conditions as well as test the performance of MEAs under selected electrolyzer conditions.

Hobbs, D; Hector Colon-Mercado, H; Mark Elvington, M

2008-09-01T23:59:59.000Z

117

Transport of trivalent and hexavalent chromium through different ion-selective membranes in acidic aqueous media  

SciTech Connect

The aim of this work was to evaluate the transport of trivalent and hexavalent chromium through anion- and cation-selective membranes using two- and three-compartment electrodialysis cells. Tests were done with acidic solutions of trivalent chromium ions, Cr{sup 3+}, and hexavalent chromium ions, Cr{sub 2}O{sub 7}{sup 2{minus}}. In each situation the transport of metallic ions through the membrane was evaluated. In the tests with trivalent chromium, Nafion 417 and Selemion CMT cation-selective membranes were used, and in the tests with hexavalent chromium, Selemion AMT membrane was used. The influence of SO{sub 4}{sup 2{minus}} ions and of the concentration of H{sup +} ions in the solutions was also analyzed. Results showed the oxidation of the Cr{sup 3+} ion at the anode and the reduction of the Cr{sub 2}O{sub 7}{sup 2{minus}} ion at the cathode. The maximum yield in the process was reached when hexavalent chromium solutions were used in the absence of sulfate ions and a Selemion AMT membrane in a three-compartment cell.

Costa, R.F.D.; Rodrigues, M.A.S.; Ferreira, J.Z. [LACOR-PPGEM-UFRGS, Porto Alegre (Brazil)

1998-06-01T23:59:59.000Z

118

Transport of copper ammines through a cation-exchange membrane during electrodialysis  

SciTech Connect

Extraction of copper ammine complexes from waste waters in electroplating technology and in production of cuprammonium fibers is an important problem and electrodialysis with ion-exchange membranes is the most promising method of solving it. The authors aim was to study transport of copper(II) ammines through a commercial cation-exchange membrane of the MK-40 type. The electrodialyzer consisted of five Plexiglas compartments separated in alternating order by MK-40 cation-exchange and MA-40 anion-exchange membranes. The authors studied the dependence of the transport of copper(II) ammine complexes on the current density at copper concentration 0.025 M in the desalination compartment and 0.15 M ammonia concentration. The experiments lead to the conclusion that electrodialysis of copper(II) ammine complexes is possible only at current densities below the limiting values and that the transport is accompanied by decrease of the formation function of the complexes both in the membrane and in the solution of the concentrate receiving compartment.

Kireeva, L.D.; Shaposhnik, V.A.; Sorokina, V.I.

1987-09-10T23:59:59.000Z

119

Catalyzed CO.sub.2-transport membrane on high surface area inorganic support  

DOE Patents (OSTI)

Disclosed are membranes and methods for making the same, which membranes provide improved permeability, stability, and cost-effective manufacturability, for separating CO.sub.2 from gas streams such as flue gas streams. High CO.sub.2 permeation flux is achieved by immobilizing an ultra-thin, optionally catalyzed fluid layer onto a meso-porous modification layer on a thin, porous inorganic substrate such as a porous metallic substrate. The CO.sub.2-selective liquid fluid blocks non-selective pores, and allows for selective absorption of CO.sub.2 from gas mixtures such as flue gas mixtures and subsequent transport to the permeation side of the membrane. Carbon dioxide permeance levels are in the order of 1.0.times.10.sup.-6 mol/(m.sup.2sPa) or better. Methods for making such membranes allow commercial scale membrane manufacturing at highly cost-effective rates when compared to conventional commercial-scale CO.sub.2 separation processes and equipment for the same and such membranes are operable on an industrial use scale.

Liu, Wei

2014-05-06T23:59:59.000Z

120

NETL: Gasification - Development of Ion-Transport Membrane Oxygen  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Background and Project Benefits Program Background and Project Benefits Gasification is used to convert a solid feedstock, such as coal, petcoke, or biomass, into a gaseous form, referred to as synthesis gas or syngas, which is primarily hydrogen and carbon monoxide. With gasification-based technologies, pollutants can be captured and disposed of or converted to useful products. Gasification can generate clean power by adding steam to the syngas in a water-gas-shift reactor to convert the carbon monoxide to carbon dioxide (CO2) and to produce additional hydrogen. The hydrogen and CO2 are separated-the hydrogen is used to make power and the CO2 is sent to storage, converted to useful products or used for EOR. In addition to efficiently producing electric power, a wide range of transportation fuels and chemicals can be produced from the cleaned syngas, thereby providing the flexibility needed to capitalize on the changing economic market. As a result, gasification provides a flexible technology option for using domestically available resources while meeting future environmental emission standards. Polygeneration plants that produce multiple products are uniquely possible with gasification technologies. The Gasification Systems program is developing technologies in three key areas to reduce the cost and increase the efficiency of producing syngas: (1) Feed Systems, (2) Gasifier Optimization and Plant Supporting Systems, and (3) Syngas Processing Systems.

Note: This page contains sample records for the topic "ionic transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

FINAL REPORT:Observation and Simulations of Transport of Molecules and Ions Across Model Membranes  

SciTech Connect

During the this new grant we developed a robust methodology for investigating a wide range of properties of phospho-lipid bilayers. The approach developed is unique because despite using periodic boundary conditions, we can simulate an entire experiment or process in detail. For example, we can follow the entire permeation process in a lipid-membrane. This includes transport from the bulk aqueous phase to the lipid surface; permeation into the lipid; transport inside the lipid; and transport out of the lipid to the bulk aqueous phase again. We studied the transport of small gases in both the lipid itself and in model protein channels. In addition, we have examined the transport of nanocrystals through the lipid membrane, with the main goal of understanding the mechanical behavior of lipids under stress including water and ion leakage and lipid flip flop. Finally we have also examined in detail the deformation of lipids when under the influence of external fields, both mechanical and electrostatic (currently in progress). The important observations and conclusions from our studies are described in the main text of the report

MURAD, SOHAIL [University of Illinois at Chicago] [University of Illinois at Chicago; JAMESON, CYNTHIA J [University of Illinois at Chicago] [University of Illinois at Chicago

2013-10-22T23:59:59.000Z

122

Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas  

SciTech Connect

The new waste heat and water recovery technology based on a nanoporous ceramic membrane vapor separation mechanism has been developed for power plant flue gas application. The recovered water vapor and its latent heat from the flue gas can increase the power plant boiler efficiency and reduce water consumption. This report describes the development of the Transport Membrane Condenser (TMC) technology in details for power plant flue gas application. The two-stage TMC design can achieve maximum heat and water recovery based on practical power plant flue gas and cooling water stream conditions. And the report includes: Two-stage TMC water and heat recovery system design based on potential host power plant coal fired flue gas conditions; Membrane performance optimization process based on the flue gas conditions, heat sink conditions, and water and heat transport rate requirement; Pilot-Scale Unit design, fabrication and performance validation test results. Laboratory test results showed the TMC system can exact significant amount of vapor and heat from the flue gases. The recovered water has been tested and proved of good quality, and the impact of SO{sub 2} in the flue gas on the membrane has been evaluated. The TMC pilot-scale system has been field tested with a slip stream of flue gas in a power plant to prove its long term real world operation performance. A TMC scale-up design approach has been investigated and an economic analysis of applying the technology has been performed.

Dexin Wang

2012-03-31T23:59:59.000Z

123

EVALUATION OF PROTON-CONDUCTING MEMBRANES FOR USE IN A SULFUR-DIOXIDE DEPOLARIZED ELECTROLYZER  

SciTech Connect

The chemical stability, sulfur dioxide transport, ionic conductivity, and electrolyzer performance have been measured for several commercially available and experimental proton exchange membranes (PEMs) for use in a sulfur dioxide depolarized electrolyzer (SDE). The SDE's function is to produce hydrogen by using the Hybrid Sulfur (HyS) Process, a sulfur based electrochemical/thermochemical hybrid cycle. Membrane stability was evaluated using a screening process where each candidate PEM was heated at 80 C in 60 wt. % H{sub 2}SO{sub 4} for 24 hours. Following acid exposure, chemical stability for each membrane was evaluated by FTIR using the ATR sampling technique. Membrane SO{sub 2} transport was evaluated using a two-chamber permeation cell. SO{sub 2} was introduced into one chamber whereupon SO{sub 2} transported across the membrane into the other chamber and oxidized to H{sub 2}SO{sub 4} at an anode positioned immediately adjacent to the membrane. The resulting current was used to determine the SO{sub 2} flux and SO{sub 2} transport. Additionally, membrane electrode assemblies (MEAs) were prepared from candidate membranes to evaluate ionic conductivity and selectivity (ionic conductivity vs. SO{sub 2} transport) which can serve as a tool for selecting membranes. MEAs were also performance tested in a HyS electrolyzer measuring current density versus a constant cell voltage (1V, 80 C in SO{sub 2} saturated 30 wt% H2SO{sub 4}). Finally, candidate membranes were evaluated considering all measured parameters including SO{sub 2} flux, SO{sub 2} transport, ionic conductivity, HyS electrolyzer performance, and membrane stability. Candidate membranes included both PFSA and non-PFSA polymers and polymer blends of which the non-PFSA polymers, BPVE-6F and PBI, showed the best selectivity.

Hobbs, D.; Elvington, M.; Colon-Mercado, H.

2009-11-11T23:59:59.000Z

124

Correlation of Structural Differences between Nafion/Polyaniline and Nafion/Polypyrrole Composite Membranes and Observed Transport Properties  

SciTech Connect

Polyaniline/Nafion and polypyrrole/Nafion composite membranes, prepared by chemical polymerization, are studied by infrared and nuclear magnetic resonance spectroscopy, and scanning electron microscopy. Differences in vanadium ion diffusion through the membranes and in the membranes area specific resistance are linked to analytical observations that polyaniline and polypyrrole interact differently with Nafion. Polypyrrole, a weakly basic polymer, binds less strongly to the sulfonic acid groups of the Nafion membrane, and thus the hydrophobic polymer aggregates in the center of the Nafion channel rather than on the hydrophilic side chains of Nafion that contain sulfonic acid groups. This results in a drastically elevated membrane resistance and an only slightly decreased vanadium ion permeation compared to a Nafion membrane. Polyaniline on the other hand is a strongly basic polymer, which forms along the sidewalls of the Nafion pores and on the membrane surface, binding tightly to the sulfonic acid groups of Nafion. This leads to a more effective reduction in vanadium ion transport across the polyaniline/Nafion membranes and the increase in membrane resistance is less severe. The performance of selected polypyrrole/Nafion composite membranes is tested in a static vanadium redox cell. Increased coulombic efficiency, compared to a cell employing Nafion, further confirms the reduced vanadium ion transport through the composite membranes.

Schwenzer, Birgit; Kim, Soowhan; Vijayakumar, M.; Yang, Zhenguo; Liu, Jun

2011-04-15T23:59:59.000Z

125

Dynamics of a vesicle as a cell mimic: Effects of interior structure, cross-membrane transport, and interaction with filaments  

E-Print Network (OSTI)

Dynamics of a vesicle as a cell mimic: Effects of interior structure, cross-membrane transport, and interaction with filaments The biological membrane is, in essence, a thermodynamically-nonequilibrium lipid bilayer [6, 30, 34, 43, 47] with a variety of molecular motors, ion pumps, or channels residing within [19

Young, Yuan N.

126

Application of various membranes to remove NOM typically occurring in Korea with respect to DBP, AOC and transport parameters  

Science Journals Connector (OSTI)

Bench- and pilot-scale membrane tests were performed to remove natural organic matter (NOM) originating from Paldang Lake in Korea. Membrane performance was demonstrated in terms of DOC, biodegradable organic carbon (BDOC), assimilable organic carbon (AOC), and transport parameters. Various membranes such as reverse osmosis (RO), nanofiltration (NF) and ultrafiltration (UF) were investigated for this study. Four different NF membranes were selected for pilot-scale filtration testing and investigated in terms of both flux decline and DOC removal. To demonstrate the effect of temperature on the source water seasonally, the flux of membranes was measured with pure water at different temperatures ranging from 25 to 7C. Coagulation/sedimentation treated water was used as feed water without removing residual chlorine; related plants were located at the Suji water treatment plant of Yongin City. To investigate more rigorously the organic fouling for various NF membranes, mass transport behaviors of organic matter solutes were evaluated by an irreversible thermodynamic model. The pore sizes of the NF membranes tested in the pilot slightly increased due to the oxidation of the polymer structure of the membranes from residual chlorine during the 4-month tests. Periodic chemical cleaning with a caustic solution was made to prevent accumulation of foulants on the membrane surface. The NF membranes exhibited stable efficiencies in terms of DOC and AOC removal during the test for 4 months.

Noeon Park; Boksoon Kwon; Minjeong Sun; Hyowon Ahn; Chunghwan Kim; Changho Kwoak; Dongju Lee; Seonha Chae; Hoon Hyung; Jaeweon Cho

2005-01-01T23:59:59.000Z

127

Mathematical modeling of liquid/liquid hollow fiber membrane contactor accounting for interfacial transport phenomena: Extraction of lanthanides as a surrogate for actinides  

SciTech Connect

This report is divided into two parts. The second part is divided into the following sections: experimental protocol; modeling the hollow fiber extractor using film theory; Graetz model of the hollow fiber membrane process; fundamental diffusive-kinetic model; and diffusive liquid membrane device-a rigorous model. The first part is divided into: membrane and membrane process-a concept; metal extraction; kinetics of metal extraction; modeling the membrane contactor; and interfacial phenomenon-boundary conditions-applied to membrane transport.

Rogers, J.D.

1994-08-04T23:59:59.000Z

128

Gas transport properties of reverse-selective poly(ether-b-amide6)/[Emim][BF4] gel membranes for CO2/light gases separation  

Science Journals Connector (OSTI)

Abstract The present research investigates deeply effect of 1-ethyl-3 methylimidazolium tetrafluoroborate ([Emim][BF4]) ionic liquid on separation performance and transport properties of poly(ether-b-amide6)(Pebax1657) at different operating pressures from 2 to 20 bar and temperatures from 25 to 65C. [Emim][BF4] showed interesting separation factor for CO2/light gases as a solvent and it was expected that its addition to Pebax1657 leads more amorphous structure, thereby diffusion and permeability of gases increase. [Emim][BF4] was added to the polymer solution up to 100 wt.% of Pebax1657 weight and permeation coefficients of CO2, H2, CH4 and N2 through the prepared membranes were measured. The results showed remarkable increment in permeation of all the tested gases, particularly CO2 and ideal selectivity of CO2/H2 enhanced significantly due to high solubility selectivity of the added compound. Effect of operating conditions on solubility coefficients were also investigated, thus sorption isotherms and activation energies of permeability, solubility and diffusion were calculated. In addition, the membranes were characterized by SEM, DSC, FT-IR spectroscopy and Tensile analysis to inspect changes in their physical and thermal properties, precisely.

Hesamoddin Rabiee; Ali Ghadimi; Toraj Mohammadi

2014-01-01T23:59:59.000Z

129

ccsd-00014522,version1-5Oct2006 Co-transport-induced instability of membrane voltage in tip-growing cells  

E-Print Network (OSTI)

ccsd-00014522,version1-5Oct2006 Co-transport-induced instability of membrane voltage in tip at the same time. It is shown that these co-transporters destabilize generically the membrane voltage- tive dynamics and activity of membrane ion channels. Action potential and cardiac excitation spiral

Paris-Sud XI, Université de

130

Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells  

SciTech Connect

Two-phase flow and transport of reactants and products in the air cathode of proton exchange membrane (PEM) fuel cells is studied analytically and numerically. Four regimes of water distribution and transport are classified by defining three threshold current densities and a maximum current density. They correspond to first appearance of liquid water at the membrane/cathode interface, extension of the gas-liquid two-phase zone to the cathode/channel interface, saturated moist air exiting the gas channel, and complete consumption of oxygen by the electrochemical reaction. When the cell operates above the first threshold current density, liquid water appears and a two-phase zone forms within the porous cathode. A two-phase, multi-component mixture model in conjunction with a finite-volume-based computational fluid dynamics (CFD) technique is applied to simulate the cathode operation in this regime. The model is able to handle the situation where a single-phase region co-exists with a two-phase zone in the air cathode. For the first time, the polarization curve as well as water and oxygen concentration distributions encompassing both single- and two-phase regimes of the air cathode are presented. Capillary action is found to be the dominant mechanism for water transport inside the two-phase zone. The liquid water saturation within the cathode is predicted to reach 6.3% at 1.4 A/cm{sup 2}.

WANG,Z.H.; WANG,C.Y.; CHEN,KEN S.

2000-03-20T23:59:59.000Z

131

Membrane vesicles: A simplified system for studying auxin transport. Final technical report  

SciTech Connect

Indoleacetic acid (IAA), the auxin responsible for regulation of growth, is transported polarly in plants. Several different models have been suggested to account for IAA transport by cells and its accumulation by membrane vesicles. One model sees diffusion of IAA driven by a pH gradient. The anion of a lipophilic weak acid like IAA or butyrate accumulates in an alkaline compartment in accord with the size of the pH gradient The accumulation of IAA may be diminished by the permeability of its lipophilic anion. This anion leak may be blocked by NPA. With anion efflux blocked, a gradient of two pH units would support an IAA accumulation of less than 50-fold at equilibrium (2) Another model sees diffusion of IAA in parallel with a saturable symport (IAA{sup {minus}} + nH{sup +}), driven by both the pH gradient and membrane voltage. Such a symport should be highly accumulative, however, with a lipophilic weak acid such as IAA, net diffusive efflux of IAAH whenever IAAHI{sub i} > IAAH{sub o} would constitute a leak. (3) A third model sees a pH change driven IAA uptake and saturable symport enhanced by internal binding sites. Following pH gradient-driven accumulation of IAA, the anion may bind to an intravesicular site, permitting further uptake of IAA. NPA, by blocking anion efflux, enhances this binding. We have reported that membrane vesicles isolated from actively growing plant tissues are a good system for studying the mechanisms involved in the transport and accumulation of auxin.

Goldsmith, M.H.M.

1989-12-31T23:59:59.000Z

132

Unique battery with an active membrane separator having uniform physico-chemically functionalized ion channels and a method making the same  

DOE Patents (OSTI)

The invention relates to a unique battery having an active, porous membrane and method of making the same. More specifically the invention relates to a sealed battery system having a porous, metal oxide membrane with uniform, physicochemically functionalized ion channels capable of adjustable ionic interaction. The physicochemically-active porous membrane purports dual functions: an electronic insulator (separator) and a unidirectional ion-transporter (electrolyte). The electrochemical cell membrane is activated for the transport of ions by contiguous ion coordination sites on the interior two-dimensional surfaces of the trans-membrane unidirectional pores. The membrane material is designed to have physicochemical interaction with ions. Control of the extent of the interactions between the ions and the interior pore walls of the membrane and other materials, chemicals, or structures contained within the pores provides adjustability of the ionic conductivity of the membrane.

Gerald, II, Rex E. (Brookfield, IL); Ruscic, Katarina J. (Chicago, IL); Sears, Devin N. (Spruce Grove, CA); Smith, Luis J. (Natick, MA); Klingler, Robert J. (Glenview, IL); Rathke, Jerome W. (Homer Glen, IL)

2012-02-21T23:59:59.000Z

133

Studies on the in situ electrooxidation and selective permeation of cerium(IV) across a bulk liquid membrane containing tributyl phosphate as the ion transporter  

SciTech Connect

The results of experiments carried out to develop a liquid membrane (LM) technique for the extractive permeation of cerium from nitric acid solutions are described. In-situ electrooxidation of Ce{sup 3+} to extractable Ce{sup 4+} and its transport across bulk LM (BLM) composed of tri-n-butyl phosphate (TBP)/dodecane mixtures was systematically studied under varied hydrodynamical and chemical conditions. The permeability of metal ions across the BLM was dependent on the efficiency of extraction, ionic activity of feed solutions, stirring rate, composition of the receiving phase, etc. The transport rates were found to vary linearly (a log-log correlation) with the cation concentration in feed solutions and concentration of TBP in BLM. A permeation velocity equation for cerium ion through the membrane has been proposed. More than 90% permeation of Ce with a maximum flux of 8.63 x 10{sup {minus}5} mol/m{sup 2}/s could be accomplished under the experimental conditions: stirring rates at feed and strip solutions were 380 and 300 rpm, respectively; feed was 1 mol/dm{sup 3} of HNO{sub 3} containing 0.005 mol/dm{sup 3} Ce(NO{sub 3}){sub 3}; LM contained 30% TBP/dodecane; and the receiving phase was distilled water. Radiochemically pure Ce-144 was partitioned from the Ce-Am mixture obtained by extraction chromatographic fractioning of high level radioactive waste. This also resulted in the purification of Am-241 in the feed solution with a decontamination factor of {approximately} 12 from Ce.

Kedari, C.S.; Pandit, S.S.; Ramanujam, A. [Bhabha Atomic Research Centre, Trombay (India). Fuel Reprocessing Div.] [Bhabha Atomic Research Centre, Trombay (India). Fuel Reprocessing Div.

1999-06-01T23:59:59.000Z

134

Ideal Desalination through Graphyne-4 Membrane: Nanopores for Quantized Water Transport  

E-Print Network (OSTI)

Graphyne-4 sheet exhibits promising potential for nanoscale desalination to achieve both high water permeability and salt rejection rate. Extensive molecular dynamics simulations on pore-size effects suggest that graphyne-4, with 4 acetylene bonds between two adjacent phenyl rings, has the best performance with 100% salt rejection and an unprecedented water permeability, to our knowledge, of ~13L/cm2/day/MPa, about 10 times higher than the state-of-the-art nanoporous graphene reported previously (Nano Lett.s 2012, 12, 3602-3608). In addition, the membrane entails very low energy consumption for producing 1m3 of fresh water, i.e., 3.6e-3 kWh/m3, three orders of magnitude less than the prevailing commercial membranes based on reverse osmosis. Water flow rate across the graphyne-4 sheet exhibits intriguing nonlinear dependence on the pore size owing to the quantized nature of water flow at the nanoscale. Such novel transport behavior has important implications to the design of highly effective and efficient desalination membranes.

Chongqin Zhu; Hui Li; Xiao Cheng Zeng; Sheng Meng

2013-06-30T23:59:59.000Z

135

Microsoft PowerPoint - Nano Sep Membrane for H2 Flux brief.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Membrane separations are a key enabling technology for energy conversion devices. Ionic transport Membrane separations are a key enabling technology for energy conversion devices. Ionic transport membranes must have both proton and electronic conductivity to function as hydrogen separation membranes without an external power supply. In addition, membrane materials electronic conductivity or material crystal stability should not be greatly affected by the presence of contaminant gases such as CO 2 , CO, CH 4 , and H 2 O that are associated with steam reforming/water gas shift reactions. SRNL is managed and operated for the U.S. Department of Energy by Savannah River Nuclear Solutions, LLC glance at a  improved electronic conduction  suitable for hydrogen separation  separates contaminant gases  patent pending Background SRNL-L5210-2011-00005

136

Active membrane having uniform physico-chemically functionalized ion channels  

DOE Patents (OSTI)

The present invention relates to a physicochemically-active porous membrane for electrochemical cells that purports dual functions: an electronic insulator (separator) and a unidirectional ion-transporter (electrolyte). The electrochemical cell membrane is activated for the transport of ions by contiguous ion coordination sites on the interior two-dimensional surfaces of the trans-membrane unidirectional pores. One dimension of the pore surface has a macroscopic length (1 nm-1000 .mu.m) and is directed parallel to the direction of an electric field, which is produced between the cathode and the anode electrodes of an electrochemical cell. The membrane material is designed to have physicochemical interaction with ions. Control of the extent of the interactions between the ions and the interior pore walls of the membrane and other materials, chemicals, or structures contained within the pores provides adjustability of the ionic conductivity of the membrane.

Gerald, II, Rex E; Ruscic, Katarina J; Sears, Devin N; Smith, Luis J; Klingler, Robert J; Rathke, Jerome W

2012-09-24T23:59:59.000Z

137

Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Dexin Wang Dexin Wang Principal Investigator Gas Technology Institute 1700 South Mount Prospect Rd Des Plaines, Il 60018 847-768-0533 dexin.wang@gastechnology.org TransporT MeMbrane Condenser for WaTer and energy reCovery froM poWer planT flue gas proMIs/projeCT no.: nT0005350 Background One area of the U.S. Department of Energy's (DOE) Innovations for Existing Plants (IEP) Program's research is being performed to develop advanced technologies to reuse power plant cooling water and associated waste heat and to investigate methods to recover water from power plant flue gas. Considering the quantity of water withdrawn and consumed by power plants, any recovery or reuse of this water can significantly reduce the plant's water requirements. Coal occurs naturally with water present (3-60 weight %), and the combustion

138

Effective Transport Properties Accounting for Electrochemical Reactions of Proton-Exchange Membrane Fuel Cell Catalyst Layers  

SciTech Connect

There has been a rapidly growing interest in three-dimensional micro-structural reconstruction of fuel cell electrodes so as to derive more accurate descriptors of the pertinent geometric and effective transport properties. Due to the limited accessibility of experiments based reconstruction techniques, such as dual-beam focused ion beam-scanning electro microscopy or micro X-Ray computed tomography, within sample micro-structures of the catalyst layers in polymer electrolyte membrane fuel cells (PEMFCs), a particle based numerical model is used in this study to reconstruct sample microstructure of the catalyst layers in PEMFCs. Then the reconstructed sample structure is converted into the computational grid using body-fitted/cut-cell based unstructured meshing technique. Finally, finite volume methods (FVM) are applied to calculate effective properties on computational sample domains.

Pharoah, Jon; Choi, Hae-Won; Chueh, Chih-Che; Harvey, David

2011-07-01T23:59:59.000Z

139

ZERO EMISSION POWER PLANTS USING SOLID OXIDE FUEL CELLS AND OXYGEN TRANSPORT MEMBRANES  

SciTech Connect

Over 16,700 hours of operational experience was gained for the Oxygen Transport Membrane (OTM) elements of the proposed SOFC/OTM zero-emission power generation concept. It was repeatedly demonstrated that OTMs with no additional oxidation catalysts were able to completely oxidize the remaining depleted fuel in a simulated SOFC anode exhaust at an O{sub 2} flux that met initial targets. In such cases, neither residual CO nor H{sub 2} were detected to the limits of the gas chromatograph (<10 ppm). Dried OTM afterburner exhaust streams contained up to 99.5% CO{sub 2}. Oxygen flux through modified OTMs was double or even triple that of the standard OTMs used for the majority of testing purposes. Both the standard and modified membranes in laboratory-scale and demonstration-sized formats exhibited stable performance over extended periods (2300 to 3500 hours or 3 to 5 months). Reactor contaminants, were determined to negatively impact OTM performance stability. A method of preventing OTM performance degradation was developed and proven to be effective. Information concerning OTM and seal reliability over extended periods and through various chemical and thermal shocks and cycles was also obtained. These findings were used to develop several conceptual designs for pilot (10 kWe) and commercial-scale (250 kWe) SOFC/OTM zero emission power generation systems.

G. Maxwell Christie; Troy M. Raybold

2003-06-10T23:59:59.000Z

140

Dr. Ing. /PhD / Dr.techn. Students supervised by Signe Kjelstrup 1. Torleif Holt, Transport and equilibrium properties of a cation exchange membrane (1983)  

E-Print Network (OSTI)

, (1996) 6. Magnar Ottøy, Mass and heat transfer in ion-exchange membranes (1996) 7. Belinda Flem, Peltier in the Polymer Electrolyte Membrane Fuel Cell (2007) 17. Isabella Inzoli, Coupled transports of heat and massDr. Ing. /PhD / Dr.techn. Students supervised by Signe Kjelstrup 1. Torleif Holt, Transport

Kjelstrup, Signe

Note: This page contains sample records for the topic "ionic transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

A Discussion of Conductivity Testing in High Temperature Membranes (lessons learned in assessing transport)  

Energy.gov (U.S. Department of Energy (DOE))

Presentation on conductivity testing in high temperature membranes given by Jim Boncella of Los Alamos National Laboratory at the High Temperature Membrane Working Group meeting in October 2005.

142

Two Chlamydomonas CTR Copper Transporters with a Novel Cys-Met Motif Are Localized to the Plasma Membrane and  

E-Print Network (OSTI)

Two Chlamydomonas CTR Copper Transporters with a Novel Cys-Met Motif Are Localized to the Plasma Membrane and Function in Copper Assimilation W M. Dudley Page, Janette Kropat, Patrice P. Hamel,1, California 90095-1569 Inducible high-affinity copper uptake is key to copper homeostasis in Chlamydomonas

Meier, Iris

143

Superbase-derived protic ionic liquids  

DOE Patents (OSTI)

Protic ionic liquids having a composition of formula (A.sup.-)(BH.sup.+) wherein A.sup.- is a conjugate base of an acid HA, and BH.sup.+ is a conjugate acid of a superbase B. In particular embodiments, BH.sup.+ is selected from phosphazenium species and guanidinium species encompassed, respectively, by the general formulas: ##STR00001## The invention is also directed to films and membranes containing these protic ionic liquids, with particular application as proton exchange membranes for fuel cells.

Dai, Sheng; Luo, Huimin; Baker, Gary A.

2013-09-03T23:59:59.000Z

144

Smart membranes for nitrate removal, water purification, and selective ion transportation  

DOE Patents (OSTI)

A computer designed nanoengineered membrane for separation of dissolved species. One embodiment provides an apparatus for treatment of a fluid that includes ions comprising a microengineered porous membrane, a system for producing an electrical charge across the membrane, and a series of nanopores extending through the membrane. The nanopores have a pore size such that when the fluid contacts the membrane, the nanopores will be in a condition of double layer overlap and allow passage only of ions opposite to the electrical charge across the membrane.

Wilson, William D. (Pleasanton, CA); Schaldach, Charlene M. (Pleasanton, CA); Bourcier, William L. (Livermore, CA); Paul, Phillip H. (Livermore, CA)

2009-12-15T23:59:59.000Z

145

Coupling and Testing the Fate and Transport of Heavy Metals and Other Ionic Species in a Groundwater Setting at Oak Ridge, TN - 13498  

SciTech Connect

Historical data show that heavy metals (including mercury) were released from Y -12 National Security Complex (NSC) at Oak Ridge, Tennessee, to the surrounding environments during its operation in 1950's. Studies have also shown that metals accumulated in the soil, rock, and groundwater, and are, at the present time, sources of contamination to nearby rivers and creeks (e.g., East Fork Poplar Creek, Bear Creek). For instance, mercury (Hg), zinc (Zn), cadmium (Cd) and lead (Pb) have been found and reported on the site groundwater. The groundwater type at the site is Ca-Mg-HCO{sub 3}. This paper presents a modeling application of PHREEQC, a model that simulates geochemical processes and couples them to flow and transport settings. The objective was to assess the capability of PHREEQC to simulate the transport of ionic species in groundwater at Oak Ridge, Tennessee; data were available from core holes and monitoring wells over a 736-m distance, within 60-300 m depths. First, predictions of the transport of major ionic species (i.e., Ca{sup 2+} and Mg{sup 2+}) in the water were made between monitoring wells and for GW-131. Second, the model was used to assess hypotheses under two scenarios of transport for Zn, Cd, Pb and Hg, in Ca-Mg-HCO{sub 3} water, as influenced by the following solid-liquid interactions: a) the role of ion exchange and b) the role of both ion exchange and sorption, the latter via surface complexation with Fe(OH){sub 3}. The transport scenario with ion exchange suggests that significant ion exchange is expected to occur for Zn, Cd and Pb concentrations, with no significant impact on Hg, within the first 100 m. Predictions match the expected values of the exchange coefficients relative to Ca{sup 2+} and Mg{sup 2+} (e.g., K{sub Ca/Zn} = K{sub Ca/Cd} > K{sub Ca/Pb} > K{sub Ca/Hg}). The scenario with both ion exchange and sorption does affect the concentrations of Zn and Cd to a small extent within the first 100 m, but does more meaningfully reduce the concentration of Pb, within the same distance, and also decreases the concentration of Hg in between core holes. Analysis of the above results, in the light of available literature on the ions of this study, does fundamentally support the capability of PHREEQC to predict the transport of major ions in a groundwater setting; it also generally supports the hypothesized role of ion exchange and sorption. The results indicate the potential of the model as a tool in the screening, selection and monitoring of remediation technologies for contaminated groundwater sites. (authors)

Noosai, Nantaporn; Fuentes, Hector R. [CEE Florida International University, Miami, FL 33174 (United States)] [CEE Florida International University, Miami, FL 33174 (United States)

2013-07-01T23:59:59.000Z

146

Zero Emission Power Plants Using Solid Oxide Fuel Cells and Oxygen Transport Membranes  

SciTech Connect

Siemens Westinghouse Power Corp. (SWPC) is engaged in the development of Solid Oxide Fuel Cell stationary power systems. SWPC has combined DOE Developmental funds with commercial customer funding to establish a record of successful SOFC field demonstration power systems of increasing size. SWPC will soon deploy the first unit of a newly developed 250 kWe Combined Heat Power System. It will generate electrical power at greater than 45% electrical efficiency. The SWPC SOFC power systems are equipped to operate on lower number hydrocarbon fuels such as pipeline natural gas, which is desulfurized within the SOFC power system. Because the system operates with a relatively high electrical efficiency, the CO2 emissions, {approx}1.0 lb CO2/ kW-hr, are low. Within the SOFC module the desulfurized fuel is utilized electrochemically and oxidized below the temperature for NOx generation. Therefore the NOx and SOx emissions for the SOFC power generation system are near negligible. The byproducts of the power generation from hydrocarbon fuels that are released into the environment are CO2 and water vapor. This forward looking DOE sponsored Vision 21 program is supporting the development of methods to capture and sequester the CO2, resulting in a Zero Emission power generation system. To accomplish this, SWPC is developing a SOFC module design, to be demonstrated in operating hardware, that will maintain separation of the fuel cell anode gas, consisting of H2, CO, H2O and CO2, from the vitiated air. That anode gas, the depleted fuel stream, containing less than 18% (H2 + CO), will be directed to an Oxygen Transport Membrane (OTM) Afterburner that is being developed by Praxair, Inc.. The OTM is supplied air and the depleted fuel. The OTM will selectively transport oxygen across the membrane to oxidize the remaining H2 and CO. The water vapor is then condensed from the totally 1.5.DOC oxidized fuel stream exiting the afterburner, leaving only the CO2 in gaseous form. That CO2 can then be compressed and sequestered, resulting in a Zero Emission power generation system operating on hydrocarbon fuel that adds only water vapor to the environment. Praxair has been developing oxygen separation systems based on dense walled, mixed electronic, oxygen ion conducting ceramics for a number of years. The oxygen separation membranes find applications in syngas production, high purity oxygen production and gas purification. In the SOFC afterburner application the chemical potential difference between the high temperature SOFC depleted fuel gas and the supplied air provides the driving force for oxygen transport. This permeated oxygen subsequently combusts the residual fuel in the SOFC exhaust. A number of experiments have been carried out in which simulated SOFC depleted fuel gas compositions and air have been supplied to either side of single OTM tubes in laboratory-scale reactors. The ceramic tubes are sealed into high temperature metallic housings which precludes mixing of the simulated SOFC depleted fuel and air streams. In early tests, although complete oxidation of the residual CO and H2 in the simulated SOFC depleted fuel was achieved, membrane performance degraded over time. The source of degradation was found to be contaminants in the simulated SOFC depleted fuel stream. Following removal of the contaminants, stable membrane performance has subsequently been demonstrated. In an ongoing test, the dried afterburner exhaust composition has been found to be stable at 99.2% CO2, 0.4% N2 and 0.6%O2 after 350 hours online. Discussion of these results is presented. A test of a longer, commercial demonstration size tube was performed in the SWPC test facility. A similar contamination of the simulated SOFC depleted fuel stream occurred and the performance degraded over time. A second test is being prepared. Siemens Westinghouse and Praxair are collaborating on the preliminary design of an OTM equipped Afterburner demonstration unit. The intent is to test the afterburner in conjunction with a reduced size SOFC test module that has the anode gas separati

Shockling, Larry A.; Huang, Keqin; Gilboy, Thomas E. (Siemens Westinghouse Power Corporation); Christie, G. Maxwell; Raybold, Troy M. (Praxair, Inc.)

