National Library of Energy BETA

Sample records for ionic liquid porous

  1. Ionic liquid-mediated synthesis of meso-scale porous lanthanum-transition-metal perovskites with high CO oxidation performance

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lu, Hanfeng; Zhang, Pengfei; Qiao, Zhen-An; Zhang, Jinshui; Zhu, Huiyuan; Chen, Jihua; Chen, Yinfei; Dai, Sheng

    2015-02-19

    Lanthanum-transition-metal perovskites with robust meso-scale porous frameworks (meso-LaMO3) are synthesized through use of ionic liquids. The resultant samples demonstrate a rather high activity for CO oxidation, by taking advantage of unique nanostructure-derived benefits. This synthesis strategy opens up a new opportunity for preparing functional mesoporous complex oxides of various compositions.

  2. Ionic liquid-mediated synthesis of meso-scale porous lanthanum-transition-metal perovskites with high CO oxidation performance

    SciTech Connect (OSTI)

    Lu, Hanfeng; Zhang, Pengfei; Qiao, Zhen-An; Zhang, Jinshui; Zhu, Huiyuan; Chen, Jihua; Chen, Yinfei; Dai, Sheng

    2015-02-19

    Lanthanum-transition-metal perovskites with robust meso-scale porous frameworks (meso-LaMO3) are synthesized through use of ionic liquids. The resultant samples demonstrate a rather high activity for CO oxidation, by taking advantage of unique nanostructure-derived benefits. This synthesis strategy opens up a new opportunity for preparing functional mesoporous complex oxides of various compositions.

  3. Synthesis of ionic liquids

    DOE Patents [OSTI]

    Dai, Sheng [Knoxville, TN; Luo, Huimin [Knoxville, TN

    2008-09-09

    Ionic compounds which are liquids at room temperature are formed by the method of mixing a neutral organic liqand with the salt of a metal cation and its conjugate anion. The liquids are hydrophobic, conductive and stable and have uses as solvents and in electrochemical devices.

  4. Synthesis of ionic liquids

    DOE Patents [OSTI]

    Dai, Sheng (Knoxville, TN); Luo, Huimin (Knoxville, TN)

    2011-11-01

    Ionic compounds which are liquids at room temperature are formed by the method of mixing a neutral organic ligand with the salt of a metal cation and its conjugate anion. The liquids are hydrophobic, conductive and stable and have uses as solvents and in electrochemical devices.

  5. Preparation and purification of ionic liquids and precursors

    DOE Patents [OSTI]

    Burrell, Anthony K.; Warner, Benjamin P.; McCleskey, T. Mark; Agrawal, Anoop

    2010-07-27

    Substantially pure ionic liquids and ionic liquid precursors were prepared. The substantially pure ionic liquid precursors were used to prepare substantially pure ionic liquids.

  6. Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids

    SciTech Connect (OSTI)

    Gering, Kevin L.; Harrup, Mason K.; Rollins, Harry W.

    2015-12-08

    An ionic liquid including a phosphazene compound that has a plurality of phosphorus-nitrogen units and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. One pendant group of the at least one pendant group comprises a positively charged pendant group. Additional embodiments of ionic liquids are disclosed, as are electrolyte solutions and energy storage devices including the embodiments of the ionic liquid.

  7. Synthesis of Ionic Liquids - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synthesis of Ionic Liquids Ionic Liquids for Chemical Separation Processes Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing Summary Chemical ...

  8. Hydrophobic ionic liquids

    DOE Patents [OSTI]

    Koch, Victor R.; Nanjundiah, Chenniah; Carlin, Richard T.

    1998-01-01

    Ionic liquids having improved properties for application in non-aqueous batteries, electrochemical capacitors, electroplating, catalysis and chemical separations are disclosed. Exemplary compounds have one of the following formulas: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, and R.sub.6 are either H; F; separate alkyl groups of from 1 to 4 carbon atoms, respectively, or joined together to constitute a unitary alkylene radical of from 2 to 4 carbon atoms forming a ring structure converging on N; or separate phenyl groups; and wherein the alkyl groups, alkylene radicals or phenyl groups may be substituted with electron withdrawing groups, preferably F--, Cl--, CF.sub.3 --, SF.sub.5 --, CF.sub.3 S--, (CF.sub.3).sub.2 CHS-- or (CF.sub.3).sub.3 CS--; and X.sup.- is a non-Lewis acid-containing polyatomic anion having a van der Waals volume exceeding 100 .ANG..sup.3.

  9. Hydrophobic ionic liquids

    DOE Patents [OSTI]

    Koch, V.R.; Nanjundiah, C.; Carlin, R.T.

    1998-10-27

    Ionic liquids having improved properties for application in non-aqueous batteries, electrochemical capacitors, electroplating, catalysis and chemical separations are disclosed. Exemplary compounds have one of the following formulas shown in a diagram wherein R{sub 1}, R{sub 2}, R{sub 3}, R{sub 4}, R{sub 5}, and R{sub 6} are either H; F; separate alkyl groups of from 1 to 4 carbon atoms, respectively, or joined together to constitute a unitary alkylene radical of from 2 to 4 carbon atoms forming a ring structure converging on N; or separate phenyl groups; and wherein the alkyl groups, alkylene radicals or phenyl groups may be substituted with electron withdrawing groups, preferably F-, Cl-, CF{sub 3}-, SF{sub 5}-, CF{sub 3}S-, (CF{sub 3}){sub 2}CHS- or (CF{sub 3}){sub 3}CS-; and X{sup {minus}} is a non-Lewis acid-containing polyatomic anion having a van der Waals volume exceeding 100 {angstrom}{sup 3}. 4 figs.

  10. Nanoparticle enhanced ionic liquid heat transfer fluids

    DOE Patents [OSTI]

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.

    2014-08-12

    A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.

  11. Radiation Chemistry and Photochemistry of Ionic Liquids

    SciTech Connect (OSTI)

    Wishart, J.F.; Takahaski, K.

    2010-12-01

    As our understanding of ionic liquids and their tunable properties has grown, it is possible to see many opportunities for ionic liquids to contribute to the sustainable use of energy. The potential safety and environmental benefits of ionic liquids, as compared to conventional solvents, have attracted interest in their use as processing media for the nuclear fuel cycle. Therefore, an understanding of the interactions of ionizing radiation and photons with ionic liquids is strongly needed. However, the radiation chemistry of ionic liquids is still a relatively unexplored topic although there has been a significant increase in the number of researchers in the field recently. This article provides a brief introduction to ionic liquids and their interesting properties, and recent advances in the radiation chemistry and photochemistry of ionic liquids. In this article, we will mainly focus on excess electron dynamics and radical reaction dynamics. Because solvation dynamics processes in ionic liquids are much slower than in molecular solvents, one of the distinguishing characteristics is that pre-solvated electrons play an important role in ionic liquid radiolysis. It will be also shown that the reaction dynamics of radical ions is significantly different from that observed in molecular solvents because of the Coulombic screening effects and electrostatic interactions in ionic liquids.

  12. Membrane separation of ionic liquid solutions

    SciTech Connect (OSTI)

    Campos, Daniel; Feiring, Andrew Edward; Majumdar, Sudipto; Nemser, Stuart

    2015-09-01

    A membrane separation process using a highly fluorinated polymer membrane that selectively permeates water of an aqueous ionic liquid solution to provide dry ionic liquid. Preferably the polymer is a polymer that includes polymerized perfluoro-2,2-dimethyl-1,3-dioxole (PDD). The process is also capable of removing small molecular compounds such as organic solvents that can be present in the solution. This membrane separation process is suitable for drying the aqueous ionic liquid byproduct from precipitating solutions of biomass dissolved in ionic liquid, and is thus instrumental to providing usable lignocellulosic products for energy consumption and other industrial uses in an environmentally benign manner.

  13. Thermophilic Cellulases Compatible with Ionic Liquid Pretreatment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ionic liquids dissolve cellulose, which can then be separated out in an additional process. However, significant decreases in the available commercial fungal cellulase activity in ...

  14. Ionic Liquid Pretreatment Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ionic Liquid Pretreatment Technologies Ionic Liquid Pretreatment Technologies These slides were used as a presentation by Dr. Blake Simmons on June 24, 2013, for the bimonthly BETO webinar. june2013_snl_webinar.pdf (4.32 MB) More Documents & Publications 2015 Peer Review Presentations-Biochemical Conversion Innovative Topics for Advanced Biofuels 2013 Peer Review Presentations-Biochemical Conversion

  15. Engineered microorganisms having resistance to ionic liquids

    DOE Patents [OSTI]

    Ruegg, Thomas Lawrence; Thelen, Michael P.

    2016-03-22

    The present invention provides for a method of genetically modifying microorganisms to enhance resistance to ionic liquids, host cells genetically modified in accordance with the methods, and methods of using the host cells in a reaction comprising biomass that has been pretreated with ionic liquids.

  16. Carbon films produced from ionic liquid carbon precursors

    DOE Patents [OSTI]

    Dai, Sheng; Luo, Huimin; Lee, Je Seung

    2013-11-05

    The invention is directed to a method for producing a film of porous carbon, the method comprising carbonizing a film of an ionic liquid, wherein the ionic liquid has the general formula (X.sup.+a).sub.x(Y.sup.-b).sub.y, wherein the variables a and b are, independently, non-zero integers, and the subscript variables x and y are, independently, non-zero integers, such that ax=by, and at least one of X.sup.+ and Y.sup.- possesses at least one carbon-nitrogen unsaturated bond. The invention is also directed to a composition comprising a porous carbon film possessing a nitrogen content of at least 10 atom %.

  17. Recovery of sugars from ionic liquid biomass liquor by solvent...

    Office of Scientific and Technical Information (OSTI)

    Recovery of sugars from ionic liquid biomass liquor by solvent extraction Citation Details In-Document Search Title: Recovery of sugars from ionic liquid biomass liquor by solvent ...

  18. Ionic liquids for rechargeable lithium batteries

    SciTech Connect (OSTI)

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz,John; Newman, John

    2005-09-29

    We have investigated possible anticipated advantages of ionic-liquid electrolytes for use in lithium-ion batteries. Thermal stabilities and phase behavior were studied by thermal gravimetric analysis and differential scanning calorimetry. The ionic liquids studied include various imidazoliumTFSI systems, pyrrolidiniumTFSI, BMIMPF{sub 6}, BMIMBF{sub 4}, and BMIMTf. Thermal stabilities were measured for neat ionic liquids and for BMIMBF{sub 4}-LiBF{sub 4}, BMIMTf-LiTf, BMIMTFSI-LiTFSI mixtures. Conductivities have been measured for various ionic-liquid lithium-salt systems. We show the development of interfacial impedance in a Li|BMIMBF{sub 4} + LiBF{sub 4}|Li cell and we report results from cycling experiments for a Li|BMIMBF{sub 4} + 1 mol/kg LIBF{sub 4}|C cell. The interfacial resistance increases with time and the ionic liquid reacts with the lithium electrode. As expected, imidazolium-based ionic liquids react with lithium electrodes. We seek new ionic liquids that have better chemical stabilities.

  19. Lithium-Air and ionic Liquids

    SciTech Connect (OSTI)

    Kellar, Michael

    2015-09-01

    The final portion of this project was accomplished at Sandia National Labs, Livermore, with the overall goal being to optimize lithium-air cells with an ionic liquid electrolyte. Both of these are potential future routes for lithium-ion technology. Lithiumair presents the advantage of higher gravimetric energy density, and ionic liquids present the advantage of greater hydrophobicity and much lower volatility, along with a larger window of electrochemical stability. Ionic liquids however have several drawbacks for the battery industry. Currently they are not as cost effective as many organic solvents. Additionally, because of the added viscosity of ionic interactions compared to the typical dipole interactions of a solvent, the ionic conductivity is lower than for common organic solvents.

  20. Phosphonium-based ionic liquids and uses

    DOE Patents [OSTI]

    Del Sesto, Rico E; Koppisch, Andrew T; Lovejoy, Katherine S; Purdy, Geraldine M

    2014-12-30

    Phosphonium-based room temperature ionic liquids ("RTILs") were prepared. They were used as matrices for Matrix-Assisted Laser Desorption Ionization (MALDI) mass spectrometry and also for preparing samples of dyes for analysis.

  1. Superbase-derived protic ionic liquids

    DOE Patents [OSTI]

    Dai, Sheng; Luo, Huimin; Baker, Gary A.

    2013-09-03

    Protic ionic liquids having a composition of formula (A.sup.-)(BH.sup.+) wherein A.sup.- is a conjugate base of an acid HA, and BH.sup.+ is a conjugate acid of a superbase B. In particular embodiments, BH.sup.+ is selected from phosphazenium species and guanidinium species encompassed, respectively, by the general formulas: ##STR00001## The invention is also directed to films and membranes containing these protic ionic liquids, with particular application as proton exchange membranes for fuel cells.

  2. Ionic Liquid Sorbents for Carbon Capture - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Advanced Materials Find More Like This Return to Search Ionic Liquid Sorbents for Carbon Capture Ionic liquids for carbon capture and gas separation National Energy Technology Laboratory Contact NETL About This Technology Ionic liquids Ionic liquids Technology Marketing Summary Research is active on technologies for application of ionic liquids to carbon capture or other separation processes in energy systems. The technologies consist of materials and methods that promise to

  3. Enzyme activity in dialkyl phosphate ionic liquids

    SciTech Connect (OSTI)

    Thomas, M.F.; Dunn, J.; Li, L.-L.; Handley-Pendleton, J. M.; van der lelie, D.; Wishart, J. F.

    2011-12-01

    The activity of four metagenomic enzymes and an enzyme cloned from the straw mushroom, Volvariellavolvacea were studied in the following ionic liquids, 1,3-dimethylimidazolium dimethyl phosphate, [mmim][dmp], 1-ethyl-3-methylimidazolium dimethyl phosphate, [emim][dmp], 1-ethyl-3-methylimidazolium diethyl phosphate, [emim][dep] and 1-ethyl-3-methylimidazolium acetate, [emim][OAc]. Activity was determined by analyzing the hydrolysis of para-nitrobenzene carbohydrate derivatives. In general, the enzymes were most active in the dimethyl phosphate ionic liquids, followed by acetate. Generally speaking, activity decreased sharply for concentrations of [emim][dep] above 10% v/v, while the other ionic liquids showed less impact on activity up to 20% v/v.

  4. Ionic Liquids as Multi-Functional Lubricant Additives to Enhance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Merit Review 2014: Ionic Liquids as Anti-Wear Additives for Next-Generation Low-Viscosity Fuel-Efficient Engine Lubricants Ionic Liquids as Novel Engine ...

  5. Synergistic Effects of Mixing Sulfone and Ionic Liquid as Safe...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as Safe Electrolytes for Lithium Sulfur Batteries a) Structures of the ionic liquid (IL) ... A strategy of mixing both an ionic liquid and sulfone is applied in Li-S batteries to give ...

  6. VOC and HAP recovery using ionic liquids

    SciTech Connect (OSTI)

    Michael R. Milota : Kaichang Li

    2007-05-29

    During the manufacture of wood composites, paper, and to a lesser extent, lumber, large amounts of volatile organic compounds (VOCs) such as terpenes, formaldehyde, and methanol are emitted to air. Some of these compounds are hazardous air pollutants (HAPs). The air pollutants produced in the forest products industry are difficult to manage because the concentrations are very low. Presently, regenerative thermal oxidizers (RTOs and RCOs) are commonly used for the destruction of VOCs and HAPs. RTOs consume large amounts of natural gas to heat air and moisture. The combustion of natural gas generates increased CO2 and NOx, which have negative implications for global warming and air quality. The aforementioned problems are addressed by an absorption system containing a room-temperature ionic liquid (RTIL) as an absorbent. RTILs are salts, but are in liquid states at room temperature. RTILs, an emerging technology, are receiving much attention as replacements for organic solvents in industrial processes with significant cost and environmental benefits. Some of these processes include organic synthesis, extraction, and metal deposition. RTILs would be excellent absorbents for exhausts from wood products facilities because of their unique properties: no measurable vapor pressure, high solubility of wide range of organic compounds, thermal stability to 200°C (almost 400°F), and immisciblity with water. Room temperature ionic liquids were tested as possible absorbents. Four were imidizolium-based and were eight phosphonium-based. The imidizolium-based ionic liquids proved to be unstable at the conditions tested and in the presence of water. The phosphonium-based ionic liquids were stable. Most were good absorbents; however, cleaning the contaminates from the ionic liquids was problematic. This was overcome with a higher temperature (120°C) than originally proposed and a very low pressure (1 kPa. Absorption trials were conducted with tetradecy

  7. 1,2,3-triazolium ionic liquids

    DOE Patents [OSTI]

    Luebke, David; Nulwala, Hunaid; Tang, Chau

    2014-12-09

    The present invention relates to compositions of matter that are ionic liquids, the compositions comprising substituted 1,2,3-triazolium cations combined with any anion. Compositions of the invention should be useful in the separation of gases and, perhaps, as catalysts for many reactions.

  8. Solvation and Reaction in Ionic Liquids

    SciTech Connect (OSTI)

    Maroncelli, Mark

    2015-01-15

    The long-range goal of our DOE-sponsored research is to obtain a fundamental understanding of solvation effects on photo-induced charge transfer and related processes. Much of the focus during the past funding period has been on studies of ionic liquids and on characterizing various reactions with which to probe the nature of this interesting new solvent medium.

  9. Electrochemical Stability Window of Imidazolium-Based Ionic Liquids as

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrolytes for Lithium Batteries - Joint Center for Energy Storage Research June 6, 2016, Research Highlights Electrochemical Stability Window of Imidazolium-Based Ionic Liquids as Electrolytes for Lithium Batteries The electrochemical stability windows and redox limits of the ionic liquids examined in this work. 1-Alkyl-3-methylimidazolium-based ionic liquids with [PF6]- anion ([CnMIM]+[PF6]-) are the most electrochemically stable ionic liquids among the ones studied in this research.

  10. Metal-air low temperature ionic liquid cell

    SciTech Connect (OSTI)

    Friesen, Cody A; Buttry, Daniel A

    2014-11-25

    The present application relates to an electrochemical metal-air cell in which a low temperature ionic liquid is used.

  11. New Ionic Liquids with Diverse Properties - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search New Ionic Liquids with Diverse Properties Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryHundreds of new ionic liquids can be synthesized using a method invented by ORNL researchers. This innovation makes it possible to produce ionic liquids and ionic compounds with a variety of tunable chemical properties, and provides ion liquids that are nonvolatile

  12. Ionic Liquids for Utilization of Geothermal Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ionic Liquids for Utilization of Geothermal Energy Ionic Liquids for Utilization of Geothermal Energy DOE Geothermal Program Peer Review 2010 - Presentation. Project objective: to develop ionic liquids for two geothermal energy related applications. specialized_brennecke_ionic_liquids.pdf (316.21 KB) More Documents & Publications Novel Multidimensional Tracers for Geothermal Inter-Well Diagnostics track 1: Low Temp | geothermal 2015 peer review Metal Organic Heat Carriers for

  13. Synthesis of electroactive ionic liquids for flow battery applications

    SciTech Connect (OSTI)

    Anderson, Travis Mark; Ingersoll, David; Staiger, Chad; Pratt, Harry

    2015-09-01

    The present disclosure is directed to synthesizing metal ionic liquids with transition metal coordination cations, where such metal ionic liquids can be used in a flow battery. A cation of a metal ionic liquid includes a transition metal and a ligand coordinated to the transition metal.

  14. Ionic liquid containing hydroxamate and N-alkyl sulfamate ions

    DOE Patents [OSTI]

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2016-03-15

    Embodiments of the invention are related to ionic liquids and more specifically to ionic liquids used in electrochemical metal-air cells in which the ionic liquid includes a cation and an anion selected from hydroxamate and/or N-alkyl sulfamate anions.

  15. Ionic Liquids Create More Sustainable Processes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ionic Liquids Create More Sustainable Processes - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste

  16. Use of ionic liquids as coordination ligands for organometallic catalysts

    DOE Patents [OSTI]

    Li, Zaiwei; Tang, Yongchun; Cheng; Jihong

    2009-11-10

    Aspects of the present invention relate to compositions and methods for the use of ionic liquids with dissolved metal compounds as catalysts for a variety of chemical reactions. Ionic liquids are salts that generally are liquids at room temperature, and are capable of dissolving a many types of compounds that are relatively insoluble in aqueous or organic solvent systems. Specifically, ionic liquids may dissolve metal compounds to produce homogeneous and heterogeneous organometallic catalysts. One industrially-important chemical reaction that may be catalyzed by metal-containing ionic liquid catalysts is the conversion of methane to methanol.

  17. Ionic Liquids as Multifunctional Ashless Additives for Engine Lubrication |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Multifunctional Ashless Additives for Engine Lubrication Ionic Liquids as Multifunctional Ashless Additives for Engine Lubrication A group of oil-miscible ionic liquids has been developed by an ORNL-GM team as candidate lubricant additives with promising physical/chemical properties and potential multiple functionalities. deer12_qu.pdf (3.85 MB) More Documents & Publications Ionic Liquids as Multi-Functional Lubricant Additives to Enhance Engine Efficiency Vehicle

  18. Durable electrooptic devices comprising ionic liquids

    DOE Patents [OSTI]

    Agrawal, Anoop; Cronin, John P.; Tonazzi, Juan C. L.; Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.

    2005-11-01

    Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF3SO3-), bis(trifluoromethylsulfonyl)imide ((CF3SO2)2N-), bis(perfluoroethylsulfonyl)imide ((CF3CF2SO2)2N-) and tris(trifluoromethylsulfonyl)methide ((CF3SO2)3C-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes.

  19. Ionic Liquids as Novel Engine Lubricants or Lubricant Additives...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Lubricants or Lubricant Additives Ionic Liquids as Novel Engine Lubricants or Lubricant Additives Bench test results showed that compared with fully-formulated engine oils, ...

  20. Using Ionic Liquids to Make Titanium Dioxide Nanotubes - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Return to Search Using Ionic Liquids to Make Titanium Dioxide Nanotubes Oak Ridge National ... The most commonly used fabrication method is anodization of titanium metal in aqueous or ...

  1. Compositions and methods useful for ionic liquid treatment of biomass

    DOE Patents [OSTI]

    Dibble, Dean C.; Cheng, Aurelia; George, Anthe

    2014-07-29

    The present invention provides for novel compositions and methods for recycling or recovering ionic liquid used in IL pretreated cellulose and/or lignocellulosic biomass (LBM).

  2. Highly luminescent and color-tunable salicylate ionic liquids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Campbell, Paul S.; Yang, Mei; Pitz, Demian; Cybinska, Joanna; Mudring, Anja -Verena

    2014-03-11

    High quantum yields of up to 40.5 % can be achieved in salicylate-bearing ionic liquids. A range of these ionic liquids have been synthesized and their photoluminescent properties studied in detail. The differences noted can be related back to the structure of the ionic liquid cation and possible interionic interactions. It is found that shifts of emission, particularly in the pyridinium-based ionic liquids, can be related to cation–anion pairing interactions. Furthermore, facile and controlled emission color mixing is demonstrated through combining different ILs, with emission colors ranging from blue to yellow.

  3. Nanoparticle-Enhanced Ionic Liquids (NEILs) - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Nanoparticle-Enhanced Ionic Liquids (NEILs) Heat Transfer Fluids with high volumetric heat capacity as well as favorable physical properties to ...

  4. Characterization of hollow fiber supported Ionic liquid membranes...

    Office of Scientific and Technical Information (OSTI)

    Characterization of hollow fiber supported Ionic liquid membranes using microfocus X-ray computed tomography This content will become publicly available on July 2, 2017 Prev ...

  5. Ionic Liquids as Lubricants or Additives - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Marketing SummaryNew ionic liquids invented at ORNL show great promise as lubricants for aluminum and steel in combustion engines, bearings, and microelectromechanical ...

  6. Lipid extraction from microalgae using a single ionic liquid

    DOE Patents [OSTI]

    Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo

    2013-05-28

    A one-step process for the lysis of microalgae cell walls and separation of the cellular lipids for use in biofuel production by utilizing a hydrophilic ionic liquid, 1-butyl-3-methylimidazolium. The hydrophilic ionic liquid both lyses the microalgae cell walls and forms two immiscible layers, one of which consists of the lipid contents of the lysed cells. After mixture of the hydrophilic ionic liquid with a suspension of microalgae cells, gravity causes a hydrophobic lipid phase to move to a top phase where it is removed from the mixture and purified. The hydrophilic ionic liquid is recycled to lyse new microalgae suspensions.

  7. Spheroid-Encapsulated Ionic Liquids for Gas Separation - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Find More Like This Return to Search Spheroid-Encapsulated Ionic Liquids for Gas Separation National Energy Technology Laboratory Contact NETL About This Technology...

  8. Toward a Materials Genome Approach for Ionic Liquids: Synthesis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Toward a Materials Genome Approach for Ionic Liquids: Synthesis Guided by Ab Initio Property Maps Previous Next List Fangyong Yan, Michael Lartey, Kuldeep Jariwala, Sage Bowser,...

  9. Aprotic Heterocyclic Anion Triazolide Ionic Liquids - A New Class of Ionic Liquid Anion Accessed by the Huisgen Cycloaddition Reaction

    SciTech Connect (OSTI)

    Thompson, Robert L.; Damodaran, Krishnan; Luebke, David; Nulwala, Hunaid

    2013-06-01

    The triazole core is a highly versatile heterocyclic ring which can be accessed easily with the Cu(I)-catalyzed Huisgen cycloaddition reaction. Herein we present the preparation of ionic liquids that incorporate a 1,2,3-triazolide anion. These ionic liquids were prepared by a facile procedure utilizing a base-labile pivaloylmethyl group at the 1-position, which can act as precursors to 1H- 4-substituted 1,2,3-triazole. These triazoles were then subsequently converted into ionic liquids after deprotonation using an appropriate ionic liquid cation hydroxide. The densities and thermal decompositions of these ionic liquids were measured. These novel ionic liquids have potential applications in gas separations and in metal-free catalysis.

  10. Durable Electrooptic Devices Comprising Ionic Liquids

    DOE Patents [OSTI]

    Burrell, Anthony K.; Agrawal, Anoop; Cronin, John P.; Tonazzi, Juan C. L.; Warner, Benjamin P.; McCleskey, T. Mark

    2008-11-11

    Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes. Some of the electrolyte solutions color to red when devices employing the solutions are powered, leading to red or neutral electrooptic devices.

  11. Durable electrooptic devices comprising ionic liquids

    DOE Patents [OSTI]

    Burrell, Anthony K.; Agrawal, Anoop; Cronin; John P.; Tonazzi, Juan C. L.; Warner, Benjamin P.; McCleskey, T. Mark

    2009-12-15

    Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes. Some of the electrolyte solutions color to red when devices employing the solutions are powered, leading to red or neutral electrooptic devices.

  12. Durable electrooptic devices comprising ionic liquids

    DOE Patents [OSTI]

    Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.

    2006-10-10

    Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes.

  13. Carbon Dioxide and Ionic Liquid Refrigerants: Compact, Efficient Air Conditioning with Ionic Liquid-Based Refrigerants

    SciTech Connect (OSTI)

    2010-10-01

    BEETIT Project: Notre Dame is developing an air-conditioning system with a new ionic liquid and CO2 as the working fluid. Synthetic refrigerants used in air conditioning and refrigeration systems are potent GHGs and can trap 1,000 times more heat in the atmosphere than CO2 alone—making CO2 an attractive alternative for synthetic refrigerants in cooling systems. However, operating cooling systems with pure CO2 requires prohibitively high pressures and expensive hardware. Notre Dame is creating a new fluid made of CO2 and ionic liquid that enables the use of CO2 at low pressures and requires minimal changes to existing hardware and production lines. This new fluid also produces no harmful emissions and can improve the efficiency of air conditioning systems— enabling new use of CO2 as a refrigerant in cooling systems.

  14. How Mixing Tetraglyme with Ionic Liquid Changes Volumetric and Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Properties - Joint Center for Energy Storage Research April 1, 2016, Research Highlights How Mixing Tetraglyme with Ionic Liquid Changes Volumetric and Transport Properties Solvent models with opposite charges have completely different solvation structure in their mixtures with ionic liquid. Scientific Achievement Charge localization of the solvent molecules affects the liquid phase structure and transport properties in electrolyte solutions. Significance and Impact Classical molecular

  15. Gelled Ionic Liquid-Based Membranes: Achieving a 10,000 GPU Permeance for Post-Combustion Carbon Capture with Gelled Ionic Liquid-Based Membranes

    SciTech Connect (OSTI)

    2011-02-02

    IMPACCT Project: Alongside Los Alamos National Laboratory and the Electric Power Research Institute, CU-Boulder is developing a membrane made of a gelled ionic liquid to capture CO2 from the exhaust of coal-fired power plants. The membranes are created by spraying the gelled ionic liquids in thin layers onto porous support structures using a specialized coating technique. The new membrane is highly efficient at pulling CO2 out of coal-derived flue gas exhaust while restricting the flow of other materials through it. The design involves few chemicals or moving parts and is more mechanically stable than current technologies. The team is now working to further optimize the gelled materials for CO2 separation and create a membrane layer that is less than 1 micrometer thick.

  16. Porous liquids: A promising class of media for gas separation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Jinshui; Chai, Song -Hai; Qiao, Zhen -An; Mahurin, Shannon M.; Chen, Jihua; Fang, Youxing; Wan, Shun; Nelson, Kimberly; Zhang, Pengfei; Dai, Sheng

    2014-11-17

    In porous liquids with empty cavities we successfully has been successfully fabricated by surface engineering of hollow structures with suitable corona and canopy species. By taking advantage of the liquid-like polymeric matrices as a separation medium and the empty cavities as gas transport pathway, this unique porous liquid can function as a promising candidate for gas separation. A facile synthetic strategy can be further extended to other types of nanostructure-based porous liquid fabrication, opening up new opportunities for preparation of porous liquids with attractive properties for specific tasks.

  17. Soft ionization of thermally evaporated hypergolic ionic liquid aerosols

    SciTech Connect (OSTI)

    University of California; ERC, Incorporated, Edwards Air Force Base; Air Force Research Laboratory, Edwards Air Force Base; National Synchrotron Radiation Research Center; Institute of Chemistry, Hebrew University; Koh, Christine J.; Liu, Chen-Lin; Harmon, Christopher W.; Strasser, Daniel; Golan, Amir; Kostko, Oleg; Chambreau, Steven D.; Vaghjiani, Ghanshyam L.; Leone, Stephen R.

    2011-07-19

    Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)imide ([Emim+][Tf2N?]), and a reactive hypergolic ionic liquid, 1-Butyl-3-Methyl-Imidazolium Dicyanamide ([Bmim+][Dca?]), are generated by vaporizing ionic liquid submicron aerosol particles for the first time; the vaporized species are investigated by dissociative ionization with tunable vacuum ultraviolet (VUV) light, exhibiting clear intact cations, Emim+ and Bmim+, presumably originating from intact ion pairs. Mass spectra of ion pair vapor from an effusive source of the hypergolic ionic liquid show substantial reactive decomposition due to the internal energy of the molecules emanating from the source. Photoionization efficiency curves in the near threshold ionization region of isolated ion pairs of [Emim+][Tf2N?]ionic liquid vapor are compared for an aerosol source and an effusive source, revealing changes in the appearance energy due to the amount of internal energy in the ion pairs. The aerosol source has a shift to higher threshold energy (~;;0.3 eV), attributed to reduced internal energy of the isolated ion pairs. The method of ionic liquid submicron aerosol particle vaporization, for reactive ionic liquids such as hypergolic species, is a convenient, thermally ?cooler? source of isolated intact ion pairs in the gas phase compared to effusive sources.

  18. Soft ionization of thermally evaporated hypergolic ionic liquid aerosols

    SciTech Connect (OSTI)

    University of California; ERC, Incorporated, Edwards Air Force Base; Air Force Research Laboratory, Edwards Air Force Base; National Synchrotron Radiation Research Center; Koh, Christine J.; Liu, Chen-Lin; Harmon, Christopher W.; Strasser, Daniel; Golan, Amir; Kostko, Oleg; Chambreau, Steven D.; L.Vaghjiani, Ghanshyam; Leone, Stephen R.

    2012-03-16

    Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)imide ([Emim+][Tf2N?]), and a reactive hypergolic ionic liquid, 1- Butyl-3-Methyl-Imidazolium Dicyanamide ([Bmim+][Dca?]), are generated by vaporizing ionic liquid submicron aerosol particles for the first time; the vaporized species are investigated by dissociative ionization with tunable vacuum ultraviolet (VUV) light, exhibiting clear intact cations, Emim+ and Bmim+, presumably originating from intact ion pairs. Mass spectra of ion pair vapor from an effusive source of the hypergolic ionic liquid show substantial reactive decomposition due to the internal energy of the molecules emanating from the source. Photoionization efficiency curves in the near threshold ionization region of isolated ion pairs of [Emim+][Tf2N?] ionic liquid vapor are compared for an aerosol source and an effusive source, revealing changes in the appearance energy due to the amount of internal energy in the ion pairs. The aerosol source has a shift to higher threshold energy (~;;0.3 eV), attributed to reduced internal energy of the isolated ion pairs. The method of ionic liquid submicron aerosol particle vaporization, for reactive ionic liquids such as hypergolic species, is a convenient, thermally ?cooler? source of isolated intact ion pairs in the gas phase compared to effusive sources.

  19. Computational Study of Ionic Liquids | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Study of Ionic Liquids Computational Study of Ionic Liquids Illuminates Detailed CO2 Interactions Ionic liquids (ILs), which can be thought of as salts that are molten at room temperature, are being studied for use as part of CO2 adsorption and/or separation technologies. These applications depend on having strong interactions between the CO2 and the ions of the IL. In order for significant advances to occur in this area of research, the interaction between the CO2 and each IL must

  20. Phase-Changing Ionic Liquids: CO2 Capture with Ionic Liquids Involving Phase Change

    SciTech Connect (OSTI)

    2010-07-01

    IMPACCT Project: Notre Dame is developing a new CO2 capture process that uses special ionic liquids (ILs) to remove CO2 from the gas exhaust of coal-fired power plants. ILs are salts that are normally liquid at room temperature, but Notre Dame has discovered a new class of ILs that are solid at room temperature and change to liquid when they bind to CO2. Upon heating, the CO2 is released for storage, and the ILs re-solidify and donate some of the heat generated in the process to facilitate further CO2 release. These new ILs can reduce the energy required to capture CO2 from the exhaust stream of a coal-fired power plant when compared to state-ofthe- art technology.

  1. Lipid extraction from microalgae using a single ionic liquid...

    Office of Scientific and Technical Information (OSTI)

    A one-step process for the lysis of microalgae cell walls and separation of the cellular lipids for use in biofuel production by utilizing a hydrophilic ionic liquid, ...

  2. The radiation chemistry of ionic liquids: A review

    SciTech Connect (OSTI)

    Mincher, Bruce J.; Wishart, James F.

    2014-07-03

    Ionic liquids have received increasing attention as media for radiochemical separations. Recent literature includes examinations of the efficiencies and mechanisms of the solvent extraction of lanthanides, actinides and fission products into ionic liquid solutions. For radiochemical applications, including as replacement solvents for nuclear fuel reprocessing, a thorough understanding of the radiation chemistry of ionic liquids will be required. Such an understanding can be achieved based on a combination of steady-state radiolysis experiments coupled with post-irradiation product identification and pulse-radiolysis experiments to acquire kinetic information. These techniques allow for the elucidation of radiolytic mechanisms. This contribution reviews the current ionic liquid radiation chemistry literature as it affects separations, with these considerations in mind.

  3. Ionic Liquids as Novel Engine Lubricants or Lubricant Additives

    Office of Energy Efficiency and Renewable Energy (EERE)

    Bench test results showed that compared with fully-formulated engine oils, selected low-viscosity ionic liquids, used as neat lubricants or basestock, produced significantly lower friction and engine wear

  4. Vehicle Technologies Office Merit Review 2016: Ionic Liquids as Engine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lubricant Additives, Impact on Emission Control Catalysts, and Compatibility with Coatings | Department of Energy Ionic Liquids as Engine Lubricant Additives, Impact on Emission Control Catalysts, and Compatibility with Coatings Vehicle Technologies Office Merit Review 2016: Ionic Liquids as Engine Lubricant Additives, Impact on Emission Control Catalysts, and Compatibility with Coatings Presentation given by Oak Ridge National Laboratory (ORNL) at the 2016 DOE Vehicle Technologies Office

  5. Membrane contactor assisted extraction/reaction process employing ionic liquids

    DOE Patents [OSTI]

    Lin, Yupo J.; Snyder, Seth W.

    2012-02-07

    The present invention relates to a functionalized membrane contactor extraction/reaction system and method for extracting target species from multi-phase solutions utilizing ionic liquids. One preferred embodiment of the invented method and system relates to an extraction/reaction system wherein the ionic liquid extraction solutions act as both extraction solutions and reaction mediums, and allow simultaneous separation/reactions not possible with prior art technology.

  6. Ionic Liquids as Novel Lubricants and Additives | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lubricants and Additives Ionic Liquids as Novel Lubricants and Additives Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). deer07_qu.pdf (1002.21 KB) More Documents & Publications Ionic Liquids as Novel Engine Lubricants or Lubricant Additives

  7. Ionic Liquids with Ammonium Cations as Lubricants or Additives

    SciTech Connect (OSTI)

    Qu, Jun; Blau, Peter Julian; Dai, Sheng; Luo, Huimin; Truhan, Jr., John J

    2006-01-01

    Friction and wear are estimated to cost 6% of the US gross national product, or around $700 billion annually. A new class of more effective lubricants could lead to huge energy savings. Limited recent literature has suggested potential for using room-temperature ionic liquids as lubricants, however only a few out of millions (or more) of species have been evaluated. Recent ORNL work discovered a new category of ionic liquids with ammonium cations that have demonstrated promising lubricating properties as net lubricants or lubricant additives, particularly in lubricating difficult-to-lubricate metals like aluminum. More than 30% friction reduction has been observed on ammonium-based ionic liquids compared to conventional hydrocarbon oils. The inherent polarity of ionic liquids is believed to provide strong adhesion to contact surfaces and form a boundary lubricating film leading to friction and wear reductions. Other advantages of ionic liquids include (1) negligible volatility, (2) high thermal stability, (3) non-flammability, and (4) better intrinsic properties that eliminate the necessity of many expensive lubricant additives. With very flexible molecular structures, this new class of lubricants, particularly ammonium-based ionic liquids, can be tailored to fit a big variety of applications including but not limited to bearings, combustion engines, MEMS, and metal forming.

  8. The radiation chemistry of ionic liquids: A review

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mincher, Bruce J.; Wishart, James F.

    2014-07-03

    Ionic liquids have received increasing attention as media for radiochemical separations. Recent literature includes examinations of the efficiencies and mechanisms of the solvent extraction of lanthanides, actinides and fission products into ionic liquid solutions. For radiochemical applications, including as replacement solvents for nuclear fuel reprocessing, a thorough understanding of the radiation chemistry of ionic liquids will be required. Such an understanding can be achieved based on a combination of steady-state radiolysis experiments coupled with post-irradiation product identification and pulse-radiolysis experiments to acquire kinetic information. These techniques allow for the elucidation of radiolytic mechanisms. This contribution reviews the current ionic liquidmore » radiation chemistry literature as it affects separations, with these considerations in mind.« less

  9. Method and apparatus using an active ionic liquid for algae biofuel harvest and extraction

    DOE Patents [OSTI]

    Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo

    2012-11-06

    The invention relates to use of an active ionic liquid to dissolve algae cell walls. The ionic liquid is used to, in an energy efficient manner, dissolve and/or lyse an algae cell walls, which releases algae constituents used in the creation of energy, fuel, and/or cosmetic components. The ionic liquids include ionic salts having multiple charge centers, low, very low, and ultra low melting point ionic liquids, and combinations of ionic liquids. An algae treatment system is described, which processes wet algae in a lysing reactor, separates out algae constituent products, and optionally recovers the ionic liquid in an energy efficient manner.

  10. Hollow fiber-supported designer ionic liquid sponges for post-combustion CO2 scrubbing

    SciTech Connect (OSTI)

    Lee, JS; Hillesheim, PC; Huang, DK; Lively, RP; Oh, KH; Dai, S; Koros, WJ

    2012-11-30

    A proof of concept study for a new type of carbon capture system is considered for post-combustion CO2 capture based on porous hollow fiber sorbents with ionic liquids sorbed in the cell walls of the fiber. This study proves that delicate morphological features in the open-celled porous wall can be maintained during the infusion process. Mixtures of task specific ionic liquid (i.e. [BMIM][Tf2N]) and superbase (i.e. DBU) were loaded into polyamide-imide (PAI) fibers by a so-called two-step non-solvent infusion protocol. In the protocol, methanol carries ionic liquids into the pore cell walls of hollow fibers and then hexane carries superbase to create an efficient CO2 sorbent. Our ionic liquid/superbase impregnation technique overcomes a serious increase in mass transfer resistance upon reaction with CO2, thereby allowing its large scale utilization for post-combustion CO2 capture. The investigation on the effect of different pore former additives (different molecular weights of polyvinylpyrrolidone, lithium nitrate, and their mixtures) suggested that a large molecular weight of PVP (M-w; 1300k) including dope composition produces highly interconnected open cell pore structures of PAI hollow fibers. Lastly, a lumen side barrier layer was successfully formed on the bore side of neat PAI fibers by using a mixture of Neoprene (R) with crosslinking agents (TSR-633) via a post-treatment process. The lumen layer will enable heat removal from the fiber sorbents during their application in rapid thermal swing cycling processes. (C) 2012 Elsevier Ltd. All rights reserved.

  11. Electronically and ionically conductive porous material and method for manufacture of resin wafers therefrom

    DOE Patents [OSTI]

    Lin, YuPo J.; Henry, Michael P.; Snyder, Seth W.

    2011-07-12

    An electrically and ionically conductive porous material including a thermoplastic binder and one or more of anion exchange moieties or cation exchange moieties or mixtures thereof and/or one or more of a protein capture resin and an electrically conductive material. The thermoplastic binder immobilizes the moieties with respect to each other but does not substantially coat the moieties and forms the electrically conductive porous material. A wafer of the material and a method of making the material and wafer are disclosed.

  12. Electronically and ionically conductive porous material and method for manufacture of resin wafers therefrom

    DOE Patents [OSTI]

    Lin, YuPo J.; Henry, Michael P.; Snyder, Seth W.

    2008-11-18

    An electrically and ionically conductive porous material including a thermoplastic binder and one or more of anion exchange moieties or cation exchange moieties or mixtures thereof and/or one or more of a protein capture resin and an electrically conductive material. The thermoplastic binder immobilizes the moieties with respect to each other but does not substantially coat the moieties and forms the electrically conductive porous material. A wafer of the material and a method of making the material and wafer are disclosed.

  13. Physicochemical properties and toxicities of hydrophobicpiperidinium and pyrrolidinium ionic liquids

    SciTech Connect (OSTI)

    Salminen, Justin; Papaiconomou, Nicolas; Kumar, R. Anand; Lee,Jong-Min; Kerr, John; Newman, John; Prausnitz, John M.

    2007-06-25

    Some properties are reported for hydrophobic ionic liquids (IL) containing 1-methyl-1-propyl pyrrolidinium [MPPyrro]{sup +}, 1-methyl-1-butyl pyrrolidinium [MBPyrro]{sup +}, 1-methyl-1-propyl piperidinium [MPPip]{sup +}, 1-methyl-1-butyl piperidinium [MBPip]{sup +}, 1-methyl-1-octylpyrrolidinium [MOPyrro]{sup +} and 1-methyl-1-octylpiperidinium [MOPip]{sup +} cations. These liquids provide new alternatives to pyridinium and imidazolium ILs. High thermal stability of an ionic liquid increases safety in applications like rechargeable lithium-ion batteries and other electrochemical devices. Thermal properties, ionic conductivities, viscosities, and mutual solubilities with water are reported. In addition, toxicities of selected ionic liquids have been measured using a human cancer cell-line. The ILs studied here are sparingly soluble in water but hygroscopic. We show some structure-property relationships that may help to design green solvents for specific applications. While ionic liquids are claimed to be environmentally-benign solvents, as yet few data have been published to support these claims.

  14. Ionic liquid assisted hydrothermal fabrication of hierarchically organized γ-AlOOH hollow sphere

    SciTech Connect (OSTI)

    Tang, Zhe; Liu, Yunqi; Li, Guangci; Hu, Xiaofu; Liu, Chenguang

    2012-11-15

    Highlights: ► The γ-AlOOH hollow spheres were synthesized via an ionic liquid-assisted hydrothermal treatment. ► Ionic liquid plays an important role in the morphology of the product. ► Ionic liquid can be easily removed from the product and reused in next experiment. ► A “aggregation–solution–recrystallization” formation mechanism may occur in the system. -- Abstract: Hierarchically organized γ-AlOOH hollow spheres with nanoflake-like porous surface texture have been successfully synthesized via an ionic liquid-assisted hydrothermal synthesis method in citric acid monohydrate (CAMs). It was found that ionic liquid [bmim]{sup +}Cl{sup −} played an important role in the morphology of the product due to its strong interactions with reaction particles. The samples were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscope (SEM) and Transmission Electron Microscopy (TEM). The results show that the product has narrow particle size distribution (500–900 nm particle diameter range), high specific surface area (240.5 m{sup 2}/g) and large pore volume (0.61 cm{sup 3}/g). The corresponding γ-Al{sub 2}O{sub 3} hollow spheres can be obtained by calcining it at 550 °C for 3 h. The proposed formation mechanism and other influencing factors of the γ-AlOOH hollow sphere material, such as reaction temperature, reaction duration, CAMs and urea, have also been investigated.

  15. Methods for separating medical isotopes using ionic liquids

    DOE Patents [OSTI]

    Luo, Huimin; Boll, Rose Ann; Bell, Jason Richard; Dai, Sheng

    2014-10-21

    A method for extracting a radioisotope from an aqueous solution, the method comprising: a) intimately mixing a non-chelating ionic liquid with the aqueous solution to transfer at least a portion of said radioisotope to said non-chelating ionic liquid; and b) separating the non-chelating ionic liquid from the aqueous solution. In preferred embodiments, the method achieves an extraction efficiency of at least 80%, or a separation factor of at least 1.times.10.sup.4 when more than one radioisotope is included in the aqueous solution. In particular embodiments, the method is applied to the separation of medical isotopes pairs, such as Th from Ac (Th-229/Ac-225, Ac-227/Th-227), or Ra from Ac (Ac-225 and Ra-225, Ac-227 and Ra-223), or Ra from Th (Th-227 and Ra-223, Th-229 and Ra-225).

  16. Electrochemistry of Magnesium Electrolytes in Ionic Liquids for Secondary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Batteries - Joint Center for Energy Storage Research 23, 2014, Research Highlights Electrochemistry of Magnesium Electrolytes in Ionic Liquids for Secondary Batteries Cyclic voltammograms of neat DEME-BF4 (light gray) and 100 mM Mg(BH4)2 in DEME-BF4 (black). CV scan limits are chosen to represent the electrochemical stability window. Inset: magnified view with voltage range restricted to -1.5 to 1.5 V vs. Mg/Mg2+. Scientific Achievement Ionic liquids (ILs) have wide electrochemical stability

  17. Charge Transport and Glassy Dynamics in Ionic Liquids

    SciTech Connect (OSTI)

    Sangoro, Joshua R; Kremer, Friedrich

    2012-01-01

    Ionic liquids (ILs) exhibit unique features such as low melting points, low vapor pressures, wide liquidus temperature ranges, high thermal stability, high ionic conductivity, and wide electrochemical windows. As a result, they show promise for use in variety of applications: as reaction media, in batteries and supercapacitors, in solar and fuel cells, for electrochemical deposition of metals and semiconductors, for protein extraction and crystallization, and many others. Because of the ease with which they can be supercooled, ionic liquids offer new opportunities to investigate long-standing questions regarding the nature of the dynamic glass transition and its possible link to charge transport. Despite the significant steps achieved from experimental and theoretical studies, no generally accepted quantitative theory of dynamic glass transition to date has been capable of reproducing all the experimentally observed features. In this Account, we discuss recent studies of the interplay between charge transport and glassy dynamics in ionic liquids as investigated by a combination of several experimental techniques including broadband dielectric spectroscopy, pulsed field gradient nuclear magnetic resonance, dynamic mechanical spectroscopy, and differential scanning calorimetry. Based on EinsteinSmoluchowski relations, we use dielectric spectra of ionic liquids to determine diffusion coefficients in quantitative agreement with independent pulsed field gradient nuclear magnetic resonance measurements, but spanning a broader range of more than 10 orders of magnitude. This approach provides a novel opportunity to determine the electrical mobility and effective number density of charge carriers as well as their types of thermal activation from the measured dc conductivity separately. We also unravel the origin of the remarkable universality of charge transport in different classes of glass-forming ionic liquids.

  18. Fabrication of fiber supported ionic liquids and methods of use

    DOE Patents [OSTI]

    Luebke, David R; Wickramanayake, Shan

    2013-02-26

    One or more embodiments relates to the production of a fabricated fiber having an asymmetric polymer network and having an immobilized liquid such as an ionic liquid within the pores of the polymer network. The process produces the fabricated fiber in a dry-wet spinning process using a homogenous dope solution, providing significant advantage over current fabrication methods for liquid-supporting polymers. The fabricated fibers may be effectively utilized for the separation of a chemical species from a mixture based on the selection of the polymer, the liquid, and the solvent utilized in the dope.

  19. Method for synthesis of titanium dioxide nanotubes using ionic liquids

    SciTech Connect (OSTI)

    Qu, Jun; Luo, Huimin; Dai, Sheng

    2013-11-19

    The invention is directed to a method for producing titanium dioxide nanotubes, the method comprising anodizing titanium metal in contact with an electrolytic medium containing an ionic liquid. The invention is also directed to the resulting titanium dioxide nanotubes, as well as devices incorporating the nanotubes, such as photovoltaic devices, hydrogen generation devices, and hydrogen detection devices.

  20. High performance ultracapacitors with carbon nanomaterials and ionic liquids

    DOE Patents [OSTI]

    Lu, Wen; Henry, Kent Douglas

    2012-10-09

    The present invention is directed to the use of carbon nanotubes and/or electrolyte structures in various electrochemical devices, such as ultracapacitors having an ionic liquid electrolyte. The carbon nanotubes are preferably aligned carbon nanotubes. Compared to randomly entangled carbon nanotubes, aligned carbon nanotubes can have better defined pore structures and higher specific surface areas.

  1. High performance batteries with carbon nanomaterials and ionic liquids

    DOE Patents [OSTI]

    Lu, Wen

    2012-08-07

    The present invention is directed to lithium-ion batteries in general and more particularly to lithium-ion batteries based on aligned graphene ribbon anodes, V.sub.2O.sub.5 graphene ribbon composite cathodes, and ionic liquid electrolytes. The lithium-ion batteries have excellent performance metrics of cell voltages, energy densities, and power densities.

  2. Fission-Product Separation Based on Room-Temperature Ionic Liquids

    SciTech Connect (OSTI)

    Luo, Huimin; Hussey, Charles L.

    2005-09-30

    The objectives of this project are (a) to synthesize new ionic liquids tailored for the extractive separation of Cs + and Sr 2+; (b) to select optimum macrocyclic extractants through studies of complexation of fission products with macrocyclic extractants and transport in new extraction systems based on ionic liquids; (c) to develop efficient processes to recycle ionic liquids and crown ethers; and (d) to investigate chemical stabilities of ionic liquids under strong acid, strong base, and high-level-radiation conditions.

  3. Fission-Product Separation Based on Room-Temperature Ionic Liquids

    SciTech Connect (OSTI)

    Luo, Huimin; Rogers, Robin D.; Dai, Sheng, Dai; Bonnesen, Peter V.; Buchanan, A. C. III; Hussey, Charles L.

    2003-06-16

    The objectives of this project are (a) to synthesize new ionic liquids tailored for the extractive separation of Cs + and Sr 2+; (b) to select optimum macrocyclic extractants through studies of complexation of fission products with macrocyclic extractants and transport in new extraction systems based on ionic liquids; (c) to develop efficient processes to recycle ionic liquids and crown ethers; and (d) to investigate chemical stabilities of ionic liquids under strong acid, strong base, and high-level-radiation conditions.

  4. Solvent extraction of rare-earth ions based on functionalized ionic liquids

    SciTech Connect (OSTI)

    Sun, Xiaoqi; Dai, Sheng; Luo, Huimin

    2012-01-01

    We herein report the achievement of enhanced extractabilities and selectivities for separation of rare earth elements based on functionalized ionic liquids. This work highlights the potential of developing a comprehensive ionic liquid-based extraction strategy for rare earth elements using ionic liquids as both extractant and diluent.

  5. Ionic Liquids: Radiation Chemistry, Solvation Dynamics and Reactivity Patterns

    SciTech Connect (OSTI)

    Wishart,J.F.

    2008-09-29

    Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs are generally nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of chemical reactions and product distributions. Successful use of ionic liquids in radiation-filled environments, where their safety advantages could be significant, requires an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of IL radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material. An understanding of ionic liquid radiation chemistry will also facilitate pulse radiolysis studies of general chemical reactivity in ILs, which will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increases the importance of pre-solvated electron reactivity and consequently alters product distributions. Parallel studies of IL solvation phenomena using coumarin-153 dynamic Stokes shifts and polarization anisotropy decay rates are done to compare with electron solvation studies and to evaluate

  6. Can Ionic Liquids Be Used As Templating Agents For Controlled Design of Uranium-Containing Nanomaterials?

    SciTech Connect (OSTI)

    Visser, A.; Bridges, N.; Tosten, M.

    2013-04-09

    Nanostructured uranium oxides have been prepared in ionic liquids as templating agents. Using the ionic liquids as reaction media for inorganic nanomaterials takes advantage of the pre-organized structure of the ionic liquids which in turn controls the morphology of the inorganic nanomaterials. Variation of ionic liquid cation structure was investigated to determine the impact on the uranium oxide morphologies. For two ionic liquid cations, increasing the alkyl chain length increases the aspect ratio of the resulting nanostructured oxides. Understanding the resulting metal oxide morphologies could enhance fuel stability and design.

  7. Reduction of Metal Oxide to Metal using Ionic Liquids

    SciTech Connect (OSTI)

    Dr. Ramana Reddy

    2012-04-12

    A novel pathway for the high efficiency production of metal from metal oxide means of electrolysis in ionic liquids at low temperature was investigated. The main emphasis was to eliminate the use of carbon and high temperature application in the reduction of metal oxides to metals. The emphasis of this research was to produce metals such as Zn, and Pb that are normally produced by the application of very high temperatures. The reduction of zinc oxide to zinc and lead oxide to lead were investigated. This study involved three steps in accomplishing the final goal of reduction of metal oxide to metal using ionic liquids: 1) Dissolution of metal oxide in an ionic liquid, 2) Determination of reduction potential using cyclic voltammetry (CV) and 3) Reduction of the dissolved metal oxide. Ionic liquids provide additional advantage by offering a wide potential range for the deposition. In each and every step of the process, more than one process variable has been examined. Experimental results for electrochemical extraction of Zn from ZnO and Pb from PbO using eutectic mixtures of Urea ((NH2)2CO) and Choline chloride (HOC2H4N(CH3)3+Cl-) or (ChCl) in a molar ratio 2:1, varying voltage and temperatures were carried out. Fourier Transform Infra-Red (FTIR) spectroscopy studies of ionic liquids with and without metal oxide additions were conducted. FTIR and induction coupled plasma spectroscopy (ICPS) was used in the characterization of the metal oxide dissolved ionic liquid. Electrochemical experiments were conducted using EG&G potentiostat/galvanostat with three electrode cell systems. Cyclic voltammetry was used in the determination of reduction potentials for the deposition of metals. Chronoamperometric experiments were carried out in the potential range of -0.6V to -1.9V for lead and -1.4V to -1.9V for zinc. The deposits were characterized using XRD and SEM-EDS for phase, morphological and elemental analysis. The results showed that pure metal was deposited on the cathode

  8. Ionic liquid-induced synthesis of selenium nanoparticles

    SciTech Connect (OSTI)

    Langi, Bhushan; Shah, Chetan; Singh, Krishankant; Chaskar, Atul; Kumar, Manmohan; Bajaj, Parma N.

    2010-06-15

    A simple wet chemical method has been used to synthesize selenium nanoparticles by the reaction of ionic liquid with sodium selenosulphate, a selenium precursor, in the presence of polyvinyl alcohol stabilizer, in aqueous medium. The method is capable of producing spherical selenium nanoparticles in the size range of 76-150 nm under ambient conditions. This is a first report on the production of nano-selenium assisted by an ionic liquid. The synthesized nanoparticles can be separated easily from the aqueous sol by a high-speed centrifuge machine, and can be re-dispersed in an aqueous medium. The synthesized selenium nanoparticles have been characterized by X-ray diffraction, energy dispersive X-ray analysis, differential scanning calorimetry and transmission electron microscopy techniques.

  9. Ionic liquids for separation of olefin-paraffin mixtures

    DOE Patents [OSTI]

    Dai, Sheng; Luo, Huimin; Huang, Jing-Fang

    2014-07-15

    The invention is directed to an ionic liquid comprising (i) a cationic portion containing a complex of a silver (I) ion and one or more neutral ligands selected from organoamides, organoamines, olefins, and organonitriles, and (ii) an anionic portion having the chemical formula ##STR00001## wherein m and n are independently 0 or an integer of 1 or above, and p is 0 or 1, provided that when p is 0, the group --N--SO.sub.2--(CF.sub.2).sub.nCF.sub.3 subtended by p is replaced with an oxide atom connected to the shown sulfur atom. The invention is also directed to a method for separating an olefin from an olefin-paraffin mixture by passing the mixture through a layer of the ionic liquid described above.

  10. Ionic liquids for separation of olefin-paraffin mixtures

    DOE Patents [OSTI]

    Dai, Sheng; Luo, Huimin; Huang, Jing-Fang

    2013-09-17

    The invention is directed to an ionic liquid comprising (i) a cationic portion containing a complex of a silver (I) ion and one or more neutral ligands selected from organoamides, organoamines, olefins, and organonitriles, and (ii) an anionic portion having the chemical formula ##STR00001## wherein m and n are independently 0 or an integer of 1 or above, and p is 0 or 1, provided that when p is 0, the group --N--SO.sub.2--(CF.sub.2).sub.nCF.sub.3 subtended by p is replaced with an oxide atom connected to the shown sulfur atom. The invention is also directed to a method for separating an olefin from an olefin-paraffin mixture by passing the mixture through a layer of the ionic liquid described above.

  11. IONIC LIQUIDS: RADIATION CHEMISTRY, SOLVATION DYNAMICS AND REACTIVITY PATTERNS.

    SciTech Connect (OSTI)

    WISHART,J.F.

    2007-10-01

    energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs are generally nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of chemical reactions and product distributions. Successful use of ionic liquids in radiation-filled environments, where their safety advantages could be significant, requires an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of IL radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material. An understanding of ionic liquid radiation chemistry will also facilitate pulse radiolysis studies of general chemical reactivity in ILs, which will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increases the importance of pre-solvated electron reactivity and consequently alters product distributions. Parallel studies of IL solvation phenomena using coumarin-153 dynamic Stokes shifts and polarization anisotropy decay rates are done to compare with electron solvation studies and to evaluate the influence of ILs on charge transport processes. Methods. Picosecond pulse radiolysis studies at BNL

  12. A roadmap to uranium ionic liquids: Anti-crystal engineering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yaprak, Damla; Spielberg, Eike T.; Bäcker, Tobias; Richter, Mark; Mallick, Bert; Klein, Axel; Mudring, Anja -Verena

    2014-04-15

    In the search for uranium-based ionic liquids, tris(N,N-dialkyldithiocarbamato)uranylates have been synthesized as salts of the 1-butyl-3-methylimidazolium (C4mim) cation. As dithiocarbamate ligands binding to the UO22+ unit, tetra-, penta-, hexa-, and heptamethylenedithiocarbamates, N,N-diethyldithiocarbamate, N-methyl-N-propyldithiocarbamate, N-ethyl-N-propyldithiocarbamate, and N-methyl-N-butyldithiocarbamate have been explored. X-ray single-crystal diffraction allowed unambiguous structural characterization of all compounds except N-methyl-N-butyldithiocarbamate, which is obtained as a glassy material only. In addition, powder X-ray diffraction as well as vibrational and UV/Vis spectroscopy, supported by computational methods, were used to characterize the products. Differential scanning calorimetry was employed to investigate the phase-transition behavior depending on the N,N-dialkyldithiocarbamato ligand with the aim tomore » establish structure–property relationships regarding the ionic liquid formation capability. Compounds with the least symmetric N,N-dialkyldithiocarbamato ligand and hence the least symmetric anions, tris(N-methyl-N-propyldithiocarbamato)uranylate, tris(N-ethyl-N-propyldithiocarbamato)uranylate, and tris(N-methyl-N-butyldithiocarbamato)uranylate, lead to the formation of (room-temperature) ionic liquids, which confirms that low-symmetry ions are indeed suitable to suppress crystallization. As a result, these materials combine low melting points, stable complex formation, and hydrophobicity and are therefore excellent candidates for nuclear fuel purification and recovery.« less

  13. Understanding the impact of ionic liquid pretreatment on eucalyptus

    SciTech Connect (OSTI)

    Centikol, Ozgul; Dibble, Dean; Cheng, Gang; Kent, Michael S; Knierim, Manfred; Melnichenko, Yuri B

    2010-01-01

    The development of cost-competitive biofuels necessitates the realization of advanced biomass pretreatment technologies. Ionic liquids provide a basis for one of the most promising pretreatment technologies and are known to allow effective processing of cellulose and some biomass species. Here, we demonstrate that the ionic liquid 1-ethyl-3-methyl imidazolium acetate, [C2mim][OAc], induces structural changes at the molecular level in the cell wall of Eucalyptus globulus. Deacetylation of xylan, acetylation of the lignin units, selective removal of guaiacyl units (increasing the syringyl:guaiacyl ratio) and decreased {beta}-ether content were the most prominent changes observed. Scanning electron microscopy images of the plant cell wall sections reveal extensive swelling during [C2mim][OAc] pretreatment. X-ray diffraction measurements indicate a change in cellulose crystal structure from cellulose I to cellulose II after [C2mim][OAc] pretreatment. Enzymatic saccharification of the pretreated material produced increased sugar yields and improved hydrolysis kinetics after [C2mim][OAc] pretreatment. These results provide new insight into the mechanism of ionic liquid pretreatment and reaffirm that this approach may be promising for the production of cellulosic biofuels from woody biomass.

  14. Predictive model for ionic liquid extraction solvents for rare earth elements

    SciTech Connect (OSTI)

    Grabda, Mariusz; Oleszek, Sylwia; Panigrahi, Mrutyunjay; Kozak, Dmytro; Shibata, Etsuro; Nakamura, Takashi; Eckert, Franck

    2015-12-31

    The purpose of our study was to select the most effective ionic liquid extraction solvents for dysprosium (III) fluoride using a theoretical approach. Conductor-like Screening Model for Real Solvents (COSMO-RS), based on quantum chemistry and the statistical thermodynamics of predefined DyF{sub 3}-ionic liquid systems, was applied to reach the target. Chemical potentials of the salt were predicted in 4,400 different ionic liquids. On the base of these predictions set of ionic liquids’ ions, manifesting significant decrease of the chemical potentials, were selected. Considering the calculated physicochemical properties (hydrophobicity, viscosity) of the ionic liquids containing these specific ions, the most effective extraction solvents for liquid-liquid extraction of DyF{sub 3} were proposed. The obtained results indicate that the COSMO-RS approach can be applied to quickly screen the affinity of any rare earth element for a large number of ionic liquid systems, before extensive experimental tests.

  15. Synthesis and characterization of new class of ionic liquids containing phenolate anion

    SciTech Connect (OSTI)

    Lethesh, Kallidanthiyil Chellappan; Wilfred, Cecilia Devi; Taha, M. F.; Thanabalan, M.

    2014-10-24

    In these manuscript novel ionic liquids containing a new class of 'phenolate' anions was synthesized and characterized. 1-methylmidazole with different alkyl chains such as butyl, hexyl and octyl groups was used as the cationic part. All the ionic liquids were obtained as liquids at room temperature. The synthesized ionic liquids were characterized using {sup 1}H NMR and {sup 13}C NMR spectroscopy. The thermal stability of the ionic liquids was studied using thermo gravimetric analysis (TGA). The effect of temperature on the density and viscosity of the ionic liquids were studied over a temperature range from 293.15 K to 373.15K at atmospheric pressure. From the experimental values of density, the molecular volume, standard molar entropy and the lattice energy of the ionic liquids were calculated.

  16. Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis

    SciTech Connect (OSTI)

    Zhao, Hua; Jones, Cecil L; Baker, Gary A; Xia, Shuqian; Olubajo, Olarongbe; Person, Vernecia

    2009-01-01

    The efficient conversion of lignocellulosic materials into fuel ethanol has become a research priority in producing affordable and renewable energy. The pretreatment of lignocelluloses is known to be key to the fast enzymatic hydrolysis of cellulose. Recently, certain ionic liquids (ILs)were found capable of dissolving more than 10 wt% cellulose. Preliminary investigations [Dadi, A.P., Varanasi, S., Schall, C.A., 2006. Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol. Bioeng. 95, 904 910; Liu, L., Chen, H., 2006. Enzymatic hydrolysis of cellulose materials treated with ionic liquid [BMIM]Cl. Chin. Sci. Bull. 51, 2432 2436; Dadi, A.P., Schall, C.A., Varanasi, S., 2007. Mitigation of cellulose recalcitrance to enzymatic hydrolysis by ionic liquid pretreatment. Appl. Biochem. Biotechnol. 137 140, 407 421] suggest that celluloses regenerated from IL solutions are subject to faster saccharification than untreated substrates. These encouraging results offer the possibility of using ILs as alternative and nonvolatile solvents for cellulose pretreatment. However, these studies are limited to two chloride-based ILs: (a) 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), which is a corrosive, toxic and extremely hygroscopic solid (m.p. 70 C), and (b) 1-allyl-3-methylimidazolium chloride ([AMIM]Cl), which is viscous and has a reactive side-chain. Therefore, more in-depth research involving other ILs is much needed to explore this promising pretreatment route. For this reason, we studied a number of chloride- and acetate-based ILs for cellulose regeneration, including several ILs newly developed in our laboratory. This will enable us to select inexpensive, efficient and environmentally benign solvents for processing cellulosic biomass. Our data confirm that all regenerated celluloses are less crystalline (58 75% lower) and more accessible to cellulase (>2 times) than untreated substrates. As a result, regenerated Avicel

  17. Synthesis of Highly Ordered TiO2 Nanotubes Using Ionic Liquids for Photovoltaics Applications

    SciTech Connect (OSTI)

    2009-04-01

    This factsheet describes a study that deals with a new, green approach of synthesizing highly ordered TiO2 nanotubes using ionic liquids for photovoltaics (PV) applications.

  18. EERE Success Story-Ionic Liquids Used as Wear Reduction, Wins...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The ionic liquids create nanostructured protective films on lubricated metal surfaces, reducing friction and providing protection from wear. Because this technology can potentially ...

  19. Crowding and Anomalous Capacitance at an Electrode–Ionic Liquid...

    Office of Scientific and Technical Information (OSTI)

    Crowding and Anomalous Capacitance at an ElectrodeIonic Liquid Interface Observed Using Operando X-ray Scattering Citation Details In-Document Search Title: Crowding and ...

  20. Understanding the effect of side groups in ionic liquids on carbon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the effect of side groups in ionic liquids on carbon-capture properties: a combined experimental and theoretical effort Previous Next List Fangyong Yan, Michael Lartey, Krishnan...

  1. Methods of using ionic liquids having a fluoride anion as solvents

    DOE Patents [OSTI]

    Pagoria, Philip; Maiti, Amitesh; Gash, Alexander; Han, Thomas Yong; Orme, Christine; Fried, Laurence

    2011-12-06

    A method in one embodiment includes contacting a strongly hydrogen bonded organic material with an ionic liquid having a fluoride anion for solubilizing the strongly hydrogen bonded organic material; and maintaining the ionic liquid at a temperature of about 90.degree. C. or less during the contacting. A method in another embodiment includes contacting a strongly hydrogen bonded organic material with an ionic liquid having an acetate or formate anion for solubilizing the strongly hydrogen bonded organic material; and maintaining the ionic liquid at a temperature of less than about 90.degree. C. during the contacting.

  2. Tandem dissolution of UO 3 in amide-based acidic ionic liquid and in situ electrodeposition of UO 2 with regeneration of the ionic liquid: a closed cycle

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wanigasekara, Eranda; Freiderich, John W.; Sun, Xiao-Guang; Meisner, Roberta A.; Luo, Huimin; Delmau, Lætitia H.; Dai, Sheng; Moyer, Bruce A.

    2016-05-19

    A closed cycle is demonstrated for the tandem dissolution and electroreduction of UO3 to UO2 with regeneration of the acidic ionic liquid. The dissolution is achieved by use of the acidic ionic liquid N,N-dimethylacetimidium bis(trifluoromethanesulfonimide) in 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonimide) serving as the diluent. Bulk electrolysis performed at 1.0 V vs. Ag reference yields a dark brown-black uranium deposit (UO2) on the cathode. Anodic oxidation of water in the presence of dimethylacetamide regenerates the acidic ionic liquid. We have demonstrated the individual steps in the cycle together with a sequential dissolution, electroreduction, and regeneration cycle.

  3. Polarizability effects on the structure and dynamics of ionic liquids

    SciTech Connect (OSTI)

    Cavalcante, Ary de Oliveira; Ribeiro, Mauro C. C.; Skaf, Munir S.

    2014-04-14

    Polarization effects on the structure and dynamics of ionic liquids are investigated using molecular dynamics simulations. Four different ionic liquids were simulated, formed by the anions Cl{sup ?} and PF{sub 6}{sup ?}, treated as single fixed charge sites, and the 1-n-alkyl-3-methylimidazolium cations (1-ethyl and 1-butyl-), which are polarizable. The partial charge fluctuation of the cations is provided by the electronegativity equalization model (EEM) and a complete parameter set for the cations electronegativity (?) and hardness (J) is presented. Results obtained from a non-polarizable model for the cations are also reported for comparison. Relative to the fixed charged model, the equilibrium structure of the first solvation shell around the imidazolium cations shows that inclusion of EEM polarization forces brings cations closer to each other and that anions are preferentially distributed above and below the plane of the imidazolium ring. The polarizable model yields faster translational and reorientational dynamics than the fixed charges model in the rotational-diffusion regime. In this sense, the polarizable model dynamics is in better agreement with the experimental data.

  4. Separation of Fission Products Based on Ionic Liquids: Anion Effect

    SciTech Connect (OSTI)

    Luo, Huimin; Dai, Sheng; Bonnesen, Peter V.

    2004-03-28

    The applications of ionic liquids (ILs) as new separation media have been actively investigated recently. The most commonly studied class of ILs for such applications is based on dialkyl imidazolium cations. In comparison with conventional molecular solvents, ILs exhibit enhanced distribution coefficients for a number of complexing neutral ligands in extraction of metal ions from aqueous solutions. The effect of the alkyl chain length of imidazolium cations on the distribution coefficients of solvent extraction using crown ethers was the subject of a number of the previous investigations. The distribution coefficients have been found to decrease with the alkyl chain length of the IL cations. This observation implies that the extraction process also involves the exchange of the IL cations with metal ions. The longer the alkyl chain lengths of the IL cations are, the more hydrophobic the IL cations are and the more difficult to be transported into aqueous phases via ion exchange. Accordingly, the ion-exchange process is another unique property of IL-based extractions involving charged species. Here, we report the investigation about the effect of the variation of IL anions on the solvent extraction of metal ions using crown ethers as extractants. The elucidation of different solvation effects involved in ionic liquids could lead to optimized separation media for these novel solvents.