2001-11-06T23:59:59.000Z

147

Conformational Exchange in a Membrane Transport Protein Is Altered in Protein Crystals  

SciTech Connect

Successful macromolecular crystallography requires solution conditions that may alter the conformational sampling of a macromolecule. Here, site-directed spin labeling is used to examine a conformational equilibrium within BtuB, the Escherichia coli outer membrane transporter for vitamin B{sub 12}. Electron paramagnetic resonance (EPR) spectra from a spin label placed within the N-terminal energy coupling motif (Ton box) of BtuB indicate that this segment is in equilibrium between folded and unfolded forms. In bilayers, substrate binding shifts this equilibrium toward the unfolded form; however, EPR spectra from this same spin-labeled mutant indicate that this unfolding transition is blocked in protein crystals. Moreover, crystal structures of this spin-labeled mutant are consistent with the EPR result. When the free energy difference between substates is estimated from the EPR spectra, the crystal environment is found to alter this energy by 3 kcal/mol when compared to the bilayer state. Approximately half of this energy change is due to solutes or osmolytes in the crystallization buffer, and the remainder is contributed by the crystal lattice. These data provide a quantitative measure of how a conformational equilibrium in BtuB is modified in the crystal environment, and suggest that more-compact, less-hydrated substates will be favored in protein crystals.

D Freed; P Horanyi; M Wiener; D Cafiso

2011-12-31T23:59:59.000Z

148

Conformational Exchange in a Membrane Transport Protein Is Altered in Protein Crystals  

SciTech Connect

Successful macromolecular crystallography requires solution conditions that may alter the conformational sampling of a macromolecule. Here, site-directed spin labeling is used to examine a conformational equilibrium within BtuB, the Escherichia coli outer membrane transporter for vitamin B{sub 12}. Electron paramagnetic resonance (EPR) spectra from a spin label placed within the N-terminal energy coupling motif (Ton box) of BtuB indicate that this segment is in equilibrium between folded and unfolded forms. In bilayers, substrate binding shifts this equilibrium toward the unfolded form; however, EPR spectra from this same spin-labeled mutant indicate that this unfolding transition is blocked in protein crystals. Moreover, crystal structures of this spin-labeled mutant are consistent with the EPR result. When the free energy difference between substates is estimated from the EPR spectra, the crystal environment is found to alter this energy by 3 kcal/mol when compared to the bilayer state. Approximately half of this energy change is due to solutes or osmolytes in the crystallization buffer, and the remainder is contributed by the crystal lattice. These data provide a quantitative measure of how a conformational equilibrium in BtuB is modified in the crystal environment, and suggest that more-compact, less-hydrated substates will be favored in protein crystals.

Freed, Daniel M.; Horanyi, Peter S.; Wiener, Michael C.; Cafiso, David S. (UV)

2010-09-27T23:59:59.000Z

149

Development of Novel active transport membrane devices. Phase I. Final report, 31 October 1988--31 January 1994  

SciTech Connect

The main objective of this program was to identify and develop a technique for fabricating Active Transport Materials (ATM) into lab-scale membrane devices. Air Products met this objective by applying thin film, multilayer fabrication techniques to support the AT material on a substrate membrane. In Phase IA, spiral-wound hollow fiber membrane modules were fabricated and evaluated. These nonoptimized devices were used to demonstrate the AT-based separation of carbon dioxide from methane, hydrogen sulfide from methane, and ammonia from hydrogen. It was determined that a need exists for a more cost efficient and less energy intensive process for upgrading subquality natural gas. Air Products estimated the effectiveness of ATM for this application and concluded that an optimized ATM system could compete effectively with both conventional acid gas scrubbing technology and current membrane technology. In addition, the optimized ATM system would have lower methane loss and consume less energy than current alternative processes. Air Products made significant progress toward the ultimate goal of commercializing an advanced membrane for upgrading subquality natural gas. The laboratory program focused on developing a high performance hollow fiber substrate and fabricating and evaluating ATM-coated lab-scale hollow fiber membrane modules. Selection criteria for hollow fiber composite membrane supports were developed and used to evaluate candidate polymer compositions. A poly(amide-imide), PAI, was identified for further study. Conditions were identified which produced microporous PAI support membrane with tunable surface porosity in the range 100-1000{Angstrom}. The support fibers exhibited good hydrocarbon resistance and acceptable tensile strength though a higher elongation may ultimately be desirable. ATM materials were coated onto commercial and PAI substrate fiber. Modules containing 1-50 fibers were evaluated for permselectivity, pressure stability, and lifetime.

Laciak, D.V.; Quinn, R.; Choe, G.S.; Cook, P.J.; Tsai, Fu-Jya

1994-08-01T23:59:59.000Z

150

Conceptual design report for a Direct Hydrogen Proton Exchange Membrane Fuel Cell for transportation application  

SciTech Connect

This report presents the conceptual design for a Direct-Hydrogen-Fueled Proton Exchange Membrane (PEM) Fuel Cell System for transportation applications. The design is based on the initial selection of the Chrysler LH sedan as the target vehicle with a 50 kW (gross) PEM Fuel Cell Stack (FCS) as the primary power source, a battery-powered Load Leveling Unit (LLU) for surge power requirements, an on-board hydrogen storage subsystem containing high pressure gaseous storage, a Gas Management Subsystem (GMS) to manage the hydrogen and air supplies for the FCS, and electronic controllers to control the electrical system. The design process has been dedicated to the use of Design-to-Cost (DTC) principles. The Direct Hydrogen-Powered PEM Fuel Cell Stack Hybrid Vehicle (DPHV) system is designed to operate on the Federal Urban Driving Schedule (FUDS) and Hiway Cycles. These cycles have been used to evaluate the vehicle performance with regard to range and hydrogen usage. The major constraints for the DPHV vehicle are vehicle and battery weight, transparency of the power system and drive train to the user, equivalence of fuel and life cycle costs to conventional vehicles, and vehicle range. The energy and power requirements are derived by the capability of the DPHV system to achieve an acceleration from 0 to 60 MPH within 12 seconds, and the capability to achieve and maintain a speed of 55 MPH on a grade of seven percent. The conceptual design for the DPHV vehicle is shown in a figure. A detailed description of the Hydrogen Storage Subsystem is given in section 4. A detailed description of the FCS Subsystem and GMS is given in section 3. A detailed description of the LLU, selection of the LLU energy source, and the power controller designs is given in section 5.

NONE

1995-09-05T23:59:59.000Z

151

Membrane Porters of ATP-Binding Cassette Transport Systems Are Polyphyletic  

E-Print Network (OSTI)

REVIEW Membrane Porters of ATP-Binding Cassette Transportat Springerlink.com Abstract The ATP-binding cassette (ABC)classi?ed according to the ATP hydrolyzing constituents,

Wang, Bin; Dukarevich, Maxim; Sun, Eric I.; Yen, Ming Ren; Saier, Milton H.

2009-01-01T23:59:59.000Z

152

Selective Gas Transport Through Few-Layered Graphene and Graphene Oxide Membranes  

Science Journals Connector (OSTI)

...for membrane applications because of ultimate...deposition (CVD) has recently...synthesized via CVD has a polycrystalline...spray and spin coatings (16). GO films...after several coatings, both membrane...coated by a GO thin film without detectable...cracks under an optical microscope...

Hyo Won Kim; Hee Wook Yoon; Seon-Mi Yoon; Byung Min Yoo; Byung Kook Ahn; Young Hoon Cho; Hye Jin Shin; Hoichang Yang; Ungyu Paik; Soongeun Kwon; Jae-Young Choi; Ho Bum Park

2013-10-04T23:59:59.000Z

153

Water Transport in Polymer Electrolyte Membrane Electrolyzers Used to Recycle Anhydrous HCl  

E-Print Network (OSTI)

is car- ried out in an electrolyzer similar to a H2-O2 polymer electrolyte membrane PEM fuel cell. The Du-coated Nafion 115 membrane was measured as a function of HCl flow rate and temperature at a constant cell 50% of the chlorine used in the chemical industry ends up as hydrogen chloride, a waste byproduct.2

Weidner, John W.

154

Physical Chemistry of Ionic Liquids  

NLE Websites -- All DOE Office Websites (Extended Search)

Ionic liquids are experiencing explosive growth in many areas of research Ionic liquids are experiencing explosive growth in many areas of research and practical applications. They present a wide range of complex physical and chemical behaviors, including ambient vapor pressures ranging from UHV to weakly volatile, a substantial variety of distinct condensed phases, including multiple crystal isomorphs, glasses, amorphous plastic and liquid crystal phases, deep supercooling, and interesting dynamical and transport phenomena. Experiments and simulations have shown that their intrinsic self-organization at the nanoscale is responsible for several of these properties. The symposium will assemble an international array of speakers to discuss ionic liquids in the context of their heterogeneous environments, solvation, dynamics and transport, interfacial properties,

155

Self-Assembly and Mass Transport in Membranes for Artificial Photosynthesis  

E-Print Network (OSTI)

45 CHAPTER 3. SELF-ASSEMBLY AND TRANSPORT LIMITATIONS IN7371. CHAPTER 3. SELF-ASSEMBLY AND TRANSPORT LIMITATIONS IN2. CONTROLLING NANOROD SELF-ASSEMBLY IN POLYMER THIN-FILMS

Modestino, Miguel Antonio

2013-01-01T23:59:59.000Z

156

Investigation of the performance and water transport of a polymer electrolyte membrane (pem) fuel cell  

E-Print Network (OSTI)

Fuel cell performance was obtained as functions of the humidity at the anode and cathode sites, back pressure, flow rate, temperature, and channel depth. The fuel cell used in this work included a membrane and electrode assembly (MEA) which...

Park, Yong Hun

2009-05-15T23:59:59.000Z

157

Self-Assembly and Mass Transport in Membranes for Artificial Photosynthesis  

E-Print Network (OSTI)

membranes are in hydrogen fuel- cells and electrolyzers. Thefuel cells and electrolyzers used both for hydrogenhydrogen production and device geometry requirements dictated by the light absorption. In fuel cells,

Modestino, Miguel Antonio

2013-01-01T23:59:59.000Z

158

Experimental characterization of water sorption and transport properties of polymer electrolyte membranes for fuel cells.  

E-Print Network (OSTI)

??L'objectif gnral de cette thse de doctorat est de caractriser les proprits de membranes PFSA de type Nafion N115 et Nafion NRE212 en termes de (more)

Maldonado Snchez, Libeth

2012-01-01T23:59:59.000Z

159

BASELINE MEMBRANE SELECTION AND CHARACTERIZATION FOR AN SDE  

SciTech Connect

Thermochemical processes are being developed to provide global-scale quantities of hydrogen. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce the hydrogen. In FY05 and FY06, testing at the Savannah River National Laboratory (SRNL) explored a low temperature fuel cell design concept for the SDE. The advantages of this design concept include high electrochemical efficiency and small footprint that are crucial for successful implementation on a commercial scale. A key component of the SDE is the ion conductive membrane through which protons produced at anode migrate to the cathode and react to produce hydrogen. An ideal membrane for the SDE should have both low ionic resistivity and low sulfur dioxide transport. These features allow the electrolyzer to perform at high currents with low potentials, along with preventing contamination of both the hydrogen output and poisoning of the catalysts involved. Another key component is the electrocatalyst material used for the anode and cathode. Good electrocatalysts should be chemically stable and have a low overpotential for the desired electrochemical reactions. This report summarizes results from activities to evaluate commercial and experimental membranes for the SDE. Several different types of commercially-available membranes were analyzed for sulfur dioxide transport as a function of acid strength including perfluorinated sulfonic acid (PFSA), sulfonated poly-etherketone-ketone, and poly-benzimidazole (PBI) membranes. Experimental membranes from the sulfonated diels-alder polyphenylenes (SDAPP) and modified Nafion{reg_sign} 117 were evaluated for SO{sub 2} transport as well. These membranes exhibited reduced transport coefficient for SO{sub 2} transport without the loss in ionic conductivity. The use of Nafion{reg_sign} with EW 1100 is recommended for the present SDE testing due to the limited data regarding chemical and mechanical stability of experimental membranes. Development of new composite membranes by incorporating metal particles or by forming multilayers between PFSA membranes and hydrocarbon membranes will provide methods that will meet the SDE targets (SO{sub 2} transport reduction by a factor of 100) while decreasing catalyst layer delamination and membrane resistivity.

Colon-Mercado, H; David Hobbs, D

2007-04-03T23:59:59.000Z

160

E-Print Network 3.0 - anandamide membrane transporter Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

of the putative anandamide transporter that also... , Kaczocha M, Studholme KM, Deutsch DG (2003). Evidence against the presence of an ... Source: Cravatt, Benjamin -...

Note: This page contains sample records for the topic "ionic transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Measurements of water uptake and transport properties in anion-exchange membranes  

E-Print Network (OSTI)

, the electro-osmotic drag (EOD) coefficient, and the mass-transfer coefficient of water at the cathode catalyst/membrane interface falls in the range of 1.0 ? 10?6 to 1.0 ? 10?5 m s?1 . The EOD coefficients measured at 30 C

Zhao, Tianshou

162

Molecular Basis for Nanoscopic Membrane Curvature Generation from Quantum Mechanical Models and Synthetic Transporter  

E-Print Network (OSTI)

that an arginine-rich, 11AA sequence from the transactivator of transcription (TAT) protein of HIV, YGRKKRRQRRR (CPP) such as the TAT peptide can efficiently translocate across cellular membranes.1-6 Many types, now referred to as the TAT peptide, is sufficient for cellular uptake. It was soon realized by Wender

Tew, Gregory N.

163

Quantized ionic conductance in nanopores  

SciTech Connect

Ionic transport in nanopores is a fundamentally and technologically important problem in view of its ubiquitous occurrence in biological processes and its impact on DNA sequencing applications. Using microscopic calculations, we show that ion transport may exhibit strong non-liDearities as a function of the pore radius reminiscent of the conductance quantization steps as a function of the transverse cross section of quantum point contacts. In the present case, however, conductance steps originate from the break up of the hydration layers that form around ions in aqueous solution. Once in the pore, the water molecules form wavelike structures due to multiple scattering at the surface of the pore walls and interference with the radial waves around the ion. We discuss these effects as well as the conditions under which the step-like features in the ionic conductance should be experimentally observable.

Zwolak, Michael [Los Alamos National Laboratory; Lagerqvist, Johan [UCSD; Di Ventra, Massimilliano [UCSD

2009-01-01T23:59:59.000Z

164

Ammonium Bicarbonate Transport in Anion Exchange Membranes for Salinity Gradient Energy  

E-Print Network (OSTI)

such as reverse electrodialysis (RED) rely on highly selective anion transport through polymeric anion exchange to address global energy needs, such as reverse electro- dialysis1-4 (RED), capacitive energy extraction based on Donnan potential5 (CDP), and capacitive reverse electro- dialysis6 (CRED), has encouraged

165

Assembly and Repair of Membrane-Bound Electron Transport Complexes similar to NifS than is Slr0387, but shows strong  

E-Print Network (OSTI)

Assembly and Repair of Membrane-Bound Electron Transport Complexes similar to NifS than is Slr0387 in the maturation of FeS proteins. We found that under some conditions the Synechocystis NifU-like protein can oxidation of the cysteine side chains at NifU. The same reaction might have occurred in lysed chloroplasts

166

Membrane resistance: The effect of salinity gradients over a cation exchange membrane  

Science Journals Connector (OSTI)

Abstract Ion exchange membranes (IEMs) are used for selective transport of ions between two solutions. These solutions are often different in concentration or composition. The membrane resistance (RM) is an important parameter affecting power consumption or power production in electrodialytic processes. In contrast to real applications, often RM is determined while using a standard 0.5M NaCl external solution. It is known that RM increases with decreasing concentration. However, the detailed effect of a salinity gradient present over an IEM on RM was not known, and is studied here using alternating and direct current. NaCl solution concentrations varied from 0.01 to 1.1M. The results show that RM is mainly determined by the lowest external concentration. RM can be considered as two resistors in series i.e. a gel phase (concentration independent) and an ionic solution phase (concentration dependent). The membrane conductivity is limited by the conductivity of the ionic solution when the external concentration, cext<0.3M. The membrane conductivity is limited by the conductivity of the gel phase when cext?0.3M, then differences of RM are small. A good approximation of experimentally determined RM can be obtained. The internal ion concentration profile is a key factor in modeling RM.

A.H. Galama; D.A. Vermaas; J. Veerman; M. Saakes; H.H.M. Rijnaarts; J.W. Post; K. Nijmeijer

2014-01-01T23:59:59.000Z

167

VOLUME 80, NUMBER 20 P H Y S I C A L R E V I E W L E T T E R S 18 MAY 1998 Spontaneous Onset of Coherence and Energy Storage by Membrane Transporters  

E-Print Network (OSTI)

of Coherence and Energy Storage by Membrane Transporters in an RLC Electric Circuit Imre Derényi and R. Dean that oscillating or fluctuating electric fields can drive thermodynami- cally uphill transport of ions catalyzed by a molecular ion pump, the Na,K-ATPase. Theory suggests that if the transport reaction is very far from

Derényi, Imre

168

Research and development of proton-exchange membrane (PEM) fuel cell system for transportation applications. Phase I final report  

SciTech Connect

Objective during Phase I was to develop a methanol-fueled 10-kW fuel cell power source and evaluate its feasibility for transportation applications. This report documents research on component (fuel cell stack, fuel processor, power source ancillaries and system sensors) development and the 10-kW power source system integration and test. The conceptual design study for a PEM fuel cell powered vehicle was documented in an earlier report (DOE/CH/10435-01) and is summarized herein. Major achievements in the program include development of advanced membrane and thin-film low Pt-loaded electrode assemblies that in reference cell testing with reformate-air reactants yielded performance exceeding the program target (0.7 V at 1000 amps/ft{sup 2}); identification of oxidation catalysts and operating conditions that routinely result in very low CO levels ({le} 10 ppm) in the fuel processor reformate, thus avoiding degradation of the fuel cell stack performance; and successful integrated operation of a 10-kW fuel cell stack on reformate from the fuel processor.

NONE

1996-01-01T23:59:59.000Z

169

Model Cell Membranes  

Science Journals Connector (OSTI)

... are being used as model systems to test particular hypotheses in membrane transport. Thus, Tosteson and his colleagues (Andreoli et al., J. Gen. PhysioL, 50, 1729; ...

A Correspondent

1968-01-13T23:59:59.000Z

170

Hydrogen Production from Methane Using Oxygen-permeable Ceramic Membranes  

E-Print Network (OSTI)

Non-porous ceramic membranes with mixed ionic and electronic conductivity have received significant interest as membrane reactor systems for the conversion of methane and higher hydrocarbons to higher value products like ...

Faraji, Sedigheh

2010-06-08T23:59:59.000Z

171

Partially fluorinated ionic compounds  

DOE Patents (OSTI)

Partially fluorinated ionic compounds are prepared. They are useful in the preparation of partially fluorinated dienes, in which the repeat units are cycloaliphatic.

Han, legal representative, Amy Qi (Hockessin, DE); Yang, Zhen-Yu (Hockessin, DE)

2008-11-25T23:59:59.000Z

172

Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Transportation Transportation of Depleted Uranium Materials in Support of the Depleted Uranium Hexafluoride Conversion Program Issues associated with transport of depleted UF6 cylinders and conversion products. Conversion Plan Transportation Requirements The DOE has prepared two Environmental Impact Statements (EISs) for the proposal to build and operate depleted uranium hexafluoride (UF6) conversion facilities at its Portsmouth and Paducah gaseous diffusion plant sites, pursuant to the National Environmental Policy Act (NEPA). The proposed action calls for transporting the cylinder at ETTP to Portsmouth for conversion. The transportation of depleted UF6 cylinders and of the depleted uranium conversion products following conversion was addressed in the EISs.

173

Role of Individual Positive Charges in the Membrane Orientation and Activity of Transporters of the Small Multidrug Resistance Family  

Science Journals Connector (OSTI)

Molecular Microbiology and Membrane Enzymology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands ... *Molecular Microbiology, Nijenborgh 7, 9747AG Groningen, The Netherlands. ...

Magdalena A. Kolbusz; Dirk Jan Slotboom; Juke S. Lolkema

2012-10-08T23:59:59.000Z

174

Nanoscale study of reactive transport in catalyst layer of proton exchange membrane fuel cells with precious and non-precious catalysts using lattice Boltzmann method  

E-Print Network (OSTI)

High-resolution porous structures of catalyst layer (CL) with multicomponent in proton exchange membrane fuel cells are reconstructed using a reconstruction method called quartet structure generation set. Characterization analyses of nanoscale structures are implemented including pore size distribution, specific area and phase connectivity. Pore-scale simulation methods based on the lattice Boltzmann method are developed and used to predict the macroscopic transport properties including effective diffusivity and proton conductivity. Nonuniform distributions of ionomer in CL generates more tortuous pathway for reactant transport and greatly reduces the effective diffusivity. Tortuosity of CL is much higher than conventional Bruggeman equation adopted. Knudsen diffusion plays a significant role in oxygen diffusion and significantly reduces the effective diffusivity. Reactive transport inside the CL is also investigated. Although the reactive surface area of non-precious metal catalyst (NPMC) CL is much higher t...

Chen, Li; Kang, Qinjun; Holby, Edward F; Tao, Wen-Quan

2014-01-01T23:59:59.000Z

175

Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Health Risks » Transportation Health Risks » Transportation DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Transportation A discussion of health risks associated with transport of depleted UF6. Transport Regulations and Requirements In the future, it is likely that depleted uranium hexafluoride cylinders will be transported to a conversion facility. For example, it is currently anticipated that the cylinders at the ETTP Site in Oak Ridge, TN, will be transported to the Portsmouth Site, OH, for conversion. Uranium hexafluoride has been shipped safely in the United States for over 40 years by both truck and rail. Shipments of depleted UF6 would be made in accordance with all applicable transportation regulations. Shipment of depleted UF6 is regulated by the

176

Respiration-Linked Proton Transport, Changes in External pH, and Membrane Energization in Cells of Escherichia coli  

Science Journals Connector (OSTI)

...in untreated cells, and changing the atmosphere in the cuvette from N2 or Ar to air caused...1970. Acid-base titration across the plasma membrane of Micrococcus denitrifi- cans...of lactose-proton symport across the plasma membrane of Escherichia coli. Biochem...

J. Michael Gould

1979-04-01T23:59:59.000Z

177

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect

The mechanical properties of model systems were analyzed. A reasonably accurate finite element model was implemented and a rational metric to predict the strength of ceramic/metal concentrical joints was developed. The mode of failure of the ceramic/metal joints was determined and the importance of the mechanical properties of the braze material was assessed. Thermal cycling experiments were performed on the model systems and the results were discussed. Additionally, experiments using the concept of placing diffusion barriers on the ceramic surface to limit the extent of the reaction with the braze were performed. It was also observed that the nature and morphology of the reaction zone depends greatly on the nature of the perovskite structure being used. From the experiments, it is observed that the presence of Cr in the Fe-occupied sites decreases the tendency of Fe to segregate and to precipitate out of the lattice. In these new experiments, Ni was observed to play a major role in the decomposition of the ceramic substrate.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2001-05-01T23:59:59.000Z

178

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect

Conversion of natural gas to liquid fuels and chemicals is a major goal for the Nation as it enters the 21st Century. Technically robust and economically viable processes are needed to capture the value of the vast reserves of natural gas on Alaska's North Slope, and wean the Nation from dependence on foreign petroleum sources. Technologies that are emerging to fulfill this need are all based syngas as an intermediate. Syngas (a mixture of hydrogen and carbon monoxide) is a fundamental building block from which chemicals and fuels can be derived. Lower cost syngas translates directly into more cost-competitive fuels and chemicals. The currently practiced commercial technology for making syngas is either steam methane reforming (SMR) or a two-step process involving cryogenic oxygen separation followed by natural gas partial oxidation (POX). These high-energy, capital-intensive processes do not always produce syngas at a cost that makes its derivatives competitive with current petroleum-based fuels and chemicals.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2002-01-01T23:59:59.000Z

179

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect

The mechanical properties of model systems were analyzed. A reasonably accurate finite element model was implemented and a rational metric to predict the strength of ceramic/metal concentrical joints was developed. The mode of failure of the ceramic/metal joints was determined and the importance of the mechanical properties of the braze material was assessed. Thermal cycling experiments were performed on the model systems and the results were discussed. Additionally, experiments using the concept of placing diffusion barriers on the ceramic surface to limit the extent of the reaction with the braze were performed. It was also observed that the nature and morphology of the reaction zone depends greatly on the nature of the perovskite structure being used. From the experiments, it is observed that the presence of Cr in the Fe-occupied sites decreases the tendency of Fe to segregate and to precipitate out of the lattice. In these new experiments, Ni was observed to play a major role in the decomposition of the ceramic substrate.

Dr. Sukumar Bandopadhyay; Dr. Nagendfra Nagabhushana

2001-07-01T23:59:59.000Z

180

Molecular modeling of the morphology and transport properties of two direct methanol fuel cell membranes: phenylated sulfonated poly(ether ether ketone ketone) versus Nafion  

SciTech Connect

We have used molecular dynamics simulations to examine membrane morphology and the transport of water, methanol and hydronium in phenylated sulfonated poly ether ether ketone ketone (Ph-SPEEKK) and Nafion membranes at 360 K for a range of hydration levels. At comparable hydration levels, the pore diameter is smaller, the sulfonate groups are more closely packed, the hydronium ions are more strongly bound to sulfonate groups, and the diffusion of water and hydronium is slower in Ph-SPEEKK relative to the corresponding properties in Nafion. The aromatic carbon backbone of Ph-SPEEKK is less hydrophobic than the fluorocarbon backbone of Nafion. Water network percolation occurs at a hydration level ({lambda}) of {approx}8 H{sub 2}O/SO{sub 3}{sup -}. At {lambda} = 20, water, methanol and hydronium diffusion coefficients were 1.4 x 10{sup -5}, 0.6 x 10{sup -5} and 0.2 x 10{sup -5} cm{sup 2}/s, respectively. The pore network in Ph-SPEEKK evolves dynamically and develops wide pores for {lambda} > 20, which leads to a jump in methanol crossover and ion transport. This study demonstrates the potential of aromatic membranes as low-cost challengers to Nafion for direct methanol fuel cell applications and the need to develop innovative strategies to combat methanol crossover at high hydration levels.

Devanathan, Ramaswami; Idupulapati, Nagesh B.; Dupuis, Michel

2012-08-14T23:59:59.000Z

Note: This page contains sample records for the topic "ionic transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Operation of staged membrane oxidation reactor systems  

SciTech Connect

A method of operating a multi-stage ion transport membrane oxidation system. The method comprises providing a multi-stage ion transport membrane oxidation system with at least a first membrane oxidation stage and a second membrane oxidation stage, operating the ion transport membrane oxidation system at operating conditions including a characteristic temperature of the first membrane oxidation stage and a characteristic temperature of the second membrane oxidation stage; and controlling the production capacity and/or the product quality by changing the characteristic temperature of the first membrane oxidation stage and/or changing the characteristic temperature of the second membrane oxidation stage.

Repasky, John Michael

2012-10-16T23:59:59.000Z

182

Evaluation of electrodialysis for scaling prevention of nanofiltration membranes at high water recoveries  

Science Journals Connector (OSTI)

The water recovery of nanofiltration in drinking water production is limited to 8085%. When the water recovery is increased, there is a risk of scaling of sparingly soluble salts, such as CaSO4 or CaCO3, onto the membrane surface. There is a need for robust technologies that handle the problem of mineral scaling in nanofiltration and reverse osmosis, allowing operation at higher recoveries, i.e., with a higher production of potable water. In this study, the retentate stream of a nanofiltration unit was therefore desalinated by electrodialysis. Two different ion exchange membrane pairs, namely AMX-CMX (Neosepta, Japan) and FTAM-FTCM (Fumasep, Germany) were used for this purpose. The membrane pairs were compared on the basis of their removal efficiency of the main ions present in natural waters, with special attention to calcium and sulphate ions. The economic feasibility of retentate treatment by electrodialysis is discussed as well. The FTAM anion exchange membranes of Fumasep were able to remove sulphate ions faster, relative to chloride or nitrate ions. This is unexpected, because sulphate ions have a high hydrated ionic radius and steric hindrance typically obstructs their transport through anion exchange membranes, as is the case with the AMX membranes. This feature makes the FTAM membranes appropriate for the desalination of retentate streams of nanofiltration and reverse osmosis membranes, in water recycling applications. The other membranes can be regarded as non-selective.

Steven Van Geluwe; Leen Braeken; Thomas Robberecht; Maarten Jans; Claude Creemers; Bart Van der Bruggen

2011-01-01T23:59:59.000Z

183

Evolution of Antiparallel Two-Domain Membrane Proteins. Swapping Domains in the Glutamate Transporter GltS  

Science Journals Connector (OSTI)

Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands ... We thank Fabrizia Fusetti of The Netherlands Proteomics Centre/Membrane Enzymology group of the University of Groningen for analyzing samples by mass spectrometry. ...

Adam Dobrowolski; Juke S. Lolkema

2010-06-17T23:59:59.000Z

184

Intermolecular Dynamics, Interactions and Solvation in Ionic Liquids  

NLE Websites -- All DOE Office Websites (Extended Search)

Dynamics, Interactions and Solvation in Ionic Liquids Dynamics, Interactions and Solvation in Ionic Liquids Edward W. Castner, Jr., James F. Wishart, and Hideaki Shirota Acc. Chem. Res. 40, 1217-1227 (2007). [Find paper at ACS Publications] Abstract: Ionic liquids can simultaneously assume multiple solvent roles, because they are strongly polar and polarizable solvents and binary solutions and frequently contain very hydrophobic components. When the cation and anion functional groups are tuned appropriately, ionic liquids can be used as designer solvents for a broad range of applications. In this Account, we discuss our spectroscopic studies on the intermolecular interactions, dynamics, solvation, transport, and friction in ionic liquids, as compared with information obtained from macroscopic experiments including viscometry

185

High Temperature/Low Humidity Polymer Electrolytes Derived from Ionic Liquids  

Energy.gov (U.S. Department of Energy (DOE))

Presentation on High Temperature/Low Humidity Polymer Electrolytes Derived from Ionic Liquids to the High Temperature Membrane Working Group Meeting held in Arlington, Virginia, May 26,2005.

186

Understanding and engineering ion transport in conducting polymers.  

E-Print Network (OSTI)

??Many organic electronic and bioelectronics devices rely on mixed (electronic and ionic) transport within a single organic layer. Although electronic transport in these materials is (more)

Stavrinidou, Eleni

2013-01-01T23:59:59.000Z

187

Transport study of hafnium(IV) and zirconium(IV) ions mutual separation by using Tri-n-butyl phosphate-xylene-based supported liquid membranes  

SciTech Connect

A Hf transport study through supported liquid membranes has been carried out to determine flux and permeability data for this metal ion. Tri-n-butyl phosphate (TBP)-xylene-based liquid membranes supported in polypropylene hydrophobic microporous film have been used. These data for hafnium and the previous data for zirconium have furnished the Zr to Hf flux ratio (S) as a function of nitric acid and TBP concentrations of the order of 12 in a single stage at room temperature. Optimum conditions for the separation of these two metal ions appear to 5-6 TBP mol/dm{sup 3} HNO{sub 3}, concentrations {le} 2.93 mol/dm{sup 3}, and 10C. The value of S from an aqueous solution containing 2.4% Hf with respect to Zr has been found to be >125 at 10C and 1.78 mol/dm{sup 3} TBP concentration in the membrane. The technique appears to be feasible for purification of Zr respect to Hf or vice versa.

Chaudry, M.A.; Ahmed, B. (Pakistan Inst. of Nuclear Science and Technology, Islamabad (Pakistan))

1992-02-01T23:59:59.000Z

188

The Crystal Structure of OprG from Pseudomonas aeruginosa a Potential Channel for Transport of Hydrophobic Molecules across the Outer Membrane  

SciTech Connect

The outer membrane (OM) of Gram-negative bacteria provides a barrier to the passage of hydrophobic and hydrophilic compounds into the cell. The OM has embedded proteins that serve important functions in signal transduction and in the transport of molecules into the periplasm. The OmpW family of OM proteins, of which P. aeruginosa OprG is a member, is widespread in Gram-negative bacteria. The biological functions of OprG and other OmpW family members are still unclear. The outer membrane (OM) of Gram-negative bacteria provides a barrier to the passage of hydrophobic and hydrophilic compounds into the cell. The OM has embedded proteins that serve important functions in signal transduction and in the transport of molecules into the periplasm. The OmpW family of OM proteins, of which P. aeruginosa OprG is a member, is widespread in Gram-negative bacteria. The biological functions of OprG and other OmpW family members are still unclear. The crystal structure, together with recent biochemical data, suggests that OprG and other OmpW family members form channels that mediate the diffusion of small hydrophobic molecules across the OM by a lateral diffusion mechanism similar to that of E. coli FadL.

D Touw; D Patel; b van den Berg

2011-12-31T23:59:59.000Z

189

Engineering Development of Ceramic Membrane Reactor  

E-Print Network (OSTI)

ceramic Ion Transport Membrane (ITM) reactor system for low-cost conversion of natural gas to hydrogen;7 A Revolutionary Technology Using Ceramic Membranes Ion Transport Membranes (ITM) ­ Non-porous multiEngineering Development of Ceramic Membrane Reactor Systems for Converting Natural Gas to Hydrogen

190

Transportation  

Science Journals Connector (OSTI)

The romantic rides in Sandburgs eagle-car changed society. On the one hand, motor vehicle transportation is an integral thread of societys fabric. On the other hand, excess mobility fractures old neighborh...

David Hafemeister

2014-01-01T23:59:59.000Z

191

Degradation of Ionic Pathway in PEM Fuel Cell Cathode  

SciTech Connect

The degradation of the ionic pathway throughout the catalyst layer in proton exchange membrane fuel cells was studied under an accelerated stress test of catalyst support (potential hold at 1.2 V). Electrochemical behaviors of the cathode based on graphitic mesoporous carbon supported Pt catalyst were examined using electrochemical impedance spectroscopy and cyclic voltammetry. Impedance data were plotted and expressed in the complex capacitance form to determine useful parameters in the transmission line model: the double-layer capacitance, peak frequency, and ionic resistance. Electrochemical surface area and hydrogen crossover current through the membrane were estimated from cyclic voltammogram, while cathode Faradaic resistance was compared with ionic resistance as a function of test time. It was observed that during an accelerated stress test of catalyst support, graphitic mesoporous carbon becomes hydrophilic which increases interfacial area between the ionomer and the catalyst up to 100 h. However, the ionic resistance in the catalyst layer drastically increases after 100 h with further carbon support oxidation. The underlying mechanism has been studied and it was found that significant degradation of ionic pathway throughout the catalyst layer due to catalyst support corrosion induces uneven hydration and mechanical stress in the ionomer.

Park, Seh Kyu; Shao, Yuyan; Wan, Haiying; Viswanathan, Vilayanur V.; Towne, Silas A.; Rieke, Peter C.; Liu, Jun; Wang, Yong

2011-11-12T23:59:59.000Z

192

Salt Concentration Differences Alter Membrane Resistance in Reverse Electrodialysis Stacks  

E-Print Network (OSTI)

,3,4 Selective transport of ions through the membranes creates an electric potential across pairs of AEMs by changing the membrane polymer chemistry and/or membrane form factor.9-13 The ion transport properties on either side of the membrane on ion transport properties must be studied to improve our under- standing

193

MEMBRANE FUNCTION, Part 2. Passive Movement: Diffusion, Osmosis, and Gibbs-Donnan Equilibrium 1  

E-Print Network (OSTI)

such as ion gradients or sunlight. I. Passive transport Passive transport is diffusion through a membrane of the membrane. This movement is entirely by the process of diffusion (to be covered below) · ions and polar. Mechanisms of Membrane Transport There are two general modes of transport across membranes: passive transport

Prestwich, Ken

194

A Discussion of Conductivity Testing in High Temperature Membranes...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Discussion of Conductivity Testing in High Temperature Membranes (lessons learned in assessing transport) A Discussion of Conductivity Testing in High Temperature Membranes...

195

Super ionic conductive glass  

DOE Patents (OSTI)

An ionically conducting glass for use as a solid electrolyte in a power or secondary cell containing an alkali metal-containing anode and a cathode separated by an alkali metal ion conducting glass having an ionic transference number of unity and the general formula: A.sub.1+x D.sub.2-x/3 Si.sub.x P.sub.3-x O.sub.12-2x/3, wherein A is a network modifier for the glass and is an alkali metal of the anode, D is an intermediate for the glass and is selected from the class consisting of Zr, Ti, Ge, Al, Sb, Be, and Zn and X is in the range of from 2.25 to 3.0. Of the alkali metals, Na and Li are preferred and of the intermediate, Zr, Ti and Ge are preferred.

Susman, Sherman (Park Forest, IL); Volin, Kenneth J. (Fort Collins, CO)

1984-01-01T23:59:59.000Z

196

Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Due to limited parking, all visitors are strongly encouraged to: Due to limited parking, all visitors are strongly encouraged to: 1) car-pool, 2) take the Lab's special conference shuttle service, or 3) take the regular off-site shuttle. If you choose to use the regular off-site shuttle bus, you will need an authorized bus pass, which can be obtained by contacting Eric Essman in advance. Transportation & Visitor Information Location and Directions to the Lab: Lawrence Berkeley National Laboratory is located in Berkeley, on the hillside directly above the campus of University of California at Berkeley. The address is One Cyclotron Road, Berkeley, California 94720. For comprehensive directions to the lab, please refer to: http://www.lbl.gov/Workplace/Transportation.html Maps and Parking Information: On Thursday and Friday, a limited number (15) of barricaded reserved parking spaces will be available for NON-LBNL Staff SNAP Collaboration Meeting participants in parking lot K1, in front of building 54 (cafeteria). On Saturday, plenty of parking spaces will be available everywhere, as it is a non-work day.

197

Topical Review Fluctuations and Fractal Noise in Biological Membranes  

E-Print Network (OSTI)

and transport of ions and molecules across biological membranes. We know that ion transport through mem- branes in electrical properties associated with cell membrane ion transport. Key words: Brownian motion -- Cell membrane elec- trical properties -- Fractals -- Gaussian noise -- Ion transport -- Nonlinear dynamics

198

Sandia National Laboratories: ionic liquid  

NLE Websites -- All DOE Office Websites (Extended Search)

liquid Biofuels Blend Right In: Researchers Show Ionic Liquids Effective for Pretreating Mixed Blends of Biofuel Feedstocks On February 26, 2013, in Biofuels, Biomass, Energy,...

199

Ninth International Workshop on Plant Membrane Biology  

SciTech Connect

This report is a compilation of abstracts from papers which were discussed at a workshop on plant membrane biology. Topics include: plasma membrane ATP-ases; plant-environment interactions, membrane receptors; signal transduction; ion channel physiology; biophysics and molecular biology; vaculor H+ pumps; sugar carriers; membrane transport; and cellular structure and function.

Not Available

1993-12-31T23:59:59.000Z

200

Dual Phase Membrane for High Temperature CO2 Separation  

SciTech Connect

This project aimed at synthesis of a new inorganic dual-phase carbonate membrane for high temperature CO{sub 2} separation. Metal-carbonate dual-phase membranes were prepared by the direct infiltration method and the synthesis conditions were optimized. Permeation tests for CO{sub 2} and N{sub 2} from 450-750 C showed very low permeances of those two gases through the dual-phase membrane, which was expected due to the lack of ionization of those two particular gases. Permeance of the CO{sub 2} and O{sub 2} mixture was much higher, indicating that the gases do form an ionic species, CO{sub 3}{sup 2-}, enhancing transport through the membrane. However, at temperatures in excess of 650 C, the permeance of CO{sub 3}{sup 2-} decreased rapidly, while predictions showed that permeance should have continued to increase with temperature. XRD data obtained from used membrane indicated that lithium iron oxides formed on the support surface. This lithium iron oxide layer has a very low conductivity, which drastically reduces the flow of electrons to the CO{sub 2}/O{sub 2} gas mixture; thus limiting the formation of the ionic species required for transport through the membrane. These results indicated that the use of stainless steel supports in a high temperature oxidative environment can lead to decreased performance of the membranes. This revelation created the need for an oxidation resistant support, which could be gained by the use of a ceramic-type membrane. Work was extended to synthesize a new inorganic dual-phase carbonate membrane for high temperature CO{sub 2} separation. Helium permeance of the support before and after infiltration of molten carbonate are on the order of 10{sup -6} and 10{sup -10} moles/m{sup 2} {center_dot} Pa {center_dot} s respectively, indicating that the molten carbonate is able to sufficiently infiltrate the membrane. It was found that La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (LSCF) was a suitable candidate for the support material. This support material proved to separate CO{sub 2} when combined with O{sub 2} at a flux of 0.194 ml/min {center_dot} cm{sup 2} at 850 C. It was also observed that, because LSCF is a mixed conductor (conductor of both electrons and oxygen ions), the support was able to provide its own oxygen to facilitate separation of CO{sub 2}. Without feeding O{sub 2}, the LSCF dual phase membrane produced a maximum CO{sub 2} flux of 0.246 ml/min {center_dot} cm{sup 2} at 900 C.

Jerry Lin

2007-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "ionic transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Futile cycling at the plasma membrane: a hallmark of  

E-Print Network (OSTI)

. Transport systems catalyzing ion influx across the plasma membrane of root cells fall into two broadFutile cycling at the plasma membrane: a hallmark of low-affinity nutrient transport Dev T. Britto-affinity transport systems in the plasma membranes of root cells. In this Opinion article, we illustrate that for six

Britto, Dev T.

202

Journal of Membrane Science 239 (2004) 1726 Highly conductive ordered heterogeneous ion-exchange membranes  

E-Print Network (OSTI)

in the matrix required for reasonable ion transport through the membrane is 50­70 wt.% [2Journal of Membrane Science 239 (2004) 17­26 Highly conductive ordered heterogeneous ion-exchange membranes are used in electrodialysis (ED) as ion-selective membranes and in power sources (such as fuel

Freger, Viatcheslav "Slava"

203

Radiation Chemistry of Ionic Liquids  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquids Liquids James F. Wishart, Alison M. Funston, and Tomasz Szreder in "Molten Salts XIV" Mantz, R. A., et al., Eds.; The Electrochemical Society, Pennington, NJ, (2006) pp. 802-813. [Information about the volume (look just above this link)] Abstract: Ionic liquids have potentially important applications in nuclear fuel and waste processing, energy production, improving the efficiency and safety of industrial chemical processes, and pollution prevention. Successful use of ionic liquids in radiation-filled environments will require an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of ionic liquid radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material

204

The Interaction Between SrFeCo0.5O x Ceramic Membranes and Pt/CeZrO2 During Syngas Production from Methane  

Science Journals Connector (OSTI)

Non-porous ceramic membranes with mixed ionic and electronic conductivity have received significant interest as membrane reactor systems for the conversion of methane to higher value products. In this work, th...

Sedigheh Faraji; Karen J. Nordheden; Susan M. Stagg-Williams

2009-08-01T23:59:59.000Z

205

Charged mosaic membrane prepared from microsphere gel and its characterization  

Science Journals Connector (OSTI)

A charged mosaic membrane with parallel array of different negative and positive charges was prepared from microsphere gel. Several characteristics on the novel membrane were investigated through experiments concerning transport studies, membrane potentials and membrane resistance. From analysis of the volume flux and salt flux, preferential salt transport across the charged mosaic membrane was suggested. Membrane potential did not indicate a constant value and the absolute value decreased rapidly in short time. The large time dependence supported the interpretation on salt flow in transport studies. From potential measurement, cationic and anionic transport numbers in membrane also were determined to t?K+=0.41 and t?Cl?=0.59. Membrane resistance of this mosaic membrane indicated slightly higher values than that of ordinary charged membrane.

Akira Yamauchi; Junko Tateyama; Ban-ichiroh Etoh; Minoru Takizawa; Yoshifumi Sugito; Seiji Doi

2000-01-01T23:59:59.000Z

206

Solid-state membrane module  

DOE Patents (OSTI)

Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.

Gordon, John Howard (Salt Lake City, UT); Taylor, Dale M. (Murray, UT)

2011-06-07T23:59:59.000Z

207

ESM of Ionic and Electrochemical Phenomena on the Nanoscale  

SciTech Connect

Operation of energy storage and conversion devices is ultimately controlled by series of intertwined ionic and electronic transport processes and electrochemical reactions at surfaces and interfaces, strongly mediated by strain and mechanical processes [1-4]. In a typical fuel cell, these include chemical species transport in porous cathode and anode materials, gas-solid electrochemical reactions at grains and triple-phase boundaries (TPBs), ionic and electronic flows in multicomponent electrodes, and chemical and electronic potential drops at internal interfaces in electrodes and electrolytes. All these phenomena are sensitively affected by the microstructure of materials from device level to the atomic scales as illustrated in Fig. 1. Similar spectrum of length scales and phenomena underpin operation of other energy systems including primary and secondary batteries, as well as hybrid systems such flow and metal-air/water batteries.

Kalinin, Sergei V [ORNL; Kumar, Amit [Pennsylvania State University; Balke, Nina [ORNL; McCorkle, Morgan L [ORNL; Guo, Senli [ORNL; Arruda, Thomas M [ORNL; Jesse, Stephen [ORNL

2011-01-01T23:59:59.000Z

208

Degradation of Ionic Pathway in PEM Fuel Cell Cathode. | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

Degradation of Ionic Pathway in PEM Fuel Cell Cathode. Degradation of Ionic Pathway in PEM Fuel Cell Cathode. Abstract: The degradation of the ionic pathway throughout the catalyst...

209

Membranes, methods of making membranes, and methods of separating gases using membranes  

DOE Patents (OSTI)

Membranes, methods of making membranes, and methods of separating gases using membranes are provided. The membranes can include at least one hydrophilic polymer, at least one cross-linking agent, at least one base, and at least one amino compound. The methods of separating gases using membranes can include contacting a gas stream containing at least one of CO.sub.2, H.sub.2S, and HCl with one side of a nonporous and at least one of CO.sub.2, H.sub.2S, and HCl selectively permeable membrane such that at least one of CO.sub.2, H.sub.2S, and HCl is selectively transported through the membrane.

Ho, W. S. Winston

2012-10-02T23:59:59.000Z

210

Neurotransmitter Transporters  

E-Print Network (OSTI)

at specialized synaptic junctions where electrical excitability in the form of an action potential is translated membrane of neurons and glial cells. Transporters harness electrochemical gradients to force the movement.els.net #12;The response produced when a transmitter interacts with its receptors, the synaptic potential

Bergles, Dwight

211

Hydroxyl Ion Migration, Chemical Reactions, Water Transport and Other Effects As Optimizing Parameters In Cross-, Co- And Countercurrently Operated Membrane Cells For The Chlor/Alkali Electrolysis  

Science Journals Connector (OSTI)

A mathematical model describing a chloralkali-electrolysis in membrane cells including unusual flow pattern is presented. This paper discusses several influences like chemical reactions in the anolyte compartm...

K. H. Simmrock

1984-01-01T23:59:59.000Z

212

Study of Ionic Conductivity Profiles of the Air Cathode of a PEMFC by AC Impedance Spectroscopy  

E-Print Network (OSTI)

Study of Ionic Conductivity Profiles of the Air Cathode of a PEMFC by AC Impedance Spectroscopy membrane fuel cell PEMFC cathode by ac impedance measurement at open-circuit potential conditions by impregnating a proton-conducting ionomer in the catalyst active layer of the cathode of a polymer electrolyte

213

Polarization versus Temperature in Pyridinium Ionic Liquids  

E-Print Network (OSTI)

Electronic polarization and charge transfer effects play a crucial role in thermodynamic, structural and transport properties of room-temperature ionic liquids (RTILs). These non-additive interactions constitute a useful tool for tuning physical chemical behavior of RTILs. Polarization and charge transfer generally decay as temperature increases, although their presence should be expected over an entire condensed state temperature range. For the first time, we use three popular pyridinium-based RTILs to investigate temperature dependence of electronic polarization in RTILs. Atom-centered density matrix propagation molecular dynamics, supplemented by a weak coupling to an external bath, is used to simulate the temperature impact on system properties. We show that, quite surprisingly, non-additivity in the cation-anion interactions changes negligibly between 300 and 900 K, while the average dipole moment increases due to thermal fluctuations of geometries. Our results contribute to the fundamental understanding...

Chaban, Vitaly V

2014-01-01T23:59:59.000Z

214

Staged membrane oxidation reactor system  

DOE Patents (OSTI)

Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

2012-09-11T23:59:59.000Z

215

Staged membrane oxidation reactor system  

DOE Patents (OSTI)

Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

2014-05-20T23:59:59.000Z

216

Staged membrane oxidation reactor system  

DOE Patents (OSTI)

Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

2013-04-16T23:59:59.000Z

217

Physical Properties of Ionic Liquids  

NLE Websites -- All DOE Office Websites (Extended Search)

Physical Properties of Ionic Liquids Consisting of the Physical Properties of Ionic Liquids Consisting of the 1-Butyl-3-Methylimidazolium Cation with Various Anions and the Bis(trifluoromethylsulfonyl)imide Anion with Various Cations Hui Jin, Bernie O'Hare, Jing Dong, Sergei Arzhantsev, Gary A. Baker, James F. Wishart, Alan J. Benesi, and Mark Maroncelli J. Phys. Chem. B 112, 81-92 (2008). [Find paper at ACS Publications] Abstract: Physical properties of 4 room-temperature ionic liquids consisting of the 1-butyl-3-methylimidazolium cation with various perfluorinated anions and the bis(trifluoromethylsulfonyl)imide (Tf2N-) anion with 12 pyrrolidinium-, ammonium-, and hydroxyl-containing cations are reported. Electronic structure methods are used to calculate properties related to the size, shape, and dipole moment of individual ions. Experimental measurements of

218

A unified model of electroporation and molecular transport  

E-Print Network (OSTI)

Biological membranes form transient, conductive pores in response to elevated transmembrane voltage, a phenomenon termed electroporation. These pores facilitate electrical and molecular transport across cell membranes that ...

Smith, Kyle Christopher

2011-01-01T23:59:59.000Z

219

CRADA Final Report: Ionically Conductive Membranes Oxygen Separation  

SciTech Connect

Scientists at the Lawrence Berkeley National Laboratory (LBNL) in a collaborative effort with Praxair Corporation developed a bench-top oxygen separation unit capable of producing ultra-high purity oxygen from air. The device is based on thin-film electrolyte technology developed at LBNL as part of a solid oxide fuel cell program. The two teams first demonstrated the concept using planar ceramic disks followed by the development of tubular ceramic structures for the bench-top unit. The highly successful CRADA met all technical milestones on time and on budget. Due to the success of this program the industrial partner and the team at LBNL submitted a grant proposal for further development of the unit to the Advanced Technology Program administered by the National Institute of Standar~s. This proposal was selected for funding, and now the two teams are developing a precommercial oxygen separation unit under a 3-year, $6 million dollar program.

Visco, Steven J.

2001-10-29T23:59:59.000Z

220

Low Temperature Reduction of Alumina Using Fluorine Containing Ionic Liquids  

SciTech Connect

The major objective of the project is to establish the feasibility of using specific ionic liquids capable of sustaining aluminum electrolysis near room temperature at laboratory and batch recirculation scales. It will explore new technologies for aluminum and other valuable metal extraction and process methods. The new technology will overcome many of the limitations associated with high temperatures processes such as high energy consumption and corrosion attack. Furthermore, ionic liquids are non-toxic and could be recycled after purification, thus minimizing extraction reagent losses and environmental pollutant emissions. Ionic liquids are mixture of inorganic and organic salts which are liquid at room temperature and have wide operational temperature range. During the last several years, they were emerging as novel electrolytes for extracting and refining of aluminum metals and/or alloys, which are otherwise impossible using aqueous media. The superior high temperature characteristics and high solvating capabilities of ionic liquids provide a unique solution to high temperature organic solvent problems associated with device internal pressure build-up, corrosion, and thermal stability. However their applications have not yet been fully implemented due to the insufficient understanding of the electrochemical mechanisms involved in processing of aluminum with ionic liquids. Laboratory aluminum electrodeposition in ionic liquids has been investigated in chloride and bis (trifluoromethylsulfonyl) imide based ionic liquids. The electrowinning process yielded current density in the range of 200-500 A/m2, and current efficiency of about 90%. The results indicated that high purity aluminum (>99.99%) can be obtained as cathodic deposits. Cyclic voltammetry and chronoamperometry studies have shown that initial stages of aluminum electrodeposition in ionic liquid electrolyte at 30C was found to be quasi-reversible, with the charge transfer coefficient (0.40). Nucleation phenomena involved in aluminum deposition on copper in AlCl3-BMIMCl electrolyte was found to be instantaneous followed by diffusion controlled three-dimensional growth of nuclei. Diffusion coefficient (Do) of the electroactive species Al2Cl7 ion was in the range from 6.5 to 3.9107 cm2?s1 at a temperature of 30C. Relatively little research efforts have been made toward the fundamental understanding and modeling of the species transport and transformation information involved in ionic liquid mixtures, which eventually could lead to quantification of electrochemical properties. Except that experimental work in this aspect usually is time consuming and expensive, certain characteristics of ionic liquids also made barriers for such analyses. Low vapor pressure and high viscosity make them not suitable for atomic absorption spectroscopic measurement. In addition, aluminum electrodeposition in ionic liquid electrolytes are considered to be governed by multi-component mass, heat and charge transport in laminar and turbulent flows that are often multi-phase due to the gas evolution at the electrodes. The kinetics of the electrochemical reactions is in general complex. Furthermore, the mass transfer boundary layer is about one order of magnitude smaller than the thermal and hydrodynamic boundary layer (Re=10,000). Other phenomena that frequently occur are side reactions and temperature or concentration driven natural convection. As a result of this complexity, quantitative knowledge of the local parameters (current densities, ion concentrations, electrical potential, temperature, etc.) is very difficult to obtain. This situation is a serious obstacle for improving the quality of products, efficiency of manufacturing and energy consumption. The gap between laboratory/batch scale processing with global process control and nanoscale deposit surface and materials specifications needs to be bridged. A breakthrough can only be realized if on each scale the occurring phenomena are understood and quantified. Multiscale numerical modeling nevertheless can help t

Dr. R. G. Reddy

2007-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "ionic transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Physical Chemistry of Ionic Liquids Symposium Schedule  

NLE Websites -- All DOE Office Websites (Extended Search)

(Tentative Schedule, locations and times to be determined) (Tentative Schedule, locations and times to be determined) Sunday Morning Structure and Heterogeneity of Ionic Liquids I. James Wishart and Edward Castner Introductory Remarks Andre Pinkert Hydroxyamine ionic liquids and their properties Thomas Strassner TAAILs - Tunable Aryl-Alkyl Ionic Liquids: A new generation of ionic liquids Laura Sprunger Grubbs Thermodynamic Properties of New Generation Ionic Liquids Christopher Hardacre Prediction methods for physical properties of ionic liquids BREAK Patricia Hunt What happens when you functionalise an ionic liquid with a "silicone" side chain? Edward L Quitevis Effect of cation symmetry and nanoscale segregation on the morphology, physical properties, and low-frequency vibrational dynamics of 1,3-dialkylimidazolium cation ionic liquids

222

Production of permeable cellulose triacetate membranes  

DOE Patents (OSTI)

A phase inversion process for the preparation of cellulose triacetate (CTA) and regenerated cellulose membranes is disclosed. Such membranes are useful as supports for liquid membranes in facilitated transport processes, as microfiltration membranes, as dialysis or ultrafiltration membranes, and for the preparation of ion-selective electrodes. The process comprises the steps of preparing a casting solution of CTA in a solvent comprising a mixture of cyclohexanone and methylene chloride, casting a film from the casting solution, and immersing the cast film in a methanol bath. The resulting CTA membrane may then be hydrolyzed to regenerated cellulose using conventional techniques.

Johnson, B.M.

1986-12-23T23:59:59.000Z

223

Production of permeable cellulose triacetate membranes  

DOE Patents (OSTI)

A phase inversion process for the preparation of cellulose triacetate (CTA) and regenerated cellulose membranes is disclosed. Such membranes are useful as supports for liquid membranes in facilitated transport processes, as microfiltration membranes, as dialysis or ultrafiltration membranes, and for the preparation of ion-selective electrodes. The process comprises the steps of preparing a casting solution of CTA in a solvent comprising a mixture of cyclohexanone and methylene chloride, casting a film from the casting solution, and immersing the cast film in a methanol bath. The resulting CTA membrane may then be hydrolyzed to regenerated cellulose using conventional techniques.

Johnson, Bruce M. (Bend, OR)

1986-01-01T23:59:59.000Z

224

THE VITELLINE MEMBRANE OF THE UNFERTILIZED HEN'S EGG  

E-Print Network (OSTI)

membrane is charged and asymmetrical. It's directional specificity to ion transport and accompanying volumeTHE VITELLINE MEMBRANE OF THE UNFERTILIZED HEN'S EGG : ELECTROLYTE AND WATER TRANSPORT T. RYMEN J more than just the result of the membrane's ion exchange behaviour and that it may involve an enzymatic

Paris-Sud XI, Université de

225

Nanoparticle enhanced ionic liquid heat transfer fluids  

DOE Patents (OSTI)

A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.

Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.

2014-08-12T23:59:59.000Z

226

Ionic Liquids for Utilization of Geothermal Energy  

Energy.gov (U.S. Department of Energy (DOE))

DOE Geothermal Program Peer Review 2010 - Presentation. Project objective: to develop ionic liquids for two geothermal energy related applications.

227

Self-Assembly and Transport Limitations in Confined Nafion Films  

NLE Websites -- All DOE Office Websites (Extended Search)

Assembly and Transport Limitations in Confined Nafion Films Assembly and Transport Limitations in Confined Nafion Films Title Self-Assembly and Transport Limitations in Confined Nafion Films Publication Type Journal Article Year of Publication 2013 Authors Modestino, Miguel A., Devproshad K. Paul, Shudipto Dishari, Stephanie A. Petrina, Frances I. Allen, Michael A. Hickner, Kunal Karan, Rachel Segalman, and Adam Z. Weber Journal Macromolecules Volume 46 Issue 3 Pagination 867 - 873 Date Published 02/2013 ISSN 0024-9297 Abstract Ion-conducting polymers are important materials for a variety of electrochemical applications. Perfluorinated ionomers, such as Nafion, are the benchmark materials for proton conduction and are widely used in fuel cells and other electrochemical devices including solar-fuel generators, chlor-alkali cells, and redox flow batteries. While the behavior of Nafion in bulk membranes (10 to 100s ?m thick) has been studied extensively, understanding its properties under thin-film confinement is limited. Elucidating the behavior of thin Nafion films is particularly important for the optimization of fuel-cell catalyst layers or vapor-operated solar-fuel generators, where a thin film of ionomer is responsible for the transport of ions to and from the active electrocatalytic centers. Using a combination of transport-property measurements and structural characterization, this work demonstrates that confinement of Nafion in thin films induced thickness-dependent proton conductivity and ionic-domain structure. Confining Nafion films to thicknesses below 50 nm on a silicon substrate results in a loss of microphase separation of the hydrophilic and hydrophobic domains, which drastically increases the material?s water uptake while in turn decreasing its ionic conductivity.

228

Controlling polymer translocation and ion transport via charge correlations  

E-Print Network (OSTI)

We develop a correlation-corrected transport theory in order to predict ionic and polymer transport properties of membrane nanopores in physical conditions where mean-field electrostatics breaks down. The experimentally observed low KCl conductivity of open alpha-Hemolysin pores is quantitatively explained by the presence of surface polarization effects. Upon the penetration of a DNA molecule into the pore, these polarization forces combined with the electroneutrality of DNA sets a lower boundary for the ionic current, explaining the weak salt dependence of blocked pore conductivities at dilute ion concentrations. The addition of multivalent counterions into the solution results in the reversal of the polymer charge and the direction of the electroosmotic flow. With trivalent spermidine or quadrivalent spermine molecules, the charge inversion is strong enough to stop the translocation of the polymer and to reverse its motion. This mechanism can be used efficiently in translocation experiments in order to improve the accuracy of DNA sequencing by minimizing the translocation velocity of the polymer.

Sahin Buyukdagli; Tapio Ala-Nissila

2014-10-10T23:59:59.000Z

229

Multicomponent Transport of Sulfate in a Goethite-Silica Sand System  

E-Print Network (OSTI)

Multicomponent Transport of Sulfate in a Goethite-Silica Sand System at Variable pH and Ionic of protons and sulfate on goethite and silica were used in combination with a one-dimensional mass-transport model to predict the transport of sulfate at variable pH and ionic strength in a goethite-silica system

Sparks, Donald L.

230

Supporting Information for: Salt concentration differences alter membrane  

E-Print Network (OSTI)

). The membrane area available for ion transport was 11.4 cm2 . Platinum mesh electrodes that spanned the crossS1 Supporting Information for: Salt concentration differences alter membrane resistance in reverse-814-867-1847 #12;S2 Membrane resistance measurement Without a concentration difference Membrane resistance

231

Minor Antenna Proteins CP24 and CP26 Affect the Interactions between Photosystem II Subunits and the Electron Transport Rate in Grana Membranes of Arabidopsis  

Science Journals Connector (OSTI)

...the grana membranes, reduced capacity for nonphotochemical quenching...reaction centers (RCs) exploit solar energy to drive electrons from...gradient for ATP synthesis. The capacity of light absorption is increased...absorbed light exceeds the capacity to use reducing equivalents...

Silvia de Bianchi; Luca Dall'Osto; Giuseppe Tognon; Tomas Morosinotto; Roberto Bassi

2008-04-01T23:59:59.000Z

232

Membrane asymmetry in epithelia: is the tight junction a barrier to diffusion in the plasma membrane?  

Science Journals Connector (OSTI)

... Leaf, A. in Membrane Transport in Biology Vol. 3 (eds Giebisch, G., Tosteson, D. C. & Ussing, H. H.) 126 (Springer, Berlin, ... Palomo, A. in Membrane Transport in Biology Vol. 3 (eds Giebisch, G., Tosteson, D. C. & Ussing H. H.) 2753 (Springer, Berlin, ...

Paul R. Dragsten; Robert Blumenthal; Joseph S. Handler

1981-12-24T23:59:59.000Z

233

Ionic Power Systems Ltd | Open Energy Information  

Open Energy Info (EERE)

Ionic Power Systems Ltd Ionic Power Systems Ltd Jump to: navigation, search Name Ionic Power Systems Ltd. Place San Diego, California Zip 92126 Product Ionix Power Systems, Ltd. is a developer of new and innovative products and tools designed to aid in the development of next-generation energy technologies such as batteries, fuel cells, and advanced capacitors. References Ionic Power Systems Ltd.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Ionic Power Systems Ltd. is a company located in San Diego, California . References ↑ "Ionic Power Systems Ltd." Retrieved from "http://en.openei.org/w/index.php?title=Ionic_Power_Systems_Ltd&oldid=347099" Categories:

234

Protein Flips Lipids Across Membranes  

NLE Websites -- All DOE Office Websites (Extended Search)

Protein Flips Lipids Across Membranes Print Protein Flips Lipids Across Membranes Print Found ubiquitously in both bacteria and humans, membrane proteins of the adenosine triphosphate (ATP)-binding cassette (ABC) transporter family have been implicated in both antibiotic and cancer-drug resistance. The mechanisms used by these proteins to expel toxins from cells therefore represent key targets for the development of drugs designed to combat the growing problem of multidrug resistance. Toward this end, researchers from The Scripps Research Institute have succeeded in crystallizing MsbA-an ABC transporter protein-together with a substrate (the molecule to be transported) and a hydrolyzed (spent) form of the nucleotide ATP, the transporter's source of chemical energy. The resulting molecular complex is caught at a moment following the transporter's "power stroke," the force-generating part of the transport cycle. This snapshot suggests a mechanism by which the substrate molecule gets flipped head-over-tail from one side of the membrane to the other, on its way out of the cell.

235

Protein Flips Lipids Across Membranes  

NLE Websites -- All DOE Office Websites (Extended Search)

Protein Flips Lipids Across Protein Flips Lipids Across Membranes Protein Flips Lipids Across Membranes Print Wednesday, 26 October 2005 00:00 Found ubiquitously in both bacteria and humans, membrane proteins of the adenosine triphosphate (ATP)-binding cassette (ABC) transporter family have been implicated in both antibiotic and cancer-drug resistance. The mechanisms used by these proteins to expel toxins from cells therefore represent key targets for the development of drugs designed to combat the growing problem of multidrug resistance. Toward this end, researchers from The Scripps Research Institute have succeeded in crystallizing MsbA-an ABC transporter protein-together with a substrate (the molecule to be transported) and a hydrolyzed (spent) form of the nucleotide ATP, the transporter's source of chemical energy. The resulting molecular complex is caught at a moment following the transporter's "power stroke," the force-generating part of the transport cycle. This snapshot suggests a mechanism by which the substrate molecule gets flipped head-over-tail from one side of the membrane to the other, on its way out of the cell.