  5. Development of an Ionic-Liquid Absorption Heat Pump

    SciTech Connect (OSTI)

    Holcomb, Don

    2011-03-29

    Solar Fueled Products (SFP) is developing an innovative ionic-liquid absorption heat pump (ILAHP). The development of an ILAHP is extremely significant, as it could result in annual savings of more than 190 billion kW h of electrical energy and $19 billion. This absorption cooler uses about 75 percent less electricity than conventional cooling and heating units. The ILAHP also has significant environmental sustainability benefits, due to reduced CO2 emissions. Phase I established the feasibility and showed the economic viability of an ILAHP with these key accomplishments: • Used the breakthrough capabilities provided by ionic liquids which overcome the key difficulties of the common absorption coolers. • Showed that the theoretical thermodynamic performance of an ILAHP is similar to existing absorption-cooling systems. • Established that the half-effect absorption cycle reduces the peak generator temperature, improving collector efficiency and reducing collector area. • Component testing demonstrated that the most critical components, absorber and generator, operate well with conventional heat exchangers. • Showed the economic viability of an ILAHP. The significant energy savings, sustainability benefits, and economic viability are compelling reasons to continue the ILAHP development.

  6. EERE Success Story—Ionic Liquids Used as Wear Reduction, Wins R&D 100 Award

    Broader source: Energy.gov [DOE]

    Partnered with Shell Global Solutions, the Oak Ridge National Laboratory (ORNL) has developed ionic liquids (salts in a liquid state at ambient temperatures) that can be used as friction and wear reduction additives for lubricating oils.

  7. Synergistic Effects of Mixing Sulfone and Ionic Liquid as Safe Electrolytes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Lithium Sulfur Batteries - Joint Center for Energy Storage Research November 24, 2014, Research Highlights Synergistic Effects of Mixing Sulfone and Ionic Liquid as Safe Electrolytes for Lithium Sulfur Batteries a) Structures of the ionic liquid (IL) and sulfone b) ionic conductivity (σ) vs IL ratio c) CV of C-S cathode in IL/sulfone mixture d) cycling performance Scientific Achievement A strategy of mixing both an ionic liquid and sulfone is applied in Li-S batteries to give

  8. Metal-air cell comprising an electrolyte with a room temperature ionic liquid and hygroscopic additive

    DOE Patents [OSTI]

    Friesen, Cody A.; Krishnan, Ramkumar; Tang, Toni; Wolfe, Derek

    2014-08-19

    An electrochemical cell comprising an electrolyte comprising water and a hydrophobic ionic liquid comprising positive ions and negative ions. The electrochemical cell also includes an air electrode configured to absorb and reduce oxygen. A hydrophilic or hygroscopic additive modulates the hydrophobicity of the ionic liquid to maintain a concentration of the water in the electrolyte is between 0.001 mol % and 25 mol %.

  9. Method of purifying a gas stream using 1,2,3-triazolium ionic liquids

    DOE Patents [OSTI]

    Luebke, David; Nulwala, Hunald; Tang, Chau

    2014-12-09

    A method for separating a target gas from a gaseous mixture using 1,2,3-triazolium ionic liquids is presented. Industrial effluent streams may be cleaned by removing carbon dioxide from the stream by contacting the effluent stream with a 1,2,3-triazolium ionic liquid compound.

  10. Ionic Liquids: Radiation Chemistry, Solvation Dynamics and Reactivity Patterns

    SciTech Connect (OSTI)

    Wishart, J.F.

    2011-06-12

    Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs generally have low volatilities and are combustion-resistant, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of primary radiation chemistry, charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of reactions and product distributions. We study these issues by characterization of primary radiolysis products and measurements of their yields and reactivity, quantification of electron solvation dynamics and scavenging of electrons in different states of solvation. From this knowledge we wish to learn how to predict radiolytic mechanisms and control them or mitigate their effects on the properties of materials used in nuclear fuel processing, for example, and to apply IL radiation chemistry to answer questions about general chemical reactivity in ionic liquids that will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that the slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increase the importance of pre-solvated electron reactivity and consequently alter product distributions and subsequent chemistry. This difference from conventional solvents has profound effects on predicting and controlling radiolytic yields

  11. Microstructure of room temperature ionic liquids at stepped graphite electrodes

    SciTech Connect (OSTI)

    Feng, Guang; Li, Song; Zhao, Wei; Cummings, Peter T.

    2015-07-14

    Molecular dynamics simulations of room temperature ionic liquid (RTIL) [emim][TFSI] at stepped graphite electrodes were performed to investigate the influence of the thickness of the electrode surface step on the microstructure of interfacial RTILs. A strong correlation was observed between the interfacial RTIL structure and the step thickness in electrode surface as well as the ion size. Specifically, when the step thickness is commensurate with ion size, the interfacial layering of cation/anion is more evident; whereas, the layering tends to be less defined when the step thickness is close to the half of ion size. Furthermore, two-dimensional microstructure of ion layers exhibits different patterns and alignments of counter-ion/co-ion lattice at neutral and charged electrodes. As the cation/anion layering could impose considerable effects on ion diffusion, the detailed information of interfacial RTILs at stepped graphite presented here would help to understand the molecular mechanism of RTIL-electrode interfaces in supercapacitors.

  12. Nonlinear transport in ionic liquid gated strontium titanate nanowires

    SciTech Connect (OSTI)

    Bretz-Sullivan, Terence M.; Goldman, A. M.

    2015-09-14

    Measurements of the current-voltage (I–V) characteristics of ionic liquid gated nanometer scale channels of strontium titanate have been carried out. At low gate voltages, the I–V characteristics exhibit a large voltage threshold for conduction and a nonlinear power law behavior at all temperatures measured. The source-drain current of these nanowires scales as a power law of the difference between the source-drain voltage and the threshold voltage. The scaling behavior of the I–V characteristic is reminiscent of collective electronic transport through an array of quantum dots. At large gate voltages, the narrow channel acts as a quasi-1D wire whose conductance follows Landauer's formula for multichannel transport.

  13. Fission-Product Separation Based on Room-Temperature Ionic Liquids (OR08SP24-16)

    SciTech Connect (OSTI)

    Luo, Huimin; Bonnesen, Peter V.; Rogers, Robin D.; Dai, Sheng; Buchanan, A. C. III; Hussey, Charles L.

    2002-06-15

    The objectives of this project are (a) to synthesize new ionic liquids tailored for the extractive separation of Cs + and Sr 2+; (b) to select optimum macrocyclic extractants through studies of complexation of fission products with macrocyclic extractants and transport in new extraction systems based on ionic liquids; (c) to develop efficient processes to recycle ionic liquids and crown ethers; and (d) to investigate chemical stabilities of ionic liquids under strong acid, strong base, and high-level-radiation conditions.

  14. New ionic liquids based on complexation of dipropylsulfide and AlCl3 for electrochodeposition of aluminum

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fang, Youxing; Jiang, Xueguang; Dai, Sheng; Sun, Xiao-Guang

    2015-01-01

    A new kind of ionic liquid based on complexation of dipropyl sulfide (DPS) and AlCl3 has been prepared. The equivalent concentration of AlCl3 in the ionic liquid is as high as 2.3 M. More importantly, it is highly fluidic and exhibits an ambient ionic conductivity of 1.25 x 10-4 S cm-1. This new ionic liquid can be successfully used as an electrolyte for electrodeposition of aluminum.

  15. Probing the interaction of ionic liquids with graphene using surface-enhanced Raman spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mahurin, Shannon Mark; Dai, Sheng; Surwade, Sumedh P.; Crespo, Marcos

    2015-12-17

    We report an in situ measurement of the interaction of an imidazolium-based room temperature ionic liquid with both pure silver and a graphene-over-silver electrode under an applied electrochemical potential. At a negative applied potential, overall signal intensity increased indicating enhanced ionic liquid concentration at both silver and graphene electrodes. Vibrational modes associated with the imidazolium ring exhibited greater intensity enhancements and larger peak shifts compared with the anion indicating that the cation adsorbs with the ring and alkyl chain parallel to the electrode surface for both silver and graphene. In contrast to the silver, the surface enhanced Raman spectra ofmore » the ionic liquid near graphene showed shifts in the cation peaks even at no applied potential because of the strong π–π interaction between the ionic liquid and the graphene. Furthermore, the intensity of the graphene peak decreased in the presence of ionic liquid possibly due to the interaction between the ionic liquid and graphene. In conclusion, these results illustrate the effectiveness of surface-enhanced Raman spectroscopy to investigate electrolyte interactions with graphene at the liquid/electrode interface.« less

  16. Probing the interaction of ionic liquids with graphene using surface-enhanced Raman spectroscopy

    SciTech Connect (OSTI)

    Mahurin, Shannon Mark; Dai, Sheng; Surwade, Sumedh P.; Crespo, Marcos

    2015-12-17

    We report an in situ measurement of the interaction of an imidazolium-based room temperature ionic liquid with both pure silver and a graphene-over-silver electrode under an applied electrochemical potential. At a negative applied potential, overall signal intensity increased indicating enhanced ionic liquid concentration at both silver and graphene electrodes. Vibrational modes associated with the imidazolium ring exhibited greater intensity enhancements and larger peak shifts compared with the anion indicating that the cation adsorbs with the ring and alkyl chain parallel to the electrode surface for both silver and graphene. In contrast to the silver, the surface enhanced Raman spectra of the ionic liquid near graphene showed shifts in the cation peaks even at no applied potential because of the strong π–π interaction between the ionic liquid and the graphene. Furthermore, the intensity of the graphene peak decreased in the presence of ionic liquid possibly due to the interaction between the ionic liquid and graphene. In conclusion, these results illustrate the effectiveness of surface-enhanced Raman spectroscopy to investigate electrolyte interactions with graphene at the liquid/electrode interface.

  17. Complex Capacitance Scaling in Ionic Liquids-Filled Nanopores

    SciTech Connect (OSTI)

    Sumpter, Bobby G

    2011-01-01

    Recent experiments have shown that the capacitance of subnanometer pores increases anomalously as the pore width decreases, thereby opening a new avenue for developing supercapacitors with enhanced energy density. However, this behavior is still subject to some controversy since its physical origins are not well understood. Using atomistic simulations, we show that the capacitance of slit-shaped nanopores in contact with room-temperature ionic liquids exhibits a U-shaped scaling behavior in pores with widths from 0.75 to 1.26 nm. The left branch of the capacitance scaling curve directly corresponds to the anomalous capacitance increase and thus reproduces the experimental observations. The right branch of the curve indirectly agrees with experimental findings that so far have received little attention. The overall U-shaped scaling behavior provides insights on the origins of the difficulty in experimentally observing the pore-width-dependent capacitance. We establish a theoretical framework for understanding the capacitance of electrical double layers in nanopores and provide mechanistic details into the origins of the observed scaling behavior. The framework highlights the critical role of 'ion solvation' in controlling pore capacitance and the importance of choosing anion/cation couples carefully for optimal energy storage in a given pore system.

  18. Complex Capacitance Scaling in Ionic Liquids-filled Nanopores

    SciTech Connect (OSTI)

    Qiao, Rui; Huang, Jingsong; Meunier, Vincent; Sumpter, Bobby G; Peng, Wu

    2011-01-01

    Recent experiments have shown that the capacitance of sub-nanometer pores increases anomalously as the pore width decreases, thereby opening a new avenue for developing supercapacitors with enhanced energy density. However, this behavior is still subject to some controversy since its physical origins are not well understood. Using atomistic simulations, we show that the capacitance of slit-shaped nanopores in contact with room-temperature ionic liquids exhibits a U-shaped scaling behavior in pores with width from 0.75 to 1.26 nm. The left branch of the capacitance scaling curve directly corresponds to the anomalous capacitance increase and thus reproduces the experimental observations. The right branch of the curve indirectly agrees with experimental findings that so far have received little attention. The overall U-shaped scaling behavior provides insights on the origins of the difficulty in experimentally observing the pore-width dependent capacitance. We establish a theoretical framework for understanding the capacitance of electrical double layers in nanopores and provide mechanistic details into the origins of the observed scaling behavior. The framework highlights the critical role of ion solvation in controlling pore capacitance and the importance of choosing anion/cation couples carefully for optimal energy storage in a given pore system.

  19. Microstructure of room temperature ionic liquids at stepped graphite electrodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Feng, Guang; Li, Song; Zhao, Wei; Cummings, Peter T.

    2015-07-14

    Molecular dynamics simulations of room temperature ionic liquid (RTIL) [emim][TFSI] at stepped graphite electrodes were performed to investigate the influence of the thickness of the electrode surface step on the microstructure of interfacial RTILs. A strong correlation was observed between the interfacial RTIL structure and the step thickness in electrode surface as well as the ion size. Specifically, when the step thickness is commensurate with ion size, the interfacial layering of cation/anion is more evident; whereas, the layering tends to be less defined when the step thickness is close to the half of ion size. Furthermore, two-dimensional microstructure of ionmore » layers exhibits different patterns and alignments of counter-ion/co-ion lattice at neutral and charged electrodes. As the cation/anion layering could impose considerable effects on ion diffusion, the detailed information of interfacial RTILs at stepped graphite presented here would help to understand the molecular mechanism of RTIL-electrode interfaces in supercapacitors.« less

  20. EFFECTS OF GAMMA RADIATION ON ELECTROCHEMICAL PROPERTIES OF IONIC LIQUIDS

    SciTech Connect (OSTI)

    Visser, A; Nicholas Bridges, N; Thad Adams, T; John Mickalonis, J; Mark02 Williamson, M

    2009-04-21

    The electrochemical properties of ionic liquids (ILs) make them attractive for possible replacement of inorganic salts in high temperature molten salt electrochemical processing of nuclear fuel. To be a feasible replacement solvent, ILs need to be stable in moderate and high doses of radiation without adverse chemical and physical effects. Here, we exposed seven different ILs to a 1.2 MGy dose of gamma radiation to investigate their physical and chemical properties as they related to radiological stability. The azolium-based ILs experienced the greatest change in appearance, but these ILs were chemically more stable to gamma radiation than some of the other classes of ILs tested, due to the presence of aromatic electrons in the azolium ring. All the ILs exhibited a decrease in their conductivity and electrochemical window (at least 1.1 V), both of which could affect the utility of ILs in electrochemical processing. The concentration of the irradiation decomposition products was less than 3 mole %, with no impurities detectable using NMR techniques.

  1. 81929 - Fission-Product Separation Based on Room - Temperature Ionic Liquids

    SciTech Connect (OSTI)

    Robin D. Rogers

    2004-12-09

    This project has demonstrated that Sr2+ and Cs+ can be selectively extracted from aqueous solutions into ionic liquids using crown ethers and that unprecedented large distribution coefficients can be achieved for these fission products. The volume of secondary wastes can be significantly minimized with this new separation technology. Through the current EMSP funding, the solvent extraction technology based on ionic liquids has been shown to be viable and can potentially provide the most efficient separation of problematic fission products from high level wastes. The key results from the current funding period are the development of highly selective extraction process for cesium ions based on crown ethers and calixarenes, optimization of selectivities of extractants via systematic change of ionic liquids, and investigation of task-specific ionic liquids incorporating both complexant and solvent characteristics.

  2. High Temperature/Low Humidity Polymer Electrolytes Derived from Ionic Liquids

    Broader source: Energy.gov [DOE]

    Presentation on High Temperature/Low Humidity Polymer Electrolytes Derived from Ionic Liquids to the High Temperature Membrane Working Group Meeting held in Arlington, Virginia, May 26,2005.

  3. Enhanced Gas Absorption in the Ionic Liquid 1-n-Hexyl-3-methylimidazol...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Enhanced Gas Absorption in the Ionic Liquid 1-n-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide (hmimTfsub 2N) Confined in Silica Slit Pores: A ...

  4. Elucidating graphene - Ionic Liquid interfacial region: a combined experimental and computational study

    SciTech Connect (OSTI)

    Vijayakumar, M.; Schwenzer, Birgit; Shutthanandan, V.; Hu, Jian Z.; Liu, Jun; Aksay, Ilhan A.

    2014-01-10

    The interfacial region between graphene and an imidazolium based ionic liquid is studied using spectroscopic analysis and computational modelling. This combined approach reveals that the molecular level structure of the interfacial region is significantly influenced by functional group defects on the graphene surface.The combined experimental and computational study reveals that the molecular structure at interfacial region between graphene and imidazolium based ionic liquid is defined by the hydroxyl functional groups on the graphene surface

  5. EERE Success Story-Ionic Liquid Pretreatment Process for Biomass Is

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Successfully Implemented at Larger Scale | Department of Energy Ionic Liquid Pretreatment Process for Biomass Is Successfully Implemented at Larger Scale EERE Success Story-Ionic Liquid Pretreatment Process for Biomass Is Successfully Implemented at Larger Scale June 3, 2014 - 10:50am Addthis DOE-funded researchers have shown that a new, highly effective pretreatment process used in the production of biofuel can be executed at a larger scale than ever achieved before. Before biofuel can be

  6. Ionic Liquids as New Solvents for Improved Separation of Medical Isotopes -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Energy Analysis Energy Analysis Advanced Materials Advanced Materials Find More Like This Return to Search Ionic Liquids as New Solvents for Improved Separation of Medical Isotopes Oak Ridge National Laboratory Contact ORNL About This Technology Publications: PDF Document Publication 11-G00234_ID2580 (2).pdf (942 KB) Technology Marketing SummaryA series of ionic liquids (ILs) have recently been applied as new solvents for potentially effective separation of different

  7. Thermostable cellulases, and mutants thereof, capable of hydrolyzing cellulose in ionic liquid

    DOE Patents [OSTI]

    Sapra, Rajat; Datta, Supratim; Chen, Zhiwei; Holmes, Bradley M.; Simmons, Blake A.; Blanch, Harvey W.

    2016-04-26

    The present invention provides for a composition comprising an ionic liquid and a thermostable cellulose, and a method of hydrolyzing a cellulose, comprising: (a) providing a composition comprising a solution comprising an ionic liquid and a cellulose, and (b) introducing a thermostable cellulase to the solution, such that the cellulose is hydrolyzed by the cellulase. The present invention also provides for a Thermatoga maritima thermostable cellulase mutant with increased cellulase activity.

  8. The Importance of Ion Packing on the Dynamics of Ionic Liquids during Micropore Charging

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    He, Yadong; Qiao, Rui; Vatamanu, Jenel; Borodin, Oleg; Bedrov, Dmitry; Huang, Jingsong; Sumpter, Bobby G.

    2015-12-07

    There is an emerging concern that using room-temperature ionic liquids (RTILs) together with microporous electrodes may compromise supercapacitors power density in spite of their benefit for enhancing energy density due to possibly slow transport of ions inside narrow pores. Based on molecular simulations of the diffusion of EMIM+ and TFSI ions in slit-shaped micropores (width < 2 nm,) under conditions similar to those during pore charging, we show that, in pores that accommodate only a single layer of ions, the ions diffuse increasingly faster as the pore becomes charged, even faster than Na^+ ions in bulk water. However, this trendmore » can be reversed when the pore becomes highly charged. In pores wide enough to fit more than one layer of ions, the ion diffusion is typically slower than in the bulk, and only changes modestly as the pore becomes charged. Analysis of these results revealed that the fast (or slow) diffusion of ions inside a micropore is correlated most strongly with the dense (or loose) ion packing inside the pore during charging. The molecular details of ions and the precise width of pores modify these trends relatively weakly, except when the pore size is so narrow that the conformation of ions is strongly constrained by the pore walls. Insight from these results should be useful for establishing guidelines for the design of RTILs and porous electrode materials for supercapacitors.« less

  9. The Importance of Ion Packing on the Dynamics of Ionic Liquids during Micropore Charging

    SciTech Connect (OSTI)

    He, Yadong; Qiao, Rui; Vatamanu, Jenel; Borodin, Oleg; Bedrov, Dmitry; Huang, Jingsong; Sumpter, Bobby G.

    2015-12-07

    There is an emerging concern that using room-temperature ionic liquids (RTILs) together with microporous electrodes may compromise supercapacitors power density in spite of their benefit for enhancing energy density due to possibly slow transport of ions inside narrow pores. Based on molecular simulations of the diffusion of EMIM+ and TFSI ions in slit-shaped micropores (width < 2 nm,) under conditions similar to those during pore charging, we show that, in pores that accommodate only a single layer of ions, the ions diffuse increasingly faster as the pore becomes charged, even faster than Na^+ ions in bulk water. However, this trend can be reversed when the pore becomes highly charged. In pores wide enough to fit more than one layer of ions, the ion diffusion is typically slower than in the bulk, and only changes modestly as the pore becomes charged. Analysis of these results revealed that the fast (or slow) diffusion of ions inside a micropore is correlated most strongly with the dense (or loose) ion packing inside the pore during charging. The molecular details of ions and the precise width of pores modify these trends relatively weakly, except when the pore size is so narrow that the conformation of ions is strongly constrained by the pore walls. Insight from these results should be useful for establishing guidelines for the design of RTILs and porous electrode materials for supercapacitors.

  10. Ionic Liquids as Novel Lubricants and /or Lubricant Additives

    SciTech Connect (OSTI)

    Qu, J.; Viola, M. B.

    2013-10-31

    This ORNL-GM CRADA developed ionic liquids (ILs) as novel lubricants or oil additives for engine lubrication. A new group of oil-miscible ILs have been designed and synthesized with high thermal stability, non-corrosiveness, excellent wettability, and most importantly effective anti-scuffing/anti-wear and friction reduction characteristics. Mechanistic analysis attributes the superior lubricating performance of IL additives to their physical and chemical interactions with metallic surfaces. Working with a leading lubricant formulation company, the team has successfully developed a prototype low-viscosity engine oil using a phosphonium-phosphate IL as an anti-wear additive. Tribological bench tests of the IL-additized formulated oil showed 20-33% lower friction in mixed and elastohydrodynamic lubrication and 38-92% lower wear in boundary lubrication when compared with commercial Mobil 1 and Mobil Clean 5W-30 engine oils. High-temperature, high load (HTHL) full-size engine tests confirmed the excellent anti-wear performance for the IL-additized engine oil. Sequence VID engine dynamometer tests demonstrated an improved fuel economy by >2% for this IL-additized engine oil benchmarked against the Mobil 1 5W-30 oil. In addition, accelerated catalyst aging tests suggest that the IL additive may potentially have less adverse impact on three-way catalysts compared to the conventional ZDDP. Follow-on research is needed for further development and optimization of IL chemistry and oil formulation to fully meet ILSAC GF-5 specifications and further enhance the automotive engine efficiency and durability.

  11. On the radiation stability of crown ethers in ionic liquids.

    SciTech Connect (OSTI)

    Shkrob, I.; Marin, T.; Dietz, M.

    2011-04-14

    Crown ethers (CEs) are macrocyclic ionophores used for the separation of strontium-90 from acidic nuclear waste streams. Room temperature ionic liquids (ILs) are presently being considered as replacements for traditional molecular solvents employed in such separations. It is desirable that the extraction efficacy obtained with such solvents should not deteriorate in the strong radiation fields generated by decaying radionuclides. This deterioration will depend on the extent of radiation damage to both the IL solvent and the CE solute. While radiation damage to ILs has been extensively studied, the issue of the radiation stability of crown ethers, particularly in an IL matrix, has not been adequately addressed. With this in mind, we have employed electron paramagnetic resonance (EPR) spectroscopy to study the formation of CE-related radicals in the radiolysis of selected CEs in ILs incorporating aromatic (imidazolium and pyridinium) cations. The crown ethers have been found to yield primarily hydrogen loss radicals, H atoms, and the formyl radical. In the low-dose regime, the relative yield of these radicals increases linearly with the mole fraction of the solute, suggesting negligible transfer of the excitation energy from the solvent to the solute; that is, the solvent has a 'radioprotective' effect. The damage to the CE in the loading region of practical interest is relatively low. Under such conditions, the main chemical pathway leading to decreased extraction performance is protonation of the macrocycle. At high radiation doses, sufficient to increase the acidity of the IL solvent significantly, such proton complexes compete with the solvent cations as electron traps. In this regime, the CEs will rapidly degrade as the result of H abstraction from the CE ring by the released H atoms. Thus, the radiation dose to which a CE/IL system is exposed must be maintained at a level sufficiently low to avoid this regime.

  12. Thermodynamics and kinetics of gas storage in porous liquids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Fei; Yang, Fengchang; Huang, Jingsong; Sumpter, Bobby G.; Qiao, Rui

    2016-07-05

    The recent synthesis of organic molecular liquids with permanent porosity (Giri et al., Nature, 2015, 527, 216) opens up exciting new avenues for gas capture, storage, and separation. Using molecular dynamics simulations, we study the thermodynamics and kinetics for the storage of CH4, CO2, and N2 molecules in porous liquids consisting of crown-ether substituted cage molecules in a 15-crown-5 solvent. It is found that the gas storage capacity per cage molecule follows the order of CH4 > CO2 > N2, which does not correlate simply with the size of gas molecules. Different gas molecules are stored inside the cage differently,more » e.g., CO2 molecules prefer the cage s core while CH4 molecules favor both the core and the branch regions. All gas molecules considered can enter the cage essentially without energy barriers, and their dynamics inside the cage are only slightly hindered by the nanoscale confinement. In addition, all gas molecules can leave the cage on nanosecond time scale by overcoming a modest energy penalty. The molecular mechanisms of these observations are clarified.« less

  13. Decoupling charge transport from the structural dynamics in room temperature ionic liquids

    SciTech Connect (OSTI)

    Griffin, Phillip; Agapov, Alexander L; Kisliuk, Alexander; Sun, Xiao-Guang; Dai, Sheng; Novikov, Vladimir; Sokolov, Alexei P

    2011-01-01

    Light scattering and dielectric spectroscopy measurements were performed on the room temperature ionic liquid (RTIL) [C4mim][NTf2] in a broad temperature and frequency range. Ionic conductivity was used to estimate self-diffusion of ions, while light scattering was used to study structural relaxation. We demonstrate that the ionic diffusion decouples from the structural relaxation process as the temperature of the sample decreases toward Tg. The strength of the decoupling appears to be significantly lower than that expected for a supercooled liquid of similar fragility. The structural relaxation process in the RTIL follows well the high-temperature mode coupling theory (MCT) scenario. Using the MCT analysis we estimated the dynamic crossover temperature in [C4mim][NTf2] to be Tc 225 5 K. However, our analysis reveals no sign of the dynamic crossover in the ionic diffusion process.

  14. Ionic Liquids as Novel Lubricants and Additives for Diesel Engine Applications

    SciTech Connect (OSTI)

    Qu, Jun; Blau, Peter Julian; Dai, Sheng; Luo, Huimin; Meyer III, Harry M

    2009-01-01

    The lubricating properties of two ionic liquids with the same anion but different cations, one ammonium IL [C8H17]3NH.Tf2N and one imidazolium IL C10mim.Tf2N, were evaluated both in neat form and as oil additives. Experiments were conducted using a standardized reciprocating sliding test using a segment of a Cr-plated diesel engine piston ring against a grey cast iron flat specimen with simulated honing marks as on the engine cylinder liner. The selected ionic liquids were benchmarked against conventional hydrocarbon oils. Substantial friction and wear reductions, up to 55% and 34%, respectively, were achieved for the neat ionic liquids compared to a fully-formulated 15W40 engine oil. Adding 5 vol% ILs into mineral oil has demonstrated significant improvement in the lubricity. One blend even outperformed the 15W40 engine oil with 9% lower friction and 34% less wear. Lubrication regime modeling, worn surface morphology examination, and surface chemical analysis were conducted to help understand the lubricating mechanisms for ionic liquids. Results suggest great potential for using ionic liquids as base lubricants or lubricant additives for diesel engine applications.

  15. Topological defects in electric double layers of ionic liquids at carbon interfaces

    SciTech Connect (OSTI)

    Black, Jennifer M.; Okatan, Mahmut Baris; Feng, Guang; Cummings, Peter T.; Kalinin, Sergei V.; Balke, Nina

    2015-06-07

    The structure and properties of the electrical double layer in ionic liquids is of interest in a wide range of areas including energy storage, catalysis, lubrication, and many more. Theories describing the electrical double layer for ionic liquids have been proposed, however a full molecular level description of the double layer is lacking. To date, studies have been predominantly focused on ion distributions normal to the surface, however the 3D nature of the electrical double layer in ionic liquids requires a full picture of the double layer structure not only normal to the surface, but also in plane. Here we utilize 3D force mapping to probe the in plane structure of an ionic liquid at a graphite interface and report the direct observation of the structure and properties of topological defects. The observation of ion layering at structural defects such as step-edges, reinforced by molecular dynamics simulations, defines the spatial resolution of the method. Observation of defects allows for the establishment of the universality of ionic liquid behavior vs. separation from the carbon surface and to map internal defect structure. In conclusion, these studies offer a universal pathway for probing the internal structure of topological defects in soft condensed matter on the nanometer level in three dimensions.

  16. Topological defects in electric double layers of ionic liquids at carbon interfaces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Black, Jennifer M.; Okatan, Mahmut Baris; Feng, Guang; Cummings, Peter T.; Kalinin, Sergei V.; Balke, Nina

    2015-06-07

    The structure and properties of the electrical double layer in ionic liquids is of interest in a wide range of areas including energy storage, catalysis, lubrication, and many more. Theories describing the electrical double layer for ionic liquids have been proposed, however a full molecular level description of the double layer is lacking. To date, studies have been predominantly focused on ion distributions normal to the surface, however the 3D nature of the electrical double layer in ionic liquids requires a full picture of the double layer structure not only normal to the surface, but also in plane. Here wemore » utilize 3D force mapping to probe the in plane structure of an ionic liquid at a graphite interface and report the direct observation of the structure and properties of topological defects. The observation of ion layering at structural defects such as step-edges, reinforced by molecular dynamics simulations, defines the spatial resolution of the method. Observation of defects allows for the establishment of the universality of ionic liquid behavior vs. separation from the carbon surface and to map internal defect structure. In conclusion, these studies offer a universal pathway for probing the internal structure of topological defects in soft condensed matter on the nanometer level in three dimensions.« less

  17. Studies of ionic liquids in lithium-ion battery test systems

    SciTech Connect (OSTI)

    Salminen, Justin; Prausnitz, John M.; Newman, John

    2006-06-01

    In this work, thermal and electrochemical properties of neat and mixed ionic liquid - lithium salt systems have been studied. The presence of a lithium salt causes both thermal and phase-behavior changes. Differential scanning calorimeter DSC and thermal gravimetric analysis TGA were used for thermal analysis for several imidazolium bis(trifluoromethylsulfonyl)imide, trifluoromethansulfonate, BF{sub 4}, and PF{sub 6} systems. Conductivities and diffusion coefficient have been measured for some selected systems. Chemical reactions in electrode - ionic liquid electrolyte interfaces were studied by interfacial impedance measurements. Lithium-lithium and lithium-carbon cells were studied at open circuit and a charged system. The ionic liquids studied include various imidazolium systems that are already known to be electrochemically unstable in the presence of lithium metal. In this work the development of interfacial resistance is shown in a Li|BMIMBF{sub 4} + LiBF{sub 4}|Li cell as well as results from some cycling experiments. As the ionic liquid reacts with the lithium electrode the interfacial resistance increases. The results show the magnitude of reactivity due to reduction of the ionic liquid electrolyte that eventually has a detrimental effect on battery performance.

  18. Catalytic Conversion of Biomass to Fuels and Chemicals Using Ionic Liquids

    SciTech Connect (OSTI)

    Liu, Wei; Zheng, Richard; Brown, Heather; Li, Joanne; Holladay, John; Cooper, Alan; Rao, Tony

    2012-04-13

    This project provides critical innovations and fundamental understandings that enable development of an economically-viable process for catalytic conversion of biomass (sugar) to 5-hydroxymethylfurfural (HMF). A low-cost ionic liquid (Cyphos 106) is discovered for fast conversion of fructose into HMF under moderate reaction conditions without any catalyst. HMF yield from fructose is almost 100% on the carbon molar basis. Adsorbent materials and adsorption process are invented and demonstrated for separation of 99% pure HMF product and recovery of the ionic liquid from the reaction mixtures. The adsorbent material appears very stable in repeated adsorption/regeneration cycles. Novel membrane-coated adsorbent particles are made and demonstrated to achieve excellent adsorption separation performances at low pressure drops. This is very important for a practical adsorption process because ionic liquids are known of high viscosity. Nearly 100% conversion (or dissolution) of cellulose in the catalytic ionic liquid into small molecules was observed. It is promising to produce HMF, sugars and other fermentable species directly from cellulose feedstock. However, several gaps were identified and could not be resolved in this project. Reaction and separation tests at larger scales are needed to minimize impacts of incidental errors on the mass balance and to show 99.9% ionic liquid recovery. The cellulose reaction tests were troubled with poor reproducibility. Further studies on cellulose conversion in ionic liquids under better controlled conditions are necessary to delineate reaction products, dissolution kinetics, effects of mass and heat transfer in the reactor on conversion, and separation of final reaction mixtures.

  19. Ionic liquids and ionic liquid acids with high temperature stability for fuel cell and other high temperature applications, method of making and cell employing same

    DOE Patents [OSTI]

    Angell, C. Austen; Xu, Wu; Belieres, Jean-Philippe; Yoshizawa, Masahiro

    2011-01-11

    Disclosed are developments in high temperature fuel cells including ionic liquids with high temperature stability and the storage of inorganic acids as di-anion salts of low volatility. The formation of ionically conducting liquids of this type having conductivities of unprecedented magnitude for non-aqueous systems is described. The stability of the di-anion configuration is shown to play a role in the high performance of the non-corrosive proton-transfer ionic liquids as high temperature fuel cell electrolytes. Performance of simple H.sub.2(g) electrolyte/O.sub.2(g) fuel cells with the new electrolytes is described. Superior performance both at ambient temperature and temperatures up to and above 200.degree. C. are achieved. Both neutral proton transfer salts and the acid salts with HSO.sup.-.sub.4 anions, give good results, the bisulphate case being particularly good at low temperatures and very high temperatures. The performance of all electrolytes is improved by the addition of a small amount of involatile base of pK.sub.a value intermediate between those of the acid and base that make the bulk electrolyte. The preferred case is the imidazole-doped ethylammonium hydrogensulfate which yields behavior superior in all respects to that of the industry standard phosphoric acid electrolyte.

  20. New ionic liquids based on complexation of dipropylsulfide and AlCl3 for electrochodeposition of aluminum

    SciTech Connect (OSTI)

    Fang, Youxing; Jiang, Xueguang; Dai, Sheng; Sun, Xiao-Guang

    2015-01-01

    A new kind of ionic liquid based on complexation of dipropyl sulfide (DPS) and AlCl3 has been prepared. The equivalent concentration of AlCl3 in the ionic liquid is as high as 2.3 M. More importantly, it is highly fluidic and exhibits an ambient ionic conductivity of 1.25 x 10-4 S cm-1. This new ionic liquid can be successfully used as an electrolyte for electrodeposition of aluminum.

  1. NOvel Fission Product Separation Based on Room-Temperature Ionic liquids

    SciTech Connect (OSTI)

    Hussey, Charles L.

    2005-11-13

    The effective extraction of Cs+ and Sr2+ into a relatively new and heretofore untested hydrophobic ionic liquid, tri-n-butylmethylammonium bis[(trifluoromethyl)sulfonyl]imide was demonstrated with calix[4]arene-bis(tert-octylbenzo-crown-6) and dicyclohexano-18-crown-6, respectively. The coordinated Cs+ and Sr2+ were subsequently removed from the ionic liquid extraction solvent by an electrochemical reduction process carried out at mercury electrodes. This process is non-destructive, permitting the ionic liquid and ionophores to be recycled. Although the process is based on mercury electrodes, this is a benefit rather than a detriment because the liquid mercury containing the Cs and Sr can be easily transported to another electrochemical cell where the Cs and Sr could be electrochemically recovered from the mercury amalgam and concentrated into a minimum volume of water or some other inexpensive solvent. This should facilitate the development of a suitable waste form for the extracted Cs+ and Sr2+. Thus, the feasibility of the proposed ionic liquid-based extraction cycle for the removal of 137Cs+ and 90Sr2+ from simulated aqueous tank waste was demonstrated.