236

Protein Flips Lipids Across Membranes  

NLE Websites -- All DOE Office Websites (Extended Search)

Protein Flips Lipids Across Membranes Print Protein Flips Lipids Across Membranes Print Found ubiquitously in both bacteria and humans, membrane proteins of the adenosine triphosphate (ATP)-binding cassette (ABC) transporter family have been implicated in both antibiotic and cancer-drug resistance. The mechanisms used by these proteins to expel toxins from cells therefore represent key targets for the development of drugs designed to combat the growing problem of multidrug resistance. Toward this end, researchers from The Scripps Research Institute have succeeded in crystallizing MsbA-an ABC transporter protein-together with a substrate (the molecule to be transported) and a hydrolyzed (spent) form of the nucleotide ATP, the transporter's source of chemical energy. The resulting molecular complex is caught at a moment following the transporter's "power stroke," the force-generating part of the transport cycle. This snapshot suggests a mechanism by which the substrate molecule gets flipped head-over-tail from one side of the membrane to the other, on its way out of the cell.

237

The Arabidopsis Chaperone J3 Regulates the Plasma Membrane H+-ATPase through Interaction with the  

E-Print Network (OSTI)

membrane H+-ATPase (PM H+-ATPase) plays an important role in the regulation of ion and metabolite transport inactivation of the PKS5 kinase. INTRODUCTION In both plants and fungi, transport across the plasma membrane constitutes a driving force for the transport of solutes and metab- olites across the plasma membrane

Deng, Xing-Wang

238

Microporous Inorganic Membranes for Hydrogen Purification  

NLE Websites -- All DOE Office Websites (Extended Search)

Microporous Microporous Inorganic Membranes for Hydrogen Purification Brian L. Bischoff, Roddie R. Judkins, and Timothy R. Armstrong Oak Ridge National Laboratory Presented at: DOE Workshop on Hydrogen Separations and Purification Technologies Arlington, Virginia September 8, 2004 2 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Hydrogen Separation Membranes * Non-Porous - Palladium based films - Ion transport membranes * Porous - Ordered microporous membranes (IUPAC Recommendations 2001), e.g. zeolite membranes - Microporous membranes 3 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Microporous Membranes * IUPAC defines micropores as pores smaller than 2nm in diameter * Generally a microporous membrane is made by applying 1 to 3 thin layers to a porous support * Porous support can be ceramic or metallic

239

Ion Conducting Membranes for Fuel Cells and other Electrochemical Devices  

Science Journals Connector (OSTI)

ion conducting membrane; fuel cell; redox-flow battery; Li ion battery; proton; hydroxide; diffusion; conductivity; nanomorphology; hydration; visco-elastic constants; phosphate; polyelectrolyte; ionomer; block-copolymer; Nafion; Aquivion ... At this stage, however, they have an immediate potential for redox-flow battery applications, as will be discussed later. ... When the flow battery is charged or discharged, an equivalent amount of ionic charge has to cross the membrane, while the ions involved in the redox process have to be efficiently separated. ...

Klaus-Dieter Kreuer

2013-11-19T23:59:59.000Z

240

Compounds having aromatic rings and side-chain amide-functionality and a method for transporting monovalent anions across biological membranes using the same  

DOE Patents (OSTI)

A compound containing at least two aromatic rings covalently bonded together, with each aromatic ring containing at least one oxyacetamide-based side chain, the compound being capable of forming a chloride ion channel across a lipid bilayer, and transporting chloride ion across the lipid bilayer.

Davis, Jeffery T. (College Park, MD); Sidorov, Vladimir (Richmond, VA); Kotch, Frank W. (New Phila., PA)

2008-04-08T23:59:59.000Z

Note: This page contains sample records for the topic "ionic transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Solubility of Carbohydrates in Ionic Liquids  

Science Journals Connector (OSTI)

Laboratrio Nacional de Energia e Geologia, I.P., Unit of Bioenergy, Estrada do Pao do Lumiar 22, 1649-038, Lisboa, Portugal ... The aim of this Review is to assess the current state of knowledge regarding the solubility of carbohydrates in ionic liquids but not on modifications of carbohydrates in ionic liquids. ... We herein collect all of the available literature data about the solubility of various carbohydrates in ionic liquids and highlight their interactions with carbohydrates. ...

Ma?gorzata Ewa Zakrzewska; Ewa Bogel-?ukasik; Rafa? Bogel-?ukasik

2010-01-07T23:59:59.000Z

242

9 - Microporous silica membranes: fundamentals and applications in membrane reactors for hydrogen separation  

Science Journals Connector (OSTI)

Abstract: This chapter discusses the research and development of membrane reactors, incorporating microporous silica-based membranes, specifically for hydrogen production. Microporous silica membranes are first introduced alongside a discussion of relevant gas transport mechanisms, membrane performance parameters, membrane reactor designs and membrane reactor performance metrics. This is followed by an in-depth analysis of the various research investigations where silica membrane reactors have been used to produce hydrogen and/or syngas from hydrocarbon reforming reactions. Of particular importance here is the hydrothermal instability of silica-based membranes at the required operating temperatures and so the chapter closes by presenting the future research trends and industrial design challenges and considerations of silica-based membrane reactors.

S. Smart; J. Beltramini; J.C. Diniz da Costa; S.P. Katikaneni; T. Pham

2013-01-01T23:59:59.000Z

243

Energy use by biological protein transport pathways  

E-Print Network (OSTI)

residing within energy-conserving membranes use transmembrane ion gradients to drive substrate transport receptors impart specificity to a targeting route, and transport across or into the membrane is typicallyEnergy use by biological protein transport pathways Nathan N. Alder1 and Steven M. Theg2 1

Economou, Tassos

244

Update Sustainable Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainable Transportation Sustainable Transportation Vol.4, No.3 * October 2013 ORNL Achieves Breakthrough in Energy-Saving Lubricants Research A team of ORNL and General Motors (GM) researchers has developed a new group of ionic liquids as lubricant additives that could help improve the energy efficiency of light-duty cars and trucks. The ionic liquid, when added to prototype low viscosity engine oil, boosted fuel economy by more than 2% compared to a commercially available synthetic 5W-30 oil, as demonstrated by an industrial standard fuel efficiency engine test. Results from these tests, performed by an independent firm, Intertek Automotive Research, with oversight by GM, show a promising path for ORNL to achieve DOE's goal of a 2% efficiency gain through lubricants. "There are more

245

Elucidating graphene - Ionic Liquid interfacial region: a combined...  

NLE Websites -- All DOE Office Websites (Extended Search)

graphene - Ionic Liquid interfacial region: a combined experimental and computational study. Elucidating graphene - Ionic Liquid interfacial region: a combined experimental and...

246

New lithium-based ionic liquid electrolytes that resist salt...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

New lithium-based ionic liquid electrolytes that resist salt concentration polarization New lithium-based ionic liquid electrolytes that resist salt concentration polarization...

247

Ionic Liquid Pretreatment Process for Biomass Is Successfully...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ionic Liquid Pretreatment Process for Biomass Is Successfully Implemented at Larger Scale Ionic Liquid Pretreatment Process for Biomass Is Successfully Implemented at Larger Scale...

248

Multilayered YSZ/GZO films with greatly enhanced ionic conduction...  

NLE Websites -- All DOE Office Websites (Extended Search)

YSZGZO films with greatly enhanced ionic conduction for low temperature solid oxide fuel cells. Multilayered YSZGZO films with greatly enhanced ionic conduction for...

249

Mechanistic aspects of photoconversion at semiconductor-liquid junctions and in facilitated transport membranes. Final report, March 15, 1994--March 14, 1998  

SciTech Connect

A major portion of the research completed during this funding period involved the use of rotating ring-disk electrochemical techniques in conjunction with carefully chosen solution redox systems to investigate hot electron transfer reactions at the semiconductor electrolyte interface. This paper cover the following topics: photoreduction reactions at GaAs/AlGaAs superlattice electrodes; photoelectrochemistry at GaInP{sub 2} capped p-GaAs electrodes; further investigation of p-InP photocathodes; rotating ring disk photoelectrochemistry at TiO{sub 2} films; and photomodulation of interfacial mass transport rates.

Koval, C.A.

1998-06-01T23:59:59.000Z

250

6 Ion Transport, Osmoregulation, and  

E-Print Network (OSTI)

177 6 Ion Transport, Osmoregulation, and Acid­Base Balance W.S. Marshall and M. Grosell CONTENTS I)............................................................................182 5. Skin and Opercular Membrane..................................................................................................183 2. Sea-Water Transport Mode -- Na+,K+-ATPase and Na+,K+, 2Cl­ Co-transport

Grosell, Martin

251

Infrared spectroscopy of ionic clusters  

SciTech Connect

This thesis describes new experiments wherein the infrared vibrational predissociation spectra of a number of mass-selected ionic cluster systems have been obtained and analyzed in the 2600 to 4000 cm{sup {minus}1} region. The species studied include: the hydrated hydronium ions, H{sub 3}O{sup +} (H{sub 2}O){sub 3 {minus}10}, ammoniated ammonium ions, NH{sub 4}{sup +}(NH{sub 3}){sub 1 {minus}10} and cluster ions involving both water and ammonia around an ammonium ion core, (mixed clusters) NH{sub 4}{sup +}(NH{sub 3}){sub n}(H{sub 2}O){sub m} (n+m=4). In each case, the spectra reveal well resolved structures that can be assigned to transitions arising from the vibrational motions of both the ion core of the clusters and the surrounding neutral solvent molecules. 154 refs., 19 figs., 8 tabs.

Price, J.M. (California Univ., Berkeley, CA (USA). Dept. of Chemistry Lawrence Berkeley Lab., CA (USA))

1990-11-01T23:59:59.000Z

252

Hybrid membrane/cryogenic separation of oxygen from air for use in the oxy-fuel process  

E-Print Network (OSTI)

and high temperature ion transport membranes. While polymeric membranes can produce oxygen enriched air of various concentrations, ion transport membranes can produce purities of close to 100%. Both membraHybrid membrane/cryogenic separation of oxygen from air for use in the oxy-fuel process Thomas

Struchtrup, Henning

253

Membrane magic  

SciTech Connect

The Kansas Power and Light Co.'s La Cyne generating station has found success with membrane filtration water pretreatment technology. The article recounts the process followed in late 2004 to install a Pall Aria 4 microfilter in Unit 1 makeup water system at the plant to produce cleaner water for reverse osmosis feed. 2 figs., 2 photos.

Buecker, B. [Kansas City Power and Light Co. (United States)

2005-09-01T23:59:59.000Z

254

Catalytic Conversion of Biomass to Fuels and Chemicals Using Ionic Liquids  

SciTech Connect

This project provides critical innovations and fundamental understandings that enable development of an economically-viable process for catalytic conversion of biomass (sugar) to 5-hydroxymethylfurfural (HMF). A low-cost ionic liquid (Cyphos 106) is discovered for fast conversion of fructose into HMF under moderate reaction conditions without any catalyst. HMF yield from fructose is almost 100% on the carbon molar basis. Adsorbent materials and adsorption process are invented and demonstrated for separation of 99% pure HMF product and recovery of the ionic liquid from the reaction mixtures. The adsorbent material appears very stable in repeated adsorption/regeneration cycles. Novel membrane-coated adsorbent particles are made and demonstrated to achieve excellent adsorption separation performances at low pressure drops. This is very important for a practical adsorption process because ionic liquids are known of high viscosity. Nearly 100% conversion (or dissolution) of cellulose in the catalytic ionic liquid into small molecules was observed. It is promising to produce HMF, sugars and other fermentable species directly from cellulose feedstock. However, several gaps were identified and could not be resolved in this project. Reaction and separation tests at larger scales are needed to minimize impacts of incidental errors on the mass balance and to show 99.9% ionic liquid recovery. The cellulose reaction tests were troubled with poor reproducibility. Further studies on cellulose conversion in ionic liquids under better controlled conditions are necessary to delineate reaction products, dissolution kinetics, effects of mass and heat transfer in the reactor on conversion, and separation of final reaction mixtures.

Liu, Wei; Zheng, Richard; Brown, Heather; Li, Joanne; Holladay, John; Cooper, Alan; Rao, Tony; ,

2012-04-13T23:59:59.000Z

255

Effect of Ferroelectric Polarization on Ionic Transport and Resistance ...  

E-Print Network (OSTI)

Liu also studied the charge car- .... where Ei is the electric field component, ?0 and ?r are the ... The local electric field in Eq. (5) is dependent on the space.

2014-07-18T23:59:59.000Z

256

Charge Transport and Structural Dynamics in Polymerized Ionic...  

NLE Websites -- All DOE Office Websites (Extended Search)

actuators, field-effect transistors, light emitting electrochemical cells, and electrochromic devices, among others. Despite their promising prospects as ideal polymer...

257

A Novel Cl Inward-Rectifying Current in the Plasma Membrane of the Calcifying Marine Phytoplankton  

E-Print Network (OSTI)

as much as 40% of annual global carbon assimilation. Ion and nutrient transport across the plasma membrane revealed a dominant anion conductance in response to membrane hyperpolarization. Ion substitution showed conductances play an essential role in membrane voltage regulation that relates to the unique transport

Taylor, Alison

258

Neutron Reflectivity Study of Lipid Membranes Assembled on Ordered Nanocomposite and Nanoporous Silica Thin  

E-Print Network (OSTI)

moleculestrappedwithinthenanocompositethinfilmmay be used to detect trans-membrane transport (e.g., ion channel function). Furthermore, the ability in facilitating molecular transport across the membrane plane. In this regard, the use of ultrathin polymericNeutron Reflectivity Study of Lipid Membranes Assembled on Ordered Nanocomposite and Nanoporous

Parikh, Atul N.

259

Continuum electromechanical modeling of protein-membrane interactions Y. C. Zhou*  

E-Print Network (OSTI)

and topological transformations of membrane are crucial steps in numerous transport and signaling processes of cells, includ- ing cell migration, membrane trafficking, and ion conduc- tance 1­3 . There are various sorting complex required for transport III ESCRT III in- duced membrane budding or protrusion 5

Lu, Benzhuo

260

Phosphonium-based ionic liquids and uses  

DOE Patents (OSTI)

Phosphonium-based room temperature ionic liquids ("RTILs") were prepared. They were used as matrices for Matrix-Assisted Laser Desorption Ionization (MALDI) mass spectrometry and also for preparing samples of dyes for analysis.

Del Sesto, Rico E; Koppisch, Andrew T; Lovejoy, Katherine S; Purdy, Geraldine M

2014-12-30T23:59:59.000Z

Note: This page contains sample records for the topic "ionic transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Enzyme activity in dialkylphosphate ionic liquids  

NLE Websites -- All DOE Office Websites (Extended Search)

Enzyme activity in dialkylphosphate ionic liquids Enzyme activity in dialkylphosphate ionic liquids M. F. Thomas, L. Li, J. Handley-Pendleton, D. van der Lelie, J. J. Dunn and J. F. Wishart Bioresource Technology 102, in press. [Find paper at Science Direct] Abstract: The activity of four metagenomic enzymes and an enzyme cloned from the straw mushroom, Volvariella volvacea were studied in the following ionic liquids, 1,3-dimethylimidazolium dimethyl phosphate, [mmim][dmp], 1-ethyl-3-methylimidazolium dimethyl phosphate, [emim][dmp], 1-ethyl-3-methylimidazolium diethyl phosphate, [emim][dep] and 1-ethyl-3-methylimidazolium acetate, [emim][OAc]. Activity was determined by analyzing the hydrolysis of para-nitrobenzene carbohydrate derivatives. In general, the enzymes were most active in the dimethyl phosphate ionic

262

Mitochondrial potassium transport: the K+ Keith D. Garlid*, Petr Paucek  

E-Print Network (OSTI)

; Ion channel gating; Membrane transport; Volume regulation 1. Introduction The inner membrane. This means that ion traffic across the inner membrane will be very high. Moreover, the gradients driving saltReview Mitochondrial potassium transport: the K+ cycle Keith D. Garlid*, Petr Paucek Department

Garlid, Keith

263

ITM Syngas and ITM H2: Engineering Development of Ceramic Membrane Reactor Systems for  

E-Print Network (OSTI)

(U.S. DOE) and other members of the ITM Syngas/ITM H2 Team, is developing Ion Transport Membrane (ITM of the ITM membrane to oxygen ions, which diffuse through the membrane under a chemical potential gradientITM Syngas and ITM H2: Engineering Development of Ceramic Membrane Reactor Systems for Converting

264

E-Print Network 3.0 - abc transporter mutants Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

THE ABC TRANSPORTER SUPERFAMILY Summary: -association of point mutants. 1. Introduction ATP-binding cassette (ABC) transporters are membrane-spanning proteins... -associated...

265

Homogenization of the Poisson-Nernst-Planck Equations for Ion Transport in Charged Porous Media  

E-Print Network (OSTI)

Effective Poisson-Nernst-Planck (PNP) equations are derived for macroscopic ion transport in charged porous media under periodic fluid flow by an asymptotic multi-scale expansion with drift. The microscopic setting is a two-component periodic composite consisting of a dilute electrolyte continuum (described by standard PNP equations) and a continuous dielectric matrix, which is impermeable to the ions and carries a given surface charge. Four new features arise in the upscaled equations: (i) the effective ionic diffusivities and mobilities become tensors, related to the microstructure; (ii) the effective permittivity is also a tensor, depending on the electrolyte/matrix permittivity ratio and the ratio of the Debye screening length to the macroscopic length of the porous medium; (iii) the microscopic fluidic convection is replaced by a diffusion-dispersion correction in the effective diffusion tensor; and (iv) the surface charge per volume appears as a continuous "background charge density", as in classical membrane models. The coefficient tensors in the upscaled PNP equations can be calculated from periodic reference cell problems. For an insulating solid matrix, all gradients are corrected by the same tensor, and the Einstein relation holds at the macroscopic scale, which is not generally the case for a polarizable matrix, unless the permittivity and electric field are suitably defined. In the limit of thin double layers, Poisson's equation is replaced by macroscopic electroneutrality (balancing ionic and surface charges). The general form of the macroscopic PNP equations may also hold for concentrated solution theories, based on the local-density and mean-field approximations. These results have broad applicability to ion transport in porous electrodes, separators, membranes, ion-exchange resins, soils, porous rocks, and biological tissues.

Markus Schmuck; Martin Z. Bazant

2014-07-14T23:59:59.000Z

266

Neptunium(V) adsorption to bacteria at low and high ionic strength  

SciTech Connect

Np(V) is expected to be the predominant oxidation state of neptunium in aerobic natural waters. Np(V), as the NpO{sub 2}{sup +} aquo and associated complexed species, is readily soluble, weakly interacting with geologic media, and has a high redox stability under a relatively wide range of subsurface conditions. These chemical properties, along with a long half-life make it a primary element of concern regarding long-term nuclear waste storage and subsurface contaminant. The fate and transport of neptunium in the environment may be influenced by adsorption onto bacterial surfaces. The adsorption of neptunium to bacterial surfaces ties the mobility of the contaminant to the mobility of the bacterium. In this study, the adsorption of the neptunyl (NpO{sub 2}{sup +}) ion was evaluated at low ionic strength on a common soil bacterium and at high ionic strength on a halophilic bacterium isolated from a briny groundwater near the Waste Isolation Pilot Plant (WIPP) in southeast New Mexico. Adsorption experiments were performed in batch reactors as a function of pH, ionic strength, and bacterialNp mass ratio. Np(V) adsorption was modeled using a surface complexation approach with the mathematical program FITEQL to determine functional group specific binding constants. The data from acid and base titrations of the bacteria were also modeled to estimate the concentrations and deprotonation constants of discrete bacterial surface functional groups. Bacterial functional group characteristics and Np(V) adsorption behavior between the soil bacterium and the halophilic bacterium were compared. These results highlight the key similarities and differences in actinide adsorption behavior in environments of significantly different ionic strength. Similarities in adsorption behavior may be linked to similarities in the characteristics of the moieties between all bacterial cell walls. Differences in adsorption behavior may reflect differences in ionic strength effects, rather than differences in bacteria type, as the electronic double layer is compressed with increasing ionic strength. These results further highlight the importance of electrostatic interactions in the adsorption process between dissolved metals and bacterial surfaces. This work expands the understanding of actinide-bacteria adsorption phenomena to high ionic strength environmental conditions that are relevant as an aid to predicting Np(V) fate and transport behavior in areas such as the vicinity of salt-based nuclear waste repositories and high ionic-strength deep ground waters at DOE sites.

Ams, David A [Los Alamos National Laboratory; Swanson, Juliet S [Los Alamos National Laboratory; Reed, Donald T [Los Alamos National Laboratory; Fein, Jeremy B [UNIV OF NOTRE DAME

2010-12-08T23:59:59.000Z

267

Crosslinked polymer gel electrolytes based on polyethylene glycol methacrylate and ionic liquid for lithium battery applications  

SciTech Connect

Gel polymer electrolytes were synthesized by copolymerization polyethylene glycol methyl ether methacrylate with polyethylene glycol dimethacrylate in the presence of a room temperature ionic liquid, methylpropylpyrrolidinium bis(trifluoromethanesulfonyl)imide (MPPY TFSI). The physical properties of gel polymer electrolytes were characterized by thermal analysis, impedance spectroscopy, and electrochemical tests. The ionic conductivities of the gel polymer electrolytes increased linearly with the amount of MPPY TFSI and were mainly attributed to the increased ion mobility as evidenced by the decreased glass transition temperatures. Li||LiFePO4 cells were assembled using the gel polymer electrolytes containing 80 wt% MPPY TFSI via an in situ polymerization method. A reversible cell capacity of 90 mAh g 1 was maintained under the current density of C/10 at room temperature, which was increased to 130 mAh g 1 by using a thinner membrane and cycling at 50 C.

Liao, Chen [ORNL; Sun, Xiao-Guang [ORNL; Dai, Sheng [ORNL

2013-01-01T23:59:59.000Z

268

The RCK Domain of the KtrAB K+ Transporter: Multiple Conformations  

E-Print Network (OSTI)

that is propagated to the membrane-bound protein, leading to ion transport (Jiang et al., 2002a; Roosild et al., 2002 transporter is a complex of the KtrB membrane protein and KtrA, an RCK do- main. RCK domains regulate eukaryotic and prokaryotic membrane proteins involved in K+ transport. Conflicting functional models have

Gruner, Sol M.

269

Charge trapping in imidazolium ionic liquids  

NLE Websites -- All DOE Office Websites (Extended Search)

trapping in imidazolium ionic liquids trapping in imidazolium ionic liquids I. A. Shkrob and J. F. Wishart J. Phys. Chem. B 113, 5582-5592 (2009). [Find paper at ACS Publications] or use ACS Articles on Request Abstract: Room-temperature ionic liquids (ILs) are a promising class of solvents for applications ranging from photovoltaics to solvent extractions. Some of these applications involve the exposure of the ILs to ionizing radiation, which stimulates interest in their radiation and photo- chemistry. In the case of ILs consisting of 1,3-dialkylimidazolium cations and hydrophobic anions, ionization, charge transfer and redox reactions yield charge-trapped species thought to be radicals resulting from neutralization of the constituent ions. Using computational chemistry methods and the recent results on electron spin resonance (ESR) and transient absorption

270

Membrane-patch Excision  

Science Journals Connector (OSTI)

Mechanical manipulation of the cell using glass micropipettes that leads to the extraction of a narrow region of cell membrane. The excision can lead to an isolated membrane patch in which the side of the membran...

2009-01-01T23:59:59.000Z

271

Proton conducting ceramic membranes for hydrogen separation  

DOE Patents (OSTI)

A multi-phase proton conducting material comprising a proton-conducting ceramic phase and a stabilizing ceramic phase. Under the presence of a partial pressure gradient of hydrogen across the membrane or under the influence of an electrical potential, a membrane fabricated with this material selectively transports hydrogen ions through the proton conducting phase, which results in ultrahigh purity hydrogen permeation through the membrane. The stabilizing ceramic phase may be substantially structurally and chemically identical to at least one product of a reaction between the proton conducting phase and at least one expected gas under operating conditions of a membrane fabricated using the material. In a barium cerate-based proton conducting membrane, one stabilizing phase is ceria.

Elangovan, S. (South Jordan, UT); Nair, Balakrishnan G. (Sandy, UT); Small, Troy (Midvale, UT); Heck, Brian (Salt Lake City, UT)

2011-09-06T23:59:59.000Z

272

Model for Configurational Thermodynamics in Ionic Systems  

Science Journals Connector (OSTI)

We develop a formalism to model configurational thermodynamics in ionic systems with multiple anion and cation species. Because cations and anions can be partitioned into two interacting sublattices that do not exchange species, the dimensionality of configuration space is significantly reduced. The result is a model applicable to many important problems in ionic systems. Here we show that the effect of an order-disorder transition in one sublattice on the other depends on how the symmetry is changed through the transition, as well as on the strength of the interactions.

P. D. Tepesch; G. D. Garbulsky; G. Ceder

1995-03-20T23:59:59.000Z

273

Membrane cleaning in membrane bioreactors: A review  

Science Journals Connector (OSTI)

Abstract Membrane bioreactors (MBRs) have been widely used in wastewater treatment and reclamation. Membrane cleaning is an essential part during the operation of \\{MBRs\\} since membrane fouling is an unavoidable problem. In past decades, with the in-depth understanding on membrane fouling, significant advances in membrane cleaning have been achieved. However, a comprehensive review on membrane cleaning in \\{MBRs\\} is still lacking. This paper attempts to critically review the recent developments of membrane cleaning. Firstly, the fouling and cleaning fundamentals are addressed, and then a comprehensive review on physical, chemical, and biological/biochemical cleaning is presented. The procedures of determining proper cleaning protocols for MBR systems are also proposed. Finally, the existing challenges and future research efforts are discussed in order to ensure the development of membrane cleaning toward a more effective and sustainable way in MBRs.

Zhiwei Wang; Jinxing Ma; Chuyang Y. Tang; Katsuki Kimura; Qiaoying Wang; Xiaomeng Han

2014-01-01T23:59:59.000Z

274

Membranes for corrosive oxidations. Final CRADA report.  

SciTech Connect

The objective of this project is to develop porous hydrophilic membranes that are highly resistant to oxidative and corrosive conditions and to deploy them for recovery and purification of high tonnage chemicals such as hydrogen peroxide and other oxychemicals. The research team patented a process for membrane-based separation of hydrogen peroxide (US Patent No. 5,662,878). The process is based on using a hydrophilic membrane to separate hydrogen peroxide from the organic working solution. To enable this process, a new method for producing hydrophilic membrane materials (Patent No.6,464,880) was reported. We investigated methods of producing these hydrophilic materials and evaluated separations performance in comparison to membrane stability. It was determined that at the required membrane flux, membrane stability was not sufficient to design a commercial process. This work was published (Hestekin et al., J. Membrane Science 2006). To meet the performance needs of the process, we developed a membrane contactor method to extract the hydrogen peroxide, then we surveyed several commercial and pre-commercial membrane materials. We identified pre-commercial hydrophilic membranes with the required selectivity, flux, and stability to meet the needs of the process. In addition, we invented a novel reaction/separations format that greatly increases the performance of the process. To test the performance of the membranes and the new formats we procured and integrated reactor/membrane separations unit that enables controlled mixing, flow, temperature control, pressure control, and sampling. The results were used to file a US non-provisional patent application (ANL-INV 03-12). Hydrogen peroxide is widely used in pulp and paper applications, environmental treatment, and other industries. Virtually all hydrogen peroxide production is now based on a process featuring catalytic hydrogenation followed by auto-oxidation of suitable organic carrier molecules. This process has several drawbacks, particularly in the extraction phase. One general disadvantage of this technology is that hydrogen peroxide must be produced at large centralized plants where it is concentrated to 70% by distillation and transported to the users plant sites where it is diluted before use. Advanced membranes have the potential to enable more efficient, economic, and safe manufacture of hydrogen peroxide. Advanced membrane technology would allow filtration-based separation to replace the difficult liquid-liquid extraction based separation step of the hydrogen peroxide process. This would make it possible for hydrogen peroxide to be produced on-site in mini-plants at 30% concentration and used at the same plant location without distillation and transportation. As a result, production could become more cost-effective, safe and energy efficient.

Snyder, S. W.; Energy Systems

2010-02-01T23:59:59.000Z

275

New possibilities of electroinduced membrane gas and vapor separation  

SciTech Connect

A novel membrane technique to effect electroinduced facilitated transport of neutral molecules in ion-exchange membranes was suggested. Experiments have been carried out with platinum-coated Nafion membranes in Cu{sup 2+}/Cu{sup 1+} form. This may be a potential technique for the separation of olefin/paraffin mixtures. It was shown that by applying an electric current to the membrane the permeability of ethylene increased 6-fold, compared to the permeability of the initial Pt-coated membrane without current.

Bessarabov, D.G.; Sanderson, R.D. [Univ. of Stellenbosch (South Africa). Inst. for Polymer Science] [Univ. of Stellenbosch (South Africa). Inst. for Polymer Science; Valuev, V.V.; Popkov, Y.M.; Timashev, S.F. [Karpov Inst. of Physical Chemistry, Moscow (Russian Federation)] [Karpov Inst. of Physical Chemistry, Moscow (Russian Federation)

1997-06-01T23:59:59.000Z

276

Ionic Liquids as Green Solvents for Alkylation and Acylation  

Science Journals Connector (OSTI)

Many clean solvents like water, ionic liquids, supercritical fluid, polyglycol, fluorine-containing solvents, and so on are employed to replace the conventional organic solvents. Among these, ionic liquids have a...

Zhongkui Zhao; Yitao Dai

2012-01-01T23:59:59.000Z

277

Organic Ionic Liquids: Ultimate Green Solvents in Organic Synthesis  

Science Journals Connector (OSTI)

Ionic liquids are ground-breaking green alternatives to the highly toxic solvents that are hazardous to the environment and ... liquids offer certain advantages as alternatives to conventional solvents. Ionic liq...

Mohammed Abid Shaikh; Xudong Huang

2012-01-01T23:59:59.000Z

278

Tribological Properties of Ionic Liquids Lubricants Containing Nanoparticles  

E-Print Network (OSTI)

is to describe the tribological and rheological properties of mixtures of nanoparticles (NPs) and ionic liquids (ILs), specifically the mixture of bare SiO_(2) (silica) nanoparticles and ionic liquid 1-butyl-3-methylimidazolium (trifluoromethysulfony...

Lu, Wei

2014-05-14T23:59:59.000Z

279

Microcomposite Fuel Cell Membranes  

Energy.gov (U.S. Department of Energy (DOE))

Summary of microcomposite fuel cell membrane work presented to the High Temperature Membrane Working Group Meeting, Orlando FL, October 17, 2003

280

Membrane-Transistor Cable  

Science Journals Connector (OSTI)

Membrane-Transistor Cable ... The system is the basis for a development of bioelectronic transducers and for the study of nonlinear phenomena in membrane cables. ...

Marion Rentschler; Peter Fromherz

1998-01-20T23:59:59.000Z

Note: This page contains sample records for the topic "ionic transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Reaction-Driven Ion Transport Membrane  

NLE Websites -- All DOE Office Websites (Extended Search)

Jenny B. Tennant Jenny B. Tennant Gasification Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4830 jenny.tennant@netl.doe.gov Susan Maley Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-1321 susan.maley@netl.doe.gov David Studer Principal Investigator Air Products and Chemicals Inc.

282

Unique Thylakoid Membrane Architecture of aUnicellular N2-Fixing...  

NLE Websites -- All DOE Office Websites (Extended Search)

intracellular transport and trafficking. Citation: Liberton ML, JR Austin, RH Berg, and HB Pakrasi.2011."Unique Thylakoid Membrane Architecture of aUnicellular N2-Fixing...

283

Amino acids evoke short-latency membrane conductance increase in pancreatic acinar cells  

Science Journals Connector (OSTI)

... K. J. in Membrane Transport in Biology Vol. IV (eds Giebisch, G., Tosteson, D. C. & Ussing, H. H.) 811852 (Springer, Berlin, ...

N. Iwatsuki; O. H. Petersen

1980-01-31T23:59:59.000Z

284

E-Print Network 3.0 - anion selective membrane Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

potential... Development of synthetic membrane transporters for anions ... Source: Smith, Bradley D. - Department of Chemistry and Biochemistry, University of Notre Dame...

285

Electrolyte Solvation and Ionic Association. V. Acetonitrile-Lithium Bis(fluorosulfonyl)imide (LiFSI) Mixtures  

SciTech Connect

Electrolytes with the salt lithium bis(fluorosulfonyl)imide (LiFSI) have been evaluated relative to comparable electrolytes with other lithium salts. Acetonitrile (AN) has been used as a model electrolyte solvent. The information obtained from the thermal phase behavior, solvation/ionic association interactions, quantum chemical (QC) calculations and molecular dynamics (MD) simulations (with an APPLE&P many-body polarizable force field for the LiFSI salt) of the (AN)n-LiFSI mixtures provides detailed insight into the coordination interactions of the FSI- anions and the wide variability noted in the electrolyte transport property (i.e., viscosity and ionic conductivity).

Han, Sang D.; Borodin, Oleg; Seo, D. M.; Zhou, Zhi B.; Henderson, Wesley A.

2014-09-30T23:59:59.000Z

286

An unusual non-Tafel dependence for electron transfer reactions in ionic liquids at large electrode polarisations: Fiction or reality?  