  2. Thickness-dependent structural arrangement in nano-confined imidazolium-based ionic liquid films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rouha, Michael; Cummings, Peter T.

    2014-12-24

    Here we report that a fundamental understanding of interfacial processes in nano-confined ionic liquids is crucial to increase the performance of modern energy storage devices. It is well-known that interfaces between electrodes and ionic liquids exhibit structures distinct from that of the bulk liquid. Following the recent interest in these systems, we studied the structure of thin ionic liquid films confined in flexible uncharged carbon nano-pores by using fully-atomistic molecular dynamics simulations. We show that the interfacial ions self-assemble into a closely-packed chequerboard-like pattern, formed by both cations and anions in direct contact with the pore wall, and that withinmore » this structure we find changes dependent on the thickness of the confined films. At low coverages a dense layer is formed in which both the imidazolium-ring and its alkyl-tail lie parallel to the pore wall. With increasing coverage the alkyl-chains reorient perpendicular to the surface, making space for additional ions until a densified highly ordered layer is formed. This wall-induced self-patterning into interfacial layers with significantly higher than bulk density is consistent with recent experimental and theoretical studies of similar systems. Lastly, this work reveals additional molecular-level details on the effect of the film-thickness on the structure and density of the ionic liquid.« less

  3. Fluorescence energy transfer efficiency in labeled yeast cytochrome c: a rapid screen for ion biocompatibility in aqueous ionic liquids

    SciTech Connect (OSTI)

    Baker, Sheila N; Zhao, Hua; Pandey, Siddharth; Heller, William T; Bright, Frank; Baker, Gary A

    2011-01-01

    A fluorescence energy transfer de-quenching assay was implemented to follow the equilibrium unfolding behaviour of site-specific tetramethylrhodamine-labelled yeast cytochrome c in aqueous ionic liquid solutions; additionally, this approach offers the prospect of naked eye screening for biocompatible ion combinations in hydrated ionic liquids.

  4. Azobenzene-based organic salts with ionic liquid and liquid crystalline properties

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stappert, Kathrin; Muthmann, Johanna; Spielberg, Eike T.; Mudring, Anja -Verena

    2015-07-23

    Two sets of new azobenzene-based bromide salts are synthesized, and their thermal photochromic properties are studied. Both sets are based on the imidazolium cation. The first set (1) features a symmetric biscation where two imidazolium head groups (Im) with different alkyl chains (Cn) are connected to a central azobenzene unit (Azo): [Azo(C1-Im-Cn)2]; n = 6, 8, 10, 12, 14. The other one contains an n-alkyl-imidazolium cation (Cn-Im) bearing a terminal azobenzene unit (C1-Azo) substituted with an alkoxy chain (O-Cm) of either two (2) or six (3) carbon atoms: [C1-Azo-O-Cm-Im-Cn]; m = 2, n = 8, 10, 12 and m =more » 6, n = 8, 10, 12, 14, 16. For both cation classes, the influence of alkyl chains of varying length on the thermal phase behavior was investigated by differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). For five compounds (Azo(-C1-Im-C12)2 (1d), Azo(-C1-Im-C12)2 (1e), C1-Azo-O-C2-Im-C10 (2b), C1-Azo-O-C2-Im-C12 (2c), and C1-Azo-O-C6-Im-C16 (3e)), the formation of a liquid crystalline phase was observed. The biscationic salts (1) are all comparatively high melting organic salts (180–240 °C), and only the two representatives with long alkylchains (C12 and C14) exhibit liquid crystallinity. The monocationic salts with an O–C2 bridge (2) melt between 140 and 170 °C depending on the alkyl chain length, but from an alkyl chain of 10 and more carbon atoms on they form a smectic A liquid crystalline phase. The representatives of the third set with a O–C6 bridge qualify as ionic liquids with melting points less than 100 °C. However, only the representative with a hexadecyl chain forms a liquid crystalline phase. Representative single crystals for all sets of cations could be grown that allowed for single crystal structure analysis. Together with small-angle X-ray scattering experiments they allow for a more detailed understanding of the thermal properties. As a result, through irradiation with UV-light (320–366 nm) all

  5. Azobenzene-based organic salts with ionic liquid and liquid crystalline properties

    SciTech Connect (OSTI)

    Stappert, Kathrin; Muthmann, Johanna; Spielberg, Eike T.; Mudring, Anja -Verena

    2015-07-23

    Two sets of new azobenzene-based bromide salts are synthesized, and their thermal photochromic properties are studied. Both sets are based on the imidazolium cation. The first set (1) features a symmetric biscation where two imidazolium head groups (Im) with different alkyl chains (Cn) are connected to a central azobenzene unit (Azo): [Azo(C1-Im-Cn)2]; n = 6, 8, 10, 12, 14. The other one contains an n-alkyl-imidazolium cation (Cn-Im) bearing a terminal azobenzene unit (C1-Azo) substituted with an alkoxy chain (O-Cm) of either two (2) or six (3) carbon atoms: [C1-Azo-O-Cm-Im-Cn]; m = 2, n = 8, 10, 12 and m = 6, n = 8, 10, 12, 14, 16. For both cation classes, the influence of alkyl chains of varying length on the thermal phase behavior was investigated by differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). For five compounds (Azo(-C1-Im-C12)2 (1d), Azo(-C1-Im-C12)2 (1e), C1-Azo-O-C2-Im-C10 (2b), C1-Azo-O-C2-Im-C12 (2c), and C1-Azo-O-C6-Im-C16 (3e)), the formation of a liquid crystalline phase was observed. The biscationic salts (1) are all comparatively high melting organic salts (180–240 °C), and only the two representatives with long alkylchains (C12 and C14) exhibit liquid crystallinity. The monocationic salts with an O–C2 bridge (2) melt between 140 and 170 °C depending on the alkyl chain length, but from an alkyl chain of 10 and more carbon atoms on they form a smectic A liquid crystalline phase. The representatives of the third set with a O–C6 bridge qualify as ionic liquids with melting points less than 100 °C. However, only the representative with a hexadecyl chain forms a liquid crystalline phase. Representative single crystals for all sets of cations could be grown that allowed for single crystal structure analysis. Together with small-angle X-ray scattering experiments they allow for a more detailed understanding of the thermal properties. As a result, through irradiation with UV

  6. Electrochemical Polishing Applications and EIS of a Novel Choline Chloride-Based Ionic Liquid

    SciTech Connect (OSTI)

    Wixtrom, Alex I.; Buhler, Jessica E.; Reece, Charles E.; Abdel-Fattah, Tarek M.

    2013-06-01

    Minimal surface roughness is a critical feature for high-field superconducting radio frequency (SRF) cavities used to engineer particle accelerators. Current methods for polishing Niobium cavities typically utilize solutions containing a mixture of concentrated sulfuric and hydrofluoric acid. Polishing processes such as these are effective, yet there are many hazards and costs associated with the use (and safe disposal) of the concentrated acid solutions. An alternative method for electrochemical polishing of the cavities was explored using a novel ionic liquid solution containing choline chloride. Potentiostatic electrochemical impedance spectroscopy (EIS) was used to analyze the ionic polishing solution. Final surface roughness of the Nb was found to be comparable to that of the acid-polishing method, as assessed by atomic force microscopy (AFM). This indicates that ionic liquid-based electrochemical polishing of Nb is a viable replacement for acid-based methods for preparation of SRF cavities.

  7. Ionic Liquids as templating agents in formation of uranium-containing nanomaterials

    DOE Patents [OSTI]

    Visser, Ann E; Bridges, Nicholas J

    2014-06-10

    A method for forming nanoparticles containing uranium oxide is described. The method includes combining a uranium-containing feedstock with an ionic liquid to form a mixture and holding the mixture at an elevated temperature for a period of time to form the product nanoparticles. The method can be carried out at low temperatures, for instance less than about 300.degree. C.

  8. Communication: Unusual structure and transport in ionic liquid-hexane mixtures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liang, Min; Khatun, Sufia; Castner, Edward W.

    2015-03-28

    Ionic liquids having a sufficiently amphiphilic cation can dissolve large volume fractions of alkanes, leading to mixtures with intriguing properties on molecular length scales. The trihexyl(tetradecyl)phosphonium cation paired with the bis(trifluoromethylsulfonyl)amide anion provides an ionic liquid that can dissolve large mole fractions of hexane. We present experimental results on mixtures of n-C6D14 with this ionic liquid. High- energy X-ray scattering studies reveal a persistence of the characteristic features of ionic liquid structure even for 80% dilution with n-C6D14. NMR self-diffusion results reveal decidedly non-hydrodynamic behavior where the self-diffusion of the neutral, non-polar n-C6D14 is on average a factor of 21more » times faster than for the cation. Exploitation of the unique structural and transport properties of these mixtures may lead to new opportunities for designer solvents for enhanced chemical reactivity and interface science.« less

  9. Methods for separating medical isotopes using ionic liquids ...

    Office of Scientific and Technical Information (OSTI)

    liquid with the aqueous solution to transfer at least a portion of said radioisotope ... of at least 80%, or a separation factor of at least 1.times.10.sup.4 when more ...

  10. J-aggregation of ionic liquid solutions of meso-tetrakis(4-sulfonatophenyl)porphyrin

    SciTech Connect (OSTI)

    Ali, Maroof; Kumar, Vinod; Baker, Sheila N; Baker, Gary A; Pandey, Siddharth

    2010-01-01

    The title porphyrin was dissolved in the hydrophilic ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate, [bmim][BF4], and triggered to assemble into J-aggregates by the addition of incremental volumes of water containing various amounts of acid (0.1, 0.2, or 1.0 M HCl). In contrast to recent studies, the current investigation is unique in that it centers on media that contain a predominant ionic liquid component (2.9 5.4 M [bmim][BF4]), as opposed to an aqueous electrolyte containing a small fraction of ionic liquid as dissociated solute. Complex aggregation and underlying photophysical behavior are revealed from absorption spectroscopy, steady-state fluorescence, and resonance light scattering studies. Upon addition of aqueous HCl, the efficient formation of H4TPPS2 J-aggregates from the diprotonated form of meso-tetrakis(4-sulfonatophenyl)porphyrin (H2TPPS4) occurs in [bmim][BF4]-rich media in a manner highly dependent upon the acidity, TPPS concentration, and solvent composition. The unique features of TPPS aggregation in this ionic liquid were elucidated, including the surprising disassembly of J-aggregates at higher aqueous contents, and our results are described qualitatively in terms of the molecular exciton theory. Finally, the potential of this system for the optical sensing of water at a sensitivity below 0.5 wt% is demonstrated. Overall, our findings accentuate how little is known about functional self-assembly within ionic liquids and suggest a number of avenues for exploring this completely untouched research landscape.

  11. Method to prepare nanoparticles on porous mediums

    DOE Patents [OSTI]

    Vieth, Gabriel M [Knoxville, TN; Dudney, Nancy J [Oak Ridge, TN; Dai, Sheng [Knoxville, TN

    2010-08-10

    A method to prepare porous medium decorated with nanoparticles involves contacting a suspension of nanoparticles in an ionic liquid with a porous medium such that the particles diffuse into the pores of the medium followed by heating the resulting composition to a temperature equal to or greater than the thermal decomposition temperature of the ionic liquid resulting in the removal of the liquid portion of the suspension. The nanoparticles can be a metal, an alloy, or a metal compound. The resulting compositions can be used as catalysts, sensors, or separators.

  12. Solubilities of Solutes in Ionic Liquids from a SimplePerturbed-Hard-Sphere Theory

    SciTech Connect (OSTI)

    Qin, Yuan; Prausnitz, John M.

    2005-09-20

    In recent years, several publications have provided solubilities of ordinary gases and liquids in ionic liquids. This work reports an initial attempt to correlate the experimental data using a perturbed-hard-sphere theory; the perturbation is based on well-known molecular physics when the solution is considered as a dielectric continuum. For this correlation, the most important input parameters are hard-sphere diameters of the solute and of the cation and anion that constitute the ionic liquid. In addition, the correlation uses the solvent density and the solute's polarizability and dipole and quadrupole moments, if any. Dispersion-energy parameters are obtained from global correlation of solubility data. Results are given for twenty solutes in several ionic liquids at normal temperatures; in addition, some results are given for gases in two molten salts at very high temperatures. Because the theory used here is much simplified, and because experimental uncertainties (especially for gaseous solutes) are often large, the accuracy of the correlation presented here is not high; in general, predicted solubilities (Henry's constants) agree with experiment to within roughly {+-} 70%. As more reliable experimental data become available, modifications in the characterizing parameters are likely to improve accuracy. Nevertheless, even in its present form, the correlation may be useful for solvent screening in engineering design.

  13. Mesophase stabilization in ionic liquid crystals through pairing equally shaped mesogenic cations and anions

    SciTech Connect (OSTI)

    Stappert, Kathrin; Lipinski, Gregor; Kopiec, Gabriel; Spielberg, Eike T.; Mudring, Anja -Verena

    2015-07-23

    The synthesis and properties of a set of novel ionic liquid crystals with congruently shaped cations and anions are reported to check whether pairing mesogenic cations with mesogenic anions leads to a stabilization of a liquid crystalline phase. To that avail 1-alkyl-3-methyl-triazolium cations with an alkyl chain length of 10, 12, and 14 carbon atoms have been combined with p-alkyloxy-benzenesulfonate anions with different alkyl chain lengths (n = 10, 12, and 14). The corresponding triazolium iodides have been synthesized as reference compounds where the cation and anion have strong size and shape mismatch. The mesomorphic behavior of all compounds is studied by differential scanning calorimetry and polarizing optical microscopy. All compounds except 1-methyl-3-decyltriazolium iodide, which qualifies as an ionic liquid, are thermotropic ionic liquid crystals. All other compounds adopt smectic A phases. As a result, a comparison of the thermal phase behavior of the 1-methyl-3-decyltriazolium bromides to the corresponding p-alkoxy-benzensulfonates reveals that definitely the mesophase is stabilized by pairing the rod-shaped 1-alkyl-3-methyltriazolium cation with a rod-like anion of similar size.

  14. Mesophase stabilization in ionic liquid crystals through pairing equally shaped mesogenic cations and anions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stappert, Kathrin; Lipinski, Gregor; Kopiec, Gabriel; Spielberg, Eike T.; Mudring, Anja -Verena

    2015-07-23

    The synthesis and properties of a set of novel ionic liquid crystals with congruently shaped cations and anions are reported to check whether pairing mesogenic cations with mesogenic anions leads to a stabilization of a liquid crystalline phase. To that avail 1-alkyl-3-methyl-triazolium cations with an alkyl chain length of 10, 12, and 14 carbon atoms have been combined with p-alkyloxy-benzenesulfonate anions with different alkyl chain lengths (n = 10, 12, and 14). The corresponding triazolium iodides have been synthesized as reference compounds where the cation and anion have strong size and shape mismatch. The mesomorphic behavior of all compounds ismore » studied by differential scanning calorimetry and polarizing optical microscopy. All compounds except 1-methyl-3-decyltriazolium iodide, which qualifies as an ionic liquid, are thermotropic ionic liquid crystals. All other compounds adopt smectic A phases. As a result, a comparison of the thermal phase behavior of the 1-methyl-3-decyltriazolium bromides to the corresponding p-alkoxy-benzensulfonates reveals that definitely the mesophase is stabilized by pairing the rod-shaped 1-alkyl-3-methyltriazolium cation with a rod-like anion of similar size.« less

  15. Anion effects in the extraction of lanthanide 2-thenoyltrifluoroacetone complexes into an ionic liquid

    SciTech Connect (OSTI)

    Jensen, Mark P.; Beitz, James V.; Rickert, Paul G.; Borkowski, Marian; Laszak, Ivan; Dietz, Mark L.

    2012-07-01

    The extraction of trivalent lanthanides from an aqueous phase containing 1 M NaClO{sub 4} into the room temperature ionic liquid 1-butyl-3-methylimidazolium nonafluoro-1-butane sulfonate by the beta-diketone extractant 2-thenoyltrifluoroacetone (Htta) was studied. Radiotracer distribution, absorption spectroscopy, time-resolved laser-induced fluorescence spectroscopy, and X-ray absorption fine structure measurements point to the extraction of multiple lanthanide species. At low extractant concentrations, fully hydrated aqua cations of the lanthanides are present in the ionic liquid phase. As the extractant concentration is increased 1:2 and 1:3 lanthanide:tta species are observed. In contrast, 1:4 Ln:tta complexes were observed in the extraction of lanthanides by Htta into 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide. (authors)

  16. Iron hydroxyl phosphate microspheres: Microwave-solvothermal ionic liquid synthesis, morphology control, and photoluminescent properties

    SciTech Connect (OSTI)

    Cao Shaowen; Zhu Yingjie; Cui Jingbiao

    2010-07-15

    A variety of iron hydroxyl phosphate (NH{sub 4}Fe{sub 2}(PO{sub 4}){sub 2}OH.2H{sub 2}O) nanostructures such as solid microspheres, microspheres with the core in the hollow shell, and double-shelled hollow microspheres were synthesized by a simple one-step microwave-solvothermal ionic liquid method. The effects of the experimental parameters on the morphology and crystal phase of the resultant materials were investigated. Structural dependent photoluminescence was observed from the double-shelled hollow microspheres and the underlying mechanisms were discussed. - Graphical abstract: A variety of iron hydroxyl phosphate (NH{sub 4}Fe{sub 2}(PO{sub 4}){sub 2}OH.2H{sub 2}O) nanostructures were synthesized by a simple one-step microwave-solvothermal ionic liquid method. Structural dependent photoluminescence was observed from the double-shelled hollow microspheres.

  17. Recovery of sugars from ionic liquid biomass liquor by solvent extraction

    DOE Patents [OSTI]

    Brennan, Timothy Charles R.; Holmes, Bradley M.; Simmons, Blake A.; Blanch, Harvey W.

    2015-10-13

    The present invention provides for a composition comprising a solution comprising (a) an ionic liquid (IL) or ionic liquid-aqueous (ILA) phase and (b) an organic phase, wherein the solution comprises a sugar and a boronic acid. The present invention also provides for a method of removing a sugar from a solution, comprising: (a) providing a solution comprising (i) an IL or ILA phase and (ii) an organic phase, wherein the solution comprises an IL, a sugar and a boronic acid; (b) contacting the sugar with the boronic acid to form a sugar-boronic acid complex, (c) separating the organic phase and the aqueous phase, wherein the organic phase contains the sugar-boronic acid complex, and optionally (d) separating the sugar from the organic phase.

  18. Ionic liquid-functionalized mesoporous sorbents and their use in the capture of polluting gases

    DOE Patents [OSTI]

    Lee, Jong Suk; Koros, William J.; Bhuwania, Nitesh; Hillesheim, Patrick C.; Dai, Sheng

    2016-01-12

    A composite structure for capturing a gaseous electrophilic species, the composite structure comprising mesoporous refractory sorbent particles on which an ionic liquid is covalently attached, wherein said ionic liquid includes an accessible functional group that is capable of binding to said gaseous electrophilic species. In particular embodiments, the mesoporous sorbent particles are contained within refractory hollow fibers. Also described is a method for capturing a gaseous electrophilic species by use of the above-described composite structure, wherein the gaseous electrophilic species is contacted with the composite structure. In particular embodiments thereof, cooling water is passed through the refractory hollow fibers containing the IL-functionalized sorbent particles in order to facilitate capture of the gaseous electrophilic species, and then steam is passed through the refractory hollow fibers to facilitate release of the gaseous electrophilic species such that the composite structure can be re-used to capture additional gas.

  19. Methods for conversion of carbohydrates in ionic liquids to value-added chemicals

    DOE Patents [OSTI]

    Zhao, Haibo; Holladay, Johnathan E.

    2011-05-10

    Methods are described for converting carbohydrates including, e.g., monosaccharides, disaccharides, and polysaccharides in ionic liquids to value-added chemicals including furans, useful as chemical intermediates and/or feedstocks. Fructose is converted to 5-hydroxylmethylfurfural (HMF) in the presence of metal halide and acid catalysts. Glucose is effectively converted to HMF in the presence of chromium chloride catalysts. Yields of up to about 70% are achieved with low levels of impurities such as levulinic acid.

  20. Energetic Aspects of CO2 Absorption by Ionic Liquids from Quantum Monte

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carlo | Argonne Leadership Computing Facility The main image shows a projection of the energetic landscape of a CO2 molecule (oriented along the X-axis) from a high-dimensional space of QMC random walks into the real space. Inset: a matching two-dimensional slice containing the linear CO2 molecule; blue colors correspond to the nuclear regions where electrons experience strong attractive potential. William Lester, Jr. Energetic Aspects of CO2 Absorption by Ionic Liquids from Quantum Monte

  1. Synergistic Effects Between Phosphonium-Alkylphosphate Ionic Liquids and Zinc Dialkyldithiophosphate (ZDDP) as Lubricant Additives

    SciTech Connect (OSTI)

    Qu, Jun; Barnhill, William C.; Luo, Huimin; Meyer, III, Harry M.; Leonard, Donovan N.; Landauer, Alexander K.; Kheireddin, Bassem; Gao, Hong; Papke, Brian L; Dai, Sheng

    2015-07-14

    Unique synergistic effects between phosphonium-alkylphosphate ionic liquids and zinc dialkyldithiophosphate (ZDDP) are discovered when used together as lubricant additives, resulting in significant friction and wear reduction along with distinct tribofilm composition and mechanical properties. The synergism is attributed to the 30-70× higher-than-nominal concentrations of hypothetical new compounds (via anion exchange between IL and ZDDP) on the fluid surface/interface.

  2. Electron Solvation Dynamics and Reactivity in Ionic Liquids Observed by Picosecond RadiolysisTechniques

    SciTech Connect (OSTI)

    Wishart J. F.; Funston, A.M.; Szreder, T.; Cook, A.R.; Gohdo, M.

    2012-01-01

    On time scales of a nanosecond or less, radiolytically-generated excess electrons in ionic liquids undergo solvation processes and reactions that determine all subsequent chemistry and the accumulation of radiolytic damage. Using picosecond pulse radiolysis detection methods, we observed and quantified the solvation response of the electron in 1-methyl-1-butyl-pyrrolidinium bis(trifluoromethylsulfonyl)amide and used it to understand electron scavenging by a typical solute, duroquinone.

  3. Fabrication of hollow mesoporous NiO hexagonal microspheres via hydrothermal process in ionic liquid

    SciTech Connect (OSTI)

    Zhao, Jinbo; School of Materials Science and Engineering, Shandong University, 250061, Jinan ; Wu, Lili; School of Materials Science and Engineering, Shandong University, 250061, Jinan ; Zou, Ke; School of Materials Science and Engineering, Shandong University, 250061, Jinan

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Ni(OH){sub 2} precursors were synthesized in ionic liquid and water solution by hydrothermal method. Black-Right-Pointing-Pointer NiO hollow microspheres were prepared by thermal treatment of Ni(OH){sub 2} precursors. Black-Right-Pointing-Pointer NiO hollow microspheres were self-assembled by mesoporous cubic and hexagonal nanocrystals with high specific surface area. Black-Right-Pointing-Pointer The mesoporous structure is stable at 773 K. Black-Right-Pointing-Pointer The ionic liquid absorbed on the O-terminate surface of the crystals to form hydrogen bond and played key roles in determining the final shape of the NiO novel microstructure. -- Abstract: The novel NiO hexagonal hollow microspheres have been successfully prepared by annealing Ni(OH){sub 2}, which was synthesized via an ionic liquid-assisted hydrothermal method. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), N{sub 2} adsorption-desorption and Fourier transform infrared spectrometer (FTIR). The results show that the hollow NiO microstructures are self-organized by mesoporous cubic and hexagonal nanocrystals. The mesoporous structure possessed good thermal stability and high specific surface area (ca. 83 m{sup 2}/g). The ionic liquid 1-butyl-3methylimidazolium tetrafluoroborate ([Bmim][BF{sub 4}]) was found to play a key role in controlling the morphology of NiO microstructures during the hydrothermal process. The special hollow mesoporous architectures will have potential applications in many fields, such as catalysts, absorbents, sensors, drug-delivery carriers, acoustic insulators and supercapacitors.

  4. Synergistic Effects Between Phosphonium-Alkylphosphate Ionic Liquids and Zinc Dialkyldithiophosphate (ZDDP) as Lubricant Additives

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Qu, Jun; Barnhill, William C.; Luo, Huimin; Meyer, III, Harry M.; Leonard, Donovan N.; Landauer, Alexander K.; Kheireddin, Bassem; Gao, Hong; Papke, Brian L; Dai, Sheng

    2015-07-14

    Unique synergistic effects between phosphonium-alkylphosphate ionic liquids and zinc dialkyldithiophosphate (ZDDP) are discovered when used together as lubricant additives, resulting in significant friction and wear reduction along with distinct tribofilm composition and mechanical properties. The synergism is attributed to the 30-70 higher-than-nominal concentrations of hypothetical new compounds (via anion exchange between IL and ZDDP) on the fluid surface/interface.

  5. An Ionic Liquid Reaction and Separation Process for Production of Hydroxymethylfurfural from Sugars

    SciTech Connect (OSTI)

    Liu, Wei; Zheng, Feng; Li, Joanne; Cooper, Alan R.

    2014-01-01

    There has been world-wide interest to making plastics out of renewable biomass feedstock for recent years. Hydroxymethylfurfural (HMF) is viewed as an attractive alternate to terephthalic acid (TPA) for production of polyesters (PET) and polyamides. Conversion of sugars into HMF has been studied in numerous publications. In this work, a complete ionic liquid reaction and separation process is presented for nearly stoichiometric conversion of fructose into HMF. Different adsorbent materials are evaluated and silicalite material is demonstrated effective for isolation of 99% pure HMF from actual ionic liquid reaction mixtures and for recovery of the un-converted sugars and reaction intermediate along with the ionic liquid. Membrane-coated silicalite particles are prepared and studied for a practical adsorption process operated at low pressure drops but with separation performances comparable or better than the powder material. Complete conversion of fresh fructose feed into HMF in the recycled ionic liquid is shown under suitable reaction conditions. Stability of HMF product is characterized. A simplified process flow diagram is proposed based on these research results, and the key equipment such as reactor and adsorbent bed is sized for a plant of 200,000 ton/year of fructose processing capacity. The proposed HMF production process is much simpler than the current paraxylene (PX) manufacturing process from petroleum oil, which suggests substantial reduction to the capital cost and energy consumption be possible. At the equivalent value to PX on the molar basis, there can be a large gross margin for HMF production from fructose and/or sugars.

  6. Ionic Liquids as Engine Lubricant Additives, Impact on Emission Control Catalysts, and Compatibility with Coatings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ionic Liquids as Engine Lubricant Additives, Impact on Emission Control Catalysts, and Compatibility with Coatings Project ID: FT014 ORNL: Jun Qu, Todd Toops, Huimin Luo, Brian West, Harry Meyer, Donovan Leonard, William Barnhill, Yan Zhou, and William Brookshear Shell: Bassem Kheireddin and Hong Gao DOE HQ Program Manager: Kevin Stork 2016 DOE Vehicle Technologies Program Annual Merit Review, June 8, 2016 2 Managed by UT-Battelle for the U.S. Department of Energy This presentation does not

  7. Closing the Loop: Ionic Liquids from Biomass Waste Could Pretreat Plants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Destined for Biofuels | U.S. DOE Office of Science (SC) Closing the Loop: Ionic Liquids from Biomass Waste Could Pretreat Plants Destined for Biofuels Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) Community Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence

  8. Closing the Loop: Ionic Liquids from Biomass Waste Could Pretreat Plants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Destined for Biofuels | U.S. DOE Office of Science (SC) Closing the Loop: Ionic Liquids from Biomass Waste Could Pretreat Plants Destined for Biofuels Biological and Environmental Research (BER) BER Home About Research Facilities Science Highlights Searchable Archive of BER Highlights External link Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) Community Resources Contact Information Biological and Environmental Research U.S.

  9. Project Profile: Thermally-Stable Ionic Liquid Carriers for Nanoparticle-Based Heat Transfer in CSP Applications

    Broader source: Energy.gov [DOE]

    Savannah River National Laboratory, under an ARRA CSP Award, is performing research to better understand the thermal stability of low-temperature organic molten salts, which are commonly referred to as ionic liquids (ILs).

  10. Properties of some ionic liquids based on1-methyl-3-octylimidazolium and 4-methyl-N-butylpyridinium cations.

    SciTech Connect (OSTI)

    Papaiconomou, Nicolas; Yakelis, Neal; Salminen, Justin; Bergman,Robert; Prausnitz, John M.

    2005-09-29

    Syntheses are reported for ionic liquids containing 1-methyl-3octylimidazolium and 4-methyl-N-butylpyridinium cations, and trifluoromethansulfonate, dicyanamide, bis(trifluoromethylsulfonyl)imide, and nonafluorobutanesulfonate anions. Densities, melting points and glass transition points, solubility in water as well as polarities have been measured. Ionic liquids based on pyridinium cations exhibit higher melting points, lower solubility in water, and higher polarity than those based on imidazolium cations.

  11. Triazolium based ionic liquid crystals: Effect of asymmetric substitution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stappert, K.; Mudring, A. -V.

    2015-01-27

    A new series of ten different asymmetrical 1-dodecyl-3-alkyl-triazolium bromides, [C12CnTr][Br], has been synthesized and their mesomorphic behavior studied by DSC (differential scanning calorimetry), POM (polarizing optical microscopy) and SAXS (small angle X-ray scattering). The influence of the chain length of the triazolium salts is investigated to explore the effect of asymmetric substitution on the phase behaviour of these compounds. For that reason, the length of one alkyl chain was varied from 14 to 1 carbon atoms (n = 14, 12, 10, 8–4, 2, 1) while the other alkyl chain was kept at 12 carbon. Single crystal X-ray structure analysis ofmore » compounds [C12C12Tr][Br] and [C12C5Tr][Br] reveal that the cations adopt a U-shaped conformation with head-to-head arranged triazolium cores. In contrast, for [C12C1Tr][Br], a rod like shape of the cation with interdigitated alkyl chains is found. All investigated compounds are thermotropic liquid crystals. Higher ordered smectic phases, smectic C as well as smectic A phases were found depending on the chain length of the cation. Moreover, the clearing point temperature decreases with decreasing chain length with exception for the n-dodecyl-3-alkyltrizoliumbromides with the two shortest alkyl chains, [C12C2Tr][Br] and [C12C1Tr][Br], which present higher clearing temperatures (86 and 156 °C) and are structurally distinctly different.« less

  12. Effect of Molecular Weight on the Ion Transport Mechanism in Polymerized Ionic Liquids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fan, Fei; Wang, Weiyu; Holt, Adam P.; Feng, Hongbo; Uhrig, David; Lu, Xinyi; Hong, Tao; Wang, Yangyang; Kang, Nam-Goo; Mays, Jimmy; et al

    2016-06-07

    The unique properties of ionic liquids (ILs) have made them promising candidates for electrochemical applications. Polymerization of the corresponding ILs results in a new class of materials called polymerized ionic liquids (PolyILs). Though PolyILs offer the possibility to combine the high conductivity of ILs and the high mechanical strength of polymers, their conductivities are typically much lower than that of the corresponding small molecule ILs. In this study, seven PolyILs were synthesized having degrees of polymerization ranging from 1 to 333, corresponding to molecular weights (MW) from 482 to 160 400 g/mol. Depolarized dynamic light scattering, broadband dielectric spectroscopy, rheology,more » and differential scanning calorimetry were employed to systematically study the influence of MW on the mechanism of ionic transport and segmental dynamics in these materials. Finally, the modified Walden plot analysis reveals that the ion conductivity transforms from being closely coupled with structural relaxation to being strongly decoupled from it as MW increases.« less

  13. Crosslinked polymer gel electrolytes based on polyethylene glycol methacrylate and ionic liquid for lithium battery applications

    SciTech Connect (OSTI)

    Liao, Chen; Sun, Xiao-Guang; Dai, Sheng

    2013-01-01

    Gel polymer electrolytes were synthesized by copolymerization polyethylene glycol methyl ether methacrylate with polyethylene glycol dimethacrylate in the presence of a room temperature ionic liquid, methylpropylpyrrolidinium bis(trifluoromethanesulfonyl)imide (MPPY TFSI). The physical properties of gel polymer electrolytes were characterized by thermal analysis, impedance spectroscopy, and electrochemical tests. The ionic conductivities of the gel polymer electrolytes increased linearly with the amount of MPPY TFSI and were mainly attributed to the increased ion mobility as evidenced by the decreased glass transition temperatures. Li||LiFePO4 cells were assembled using the gel polymer electrolytes containing 80 wt% MPPY TFSI via an in situ polymerization method. A reversible cell capacity of 90 mAh g 1 was maintained under the current density of C/10 at room temperature, which was increased to 130 mAh g 1 by using a thinner membrane and cycling at 50 C.

  14. Characteristic evaluation of cooling technique using liquid nitrogen and metal porous media

    SciTech Connect (OSTI)

    Tanno, Yusuke; Ito, Satoshi; Hashizume, Hidetoshi

    2014-01-29

    A remountable high-temperature superconducting magnet, whose segments can be mounted and demounted repeatedly, has been proposed for construction and maintenance of superconducting magnet and inner reactor components of a fusion reactor. One of the issues in this design is that the performance of the magnet deteriorates by a local temperature rise due to Joule heating in jointing regions. In order to prevent local temperature rise, a cooling system using a cryogenic coolant and metal porous media was proposed and experimental studies have been carried out using liquid nitrogen. In this study, flow and heat transfer characteristics of cooling system using subcooled liquid nitrogen and bronze particle sintered porous media are evaluated through experiments in which the inlet degree of subcooling and flow rate of the liquid nitrogen. The flow characteristics without heat input were coincided with Erguns equation expressing single-phase flow in porous materials. The obtained boiling curve was categorized into three conditions; convection region, nucleate boiling region and mixed region with nucleate and film boiling. Wall superheat did not increase drastically with porous media after departure from nucleate boiling point, which is different from a situation of usual boiling curve in a smooth tube. The fact is important characteristic to cooling superconducting magnet to avoid its quench. Heat transfer coefficient with bronze particle sintered porous media was at least twice larger than that without the porous media. It was also indicated qualitatively that departure from nucleate boiling point and heat transfer coefficient depends on degree of subcooling and mass flow rate. The quantitative evaluation of them and further discussion for the cooling system will be performed as future tasks.

  15. Reversible Ionic Liquids as Double-Action Solvents for Efficient CO{sub 2} Capture

    SciTech Connect (OSTI)

    Charles Eckert; Charles Liotta

    2011-09-30

    We have developed a novel class of CO{sub 2} capture solvents, Reversible Ionic Liquids (RevILs), that offer high absorption capacity through two modes of capture: chemical reaction (chemisorption) and physical solubility (physisorption). These solvents are silicon containing alkaline compounds such as silylamines that form a liquid salt (ionic liquid) upon reaction with CO{sub 2}. Subsequently, modest elevations in temperature reverse the reaction and yield pure CO{sub 2} for sequestration. By incorporating Si in the molecules we have reduced the viscosity, thereby improving the mass transfer rates of CO{sub 2} absorption/desorption and decreasing the processing costs for pumping the solvent. In this project, we have made systematic changes to the structure of these compounds to improve several physical and thermodynamic properties important for CO{sub 2} capture. Through these structure-property paradigms, we have obtained a RevIL which requires only a third of the energy required by conventional aqueous MEA process for 90% CO{sub 2} capture.

  16. Reversible Ionic Liquids as Double-Action Solvents for Efficient CO2 Capture

    SciTech Connect (OSTI)

    Eckert, Charles; Liotta, Charles

    2011-09-30

    We have developed a novel class of CO{sub 2} capture solvents, Reversible Ionic Liquids (RevILs), that offer high absorption capacity through two modes of capture: chemical reaction (chemisorption) and physical solubility (physisorption). These solvents are silicon containing alkaline compounds such as silylamines that form a liquid salt (ionic liquid) upon reaction with CO{sub 2}. Subsequently, modest elevations in temperature reverse the reaction and yield pure CO{sub 2} for sequestration. By incorporating Si in the molecules we have reduced the viscosity, thereby improving the mass transfer rates of CO{sub 2} absorption/desorption and decreasing the processing costs for pumping the solvent. In this project, we have made systematic changes to the structure of these compounds to improve several physical and thermodynamic properties important for CO{sub 2} capture. Through these structure-property paradigms, we have obtained a RevIL which requires only a third of the energy required by conventional aqueous MEA process for 90% CO{sub 2} capture.

  17. Process for CO2 Capture Using Ionic Liquid That Exhibits Phase Change

    SciTech Connect (OSTI)

    Eisinger, RS; Keller, GE

    2014-11-01

    A novel process for capturing carbon dioxide from the flue gas of a coal-fired power plant has been shown to reduce parasitic power consumption substantially. The process employs an ionic liquid created at the University of Notre Dame that has a high capacity for absorbing CO2 by chemical reaction. A distinguishing property of this ionic liquid is that it changes phase from solid to liquid upon reaction with CO2. The process uses heat generated by this phase transition to lower parasitic power consumption. The driving force for CO2 separation is a combination of temperature and pressure differences; the process could even work without the addition of heat. A realistic process was created to capture CO2 efficiently. Computer simulation of the process enabled calculation of viable process conditions and power usage. The main concepts of the process were shown to work using a lab-scale apparatus. Parasitic power consumes 23% of net power generation, 55% lower than that of the monoethanolamine (MEA) process. However, capital cost is higher. The cost of electricity (COE) is 28% lower than that of the MEA process.

  18. Ionic Liquids: Breakthrough Absorption Technology for Post-Combustion CO{sub 2} Capture

    SciTech Connect (OSTI)

    Maginn, Edward

    2012-09-30

    This is the final report for DE-FC26-07NT43091 Ionic Liquids: Breakthrough Absorption Technology for Post-Combustion CO{sub 2} Capture. A detailed summary is provided of the ionic liquid (IL) discovery process, synthesis and testing results, process / systems modeling, lab-scale operational testing, corrosion testing and commercialization possibilities. The work resulted in the discovery of a new class of ionic liquids (ILs) that efficiently react with CO{sub 2} in a 1:1 stoichiometry with no water present and no increase in viscosity. The enthalpy of reaction was tuned to optimize process economics. The IL was found to have excellent corrosion behavior with and without CO{sub 2} present. In lab-scale tests, the IL was able to effectively remove CO{sub 2} from a simulated flue gas stream, although mass transfer was slower than with aqueous monoethanolamine (MEA) due to higher viscosities. The non-volatile nature of the solvent and its high thermal stability, however, make it an intriguing option. An independent systems analysis indicates that the economics of using the best IL discovered to date (NDIL0157), are at least comparable to and potentially slightly better than - the Fluor Econamine FG PlusTM process (DOE Case 12). Further work should be directed at improving mass transfer / lowering viscosity and developing commercial synthesis routes to make these ILs at scale in an inexpensive manner. Demonstration of the process at larger scales is also warranted, as is the exploration of other process configurations that leverage the anhydrous nature of the solvent and its extremely low volatility.

  19. In-Situ XANES and EXAFS Analysis of Redox Active Fe Center Ionic Liquids -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Joint Center for Energy Storage Research December 10, 2015, Research Highlights In-Situ XANES and EXAFS Analysis of Redox Active Fe Center Ionic Liquids (Top Left) Cyclic Voltammagram of Fe((OHCH2CH2)2NH)6-(CF3SO3)3 in disk electrode (solid) and in in-situ redox XANES cell (dashed). (Top Right) XANES spectra showing IL in fully oxidized and fully reduced states, showing change in Fe Kα edge on oxidation state change (Bottom) EXAFS data showing position of fully oxidized (Fe+3) state of IL,

  20. Formulation of ionic liquid electrolyte to expand the voltage window of supercapacitors

    SciTech Connect (OSTI)

    Van Aken, Katherine L.; Beidaghi, Majid; Gogotsi, Yury

    2015-03-18

    We report an effective method to expand the operating potential window (OPW) of electrochemical capacitors based on formulating the ionic liquid (IL) electrolytes. Moreover, using model electrochemical cells based on two identical onion like carbon (OLC) electrodes and two different IL electrolytes and their mixtures, it was shown that the asymmetric behavior of the electrolyte’s cation and anion toward the two electrodes limits the OPW of the cell and therefore its energy density. Additionally, a general solution to this problem is proposed by formulating the IL electrolyte mixtures to balance the capacitance of electrodes in a symmetric supercapacitor.

  1. THERMOPHYSICAL PROPERTIES OF NANOPARTICLE-ENHANCED IONIC LIQUIDS HEAT TRANSFER FLUIDS

    SciTech Connect (OSTI)

    Fox, E.

    2013-04-15

    An experimental investigation was completed on nanoparticle enhanced ionic liquid heat transfer fluids as an alternative to conventional organic based heat transfer fluids (HTFs). These nanoparticle-based HTFs have the potential to deliver higher thermal conductivity than the base fluid without a significant increase in viscosity at elevated temperatures. The effect of nanoparticle morphology and chemistry on thermophysical properties was examined. Whisker shaped nanomaterials were found to have the largest thermal conductivity temperature dependence and were also less likely to agglomerate in the base fluid than spherical shaped nanomaterials.

  2. Bias-dependent molecular-level structure of electrical double layer in ionic liquid on graphite

    SciTech Connect (OSTI)

    Black, Jennifer M; Walters, Deron; Labuda, Aleksander; Feng, Guang; Hillesheim, Patrick C; Dai, Sheng; Cummings, Peter T; Kalinin, Sergei V; Proksch, Roger; Balke, Nina

    2013-01-01

    Bias-dependent structure of electrochemical double layers at liquid-solid interfaces underpin a multitude of phenomena in virtually all areas of scientific enquiry ranging from energy storage and conversion systems, biology, to geophysics and geochemistry. Here we report the bias-evolution of the electric double layer structure of an ionic liquid on highly ordered pyrolytic graphite as a model system for carbon-based electrodes for electrochemical supercapacitors measured by atomic force microscopy. Matching the observed structures to molecular dynamics simulations allows us to resolve steric effects due to cation and anion layers. We observe reconfiguration under applied bias and the orientational transitions in the Stern layer. The synergy between molecular dynamics simulation and experiment provides a comprehensive picture of structural phenomena and long- and short range interactions. This insight will improve understanding of the mechanism of charge storage in electrochemical capacitors on a molecular level which can be used to enhance their electrochemical performance.

  3. Molecular mechanisms of ionic liquid cytotoxicity probed by an integrated experimental and computational approach

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yoo, Brian; Jing, Benxin; Jones, Stuart E.; Lamberti, Gary A.; Zhu, Yingxi; Shah, Jindal K.; Maginn, Edward J.

    2016-02-02

    Ionic liquids (ILs) are salts that remain liquid down to low temperatures, and sometimes well below room temperature. ILs have been called “green solvents” because of their extraordinarily low vapor pressure and excellent solvation power, but ecotoxicology studies have shown that some ILs exhibit greater toxicity than traditional solvents. A fundamental understanding of the molecular mechanisms responsible for IL toxicity remains elusive. Here we show that one mode of IL toxicity on unicellular organisms is driven by swelling of the cell membrane. Cytotoxicity assays, confocal laser scanning microscopy, and molecular simulations reveal that IL cations nucleate morphological defects in themore » microbial cell membrane at concentrations near the half maximal effective concentration (EC50) of several microorganisms. Lastly, cytotoxicity increases with increasing alkyl chain length of the cation due to the ability of the longer alkyl chain to more easily embed in, and ultimately disrupt, the cell membrane.« less

  4. Oil-Miscible and Non-Corrosive Phosphonium Ionic Liquids as Candidate Lubricant Additives

    SciTech Connect (OSTI)

    Yu, Bo; Bansal, Dinesh G; Qu, Jun; Sun, Xiaoqi; Luo, Huimin; Dai, Sheng; Blau, Peter Julian; Bunting, Bruce G; Mordukhovich, Gregory; Smolenski, Donald

    2012-01-01

    Ionic liquids (ILs) have been receiving considerable attention from the lubricants industry as potential friction and wear-reducing additives, but their solubility in oils is an issue. Unlike most ionic liquids that are insoluble in non-polar hydrocarbon oils, this study reports phosphonium-based ILs (PP-ILs) that are fully miscible with both mineral oil-based and synthetic lubricants. Both the cation and anion in quaternary structures, long alkyl chains, and capability of pairing the cation and the anion via a H-O bond are hypothesized to improve the compatibility between ions and neutral oil molecules. The measured viscosities of the oil-IL blends agree well with the Refutas equation that is for solutions containing multiple components. High thermal stability and non-corrosiveness were observed for the PP-ILs. Effective friction reduction and anti-wear functionality have been demonstrated in tribological tests when adding 5 wt% of a PP-IL into a base oil, suggesting potential applications for using the oil-miscible PP-ILs as lubricant additives.

  5. Ionic liquid-assisted sonochemical preparation of CeO2 nanoparticles for CO oxidation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Alammar, Tarek; Noei, Heshmat; Wang, Yuemin; Grünert, Wolfgang; Mudring, Anja -Verena

    2014-10-10

    CeO2 nanoparticles were synthesized via a one-step ultrasound synthesis in different kinds of ionic liquids based on bis(trifluoromethanesulfonylamide, [Tf2N]–, in combination with various cations including 1-butyl-3-methylimidazolium ([C4mim]+), 1-ethyl-2,3-dimethylimidazolium ([Edimim]+), butyl-pyridinium([Py4]+), 1-butyl-1-methyl-pyrrolidinium ([Pyrr14]+), and 2-hydroxyethyl-trimethylammonium ([N1112OH]+). Depending on synthetic parameters, such as ionic liquid, Ce(IV) precursor, heating method, and precipitator, formed ceria exhibits different morphologies, varying from nanospheres, nanorods, nanoribbons, and nanoflowers. The morphology, crystallinity, and chemical composition of the obtained materials were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), Raman spectroscopy, and N2 adsorption. The structural and electronic propertiesmore » of the as-prepared CeO2 samples were probed by CO adsorption using IR spectroscopy under ultrahigh vacuum conditions. The catalytic activities of CeO2 nanoparticles were investigated in the oxidation of CO. CeO2 nanospheres obtained sonochemically in [C4mim][Tf2N] exhibit the best performance for low-temperature CO oxidation. As a result, the superior catalytic performance of this material can be related to its mesoporous structure, small particle size, large surface area, and high number of surface oxygen vacancy sites.« less

  6. Synthesis and characterization of ionic liquid (EMImBF{sub 4})/Li{sup +} - chitosan membranes for ion battery

    SciTech Connect (OSTI)

    Pasaribu, Marvin H. Arcana, I Made Wahyuningrum, Deana

    2015-09-30

    Lithium ion battery has been currently developed and produced because it has a longer life time, high energycapacity, and the efficient use of lithium ion battery that is suitable for storing electrical energy. However, this battery has some drawbacks such as use liquid electrolytes that are prone to leakage and flammability during the battery charging process in high temperature. In this study, an ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4) containing Li{sup +} ions was synthesized and combined with chitosan polymer host as a polymer electrolyte membrane for lithium-ion batteries to solve this problems. This ionic liquid was obtained from the anion metathesis reaction between EMImBr and LiBF4 salt, while EMImBr was synthesized from the reaction between 1-methylimidazole and ethyl bromide utilizing Microwave Assisted Organic Synthesis (MAOS) method. The ionic liquid obtained was characterized by microstructure analysis with using NMR and FTIR spectroscopy. The polymer electrolyte membrane was characterized by analysis functional groups (FTIR), ionic conductivity (EIS), and surface morphology (SEM). The analysis results of ion conductivity by the EIS method showed the increase the ionic conductivity value of membranes from 1.30 × 10{sup −2} S cm{sup −1} for chitosan to 1.30 × 10{sup −2} S cm{sup −1} for chitosan with EMImBF4/Li{sup +}, and this result was supported by analysis the surface morphology (SEM)

  7. Leaching behavior of copper from waste printed circuit boards with Brnsted acidic ionic liquid

    SciTech Connect (OSTI)

    Huang, Jinxiu; Chen, Mengjun Chen, Haiyan; Chen, Shu; Sun, Quan

    2014-02-15

    Highlights: A Brnsted acidic ILs was used to leach Cu from WPCBs for the first time. The particle size of WPCBs has significant influence on Cu leaching rate. Cu leaching rate was higher than 99% under the optimum leaching conditions. The leaching process can be modeled with shrinking core model, and the E{sub a} was 25.36 kJ/mol. - Abstract: In this work, a Brnsted acidic ionic liquid, 1-butyl-3-methyl-imidazolium hydrogen sulfate ([bmim]HSO{sub 4}), was used to leach copper from waste printed circuit boards (WPCBs, mounted with electronic components) for the first time, and the leaching behavior of copper was discussed in detail. The results showed that after the pre-treatment, the metal distributions were different with the particle size: Cu, Zn and Al increased with the increasing particle size; while Ni, Sn and Pb were in the contrary. And the particle size has significant influence on copper leaching rate. Copper leaching rate was higher than 99%, almost 100%, when 1 g WPCBs powder was leached under the optimum conditions: particle size of 0.10.25 mm, 25 mL 80% (v/v) ionic liquid, 10 mL 30% hydrogen peroxide, solid/liquid ratio of 1/25, 70 C and 2 h. Copper leaching by [bmim]HSO{sub 4} can be modeled with the shrinking core model, controlled by diffusion through a solid product layer, and the kinetic apparent activation energy has been calculated to be 25.36 kJ/mol.

  8. Inelastic neutron scattering study on boson peaks of imidazolium-based ionic liquids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kofu, Maiko; Inamura, Yasuhiro; Podlesnyak, Andrey A.; Ehlers, Georg; Yamamuro, Osamu; Moriya, Yosuke

    2015-07-26

    Low energy excitations of 1-alkyl-3-methylimidazolium ionic liquids (ILs) have been investigated by means of neutron spectroscopy. In the spectra of inelastic scattering, a broad excitation peak referred to as a “boson peak” appeared at 1–3 meV in all of the ILs measured. The intensity of the boson peak was enhanced at the Q positions corresponding to the diffraction peaks, reflecting the in-phase vibrational nature of the boson peak. Furthermore the boson peak energy (EBP) was insensitive to the length of the alkyl-chain but changed depending on the radius of the anion. From the correlation among EBP, the anion radius, andmore » the glass transition temperature Tg, we conclude that both EBP and Tg in ILs are predominantly governed by the inter-ionic Coulomb interaction which is less influenced by the alkyl-chain length. Furthermore, we also found that the EBP is proportional to the inverse square root of the molecular weight as observed in molecular glasses.« less

  9. Raidiation-Induced Fragmentation of Diamide Extraction Agents in Ionic Liquid Diluents

    SciTech Connect (OSTI)

    Bell, Jason R; Dai, Sheng; Shkrob, Ilya A.; Marin, Timothy W.; Luo, Huimin; Hatcher, Jasmine; Rimmer, R. Dale; Wishart, James F.

    2012-01-01

    N,N,N',N'-Tetraalkyldiglycolamides are extracting agents that are used for liquid-liquid extraction of trivalent metal ions in wet processing of spent nuclear fuel. This application places such agents in contact with the decaying radionuclides, causing radiolysis of the agent in the organic diluent. Recent research seeks to replace common molecular diluents (such as n-dodecane) with hydrophobic room-temperature ionic liquids (ILs), which have superior solvation properties. In alkane diluents, rapid radiolytic deterioration of diglycolamide agents can be inhibited by addition of an aromatic cosolvent that scavenges highly reactive alkane radical cations before these oxidize the extracting agent. Do aromatic ILs exhibit a similar radioprotective effect? To answer this question, we used electron paramagnetic resonance spectroscopy to study the fragmentation pathways in radiolysis of neat diglycolamides, their model compounds, and their solutions in the ILs. Our study indicates that aromatic ILs do not protect these types of solutes from extensive radiolytic damage. Previous research indicated a similar lack of protection for crown ethers, whereas the ILs readily protected di- and trialkyl phosphates (another large class of metal-extracting agents). Our analysis of these unanticipated failures suggests that new types of organic anions are required in order to formulate ILs capable of radioprotection for these classes of solutes. This study is a cautionary tale of the fallacy of analogical thinking when applied to an entirely new and insufficiently understood class of chemical materials.

  10. Impact of Mixed Feedstocks and Feedstock Densification on Ionic Liquid Pretreatment Efficiency

    SciTech Connect (OSTI)

    Jian Shi; Vicki S. Thompson; Neal A. Yancey; Vitalie Stavila; Blake A. Simmons; Seema Singh

    2013-01-01

    Background: Lignocellulosic biorefineries must be able to efficiently process the regional feedstocks that are available at cost-competitive prices year round. These feedstocks typically have low energy densities and vary significantly in composition. One potential solution to these issues is blending and/or densifying the feedstocks in order to create a uniform feedstock. Results/discussion: We have mixed four feedstocks - switchgrass, lodgepole pine, corn stover, and eucalyptus - in flour and pellet form and processed them using the ionic liquid 1-ethyl-3-methylimidazolium acetate. Sugar yields from both the mixed flour and pelletized feedstocks reach 90% within 24 hours of saccharification. Conclusions: Mixed feedstocks, in either flour or pellet form, are efficiently processed using this pretreatment process, and demonstrate that this approach has significant potential.

  11. Application of pyroelectric crystal and ionic liquid to the production of metal compounds

    SciTech Connect (OSTI)

    Imashuku, Susumu; Imanishi, Akira; Kawai, Jun

    2013-04-19

    Zinc fluoride (ZnF{sub 2}) was deposited on a silicon substrate by changing temperature of a pyroelectric crystal of LiTaO{sub 3} on which ionic liquid (EMI-Tf{sub 2}N) containing zinc ions was dripped at 1 Pa. ZnF{sub 2} was also obtained by bombarding argon ions on EMI-Tf{sub 2}N containing zinc ions. From these results, it is concluded that EMI-Tf{sub 2}N containing zinc ions on the LiTaO{sub 3} crystal was evaporated on the silicon substrate by changing temperature of the LiTaO{sub 3} crystal in vacuum and that the evaporated EMI-Tf{sub 2}N containing metal zinc ions was decomposed to ZnF{sub 2} by the bombardment of electrons accelerated by the electric field between the LiTaO{sub 3} crystal and the silicon substrate.

  12. Lubricants or lubricant additives composed of ionic liquids containing ammonium cations

    DOE Patents [OSTI]

    Qu, Jun (Knoxville, TN) [Knoxville, TN; Truhan, Jr.,; John J. (Cookeville, TN) [Cookeville, TN; Dai, Sheng (Knoxville, TN) [Knoxville, TN; Luo, Huimin (Knoxville, TN) [Knoxville, TN; Blau, Peter J. (Knoxville, TN) [Knoxville, TN

    2010-07-13

    A lubricant or lubricant additive is an ionic liquid alkylammonium salt. The alkylammonium salt has the structure R.sub.xNH.sub.(4-x).sup.+,[F.sub.3C(CF.sub.2).sub.yS(O).sub.2].sub.2N.sup- .- where x is 1 to 3, R is independently C.sub.1 to C.sub.12 straight chain alkyl, branched chain alkyl, cycloalkyl, alkyl substituted cycloalkyl, cycloalkyl substituted alkyl, or, optionally, when x is greater than 1, two R groups comprise a cyclic structure including the nitrogen atom and 4 to 12 carbon atoms, and y is independently 0 to 11. The lubricant is effective for the lubrication of many surfaces including aluminum and ceramics surfaces.

  13. Liquid metal ion source and alloy for ion emission of multiple ionic species

    DOE Patents [OSTI]

    Clark, Jr., William M.; Utlaut, Mark W.; Wysocki, Joseph A.; Storms, Edmund K.; Szklarz, Eugene G.; Behrens, Robert G.; Swanson, Lynwood W.; Bell, Anthony E.

    1987-06-02

    A liquid metal ion source and alloy for the simultaneous ion evaporation of arsenic and boron, arsenic and phosphorus, or arsenic, boron and phosphorus. The ionic species to be evaporated are contained in palladium-arsenic-boron and palladium-arsenic-boron-phosphorus alloys. The ion source, including an emitter means such as a needle emitter and a source means such as U-shaped heater element, is preferably constructed of rhenium and tungsten, both of which are readily fabricated. The ion sources emit continuous beams of ions having sufficiently high currents of the desired species to be useful in ion implantation of semiconductor wafers for preparing integrated circuit devices. The sources are stable in operation, experience little corrosion during operation, and have long operating lifetimes.

  14. Integrated Mg/TiO{sub 2}-ionic liquid system for deep desulfurization

    SciTech Connect (OSTI)

    Yin, Yee Cia; Kait, Chong Fai E-mail: hayyiratulfatimah@yahoo.com Fatimah, Hayyiratul E-mail: hayyiratulfatimah@yahoo.com Wilfred, Cecilia E-mail: hayyiratulfatimah@yahoo.com

    2014-10-24

    A series of Mg/TiO{sub 2} photocatalysts were prepared using wet impregnation method followed by calcination at 300, 400 and 500°C for 1 h. The photocatalysts were characterized using Thermal Gravimetric Analysis, Fourier-Transform Infrared Spectroscopy, X-Ray Diffraction, and Field Emission Scanning Electron Microscopy. The performance for deep desulfurization was investigated using model oil with 100 ppm sulfur (in the form of dibenzothiophene). The integrated system involves photocatalytic oxidation followed by ionic liquid-extraction processes. The best performing photocatalyst was 0.25wt% Mg loaded on titania calcined at 400°C (0.25Mg400), giving 98.5% conversion of dibenzothiophene to dibenzothiophene sulfone. The highest extraction efficiency of 97.8% was displayed by 1,2-diethylimidazolium diethylphosphate. The overall total sulfur removal was 96.3%.

  15. EXAFS investigations of the mechanism of facilitated ion transfer into a room-temperature ionic liquid.

    SciTech Connect (OSTI)

    Jensen, M. P.; Dzielawa, J. A.; Rickert, P.; Dietz, M. L.; Chemistry

    2002-09-11

    The Sr(II)-crown ether complexes formed in a room-temperature ionic liquid (RTIL), 1-methyl-3-pentylimidazolium bis[(trifluoromethyl)sulfonyl]amide, have been studied by X-ray absorption fine structure measurements at the Sr K-edge. When a Sr(NO{sub 3}){sub 2}-crown ether complex is directly dissolved in a water-saturated RTIL, both nitrate ligands and the crown ether coordinate the Sr, as observed in a conventional two-phase water-octanol system. When the cationic Sr-crown ether complex is created in a two-phase water-RTIL system, however, only cationic Sr-crown ether complexes are observed in the RTIL phase. This difference in the coordination complexes arises from differences in the mechanism of cation extraction between the RTIL and conventional molecular organic solvents, a finding with important implications for synthesis, catalysis, and ion separations using two-phase water-RTIL systems.

  16. TiO2 nanotube arrays grown in ionic liquids: high-efficiency in photocatalysis and pore-widening

    SciTech Connect (OSTI)

    Li, Huaqing; Qu, Jun; Cui, Qingzhou; Xu, Hanbing; Luo, Huimin; Chi, Miaofang; Meisner, Roberta Ann; Wang, Wei; Dai, Sheng

    2011-01-01

    Debris-free, long, well-separated TiO2 nanotube arrays were obtained using an ionic liquid (IL) as electrolyte. The high conductivity of IL resulted in fast pore widening and few contaminants from electrolyte decomposition leading to high photocatalytic efficiency in water splitting.

  17. A cobalt(II) bis(salicylate)-based ionic liquid that shows thermoresponsive and selective water coordination

    SciTech Connect (OSTI)

    Kohno, Y; Cowan, MG; Masuda, M; Bhowmick, I; Shores, MP; Gin, DL; Noble, RD

    2014-01-01

    A metal-containing ionic liquid (MCIL) has been prepared in which the [CoII(salicylate)(2)](2-) anion is able to selectively coordinate two water molecules with a visible colour change, even in the presence of alcohols. Upon moderate heating or placement in vacuo, the hydrated MCIL undergoes reversible thermochromism by releasing the bound water molecules.

  18. Vapor pressures of 1,3-dialkylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids with long alkyl chains

    SciTech Connect (OSTI)

    Rocha, Marisa A. A. E-mail: marisa.alexandra.rocha@gmail.com; Coutinho, João A. P.; Santos, Luís M. N. B. F. E-mail: marisa.alexandra.rocha@gmail.com

    2014-10-07

    This work presents the vapor pressure at several temperatures for the 1,3-dialkylimidazolium bis(trifluoromethylsulfonyl)imide series, [C{sub N/2}C{sub N/2}im][NTf{sub 2}] (N = 14, 16, 18, and 20), measured by a Knudsen effusion method combined with a quartz crystal microbalance. The thermodynamic properties of vaporization of the ionic liquids under study are analysed together with the results obtained previously for the shorter alkyl chain length [C{sub N/2}C{sub N/2}im][NTf{sub 2}] (N = 2, 4, 6, 8, 10, and 12), in order to evaluate the effect of the alkyl side chains of the cation and to get additional insights concerning the nanostructuration of ionic liquids. The symmetry effect is explored, based on the comparison with the asymmetric imidazolium based ionic liquids, [C{sub N-1}C{sub 1}im][NTf{sub 2}]. A trend shift on the thermodynamic properties of vaporization along the alkyl side chains of the extended symmetric ionic liquids, around [C{sub 6}C{sub 6}im][NTf{sub 2}], was detected. An intensification of the odd-even effect was observed starting from [C{sub 6}C{sub 6}im][NTf{sub 2}], with higher enthalpies and entropies of vaporization for the odd numbered ionic liquids, [C{sub 7}C{sub 7}im][NTf{sub 2}] and [C{sub 9}C{sub 9}im][NTf{sub 2}]. Similar, but less pronounced, odd-even effect was found for the symmetric ionic liquids with lower alkyl side chains length, [C{sub N/2}C{sub N/2}im][NTf{sub 2}] (with N = 4, 6, 8, 10, and 12). This effect is related with the predominant orientation of the terminal methyl group of the alkyl chain to the imidazolium ring and their influence in the cation-anion interaction. The same Critical Alkyl length at the hexyl, (C{sub 6}C{sub 1}and C{sub 6}C{sub 6}) was found for both asymmetric and symmetric series indicating that the nanostructuration of the ionic liquids is related with alkyl chain length.

  19. Methods for applying microchannels to separate methane using liquid absorbents, especially ionic liquid absorbents from a mixture comprising methane and nitrogen

    DOE Patents [OSTI]

    Tonkovich, Anna Lee Y.; Litt, Robert D.; Dongming, Qiu; Silva, Laura J.; Lamont, Micheal Jay; Fanelli, Maddalena; Simmons, Wayne W.; Perry, Steven

    2011-10-04

    Methods of using microchannel separation systems including absorbents to improve thermal efficiency and reduce parasitic power loss. Energy is typically added to desorb methane and then energy or heat is removed to absorb methane using a working solution. The working solution or absorbent may comprise an ionic liquid, or other fluids that demonstrate a difference in affinity between methane and nitrogen in a solution.

  20. The liquid surface of chiral ionic liquids as seen from molecular dynamics simulations combined with intrinsic analysis

    SciTech Connect (OSTI)

    Lísal, Martin

    2013-12-07

    We present molecular-level insight into the liquid/gas interface of two chiral room-temperature ionic liquids (RTILs) derived from 1-n-butyl-3-methylimidazolium bromide ([bmim][Br]); namely, (R)-1-butyl-3-(3-hydroxy-2-methylpropyl)imidazolium bromide (hydroxypropyl) and 1-butyl-3-[(1R)-nopyl]imidazolium bromide (nopyl). We use our currently developed force field which was validated against the experimental bulk density, heat of vaporization, and surface tension of [bmim][Br]. The force field for the RTILs adopts the Chemistry at Harvard Molecular Mechanics (CHARMM) parameters for the intramolecular and repulsion-dispersion interactions along with the reduced partial atomic charges based on ab initio calculations. The net charges of the ions are around ±0.8e, which mimic the anion to cation charge transfer and many-body effects. Molecular dynamics simulations in the slab geometry combined with the intrinsic interface analysis are employed to provide a detailed description of the RTIL/gas interface in terms of the structural and dynamic properties of the interfacial, sub-interfacial, and central layers at a temperature of 300 K. The focus is on the comparison of the liquid/gas interface for the chiral RTILs with the interface for parent [bmim][Br]. The structure of the interface is elucidated by evaluating the surface roughness, intrinsic atomic density profiles, and orientation ordering of the cations. The dynamics of the ions at the interfacial region is characterized by computing the survival probability, and normal and lateral self-diffusion coefficients in the layers.

  1. Deprotonation and oligomerization in photo-, radiolytically and electrochemically induced redox reactions in hydrophobic alkylalkylimidazolium ionic liquids.

    SciTech Connect (OSTI)

    Shkrob, I . A.; Chemical Sciences and Engineering Division

    2010-01-14

    Radical chemistry initiated by one-electron reduction of 1-methyl-3-alkylimidazolium cations in the corresponding ionic liquids (ILs) is examined. The reaction scheme is examined in light of the recent experimental data on photo-, radiation-, and electrochemically induced degradation of the practically important hydrophobic alkylimidazolium ILs. It is suggested that the primary species leading to the formation of the oligomers and acidification of the IL is a {sigma}{sigma}* dimer radical cation that loses a proton, yielding a neutral radical whose subsequent reactions produce C(2)-C(2) linked oligomers, both neutral and charged. The neutral oligomers (up to the tetramer) account for the features observed in the NMR spectra of cathodic liquid generated in electrolytic breakdown of the IL solvent. In photolysis and radiolysis, these neutral species and/or their radical precursors are oxidized by radical (ions) derived from the counteranions, and only charged dimers are observed. The dication dimers account for the features observed in the mass spectra of irradiated ILs. The products of these ion radical and radical reactions closely resemble those generated via carbene chemistry, without the formation of the carbene via the deprotonation of the parent cation. As the loss of 2-protons increases the proticity of the irradiated IL, it interferes with the extraction of metal ions by ionophore solutes, while the formation of the oligomers modifies solvent properties. Thus, the peculiarities of radical chemistry in the alkylimidazolium ILs have significant import for their practical applications.

  2. Ionic liquid assisted microwave synthesis route towards color-tunable luminescence of lanthanide- doped BiPO4

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cybinska, Joanna; Lorbeer, Chantal; Mudring, Anja -Verena

    2015-07-08

    Ln3+-doped (Ln=Sm, Eu, Tb, Dy) nanoparticles of BiPO4 with a particle size below 10 nm were synthesized in a straightforward manner from the appropriate mixture of the respective metal acetates and the task-specific ionic liquids choline or butylammonium dihydrogen-phosphate by conversion in a laboratory microwave (120 °C, 10 min). The ionic liquid acts not only as a solvent and microwave susceptor, but also as the reaction partner and nanoparticle stabilizer. The materials were thoroughly characterized not only with respect to their optical properties but also by PXRD, FT-IR, TEM techniques. Furthermore, depending on the lanthanide, the nanomaterial shows intense luminescencemore » of different colors such as: orange (Sm3+), red (Eu3+), green (Tb3+) or even white (Dy3+).« less

  3. High-Permeance Room-Temperature Ionic-Liquid-Based Membranes for CO2/N-2 Separation

    SciTech Connect (OSTI)

    Zhou, JS; Mok, MM; Cowan, MG; McDanel, WM; Carlisle, TK; Gin, DL; Noble, RD

    2014-12-24

    We have developed and fabricated thin-film composite (TFC) membranes with an active layer consisting of a room-temperature ionic liquid/polymerized (room-temperature ionic liquid) [i.e., (RTIL)/poly(RTIL)] composite material. The resulting membrane has a CO2 permeance of 6100 +/- 400 GPU (where 1 GPU = 10(-6) cm(3)/(cm(2) s cmHg)) and an ideal CO2/N-2 selectivity of 22 +/- 2. This represents a new membrane with state-of-the-art CO2 permeance and good CO2/N-2 selectivity. To our knowledge, this is the first example of a TFC gas separation membrane composed of an RTIL-containing active layer.

  4. Ionic liquid assisted microwave synthesis route towards color-tunable luminescence of lanthanide- doped BiPO4

    SciTech Connect (OSTI)

    Cybinska, Joanna; Lorbeer, Chantal; Mudring, Anja -Verena

    2015-07-08

    Ln3+-doped (Ln=Sm, Eu, Tb, Dy) nanoparticles of BiPO4 with a particle size below 10 nm were synthesized in a straightforward manner from the appropriate mixture of the respective metal acetates and the task-specific ionic liquids choline or butylammonium dihydrogen-phosphate by conversion in a laboratory microwave (120 °C, 10 min). The ionic liquid acts not only as a solvent and microwave susceptor, but also as the reaction partner and nanoparticle stabilizer. The materials were thoroughly characterized not only with respect to their optical properties but also by PXRD, FT-IR, TEM techniques. Furthermore, depending on the lanthanide, the nanomaterial shows intense luminescence of different colors such as: orange (Sm3+), red (Eu3+), green (Tb3+) or even white (Dy3+).

  5. Composition dependent structural organization in trihexyl(tetradecyl)phosphonium chloride ionic liquid-methanol mixtures

    SciTech Connect (OSTI)

    Gupta, Aditya; Sharma, Shobha; Kashyap, Hemant K.

    2015-04-07

    This article reports results from the molecular dynamics simulations on the structural arrangement of the ions and molecules in the mixtures of trihexyl(tetradecyl)phosphonium chloride ([P{sub 666,14}{sup +}][Cl{sup ?}]) ionic liquid (IL) and methanol (MeOH) over the entire composition range. Effects of composition on the charge and polarity orderings have been investigated via computation of X-ray scattering structure function, S(q), and by using a partitioning scheme proposed for such multi-component mixtures. Except for the neat methanol liquid, the total S(q) shows two peaks in its intermolecular region for all the mole-fractions. The lowest q peak is dominated primarily by anion-anion, cation-anion, and methanol-anion correlations. Our results signify that the methanol bulk structure, which predominantly has short-distance characteristic correlations and is governed by polar group of methanol, is retained for x{sub IL} ? 0.1. Then, the mixture goes through gradual structural changes from methanol-like to the IL-like for 0.1 < x{sub IL} ? 0.7. The dipolar interaction between methanol molecules weakens in this range, and the structural landscape of the mixture is steered by strong ion-ion, anion-methanol, and nonpolar interactions. The IL-like structural arrangement is virtually recovered for x{sub IL} > 0.7. At all the compositions studied, while the cation head groups are predominantly solvated by anions and subsequently by methanol molecules, the polar hydroxyl group of methanol is preferentially solvated by the anions. The radial distribution functions of selected pair of atomic species have also confirmed these observations.

  6. Hormetic effect of ionic liquid 1-ethyl-3-methylimidazolium acetate on bacteria

    SciTech Connect (OSTI)

    Nancharaiah, Y. V.; Francis, A. J.

    2015-02-19

    The biological effect of ionic liquids (ILs) is one of the highly debated topics as they are being contemplated for various industrial applications. 1-ethyl-2-methylimidazolium acetate ([EMIM][Ac]) showed remarkable hormesis on anaerobic Clostridium sp. and aerobic Psueudomonas putida. Bacterial growth was stimulated at up to 2.5 g L-1 and inhibited at > 2.5 g L-1 of ([EMIM][Ac]). The growth of Clostridium sp. and P. putida were higher by 0.4 and 4-fold respectively, in the presense of 0.5 g L-1 of ([EMIM][Ac]). Assessment of the effect of [EMIM][Ac] under different growth conditions showed that the hormesis of [EMIM][Ac] was mediated via regulation of medium pH. Hormetic effect of [EMIM][Ac] was evident only in medium with poor buffering capacity and in the presence of a fermentable substrate as the carbon source. The hormetic effect of [EMIM][Ac] on bacterial growth is most likely associated with the buffering capacity of acetate anion. These observations have implications in ILs toxicity studies and ecological risk assessment.