Science Journals Connector (OSTI)

Abstract We speculate about the existence of a square-root Tafel dependence for simple one stage anodic/cathodic electron transfer reactions in ionic liquids. In this dependence, the logarithm of the current depends linearly on the square-root of electrode potential. The modified law is a consequence of ion crowding in the electrical double layer at high charges of the electrode. It may be expected that this effect may be observed for slow reactions at large electrode polarisations, yet not triggering electrochemical decomposition of ionic liquids, and only if diffusion limitations on the transport of reactants are absent.

Alexei A. Kornyshev; Lu-Peng Yang

2014-01-01T23:59:59.000Z

287

Metal-air low temperature ionic liquid cell  

DOE Patents (OSTI)

The present application relates to an electrochemical metal-air cell in which a low temperature ionic liquid is used.

Friesen, Cody A; Buttry, Daniel A

2014-11-25T23:59:59.000Z

288

Membrane Separator for Redox Flow Batteries that Utilize Anion Radical Mediators.  

SciTech Connect

A Na + ion conducting polyethylene oxide membrane is developed for an organic electrolyte redox flow battery that utilizes anion radical mediators. To achieve high specific ionic conductivity, tetraethyleneglycol dimethylether (TEGDME) is used as a plasticizer to reduce crystallinity and increase the free volume of the gel film. This membrane is physically and chemically stable in TEGDME electrolyte that contains highly reactive biphenyl anion radical mediators.

Delnick, Frank M.

2014-10-01T23:59:59.000Z

289

Hyperfine Effects in Ionic Orbital Electron Capture  

E-Print Network (OSTI)

The K-orbital electron capture in ions with one or two electrons is analized for a general allowed nuclear transition. For ionic hyperfine states the angular neutrino distribution and the electron capture rate are given in terms of nuclear matrix elements. A possible application towards the determination of neutrino parameters is outlined.

M. A. Goi

2010-03-02T23:59:59.000Z

290

1,2,3-triazolium ionic liquids  

DOE Patents (OSTI)

The present invention relates to compositions of matter that are ionic liquids, the compositions comprising substituted 1,2,3-triazolium cations combined with any anion. Compositions of the invention should be useful in the separation of gases and, perhaps, as catalysts for many reactions.

Luebke, David; Nulwala, Hunaid; Tang, Chau

2014-12-09T23:59:59.000Z

291

High performance and antifouling vertically aligned carbon nanotube membrane for water purification  

Science Journals Connector (OSTI)

Abstract A vertically aligned carbon nanotube (VA CNT) membrane created from the successful fusion of nanotechnology and membrane technology has been stated to be a next generation membrane due to its fast water transport and antimicrobial properties. Although previous studies of the VA CNT membrane reported the potential for fast water transport or desalination by molecular dynamics simulation, this study is the first to report on the feasibility of using the VA CNT membrane for water purification. The VA CNT membrane (4.8nm of pore diameter and 6.81010#/cm2 of pore density) was fabricated and its flux, rejection performance, and membrane biofouling tendency were evaluated in comparison to the commercial ultrafiltration (UF) membrane. The VA CNT membrane appeared to have a water flux approximately three times higher than the UF membrane and water transport approximately 70,000 times faster than conventional no-slip flow. This higher flux was peculiarly observed in water, the most hydrophilic solvent, while other solvents showed that permeate flux decreased with higher viscosity. The rejection property of the VA CNT membrane as examined by the MWCO measurement was similar to the commercial UF membrane. Additionally, the VA CNT membrane showed better biofouling resistance with approximately 15% less permeate flux reduction and 2log less bacterial attachment than the UF membrane. This study reports the high potential of the VA CNT membrane with antifouling property in the water purification process.

Youngbin Baek; Cholin Kim; Dong Kyun Seo; Taewoo Kim; Jeong Seok Lee; Yong Hyup Kim; Kyung Hyun Ahn; Sang Seek Bae; Sang Cheol Lee; Jaelim Lim; Kyunghyuk Lee; Jeyong Yoon

2014-01-01T23:59:59.000Z

292

Numerical simulation of corneal transport processes  

Science Journals Connector (OSTI)

...describe how these ionic species are interrelated and interact on each other (Kuang et...stroma are derived based on the transport processes developed for electrolytic solutions...from the thermodynamics of irreversible processes. The influence of the flow across the...

2006-01-01T23:59:59.000Z

293

Evidence for a dynamic and transient pathway through the TAT protein transport machinery  

E-Print Network (OSTI)

, University of Florida, Gainesville FL, USA Tat systems transport completely folded proteins across ion Categories: membranes & transport; proteins Keywords: chloroplasts; protein transport; thylakoid; trans transport machinery in thylakoids (called cpTat) consists of three membrane proteins; Tha4, Hcf106, and cp

294

Aptamer Directly Evolved from Live Cells Recognizes Membrane Bound Immunoglobin  

E-Print Network (OSTI)

. These include cell signaling, cell-cell interactions, ion/solute transport that facilitates the exchangeAptamer Directly Evolved from Live Cells Recognizes Membrane Bound Immunoglobin Heavy Mu Chain, and Weihong Tan The identification of tumor related cell membrane protein targets is important

Tan, Weihong

295

Membrane-based processes for sustainable power generation using water  

Science Journals Connector (OSTI)

... 18 GW of salinity-gradient power. Although 800 GW of power is currently obtained from hydroelectric processes globally, salinity-gradient energy remains a large and untapped resource. Capturing this energy ... not ions through the membranes to produce pressurized water that generates electricity using mechanical turbines. RED uses membranes for ion but not water transport, and the electrical ...

Bruce E. Logan; Menachem Elimelech

2012-08-15T23:59:59.000Z

296

Modification of space charge transport in nanocrystalline cerium oxide by heterogeneous doping  

E-Print Network (OSTI)

In the search for new materials for energy conversion and storage technologies such as solid oxide fuel cells, nano-ionic materials have become increasingly relevant because unique physical and transport properties that ...

Litzelman, Scott J

2009-01-01T23:59:59.000Z

297

A Mechanistic Study of Chemically Modified Inorganic Membranes for Gas and Liquid Separations  

SciTech Connect

This final report will summarize the progress made during the period August 1, 1993 - October 31, 2010 with support from DOE grant number DE-FG03-93ER14363. The objectives of the research have been to investigate the transport mechanisms in micro- and mesoporous, metal oxide membranes and to examine the relationship between the microstructure of the membrane, the membrane surface chemistry, and the separation performance of the membrane. Examples of the membrane materials under investigation are the microporous silica hollow fiber membrane manufactured by PPG Industries, chemically modified mesoporous oxide membranes, and polymer membranes containing microporous oxides (mixed matrix membranes). Analytical techniques such as NMR, FTIR and Raman spectroscopy, thermal analysis, and gas adsorption were used to investigate membrane microstructure and to probe the chemical interactions occurring at the gas-membrane interface.

Way, J Douglas

2011-01-21T23:59:59.000Z

298

Theoretical and experimental analysis of conductivity, ion diffusion and molecular transport during cell electroporation --Relation between short-lived and  

E-Print Network (OSTI)

electric field, which enables transport of molecules and ions across the cell membrane. Several and ions due to the hydrophobic nature of the lipid bilayer. Transport through the membrane occurs only for certain molecules and ions through membrane channels by means of diffusion or by active transport. However

Ljubljana, University of

299

An increasing number of synthetic compounds have been shown to facilitate ion and polar molecule transport across  

E-Print Network (OSTI)

transport of ions and polar molecules across biological membranes is essential for normal cell function synthetic transporters shown to be active in both model bilayers and cellular membranes. Mechanism of ion simulations of unassisted Na+ and Cl­ ion transport across a bilayer membrane. As the ion enters the outer

Smith, Bradley D.

300

Ligand-gated Diffusion Across the Bacterial Outer Membrane  

SciTech Connect

Ligand-gated channels, in which a substrate transport pathway is formed as a result of the binding of a small-molecule chemical messenger, constitute a diverse class of membrane proteins with important functions in prokaryotic and eukaryotic organisms. Despite their widespread nature, no ligand-gated channels have yet been found within the outer membrane (OM) of Gram-negative bacteria. Here we show, using in vivo transport assays, intrinsic tryptophan fluorescence and X-ray crystallography, that high-affinity (submicromolar) substrate binding to the OM long-chain fatty acid transporter FadL from Escherichia coli causes conformational changes in the N terminus that open up a channel for substrate diffusion. The OM long-chain fatty acid transporter FadL from E. coli is a unique paradigm for OM diffusion-driven transport, in which ligand gating within a {beta}-barrel membrane protein is a prerequisite for channel formation.

B Lepore; M Indic; H Pham; E Hearn; D Patel; B van den Berg

2011-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "ionic transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Ionic Liquids: Structure and Photochemical Reactions  

NLE Websites -- All DOE Office Websites (Extended Search)

Structure and Photochemical Reactions Structure and Photochemical Reactions E. W. Castner, Jr., C. J. Margulis, M. Maroncelli, and J. F. Wishart in "Annual Reviews of Physical Chemistry, Vol. 62"; Annual Reviews, Palo Alto, CA, (2011) pp. 85-105. [Find paper at Annual Reviews] Abstract: Ionic liquids are subjects of intense current interest within the physical chemistry community. A great deal of progress has been made in just the past five years toward identifying the factors that cause these salts to have low melting points and other useful properties. Supramolecular structure and organization have emerged as important and complicated topics that may be key to understanding how chemical reactions and other processes are affected by ionic liquids. New questions are posed, and an active

302

Poisson-Nernst-Planck systems for narrow tubular-like membrane and Bixiang Wang  

E-Print Network (OSTI)

membrane channels, transport of holes and electrons in semiconductors (see, e.g., [1, 2, 24, 4, 6, 7, 8, 17, 25]). In the context of ion flow through membrane channels, it is physicallyPoisson-Nernst-Planck systems for narrow tubular-like membrane channels Weishi Liu and Bixiang Wang

Liu, Weishi

303

Electric Field Modulation of the Membrane Potential in Solid-State Ion Channels  

E-Print Network (OSTI)

channel. KEYWORDS: Nanochannel, membrane potential, electrofluidic gating, ion transport, salinityElectric Field Modulation of the Membrane Potential in Solid-State Ion Channels Weihua Guan a rapid flow of ions across the cell membrane. Normal physiological functions, such as generating action

Reed, Mark

304

Rejection and fate of trace organic compounds (TrOCs) during membrane distillation  

E-Print Network (OSTI)

Rejection and fate of trace organic compounds (TrOCs) during membrane distillation Kaushalya COCs) Direct contact membrane distillation (DCMD) Volatility Fate and transport Hydrophobicity/hydrophilicity a b s t r a c t In this study, we examined the feasibility of membrane distillation (MD) for removing

305

Alkaline membrane fuel cells with in-situ cross-linked ionomers Yongjun Leng a  

E-Print Network (OSTI)

optimization is needed for the commercialization of alkaline membrane fuel cell (AMFC) technologiesAlkaline membrane fuel cells with in-situ cross-linked ionomers Yongjun Leng a , Lizhu Wang b membrane fuel cell (AMFC) in-situ cross-linking ionomer net water transport coefficient A B S T R A C

306

Chapter 11 - Nanofluidic Carbon Nanotube Membranes: Applications for Water Purification and Desalination  

Science Journals Connector (OSTI)

This chapter presents a brief overview of the basic physical processes that govern the structure and transport of water inside CNT pores, basic properties that make nanotube pore technologies attractive for water purification and desalination, the fabrication approaches for producing CNT membranes, and the experimental observations of water transport and ion exclusion properties in CNT membranes.

Olgica Bakajin; Aleksandr Noy; Francesco Fornasiero; Costas P. Grigoropoulos; Jason K. Holt; Jung Bin In; Sangil Kim; Hyung Gyu Park

2014-01-01T23:59:59.000Z

307

Active membrane fluctuations studied by micropipet aspiration J.-B. Manneville,1  

E-Print Network (OSTI)

, mostly performed by proteins embedded inside the lipid bi- layer, such as solute transport via ion channels or pumps, cell locomotion and adhesion, membrane transport through exo- cytic and endocyticActive membrane fluctuations studied by micropipet aspiration J.-B. Manneville,1 P. Bassereau,1

Ramaswamy, Sriram

308

Effect of solution chemistry on water softening using charged nanofiltration membranes  

Science Journals Connector (OSTI)

The negatively charged polyamide thin-film-composite nanofiltration membranes have been used to possibly treat the sodium-enriched water, particularly cooling tower water, to separate hardness producing solute like MgSO4 from univalent salts using ESNA and EDA nanofiltration membranes. The flux declines with increasing ionic strength of the feed solution. Rejection of objectionable hardness producing magnesium ions decreases with increasing ionic strength, a case hopefully not reported earlier, with hardly any change in the rejection of sodium chloride used to maintain the ionic strength of the solutions. The effect of pH has also been studied, which shows that flux decreases whereas rejection increases when the solution pH is either reasonably acidic or alkaline in nature. The rate of change in flux and rejection drops with increasing pH when the ionic strength was kept constant. The method is applied to the treatment of some tap waters, altering the ionic strength and pH, to show the validity of the findings. A good agreement in results confirms the phenomenon of variable rejection of hardness producing ions under different solution chemistry.

Dipankar Nanda; Kuo-Lun Tung; Chi-Chung Hsiung; Ching-Jung Chuang; Ruoh-Chyu Ruaan; Yan-Che Chiang; Chih-Shen Chen; Tien-Hwa Wu

2008-01-01T23:59:59.000Z

309

Composite zeolite membranes  

DOE Patents (OSTI)

A new class of composite zeolite membranes and synthesis techniques therefor has been invented. These membranes are essentially defect-free, and exhibit large levels of transmembrane flux and of chemical and isotopic selectivity.

Nenoff, Tina M. (Albuquerque, NM); Thoma, Steven G. (Albuquerque, NM); Ashley, Carol S. (Albuquerque, NM); Reed, Scott T. (Albuquerque, NM)

2002-01-01T23:59:59.000Z

310

Membrane Technology Workshop  

Energy.gov (U.S. Department of Energy (DOE))

At the Membrane Technology Workshop (held July 24, 2012, in Rosemont, IL), stakeholders from industry and academia explored the status of membrane research and development (R&D). Participants...

311

Membrane Technology Workshop  

Energy.gov (U.S. Department of Energy (DOE))

At the Membrane Technology Workshop (held July 24, 2012, in Rosemont, IL), stakeholders from industry and academia explored the status of membrane research and development (R&D). Participants ...

312

Hybrid adsorptive membrane reactor  

DOE Patents (OSTI)

A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

Tsotsis, Theodore T. (Huntington Beach, CA); Sahimi, Muhammad (Altadena, CA); Fayyaz-Najafi, Babak (Richmond, CA); Harale, Aadesh (Los Angeles, CA); Park, Byoung-Gi (Yeosu, KR); Liu, Paul K. T. (Lafayette Hill, PA)

2011-03-01T23:59:59.000Z

313

Supertubes and Superconducting Membranes  

SciTech Connect

We show the equivalence between configurations that arise from string theory of type IIA, called supertubes, and superconducting membranes at the bosonic level. We find equilibrium and oscillating configurations for a tubular membrane carrying a current along its axis.

Cordero, Ruben; Miguel-Pilar, Zelin [Departamento de Fisica, Escuela Superior de Fisica y Matematicas del IPN, Edificio 9, Unidad Profesional 'Adolfo Lopez Mateos', Zacatenco, 07738 Mexico D.F. (Mexico)

2007-02-09T23:59:59.000Z

314

Neutral-ionic transitions in organic mixed-stack compounds  

SciTech Connect

Torrance et al. have made the interesting observation that several mixed-stack organic compounds undergo transitions from neutral states to ionic states as the temperature or pressure is varied. We examine a simple model of such transitions including Coulomb interaction and hybridization of neutral and ionic states. In the limit of weak hybridization and long-range repulsive interaction between ionic planes, it is proven that there is a complete devil's staircase where the degree of ionicity assumes an infinity of rational values. For attractive interactions between ionic planes, the neutral-ionic transition is shown to be first order for weak hybridization. Comparison with experiment indicates that this situation applies to tetrathiafulvalene (TTF) chloranil. For strong hybridization the transition is continuous but goes through a metallic phase. It is shown, for the first time, that the spectrum of the charge-transfer Hamiltonian contains both a bound spectrum, the observed charge-transfer excitations, and a continuum.

Bruinsma, R.; Bak, P.; Torrance, J.B.

1983-01-01T23:59:59.000Z

315

Membrane Separations Research  

E-Print Network (OSTI)

MEMBRANE SEPARATIONS RESEARCH James R. Fair Chemical Engineering Department The University of Texas at Austin Austin, TX 78712 ABSTRACT The use of membranes for separating gaseous and liquid mixtures has grown dramatically in the past 15... years. Applications have been dominated by light gas separations and water purification. During this pioneering period, equipment containing the membrane suIfaces has been developed to a point where failures are minimal and the membranes themselves...

Fair, J. R.

316

Membrane Technology Workshop  

Energy.gov (U.S. Department of Energy (DOE))

Presentation by Charles Page (Air Products & Chemicals, Inc.) for the Membrane Technology Workshop held July 24, 2012

317

Polyphosphazene semipermeable membranes  

DOE Patents (OSTI)

A semipermeable, inorganic membrane is disclosed; the membrane is prepared from a phosphazene polymer and, by the selective substitution of the constituent groups bound to the phosphorous in the polymer structure, the selective passage of fluid from a feedstream can be controlled. Resistance to high temperatures and harsh chemical environments is observed in the use of the phosphazene polymers as semipermeable membranes.

Allen, Charles A. (Idaho Falls, ID); McCaffrey, Robert R. (Idaho Falls, ID); Cummings, Daniel G. (Idaho Falls, ID); Grey, Alan E. (Idaho Falls, ID); Jessup, Janine S. (Darlington, ID); McAtee, Richard E. (Idaho Falls, ID)

1988-01-01T23:59:59.000Z

318

Toward a Materials Genome Approach for Ionic Liquids: Synthesis...  

NLE Websites -- All DOE Office Websites (Extended Search)

a Materials Genome Approach for Ionic Liquids: Synthesis Guided by Ab Initio Property Maps Previous Next List Fangyong Yan, Michael Lartey, Kuldeep Jariwala, Sage Bowser,...

319

Kinetics and Solvent Effects in the Synthesis of Ionic Liquids.  

E-Print Network (OSTI)

??Ionic liquids (ILs) are being recognized as environmentally friendly ("green") solvents. However, their synthesis is often conducted in the very solvents that they will reportedly (more)

Schleicher, Jay C.

2007-01-01T23:59:59.000Z

320

Ionic Liquid-Enhanced Solid State Electrolyte Interface (SEI...  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquid-Enhanced Solid State Electrolyte Interface (SEI) for Lithium Sulfur Batteries. Ionic Liquid-Enhanced Solid State Electrolyte Interface (SEI) for Lithium Sulfur Batteries....

Note: This page contains sample records for the topic "ionic transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

A MODIFICATION OF MAUCHA'S IONIC DIAGRAM TO INCLUDE ...  

Science Journals Connector (OSTI)

ences in concentrations of ions and dif- ferences in relative proportions of ions. Though Maucha's (1932) ionic field dia- grams illustrate relative proportions of...

2000-02-12T23:59:59.000Z

322

Using Ionic Liquids to Make Titanium Dioxide Nanotubes - Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Photovoltaic Solar Photovoltaic Hydrogen and Fuel Cell Hydrogen and Fuel Cell Energy Storage Energy Storage Find More Like This Return to Search Using Ionic Liquids to Make...

323

Compositions and methods useful for ionic liquid treatment of biomass  

SciTech Connect

The present invention provides for novel compositions and methods for recycling or recovering ionic liquid used in IL pretreated cellulose and/or lignocellulosic biomass (LBM).

Dibble, Dean C.; Cheng, Aurelia; George, Anthe

2014-07-29T23:59:59.000Z

324

Ionic Liquids as Novel Engine Lubricants or Lubricant Additives...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Additives Ionic Liquids as Novel Engine Lubricants or Lubricant Additives Bench test results showed that compared with fully-formulated engine oils, selected low-viscosity...

325

TETRAALKYLPHOSPHONIUM POLYOXOMETALATES AS NOVEL IONIC LIQUIDS.  

SciTech Connect

The pairing of a Lindqvist or Keggin polyoxometalate (POM) anion with an appropriate tetraalkylphosphonium cation, [R{sub 3}R{prime}P]{sup +}, has been shown to yield an original family of ionic liquids (POM-ILs), among them salts liquid at or near ambient temperature. The physicochemical properties of several such 'inorganic liquids', in particular their thermal properties, suggests the possible application of these compounds as robust, thermally-stable solvents for liquid-liquid extraction. A preliminary evaluation of the potential of POM-ILs in this application is presented.

DIETZ,M.L.; RICKERT, P.G.; ANTONIO, M.R.; FIRESTONE, M.A.; WISHART, J.F.; SZREDER, T.

2007-11-30T23:59:59.000Z

326

Durable electrooptic devices comprising ionic liquids  

DOE Patents (OSTI)

Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF3SO3-), bis(trifluoromethylsulfonyl)imide ((CF3SO2)2N-), bis(perfluoroethylsulfonyl)imide ((CF3CF2SO2)2N-) and tris(trifluoromethylsulfonyl)methide ((CF3SO2)3C-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes.

Agrawal, Anoop (Tucson, AZ); Cronin, John P. (Tucson, AZ); Tonazzi, Juan C. L. (Tucson, AZ); Warner, Benjamin P. (Los Alamos, NM); McCleskey, T. Mark (Los Alamos, NM); Burrell, Anthony K. (Los Alamos, NM)

2005-11-01T23:59:59.000Z

327

Charge Inversion, Water Splitting, and Vortex Suppression Due to DNA Sorption on Ion-Selective Membranes and Their Ion-Current  

E-Print Network (OSTI)

These membranes show a unique property of selective ion transport through the nanopores of IEMs embedded to saturate at a limiting current beyond a critical cross-membrane voltage drop as a result of the ion-transport-Selective Membranes and Their Ion-Current Signatures Zdenek Slouka, Satyajyoti Senapati, Yu Yan, and Hsueh-Chia Chang

Chang, Hsueh-Chia

328

Enhanced membrane gas separations  

SciTech Connect

An improved membrane gas separation process is described comprising: (a) passing a feed gas stream to the non-permeate side of a membrane system adapted for the passage of purge gas on the permeate side thereof, and for the passage of the feed gas stream in a counter current flow pattern relative to the flow of purge gas on the permeate side thereof, said membrane system being capable of selectively permeating a fast permeating component from said feed gas, at a feed gas pressure at or above atmospheric pressure; (b) passing purge gas to the permeate side of the membrane system in counter current flow to the flow of said feed gas stream in order to facilitate carrying away of said fast permeating component from the surface of the membrane and maintaining the driving force for removal of the fast permeating component through the membrane from the feed gas stream, said permeate side of the membrane being maintained at a subatmospheric pressure within the range of from about 0.1 to about 5 psia by vacuum pump means; (c) recovering a product gas stream from the non-permeate side of the membrane; and (d) discharging purge gas and the fast permeating component that has permeated the membrane from the permeate side of the membrane, whereby the vacuum conditions maintained on the permeate side of the membrane by said vacuum pump means enhance the efficiency of the gas separation operation, thereby reducing the overall energy requirements thereof.

Prasad, R.

1993-07-13T23:59:59.000Z

329

Fuel Cell Technologies Office: High Temperature Membrane Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

High Temperature Membrane Working Group High Temperature Membrane Working Group The High Temperature Membrane Working Group consists of government, industry, and university researchers interested in developing high temperature membranes for fuel cells. Description Technical Targets Meetings Contacts Description Polymer electrolyte membrane (PEM) fuel cells typically operate at temperatures no higher than 60°C-80°C due to structural limitations of the membrane. Operating PEM fuel cell stacks at higher temperatures (120°C for transportation and 150°C for stationary applications), however, would yield significant energy benefits. For example, heat rejection is easier at higher temperatures, which would allow use of smaller heat exchangers in fuel cell power systems. In addition, for reformate fuel cell systems, carbon monoxide (CO) tolerance of the stack is less problematic at higher temperatures, which would reduce the size requirements or possibly eliminate the need for some CO clean-up beds in the fuel processor.

330

Argonne CNM News: Thinnest Nanofiltration Membrane to Date  

NLE Websites -- All DOE Office Websites (Extended Search)

Thinnest Nanofiltration Membrane to Date Thinnest Nanofiltration Membrane to Date Thinnest membrane to date Close-packed nanoparticle monolayers self-assembled from dodecanethiol-ligated gold nanocrystals. TEM image (left) and atomistic simulation of tryptophan transport through a pore. A recent collaboration between users at the University of Chicago and the University of Illinois at Chicago with the Center for Nanoscale Material's Electronic & Magnetic Materials & Devices Group has produced the thinnest nanofiltration membrane achieved thus far, at ~30 nm, made of just four layers of nanoparticles. A separation membrane is a key component in both nanofiltration and reverse osmosis filtration systems. Typically they are microns-thick polymer films. Reducing the thickness of the membrane reduces the pressure that needs to

331

Mechanically and structurally robust sulfonated block copolymer membranes for water purification applications  

Science Journals Connector (OSTI)

The effective removal of ionic pollutants from contaminated water using negatively charged nanofiltration membranes is demonstrated. Block copolymers comprising polystyrene (PS) and partially hydrogenated polyisoprene (hPI) were synthesized by varying chain architectures. A one step procedure of cross-linking (hPI blocks) and sulfonation reactions (PS chains) was then carried out, which was revealed as an effective method to enhance mechanical integrity of membranes while hydrophilic sulfonated chains remain intact. In particular, the control of chain architecture allows us to create a synergetic effect on optimizing charge densities of the membrane, water permeability, and mechanical integrity under water purification conditions. The best performing membrane can almost completely (>99%) reject various divalent cations and also show NO3? rejection >85% and Na+ rejection >87%. Well defined nanostructures (tens of nanometers) as well as the periodically arranged water domains (a few nanometers) within hydrophilic phases of the hydrated membranes were confirmed by in situ neutron scattering experiments.

J Yeo; S Y Kim; S Kim; D Y Ryu; T-H Kim; M J Park

2012-01-01T23:59:59.000Z

332

Nanofiltration of Electrolyte Solutions by Sub-2nm Carbon Nanotube Membranes  

SciTech Connect

Both MD simulations and experimental studies have shown that liquid and gas flow through carbon nanotubes with nanometer size diameter is exceptionally fast. For applications in separation technology, selectivity is required together with fast flow. In this work, we use pressure-driven filtration experiments to study ion exclusion in silicon nitride/sub-2-nm CNT composite membranes as a function of solution ionic strength, pH, and ion valence. We show that carbon nanotube membranes exhibit significant ion exclusion at low salt concentration. Our results support a rejection mechanism dominated by electrostatic interactions between fixed membrane charges and mobile ions, while steric and hydrodynamic effects appear to be less important. Comparison with commercial nanofiltration membranes for water softening reveals that our carbon nanotube membranes provides far superior water fluxes for similar ion rejection capabilities.

Fornasiero, F; Park, H G; Holt, J K; Stadermann, M; Kim, S; In, J B; Grigoropoulos, C P; Noy, A; Bakajin, O

2008-03-13T23:59:59.000Z

333

Glucose Transporters in the Transepithelial Transport of Glucose  

Science Journals Connector (OSTI)

......galactose, and fructose formed by the hydrolysis of dietary car- bohydrates.181 In the liver, GLUT2 at the sinusoidal membrane...transport activity. These results show that SGLTl is a key defective molecule in GGM and that SGLTl is crucial for the absorption......

Kuniaki Takata

1996-08-01T23:59:59.000Z

334

Phytoremediation of Ionic and Methyl Mercury P  

SciTech Connect

Our long-term goal is to enable highly productive plant species to extract, resist, detoxify, and/or sequester toxic heavy metal pollutants as an environmentally friendly alternative to physical remediation methods. We have focused this phytoremediation research on soil and water-borne ionic and methylmercury. Mercury pollution is a serious world-wide problem affecting the health of human and wild-life populations. Methylmercury, produced by native bacteria at mercury-contaminated wetland sites, is a particularly serious problem due to its extreme toxicity and efficient biomagnification in the food chain. We engineered several plant species (e.g., Arabidopsis, tobacco, canola, yellow poplar, rice) to express the bacterial genes, merB and/or merA, under the control of plant regulatory sequences. These transgenic plants acquired remarkable properties for mercury remediation. (1) Transgenic plants expressing merB (organomercury lyase) extract methylmercury from their growth substrate and degrade it to less toxic ionic mercury. They grow on concentrations of methylmercury that kill normal plants and accumulate low levels of ionic mercury. (2) Transgenic plants expressing merA (mercuric ion reductase) extract and electrochemically reduce toxic, reactive ionic mercury to much less toxic and volatile metallic mercury. This metal transformation is driven by the powerful photosynthetic reducing capacity of higher plants that generates excess NADPH using solar energy. MerA plants grow vigorously on levels of ionic mercury that kill control plants. Plants expressing both merB and merA degrade high levels of methylmercury and volatilize metallic mercury. These properties were shown to be genetically stable for several generations in the two plant species examined. Our work demonstrates that native trees, shrubs, and grasses can be engineered to remediate the most abundant toxic mercury pollutants. Building on these data our working hypothesis for the next grant period is that transgenic plants expressing the bacterial merB and merA genes will (a) remove mercury from polluted soil and water and (b) prevent methylmercury from entering the food chain. Our specific aims center on understanding the mechanisms by which plants process the various forms of mercury and volatilize or transpire mercury vapor. This information will allow us to improve the design of our current phytoremediation strategies. As an alternative to volatilizing mercury, we are using several new genes to construct plants that will hyperaccumulate mercury in above-ground tissues for later harvest. The Department of Energy's Oak Ridge National Laboratory and Brookhaven National Laboratory have sites with significant levels of mercury contamination that could be cleaned by applying the scientific discoveries and new phytoremediation technologies described in this proposal. The knowledge and expertise gained by engineering plants to hyperaccumulate mercury can be applied to the remediation of other heavy metals pollutants (e.g., arsenic, cesium, cadmium, chromium, lead, strontium, technetium, uranium) found at several DOE facilities.

Meagher, Richard B.

1999-06-01T23:59:59.000Z

335

THE IONIC CENTRIFUGE CAN GIVE FUSION NUCLEAR POWER  

Science Journals Connector (OSTI)

...so long as the electric field and magnetic...3. The First Discharge of the Ionic Centrifuge...low-voltage arc source of ionization...The anode of the arc is taken as zero...first type of discharge, the end plates...found when the arc current was varied...4. The Second Discharge of the Ionic Centrifuge...

Joseph Slepian

1963-01-01T23:59:59.000Z

336

Effects of ionic conductivities of zirconia electrolytes on polarization properties of platinum anodes in solid oxide fuel cells  

SciTech Connect

To find a clue for the design of high-performance electrodes for solid oxide fuel cells (SOFCs), the polarization properties of Pt electrodes attached to zirconia electrolytes with various ionic conductivities were investigated at 800-1000[degree]C. The IR-free anodic polarization in hydrogen was greatly affected by the ionic conductivity of the electrolyte, and it obeyed the Tafel equation. The exchange current density increased in proportion to the square of the ionic conductivity for all electrolytes operated at 800-1000[degree]C, while the transfer coefficient (n[alpha][sub o] = 2) was independent of the temperature and of the conductivity of electrolytes. According to our analysis, the rate-determining step is not a simple electron transfer from oxide ions but a recombination step involving discharged oxygen atoms adsorbed on the Pt electrode/electrolyte interface; an increase in the rate of transport of oxide ions to the interface, for example, by using an electrolyte with higher-ionic conductivity, reduces the anodic overpotential greatly. 34 refs., 6 figs., 1 tab.

Uchida, Hiroyuki; Yoshida, Manabu; Watanabe, Masahiro (Yamanashi Univ., Kofu (Japan))

1995-03-09T23:59:59.000Z

337

Properties of some ionic liquids based on 1-methyl-3-octylimidazolium and 4-methyl-N-butylpyridinium cations.  

E-Print Network (OSTI)

Ionic liquids as green solvents: progress and prospects.ionic liquids are green solvents, i.e. , environmentally

Papaiconomou, Nicolas; Yakelis, Neal; Salminen, Justin; Bergman, Robert; Prausnitz, John M.

2005-01-01T23:59:59.000Z

338

Synthesis and Characterization of Cross?linked Polymer Electrolyte Membranes for Supercapacitor  

Science Journals Connector (OSTI)

Cross?linked polyvinyl alcohol (PVA) electrolyte membranes have been synthesized by using a solution casting method. In this study PVA was blended with oxidative cross?linked agent (zinc acetate) and nano?sized silica as filler to stabilize PVA matrix and enhance conductivity. The cross?linked membranes were immersed into lithium hydroxide (LiOH) aqueous solution to increase their ionic conductivity. Two techniques were used to characterize the resulted membranes including Fourier transform infra red (FTIR) and AC impedance spectroscopies. The results showed that absorption peaks of C?O?C group and Si?O?Si are presence in the FTIR spectra attributed to the cross?linking process. Impedance spectra indicated that the contribution of ionic dopant (LiOH) to enhance conductivity is insignificant. The highest conductivity of the studied cross?linked PVA membrane is 1.3410 ?3 ? S ? cm ?1 corresponding to 5% LiOH dopant concentration of cross?linked PVA?zinc acetate?nano silica membrane. The present study also suggested that the solution casting is appropriate for cross?linked membrane synthesis.