  7. Ionic liquids composed of phosphonium cations and organophosphate, carboxylate, and sulfonate as lubricant antiwear additives

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Yan; Dyck, Jeffrey; Graham, Todd; Luo, Huimin; Leonard, Donovan N.; Qu, Jun

    2014-10-20

    Oil-soluble phosphonium-based ionic liquids (ILs) have recently been reported as potential ashless lubricant additives. This study is to expand the IL chemistry envelope and to achieve fundamental correlations between the ion structures and ILs’ physiochemical and tribological properties. Here we present eight ILs containing two different phosphonium cations and seven different anions from three groups: organophosphate, carboxylate, and sulfonate. The oil solubility of ILs seems largely governed by the IL molecule size and structure complexity. When used as oil additives, the ranking of effectiveness in wear protection for the anions are: organophosphate > carboxylate > sulfonate. All selected ILs outperformedmore » a commercial ashless anti-wear additive. Surface characterization from the top and the cross-section revealed the nanostructures and compositions of the tribo-films formed by the ILs. Some fundamental insights were achieved: branched and long alkyls improve the IL’s oil solubility, anions of a phosphonium-phosphate IL contribute most phosphorus in the tribofilm, and carboxylate anions, though free of P, S, N, or halogen, can promote the formation of an anti-wear tribofilm.« less

  8. Ionic Liquid-Enhanced Solid State Electrolyte Interface (SEI) for Lithium Sulfur Batteries

    SciTech Connect (OSTI)

    Zheng, Jianming; Gu, Meng; Chen, Honghao; Meduri, Praveen; Engelhard, Mark H.; Zhang, Jiguang; Liu, Jun; Xiao, Jie

    2013-05-16

    Li-S battery is a complicated system with many challenges existing before its final market penetration. While most of the reported work for Li-S batteries is focused on the cathode design, we demonstrate in this work that the anode consumption accelerated by corrosive polysulfide solution also critically determines the Li-S cell performance. To validate this hypothesis, ionic liquid (IL) N-methyl-N-butylpyrrolidinium bis(trifluoromethylsulfonyl)imide (Py14TFSI) has been employed to modify the properties of SEI layer formed on Li metal surface in Li-S batteries. It is found that the IL-enhanced passivation film on the lithium anode surface exhibits much different morphology and chemical compositions, effectively protecting lithium metal from continuous attack by soluble polysulfides. Therefore, both cell impedance and the irreversible consumption of polysulfides on lithium metal are reduced. As a result, the Coulombic efficiency and the cycling stability of Li-S batteries have been greatly improved. After 120 cycles, Li-S battery cycled in the electrolyte containing IL demonstrates a high capacity retention of 94.3% at 0.1 C rate. These results unveil another important failure mechanism for Li-S batteries and shin the light on the new approaches to improve Li-S battery performances.

  9. Scattering Studies on Poly(3,4-ethylenedioxythiophene)- Polystyrenesulfonate in the Presence of Ionic Liquids

    SciTech Connect (OSTI)

    Murphy, Ryan J.; Weigandt, Katie M.; Uhrig, David; Alsayed, Ahmed; Badre, Chantal; Hough, Larry; Muthukumar, Murugappan

    2015-11-30

    The demand for lower cost and flexible electronics has driven industry to develop alternative transparent electrode (TE) materials to replace indium tin oxide (ITO). ITO is the benchmark TE on the market, but its high cost and low flexibility limit it for use in future technologies. Recent work has shown the combination of the conducting polymer poly(3,4-ethylenedioxythiophene)–polystyrenesulfonate (PEDOT:PSS) with the ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate (EMIM:TCB) is a viable ITO replacement. This study investigates the nature of the interaction between PEDOT:PSS and EMIM:TCB in the solution state. A combination of scattering methods is used to illustrate a novel, multilength scale model of this system. At length scales larger than 300nm PEODT:PSS adopts a microgel-like structure, and below ~300nm the system adopts an entangled polyelectrolyte mesh structure. As EMIM:TCB is added, the microgel interior adopts a more neutral polymer mesh structure as EMIM:TCB concentration is increased.

  10. Scattering Studies on Poly(3,4-ethylenedioxythiophene)- Polystyrenesulfonate in the Presence of Ionic Liquids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Murphy, Ryan J.; Weigandt, Katie M.; Uhrig, David; Alsayed, Ahmed; Badre, Chantal; Hough, Larry; Muthukumar, Murugappan

    2015-11-30

    The demand for lower cost and flexible electronics has driven industry to develop alternative transparent electrode (TE) materials to replace indium tin oxide (ITO). ITO is the benchmark TE on the market, but its high cost and low flexibility limit it for use in future technologies. Recent work has shown the combination of the conducting polymer poly(3,4-ethylenedioxythiophene)–polystyrenesulfonate (PEDOT:PSS) with the ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate (EMIM:TCB) is a viable ITO replacement. This study investigates the nature of the interaction between PEDOT:PSS and EMIM:TCB in the solution state. A combination of scattering methods is used to illustrate a novel, multilength scale modelmore » of this system. At length scales larger than 300nm PEODT:PSS adopts a microgel-like structure, and below ~300nm the system adopts an entangled polyelectrolyte mesh structure. As EMIM:TCB is added, the microgel interior adopts a more neutral polymer mesh structure as EMIM:TCB concentration is increased.« less

  11. Tribological characteristics of aluminum alloys against steel lubricated by ammonium and imidazolium ionic liquids

    SciTech Connect (OSTI)

    Qu, Jun; Blau, Peter Julian; Dai, Sheng; Luo, Huimin; Meyer III, Harry M; Truhan, John J.

    2009-01-01

    Sliding friction and wear characteristics of aluminum alloys against AISI 52100 steel lubricated by ionic liquids (ILs) were investigated at both room and elevated temperatures. The tested aluminum alloys include a commercially pure aluminum Al 1100, a wrought alloy Al 6061-T6511, and a cast alloy Al 319-T6. The lubricating performance of two ILs with the same anion, one ammonium-based [C8H17]3NH.Tf2N and one imidazolium-based C10mim.Tf2N, were compared each other and benchmarked against that of a conventional fully-formulated engine oil. Significant friction (up to 35%) and wear (up to 55%) reductions were achieved by the ammonium IL when lubricating the three aluminum alloys compared to the engine oil. The imidazolium IL performed better than the oil but not as well as the ammonium IL for Al 1100 and 319 alloys. However, accelerated wear was unexpectedly observed for Al 6061 alloy when lubricated by C10mim.Tf2N. Surface chemical analyses implied complex tribochemical reactions between the aluminum surfaces and ILs during the wear testing, which has been demonstrated either beneficial by forming a protective boundary film or detrimental by causing severe tribo-corrosion. The effects of the IL cation structure, aluminum alloy composition, and tribo-testing condition on the friction and wear results have been discussed.

  12. Hormetic effect of ionic liquid 1-ethyl-3-methylimidazolium acetate on bacteria

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nancharaiah, Y. V.; Francis, A. J.

    2015-02-19

    The biological effect of ionic liquids (ILs) is one of the highly debated topics as they are being contemplated for various industrial applications. 1-ethyl-2-methylimidazolium acetate ([EMIM][Ac]) showed remarkable hormesis on anaerobic Clostridium sp. and aerobic Psueudomonas putida. Bacterial growth was stimulated at up to 2.5 g L-1 and inhibited at > 2.5 g L-1 of ([EMIM][Ac]). The growth of Clostridium sp. and P. putida were higher by 0.4 and 4-fold respectively, in the presense of 0.5 g L-1 of ([EMIM][Ac]). Assessment of the effect of [EMIM][Ac] under different growth conditions showed that the hormesis of [EMIM][Ac] was mediated via regulationmore » of medium pH. Hormetic effect of [EMIM][Ac] was evident only in medium with poor buffering capacity and in the presence of a fermentable substrate as the carbon source. The hormetic effect of [EMIM][Ac] on bacterial growth is most likely associated with the buffering capacity of acetate anion. These observations have implications in ILs toxicity studies and ecological risk assessment.« less

  13. Installation of a reactive site for covalent wiring onto an intrinsically conductive poly(ionic liquid)

    SciTech Connect (OSTI)

    Brombosz, Scott M.; Lee, Sungwon; Firestone, Millicent A.

    2014-11-04

    We describe post-polymerization radical bromination of a nanostructured poly(ionic liquid) that selectively introduces a reactive bromo-group onto the polyalkylthiophene backbone. Raman and FT-IR spectroscopy proves that the bromine is successfully introduced at the 3-methyl position of the thiophene and that the molecular structure of the polymer remains largely intact with only minimal chain scission detected. FT-IR and Vis-NIR spectroscopy indicates that incorporation of the bromine induces twisting (loss of co-planarity) of the polythiophene backbone. WAXS confirms retention of an ordered lamellar structure with minor lattice spacing contraction. Cyclic voltammetry confirms spectroscopic findings that the bromination reaction yields a stable p-doped polymer. The installed bromine is susceptible to nucleophilic displacement permitting the covalent attachment of other functional molecules, such as a dialkylphosphonate. Elemental analysis of such a transformation established that 100 % functionalization can be achieved. These results collectively demonstrate that post-modification of a π-conjugated polymer can be used to both tune electronic and photonic properties, as well as install a chemoselective attachment point for the covalent wiring of other molecules.

  14. Installation of a reactive site for covalent wiring onto an intrinsically conductive poly(ionic liquid)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brombosz, Scott M.; Lee, Sungwon; Firestone, Millicent A.

    2014-11-04

    We describe post-polymerization radical bromination of a nanostructured poly(ionic liquid) that selectively introduces a reactive bromo-group onto the polyalkylthiophene backbone. Raman and FT-IR spectroscopy proves that the bromine is successfully introduced at the 3-methyl position of the thiophene and that the molecular structure of the polymer remains largely intact with only minimal chain scission detected. FT-IR and Vis-NIR spectroscopy indicates that incorporation of the bromine induces twisting (loss of co-planarity) of the polythiophene backbone. WAXS confirms retention of an ordered lamellar structure with minor lattice spacing contraction. Cyclic voltammetry confirms spectroscopic findings that the bromination reaction yields a stable p-dopedmore » polymer. The installed bromine is susceptible to nucleophilic displacement permitting the covalent attachment of other functional molecules, such as a dialkylphosphonate. Elemental analysis of such a transformation established that 100 % functionalization can be achieved. These results collectively demonstrate that post-modification of a π-conjugated polymer can be used to both tune electronic and photonic properties, as well as install a chemoselective attachment point for the covalent wiring of other molecules.« less

  15. Hydrogen-bonding interactions and protic equilibria in room-temperature ionic liquids containing crown ethers.

    SciTech Connect (OSTI)

    Marin, T.; Shkrob, I.; Dietz, M.

    2011-04-14

    Nuclear magnetic resonance (NMR) spectroscopy has been used to study hydrogen-bonding interactions between water, associated and dissociated acids (i.e., nitric and methanesulfonic acids), and the constituent ions of several water-immiscible room-temperature ionic liquids (ILs). In chloroform solutions also containing a crown ether (CE), water molecules strongly associate with the IL ions, and there is rapid proton exchange between these bound water molecules and hydronium associated with the CE. In neat ILs, the acids form clusters differing in their degree of association and ionization, and their interactions with the CEs are weak. The CE can either promote proton exchange between different clusters in IL solution when their association is weak or inhibit such exchange when the association is strong. Even strongly hydrophobic ILs are shown to readily extract nitric acid from aqueous solution, typically via the formation of a 1:1:1 {l_brace}H{sub 3}O{sup +} {center_dot} CE{r_brace}NO{sub 3}{sup -} complex. In contrast, the extraction of methanesulfonic acid is less extensive and proceeds mainly by IL cation-hydronium ion exchange. The relationship of these protic equilibria to the practical application of hydrophobic ILs (e.g., in spent nuclear fuel reprocessing) is discussed.

  16. Blending municipal solid waste with corn stover for sugar production using ionic liquid process

    SciTech Connect (OSTI)

    Sun, Ning; Xu, Feng; Sathitsuksanoh, Noppadon; Thompson, Vicki S.; Cafferty, Kara; Li, Chenlin; Tanjore, Deepti; Narani, Akash; Pray, Todd R.; Simmons, Blake A.; Singh, Seema

    2015-06-01

    Municipal solid waste (MSW) represents an attractive cellulosic resource for sustainable fuel production because of its abundance and its low or perhaps negative cost. However, the significant heterogeneity and toxic contaminants are barriers to efficient conversion to ethanol and other products. In this study, we generated MSW paper mix, blended with corn stover (CS), and have shown that both MSW paper mix alone and MSW/CS blends can be efficiently pretreated in certain ionic liquids (ILs) with high yields of fermentable sugars. After pretreatment in 1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]), over 80% glucose has been released with enzymatic saccharification. We have also applied an enzyme free process by adding mineral acid and water directly into the IL/biomass slurry to induce hydrolysis. With the acidolysis process in the IL 1-ethyl-3-methylimidazolium chloride ([C2C1Im]Cl), up to 80% glucose and 90% xylose are released for MSW. The results indicate the feasibility of incorporating MSW as a robust blending agent for biorefineries.

  17. Ionic liquids composed of phosphonium cations and organophosphate, carboxylate, and sulfonate as lubricant antiwear additives

    SciTech Connect (OSTI)

    Zhou, Yan; Dyck, Jeffrey; Graham, Todd; Luo, Huimin; Leonard, Donovan N.; Qu, Jun

    2014-10-20

    Oil-soluble phosphonium-based ionic liquids (ILs) have recently been reported as potential ashless lubricant additives. This study is to expand the IL chemistry envelope and to achieve fundamental correlations between the ion structures and ILs’ physiochemical and tribological properties. Here we present eight ILs containing two different phosphonium cations and seven different anions from three groups: organophosphate, carboxylate, and sulfonate. The oil solubility of ILs seems largely governed by the IL molecule size and structure complexity. When used as oil additives, the ranking of effectiveness in wear protection for the anions are: organophosphate > carboxylate > sulfonate. All selected ILs outperformed a commercial ashless anti-wear additive. Surface characterization from the top and the cross-section revealed the nanostructures and compositions of the tribo-films formed by the ILs. Some fundamental insights were achieved: branched and long alkyls improve the IL’s oil solubility, anions of a phosphonium-phosphate IL contribute most phosphorus in the tribofilm, and carboxylate anions, though free of P, S, N, or halogen, can promote the formation of an anti-wear tribofilm.

  18. Effect of ionic liquid treatment on the structures of lignins in solutions

    SciTech Connect (OSTI)

    Cheng, Gang; Kent, Michael S; He, Lilin; Varanasi, Patanjali; Dibble, Dean; Melnichenko, Yuri B; Simmons, Blake; Singh, Seema

    2012-01-01

    The solution structures of three types of isolated lignin - organosolv (OS), Kraft (K), and low sulfonate (LS) - before and after treatment with 1-ethyl-3-methylimidazolium acetate were studied using small-angle neutron scattering (SANS) and dynamic light scattering (DLS) over a concentration range of 0.3-2.4 wt %. The results indicate that each of these lignins is comprised of aggregates of well-defined basal subunits, the shapes and sizes of which, in D{sub 2}O and DMSO-d{sub 6}, are revealed using these techniques. LS lignin contains a substantial amount of nanometer-scale individual subunits. In aqueous solution these subunits have a well-defined elongated shape described well by ellipsoidal and cylindrical models. At low concentration the subunits are highly expanded in alkaline solution, and the effect is screened with increasing concentration. OS lignin dissolved in DMSO was found to consist of a narrow distribution of aggregates with average radius 200 {+-} 30 nm. K lignin in DMSO consists of aggregates with a very broad size distribution. After ionic liquid (IL) treatment, LS lignin subunits in alkaline solution maintained the elongated shape but were reduced in size. IL treatment of OS and K lignins led to the release of nanometer-scale subunits with well-defined size and shape.

  19. A novel approach to prepare optically active ion doped luminescent materials via electron beam evaporation into ionic liquids

    SciTech Connect (OSTI)

    Richter, K.; Lorbeer, C.; Mudring, A. -V.

    2014-11-10

    A novel approach to prepare luminescent materials via electron-beam evaporation into ionic liquids is presented which even allows doping of host lattices with ions that have a strong size mismatch. Thus, to prove this, MgF2 nanoparticles doped with Eu3+ were fabricated. The obtained nanoparticles featured an unusually high luminescence lifetime and the obtained material showed a high potential for application.

  20. A novel approach to prepare optically active ion doped luminescent materials via electron beam evaporation into ionic liquids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Richter, K.; Lorbeer, C.; Mudring, A. -V.

    2014-11-10

    A novel approach to prepare luminescent materials via electron-beam evaporation into ionic liquids is presented which even allows doping of host lattices with ions that have a strong size mismatch. Thus, to prove this, MgF2 nanoparticles doped with Eu3+ were fabricated. The obtained nanoparticles featured an unusually high luminescence lifetime and the obtained material showed a high potential for application.

  1. Ionic Liquids as Anti-Wear Additives for Next-Generation Low-Viscosity Fuel-Efficient Engine Lubricants

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    information Ionic Liquids as Anti-Wear Additives for Next- Generation Low-Viscosity Fuel-Efficient Engine Lubricants Project ID: FT014 ORNL: Jun Qu, Peter Blau (retired), Huimin Luo, Sheng Dai, Todd Toops, Brian West, and Bruce Bunting (retired) GM: Michael Viola, Gregory Mordukhovich (left GM), and Donald Smolenski (retired) DOE Management Team: Steve Goguen, Kevin Stork and Steve Przesmitzki 2014 DOE Vehicle Technologies Program Annual Merit Review, June 19, 2014 2 Managed by UT-Battelle for

  2. Vehicle Technologies Office Merit Review 2014: Ionic Liquids as Anti-Wear Additives for Next-Generation Low-Viscosity Fuel-Efficient Engine Lubricants

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ionic liquids...

  3. The Optimization of an Ionic Liquid-Based TALSPEAK-Like Process for Rare Earth Ions Separation

    SciTech Connect (OSTI)

    Dai, Sheng; Sun, Xiaoqi; Luo, Huimin

    2014-01-01

    Five new functionalized ionic liquids (FILs), tetraethylammonium di(2-ethylhexyl)phosphate ([N2222][DEHP]), tetraethylammonium bis(2,4,4-trimethylpentyl)phosphinite ([N2222][BTMPP]), tetraethylammonium bis(2,4,4-trimethylpentyl)dithiophosphinite ([N2222][BTMPDTP]), tetrahexylammonium di(2-ethylhexyl)phosphate ([N6666][DEHP]), and tetraoctylammonium di(2-ethylhexyl)phosphate ([N8888][DEHP]) were synthesized and characterized. These ILs along with two previously synthesized FILs ([N4444][DEHP] & [N1888][DEHP]) were used as ionic extractants and investigated for rare earth elements (REEs) separation in 1-decyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide/bis(perfluoroethanesulfonyl)imide ([C10mim][NTf2]/[BETI]). These FILs as ionic extractants were miscible with [C10mim][NTf2]/[BETI]. We herein report the applications of these FILs in an IL-based TALSPEAK-like process and the optimization of the process by adjusting the cations and anions of the FILs, concentrations of the FILs as ionic extractants in the IL phase, concentrations of diethylenetriamine pentaacetic acid (DTPA) in the aqueous phase, and acidities of the aqueous phase.

  4. THE POTENTIAL OF NANOPARTICLE ENHANCED IONIC LIQUIDS (NEILS) AS ADVANCED HEAT TRANSFER FLUIDS

    SciTech Connect (OSTI)

    Fox, E.; Bridges, N.; Visser, A.

    2011-09-14

    Interest in capturing the energy of the sun is rising as demands for renewable energy sources increase. One area of developing research is the use of concentrating solar power (CSP), where the solar energy is concentrated by using mirrors to direct the sunlight towards a collector filled with a heat transfer fluid (HTF). The HTF transfers the collected energy into pressurized steam, which is used to generate energy. The greater the energy collected by the HTF, the more efficent the electrical energy production is, thus the overall efficiency is controlled by the thermal fluid. Commercial HTFs such as Therminol{reg_sign} (VP-1), which is a blend of biphenyl and diphenyl oxide, have a significant vapor pressure, especially at elevated temperatures. In order for these volatile compounds to be used in CSP systems, the system either has to be engineered to prevent the phase change (i.e., volatilization and condensation) through pressurization of the system, or operate across the phase change. Over thirty years ago, a class of low-melting organic compounds were developed with negligible vapor pressure. These compounds are referred to as ionic liquids (ILs), which are organic-based compounds with discrete charges that cause a significant decrease in their vapor pressure. As a class, ILs are molten salts with a melting point below 100 C and can have a liquidus range approaching 400 C, and in several cases freezing points being below 0 C. Due to the lack of an appreciable vapor pressure, volatilization of an IL is not possible at atmospheric pressure, which would lead to a simplification of the design if used as a thermal fluid and for energy storage materials. Though the lack of a vapor pressure does not make the use of ILs a better HTF, the lack of a vapor pressure is a compliment to their higher heat capacity, higher volummetric density, and thus higher volumetric heat capacity. These favorable physical properties give ILs a pontential advantage over the current

  5. The importance of ion size and electrode curvature on electrical double layers in ionic liquids

    SciTech Connect (OSTI)

    Feng, G.; Qiao, R.; Huang, J; Dai, S.; Sumpter, B. G.; Meunier, V.

    2011-01-01

    Room-temperature ionic liquids (ILs) are an emerging class of electrolytes for supercapacitors. We investigate the effects of ion size and electrode curvature on the electrical double layers (EDLs) in two ILs 1-butyl-3-methylimidazolium chloride [BMIM][Cl] and 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF{sub 6}], using a combination of molecular dynamics (MD) and quantum density functional theory (DFT) simulations. The sizes of the counter-ion and co-ion affect the ion distribution and orientational structure of EDLs. The EDL capacitances near both planar and cylindrical electrodes were found to follow the order: [BMIM][Cl] (near the positive electrode) > [BMIM][PF{sub 6}] (near the positive electrode) ? [BMIM][Cl] (near the negative electrode) ? [BMIM][PF{sub 6}] (near the negative electrode). The EDL capacitance was also found to increase as the electrode curvature increases. These capacitance data can be fit to the Helmholtz model and the recently proposed exohedral electrical double-cylinder capacitor (xEDCC) model when the EDL thickness is properly parameterized, even though key features of the EDLs in ILs are not accounted for in these models. To remedy the shortcomings of existing models, we propose a Multiple Ion Layers with Overscreening (MILO) model for the EDLs in ILs that takes into account two critical features of such EDLs, i.e., alternating layering of counter-ions and co-ions and charge overscreening. The capacitance computed from the MILO model agrees well with the MD prediction. Although some input parameters of the MILO model must be obtained from MD simulations, the MILO model may provide a new framework for understanding many important aspects of EDLs in ILs (e.g., the variation of EDL capacitance with the electrode potential) that are difficult to interpret using classical EDL models and experiments.

  6. The Importance of Ion Size and Electrode Curvature on Electrical Double Layers in Ionic Liquids

    SciTech Connect (OSTI)

    Feng, Guang; Qiao, Rui; Huang, Jingsong; Dai, Sheng; Sumpter, Bobby G; Meunier, Vincent

    2010-01-01

    Room-temperature ionic liquids (ILs) are an emerging class of electrolytes for supercapacitors. We investigate the effects of ion size and electrode curvature on the electrical double layers (EDLs) in two ILs 1-butyl-3-methylimidazolium chloride [BMIM][Cl] and 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF(6)], using a combination of molecular dynamics (MD) and quantum density functional theory (DFT) simulations. The sizes of the counter-ion and co-ion affect the ion distribution and orientational structure of EDLs. The EDL capacitances near both planar and cylindrical electrodes were found to follow the order: [BMIM][Cl] (near the positive electrode) > [BMIM][PF(6)] (near the positive electrode) {approx} [BMIM][Cl] (near the negative electrode) {approx} [BMIM][PF(6)] (near the negative electrode). The EDL capacitance was also found to increase as the electrode curvature increases. These capacitance data can be fit to the Helmholtz model and the recently proposed exohedral electrical double-cylinder capacitor (xEDCC) model when the EDL thickness is properly parameterized, even though key features of the EDLs in ILs are not accounted for in these models. To remedy the shortcomings of existing models, we propose a 'Multiple Ion Layers with Overscreening' (MILO) model for the EDLs in ILs that takes into account two critical features of such EDLs, i.e., alternating layering of counter-ions and co-ions and charge overscreening. The capacitance computed from the MILO model agrees well with the MD prediction. Although some input parameters of the MILO model must be obtained from MD simulations, the MILO model may provide a new framework for understanding many important aspects of EDLs in ILs (e.g., the variation of EDL capacitance with the electrode potential) that are difficult to interpret using classical EDL models and experiments.

  7. Identification of a haloalkaliphilic and thermostable cellulase with improved ionic liquid tolerance

    SciTech Connect (OSTI)

    Zhang, Tao; Datta, Supratim; Eichler, Jerry; Ivanova, Natalia; Axen, Seth D.; Kerfeld, Cheryl A.; Chen, Feng; Kyrpides, Nikos; Hugenholtz, Philip; Cheng, Jan-Fang; Sale, Kenneth L.; Simmons, Blake; Rubin, Eddy

    2011-02-17

    Some ionic liquids (ILs) have been shown to be very effective solvents for biomass pretreatment. It is known that some ILs can have a strong inhibitory effect on fungal cellulases, making the digestion of cellulose inefficient in the presence of ILs. The identification of IL-tolerant enzymes that could be produced as a cellulase cocktail would reduce the costs and water use requirements of the IL pretreatment process. Due to their adaptation to high salinity environments, halophilic enzymes are hypothesized to be good candidates for screening and identifying IL-resistant cellulases. Using a genome-based approach, we have identified and characterized a halophilic cellulase (Hu-CBH1) from the halophilic archaeon, Halorhabdus utahensis. Hu-CBH1 is present in a gene cluster containing multiple putative cellulolytic enzymes. Sequence and theoretical structure analysis indicate that Hu-CBH1 is highly enriched with negatively charged acidic amino acids on the surface, which may form a solvation shell that may stabilize the enzyme, through interaction with salt ions and/or water molecules. Hu-CBH1 is a heat tolerant haloalkaliphilic cellulase and is active in salt concentrations up to 5 M NaCl. In high salt buffer, Hu-CBH1 can tolerate alkali (pH 11.5) conditions and, more importantly, is tolerant to high levels (20percent w/w) of ILs, including 1-allyl-3-methylimidazolium chloride ([Amim]Cl). Interestingly, the tolerances to heat, alkali and ILs are found to be salt-dependent, suggesting that the enzyme is stabilized by the presence of salt. Our results indicate that halophilic enzymes are good candidates for the screening of IL-tolerant cellulolytic enzymes.

  8. EXPERIMENTAL INVESTIGATION OF NATURAL CONVECTION HEAT TRANSFER OF IONIC LIQUID IN A RECTANGULAR ENCLOSURE HEATED FROM BELOW

    SciTech Connect (OSTI)

    Fox, E.; Visser, A.; Bridges, N.

    2011-07-18

    This paper presents an experimental study of natural convection heat transfer for an Ionic Liquid. The experiments were performed for 1-butyl-2, 3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide, ([C{sub 4}mmim][NTf{sub 2}]) at a Raleigh number range of 1.26 x 10{sup 7} to 8.3 x 10{sup 7}. In addition to determining the convective heat transfer coefficients, this study also included experimental determination of thermophysical properties of [C{sub 4}mmim][NTf{sub 2}] such as, density, viscosity, heat capacity, and thermal conductivity. The results show that the density of [C{sub 4}mmim][NTf{sub 2}] varies from 1.437-1.396 g/cm{sup 3} within the temperature range of 10-50 C, the thermal conductivity varies from 0.105-0.116 W/m.K between a temperature of 10 to 60 C, the heat capacity varies from 1.015 J/g.K - 1.760 J/g.K within temperature range of 25-340 C and the viscosity varies from 18cp-243cp within temperature range 10-75 C. The results for density, thermal conductivity, heat capacity, and viscosity were in close agreement with the values in the literature. Measured dimensionless Nusselt number was observed to be higher for the ionic liquid than that of DI water. This is expected as Nusselt number is the ratio of heat transfer by convection to conduction and the ionic liquid has lower thermal conductivity (approximately 18%) than DI water.

  9. Room-temperature ionic liquid-amine solutions: tunable solvents for efficient and reversible capture of CO{sub 2}

    SciTech Connect (OSTI)

    Dean Camper; Jason E. Bara; Douglas L. Gin; Richard D. Noble

    2008-11-05

    Solutions of room-temperature ionic liquids (RTILs) and commercially available amines were found to be effective for the capture of CO{sub 2} as carbamate salts. RTIL solutions containing 50 mol % (16% v/v) monoethanolamine (MEA) are capable of rapid and reversible capture of 1 mol of CO{sub 2} per 2 moles MEA to give an insoluble MEA-carbamate precipitate that helps to drive the capture reaction (as opposed to aqueous amine systems). Diethanolamine (DEA) can also be used in the same manner for CO{sub 2} capture in RTILs containing a pendant hydroxyl group. The captured CO{sub 2} in the resulting RTIL-carbamate salt mixtures can be readily released by either heating and/or subjecting them to reduced pressure. Using this unprecedented and industrially attractive mixing approach, the desirable properties of RTILs (i.e., nonvolatility, enhancedCO{sub 2} solubility, lower heat capacities) can be combined with the performance of amines for CO{sub 2} capture without the use of specially designed, functionalized 'task-specific' ionic liquids. By mixing RTILs with commercial amines, reactive solvents with a wide range of amine loading levels can be tailored to capture CO{sub 2} in a variety of conditions and processes. These RTIL-amine solutions behave similarly to their water-based counterparts but may offer many advantages, including increased energy efficiency, compared to current aqueous amine technologies.

  10. Pair dynamics and the intermolecular nuclear Overhauser effect (NOE) in liquids analysed by simulation and model theories: Application to an ionic liquid

    SciTech Connect (OSTI)

    Gabl, Sonja; Schröder, Christian; Braun, Daniel; Steinhauser, Othmar; Weingärtner, Hermann

    2014-05-14

    Combining simulation and model theories, this paper analyses the impact of pair dynamics on the intermolecular nuclear Overhauser effect (NOE) in liquids. For the first time, we give a distance resolved NOE. When applied to the ionic liquid 1-ethyl-3-methyl-imidazolium tetrafluoroborate the NOE turns out to be of long-range nature. This behaviour translates to the experimentally measured cross- and longitudinal relaxation rates. We were able to calculate the heteronuclear NOE from simulation data, despite the high computational effort. Model theories are computationally less demanding and cover the complete frequency range of the respective spectral density function, they are usually based on a very simple pair distribution function and the solution of the diffusion equation. In order to model the simulated data sufficiently, these simplifications in structure and dynamics have to be generalised considerably.

  11. Reversible uptake of COS, CS2 and SO2; Ionic liquids with O-alkylxanthate, O-alkylthiocarbonate, and O-alkylsulfite anions

    SciTech Connect (OSTI)

    Heldebrant, David J.; Yonker, Clement R.; Jessop, Philip G.; Phan, Lam

    2009-08-14

    Further development of CO2 binding organic liquids to capture and release carbonyl sulfide, carbon disulfide and sulfur dioxide. This paper investigates a brand new class of ionic liquids which have potential as chemical sensors for acid gas capture. Applications to flue gas scrubbing are discussed with an emphasis on capture and release of COS, CS2 and SO2 with amidine and guanidine bases with alcohols. Formal spectroscopic characterization is presented.

  12. Correlating mechanical properties and anti-wear performance of tribofilms formed by ionic liquids, ZDDP and their combinations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Landauer, Alexander K.; Barnhill, William C.; Qu, Jun

    2016-03-10

    Here we examine the elasticity, hardness, and resistance-to-plastic-deformation (P/S2) measured via nanoindentation of several tribofilms and correlates these properties to friction and wear behavior. The tribofilms were generated by ball-on-plate reciprocating sliding lubricated by a base oil containing an ionic liquid, phosphonium-organophosphate or ammonium-organophosphate, zinc dialkyldithiophosphate (ZDDP), or combination of IL and ZDDP. Nanoindentation was conducted at room and elevated temperatures. While there seems little correlation between the tribofilm hardness and tribological behavior, a higher modulus generally leads to better friction and wear performance. Interestingly, a lower P/S2 ratio tends to reduce friction and improve wear protection, which is inmore » an opposite trend as reported for bulk materials. Ultimately, this is likely attributable to the dynamic, self-healing characteristics of tribofilms.« less

  13. Curvature Effect on the Capacitance of Electric Double Layers at Ionic Liquid/Onion-Like Carbon Interfaces

    SciTech Connect (OSTI)

    Feng, Guang; Jiang, Deen; Cummings, Peter T

    2012-01-01

    Recent experiments have revealed that onion-like carbons (OLCs) offer high energy density and charging/discharging rates when used as the electrodes in supercapacitors. To understand the physical origin of this phenomenon, molecular dynamics simulations were performed for a room-temperature ionic liquid near idealized spherical OLCs with radii ranging from 0.356 to 1.223 nm. We find that the surface charge density increases almost linearly with the potential applied on electric double layers (EDLs) near OLCs. This leads to a nearly flat shape of the differential capacitance versus the potential, unlike the bell or camel shape observed on planar electrodes. Moreover, our simulations reveal that the capacitance of EDLs on OLCs increases with the curvature or as the OLC size decreases, in agreement with experimental observations. The curvature effect is explained by dominance of charge overscreening over a wide potential range and increased ion density per unit area of electrode surface as the OLC becomes smaller.

  14. Cytoskeleton mimetic reinforcement of a self-assembled N,N'-dialkylimidazolium ionic liquid monomer by copolymerization.

    SciTech Connect (OSTI)

    Grubjesic, S.; Seifert, S.; Firestone, M. A.; Materials Science Division

    2009-08-11

    Preparation and photopolymerization of a decylmethylimidazolium ionic liquid (IL) that possesses an acrylate counteranion are described. This IL monomer self-assembles upon addition of water and can be copolymerized with poly(ethylene glycol) diacrylate (PEGDA) in the presence of a photoinitiator, forming a mechanically durable material that adopts a lamellar structure with in-plane hexagonally ordered pores, as evidenced by small-angle X-ray scattering (SAXS). Thermogravimetric analysis, the extent of polymerization, and solubility-swelling studies indicate the formation of a network copolymer of the IL monomer and the PEGDA. Additional evidence for the formation of a nanostructured copolymer is provided by evaluating the product formed by replacement of the IL monomer with the nonpolymerizable analogue, decylmethylimidazolium chloride. The results demonstrate the possibility of designing a self-assembled amiphiphilic bilayer architecture that is reinforced by polymerization and cross-linking.

  15. Genome Sequence of Halomonas sp. Strain KO116, an Ionic Liquid- Tolerant Marine Bacterium Isolated from a Lignin-Enriched Seawater Microcosm

    SciTech Connect (OSTI)

    O'Dell, Kaela; Woo, Hannah L.; Utturkar, Sagar M.; Klingeman, Dawn Marie; Brown, Steven D.; Hazen, Terry C.

    2015-05-07

    Halomonas sp. strain KO116 was isolated from Nile Delta Mediterranean Sea surface water enriched with insoluble organosolv lignin. It was further screened for growth on alkali lignin minimal salts medium agar. The strain tolerates the ionic liquid 1-ethyl-3-methylimidazolium acetate. Its complete genome sequence is presented in this report.

  16. Ionic liquid-assisted preparation of square-shaped Y{sub 2}O{sub 3} nanoplates

    SciTech Connect (OSTI)

    Wang, Lei; Fang, Hao; Xu, Hualan; Wang, Caoli; Li, Yuanjin; Liu, Yang; Zhong, Shengliang

    2015-01-15

    Highlights: • Y{sub 4}O(OH){sub 9}(NO{sub 3}) nanosheets were prepared by an ionic liquid-assisted mixed solvothermal route. • Y{sub 2}O{sub 3} nanosheets were obtained after calcining the Y{sub 4}O(OH){sub 9}(NO{sub 3}) nanosheets. • The Y{sub 2}O{sub 3} nanosheets are with length of about 300 nm and thickness of several nanometers. - Abstract: Uniform square-shaped Y{sub 4}O(OH){sub 9}(NO{sub 3}) nanoplates with side length of about 300 nm and thickness of tens of nanometers have been successfully prepared by an ionic liquid-assisted mixed solvothermal route. Y{sub 2}O{sub 3} nanoplates with similar size were obtained after calcining the Y{sub 4}O(OH){sub 9}(NO{sub 3}) nanoplates at 800 °C. The products were analyzed by powder X-ray diffraction (XRD), thermogravimetric analysis (TG), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution TEM (HRTEM), and electron diffraction (ED). The effects of reaction time, composition of solvents, and the molar ratio of reagents on the morphology of the products have been investigated. The possible formation mechanism of the Y{sub 4}O(OH){sub 9}(NO{sub 3}) nanoplates was also discussed. Y{sub 2}O{sub 3}:Eu{sup 3+} nanoplates were also synthesized and their photoluminescent properties were examined.

  17. Ionic liquid-assisted sonochemical preparation of CeO2 nanoparticles for CO oxidation

    SciTech Connect (OSTI)

    Alammar, Tarek; Noei, Heshmat; Wang, Yuemin; Grünert, Wolfgang; Mudring, Anja -Verena

    2014-10-10

    CeO2 nanoparticles were synthesized via a one-step ultrasound synthesis in different kinds of ionic liquids based on bis(trifluoromethanesulfonylamide, [Tf2N], in combination with various cations including 1-butyl-3-methylimidazolium ([C4mim]+), 1-ethyl-2,3-dimethylimidazolium ([Edimim]+), butyl-pyridinium([Py4]+), 1-butyl-1-methyl-pyrrolidinium ([Pyrr14]+), and 2-hydroxyethyl-trimethylammonium ([N1112OH]+). Depending on synthetic parameters, such as ionic liquid, Ce(IV) precursor, heating method, and precipitator, formed ceria exhibits different morphologies, varying from nanospheres, nanorods, nanoribbons, and nanoflowers. The morphology, crystallinity, and chemical composition of the obtained materials were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), Raman spectroscopy, and N2 adsorption. The structural and electronic properties of the as-prepared CeO2 samples were probed by CO adsorption using IR spectroscopy under ultrahigh vacuum conditions. The catalytic activities of CeO2 nanoparticles were investigated in the oxidation of CO. CeO2 nanospheres obtained sonochemically in [C4mim][Tf2N] exhibit the best performance for low-temperature CO oxidation. As a result, the superior catalytic performance of this material can be related to its mesoporous structure, small particle size, large surface area, and high number of surface oxygen vacancy sites.

  18. High-Surface-Area CO2 Sponge: High Performance CO2 Scrubbing Based on Hollow Fiber-Supported Designer Ionic Liquid Sponges

    SciTech Connect (OSTI)

    2010-09-01

    IMPACCT Project: The team from ORNL and Georgia Tech is developing a new technology that will act like a sponge, integrating a new, alcohol-based ionic liquid into hollow fibers (magnified image, right) to capture CO2 from the exhaust produced by coal-fired power plants. Ionic liquids, or salts that exist in liquid form, are promising materials for carbon capture and storage, but their tendency to thicken when combined with CO2 limits their efficiency and poses a challenge for their development as a cost-effective alternative to current-generation solutions. Adding alcohol to the mix limits this tendency to thicken in the presence of CO2 but can also make the liquid more likely to evaporate, which would add significantly to the cost of CO2 capture. To solve this problem, ORNL is developing new classes of ionic liquids with high capacity for absorbing CO2. ORNL’s sponge would reduce the cost associated with the energy that would need to be diverted from power plants to capture CO2 and release it for storage.

  19. Influence of the counteranion on the ability of 1-dodecyl-3-methyltriazolium ionic liquids to form mesophases

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stappert, Kathrin; Ünal, Derya; Spielberg, Eike T.; Mudring, Anja -Verena

    2014-11-25

    The influence of the counteranion on the ability of the mesogenic cation 1-methyl-3-dodecyl-triazolium to form mesophases is explored. To that avail, salts of the cation with anions of different size, shape, and hydrogen bonding capability such as Cl–, Br–, I–, I3–, PF6–, and Tf2N– [bis(trifluorosulfonyl)amide] were synthesized and characterized. The crystal structures of the bromide, the iodide, and the triiodide reveal that the cations form bilayers with cations oriented in opposite directions featuring interdigitated alkyl tails. Within the layers, the cations are separated by anions. The rod-shaped triiodide anion forces the triazolium cation to align with it in this crystalmore » structure but due to its space requirement reduces the alkyl chain interdigitation which prevents the formation of a mesophase. Rather the compound transforms directly from a crystalline solid to an (ionic) liquid like the analogous bis(trifluorosulfonyl)amide. In contrast, the simple halides and the hexafluorophosphate form liquid crystalline phases. As a result, their clearing points shift with increasing anion radius to lower temperatures.« less

  20. Controlled nanopatterning of a polymerized ionic liquid in a strong electric field

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bocharova, Vera; Agapov, Alexander L.; Tselev, Alexander; Kumar, Rajeev; Berdzinski, Stefan; Strehmel, Veronika; Kisliuk, Alexander; Kravchenko, Ivan I.; Sumpter, Bobby G.; Sokolov, Alexei P.; et al

    2014-12-17

    Nanolithography has become a driving force in advancements of the modern day's electronics, allowing for miniaturization of devices and a steady increase of the calculation, power, and storage densities. Among various nanofabrication approaches, scanning probe techniques, including atomic force microscopy (AFM), are versatile tools for creating nanoscale patterns utilizing a range of physical stimuli such as force, heat, or electric field confined to the nanoscale. In this study, the potential of using the electric field localized at the apex of an AFM tip to induce and control changes in the mechanical properties of an ion containing polymer—a polymerized ionic liquidmore » (PolyIL)—on a very localized scale is explored. In particular, it is demonstrated that by means of AFM, one can form topographical features on the surface of PolyIL-based thin films with a significantly lower electric potential and power consumption as compared to nonconductive polymer materials. Lastly,, by tuning the applied voltage and ambient air humidity, control over dimensions of the formed structures is reproducibly achieved.« less

  1. Investigation of parameters of interaction of hydrogen isotopes with liquid lithium and lithium capillary-porous system under reactor irradiation

    SciTech Connect (OSTI)

    Tazhibayeva, I. L. Kulsartov, T. V.; Gordienko, Yu. N.; Zaurbekova, Zh. A.; Ponkratov, Yu. V.; Barsukov, N. I.; Tulubayev, Ye. Yu.; Baklanov, V. V.; Gnyrya, V. S.; Kenzhin, Ye. A.

    2015-12-15

    In this study, the effect of reactor irradiation on the processes of interaction of hydrogen with liquid lithium and a lithium capillary-porous system (CPS) is considered. The experiments are carried out by the gas-absorption method with use of a specially designed ampoule device. The results of investigation of the interaction of hydrogen with liquid lithium and a lithium CPS under conditions of reactor irradiation are described; namely, these are the temperature dependences of the rate constant for the interaction of hydrogen with liquid lithium at different reactor powers, the activation energies of the processes, and the pre-exponential factor in the Arrhenius dependence. The effect of increasing absorption of hydrogen by the samples under investigation as a result of the reactor irradiation is fixed. The effect can be explained by increasing mobility of hydrogen in liquid lithium due to hot spots in lithium bulk and the interaction of helium and tritium ions (formed as a result of the nuclear reaction of {sup 6}Li with neutron) with a surface hydride film.

  2. Fluorohydrogenate Cluster Ions in the Gas Phase: Electrospray Ionization Mass Spectrometry of the [1-Ethyl-3-methylimidazolium+][F(HF)2.3] Ionic Liquid

    SciTech Connect (OSTI)

    Gary S. Groenewold; James E. Delmore; Michael T. Benson; Tetsuya Tsuda; Rika Hagiwara

    2013-12-01

    Electrospray ionization of the fluorohydrogenate ionic liquid [1-ethyl-3-methylimidazolium][F(HF)2.3] ionic liquid was conducted to understand the nature of the anionic species as they exist in the gas phase. Abundant fluorohydrogenate clusters were produced; however, the dominant anion in the clusters was [FHF-], and not the fluoride-bound HF dimers or trimers that are seen in solution. Density functional theory (DFT) calculations suggest that HF molecules are bound to the clusters by about 30 kcal/mol. The DFT-calculated structures of the [FHF-]-bearing clusters show that the favored interactions of the anions are with the methynic and acetylenic hydrogen atoms on the imidazolium cation, forming planar structures similar to those observed in the solid state. A second series of abundant negative ions was also formed that contained [SiF5-] together with the imidazolium cation and the fluorohydrogenate anions that originate from reaction of the spray solution with silicate surfaces.

  3. Extraction and separation of thorium(IV) from lanthanides(III) with room-temperature ionic liquids containing primary amine N{sub 1923}

    SciTech Connect (OSTI)

    Zuo, Y.; Chen, J.; Bai, Y.; Li, D.Q.

    2008-07-01

    The extraction behavior of Th(IV) by primary amine N{sub 1923} in imidazolium-based ionic liquid namely 1-octyl-3-methylimidazolium hexafluorophosphate (N{sub 1923}/IL) was studied in this paper. Results showed that N{sub 1923}/IL had poorer extraction ability for Th(IV) than N{sub 1923} in n-heptane (N{sub 1923}/HEP). The separation coefficients between Th(IV) and lanthanides(III) ({beta}{sub Th/Ln}) were obtained and compared with those in the N{sub 1923}/HEP system. On this basis, we made a preliminary assessment for the possibility of using ionic liquids as solvents for the separation of Th(IV) from lanthanides(III) sulfate in a clean process. (authors)

  4. AGING EFFECTS ON THE PROPERTIES OF IMIDAZOLIUM, QUATERNARY AMMONIUM, PYRIDINIUM AND PYRROLIDINIUM-BASED IONIC LIQUIDS USED IN FUEL AND ENERGY PRODUCTION

    SciTech Connect (OSTI)

    Fox, E.

    2013-08-13

    Ionic liquids are often cited for their excellent thermal stability, a key property for their use as solvents and in the chemical processing of biofuels. However, there has been little supporting data on the long term aging effect of temperature on these materials. Imizadolium, quaternary ammonium, pyridinium, and pyrrolidnium-based ionic liquids with the bis(trifluoromethylsulfonyl)imide and bis(perfluoroethylsulfonyl)imide anions were aged for 2520 hours (15 weeks) at 200�C in air to determine the effects of an oxidizing environment on their chemical structure and thermal stability over time. It was found that the minor changes in the cation chemistry could greatly affect the properties of the ILs over time.

  5. Anti-Wear Performance and Mechanism of an Oil-Miscible Ionic Liquid as a Lubricant Additive

    SciTech Connect (OSTI)

    Qu, Jun; Bansal, Dinesh G; Yu, Bo; Howe, Jane Y; Luo, Huimin; Dai, Sheng; Li, Huaqing; Blau, Peter Julian; Bunting, Bruce G; Mordukhovich, Gregory; Smolenski, Donald

    2012-01-01

    An ionic liquid (IL) trihexyltetradecylphosphonium bis(2-ethylhexyl) phosphate has been investigated as a potential anti-wear lubricant additive. Unlike most other ILs that have very low solubility in non-polar fluids, this IL is fully miscible with various hydrocarbon oils. In addition, it is thermally stable up to 347 oC, showed no corrosive attack to cast iron in ambient environment, and has excellent wettability on solid surfaces (e.g., contact angle on cast iron <8o). Most importantly, this phosphonium-based IL has demonstrated effective anti-scuffing and anti-wear characteristics when blended with lubricating oils. For example, a 5 wt.% addition into a synthetic base oil eliminated the scuffing failure experienced by the neat oil and, as a result, reduced the friction coefficient by 60% and the wear rate by three orders of magnitude. A synergistic effect on wear protection was observed with the current anti-wear additive when added into a fully-formulated engine oil. Nanostructure examination and composition analysis revealed a tribo-boundary film and subsurface plastic deformation zone for the metallic surface lubricated by the IL-containing lubricants. This protective boundary film is believed to be responsible for the IL s anti-scuffing and anti-wear functionality.

  6. Phosphonium-Organophosphate Ionic Liquids as Lubricant Additives: Effects of Cation Structure on Physicochemical and Tribological Characteristics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Barnhill, William C.; Qu, Jun; Luo, Huimin; Meyer III, Harry M.; Ma, Cheng; Chi, Miaofang; Papke, Brian L.

    2014-11-17

    In our previous work we suggest great potential for a phosphonium-organophosphate ionic liquid (IL) as an antiwear lubricant additive. In this study, a set of five ILs were carefully designed and synthesized, with identical organophosphate anions but dissimilar phosphonium cations, to allow systematic investigation of the effects of cation alkyl chain length and symmetry on physicochemical and tribological properties. Symmetric cations with shorter alkyl chains seem to increase the density and thermal stability due to closer packing. On the other hand, either higher cation symmetry or longer alkyl moieties induce a higher viscosity, though the viscosity index is dependent moremore » on molecular mass than on symmetry. While a larger cation size generally increases an IL’s solubility in nonpolar hydrocarbon oils, six-carbon seems to be the critical minimum alkyl chain length for high oil miscibility. Both the two ILs, that are mutually oil miscible, have demonstrated promising lubricating performance at 1.04% treat rate, though the symmetric-cation IL moderately outperformed the asymmetric-cation IL. Moreover, characterizations on the tribofilm formed by the best-performing symmetric-cation IL revealed the film thickness, nanostructure, and chemical composition. Our results provide fundamental insights for future molecular design in developing oil-soluble ILs as lubricant additives.« less

  7. Electrochemistry in neutral ambient-temperature ionic liquids. 1. Studies of iron (III), neodymium (III), and lithium(I)

    SciTech Connect (OSTI)

    Osteryoung, R.A.

    1985-01-01

    An ambient-temperature neutral ionic liquid composed of aluminum chloride and either N-1-butylpyridinium or 1-methyl-3-ethylimidazolium chloride, BuPyCl or ImCl, respectively, was employed in studies that take advantage of their unusual properties. These include an extended electrochemical window, readily controlled additions of excess chloride (base) or aluminum chloride (acid), and the fact that the physical properties of the neutral melt do not change about the 1:1 mole ratio of AlCl/sub 3/ to RCl. Li/sup +/ was found to be reducible in the neutral AlCl/sub 3/-ImCl melt, and its diffusion coefficient was found to be .00000086 sq cm/s. The stoichiometry of the complex formed between Nd(III) and Cl/sup +/ in the molten salt system was investigated by what is essentially an amperometric titration and was found to be NdC/sub 6/(3-). The structure of the Fe(III) chloro complex that exists in basic or acidic melts just slightly varying in composition from the neutral melt was also investigated; a constant value for the diffusion coefficient-viscosity product in both systems suggests no change in structure.

  8. Microbundles of zinc oxide nanorods: Assembly in ionic liquid [EMIM]{sup +}[BF{sub 4}]{sup -}, photoluminescence and photocatalytic properties

    SciTech Connect (OSTI)

    Wang Li; Xu Shenzhi; Li Huijun; Chang Lixian; Zhisu; Zeng Minghua; Wang Lina; Huang Yineng

    2011-03-15

    A simple, efficient and low-temperature approach for the assembly of hierarchical Zinc oxide (ZnO) microstructures in ionic liquid [EMIM]{sup +}[BF{sub 4}]{sup -} is reported. The as-obtained ZnO superstructures are composed of microbundles of nanorods from the center points, with the diameter and length in the range of 100-150 nm and 2-4 {mu}m, which have been characterized by X-ray diffraction, scanning and transmission electron microscopy, and photoluminescence spectroscopy. The ZnO microstructures exhibit significant defect-related green-yellow emission and high photodegradation of dye Methyl Orange (5x10{sup -5} mol/L) under UV excitation within 80 min. -- Graphical abstract: Easy formation of microbundles of ZnO nanorods were accomplished in low temperature with [EMIM]{sup +}[BF{sub 4}]{sup -} (1-ethyl-3-methylimidazolium tetrafluoroborate) ionic liquid, which exhibit significant green-yellow photoluminescence property and high photodegradation of Methyl Orange dye. Display Omitted Research highlights: {yields} Ionic liquid assisted solid-state route was introduced into synthesis of ZnO nanorods. {yields} The distinctive microbundles ZnO nanorod assembles was evidenced by SEM and TEM. {yields} ZnO nano-material exhibited high efficiency in photodegradation of Methyl Orange.

  9. On the movement of a liquid front in an unsaturated, fractured porous medium, Part 1

    SciTech Connect (OSTI)

    Nitao, J.J.; Buscheck, T.A.

    1989-06-01

    The primary aim of this paper is to present approximate analytical solutions of the fracture flow which gives the position of the liquid fracture front as a function of time. These solutions demonstrate that the liquid movement in the fracture can be classified into distinctive time periods, or flow regimes. It is also shown that when plotted versus time using a log-log scale, the liquid fracture front position asymptotically approaches a series of line segments. Two-dimensional numerical simulations were run utilizing input data applicable to the densely welded, fractured tuff found at Yucca Mountain in order to confirm these observations. 19 refs., 15 figs., 8 tabs.

  10. Mechanism of imidazolium ionic liquids toxicity in Saccharomyces cerevisiae and rational engineering of a tolerant, xylose-fermenting strain

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dickinson, Quinn; Bottoms, Scott; Hinchman, Li; McIlwain, Sean; Li, Sheena; Myers, Chad L.; Boone, Charles; Coon, Joshua J.; Hebert, Alexander; Sato, Trey K.; et al

    2016-01-20

    In this study, imidazolium ionic liquids (IILs) underpin promising technologies that generate fermentable sugars from lignocellulose for future biorefineries. However, residual IILs are toxic to fermentative microbes such as Saccharomyces cerevisiae, making IIL-tolerance a key property for strain engineering. To enable rational engineering, we used chemical genomic profiling to understand the effects of IILs on S. cerevisiae. As a result, we found that IILs likely target mitochondria as their chemical genomic profiles closely resembled that of the mitochondrial membrane disrupting agent valinomycin. Further, several deletions of genes encoding mitochondrial proteins exhibited increased sensitivity to IIL. High-throughput chemical proteomics confirmed effectsmore » of IILs on mitochondrial protein levels. IILs induced abnormal mitochondrial morphology, as well as altered polarization of mitochondrial membrane potential similar to valinomycin. Deletion of the putative serine/threonine kinase PTK2 thought to activate the plasma-membrane proton efflux pump Pma1p conferred a significant IIL-fitness advantage. Conversely, overexpression of PMA1 conferred sensitivity to IILs, suggesting that hydrogen ion efflux may be coupled to influx of the toxic imidazolium cation. PTK2 deletion conferred resistance to multiple IILs, including [EMIM]Cl, [BMIM]Cl, and [EMIM]Ac. An engineered, xylose-converting ptk2Δ S. cerevisiae (Y133-IIL) strain consumed glucose and xylose faster and produced more ethanol in the presence of 1 % [BMIM]Cl than the wild-type PTK2 strain. We propose a model of IIL toxicity and resistance. In conclusion, this work demonstrates the utility of chemical genomics-guided biodesign for development of superior microbial biocatalysts for the ever-changing landscape of fermentation inhibitors.« less

  11. Ionic Liquid Pretreatment Technologies

    Broader source: Energy.gov (indexed) [DOE]

    volatile organic solvents used in processes * Often associated with Green Chemistry. ... - properties Anion determines: - chemistry - functionality Room Temperature, Molten ...

  12. A counter-charge layer in generalized solvents framework for electrical double layers in neat and hybrid ionic liquid electrolytes

    SciTech Connect (OSTI)

    Huang, Jingsong; Feng, Guang; Sumpter, Bobby G; Qiao, Rui; Meunier, Vincent

    2011-01-01

    Room-temperature ionic liquids (RTILs) have received significant attention as electrolytes due to a number of attractive properties such as their wide electrochemical windows. Since electrical double layers (EDLs) are the cornerstone for the applications of RTILs in electrochemical systems such as supercapacitors, it is important to develop an understanding of the structure capacitance relationships for these systems. Here we present a theoretical framework termed counter-charge layer in generalized solvents (CGS) for describing the structure and capacitance of the EDLs in neat RTILs and in RTILs mixed with different mass fractions of organic solvents. Within this framework, an EDL is made up of a counter-charge layer exactly balancing the electrode charge, and of polarized generalized solvents (in the form of layers of ion pairs, each of which has a zero net charge but has a dipole moment the ion pairs thus can be considered as a generalized solvent) consisting of all RTILs inside the system except the counter-ions in the counter-charge layer, together with solvent molecules if present. Several key features of the EDLs that originate from the strong ion ion correlation in RTILs, e.g., overscreening of electrode charge and alternating layering of counter-ions and co-ions, are explicitly incorporated into this framework. We show that the dielectric screening in EDLs is governed predominately by the polarization of generalized solvents (or ion pairs) in the EDL, and the capacitance of an EDL can be related to its microstructure with few a priori assumptions or simplifications. We use this framework to understand two interesting phenomena observed in molecular dynamics simulations of EDLs in a neat IL of 1-butyl-3- methylimidazolium tetrafluoroborate ([BMIM][BF4]) and in a mixture of [BMIM][BF4] and acetonitrile (ACN): (1) the capacitance of the EDLs in the [BMIM][BF4]/ACN mixture increases only slightly when the mass fraction of ACN in the mixture increases from zero

  13. A striking effect of ionic-liquid anions in the extraction of Sr2+ and Cs+ by dicyclohexano-18-crown-6

    SciTech Connect (OSTI)

    Luo, Huimin; Dai, Sheng; Bonnesen, Peter V; Haverlock, Tamara; Moyer, Bruce A; Buchanan III, A C

    2006-01-01

    The nature of the ionic-liquid (IL) anion has been found to have a remarkable effect on the solvent extraction of Sr2+ and Cs+ by dicyclohexano-18-crown-6 dissolved in ionic liquids. In particular, the extraction efficiency increases with the hydrophobicity of the IL anion as reflected by the solubility in water of ILs having a common cation. Since a cation-exchange mechanism is operating in these systems, the influence of the IL anion is in large part attributable to an expected Le Chatelier effect in which a greater aqueous concentration of IL cation, obtained when using an IL anion of lower hydrophobicity, opposes cation exchange. This dependence is opposite to that found for IL cations, indicating a significant advantage of using ILs with hydrophobic anions for cation extraction. Furthermore, the extraction selectivity for Sr2+ over Na+, K+, and Cs+ can be significantly improved through the use of hydrophobic anions for the ILs containing 1-ethyl-3-methylimidazolium or 1-butyl-3-methylimidazolium cations.

  14. Fabrication of ionic liquid electrodeposited Cu--Sn--Zn--S--Se thin films and method of making

    DOE Patents [OSTI]

    Bhattacharya, Raghu Nath

    2016-01-12

    A semiconductor thin-film and method for producing a semiconductor thin-films comprising a metallic salt, an ionic compound in a non-aqueous solution mixed with a solvent and processing the stacked layer in chalcogen that results in a CZTS/CZTSS thin films that may be deposited on a substrate is disclosed.

  15. Direct Electrodeposition of UO2 from Uranyl Bis(trifluoromethanesulfonyl)imide Dissolved in 1-Ethyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)imide Room Temperature Ionic Liquid System

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Freiderich, John W.; Wanigasekara, Eranda P.; Sun, Xiao-Guang; Meisner, Roberta Ann; Meyer, III, Harry M.; Luo, Huimin; Delmau, Laetitia Helene; Dai, Sheng; Moyer, Bruce A

    2013-11-11

    Our study demonstrates a direct electrodeposition of UO2 at a Pt cathode from a solution of uranyl bis(trifluoromethanesulfonyl)imide [UO2(NTf2)2)] in a bulk room-temperature ionic liquid (RTIL), 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMIM+NTf2–). Cyclic voltammetry (CV) studies revealed two reduction waves corresponding to the conversion of uranium(VI) to uranium(IV), and a mechanism for the overall electroreduction is proposed. A controlled-potential experiment was performed, holding the reduction potential at–1.0 V for 24 h to obtain a brown-black deposit of UO2 on the Pt cathode. The Faradaic efficiency of the reduction process was determined to be >80%. The UO2deposit was characterized by powder X-ray diffraction (XRD)more » and X-ray photoelectron spectroscopy (XPS).« less

  16. An In-situ X-ray Scattering Study During Uniaxial Stretching of Ionic Liquid/Ultra-high Molecular Weight Polyethylene Blends

    SciTech Connect (OSTI)

    X Li; Y Mao; H Ma; F Zuo; B Hsiao; B Chu

    2011-12-31

    An ionic liquid (IL) 1-docosanyl-3-methylimidazolium bromide was incorporated into ultra-high molecular weight polyethylene (UHMWPE) and formed IL/UHMWPE blends by solution mixing. The structure evolution of these blends during uniaxial stretching was followed by in-situ synchrotron wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) techniques. During deformation at room temperature, deformation-induced phase transformation from orthorhombic to monoclinic phase was observed in both IL/UHMWPE blends and neat UHMWPE. The elongation-to-break ratios of IL/UHMWPE blends were found to increase by 2-3 times compared with that of pure UHMWPE, while the tensile strength remained about the same. In contrast, during deformation at high temperature (120 C), no phase transformation was observed. However, the blend samples showed much better toughness, higher crystal orientation and higher tilting extent of lamellar structure at high strains.

  17. One-pot synthesis of SnO{sub 2}/reduced graphene oxide nanocomposite in ionic liquid-based solution and its application for lithium ion batteries

    SciTech Connect (OSTI)

    Gu, Changdong, E-mail: cdgu@zju.edu.cn; Zhang, Heng; Wang, Xiuli; Tu, Jiangping

    2013-10-15

    Graphical abstract: - Highlights: A facile and low-temperature method is developed for SnO{sub 2}/graphene composite. Synthesis performed in a choline chloride-based ionic liquid. The composite shows an enhanced cycling stability as anode for Li-ion batteries. 4 nm SnO{sub 2} nanoparticles mono-dispersed on the surface of reduced graphene oxide. - Abstract: A facile and low-temperature method is developed for SnO{sub 2}/graphene composite which involves an ultrasonic-assistant oxidationreduction reaction between Sn{sup 2+} and graphene oxide in a choline chlorideethylene glycol based ionic liquid under ambient conditions. The reaction solution is non-corrosive and environmental-friendly. Moreover, the proposed technique does not require complicated infrastructures and heat treatment. The SnO{sub 2}/graphene composite consists of about 4 nm sized SnO{sub 2} nanoparticles with cassiterite structure mono-dispersed on the surface of reduced graphene oxide. As anode for lithium-ion batteries, the SnO{sub 2}/graphene composite shows a satisfying cycling stability (535 mAh g{sup ?1} after 50 cycles @100 mA g{sup ?1}), which is significantly prior to the bare 4 nm sized SnO{sub 2} nanocrsytals. The graphene sheets in the hybrid nanostructure could provide a segmentation effect to alleviate the volume expansion of the SnO{sub 2} and restrain the small and active Sn-based particles aggregating into larger and inactive clusters during cycling.

  18. ionic | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Notre Dame is developing a new ionic liquid absorbent and accompanying process that enables 90 percent of the post-combustion CO2 to be removed from a coal-fired power plant. ...

  19. Spectroscopic and computational analysis of the molecular interactions in the ionic liquid ion pair [BMP]{sup +}[TFSI]{sup -}

    SciTech Connect (OSTI)

    Mao, James X; Nulwala, Hunaid B; Luebke, David R; Damodaran, Krishnan

    2012-11-01

    1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([BMP]{sup +}[TFSI]{sup −}) ion pairs were studied using DFT at the B3LYP/6-31 + G(d) level. Nine locally stable conformations of the ion pair were located. In the most stable conformation, [TFSI]{sup −} takes a cis conformation and lies below the pyrrolidinium ring. Atoms-in-molecules (AIM) and electron density analysis indicated the existence of nine hydrogen bonds. Interaction energies were recalculated at the Second-order Møller–Plesset (MP2) level to show the importance of dispersion interaction. Further investigation through natural bond orbital (NBO) analysis provided insight into the importance of charge transfer interactions in the ion pair. Harmonic vibrations of the ion pair were calculated and compared with vibrations of the free ions as well as the experimental infrared spectrum. Assignments and frequency shifts are discussed in light of the inter-ionic interactions.

  20. Lithium ion conducting ionic electrolytes

    DOE Patents [OSTI]

    Angell, C. Austen; Xu, Kang; Liu, Changle

    1996-01-01

    A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors.

  1. Lithium ion conducting ionic electrolytes

    DOE Patents [OSTI]

    Angell, C.A.; Xu, K.; Liu, C.

    1996-01-16

    A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100 C or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors. 4 figs.

  2. Molecular dynamics study of the effect of alkyl chain length on melting points of [CnMIM][PF6] ionic liquids

    SciTech Connect (OSTI)

    Zhang, Y; Maginn, EJ

    2014-01-01

    Based on molecular dynamics simulations, the melting points T-m of a series of 1-alkyl-3-methylimidazolium hexafluorophosphate ionic liquids [CnMIM][PF6] with n = 2, 4, 10, 12, and 14 were studied using the free energy-based pseudosupercritical path (PSCP) method. The experimental trend that the Tm decreases with increasing alkyl chain length for ILs with short alkyl chains and increases for the ones with long alkyl chains was correctly captured. Further analysis revealed that the different trends are the results of the balance between fusion enthalpy and fusion entropy. For the ILs with short alkyl chains (ethyl and butyl groups), fusion entropy plays the dominant role so that [C4MIM][PF6], which has a larger fusion entropy due to its higher liquid phase entropy has the lower melting temperature. As for the ILs with long alkyl chains, due to the enhanced van der Waals interactions brought about by the long non-polar alkyl chains, enthalpy becomes the deciding factor and the melting points increase when the alkyl chain goes from C10 to C14. While the melting points for [C2MIM][PF6] and [C4MIM][PF6] were quantitatively predicted and the trends for the long chain ILs were captured correctly, the absolute melting points for [C10MIM][PF6], [C12MIM][PF6] and [C14MIM][PF6] were systematically overestimated in the simulations. Three possible reasons for the overestimation were studied but all ruled out. Further simulation or experimental studies are needed to explain the difference.

  3. High Cyclability of Ionic Liquid-Produced TiO2 Nanotube Arrays As an Anode Material for Lithium-Ion Batteries

    SciTech Connect (OSTI)

    Li, Huaqing; Martha, Surendra K; Unocic, Raymond R; Luo, Huimin; Dai, Sheng; Qu, Jun

    2012-01-01

    TiO{sub 2} nanotubes (NTs) are considered as a potential SEI-free anode material for Li-ion batteries to offer enhanced safety. Organic solutions, dominatingly ethylene glycol (EG)-based, have widely been used for synthesizing TiO{sub 2} NTs via anodization because of their ability to generate long tubes and well-aligned structures. However, it has been revealed that the EG-produced NTs are composited with carbonaceous decomposition products of EG, release of which during the tube crystallization process inevitably causes nano-scale porosity and cracks. These microstructural defects significantly deteriorate the NTs charge transport efficiency and mechanical strength/toughness. Here we report using ionic liquids (ILs) to anodize titanium to grow low-defect TiO{sub 2} NTs by reducing the electrolyte decomposition rate (less IR drop due to higher electrical conductivity) as well as the chance of the decomposition products mixing into the TiO{sub 2} matrix (organic cations repelled away). Promising electrochemical results have been achieved when using the IL-produced TiO{sub 2} NTs as an anode for Li-ion batteries. The ILNTs demonstrated excellent capacity retention without microstructural damage for nearly 1200 cycles of charge-discharge, while the NTs grown in a conventional EG solution totally pulverized in cycling, resulting in significant capacity fade.

  4. Final Technical Report: SISGR: The Influence of Electrolyte Structure and Electrode Morphology on the Performance of Ionic-Liquid Based Supercapacitors: A Combined Experimental and Simulation Study

    SciTech Connect (OSTI)

    Bedrov, Dmitry

    2013-08-15

    Obtaining fundamental understanding and developing predictive modeling capabilities of electrochemical interfaces can significantly shorten the development cycles of electrical double layer capacitors (EDLCs). A notable improvement in EDLC performance has been achieved due to recent advances in understanding charge storage mechanisms, development of advanced nanostructured electrodes and electrochemically stable electrolytes. The development of new generation of EDLCs is intimately linked to that of nanostructured carbon materials which have large surface area, good adsorption/desorption properties, good electrical conductivity and are relatively inexpensive. To address these scientific challenges the efforts of an interdisciplinary team of modelers and experimentalists were combined to enhance our understanding of molecular level mechanisms controlling the performance of EDLCs comprised of room temperature ionic liquid (RTIL) electrolytes and nanostructured carbon-based electrodes and to utilize these knowledge in the design of a new generation of materials and devices for this energy storage application. Specifically our team efforts included: atomistic molecular dynamics simulations, materials science and electrode/device assembly, and synthesis and characterization of RTIL electrolytes.

  5. On the influence of polarization effects in predicting the interfacial structure and capacitance of graphene-like electrodes in ionic liquids

    SciTech Connect (OSTI)

    Paek, Eunsu; Pak, Alexander J.; Hwang, Gyeong S.

    2015-01-14

    The electric double layer (C{sub D}) and electrode quantum (C{sub Q}) capacitances of graphene-based supercapacitors are investigated using a combined molecular dynamics and density functional theory approach. In particular, we compare an approach that includes electronic polarization to one that is polarization-free by evaluating both C{sub D} and C{sub Q} using [EMIM][BF{sub 4}] ionic liquid as a model electrolyte. Our results indicate that the inclusion of polarization effects can yield higher C{sub D} values—in this study by up to 40% around ±2 V—which we attribute primarily to the presence of charge smearing at the electrode-electrolyte interface. On the other hand, we find that the polarization-induced distortion of the electronic structure of graphene does not noticeably alter the predicted C{sub Q}. Our analysis suggests that an accurate description of the spatial charge distribution at the graphene interface due to polarization is necessary to improve our predictive capabilities, though more notably for C{sub D}. However, the conventional polarization-free approximation can serve as an efficient tool to study trends associated with both the C{sub Q} and C{sub D} at the interface of various graphene-like materials.

  6. Direct Electrodeposition of UO2 from Uranyl Bis(trifluoromethanesulfonyl)imide Dissolved in 1-Ethyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)imide Room Temperature Ionic Liquid System

    SciTech Connect (OSTI)

    Freiderich, John W.; Wanigasekara, Eranda P.; Sun, Xiao-Guang; Meisner, Roberta Ann; Meyer, III, Harry M.; Luo, Huimin; Delmau, Laetitia Helene; Dai, Sheng; Moyer, Bruce A

    2013-11-11

    Our study demonstrates a direct electrodeposition of UO2 at a Pt cathode from a solution of uranyl bis(trifluoromethanesulfonyl)imide [UO2(NTf2)2)] in a bulk room-temperature ionic liquid (RTIL), 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMIM+NTf2). Cyclic voltammetry (CV) studies revealed two reduction waves corresponding to the conversion of uranium(VI) to uranium(IV), and a mechanism for the overall electroreduction is proposed. A controlled-potential experiment was performed, holding the reduction potential at–1.0 V for 24 h to obtain a brown-black deposit of UO2 on the Pt cathode. The Faradaic efficiency of the reduction process was determined to be >80%. The UO2deposit was characterized by powder X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS).

  7. Composition suitable for decontaminating a porous surface contaminated with cesium

    DOE Patents [OSTI]

    Kaminski, Michael D.; Finck, Martha R.; Mertz, Carol J.