Memoria Rosi; Muhamad Prama Ekaputra; Mikrajuddin Abdullah; Khairurrijal

2010-01-01T23:59:59.000Z

339

Substituted polyacetylene separation membrane  

DOE Patents (OSTI)

A separation membrane is described which is useful for gas separation, particularly separation of C{sub 2+} hydrocarbons from natural gas. The invention encompasses the membrane itself, methods of making it and processes for using it. The membrane comprises a polymer having repeating units of a hydrocarbon-based, disubstituted polyacetylene, having the general formula shown in the accompanying diagram, wherein R{sub 1} is chosen from the group consisting of C{sub 1}-C{sub 4} alkyl and phenyl, and wherein R{sub 2} is chosen from the group consisting of hydrogen and phenyl. In the most preferred embodiment, the membrane comprises poly(4-methyl-2-pentyne) [PMP]. The membrane exhibits good chemical resistance and has super-glassy properties with regard to separating certain large, condensable permeant species from smaller, less-condensable permeant species. The membranes may also be useful in other fluid separations. 4 figs.

Pinnau, I.; Morisato, Atsushi

1998-01-13T23:59:59.000Z

340

Substituted polyacetylene separation membrane  

DOE Patents (OSTI)

A separation membrane useful for gas separation, particularly separation of C.sub.2+ hydrocarbons from natural gas. The invention encompasses the membrane itself, methods of making it and processes for using it. The membrane comprises a polymer having repeating units of a hydrocarbon-based, disubstituted polyacetylene, having the general formula: ##STR1## wherein R.sub.1 is chosen from the group consisting of C.sub.1 -C.sub.4 alkyl and phenyl, and wherein R.sub.2 is chosen from the group consisting of hydrogen and phenyl. In the most preferred embodiment, the membrane comprises poly(4-methyl-2-pentyne) PMP!. The membrane exhibits good chemical resistance and has super-glassy properties with regard to separating certain large, condensable permeant species from smaller, less-condensable permeant species. The membranes may also be useful in other fluid separations.

Pinnau, Ingo (Palo Alto, CA); Morisato, Atsushi (Tokyo, JP)

1998-01-13T23:59:59.000Z

Note: This page contains sample records for the topic "ionic transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Salinity tolerance in plants: attempts to manipulate ion transport  

E-Print Network (OSTI)

Ion transport is the major determining factor of salinity tolerance in plants. A simple scheme of a plant cell with ion fluxes provides basic understanding of ion transport and the corresponding changes of ion concentrations under salinity. The review describes in detail basic principles of ion transport for a plant cell, introduces set of transporters essential for sodium and potassium uptake and efflux, analyses driving forces of ion transport and compares ion fluxes measured by several techniques. Study of differences in ion transport between salt tolerant halophytes and salt-sensitive plants with an emphasis on transport of potassium and sodium via plasma membranes offers knowledge for increasing salinity tolerance. Effects of salt stress on ion transport properties of membranes show huge opportunities for manipulating ion transport. Several attempts to overexpress or knockout ion transporters for changing salinity tolerance are described. Future perspectives are questioned with more attention given to potential candidate ion channels and transporters for altered expression. The potential direction of increasing salinity tolerance by modifying ion channels and transporters is discussed and questioned. An alternative approach from synthetic biology is to modify the existing membrane transport proteins or create new ones with desired properties for transforming agricultural crops. The approach had not been widely used earlier and leads also to theoretical and pure scientific aspects of protein chemistry, structure-function relations of membrane proteins, systems biology and physiology of stress and ion homeostasis.

Vadim Volkov

2014-11-06T23:59:59.000Z

342

Anion exchange membrane  

DOE Patents (OSTI)

An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

2013-05-07T23:59:59.000Z

343

Durable electrooptic devices comprising ionic liquids  

DOE Patents (OSTI)

Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes.

Warner, Benjamin P. (Los Alamos, NM); McCleskey, T. Mark (Los Alamos, NM); Burrell, Anthony K. (Los Alamos, NM)

2006-10-10T23:59:59.000Z

344

Transportation Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Services Transporting nuclear materials within the United States and throughout the world is a complicated and sometimes highly controversial effort requiring...

345

Local Transportation  

E-Print Network (OSTI)

Local Transportation. Transportation from the Airport to Hotel. There are two types of taxi companies that operate at the airport: special and regular taxis (

346

E-Print Network 3.0 - anion transporter sat1 Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

(ClC) family... in the complex network of membrane transport and solute fluxes. We used a reverse genetics approach with T Source: Groningen, Rijksuniversiteit - Centre for...

347

E-Print Network 3.0 - anion transporters oat1 Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

(ClC) family... in the complex network of membrane transport and solute fluxes. We used a reverse genetics approach with T Source: Groningen, Rijksuniversiteit - Centre for...

348

Does ionophore A23187 mediate Na transport in the absence of divalent cations?  

Science Journals Connector (OSTI)

... L. & Beaug, L. in Transport Across Biological Membranes (eds Giebisch, G., Tosteson, D. C. & Ussing, H. H.) vol. 2 (Springer, in ...

PETER FLATMAN; VIRGILIO L. LEW

1977-12-01T23:59:59.000Z

349

Effective zero-thickness model for a conductive membrane driven by an electric field Falko Ziebert,1  

E-Print Network (OSTI)

membrane models is that they do not describe electrostatic effects associated with ion transport in details cells. A membrane can be driven out of equilibrium in many ways, for instance by ion concentration. The generation of ion con- centration gradients by internal means is controlled in bio- logical cells by membrane

Bazant, Martin Z.

350

Integrated Ceramic Membrane System for Hydrogen Production  

SciTech Connect

Phase I was a technoeconomic feasibility study that defined the process scheme for the integrated ceramic membrane system for hydrogen production and determined the plan for Phase II. The hydrogen production system is comprised of an oxygen transport membrane (OTM) and a hydrogen transport membrane (HTM). Two process options were evaluated: 1) Integrated OTM-HTM reactor in this configuration, the HTM was a ceramic proton conductor operating at temperatures up to 900C, and 2) Sequential OTM and HTM reactors in this configuration, the HTM was assumed to be a Pd alloy operating at less than 600C. The analysis suggested that there are no technical issues related to either system that cannot be managed. The process with the sequential reactors was found to be more efficient, less expensive, and more likely to be commercialized in a shorter time than the single reactor. Therefore, Phase II focused on the sequential reactor system, specifically, the second stage, or the HTM portion. Work on the OTM portion was conducted in a separate program. Phase IIA began in February 2003. Candidate substrate materials and alloys were identified and porous ceramic tubes were produced and coated with Pd. Much effort was made to develop porous substrates with reasonable pore sizes suitable for Pd alloy coating. The second generation of tubes showed some improvement in pore size control, but this was not enough to get a viable membrane. Further improvements were made to the porous ceramic tube manufacturing process. When a support tube was successfully coated, the membrane was tested to determine the hydrogen flux. The results from all these tests were used to update the technoeconomic analysis from Phase I to confirm that the sequential membrane reactor system can potentially be a low-cost hydrogen supply option when using an existing membrane on a larger scale. Phase IIB began in October 2004 and focused on demonstrating an integrated HTM/water gas shift (WGS) reactor to increase CO conversion and produce more hydrogen than a standard water gas shift reactor would. Substantial improvements in substrate and membrane performance were achieved in another DOE project (DE-FC26-07NT43054). These improved membranes were used for testing in a water gas shift environment in this program. The amount of net H2 generated (defined as the difference of hydrogen produced and fed) was greater than would be produced at equilibrium using conventional water gas shift reactors up to 75 psig because of the shift in equilibrium caused by continuous hydrogen removal. However, methanation happened at higher pressures, 100 and 125 psig, and resulted in less net H2 generated than would be expected by equilibrium conversion alone. An effort to avoid methanation by testing in more oxidizing conditions (by increasing CO2/CO ratio in a feed gas) was successful and net H2 generated was higher (40-60%) than a conventional reactor at equilibrium at all pressures tested (up to 125 psig). A model was developed to predict reactor performance in both cases with and without methanation. The required membrane area depends on conditions, but the required membrane area is about 10 ft2 to produce about 2000 scfh of hydrogen. The maximum amount of hydrogen that can be produced in a membrane reactor decreased significantly due to methanation from about 2600 scfh to about 2400 scfh. Therefore, it is critical to eliminate methanation to fully benefit from the use of a membrane in the reaction. Other modeling work showed that operating a membrane reactor at higher temperature provides an opportunity to make the reactor smaller and potentially provides a significant capital cost savings compared to a shift reactor/PSA combination.

Schwartz, Joseph; Lim, Hankwon; Drnevich, Raymond

2010-08-05T23:59:59.000Z

351

Soft ionization of thermally evaporated hypergolic ionic liquid aerosols  

SciTech Connect

Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)imide ([Emim+][Tf2N?]), and a reactive hypergolic ionic liquid, 1- Butyl-3-Methyl-Imidazolium Dicyanamide ([Bmim+][Dca?]), are generated by vaporizing ionic liquid submicron aerosol particles for the first time; the vaporized species are investigated by dissociative ionization with tunable vacuum ultraviolet (VUV) light, exhibiting clear intact cations, Emim+ and Bmim+, presumably originating from intact ion pairs. Mass spectra of ion pair vapor from an effusive source of the hypergolic ionic liquid show substantial reactive decomposition due to the internal energy of the molecules emanating from the source. Photoionization efficiency curves in the near threshold ionization region of isolated ion pairs of [Emim+][Tf2N?] ionic liquid vapor are compared for an aerosol source and an effusive source, revealing changes in the appearance energy due to the amount of internal energy in the ion pairs. The aerosol source has a shift to higher threshold energy (~;;0.3 eV), attributed to reduced internal energy of the isolated ion pairs. The method of ionic liquid submicron aerosol particle vaporization, for reactive ionic liquids such as hypergolic species, is a convenient, thermally ?cooler? source of isolated intact ion pairs in the gas phase compared to effusive sources.

University of California; ERC, Incorporated, Edwards Air Force Base; Air Force Research Laboratory, Edwards Air Force Base; National Synchrotron Radiation Research Center (NSRRC); Koh, Christine J.; Liu, Chen-Lin; Harmon, Christopher W.; Strasser, Daniel; Golan, Amir; Kostko, Oleg; Chambreau, Steven D.; L.Vaghjiani, Ghanshyam; Leone, Stephen R.

2012-03-16T23:59:59.000Z

352

Chamber transport  

SciTech Connect

Heavy ion beam transport through the containment chamber plays a crucial role in all heavy ion fusion (HIF) scenarios. Here, several parameters are used to characterize the operating space for HIF beams; transport modes are assessed in relation to evolving target/accelerator requirements; results of recent relevant experiments and simulations of HIF transport are summarized; and relevant instabilities are reviewed. All transport options still exist, including (1) vacuum ballistic transport, (2) neutralized ballistic transport, and (3) channel-like transport. Presently, the European HIF program favors vacuum ballistic transport, while the US HIF program favors neutralized ballistic transport with channel-like transport as an alternate approach. Further transport research is needed to clearly guide selection of the most attractive, integrated HIF system.

OLSON,CRAIG L.

2000-05-17T23:59:59.000Z

353

Biominetic Membrane for Co2 Capture from Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomimetic Membrane for CO Biomimetic Membrane for CO 2 Capture from Flue Gas Background Carbon Capture and Sequestration (CCS) is a three-step process including capture, pipeline transport, and geologic storage of which the capture of carbon dioxide (CO 2 ) is the most costly and technically challenging. Current available methods impose significant energy burdens that severely impact their overall effectiveness as a significant deployment option. Of the available capture technologies for post

354

DOE Hydrogen Analysis Repository: Cost Analysis of Proton Exchange Membrane  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost Analysis of Proton Exchange Membrane Fuel Cell Systems for Cost Analysis of Proton Exchange Membrane Fuel Cell Systems for Transportation Project Summary Full Title: Cost Analysis of Proton Exchange Membrane (PEM) Fuel Cell Systems for Transportation Project ID: 196 Principal Investigator: Eric Carlson Keywords: Fuel cells, fuel cell vehicles (FCV), transportation, costs Purpose Assess the cost of an 80 kW direct hydrogen fuel cell system relative to the DOE 2005 target of $125/kW. The system includes the fuel cell stack and balance-of-plant (BOP) components for water, thermal, and fuel management, but not hydrogen storage. Performer Principal Investigator: Eric Carlson Organization: TIAX, LLC Address: 15 Acorn Park Cambridge, MA 02140-2328 Telephone: 617-498-5903 Email: carlson.e@tiaxllc.com Additional Performers: P. Kopf, TIAX, LLC; J. Sinha, TIAX, LLC; S. Sriramulu, TIAX, LLC

355

Intermolecular vibrations and fast relaxations in supercooled ionic liquids  

Science Journals Connector (OSTI)

Short-time dynamics of ionic liquids has been investigated by low-frequency Raman spectroscopy (4 < ? < 100 cm?1) within the supercooled liquid range. Raman spectra are reported for ionic liquids with the same anion bis(trifluoromethylsulfonyl)imide and different cations: 1-butyl-3-methylimidazolium 1-hexyl-3-methylimidazolium 1-butyl-1-methylpiperidinium trimethylbutylammonium and tributylmethylammonium. It is shown that low-frequency Raman spectroscopy provides similar results as optical Kerr effect (OKE) spectroscopy which has been used to study intermolecular vibrations in ionic liquids. The comparison of ionic liquids containing aromatic and non-aromatic cations identifies the characteristic feature in Raman spectra usually assigned to librational motion of the imidazolium ring. The strength of the fast relaxations (quasi-elastic scattering QES) and the intermolecular vibrational contribution (boson peak) of ionic liquids with non-aromatic cations are significantly lower than imidazolium ionic liquids. A correlation length assigned to the boson peak vibrations was estimated from the frequency of the maximum of the boson peak and experimental data of sound velocity. The correlation length related to the boson peak (?19 ) does not change with the length of the alkyl chain in imidazolium cations in contrast to the position of the first-sharp diffraction peak observed in neutron and X-ray scattering measurements of ionic liquids. The rate of change of the QES intensity in the supercooled liquid range is compared with data of excess entropy free volume and mean-squared displacement recently reported for ionic liquids. The temperature dependence of the QES intensity in ionic liquids illustrates relationships between short-time dynamics and long-time structural relaxation that have been proposed for glass-forming liquids.

Mauro C. C. Ribeiro

2011-01-01T23:59:59.000Z

356

Novel, Ceramic Membrane System For Hydrogen Separation  

SciTech Connect

Separation of hydrogen from coal gas represents one of the most promising ways to produce alternative sources of fuel. Ceramatec, teamed with CoorsTek and Sandia National Laboratories has developed materials technology for a pressure driven, high temperature proton-electron mixed conducting membrane system to remove hydrogen from the syngas. This system separates high purity hydrogen and isolates high pressure CO{sub 2} as the retentate, which is amenable to low cost capture and transport to storage sites. The team demonstrated a highly efficient, pressure-driven hydrogen separation membrane to generate high purity hydrogen from syngas using a novel ceramic-ceramic composite membrane. Recognizing the benefits and limitations of present membrane systems, the all-ceramic system has been developed to address the key technical challenges related to materials performance under actual operating conditions, while retaining the advantages of thermal and process compatibility offered by the ceramic membranes. The feasibility of the concept has already been demonstrated at Ceramatec. This project developed advanced materials composition for potential integration with water gas shift rectors to maximize the hydrogenproduction.

Elangovan, S.

2012-12-31T23:59:59.000Z

357

Influence of Ibuprofen on Phospholipid Membranes  

E-Print Network (OSTI)

Basic understanding of biological membranes is of paramount importance as these membranes comprise the very building blocks of life itself. Cells depend in their function on a range of properties of the membrane, which are important for the stability and function of the cell, information and nutrient transport, waste disposal and finally the admission of drugs into the cell and also the deflection of bacteria and viruses. We have investigated the influence of ibuprofen on the structure and dynamics of L-alpha-phosphatidylcholine (SoyPC) membranes by means of grazing incidence small-angle neutron scattering (GISANS), neutron reflectometry and grazing incidence neutron spin echo spectroscopy (GINSES). From the results of these experiments we were able to determine that ibuprofen induces a two-step structuring behavior in the SoyPC films, where the structure evolves from the purely lamellar phase for pure SoyPC over a superposition of two hexagonal phases to a purely hexago- nal phase at high concentrations. Additionally, introduction of ibuprofen stiffens the membranes. This behavior may be instrumental in explaining the toxic behavior of ibuprofen in long-term application.

Sebastian Jaksch; Frederik Lipfert; Alexandros Koutsioubas; Stefan Mattauch; Olaf Holderer; Oxana Ivanova; Henrich Frielinghaus; Samira Hertrich; Stefan F. Fischer; Bert Nickel

2014-06-13T23:59:59.000Z

358

J. Membrane Biol. 4,179-192 (1971) 9 by Springer-Verlag New York Inc. 1971  

E-Print Network (OSTI)

antibiotics increase the ion permeability of biological membranes have been carried out on artificial model the possibility that they may serve as model systems for active transport across biological membranes. Moore and Pressman (1964) discovered the influence of valinomycin on the ion transport across the mitochondrial

Junge, Wolfgang

359

Membrane module assembly  

DOE Patents (OSTI)

A membrane module assembly is described which is adapted to provide a flow path for the incoming feed stream that forces it into prolonged heat-exchanging contact with a heating or cooling mechanism. Membrane separation processes employing the module assembly are also disclosed. The assembly is particularly useful for gas separation or pervaporation. 2 figures.

Kaschemekat, J.

1994-03-15T23:59:59.000Z

360

Current status and development of membranes for CO2/CH4 separation: A review  

Science Journals Connector (OSTI)

Carbon dioxide (CO2) is a greenhouse gas found primarily as a main combustion product of fossil fuel as well as a component in natural gas, biogas and landfill gas. The interest to remove CO2 from those gas streams to obtain fuel with enhanced energy content and prevent corrosion problems in the gas transportation system, in addition to CO2 implications to the climate change, has driven the development of CO2 separation process technology. One type of technology which has experienced substantial growth, breakthroughs and advances during past decades is membrane-based technology. The attractive features offered by this technology include high energy efficiency, simplicity in design and construction of membrane modules and environmental compatibility. The objective of this review is to overview the different types of membranes available for use including their working principles, current status and development which form the primary determinants of separation performance and efficiency. The emphasis is toward CO2/CH4 separation, considering its substantial and direct relevance to the gas industry. To this end, discussion is made to cover polymeric gas permeation membranes; CO2-selective facilitated transport membranes, hollow fiber gasliquid membrane contactors, inorganic membranes and mixed matrix membranes. The market for CO2 separation is currently dominated by polymeric membranes due to their relatively low manufacturing cost and processing ability into flat sheet and hollow fiber configurations as well as well-documented research studies. While there have been immensely successful membrane preparation and development techniques with consequential remarkable performance for each type of membrane. Each type of membrane brings associated advantages and drawbacks related to the characteristic transport mechanism for specific application conditions. Inorganic membranes, for example, are very suitable for high temperature CO2 separation in excess of 400C while all other membranes can be applied at lower temperatures. The recent emergence of mixed matrix membranes has allowed the innovative approach to combine the advantages offered by inorganic and polymeric materials.

Yuan Zhang; Jaka Sunarso; Shaomin Liu; Rong Wang

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ionic transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Biomimetric Membrane for CO2 Capture from Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomimetic memBrane for co Biomimetic memBrane for co 2 capture from flue Gas Background Carbon Capture and Sequestration (CCS) is a three-step process including capture, pipeline transport and geologic storage of which the capture of carbon dioxide (CO 2 ) is the most costly and technically challenging. Current available methods impose significant energy burdens that severely impact their overall effectiveness as a significant deployment option. Of the available capture technologies for post combustion applications - absorption, adsorption, reaction and membranes chemically facilitated absorption promises to be the most cost-effective membrane solution for post combustion application. The Carbozyme technology extracts CO 2 from low concentration, low pressure sources by means of chemical facilitation of a polymer membrane. The chemical

362

Composition variation and underdamped mechanics near membrane proteins and coats  

E-Print Network (OSTI)

We study the effect of membrane proteins on the shape, composition and thermodynamic stability of the surrounding membrane. When the coupling between membrane composition and curvature is strong enough the nearby composition and shape both undergo a transition from over-damped to under-damped spatial variation, well before the membrane becomes unstable in the bulk. This transition is associated with a change in the sign of the thermodynamic energy and hence has the unusual features that it can favour the early stages of coat assembly necessary for vesiculation (budding), while suppressing the activity of mechanosensitive membrane channels and transporters. Our results also suggest an approach to obtain physical parameters that are otherwise difficult to measure.

S. Alex Rautu; George Rowlands; Matthew S. Turner

2015-02-14T23:59:59.000Z

363

Computational and experimental study of nanoporous membranes for water desalination and decontamination.  

SciTech Connect

Fundamentals of ion transport in nanopores were studied through a joint experimental and computational effort. The study evaluated both nanoporous polymer membranes and track-etched nanoporous polycarbonate membranes. The track-etched membranes provide a geometrically well characterized platform, while the polymer membranes are more closely related to ion exchange systems currently deployed in RO and ED applications. The experimental effort explored transport properties of the different membrane materials. Poly(aniline) membranes showed that flux could be controlled by templating with molecules of defined size. Track-etched polycarbonate membranes were modified using oxygen plasma treatments, UV-ozone exposure, and UV-ozone with thermal grafting, providing an avenue to functionalized membranes, increased wettability, and improved surface characteristic lifetimes. The modeling effort resulted in a novel multiphysics multiscale simulation model for field-driven transport in nanopores. This model was applied to a parametric study of the effects of pore charge and field strength on ion transport and charge exclusion in a nanopore representative of a track-etched polycarbonate membrane. The goal of this research was to uncover the factors that control the flux of ions through a nanoporous material and to develop tools and capabilities for further studies. Continuation studies will build toward more specific applications, such as polymers with attached sulfonate groups, and complex modeling methods and geometries.

Hickner, Michael A. (Penn State University, University Park, PA); Chinn, Douglas Alan (Sandia National Laboratories, Albuquerque, NM); Adalsteinsson, Helgi; Long, Kevin R. (Texas Tech University, Lubbock, TX); Kent, Michael Stuart (Sandia National Laboratories, Albuquerque, NM); Debusschere, Bert J.; Zendejas, Frank J.; Tran, Huu M.; Najm, Habib N.; Simmons, Blake Alexander

2008-11-01T23:59:59.000Z

364

Novel membrane technology for green ethylene production.  

SciTech Connect

Ethylene is currently produced by pyrolysis of ethane in the presence of steam. This reaction requires substantial energy input, and the equilibrium conversion is thermodynamically limited. The reaction also produces significant amounts of greenhouse gases (CO and CO{sub 2}) because of the direct contact between carbon and steam. Argonne has demonstrated a new way to make ethylene via ethane dehydrogenation using a dense hydrogen transport membrane (HTM) to drive the unfavorable equilibrium conversion. Preliminary experiments show that the new approach can produce ethylene yields well above existing pyrolysis technology and also significantly above the thermodynamic equilibrium limit, while completely eliminating the production of greenhouse gases. With Argonne's approach, a disk-type dense ceramic/metal composite (cermet) membrane is used to produce ethylene by dehydrogenation of ethane at 850 C. The gas-transport membrane reactor combines a reversible chemical reaction with selective separation of one product species and leads to increased reactant conversion to the desired product. In an experiment ethane was passed over one side of the HTM membrane and air over the other side. The hydrogen produced by the dehydrogenation of ethane was removed and transported through the HTM to the air side. The air provided the driving force required for the transport of hydrogen through the HTM. The reaction between transported hydrogen and oxygen in air can provide the energy needed for the dehydrogenation reaction. At 850 C and 1-atm pressure, equilibrium conversion of ethane normally limits the ethylene yield to 64%, but Argonne has shown that an ethylene yield of 69% with a selectivity of 88% can be obtained under the same conditions. Coking was not a problem in runs extending over several weeks. Further improved HTM materials will lower the temperature required for high conversion at a reasonable residence time, while the lower temperature will suppress unwanted side reactions and prolong membrane life. With the Argonne approach, oxygen does not contact the ethane/ethylene stream, so oxidation products are not formed. Consequently, higher selectivity to ethylene and fewer by-products can be achieved. Some benefits are: (1) Simplifies overall product purification and processing schemes; (2) Results in greater energy efficiency; (3) Completely eliminates greenhouse gases from the reactor section; and (4) Lowers the cost of the 'back end' purification train, which accounts for about 70% of the capital cost of a conventional ethylene production unit.

Balachandran, U.; Lee, T. H.; Dorris, S. E.; Udovich, C. A.; Scouten, C. G.; Marshall, C. L. (Energy Systems); ( CSE)

2008-01-01T23:59:59.000Z

365

Original article Flat ceramic membranes  

E-Print Network (OSTI)

membranes. The orig- inal intellectual concept is protected by two international patents. Strategically of investment and functioning costs while keeping the interest of ceramics. ceramic membrane / plate / tubular

Paris-Sud XI, Université de

366

High Temperature Membrane Working Group  

Energy.gov (U.S. Department of Energy (DOE))

The High Temperature Membrane Working Group consists of government, industry, and university researchers interested in developing high temperature membranes for fuel cells.

367

ABCG Transporters Are Required for Suberin and Pollen Wall Extracellular Barriers in Arabidopsis  

Science Journals Connector (OSTI)

...ABC) transporter proteins are found in both prokaryotes and eukaryotes and pump diverse substrates across membranes using energy from ATP hydrolysis (Higgins and Linton, 2004). Canonical ABC transporters have two repeats each of a transmembrane domain...

Vandana Yadav; Isabel Molina; Kosala Ranathunge; Indira Queralta Castillo; Steven J. Rothstein; Jason W. Reed

2014-09-12T23:59:59.000Z

368

Alkylsulfonates as Probes of Uncoupling Protein Transport ION PAIR TRANSPORT DEMONSTRATES THAT DIRECT H TRANSLOCATION BY UCP1 IS NOT NECESSARY  

E-Print Network (OSTI)

Alkylsulfonates as Probes of Uncoupling Protein Transport Mechanism ION PAIR TRANSPORT DEMONSTRATES of Membrane Transport Biophysics, Institute of Physiology, Academy of Sciences, Prague 14220, Czech Republic is transported with the neutral ion pair, the sulfonate is able to deliver protons across the bilayer, behaving

Garlid, Keith

369

Unique Thylakoid Membrane Architecture of a Unicellular N2-Fixing Cyanobacterium Revealed by Electron Tomography  

SciTech Connect

Cyanobacteria, descendants of the endosymbiont that gave rise to modern-day chloroplasts, are vital contributors to global biological energy conversion processes. A thorough understanding of the physiology of cyanobacteria requires detailed knowledge of these organisms at the level of cellular architecture and organization. In these prokaryotes, the large membrane protein complexes of the photosynthetic and respiratory electron transport chains function in the intracellular thylakoid membranes. Like plants, the architecture of the thylakoid membranes in cyanobacteria has direct impact on cellular bioenergetics, protein transport, and molecular trafficking. However, whole-cell thylakoid organization in cyanobacteria is not well understood. Here we present, by using electron tomography, an in-depth analysis of the architecture of the thylakoid membranes in a unicellular cyanobacterium, Cyanothece sp. ATCC 51142. Based on the results of three-dimensional tomographic reconstructions of near-entire cells, we determined that the thylakoids in Cyanothece 51142 form a dense and complex network that extends throughout the entire cell. This thylakoid membrane network is formed from the branching and splitting of membranes and encloses a single lumenal space. The entire thylakoid network spirals as a peripheral ring of membranes around the cell, an organization that has not previously been described in a cyanobacterium. Within the thylakoid membrane network are areas of quasi-helical arrangement with similarities to the thylakoid membrane system in chloroplasts. This cyanobacterial thylakoid arrangement is an efficient means of packing a large volume of membranes in the cell while optimizing intracellular transport and trafficking.

Liberton, Michelle L.; Austin, Jotham R.; Berg, R. H.; Pakrasi, Himadri B.

2011-04-01T23:59:59.000Z

370

Radiation Chemistry of Ionic Liquids: Reactivity of Primary Species  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquids: Reactivity of Primary Species Liquids: Reactivity of Primary Species James F. Wishart In "Ionic Liquids as Green Solvents: Progress and Prospects" Rogers, R. D. and Seddon, K. R. , Eds.; ACS Symp. Ser. 856, Ch. 31, pp. 381-395, American Chemical Society, Washington, DC, 2003. (ISBN 0-84123-856-1) [Information about the book] Abstract: An understanding of the radiation chemistry of ionic liquids is important for development of their applications in radioactive material processing and for the application of pulse radiolysis techniques to the general study of chemical reactivity in ionic liquids. The distribution of primary radiolytic species and their reactivities determine the yields of ultimate products and the radiation stability of a particular ionic liquid. This chapter introduces some principles of radiation chemistry and the

371

Effects of Structural Modification on Ionic Liquid Physical Properties  

NLE Websites -- All DOE Office Websites (Extended Search)

Effect of Structural Modification on the Physical Properties Effect of Structural Modification on the Physical Properties of Various Ionic Liquids S. I. Lall-Ramnarine, J. L. Hatcher, A. Castano, M. F. Thomas, and J. F. Wishart in "ECS Transactions - Las Vegas, NV, Vol. 33, Molten Salts and Ionic Liquids 17" D. Fox et al., Eds.; The Electrochemical Society, Pennington, NJ, (2010) pp 659 - 665. [Find paper at ECS] Abstract: A few classes of ionic liquids were synthesized and investigated for their physical properties as a function of structural variation. Bis(oxalato)borate (BOB) and bis(trifluoromethylsulfonyl)imide (NTf2) ionic liquids (ILs) containing pyridinium, 4-dimethylaminopyridinium (DMAP) and pyrrolidinium cations bearing alkyl, benzyl, hydroxyalkyl and alkoxy substituents, were prepared from the corresponding halide salts. The

372

Design and Evaluation of Ionic Liquids as Novel Absorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

Design anD evaluation of ionic liquiDs Design anD evaluation of ionic liquiDs as novel absorbents Background There is growing concern among climate scientists that the buildup of greenhouse gases (GHG), particularly carbon dioxide (CO 2 ), in the atmosphere is affecting the global climate in ways that could have serious consequences. One approach to reducing GHG emissions is to scrub CO 2 from the flue gas of power plants and sequester it in geologic formations. Although it is technically feasible to remove CO 2 from flue gas, current processes are too expensive. New, less expensive processes are needed. This project is investigating the feasibility of using a novel class of compounds - ionic liquids - for the capture of CO 2 from the flue gas from coal and natural gas-fired power plants. The success of ionic liquids technology

373

Ionic Liquids as Green Solvents for Glycosylation Reactions  

Science Journals Connector (OSTI)

Ionic liquids are among the most promising alternatives to molecular organic solvents due to their unique properties and, in particular, are considered to be green solvents due to their nonvolatile and nonflammab...

Kaname Sasaki; Daisuke Takahashi; Kazunobu Toshima

2012-01-01T23:59:59.000Z

374

Ionic Liquids as Multifunctional Ashless Additives for Engine Lubrication  

Energy.gov (U.S. Department of Energy (DOE))

A group of oil-miscible ionic liquids has been developed by an ORNL-GM team as candidate lubricant additives with promising physical/chemical properties and potential multiple functionalities.

375

Kinetics and Solvent Effects in the Synthesis of Ionic Liquids  

E-Print Network (OSTI)

Ionic liquids (ILs) are being recognized as environmentally friendly ("green") solvents. However, their synthesis is often conducted in the very solvents that they will reportedly replace. This research has investigated ...

Schleicher, Jay C.

2007-12-12T23:59:59.000Z

376

Ordered ceramic membranes  

SciTech Connect

Ceramic membranes have been formed from colloidal sols coated on porous clay supports. These supported membranes have been characterized in terms of their permeabilities and permselectivities to various aqueous test solutions. The thermal stabilities and pore structures of these membranes have been characterized by preparing unsupported membranes of the correpsonding material and performing N{sub 2} adsorption-desorption and X-ray diffraction studies on these membranes. To date, membranes have been prepared from a variety of oxides, including TiO{sub 2}, SiO{sub 2}, ZrO{sub 2}, and Al{sub 2}O{sub 3}, as well as Zr-, Fe-, and Nb-doped TiO{sub 2}. In many of these membranes pore diameters are less than 2 nm, while in others the pore diameters are between 3 and 5 nm. Procedures for fabricating porous clay supports with reproducible permeabilities for pure water are also discussed. 30 refs., 59 figs., 22 tabs.

Anderson, M.A.; Hill, C.G. Jr.; Zeltner, W.A.

1991-10-01T23:59:59.000Z

377

Catalytic nanoporous membranes  

DOE Patents (OSTI)

A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

2013-08-27T23:59:59.000Z

378

Composite oxygen ion transport element  

SciTech Connect

A composite oxygen ion transport element that has a layered structure formed by a dense layer to transport oxygen ions and electrons and a porous support layer to provide mechanical support. The dense layer can be formed of a mixture of a mixed conductor, an ionic conductor, and a metal. The porous support layer can be fabricated from an oxide dispersion strengthened metal, a metal-reinforced intermetallic alloy, a boron-doped Mo.sub.5Si.sub.3-based intermetallic alloy or combinations thereof. The support layer can be provided with a network of non-interconnected pores and each of said pores communicates between opposite surfaces of said support layer. Such a support layer can be advantageously employed to reduce diffusion resistance in any type of element, including those using a different material makeup than that outlined above.

Chen, Jack C. (Getzville, NY); Besecker, Charles J. (Batavia, IL); Chen, Hancun (Williamsville, NY); Robinson, Earil T. (Mentor, OH)

2007-06-12T23:59:59.000Z

379

CENTRIFUGAL MEMBRANE FILTRATION  

SciTech Connect

The overall project consists of several integrated research phases related to the applicability, continued development, demonstration, and commercialization of the SpinTek centrifugal membrane filtration process. Work performed during this reporting period consisted of Phase 2 evaluation of the SpinTek centrifugal membrane filtration technology and Phase 3, Technology Partnering. During Phase 1 testing conducted at the EERC using the SpinTek ST-IIL unit operating on a surrogate tank waste, a solids cake developed on the membrane surface. The solids cake was observed where linear membrane velocities were less than 17.5 ft/s and reduced the unobstructed membrane surface area up to 25%, reducing overall filtration performance. The primary goal of the Phase 2 research effort was to enhance filtration performance through the development and testing of alternative turbulence promoter designs. The turbulence promoters were designed to generate a shear force across the entire membrane surface sufficient to maintain a self-cleaning membrane capability and improve filtration efficiency and long-term performance. Specific Phase 2 research activities included the following: System modifications to accommodate an 11-in.-diameter, two-disk rotating membrane assembly; Development and fabrication of alternative turbulence promoter designs; Testing and evaluation of the existing and alternative turbulence promoters under selected operating conditions using a statistically designed test matrix; and Data reduction and analysis; The objective of Phase 3 research was to demonstrate the effectiveness of SpinTek's centrifugal membrane filtration as a pretreatment to remove suspended solids from a liquid waste upstream of 3M's WWL cartridge technology for the selective removal of technetium (Tc).

Daniel J. Stepan; Bradley G. Stevens; Melanie D. Hetland

1999-10-01T23:59:59.000Z

380

Composite metal membrane  

DOE Patents (OSTI)

A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

Peachey, Nathaniel M. (Espanola, NM); Dye, Robert C. (Los Alamos, NM); Snow, Ronny C. (Los Alamos, NM); Birdsell, Stephan A. (Los Alamos, NM)

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ionic transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Composite metal membrane  

DOE Patents (OSTI)

A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

Peachey, N.M.; Dye, R.C.; Snow, R.C.; Birdsell, S.A.

1998-04-14T23:59:59.000Z

382

Sequestration and Transport of Lignin Monomeric Precursors  

SciTech Connect

Lignin is the second most abundant terrestrial biopolymer after cellulose. It is essential for the viability of vascular plants. Lignin precursors, the monolignols, are synthesized within the cytosol of the cell. Thereafter, these monomeric precursors are exported into the cell wall, where they are polymerized and integrated into the wall matrix. Accordingly, transport of monolignols across cell membranes is a critical step affecting deposition of lignin in the secondarily thickened cell wall. While the biosynthesis of monolignols is relatively well understood, our knowledge of sequestration and transport of these monomers is sketchy. In this article, we review different hypotheses on monolignol transport and summarize the recent progresses toward the understanding of the molecular mechanisms underlying monolignol sequestration and transport across membranes. Deciphering molecular mechanisms for lignin precursor transport will support a better biotechnological solution to manipulate plant lignification for more efficient agricultural and industrial applications of cell wall biomass.

Liu, C.J.; Miao, Y.-C.; Zhang, K.-W.

2011-01-18T23:59:59.000Z

383

Determination of triclosan and triclocarban in environmental water samples with ionic liquid/ionic liquid dispersive liquid-liquid microextraction prior to HPLC-ESI-MS/MS  

Science Journals Connector (OSTI)

A hydrophobic ionic liquid was finely dispersed in aqueous solution along with a hydrophilic ionic liquid. Following centrifugation, the two phases aggregate to form relatively large droplets. Based on this pheno...

Ru-Song Zhao; Xia Wang; Jing Sun; Cong Hu; Xi-Kui Wang

2011-07-01T23:59:59.000Z

384

A membrane interferometer  

Science Journals Connector (OSTI)

...bilayer membranes from lipid monolayers. A critique . Biophys J 16 : 481 489 . Acknowledgments We thank Profs. Nick Melosh, Merritt Maduke, and Stephen White for useful insights and suggestions. The Cy5-DNA-lipid conjugate was synthesized...

Prasad V. Ganesan; Steven G. Boxer

2009-01-01T23:59:59.000Z

385

Wrinkling in polygonal membranes  

E-Print Network (OSTI)

boundary conditions of the polygons. When pressurised, the polygonal membranes naturally reach a parabolic shape towards their centre, the extent of which varies greatly depending on a large number of parameters, including most particularly pre...

Bonin, Arnaud Stephane

2012-02-07T23:59:59.000Z

386

Reverse Osmosis Membranes  

Science Journals Connector (OSTI)

A bibliography of citations from the U.S. National Technical Information Service data base with 183 abstracts on membranes for reverse osmosis desalination, electro-dialysis desalination and other osmotic desa...

Prof. Dr. Anthony Delyannis; Dr. Euridike-Emmy Delyannis

1980-01-01T23:59:59.000Z

387

Direct numerical simulation of electroconvective instability and hysteretic current-voltage response of a permselective membrane  

E-Print Network (OSTI)

We present a systematic, multiscale, fully detailed numerical modeling for dynamics of fluid flow and ion transport covering Ohmic, limiting, and overlimiting current regimes in conductance of ion-selective membrane. By ...

Pham, Van Sang

388

High Temperature Membrane Working Group  

Energy.gov (U.S. Department of Energy (DOE))

This presentation provides an overview of the High Temperature Membrane Working Group Meeting in May 2007.

389

Membrane fusion: Ready ? aim ? fire!  

Science Journals Connector (OSTI)

... All cells use a programme of membrane fusion and fission to assemble membranes, both internally and on their surface. Given that biological ... internally and on their surface. Given that biological membranes are essentially two-dimensional fluids, fusion must obey certain restrictions that prevent incompatible membranes from intermixing. Without such selective contact, ...

Randy Schekman

1998-12-10T23:59:59.000Z

390

Inorganic membranes: The new industrial revolution  

SciTech Connect

Separation systems are a vital part of most industrial processes. These systems account for a large fraction of the capital equipment used and the operating costs of industrial processes. Inorganic membranes have the potential for providing separation systems that can significantly reduce both the capital equipment and operating costs. These separation processes include waste management and recycle as well as the primary production of raw materials and products. The authors are rapidly learning to understand the effect of physical and chemical properties on the different transport mechanisms that occur in inorganic membranes. Such understanding can be expected to provide the information needed to design, engineer and manufacture inorganic membranes to produce very high separation factors for almost any separation function. To implement such a revolution, the authors need to organize a unique partnership between the national laboratories, and industry. The university can provide research to understand the materials and transport mechanisms that produce various separations, the national laboratories the development of an economical fabrication and manufacturing capability, and industry the practical understanding of the operational problems required to achieve inplementation.

Fain, D.E. [Martin Merietta Energy Systems, Oak Ridge, TN (United States)

1994-12-31T23:59:59.000Z

391

Diffusion through Carbon Nanotube Semipermeable membranes  

SciTech Connect

The goal of this project is to measure transport through CNTs and study effects of confinement at molecular scale. This work is motivated by several simulation papers in high profile journals that predict significantly higher transport rates of gases and liquids through carbon nanotubes as compared with similarly-sized nanomaterials (e.g. zeolites). The predictions are based on the effects of confinement, atomically smooth pore walls and high pore density. Our work will provide the first measurements that would compare to and hopefully validate the simulations. Gas flux is predicted to be >1000X greater for SWNTs versus zeolitesi. A high flux of 6-30 H2O/NT/ns {approx} 8-40 L/min for a 1cm{sup 2} membrane is also predicted. Neutron diffraction measurements indicate existence of a 1D water chain within a cylindrical ice sheet inside carbon nanotubes, which is consistent with the predictions of the simulation. The enabling experimental platform that we are developing is a semipermeable membrane made out of vertically aligned carbon nanotubes with gaps between nanotubes filled so that the transport occurs through the nanotubes. The major challenges of this project included: (1) Growth of CNTs in the suitable vertically aligned configuration, especially the single wall carbon nanotubes; (2) Development of a process for void-free filling gaps between CNTs; and (3) Design of the experiments that will probe the small amounts of analyte that go through. Knowledge of the behavior of water upon nanometer-scale confinement is key to understanding many biological processes. For example, the protein folding process is believed to involve water confined in a hydrophobic environment. In transmembrane proteins such as aquaporins, water transport occurs under similar conditions. And in fields as far removed as oil recovery and catalysis, an understanding of the nanoscale molecular transport occurring within the nanomaterials used (e.g. zeolites) is the key to process optimization. Furthermore, advancement of many emerging nanotechnologies in chemistry and biology will undoubtedly be aided by an understanding confined water transport, particularly the details of hydrogen bonding and solvation that become crucial on this length scale. We can envision several practical applications for our devices, including desalination, gas separations, dialysis, and semipermeable fabrics for protection against CW agents etc. The single wall carbon nanotube membranes will be the key platform for applications because they will allow high transport rates of small molecules such as water and eliminate solvated ions or CW agents.

Bakajin, O

2006-02-13T23:59:59.000Z

392

Interpenetrating polymer network ion exchange membranes and method for preparing same  

DOE Patents (OSTI)

Interpenetrating polymer network ion exchange membranes include a microporous polymeric support film interpenetrated by an ion exchange polymer and are produced by absorbing and polymerizing monomers within the support film. The ion exchange polymer provides ion exchange ligands at the surface of and throughout the support film which have sufficient ligand mobility to extract and transport ions across the membrane.

Alexandratos, Spiro D. (Knoxville, TN); Danesi, Pier R. (Vienna, AT); Horwitz, E. Philip (Naperville, IL)

1989-01-01T23:59:59.000Z

393

Multi-block sulfonated poly(phenylene) copolymer proton exchange membranes  

DOE Patents (OSTI)

Improved multi-block sulfonated poly(phenylene) copolymer compositions, methods of making the same, and their use as proton exchange membranes (PEM) in hydrogen fuel cells, direct methanol fuel cells, in electrode casting solutions and electrodes. The multi-block architecture has defined, controllable hydrophobic and hydrophilic segments. These improved membranes have better ion transport (proton conductivity) and water swelling properties.

Fujimoto, Cy H. (Albuquerque, NM); Hibbs, Michael (Albuquerque, NM); Ambrosini, Andrea (Albuquerque, NM)

2012-02-07T23:59:59.000Z

394

Carbon Ionic Conductors for use in Novel Carbon-Ion Fuel Cells  

SciTech Connect

Carbon-consuming fuel cells have many potential advantages, including increased efficiency and reduced pollution in power generation from coal. A large amount of work has already been done on coal fuel cells that utilize yttria-stabilized zirconium carbide as an oxygen-ion superionic membrane material. But high-temperature fuel cells utilizing yttria-stabilized zirconium require partial combustion of coal to carbon monoxide before final oxidation to carbon dioxide occurs via utilization of the oxygen- ion zirconia membrane. A carbon-ion superionic membrane material would enable an entirely new class of carbon fuel cell to be developed, one that would use coal directly as the fuel source, without any intervening combustion process. However, a superionic membrane material for carbon ions has not yet been found. Because no partial combustion of coal would be required, a carbon-ion superionic conductor would allow the direct conversion of coal to electricity and pure CO{sub 2} without the formation of gaseous pollutants. The objective of this research was to investigate ionic lanthanide carbides, which have an unusually high carbon-bond ionicity as potential superionic carbide-ion conductors. A first step in this process is the stabilization of these carbides in the cubic structure, and this stabilization has been achieved via the preparation of pseudobinary lanthanide carbides. The diffusion rates of carbon have been measured in these carbides as stabilized to preserve the high temperature cubic structure down to room temperature. To prepare these new compounds and measure these diffusion rates, a novel, oxide-based preparation method and a new C{sup 13}/C{sup 12} diffusion technique have been developed. The carbon diffusion rates in La{sup 0.5}Er{sup 0.5}C{sub 2}, Ce{sup 0.5}Er{sup 0.5}C{sub 2}, and La{sup 0.5}Y{sup 0.5}C{sub 2}, and Ce{sup 0.5}Tm0.5C{sub 2} modified by the addition of 5 wt %Be{sub 2}C, have been determined at temperatures from 850 C to 1150 C. The resulting diffusion constants as measured were all less than 10{sup -11} cm{sup 2}/sec, and therefore these compounds are not superionic. However, there remain a large number of potentially superionic pseudobinary lanthanide compounds and a number of alternate ionic carbides which might act as dopants to produce vacancies on the carbon-ion sublattice and thereby increase carbon-ion diffusion rates. The discovery of a superionic carbon conductor would usher in a truly revolutionary new coal technology, and could dramatically improve the way in which we generate electricity from coal. The work completed to date is a promising first step towards this end.

Franklin H. Cocks; W. Neal Simmons; Paul A. Klenk

2005-11-01T23:59:59.000Z

395

Ethanol-induced regulation of the human dopamine transporter.  

E-Print Network (OSTI)

??The dopamine transporter (DAT) is a plasma membrane-bound protein, localized on peri-synaptic terminals of dopaminergic (DA) neurons. DAT is responsible for terminating DA signaling by (more)

Riherd Methner, Deanna Nicole

2014-01-01T23:59:59.000Z

396

Influence of Ibuprofen on Phospholipid Membranes  

E-Print Network (OSTI)

Basic understanding of biological membranes is of paramount importance as these membranes comprise the very building blocks of life itself. Cells depend in their function on a range of properties of the membrane, which are important for the stability and function of the cell, information and nutrient transport, waste disposal and finally the admission of drugs into the cell and also the deflection of bacteria and viruses. We have investigated the influence of ibuprofen on the structure and dynamics of L-alpha-phosphatidylcholine (SoyPC) membranes by means of grazing incidence small-angle neutron scattering (GISANS), neutron reflectometry and grazing incidence neutron spin echo spectroscopy (GINSES). From the results of these experiments we were able to determine that ibuprofen induces a two-step structuring behavior in the SoyPC films, where the structure evolves from the purely lamellar phase for pure SoyPC over a superposition of two hexagonal phases to a purely hexago- nal phase at high concentrations. Add...

Jaksch, Sebastian; Koutsioubas, Alexandros; Mattauch, Stefan; Holderer, Olaf; Ivanova, Oxana; Frielinghaus, Henrich; Hertrich, Samira; Nickel, Bert

2014-01-01T23:59:59.000Z

397

Discrimination of outer membrane proteins using support vector machines  

Science Journals Connector (OSTI)

......discriminated with an accuracy of 94% from the pool of 1087 sequences, while correctly excluding...orthologous transporters by sequence/structure conservation. J. Mol. Biol., 332, 9991014. Chou...of amino acid preference at membrane-water interfaces. Bioinformatics, 18, 608616......

Keun-Joon Park; M. Michael Gromiha; Paul Horton; Makiko Suwa

2005-01-01T23:59:59.000Z

398

Characterization and Quantification of Electronic and Ionic Ohmic Overpotential and Heat Generation in a Solid Oxide Fuel Cell Anode  

SciTech Connect

The development of a solid oxide fuel cell (SOFC) with a higher efficiency and power density requires an improved understanding and treatment of the irreversibilities. Losses due to the electronic and ionic resistances, which are also known as ohmic losses in the form of Joule heating, can hinder the SOFC's performance. Ohmic losses can result from the bulk material resistivities as well as the complexities introduced by the cell's microstructure. In this work, two-dimensional (2D), electronic and ionic transport models are used to develop a method of quantification of the ohmic losses within the SOFC anode microstructure. This quantification is completed as a function of properties determined from a detailed microstructure characterization, namely, the tortuosity of the electronic and ionic phases, phase volume fraction, contiguity, and mean free path. A direct modeling approach at the level of the pore-scale microstructure is achieved through the use of a representative volume element (RVE) method. The correlation of these ohmic losses with the quantification of the SOFC anode microstructure are examined. It is found with this analysis that the contributions of the SOFC anode microstructure on ohmic losses can be correlated with the volume fraction, contiguity, and mean free path.

Grew, Kyle N.; Izzo, John R.; Chiu, Wilson K.S.

2011-08-16T23:59:59.000Z

399

Separation of Olefin/Paraffin Mixtures with Carrier Facilitated Membrane Final Report  

SciTech Connect

This document describes the results of a DOE funded joint effort of Membrane Technology and Research Inc. (MTR), SRI International (SRI), and ABB Lummus (ABB) to develop facilitated transport membranes for olefin/paraffin separations. Currently, olefin/paraffin separation is done by distillationan extremely energy-intensive process because of the low relative volatilities of olefins and paraffins. If facilitated transport membranes could be successfully commercialized, the potential energy savings achievable with this membrane technology are estimated to be 48 trillion Btu per year by the year 2020. We discovered in this work that silver salt-based facilitated transport membranes are not stable even in the presence of ideal olefin/paraffin mixtures. This decline in membrane performance appears to be caused by a previously unrecognized phenomenon that we have named olefin conditioning. As the name implies, this mechanism of performance degradation becomes operative once a membrane starts permeating olefins. This project is the first study to identify olefin conditioning as a significant factor impacting the performance of facilitated olefin transport membranes. To date, we have not identified an effective strategy to mitigate the impact of olefin conditioning. other than running at low temperatures or with low olefin feed pressures. In our opinion, this issue must be addressed before further development of facilitated olefin transport membranes can proceed. In addition to olefin conditioning, traditional carrier poisoning challenges must also be overcome. Light, hydrogen, hydrogen sulfide, and acetylene exposure adversely affect membrane performance through unwanted reaction with silver ions. Harsh poisoning tests with these species showed useful membrane lifetimes of only one week. These tests demonstrate a need to improve the stability of the olefin complexing agent to develop membranes with lifetimes satisfactory for commercial application. A successful effort to improve membrane coating solution stability resulted in the finding that membrane performance loss could be reversed for all poisoning cases except hydrogen sulfide exposure. This discovery offers the potential to extend membrane lifetime through cyclic regeneration. We also found that certain mixed carriers exhibited greater stability in reducing environments than exhibited by silver salt alone. These results offer promise that solutions to deal with carrier poisoning are possible. The main achievement of this program was the progress made in gaining a more complete understanding of the membrane stability challenges faced in the use of facilitated olefin transport membranes. Our systematic study of facilitated olefin transport uncovered the full extent of the stability challenge, including the first known identification of olefin conditioning and its impact on membrane development. We believe that significant additional fundamental research is required before facilitated olefin transport membranes are ready for industrial implementation. The best-case scenario for further development of this technology would be identification of a novel carrier that is intrinsically more stable than silver ions. If the stability problems could be largely circumvented by development of a new carrier, it would provide a clear breakthrough toward finally recognizing the potential of facilitated olefin transport. However, even if such a carrier is identified, additional development will be required to insure that the membrane matrix is a benign host for the olefin-carrier complexation reaction and shows good long-term stability.

Merkel, T.C.; Blanc, R.; Zeid, J.; Suwarlim, A.; Firat, B.; Wijmans, H.; Asaro, M. (SRI); Greene, M. (Lummus)

2007-03-12T23:59:59.000Z

400

Radiation Stability of Cations in Ionic Liquids. 2. Charge Delocalization  

NLE Websites -- All DOE Office Websites (Extended Search)

Stability of Cations in Ionic Liquids. 2. Improved Radiation Stability of Cations in Ionic Liquids. 2. Improved Radiation Resistance Through Charge Delocalization in 1-Benzylpyridinium Ilya A. Shkrob, Timothy W. Marin, Jasmine L. Hatcher, Andrew R. Cook, Tomasz Szreder and James F. Wishart J. Phys. Chem. B 117, Just Accepted (2013). [Find paper at ACS Publications]. Abstract: Hydrophobic room-temperature ionic liquids (ILs) hold promise as replacements for molecular diluents for processing of used nuclear fuel as well as for the development of alternative separations processes, provided that the solvent can be made resistant to ionizing radiation. We demonstrate that 1-benzylpyridinium cations are uniquely suited as radiation resistant cations due to the occurrence of charge delocalization both in their reduced and oxidized form in the ILs. It is suggested that

Note: This page contains sample records for the topic "ionic transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Ionic Liquids and Ionizing Radiation: Reactivity of Highly Energetic  

NLE Websites -- All DOE Office Websites (Extended Search)

Ionizing Radiation: Reactivity of Highly Energetic Ionizing Radiation: Reactivity of Highly Energetic Species James F. Wishart J. Phys. Chem. Lett. 1, 3225-3231 (2010). [Find paper at ACS Publications] or use ACS Articles on Request View the video on this Perspective article at The Journal of Physical Chemistry Letters (5:03) Selected for the ACS Special Virtual Issue on Ionic Liquids (March 2011). Abstract: Due to their unique properties, ionic liquids present many opportunities for basic research on the interactions of radiation with materials under conditions not previously available. At the same time, there are practical applied reasons for characterizing, understanding, and being able to predict how ionic-liquid-based devices and industrial-scale systems will perform under conditions of extreme reactivity, including radiation. This

402

Methods for separating medical isotopes using ionic liquids  

SciTech Connect

A method for extracting a radioisotope from an aqueous solution, the method comprising: a) intimately mixing a non-chelating ionic liquid with the aqueous solution to transfer at least a portion of said radioisotope to said non-chelating ionic liquid; and b) separating the non-chelating ionic liquid from the aqueous solution. In preferred embodiments, the method achieves an extraction efficiency of at least 80%, or a separation factor of at least 1.times.10.sup.4 when more than one radioisotope is included in the aqueous solution. In particular embodiments, the method is applied to the separation of medical isotopes pairs, such as Th from Ac (Th-229/Ac-225, Ac-227/Th-227), or Ra from Ac (Ac-225 and Ra-225, Ac-227 and Ra-223), or Ra from Th (Th-227 and Ra-223, Th-229 and Ra-225).

Luo, Huimin; Boll, Rose Ann; Bell, Jason Richard; Dai, Sheng

2014-10-21T23:59:59.000Z

403

Colloidal fouling of reverse osmosis membranes  

E-Print Network (OSTI)

the rate of fouling of reverse osmosis membranes treating32, 127-135. fouling of reverse osmosis membranes." Buros,Colloidal fouling of reverse osmosis membranes." J. Colloid

Elimelech, Menachem

1994-01-01T23:59:59.000Z

404

Dual phase polymer gel electrolyte based on non-woven poly(vinylidenefluoride-co-hexafluoropropylene)layered clay nanocomposite fibrous membranes for lithium ion batteries  

SciTech Connect

Graphical abstract: Display Omitted Highlights: ? P(VdF-co-HFP)clay nanocomposite based electrospun membranes are prepared. ? The membranes are used as polymer gel electrolyte (PGE) in lithium ion batteries. ? The composite PGE shows ionic conductivity of 5.5 mS cm{sup ?1} at room temperature. ? Li/PGE/LiFePO{sub 4} cell delivers initial discharge capacity of 160 mAh g{sup ?1}. ? The use of prepared electrolyte significantly improved the cell performance. -- Abstract: A new approach for fabricating polymer gel electrolytes (PGEs) based on electrospun poly(vinylidenefluoride-co-hexafluoropropylene) (P(VdF-co-HFP)) incorporated with layered nanoclay has been employed to enhance the ionic conductivity and electrochemical properties of P(VdF-co-HFP) without compromising its mechanical strength. The effect of layered nanoclay on properties of membranes has been evaluated by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). Surface morphology of the membranes has been studied using field-emission scanning electron microscopy (FE-SEM). Polymer gel electrolytes are prepared by soaking the fibrous membrane into 1 M LiPF{sub 6} in EC/DEC. The electrochemical studies show that incorporation of layered nanoclay into the polymer matrix greatly enhanced the ionic conductivity and compatibility with lithium electrodes. The chargedischarge properties and cycling performance of Li/LiFePO{sub 4} cells comprising nanocomposite polymer gel electrolytes have been evaluated at room temperature.

Shubha, Nageswaran [School of Materials Science and Engineering, Nanyang Technological University, Block N4.1, 50 Nanyang Avenue, Singapore 639798 (Singapore)] [School of Materials Science and Engineering, Nanyang Technological University, Block N4.1, 50 Nanyang Avenue, Singapore 639798 (Singapore); Prasanth, Raghavan [School of Materials Science and Engineering, Nanyang Technological University, Block N4.1, 50 Nanyang Avenue, Singapore 639798 (Singapore) [School of Materials Science and Engineering, Nanyang Technological University, Block N4.1, 50 Nanyang Avenue, Singapore 639798 (Singapore); Energy Research Institute - NTU (ERI-N) Research Techno Plaza, 50 Nanyang Drive, Singapore 637553 (Singapore); TUM-CREATE Center for Electromobility, Nanyang Technological University, Singapore 637553 (Singapore); Hoon, Hng Huey [School of Materials Science and Engineering, Nanyang Technological University, Block N4.1, 50 Nanyang Avenue, Singapore 639798 (Singapore)] [School of Materials Science and Engineering, Nanyang Technological University, Block N4.1, 50 Nanyang Avenue, Singapore 639798 (Singapore); Srinivasan, Madhavi, E-mail: madhavi@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, Block N4.1, 50 Nanyang Avenue, Singapore 639798 (Singapore) [School of Materials Science and Engineering, Nanyang Technological University, Block N4.1, 50 Nanyang Avenue, Singapore 639798 (Singapore); Energy Research Institute - NTU (ERI-N) Research Techno Plaza, 50 Nanyang Drive, Singapore 637553 (Singapore); TUM-CREATE Center for Electromobility, Nanyang Technological University, Singapore 637553 (Singapore)

2013-02-15T23:59:59.000Z

405

Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 69 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Transportation Demand Module The NEMS Transportation Demand Module estimates transportation energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), buses, freight and passenger aircraft, freight and passenger rail, freight shipping, and miscellaneous

406

Transition from a nonionic to an ionic micelle  

Science Journals Connector (OSTI)

The present paper was motivated by an attempt to understand the transition from a nonionic to an ionic micelle from both the experimental and theoretical points of view. Small-angle neutron-scattering experiments were performed on mixed micelles of nonionic-ionic surfactants as the charge was increased in steps. Evidence for the charge condensation on the surface of the micelles is obtained. An extension of the sticky-hard-sphere model to include the Coulomb potentials is presented and used to analyze experimental results on two systems. It is concluded that this model is more appropriate than the currently used models.

V. K. Kelkar; B. K. Mishra; K. Srinivasa Rao; P. S. Goyal; C. Manohar

1991-12-15T23:59:59.000Z

407

Hydrogen production by water dissociation using ceramic membranes - annual report for FY 2010.  

SciTech Connect

The objective of this project is to develop dense ceramic membranes that can produce hydrogen via coal/coal gas-assisted water dissociation without using an external power supply or circuitry. This project grew from an effort to develop a dense ceramic membrane for separating hydrogen from gas mixtures such as those generated during coal gasification, methane partial oxidation, and water-gas shift reactions. That effort led to the development of various cermet (i.e., ceramic/metal composite) membranes that enable hydrogen production by two methods. In one method, a hydrogen transport membrane (HTM) selectively removes hydrogen from a gas mixture by transporting it through either a mixed protonic/electronic conductor or a hydrogen transport metal. In the other method, an oxygen transport membrane (OTM) generates hydrogen mixed with steam by removing oxygen that is generated through water splitting. This project focuses on the development of OTMs that efficiently produce hydrogen via the dissociation of water. Supercritical boilers offer very high-pressure steam that can be decomposed to provide pure hydrogen using OTMs. Oxygen resulting from the dissociation of steam can be used for coal gasification, enriched combustion, or synthesis gas production. Hydrogen and sequestration-ready CO{sub 2} can be produced from coal and steam by using the membrane being developed in this project. Although hydrogen can also be generated by high-temperature steam electrolysis, producing hydrogen by water splitting with a mixed-conducting membrane requires no electric power or electrical circuitry.

Balachandran, U.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J. (Energy Systems)

2011-03-14T23:59:59.000Z

408

Hydrogen production by water dissociation using ceramic membranes - annual report for FY 2008.  

SciTech Connect

The objective of this project is to develop dense ceramic membranes that, without using an external power supply or circuitry, can produce hydrogen via coal/coal gas-assisted water dissociation. This project grew from an effort to develop a dense ceramic membrane for separating hydrogen from gas mixtures such as those generated during coal gasification, methane partial oxidation, and water-gas shift reactions. That effort led to the development of various cermet (i.e., ceramic/metal composite) membranes that enable hydrogen production by two methods. In one method, a hydrogen transport membrane (HTM) selectively removes hydrogen from a gas mixture by transporting it through either a mixed protonic/electronic conductor or a hydrogen transport metal. In the other method, an oxygen transport membrane (OTM) generates hydrogen mixed with steam by removing oxygen that is generated through water splitting. This project focuses on the development of OTMs that efficiently produce hydrogen via the dissociation of water. Supercritical boilers offer very high-pressure steam that can be decomposed to provide pure hydrogen by means of OTMs. Oxygen resulting from the dissociation of steam can be used for coal gasification, enriched combustion, or synthesis gas production. Hydrogen and sequestration-ready CO{sub 2} can be produced from coal and steam by using the membrane being developed in this project. Although hydrogen can also be generated by high-temperature steam electrolysis, producing hydrogen by water splitting with a mixed-conducting membrane requires no electric power or electrical circuitry.

Balachandran, U.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J.; Energy Systems

2009-03-25T23:59:59.000Z

409

WIPP Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Transuranic Waste Transportation Container Documents Documents related to transuranic waste containers and packages. CBFO Tribal Program Information about WIPP shipments across...

410

Transportation Security  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Preliminary Draft - For Review Only 1 Transportation Security Draft Annotated Bibliography Review July 2007 Preliminary Draft - For Review Only 2 Work Plan Task * TEC STG Work...

411

Conductive Filler Morphology Effect on Performance of Ionic Polymer Conductive Network Composite Actuators  

E-Print Network (OSTI)

Several generations of ionic polymer metal composite (IPMC) actuators have been developed since 1992. It has been discovered that the composite electrodes which are composed of electronic and ionic conductors, have great ...

Liu, Sheng

412

Characterization of an iodine-based ionic liquid ion source and studies on ion fragmentation  

E-Print Network (OSTI)

Electrosprays are a well studied source of charged droplets and ions. A specific subclass is the ionic liquid ion source (ILIS), which produce ion beams from the electrostatically stressed meniscus of ionic liquids. ILIS ...

Fedkiw, Timothy Peter

2010-01-01T23:59:59.000Z

413

Hydrogen-Selective Membrane  

DOE Patents (OSTI)

A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 .mu.m but typically less than about 20 .mu.m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m.sup.2.s at a temperature of greater than about 500.degree. C. and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500.degree. C. and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400.degree. C. and less than about 1000.degree. C. before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process.

Collins, John P. (Boulder, CO); Way, J. Douglas (Boulder, CO)

1995-09-19T23:59:59.000Z

414

Hydrogen-selective membrane  

DOE Patents (OSTI)

A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 {micro}m but typically less than about 20 {micro}m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m{sup 2} s at a temperature of greater than about 500 C and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500 C and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400 C and less than about 1000 C before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process. 9 figs.

Collins, J.P.; Way, J.D.

1997-07-29T23:59:59.000Z

415

Hydrogen-selective membrane  

DOE Patents (OSTI)

A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 {micro}m but typically less than about 20 {micro}m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m{sup 2}s at a temperature of greater than about 500 C and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500 C and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400 C and less than about 1000 C before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process. 9 figs.

Collins, J.P.; Way, J.D.

1995-09-19T23:59:59.000Z

416

Membrane Scientist Los Angeles, CA  

E-Print Network (OSTI)

and working hands on to ensure quality and commercial viability of reverse osmosis products including hand cast and commercial reverse osmosis membrane testing and synthesis, prototype membrane testing and new

Alpay, S. Pamir

417

Solubilities of Solutes in Ionic Liquids from a Simple Perturbed-Hard-Sphere Theory  

E-Print Network (OSTI)

Eds). Ionic liquids as Green solvents. Washington: Americanmay be useful as green solvents that do not pollute the

Qin, Yuan; Prausnitz, John M.

2005-01-01T23:59:59.000Z

418

Automotive Perspective on Membrane Evaluation  

Energy.gov (U.S. Department of Energy (DOE))

Presentation at the 2008 High Temperature Membrane Working Group Meeting held June 9, 2008, in Washington, DC

419

Method for synthesis of titanium dioxide nanotubes using ionic liquids  

SciTech Connect

The invention is directed to a method for producing titanium dioxide nanotubes, the method comprising anodizing titanium metal in contact with an electrolytic medium containing an ionic liquid. The invention is also directed to the resulting titanium dioxide nanotubes, as well as devices incorporating the nanotubes, such as photovoltaic devices, hydrogen generation devices, and hydrogen detection devices.

Qu, Jun; Luo, Huimin; Dai, Sheng

2013-11-19T23:59:59.000Z

420

High performance ultracapacitors with carbon nanomaterials and ionic liquids  

DOE Patents (OSTI)

The present invention is directed to the use of carbon nanotubes and/or electrolyte structures in various electrochemical devices, such as ultracapacitors having an ionic liquid electrolyte. The carbon nanotubes are preferably aligned carbon nanotubes. Compared to randomly entangled carbon nanotubes, aligned carbon nanotubes can have better defined pore structures and higher specific surface areas.

Lu, Wen; Henry, Kent Douglas

2012-10-09T23:59:59.000Z

Note: This page contains sample records for the topic "ionic transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

High performance batteries with carbon nanomaterials and ionic liquids  

DOE Patents (OSTI)

The present invention is directed to lithium-ion batteries in general and more particularly to lithium-ion batteries based on aligned graphene ribbon anodes, V.sub.2O.sub.5 graphene ribbon composite cathodes, and ionic liquid electrolytes. The lithium-ion batteries have excellent performance metrics of cell voltages, energy densities, and power densities.

Lu, Wen (Littleton, CO)

2012-08-07T23:59:59.000Z

422

Application of Ionic Liquids in Liquid Chromatography and Electrodriven Separation  

Science Journals Connector (OSTI)

......processing (5), solvent extraction (6, 7), electrolytes in batteries (8), metal deposition (9, 10) and gas treatment (11...Polymerized ionic liquid sorbents for CO2 separation. Energy and Fuels (2010) 24:5797-5804. 13 Ho T.D. , Canestraro A......

Yi Huang; Shun Yao; Hang Song

2013-08-01T23:59:59.000Z

423

Energy for Cleaner Transportation Hydro-Quebec  

E-Print Network (OSTI)

W. Yu, X. Yang, P. Wang, and L. Meng 19 Rotating Rate Dependency of Methanol Oxidation on a Smooth and Methanol Transport in Direct Methanol Proton Exchange Membrane Fuel Cells M. Lefebvre and D. Olmeijer 35 solution-based room temperature reduction technique whereby nanoscale iron powder is produced. This new

Azad, Abdul-Majeed

424

Highly Confined Photon Transport in Subwavelength Metallic Slot Waveguides  

E-Print Network (OSTI)

was deposited on one side of a free-standing Si3N4 membrane. Using focused ion- beam milling, wire waveguidesHighly Confined Photon Transport in Subwavelength Metallic Slot Waveguides J. A. Dionne,*, H. J and electronic components. Although optical interconnects exhibit a large bandwidth for signal transport, minimum

Atwater, Harry

425

Molecular Squares as Molecular Sieves: Size-Selective Transport Through  

E-Print Network (OSTI)

Molecular Squares as Molecular Sieves: Size-Selective Transport Through Porous-Membrane squaresº: cyclic structures typically featuring metal-ion cor- ners and difunctional bridging ligands processes: size-selective molecular transport from a guest-containing solution to one initially free

426

Final Report - Membranes and MEA's for Dry, Hot Operating Conditions  

SciTech Connect

The focus of this program was to develop a new Proton Exchange Membrane (PEM) which can operate under hotter, dryer conditions than the state of the art membranes today and integrate it into a Membrane Electrode Assembly (MEA). These MEA's should meet the performance and durability requirements outlined in the solicitation, operating under low humidification conditions and at temperatures ranging from -20???ºC to 120???ºC, to meet 2010 DOE technical targets for membranes. This membrane should operate under low humidification conditions and at temperatures ranging from -20???ºC to 120???ºC in order to meet DOE HFCIT 2010 commercialization targets for automotive fuel cells. Membranes developed in this program may also have improved durability and performance characteristics making them useful in stationary fuel cell applications. The new membranes, and the MEA?¢????s comprising them, should be manufacturable at high volumes and at costs which can meet industry and DOE targets. This work included: A) Studies to better understand factors controlling proton transport within the electrolyte membrane, mechanisms of polymer degradation (in situ and ex situ) and membrane durability in an MEA; B) Development of new polymers with increased proton conductivity over the range of temperatures from -20???ºC to 120???ºC and at lower levels of humidification and with improved chemical and mechanical stability; C) Development of new membrane additives for increased durability and conductivity under these dry conditions; D) Integration of these new materials into membranes and membranes into MEA?¢????s, including catalyst and gas diffusion layer selection and integration; E) Verification that these materials can be made using processes which are scalable to commercial volumes using cost effective methods; F) MEA testing in single cells using realistic automotive testing protocols. This project addresses technical barriers A (Durability) and C (Performance) from the Fuel Cells section of the 2005 Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year R&D Plan. In the course of this four-year program we developed a new PEM with improved proton conductivity, chemical stability and mechanical stability. We incorporated this new membrane into MEAs and evaluated performance and durability.

Hamrock, Steven J.

2011-06-30T23:59:59.000Z

427

Pilot Scale Water Gas Shift - Membrane Device for Hydrogen from Coal  

SciTech Connect

The objectives of the project were to build pilot scale hydrogen separation systems for use in a gasification product stream. This device would demonstrate fabrication and manufacturing techniques for producing commercially ready facilities. The design was a 2 lb/day hydrogen device which included composite hydrogen separation membranes, a water gas shift monolith catalyst, and stainless steel structural components. Synkera Technologies was to prepare hydrogen separation membranes with metallic rims, and to adjust the alloy composition in their membranes to a palladium-gold composition which is sulfur resistant. Chart was to confirm their brazing technology for bonding the metallic rims of the composite membranes to their structural components and design and build the 2 lbs/day device incorporating membranes and catalysts. WRI prepared the catalysts and completed the testing of the membranes and devices on coal derived syngas. The reactor incorporated eighteen 2'' by 7'' composite palladium alloy membranes. These membranes were assembled with three stacks of three paired membranes. Initial vacuum testing and visual inspection indicated that some membranes were cracked, either in transportation or in testing. During replacement of the failed membranes, while pulling a vacuum on the back side of the membranes, folds were formed in the flexible composite membranes. In some instances these folds led to cracks, primarily at the interface between the alumina and the aluminum rim. The design of the 2 lb/day device was compromised by the lack of any membrane isolation. A leak in any membrane failed the entire device. A large number of tests were undertaken to bring the full 2 lb per day hydrogen capacity on line, but no single test lasted more than 48 hours. Subsequent tests to replace the mechanical seals with brazing have been promising, but the technology remains promising but not proven.

Barton, Tom

2013-06-30T23:59:59.000Z

428

Robust Polymer Composite Membranes for Hydrogen Separation |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Robust Polymer Composite Membranes for Hydrogen Separation Robust Polymer Composite Membranes for Hydrogen Separation polymercompositemembranes.pdf More Documents & Publications...

429

Transportation Market Distortions  

E-Print Network (OSTI)

of Highways, Volpe National Transportation Systems Center (Evaluating Criticism of Transportation Costing, VictoriaFrom Here: Evaluating Transportation Diversity, Victoria

Litman, Todd

2006-01-01T23:59:59.000Z

430

Crystal structure of a concentrative nucleoside transporter from Vibrio cholerae at 2.4;#8201;  

SciTech Connect

Nucleosides are required for DNA and RNA synthesis, and the nucleoside adenosine has a function in a variety of signalling processes. Transport of nucleosides across cell membranes provides the major source of nucleosides in many cell types and is also responsible for the termination of adenosine signalling. As a result of their hydrophilic nature, nucleosides require a specialized class of integral membrane proteins, known as nucleoside transporters (NTs), for specific transport across cell membranes. In addition to nucleosides, NTs are important determinants for the transport of nucleoside-derived drugs across cell membranes. A wide range of nucleoside-derived drugs, including anticancer drugs (such as Ara-C and gemcitabine) and antiviral drugs (such as zidovudine and ribavirin), have been shown to depend, at least in part, on NTs for transport across cell membranes. Concentrative nucleoside transporters, members of the solute carrier transporter superfamily SLC28, use an ion gradient in the active transport of both nucleosides and nucleoside-derived drugs against their chemical gradients. The structural basis for selective ion-coupled nucleoside transport by concentrative nucleoside transporters is unknown. Here we present the crystal structure of a concentrative nucleoside transporter from Vibrio cholerae in complex with uridine at 2.4 {angstrom}. Our functional data show that, like its human orthologues, the transporter uses a sodium-ion gradient for nucleoside transport. The structure reveals the overall architecture of this class of transporter, unravels the molecular determinants for nucleoside and sodium binding, and provides a framework for understanding the mechanism of nucleoside and nucleoside drug transport across cell membranes.

Johnson, Zachary Lee; Cheong, Cheom-Gil; Lee, Seok-Yong (Duke)

2012-07-11T23:59:59.000Z

431

Synthesis of an un-supported, high-flow ZSM-22 zeolite membrane  

DOE Patents (OSTI)

Novel methods for synthesizing wholly un-supported, high-flow catalytic membranes consisting of 100% crystalline ZSM-22 crystals with no binder phase, having sufficient porosity to allow high Weight Hourly Space Velocities of feedstock to pass through without generating back pressure. The ZSM-22 membranes perform favorably to existing bulk ZSM-22 catalysts (e.g., via 1-butene conversion and selectivity). The method of membrane synthesis, based on Vapor Phase Transport, allows free-standing, binder-less membranes to be fabricated in varied geometries and sizes so that membranes can be tailor-made for particular geometries applications. The ZSM-22 precursor gel may be consolidated into a semi-cohesive body prior to vapor phase crystallization, for example, by uniaxial pressing. These crystalline membranes may be modified by ion exchange, pore ion exchange, framework exchange, synthesis modification techniques to incorporate other elements into the framework, such as K, H, Mg, Zn, V, Ga, and Pt.

Thoma, Steven G. (Albuquerque, NM); Nenoff, Tina M. (Albuquerque, NM)

2006-10-10T23:59:59.000Z

432

Can Ionic Liquids Be Used As Templating Agents For Controlled Design of Uranium-Containing Nanomaterials?  

SciTech Connect

Nanostructured uranium oxides have been prepared in ionic liquids as templating agents. Using the ionic liquids as reaction media for inorganic nanomaterials takes advantage of the pre-organized structure of the ionic liquids which in turn controls the morphology of the inorganic nanomaterials. Variation of ionic liquid cation structure was investigated to determine the impact on the uranium oxide morphologies. For two ionic liquid cations, increasing the alkyl chain length increases the aspect ratio of the resulting nanostructured oxides. Understanding the resulting metal oxide morphologies could enhance fuel stability and design.

Visser, A.; Bridges, N.; Tosten, M.

2013-04-09T23:59:59.000Z

433

Novel Catalytic Membrane Reactors  

SciTech Connect

There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

Stuart Nemser, PhD

2010-10-01T23:59:59.000Z

434

High temperature ceramic membrane reactors for coal liquid upgrading  

SciTech Connect

In this project we will study a novel process concept, i.e., the use of ceramic membrane reactors in upgrading of coal model compounds and coal derived liquids. In general terms, the USC research team is responsible for constructing and operating the membrane reactor apparatus and for testing various inorganic membranes for the upgrading of coal derived asphaltenes and coal model compounds. The USC effort will involve the principal investigator of this project and two graduate research assistants. The ALCOA team is responsible for the preparation of the inorganic membranes, for construction and testing of the ceramic membrane modules, and for measurement of their transport properties. The ALCOA research effort will involve Dr. Paul K. T. Liu, who is the project manager of the ALCOA research team, an engineer and a technician. UNOCAL's contribution will be limited to overall technical assistance in catalyst preparation and the operation of the laboratory upgrading membrane reactor and for analytical back-up and expertise in oil analysis and materials characterization. UNOCAL is a no-cost contractor but will be involved in all aspects of the project, as deemed appropriate.

Tsotsis, T.T.

1992-01-01T23:59:59.000Z

435

Rapid transport of polyacrylates in dextran matrix  

SciTech Connect

The authors have observed the rapid transport of polyacrylate(PA) in the matrix of dextran. (1) In the salt-free media, the transport of PA depended on the kind of its couterions. The rates were in the following order: tetramethylammonium > Li+ > tetrabutylammonium > Na+ > NH{sub 4}+ > Cs+. (2) The transport rate of PAA in buffer solutions of about 30mM ionic strength increased with the degree of ionization {alpha} but remained constant in the range of {alpha} greater than about 0.4. The effect of the counterion condensation on the transport rate was thus clearly demonstrated. (3) The transport rate of NaPA was nearly identical in the presence of 0.1 M NaCl and no added salt. It decreased to less than half in 0.2 M NaCl and in 0.5 M NaCl no rapid transport was observed any more and ordinary diffusion behavior was observed instead.

Maeda, H.; Nakamura, K.; Sasaki, S. [Kyushu Univ., Fukuoka (Japan)

1993-12-31T23:59:59.000Z

436

Proton exchange membrane water electrolysis with short-side-chain Aquivion membrane and IrO2 anode catalyst  

Science Journals Connector (OSTI)

Abstract A series of three membrane types has been screened for medium temperature solid polymer electrolyte water electrolysis in membrane electrode assemblies coated with 2mgcm?2 of iridium oxide as a catalyst for the oxygen evolution reaction, synthesised via a hydrolysis method from the hexachloroiridic acid precursor, and deposited on the membrane either directly by spray deposition or by decal transfer. The short-side-chain perfluorosulfonic acid Aquivion ionomer of equivalent weight 870meqg?1, in membranes of thickness 120?m, gives higher water electrolysis performance at 120C than a composite membrane of Aquivion with zirconium phosphate, while a sulfonated ether-linked polybenzimidazole, sulfonated poly-[(1-(4,4?-diphenylether)-5-oxybenzimidazole)-benzimidazole], shows promising performance and no transport limitations up to 2Acm?2. The lowest cell voltage was observed at 120C for an MEA prepared using spray-coating directly on the Aquivion membrane, 1.57V at 1Acm?2.

Anita Skulimowska; Marc Dupont; Marta Zaton; Svein Sunde; Luca Merlo; Deborah J. Jones; Jacques Rozire

2014-01-01T23:59:59.000Z

437

Sorption and Transport Kinetics of a Nonionic Surfactant through an Aquifer Sediment  

Science Journals Connector (OSTI)

Sorption and Transport Kinetics of a Nonionic Surfactant through an Aquifer Sediment ... Although nonionic surfactants have been considered in surfactant-aided soil washing systems, there is little information on the particle-size dependence of these processes, and this may have significant implications for the design of these systems. ... Adsorption of Non-ionic Surfactants onto Sand and Its Importance in Naphthalene Removal ...

Zafar. Adeel; Richard G. Luthy

1995-04-01T23:59:59.000Z

438

Identifying Calcium Channels and Porters in Plant Membranes  

SciTech Connect

The overall objectives of the proposal submitted in 6/90 was to understand how Ca was transported across plant membranes, and how these transport pathways were regulated. Ca participates in many cellular processes, including the transduction of hormonal and environmental signals, secretion, and protein folding. These processes depend on the coordination of passive Ca fluxes via channels and active Ca pumps; however these transport pathways are poorly understood in plants. We had, therefore, proposed to identify and characterize Ca transport proteins, such as the inositol-1 ,4,5-trisphosphate (IP3)-sensitive Ca channels and Ca pumps. We have had difficulties characterizing and cloning the IP3-sensitive Ca channel, but have made considerable progress on the biochemical characterization, and partial purification of a 120 kD Ca-pumping ATPase. We have begun to determine the structure of Ca pumps by molecular cloning and have already obtained a partial cDNA with features characteristic of Ca pumps.

Sze, Heven

1998-04-01T23:59:59.000Z

439

Hydrogen separation membranes annual report for FY 2010.  

SciTech Connect

The objective of this work is to develop dense ceramic membranes for separating hydrogen from other gaseous components in a nongalvanic mode, i.e., without using an external power supply or electrical circuitry. The goal of this project is to develop dense hydrogen transport membranes (HTMs) that nongalvanically (i.e., without electrodes or external power supply) separate hydrogen from gas mixtures at commercially significant fluxes under industrially relevant operating conditions. These membranes will be used to separate hydrogen from gas mixtures such as the product streams from coal gasification, methane partial oxidation, and water-gas shift reactions. Potential ancillary uses of HTMs include dehydrogenation and olefin production, as well as hydrogen recovery in petroleum refineries and ammonia synthesis plants, the largest current users of deliberately produced hydrogen. This report describes the results from the development and testing of HTM materials during FY 2010.

Balachandran, U.; Dorris, S. E; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J. (Energy Systems)

2011-03-14T23:59:59.000Z

440

Ionic liquids for separation of olefin-paraffin mixtures  

DOE Patents (OSTI)

The invention is directed to an ionic liquid comprising (i) a cationic portion containing a complex of a silver (I) ion and one or more neutral ligands selected from organoamides, organoamines, olefins, and organonitriles, and (ii) an anionic portion having the chemical formula ##STR00001## wherein m and n are independently 0 or an integer of 1 or above, and p is 0 or 1, provided that when p is 0, the group --N--SO.sub.2--(CF.sub.2).sub.nCF.sub.3 subtended by p is replaced with an oxide atom connected to the shown sulfur atom. The invention is also directed to a method for separating an olefin from an olefin-paraffin mixture by passing the mixture through a layer of the ionic liquid described above.

Dai, Sheng; Luo, Huimin; Huang, Jing-Fang

2013-09-17T23:59:59.000Z

Note: This page contains sample records for the topic "ionic transport membranes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

High-frequency acoustic modes in an ionic liquid  

Science Journals Connector (OSTI)

High-frequency collective dynamics of the ionic liquid 1-hexyl-3-methylimidazolium bromide [C6C1im]Br has been investigated by molecular dynamics simulations. Time correlation functions of mass current fluctuations were calculated for several wavevectors and the dispersion curves of excitations ?(k) for longitudinal and transverse acoustic sound modes were obtained at different temperatures and pressures. Two different thermodynamic states have the same high-frequency sound velocity irrespective of the temperature provided that both have the same density. Partial time correlation functions of mass currents were calculated for the atoms belonging to the polar or the non-polar domains resulting from the heterogeneous structure of [C6C1im]Br. The partial correlation functions indicate that the polar domains are stiffer than the non-polar domains of the simulated ionic liquid.

Mauro C. C. Ribeiro

2013-01-01T23:59:59.000Z

442

Ionic liquids for separation of olefin-paraffin mixtures  

DOE Patents (OSTI)

The invention is directed to an ionic liquid comprising (i) a cationic portion containing a complex of a silver (I) ion and one or more neutral ligands selected from organoamides, organoamines, olefins, and organonitriles, and (ii) an anionic portion having the chemical formula ##STR00001## wherein m and n are independently 0 or an integer of 1 or above, and p is 0 or 1, provided that when p is 0, the group --N--SO.sub.2--(CF.sub.2).sub.nCF.sub.3 subtended by p is replaced with an oxide atom connected to the shown sulfur atom. The invention is also directed to a method for separating an olefin from an olefin-paraffin mixture by passing the mixture through a layer of the ionic liquid described above.

Dai, Sheng; Luo, Huimin; Huang, Jing-Fang

2014-07-15T23:59:59.000Z

443

Reactions of Lignin Model Compounds in Ionic Liquids  

SciTech Connect

Lignin, a readily available form of biomass, awaits novel chemistry for converting it to valuable aromatic chemicals. Recent work has demonstrated that ionic liquids are excellent solvents for processing woody biomass and lignin. Seeking to exploit ionic liquids as media for depolymerization of lignin, we investigated reactions of lignin model compounds in these solvents. Using Brnsted acid catalysts in 1-ethyl-3-methylimidazolium triflate at moderate temperatures, we obtained up to 11.6% yield of the dealkylation product guaiacol from the model compound eugenol and cleaved phenethyl phenyl ether, a model for lignin ethers. Despite these successes, acid catalysis failed in dealkylation of the unsaturated model compound 4-ethylguaiacol and did not produce monomeric products from organosolv lignin, demonstrating that further work is required to understand the complex chemistry of lignin depolymerization.

Holladay, John E.; Binder, Joseph B.; Gray, Michel J.; White, James F.; Zhang, Z. Conrad

2009-09-15T23:59:59.000Z

444

Gas Separation Using Membranes  

E-Print Network (OSTI)

.133.132, May 12. 1964. 45. Kesting, R. E., Synthetic Polymeric Membranes. McGraw-Hill, N. Y. (1971). 46. Strathmann, H., Kock. K., Amar. P., and Baker, R. W., Desalination 16, 179 (1975). 47. Strathmann, H., Schel""ble, P?? and Baker. R. W?? J. Appl...?? Desalination 21. 241 (1977). 51. Cohen. C?? Tanny, G. B?? and Prager, S., J. Polym. Sci.. Polym. Phys. Ed. 17, 477 (1979). 52. Tanny, G. B., J. App], Polym. ~i. 1!. 2149 (1974). 53. Cabasso, I?? Klein, E?? and smith. J. K., "Research and Development...

Koros, W. J.; Paul, D. R.

1984-01-01T23:59:59.000Z

445

Ionic Ckonductivity and Glass Transition of Phosphoric Acids  

SciTech Connect

Here we report the low-temperature dielectric and viscoelastic properties of phosphoric acids in the range of H2O:P2O5 1.5 5. Both dielectric and viscosity measurements allow us to determine the glass-transition temperatures of phosphoric acids. The obtained glass-transition temperatures are in good agreement with previous differential scanning calorimetric measurements. Moreover, our analysis reveals moderate decoupling of ionic conductivity from structural relaxation in the vicinity of the glass transition.

Wang, Yangyang [ORNL; Lane, Nathan A [ORNL; Sun, Che-Nan [Oak Ridge National Laboratory (ORNL); Fan, Fei [ORNL; Zawodzinski, Thomas [University of Tennessee, Knoxville (UTK); Sokolov, Alexei P [ORNL

2013-01-01T23:59:59.000Z

446

Ionic conductivity and glass transition of phosphoric acids  

SciTech Connect

Here we report the low-temperature dielectric and viscoelastic properties of phosphoric acids in the range of H2O:P2O5 1.5 5. Both dielectric and viscosity measurements allow us to determine the glass-transition temperatures of phosphoric acids. The obtained glass-transition temperatures are in good agreement with previous differential scanning calorimetric measurements. Moreover, our analysis reveals moderate decoupling of ionic conductivity from structural relaxation in the vicinity of the glass transition.

Wang, Yangyang [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL); Lane, Nathan A [ORNL] [ORNL; Sun, Che-Nan [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL); Fan, Fei [ORNL] [ORNL; Zawodzinski, Thomas [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); Sokolov, Alexei P [ORNL] [ORNL

2013-01-01T23:59:59.000Z

447

Mapping Ionic Currents and Reactivity on the Nanoscale: Electrochemical Strain Microscopy  

SciTech Connect

Solid-state electrochemical processes in oxides underpin a broad spectrum of energy and information storage devices, ranging from Li-ion and Li-air batteries, to solid oxide fuel cells (SOFC) to electroresistive and memristive systems. These functionalities are controlled by the bias-driven diffusive and electromigration transport of mobile ionic species, as well as intricate a set of electrochemical and defect-controlled reactions at interfaces and in bulk. Despite the wealth of device-level and atomistic studies, little is known on the mesoscopic mechanisms of ion diffusion and electronic transport on the level of grain clusters, individual grains, and extended defects. The development of the capability for probing ion transport on the nanometer scale is a key to deciphering complex interplay between structure, functionality, and performance in these systems. Here we introduce Electrochemical Strain Microscopy, a scanning probe microscopy technique based on strong strain-bias coupling in the systems in which local ion concentrations are changed by electrical fields. The imaging capability, as well as time- and voltage spectroscopies analogous to traditional current based electrochemical characterization methods are developed. The reversible intercalation of Li and mapping electrochemical activity in LiCoO2 is demonstrated, illustrating higher Li diffusivity at non-basal planes and grain boundaries. In Si-anode device structure, the direct mapping of Li diffusion at extended defects and evolution of Li-activity with charge state is explored. The electrical field-dependence of Li mobility is studied to determine the critical bias required for the onset of electrochemical transformation, allowing reaction and diffusion processes in the battery system to be separated at each location. Finally, the applicability of ESM for probing oxygen vacancy diffusion and oxygen reduction/evolution reactions is illustrated, and the high resolution ESM maps are correlated with aberration corrected scanning transmission electron microscopy imaging. The future potential for deciphering mechanisms of electrochemical transformations on an atomically-defined single-defect level is discussed.

Kalinin, S.V. (Center for Nanophase Materials Sciences, ORNL) [Center for Nanophase Materials Sciences, ORNL

2010-10-19T23:59:59.000Z

448

Charge transport in purple membrane monolayers: A sequential tunneling approach  

E-Print Network (OSTI)

Current voltage (I-V) characteristics in proteins can be sensitive to conformational change induced by an external stimulus (photon, odour, etc.). This sensitivity can be used in medical and industrial applications besides shedding new light in the microscopic structure of biological materials. Here, we show that a sequential tunneling model of carrier transfer between neighbouring amino-acids in a single protein can be the basic mechanism responsible of the electrical properties measured in a wide range of applied potentials. We also show that such a strict correlation between the protein structure and the electrical response can lead to a new generation of nanobiosensors that mimic the sensorial activity of living species. To demonstrate the potential usefulness of protein electrical properties, we provide a microscopic interpretation of recent I-V experiments carried out in bacteriorhodopsin at a nanoscale length.

Eleonora Alfinito; Jean-Francois Millithaler; Lino Reggiani

2011-05-04T23:59:59.000Z

449

Feed gas contaminant removal in ion transport membrane systems  

DOE Patents (OSTI)

Method for gas purification comprising (a) obtaining a feed gas stream containing one or more contaminants selected from the group consisting of volatile metal oxy-hydroxides, volatile metal oxides, and volatile silicon hydroxide; (b) contacting the feed gas stream with a reactive solid material in a guard bed and reacting at least a portion of the contaminants with the reactive solid material to form a solid reaction product in the guard bed; and (c) withdrawing from the guard bed a purified gas stream.

Carolan, Michael Francis (Allentown, PA); Miller, Christopher Francis (Macungie, PA)

2008-09-16T23:59:59.000Z

450

NETL: Gasification - Development of Ion-Transport Membrane Oxygen  

NLE Websites -- All DOE Office Websites (Extended Search)

Presentations, Papers, and Publications Presentations, Papers, and Publications ITM Oxygen Development for Advanced Oxygen Supply (Oct 2011) Ted Foster, Air Products & Chemicals, Inc. presented at the Gasification Technologies Conference, San Francisco, CA Oct 9-12, 2011. ASU/IGCC Integration Strategies (Oct 2009), David McCarthy, Air Products & Chemicals, Inc., 2009 Gasification Technologies Conference, Colorado Springs, CO. ITM Oxygen: Taking the Next Step (Oct 2009), VanEric Stein, Air Products & Chemicals, Inc., 2009 Gasification Technologies Conference, Colorado Springs, CO. ITM Oxygen: Scaling Up a Low-Cost Oxygen Supply Technology (Oct 2006) Philip Armstrong, Air Products & Chemicals, Inc., 2006 Gasification Technologies Conference, Washington, D.C. ITM Oxygen: The New Oxygen Supply for the New IGCC Market (Oct 2005)

451

Amorphous Alloy Membranes for High Temperature Hydrogen Separation  

SciTech Connect

At the beginning of this project, thin film amorphous alloy membranes were considered a nascent but promising new technology for industrial-scale hydrogen gas separations from coal- derived syngas. This project used a combination of theoretical modeling, advanced physical vapor deposition fabricating, and laboratory and gasifier testing to develop amorphous alloy membranes that had the potential to meet Department of Energy (DOE) targets in the testing strategies outlined in the NETL Membrane Test Protocol. The project is complete with Southwest Research Institute (SwRI), Georgia Institute of Technology (GT), and Western Research Institute (WRI) having all operated independently and concurrently. GT studied the hydrogen transport properties of several amorphous alloys and found that ZrCu and ZrCuTi were the most promising candidates. GT also evaluated the hydrogen transport properties of V, Nb and Ta membranes coated with different transition-metal carbides (TMCs) (TM = Ti, Hf, Zr) catalytic layers by employing first-principles calculations together with statistical mechanics methods and determined that TiC was the most promising material to provide catalytic hydrogen dissociation. SwRI developed magnetron coating techniques to deposit a range of amorphous alloys onto both porous discs and tubular substrates. Unfortunately none of the amorphous alloys could be deposited without pinhole defects that undermined the selectivity of the membranes. WRI tested the thermal properties of the ZrCu and ZrNi alloys and found that under reducing environments the upper temperature limit of operation without recrystallization is ~250 C. There were four publications generated from this project with two additional manuscripts in progress and six presentations were made at national and international technical conferences. The combination of the pinhole defects and the lack of high temperature stability make the theoretically identified most promising candidate amorphous alloys unsuitable for application as hydrogen separation membranes in coal fire systems.

Coulter, K

2013-09-30T23:59:59.000Z

452

Modeling and numerical simulations of microwave-induced ionic transport S. A. Freemana)  

E-Print Network (OSTI)

electron or phonon energy transfer thermal conduction . High-temperature heating of ceramic materials absorption and thermal conduction properties, and many ceramic materials fall into this category. In recent are limited by the slow rate of inward heat conduction due to the typically low thermal conductivities

Cooper, Reid F.

453

Applications of Irreversible Thermodynamics: Bulk and Interfacial Electronic, Ionic, Magnetic, and Thermal Transport  

E-Print Network (OSTI)

Irreversible thermodynamics is a widely-applicable toolset that extends thermodynamics to describe systems undergoing irreversible processes. It is particularly useful for describing macroscopic flow of system components, whether conserved (e...

Sears, Matthew

2012-10-19T23:59:59.000Z

454

Vadose Zone Transport Field Study: Status Report  

SciTech Connect

Studies were initiated at the Hanford Site to evaluate the process controlling the transport of fluids in the vadose zone and to develop a reliable database upon which vadose-zone transport models can be calibrated. These models are needed to evaluate contaminant migration through the vadose zone to underlying groundwaters at Hanford. A study site that had previously been extensively characterized using geophysical monitoring techniques was selected in the 200 E Area. Techniques used previously included neutron probe for water content, spectral gamma logging for radionuclide tracers, and gamma scattering for wet bulk density. Building on the characterization efforts of the past 20 years, the site was instrumented to facilitate the comparison of nine vadose-zone characterization methods: advanced tensiometers, neutron probe, electrical resistance tomography (ERT), high-resolution resistivity (HRR), electromagnetic induction imaging (EMI), cross-borehole radar (XBR), and cross-borehole seismic (XBS). Soil coring was used to obtain soil samples for analyzing ionic and isotopic tracers.

Gee, Glendon W.; Ward, Anderson L.

2001-11-30T23:59:59.000Z

455

Investigations on degradation of the long-term proton exchange membrane water electrolysis stack  

Science Journals Connector (OSTI)

Abstract A 9-cell proton exchange membrane (PEM) water electrolysis stack is developed and tested for 7800h. The average degradation rate of 35.5?Vh?1 per cell is measured. The 4th MEA of the stack is offline investigated and characterized. The electrochemical impedance spectroscopy (EIS) shows that the charge transfer resistance and ionic resistance of the cell both increase. The linear sweep scan (LSV) shows the hydrogen crossover rate of the membrane has slight increase. The electron probe X-ray microanalyze (EPMA) illustrates further that Ca, Cu and Fe elements distribute in the membrane and catalyst layers of the catalyst-coated membranes (CCMs). The cations occupy the ion exchange sites of the Nafion polymer electrolyte in the catalyst layers and membrane, which results in the increase in the anode and the cathode overpotentials. The metallic impurities originate mainly from the feed water and the components of the electrolysis unit. Fortunately, the degradation was reversible and can be almost recovered to the initial performance by using 0.5M H2SO4. This indicates the performance degradation of the stack running 7800h is mainly caused by a recoverable contamination.

Shucheng Sun; Zhigang Shao; Hongmei Yu; Guangfu Li; Baolian Yi

2014-01-01T23:59:59.000Z

456

Proton Channel Orientation in Block-Copolymer Electrolyte Membranes  

NLE Websites -- All DOE Office Websites (Extended Search)

Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the environment. Polymer electrolyte membranes (PEMs), with hydrophilic, proton-conducting channels embedded in a structurally sound hydrophobic matrix, play a central role in the operation of polymer electrolyte fuel cells. PEMs are humidified by contact with air (the presence of water in PEMs is essential for proton transport). In addition, PEMs must transport protons to catalyst sites, which are typically crystalline solids such as platinum. The arrangement of the hydrophilic domains in the vicinity of both air and solid substrates is thus crucial. A University of California, Berkeley, and Berkeley Lab group has now provided the first set of data on morphology of PEMs at interfaces by a combination of x-ray scattering and microscopy.

457

Proton Channel Orientation in Block-Copolymer Electrolyte Membranes  

NLE Websites -- All DOE Office Websites (Extended Search)

Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the environment. Polymer electrolyte membranes (PEMs), with hydrophilic, proton-conducting channels embedded in a structurally sound hydrophobic matrix, play a central role in the operation of polymer electrolyte fuel cells. PEMs are humidified by contact with air (the presence of water in PEMs is essential for proton transport). In addition, PEMs must transport protons to catalyst sites, which are typically crystalline solids such as platinum. The arrangement of the hydrophilic domains in the vicinity of both air and solid substrates is thus crucial. A University of California, Berkeley, and Berkeley Lab group has now provided the first set of data on morphology of PEMs at interfaces by a combination of x-ray scattering and microscopy.

458

Proton Channel Orientation in Block-Copolymer Electrolyte Membranes  

NLE Websites -- All DOE Office Websites (Extended Search)

Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the environment. Polymer electrolyte membranes (PEMs), with hydrophilic, proton-conducting channels embedded in a structurally sound hydrophobic matrix, play a central role in the operation of polymer electrolyte fuel cells. PEMs are humidified by contact with air (the presence of water in PEMs is essential for proton transport). In addition, PEMs must transport protons to catalyst sites, which are typically crystalline solids such as platinum. The arrangement of the hydrophilic domains in the vicinity of both air and solid substrates is thus crucial. A University of California, Berkeley, and Berkeley Lab group has now provided the first set of data on morphology of PEMs at interfaces by a combination of x-ray scattering and microscopy.

459

Proton Channel Orientation in Block-Copolymer Electrolyte Membranes  

NLE Websites -- All DOE Office Websites (Extended Search)

Proton Channel Orientation in Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Wednesday, 27 January 2010 00:00 Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the environment. Polymer electrolyte membranes (PEMs), with hydrophilic, proton-conducting channels embedded in a structurally sound hydrophobic matrix, play a central role in the operation of polymer electrolyte fuel cells. PEMs are humidified by contact with air (the presence of water in PEMs is essential for proton transport). In addition, PEMs must transport protons to catalyst sites, which are typically crystalline solids such as platinum. The arrangement of the hydrophilic domains in the vicinity of both air and solid substrates is thus crucial. A University of California, Berkeley, and Berkeley Lab group has now provided the first set of data on morphology of PEMs at interfaces by a combination of x-ray scattering and microscopy.

460

Proton Channel Orientation in Block-Copolymer Electrolyte Membranes  

NLE Websites -- All DOE Office Websites (Extended Search)

Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the environment. Polymer electrolyte membranes (PEMs), with hydrophilic, proton-conducting channels embedded in a structurally sound hydrophobic matrix, play a central role in the operation of polymer electrolyte fuel cells. PEMs are humidified by contact with air (the presence of water in PEMs is essential for proton transport). In addition, PEMs must transport protons to catalyst sites, which are typically crystalline solids such as platinum. The arrangement of the hydrophilic domains in the vicinity of both air a