    2010-06-15

    A method of decontaminating porous surfaces contaminated with water soluble radionuclides by contacting the contaminated porous surfaces with an ionic solution capable of solubilizing radionuclides present in the porous surfaces followed by contacting the solubilized radionuclides with a gel containing a radionuclide chelator to bind the radionuclides to the gel, and physically removing the gel from the porous surfaces. A dry mix is also disclosed of a cross-linked ionic polymer salt, a linear ionic polymer salt, a radionuclide chelator, and a gel formation controller present in the range of from 0% to about 40% by weight of the dry mix, wherein the ionic polymer salts are granular and the non cross-linked ionic polymer salt is present as a minor constituent.

  8. Preparation of High Purity, High Molecular-Weight Chitin from Ionic Liquids for Use as an Adsorbate for the Extraction of Uranium from Seawater

    SciTech Connect (OSTI)

    Rogers, Robin

    2013-12-21

    Ensuring a domestic supply of uranium is a key issue facing the wider implementation of nuclear power. Uranium is mostly mined in Kazakhstan, Australia, and Canada, and there are few high-grade uranium reserves left worldwide. Therefore, one of the most appealing potential sources of uranium is the vast quantity dissolved in the oceans (estimated to be 4.4 billion tons worldwide). There have been research efforts centered on finding a means to extract uranium from seawater for decades, but so far none have resulted in an economically viable product, due in part to the fact that the materials that have been successfully demonstrated to date are too costly (in terms of money and energy) to produce on the necessary scale. Ionic Liquids (salts which melt below 100{degrees}C) can completely dissolve raw crustacean shells, leading to recovery of a high purity, high molecular weight chitin powder and to fibers and films which can be spun directly from the extract solution suggesting that continuous processing might be feasible. The work proposed here will utilize the unprecedented control this makes possible over the chitin fiber a) to prepare electrospun nanofibers of very high surface area and in specific architectures, b) to modify the fiber surfaces chemically with selective extractant capacity, and c) to demonstrate their utility in the direct extraction and recovery of uranium from seawater. This approach will 1) provide direct extraction of chitin from shellfish waste thus saving energy over the current industrial process for obtaining chitin; 2) allow continuous processing of nanofibers for very high surface area fibers in an economical operation; 3) provide a unique high molecular weight chitin not available from the current industrial process, leading to stronger, more durable fibers; and 4) allow easy chemical modification of the large surface areas of the fibers for appending uranyl selective functionality providing selectivity and ease of stripping. The

  9. WETTABILITY ALTERATION OF POROUS MEDIA TO GAS-WETTING FOR IMPROVING PRODUCTIVITY AND INJECTIVITY IN GAS-LIQUID FLOWS

    SciTech Connect (OSTI)

    Abbas Firoozabadi

    2002-10-21

    The authors have performed a number of imbibition tests with the treated and untreated cores in nC{sub 10}, nC{sub 14}, and nC{sub 16} and a natural gas condensate liquid. Imbibition tests for nC{sub 14} and nC{sub 16} were also carried out at elevated temperatures of 100 C and 140 C. An experimental polymer synthesized for the purpose of this project was used in core treatment. Imbibition results are very promising and imply liquid condensate mobility enhancement in the treated core. They also performed flow tests to quantify the increase in well deliverability and to simulate flow under realistic field conditions. In the past we have performed extensive testing of wettability alteration in intermediate gas wetting for polymer FC759 at temperatures of 24 C and 90 C. The results were promising for the purpose of gas well deliverability improvement in gas condensate wells. We used FC759 to lower the surface energy of various rocks. The model fluids nC{sub 10}, and nC{sub 14} were used to represent condensate liquid, and air was used as the gas phase. A new (L-16349) polymer, which has been recently synthesized for the purpose of the project, was used in the work to be presented here. L-16349 is a water-soluble fluorochemical polymer, with low order, neutral PH and very low volatile organic compound (VOC < 9.1 g/l). It is light yellow in appearance and density in 25% solution is 1.1 g/cc. Polymer L-16349 is very safe from environmental considerations and it is economical for our purpose. In this work, in addition to nC{sub 10}, and nC{sub 14}, we used two other liquids nC{sub 16}, and a liquid condensate in order to study the effect of wettability alteration with a broader range of fluids.

  10. Porous media heat transfer for injection molding

    DOE Patents [OSTI]

    Beer, Neil Reginald

    2016-05-31

    The cooling of injection molded plastic is targeted. Coolant flows into a porous medium disposed within an injection molding component via a porous medium inlet. The porous medium is thermally coupled to a mold cavity configured to receive injected liquid plastic. The porous medium beneficially allows for an increased rate of heat transfer from the injected liquid plastic to the coolant and provides additional structural support over a hollow cooling well. When the temperature of the injected liquid plastic falls below a solidifying temperature threshold, the molded component is ejected and collected.

  11. Record figure of merit values of highly stoichiometric Sb2Te3 porous bulk synthesized from tailor-made molecular precursors in ionic liquids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Heimann, Stefan; Schulz, Stephan; Schaumann, Julian; Mudring, Anja; Stötzel, Julia; Maculewicz, Franziska; Schierning, Gabi

    2015-08-06

    We report on the synthesis of Sb2Te3 nanoparticles with record-high figure of merit values of up to 1.5. The central thermoelectric parameters, electrical conductivity, thermal conductivity and Seebeck coefficient, were independently optimized. Critical influence of porosity for the fabrication of highly efficient thermoelectric materials is firstly demonstrated, giving a strong guidance for the optimization of other thermoelectric materials.

  12. Sandia Energy - Biofuels Blend Right In: Researchers Show Ionic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Blend Right In: Researchers Show Ionic Liquids Effective for Pretreating Mixed Blends of Biofuel Feedstocks Home Renewable Energy Energy Transportation Energy Biofuels...

  13. Inexpensive, Nonfluorinated Anions for Lithium Salts and Ionic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolytes Inexpensive, Nonfluorinated Anions for Lithium Salts and Ionic Liquids for Lithium Battery Electrolytes 2010 DOE Vehicle Technologies and Hydrogen Programs Annual...

  14. NMR study of the molecular dynamics of ethanol and 2,2,2-trifluoroethanol liquids confined to nanopores of porous silica glasses

    SciTech Connect (OSTI)

    Ballard, L.; Jonas, J.

    1996-05-29

    A dynamic nuclear magnetic resonance (NMR) study of the polar fluids ethanol (EtOH) and 2,2,2-trifluoroethanol (TFE) confined to porous silica sol-gel glasses is reported. The {sup 13}C NMR spin-lattice relaxation times, T{sub 1}, were measured in glasses with pore radii ranging from 18.9 to 54.8 A, over a temperature range from -13.6 to 30.5{degree}C. The data were analyzed in terms of the two-state, fast exchange model, and surface layer relaxation times, T{sub 1s}, were calculated. On the basis of surface enhancement factors, T{sub 1b}/T{sub 1s}, where T{sub 1b} is the relaxation time of the bulk liquid, it was concluded that the more acidic TFE has a weaker hydrogen bond interaction with silica, due to the fact that the alcohols serve as hydrogen bond acceptors. The experiment shows that EtOH and TFE have nearly identical surface layer viscosities, originating from the differences in hydrogen bonding with the silica surface. Confinement was found to have little effect on the internal rotation of terminal CF{sub 3} or CH{sub 3} groups. 32 refs., 2 figs., 3 tabs.

  15. Identification of Explosives from Porous Materials: Applications Using Reverse Phase High Performance Liquid Chromatography and Gas Chromatography

    SciTech Connect (OSTI)

    C.J. Miller; G. Elias; N.C. Schmitt; C. Rae

    2010-06-01

    High performance liquid chromatography and gas chromatography techniques are well documented and widely used for the detection of trace explosives from organic solvents. These techniques were modified to specifically identify and quantify explosives extracted from various materials taken from people who had recently handled explosives. Documented techniques were modified to specifically detect and quantify RDX, TNT, and PETN from denim, colored flannel, vinyl, and canvas extracted in methanol using no sample cleanup prior to analysis. The methanol extracts were injected directly into several different column types and analyzed by HPLC-UV and/or GC-ECD. This paper describes general screening methods that were used to determine the presence of explosives in unknown samples and techniques that have been optimized for quantification of each explosive from the substrate extracts.

  16. Microfluidic devices and methods including porous polymer monoliths

    Office of Scientific and Technical Information (OSTI)

    (Patent) | SciTech Connect Microfluidic devices and methods including porous polymer monoliths Citation Details In-Document Search Title: Microfluidic devices and methods including porous polymer monoliths Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous

  17. Microfluidic devices and methods including porous polymer monoliths

    DOE Patents [OSTI]

    Hatch, Anson V.; Sommer, Gregory j.; Singh, Anup K.; Wang, Ying-Chih; Abhyankar, Vinay

    2015-12-01

    Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

  18. Microfluidic devices and methods including porous polymer monoliths

    DOE Patents [OSTI]

    Hatch, Anson V; Sommer, Gregory J; Singh, Anup K; Wang, Ying-Chih; Abhyankar, Vinay V

    2014-04-22

    Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

  19. Nanoporous ionic organic networks: stablizing and supporting gold nanoparticles for catalysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Pengfei; Qiao, Zhen-An; Jiang, Xueguang; Veith, Gabriel M.; Dai, Sheng

    2015-01-27

    In this article, nanoporous ionic organic networks (PIONs) with a high ionic density (three cation–anion pairs per unit) have been synthesized by a facile SN2 nucleophilic substitution reaction. Owing to the electrostatic and steric effect, those ionic networks with porous channels can stabilize and support gold (Au) nanoparticles (NPs) in 1–2 nm. We find the Au@PION hybrid materials used as a heterogeneous catalyst are highly active, selective, and stable in the aerobic oxidation of saturated alcohols.

  20. Review of enhanced vapor diffusion in porous media

    SciTech Connect (OSTI)

    Webb, S.W.; Ho, C.K.

    1998-08-01

    Vapor diffusion in porous media in the presence of its own liquid has often been treated similar to gas diffusion. The gas diffusion rate in porous media is much lower than in free space due to the presence of the porous medium and any liquid present. However, enhanced vapor diffusion has also been postulated such that the diffusion rate may approach free-space values. Existing data and models for enhanced vapor diffusion, including those in TOUGH2, are reviewed in this paper.

  1. Energy efficient microwave synthesis of mesoporous Ce0.5M0.5O2 (Ti, Zr, Hf) nanoparticles for low temperature CO oxidation in an ionic liquid – a comparative study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Alammar, Tarek; Chow, Ying -Kit; Mudring, Anja -Verena

    2014-11-19

    Ce0.5M0.5O2 (M = Ti, Zr, Hf) nanoparticles have been successfully synthesized by microwave irradiation in the ionic liquid [C4mim][Tf2N] (1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide). The morphology, crystallinity, and chemical composition of the obtained materials were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), Raman spectroscopy, and N2–adsorption measurements. XRD and Raman spectroscopy analyses confirmed the formation of solid solutions with cubic fluorite structure. The catalytic activities of the Ce0.5M0.5O2 (M = Ti, Zr, Hf) nanoparticles were investigated in the low-temperature oxidation of CO. Ce0.5Zr0.5O2 nanospheres exhibit the best performance (100% conversion at 350 °C), followed by Ce0.5Hf0.5O2more » (55% conversion at 360 °C) and Ce0.5Ti0.5O2 (11% conversion at 350 °C). Heating the as-prepared Ce0.5Zr0.5O2 to 600 °C for extended time leads to a decrease in surface area and, as expected decreased catalytic activity. Depending on the ionic liquid the obtained Ce0.5Zr0.5O2 exhibits different morphologies, varying from nano-spheres in [C4mim][Tf2N] and [P66614][Tf2N] (P66614 = trishexyltetradecylphosphonium) to sheet-like assemblies in [C3mimOH][Tf2N] (C3mimOH = 1-(3-hydroxypropyl)-3-methylimidazolium). As a result, the microwave synthesis superiority to other heating methods like sonochemical synthesis and conventional heating was proven by comparative experiments where the catalytic activity of Ce0.5Zr0.5O2 obtained by alternate methods such as conventional heating was found to be poorer than that of the microwave-synthesised material.« less

  2. Tribological bench and engine dynamometer tests of a low viscosity SAE 0W-16 engine oil using a combination of ionic liquid and ZDDP as anti-wear additives

    SciTech Connect (OSTI)

    Barnhill, William C.; Gao, Hong; Kheireddin, Bassem; Papke, Brian L.; Luo, Huimin; West, Brian H.; Qu, Jun

    2015-09-29

    We have previously reported an oil-miscible phosphonium-organophosphate ionic liquid (IL) with an effective anti-wear (AW) functionality when added to a base oil by itself or combined with a conventional zinc dialkyldithiophosphate (ZDDP) for a synergistic effect. In this research, we investigated whether this synergy manifests in formulated engine oils. An experimental SAE 0W-16 engine oil was generated containing a combination of IL and ZDDP with equal phosphorus contribution. The prototype engine oil was first evaluated using tribological bench tests: AW performance in boundary lubrication (BL) and friction behavior (Stribeck curves) in elastohydrodynamic, mixed, and BL. In addition, the forthcoming standard Sequence VIE engine dynamometer test was then conducted to demonstrate improved fuel economy. Results were benchmarked against those of another experimental engine oil with almost the same formulation except using ZDDP only without the IL (similar total phosphorus content). The IL-ZDDP formulation consistently outperforms the ZDDP-only formulation in friction reduction and wear protection, and results from the bench and engine tests are well correlated.

  3. Tribological bench and engine dynamometer tests of a low viscosity SAE 0W-16 engine oil using a combination of ionic liquid and ZDDP as anti-wear additives

    SciTech Connect (OSTI)

    Barnhill, William C.; Gao, Hong; Kheireddin, Bassem; Papke, Brian L.; Luo, Huimin; West, Brian H.; Qu, Jun

    2015-01-01

    We have previously reported an oil-miscible phosphonium-organophosphate ionic liquid (IL) with an effective anti-wear (AW) functionality when added to a base oil by itself or combined with a conventional zinc dialkyldithiophosphate (ZDDP) for a synergistic effect. In this research, we investigated whether this synergy manifests in formulated engine oils. An experimental SAE 0W-16 engine oil was generated containing a combination of IL and ZDDP with equal phosphorus contribution. The prototype engine oil was first evaluated using tribological bench tests: AW performance in boundary lubrication (BL) and friction behavior (Stribeck curves) in elastohydrodynamic, mixed, and BL. In addition, the forthcoming standard Sequence VIE engine dynamometer test was then conducted to demonstrate improved fuel economy. Results were benchmarked against those of another experimental engine oil with almost the same formulation except using ZDDP only without the IL (similar total phosphorus content). The IL-ZDDP formulation consistently outperforms the ZDDP-only formulation in friction reduction and wear protection, and results from the bench and engine tests are well correlated.

  4. Tribological bench and engine dynamometer tests of a low viscosity SAE 0W-16 engine oil using a combination of ionic liquid and ZDDP as anti-wear additives

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Barnhill, William C.; Gao, Hong; Kheireddin, Bassem; Papke, Brian L.; Luo, Huimin; West, Brian H.; Qu, Jun

    2015-09-29

    We have previously reported an oil-miscible phosphonium-organophosphate ionic liquid (IL) with an effective anti-wear (AW) functionality when added to a base oil by itself or combined with a conventional zinc dialkyldithiophosphate (ZDDP) for a synergistic effect. In this research, we investigated whether this synergy manifests in formulated engine oils. An experimental SAE 0W-16 engine oil was generated containing a combination of IL and ZDDP with equal phosphorus contribution. The prototype engine oil was first evaluated using tribological bench tests: AW performance in boundary lubrication (BL) and friction behavior (Stribeck curves) in elastohydrodynamic, mixed, and BL. In addition, the forthcoming standardmore » Sequence VIE engine dynamometer test was then conducted to demonstrate improved fuel economy. Results were benchmarked against those of another experimental engine oil with almost the same formulation except using ZDDP only without the IL (similar total phosphorus content). The IL-ZDDP formulation consistently outperforms the ZDDP-only formulation in friction reduction and wear protection, and results from the bench and engine tests are well correlated.« less

  5. Variably porous structures

    DOE Patents [OSTI]

    Braun, Paul V.; Yu, Xindi

    2011-01-18

    A method of making a monolithic porous structure, comprises electrodepositing a material on a template; removing the template from the material to form a monolithic porous structure comprising the material; and electropolishing the monolithic porous structure.

  6. Influence of surface oxidation on ion dynamics and capacitance in porous and nonporous carbon electrodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dyatkin, Boris; Zhang, Yu; Mamontov, Eugene; Kolesnikov, Alexander I.; Cheng, Yongqiang; Meyer, III, Harry M.; Cummings, Peter T.; Gogotsi, Yury G.

    2016-04-07

    Here, we investigate the influence of surface chemistry and ion confinement on capacitance and electrosorption dynamics of room-temperature ionic liquids (RTILs) in supercapacitors. Using air oxidation and vacuum annealing, we produced defunctionalized and oxygen-rich surfaces of carbide-derived carbons (CDCs) and graphene nanoplatelets (GNPs). While oxidized surfaces of porous CDCs improve capacitance and rate handling abilities of ions, defunctionalized nonporous GNPs improve charge storage densities on planar electrodes. Quasi-elastic neutron scattering (QENS) and inelastic neutron scattering (INS) probed the structure, dynamics, and orientation of RTIL ions confined in divergently functionalized pores. Oxidized, ionophilic surfaces draw ions closer to pore surfaces andmore » enhance potential-driven ion transport during electrosorption. Molecular dynamics (MD) simulations corroborated experimental data and demonstrated the significance of surface functional groups on ion orientations, accumulation densities, and capacitance.« less

  7. Partially fluorinated ionic compounds

    DOE Patents [OSTI]

    Han, legal representative, Amy Qi; Yang, Zhen-Yu

    2008-11-25

    Partially fluorinated ionic compounds are prepared. They are useful in the preparation of partially fluorinated dienes, in which the repeat units are cycloaliphatic.

  8. Method of fabrication of supported liquid membranes

    SciTech Connect (OSTI)

    Luebke, David R.; Hong, Lei; Myers, Christina R.

    2015-11-17

    Method for the fabrication of a supported liquid membrane having a dense layer in contact with a porous layer, and a membrane liquid layer within the interconnected pores of the porous layer. The dense layer is comprised of a solidified material having an average pore size less than or equal to about 0.1 nanometer, while the porous layer is comprised of a plurality of interconnected pores and has an average pore size greater than 10 nanometers. The supported liquid membrane is fabricated through the preparation of a casting solution of a membrane liquid and a volatile solvent. A pressure difference is established across the dense layer and porous layer, the casting solution is applied to the porous layer, and the low viscosity casting solution is drawn toward the dense layer. The volatile solvent is evaporated and the membrane liquid precipitates, generating a membrane liquid layer in close proximity to the dense layer.

  9. Liquid metal electric pump

    DOE Patents [OSTI]

    Abbin, J.P.; Andraka, C.E.; Lukens, L.L.; Moreno, J.B.

    1992-01-14

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other. 3 figs.

  10. Liquid metal electric pump

    DOE Patents [OSTI]

    Abbin, Joseph P.; Andraka, Charles E.; Lukens, Laurance L.; Moreno, James B.

    1992-01-01

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other.

  11. imidazolium-based ionic liquid pretreatment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Predictive Simulation of Engines Transportation Energy Consortiums Engine Combustion ... and saccharification of switchgrass for biofuel production. (Photo by Roy Kaltschmidt) ...

  12. Development of a Conceptual Process for Selective CO 2 Capture from Fuel Gas Streams Using [hmim][Tf 2 N] Ionic Liquid as a Physical Solvent

    SciTech Connect (OSTI)

    Basha, Omar M.; Keller, Murphy J.; Luebke, David R.; Resnik, Kevin P.; Morsi, Badie I.

    2013-06-04

    The Ionic Liquid (IL) [hmim][Tf2N] was used as a physical solvent in an Aspen Plus simulation, employing the Peng-Robinson Equation of State (P-R EOS) with Boston-Mathias (BM) alpha function and standard mixing rules, to develop a conceptual process for CO2 capture from a shifted warm fuel gas stream produced from Pittsburgh # 8 coal for a 400 MWe power plant. The physical properties of the IL, including density, viscosity, surface tension, vapor pressure and heat capacity were obtained from literature and modeled as a function of temperature. Also, available experimental solubility values for CO2, H2, H2S, CO, and CH4 in this IL were compiled and their binary interaction parameters (Δij and lij) were optimized and correlated as functions of temperature. The Span-Wager Equation-of-State EOS was also employed to generate CO2 solubilities in [hmim][Tf2N] at high pressures (up to 10 MPa) and temperatures (up to 510 K). The conceptual process developed consisted of 4 adiabatic absorbers (2.4 m ID, 30 m high) arranged in parallel and packed with Plastic Pall Rings of 0.025 m for CO2 capture; 3 flash drums arranged in series for solvent (IL) regeneration with the pressure-swing option; and a pressure-intercooling system for separating and pumping CO2 up to 153 bar to the sequestration sites. The compositions of all process streams, CO2 capture efficiency, and net power were calculated using Aspen Plus simulator. The results showed that, based on the composition of the inlet gas stream to the absorbers, 95.67 mol% of CO2 was captured and sent to sequestration sites; 99.5 mol% of H2 was separated and sent to turbines; the solvent exhibited a minimum loss of 0.31 mol%; and the net power balance of the entire system was 30.81 MW. These results indicated that [hmim][Tf2N] IL could be used as a physical

  13. Electronically and ionically conductive porous material and method...

    Office of Scientific and Technical Information (OSTI)

    A wafer of the material and a method of making the material and wafer are disclosed. Inventors: Lin, YuPo J. 1 ; Henry, Michael P. 2 ; Snyder, Seth W. 3 + Show Author ...

  14. Nanoporous ionic organic networks: stablizing and supporting gold nanoparticles for catalysis

    SciTech Connect (OSTI)

    Zhang, Pengfei; Qiao, Zhen-An; Jiang, Xueguang; Veith, Gabriel M.; Dai, Sheng

    2015-01-27

    In this article, nanoporous ionic organic networks (PIONs) with a high ionic density (three cation–anion pairs per unit) have been synthesized by a facile SN2 nucleophilic substitution reaction. Owing to the electrostatic and steric effect, those ionic networks with porous channels can stabilize and support gold (Au) nanoparticles (NPs) in 1–2 nm. We find the Au@PION hybrid materials used as a heterogeneous catalyst are highly active, selective, and stable in the aerobic oxidation of saturated alcohols.

  15. Tailored Porous Materials

    SciTech Connect (OSTI)

    BARTON,THOMAS J.; BULL,LUCY M.; KLEMPERER,WALTER G.; LOY,DOUGLAS A.; MCENANEY,BRIAN; MISONO,MAKOTO; MONSON,PETER A.; PEZ,GUIDO; SCHERER,GEORGE W.; VARTULI,JAMES C.; YAGHI,OMAR M.

    1999-11-09

    Tailoring of porous materials involves not only chemical synthetic techniques for tailoring microscopic properties such as pore size, pore shape, pore connectivity, and pore surface reactivity, but also materials processing techniques for tailoring the meso- and the macroscopic properties of bulk materials in the form of fibers, thin films and monoliths. These issues are addressed in the context of five specific classes of porous materials: oxide molecular sieves, porous coordination solids, porous carbons, sol-gel derived oxides, and porous heteropolyanion salts. Reviews of these specific areas are preceded by a presentation of background material and review of current theoretical approaches to adsorption phenomena. A concluding section outlines current research needs and opportunities.

  16. Record figure of merit values of highly stoichiometric Sb2Te3 porous bulk synthesized from tailor-made molecular precursors in ionic liquids

    SciTech Connect (OSTI)

    Heimann, Stefan; Schulz, Stephan; Schaumann, Julian; Mudring, Anja; Stötzel, Julia; Maculewicz, Franziska; Schierning, Gabi

    2015-08-06

    We report on the synthesis of Sb2Te3 nanoparticles with record-high figure of merit values of up to 1.5. The central thermoelectric parameters, electrical conductivity, thermal conductivity and Seebeck coefficient, were independently optimized. Critical influence of porosity for the fabrication of highly efficient thermoelectric materials is firstly demonstrated, giving a strong guidance for the optimization of other thermoelectric materials.

  17. Porous thin films

    DOE Patents [OSTI]

    Xu, Ting

    2015-11-17

    Compositions of porous thin films and methods of making are provided. The methods involve self-assembly of a cyclic peptide in the presence of a block copolymer.

  18. Hollow porous-wall glass microspheres for hydrogen storage

    DOE Patents [OSTI]

    Heung, Leung K.; Schumacher, Ray F.; Wicks, George G.

    2010-02-23

    A porous wall hollow glass microsphere is provided having a diameter range of between 1 to 200 microns, a density of between 1.0 to 2.0 gm/cc, a porous-wall structure having wall openings defining an average pore size of between 10 to 1000 angstroms, and which contains therein a hydrogen storage material. The porous-wall structure facilitates the introduction of a hydrogen storage material into the interior of the porous wall hollow glass microsphere. In this manner, the resulting hollow glass microsphere can provide a membrane for the selective transport of hydrogen through the porous walls of the microsphere, the small pore size preventing gaseous or liquid contaminants from entering the interior of the hollow glass microsphere.

  19. Open-cell glass crystalline porous material

    DOE Patents [OSTI]

    Anshits, Alexander G.; Sharonova, Olga M.; Vereshchagina, Tatiana A.; Zykova, Irina D.; Revenko, Yurii A.; Tretyakov, Alexander A.; Aloy, Albert S.; Lubtsev, Rem I.; Knecht, Dieter A.; Tranter, Troy J.; Macheret, Yevgeny

    2003-12-23

    An open-cell glass crystalline porous material made from hollow microspheres which are cenospheres obtained from fly ash, having an open-cell porosity of up to 90 vol. % is produced. The cenospheres are separated into fractions based on one or more of grain size, density, magnetic or non-magnetic, and perforated or non-perforated. Selected fractions are molded and agglomerated by sintering with a binder at a temperature below the softening temperature, or without a binder at a temperature about, or above, the softening temperature but below the temperature of liquidity. The porous material produced has an apparent density of 0.3-0.6 g/cm.sup.3, a compressive strength in the range of 1.2-3.5 MPa, and two types of openings: through-flow wall pores in the cenospheres of 0.1-30 micrometers, and interglobular voids between the cenospheres of 20-100 micrometers. The porous material of the invention has properties useful as porous matrices for immobilization of liquid radioactive waste, heat-resistant traps and filters, supports for catalysts, adsorbents and ion-exchangers.

  20. Open-cell glass crystalline porous material

    DOE Patents [OSTI]

    Anshits, Alexander G.; Sharonova, Olga M.; Vereshchagina, Tatiana A.; Zykova, Irina D.; Revenko, Yurii A.; Tretyakov, Alexander A.; Aloy, Albert S.; Lubtsev, Rem I.; Knecht, Dieter A.; Tranter, Troy J.; Macheret, Yevgeny

    2002-01-01

    An open-cell glass crystalline porous material made from hollow microspheres which are cenospheres obtained from fly ash, having an open-cell porosity of up to 90 vol. % is produced. The cenospheres are separated into fractions based on one or more of grain size, density, magnetic or non-magnetic, and perforated or non-perforated. Selected fractions are molded and agglomerated by sintering with a binder at a temperature below the softening temperature, or without a binder at a temperature about, or above, the softening temperature but below the temperature of liquidity. The porous material produced has an apparent density of 0.3-0.6 g/cm.sup.3, a compressive strength in the range of 1.2-3.5 MPa, and two types of openings: through-flow wall pores in the cenospheres of 0.1-30 micrometers, and interglobular voids between the cenospheres of 20-100 micrometers. The porous material of the invention has properties useful as porous matrices for immobilization of liquid radioactive waste, heat-resistant traps and filters, supports for catalysts, adsorbents and ion-exchangers.

  1. Super ionic conductive glass

    DOE Patents [OSTI]

    Susman, S.; Volin, K.J.

    Described is an ionically conducting glass for use as a solid electrolyte in a power or secondary cell containing an alkali metal-containing anode and a cathode separated by an alkali metal ion conducting glass having an ionic transference number of unity and the general formula: A/sub 1 + x/D/sub 2-x/3/Si/sub x/P/sub 3 - x/O/sub 12 - 2x/3/, wherein A is a network modifier for the glass and is an alkali metal of the anode, D is an intermediate for the glass and is selected from the class consisting of Zr, Ti, Ge, Al, Sb, Be, and Zn and X is in the range of from 2.25 to 3.0. Of the alkali metals, Na and Li are preferred and of the intermediate, Zr, Ti and Ge are preferred.

  2. Super ionic conductive glass

    DOE Patents [OSTI]

    Susman, Sherman; Volin, Kenneth J.

    1984-01-01

    An ionically conducting glass for use as a solid electrolyte in a power or secondary cell containing an alkali metal-containing anode and a cathode separated by an alkali metal ion conducting glass having an ionic transference number of unity and the general formula: A.sub.1+x D.sub.2-x/3 Si.sub.x P.sub.3-x O.sub.12-2x/3, wherein A is a network modifier for the glass and is an alkali metal of the anode, D is an intermediate for the glass and is selected from the class consisting of Zr, Ti, Ge, Al, Sb, Be, and Zn and X is in the range of from 2.25 to 3.0. Of the alkali metals, Na and Li are preferred and of the intermediate, Zr, Ti and Ge are preferred.

  3. Ventilation of porous media

    DOE Patents [OSTI]

    Neeper, Donald A.

    1994-01-01

    Methods for distributing gases throughout the interstices of porous materials and removing volatile substances from the interstices of porous materials. Continuous oscillation of pressures and flows results in increased penetration of the interstices by flowing gases and increased transport of gaseous components out of the interstices. The invention is particularly useful in soil vapor extraction.

  4. Ventilation of porous media

    DOE Patents [OSTI]

    Neeper, D.A.

    1994-02-22

    Methods are presented for distributing gases throughout the interstices of porous materials and removing volatile substances from the interstices of porous materials. Continuous oscillation of pressures and flows results in increased penetration of the interstices by flowing gases and increased transport of gaseous components out of the interstices. The invention is particularly useful in soil vapor extraction. 10 figures.

  5. Mixed ionic and electronic conducting ceramic membranes for hydrocarbon processing

    DOE Patents [OSTI]

    Van Calcar, Pamela (Superior, CO); Mackay, Richard (Lafayette, CO); Sammells, Anthony F. (Boulder, CO)

    2002-01-01

    The invention relates to mixed phase materials for the preparation of catalytic membranes which exhibit ionic and electronic conduction and which exhibit improved mechanical strength compared to single phase ionic and electronic conducting materials. The mixed phase materials are useful for forming gas impermeable membranes either as dense ceramic membranes or as dense thin films coated onto porous substrates. The membranes and materials of this invention are useful in catalytic membrane reactors in a variety of applications including synthesis gas production. One or more crystalline second phases are present in the mixed phase material at a level sufficient to enhance the mechanical strength of the mixture to provide membranes for practical application in CMRs.

  6. Preparation of asymmetric porous materials

    DOE Patents [OSTI]

    Coker, Eric N.

    2012-08-07

    A method for preparing an asymmetric porous material by depositing a porous material film on a flexible substrate, and applying an anisotropic stress to the porous media on the flexible substrate, where the anisotropic stress results from a stress such as an applied mechanical force, a thermal gradient, and an applied voltage, to form an asymmetric porous material.

  7. Porous polymer networks and ion-exchange media and metal-polymer composites made therefrom

    DOE Patents [OSTI]

    Kanatzidis, Mercouri G; Katsoulidis, Alexandros

    2015-03-10

    Porous polymeric networks and composite materials comprising metal nanoparticles distributed in the polymeric networks are provided. Also provided are methods for using the polymeric networks and the composite materials in liquid- and vapor-phase waste remediation applications. The porous polymeric networks, are highly porous, three-dimensional structures characterized by high surface areas. The polymeric networks comprise polymers polymerized from aldehydes and phenolic molecules.

  8. Metal filled porous carbon

    DOE Patents [OSTI]

    Gross, Adam F.; Vajo, John J.; Cumberland, Robert W.; Liu, Ping; Salguero, Tina T.

    2011-03-22

    A porous carbon scaffold with a surface and pores, the porous carbon scaffold containing a primary metal and a secondary metal, where the primary metal is a metal that does not wet the surface of the pores of the carbon scaffold but wets the surface of the secondary metal, and the secondary metal is interspersed between the surface of the pores of the carbon scaffold and the primary metal.

  9. Liquid film target impingement scrubber

    DOE Patents [OSTI]

    McDowell, William J.; Coleman, Charles F.

    1977-03-15

    An improved liquid film impingement scrubber is provided wherein particulates suspended in a gas are removed by jetting the particle-containing gas onto a relatively small thin liquid layer impingement target surface. The impingement target is in the form of a porous material which allows a suitable contacting liquid from a pressurized chamber to exude therethrough to form a thin liquid film target surface. The gas-supported particles collected by impingement of the gas on the target are continuously removed and flushed from the system by the liquid flow through each of a number of pores in the target.

  10. Porous material neutron detector

    DOE Patents [OSTI]

    Diawara, Yacouba; Kocsis, Menyhert

    2012-04-10

    A neutron detector employs a porous material layer including pores between nanoparticles. The composition of the nanoparticles is selected to cause emission of electrons upon detection of a neutron. The nanoparticles have a maximum dimension that is in the range from 0.1 micron to 1 millimeter, and can be sintered with pores thereamongst. A passing radiation generates electrons at one or more nanoparticles, some of which are scattered into a pore and directed toward a direction opposite to the applied electrical field. These electrons travel through the pore and collide with additional nanoparticles, which generate more electrons. The electrons are amplified in a cascade reaction that occurs along the pores behind the initial detection point. An electron amplification device may be placed behind the porous material layer to further amplify the electrons exiting the porous material layer.

  11. Energy efficient microwave synthesis of mesoporous Ce0.5M0.5O2 (Ti, Zr, Hf) nanoparticles for low temperature CO oxidation in an ionic liquid – a comparative study

    SciTech Connect (OSTI)

    Alammar, Tarek; Chow, Ying -Kit; Mudring, Anja -Verena

    2014-11-19

    Ce0.5M0.5O2 (M = Ti, Zr, Hf) nanoparticles have been successfully synthesized by microwave irradiation in the ionic liquid [C4mim][Tf2N] (1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide). The morphology, crystallinity, and chemical composition of the obtained materials were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), Raman spectroscopy, and N2–adsorption measurements. XRD and Raman spectroscopy analyses confirmed the formation of solid solutions with cubic fluorite structure. The catalytic activities of the Ce0.5M0.5O2 (M = Ti, Zr, Hf) nanoparticles were investigated in the low-temperature oxidation of CO. Ce0.5Zr0.5O2 nanospheres exhibit the best performance (100% conversion at 350 °C), followed by Ce0.5Hf0.5O2 (55% conversion at 360 °C) and Ce0.5Ti0.5O2 (11% conversion at 350 °C). Heating the as-prepared Ce0.5Zr0.5O2 to 600 °C for extended time leads to a decrease in surface area and, as expected decreased catalytic activity. Depending on the ionic liquid the obtained Ce0.5Zr0.5O2 exhibits different morphologies, varying from nano-spheres in [C4mim][Tf2N] and [P66614][Tf2N] (P66614 = trishexyltetradecylphosphonium) to sheet-like assemblies in [C3mimOH][Tf2N] (C3mimOH = 1-(3-hydroxypropyl)-3-methylimidazolium). As a result, the microwave synthesis superiority to other heating methods like sonochemical synthesis and conventional heating was proven by comparative experiments where the catalytic activity of Ce0.5Zr0.5O2 obtained by alternate methods such as conventional heating was found to

  12. Porous silicon gettering

    SciTech Connect (OSTI)

    Tsuo, Y.S.; Menna, P.; Pitts, J.R.

    1996-05-01

    The authors have studied a novel extrinsic gettering method that uses the large surface areas produced by a porous-silicon etch as gettering sites. The annealing step of the gettering used a high-flux solar furnace. They found that a high density of photons during annealing enhanced the impurity diffusion to the gettering sites. The authors used metallurgical-grade Si (MG-Si) prepared by directional solidification casing as the starting material. They propose to use porous-silicon-gettered MG-Si as a low-cost epitaxial substrate for polycrystalline silicon thin-film growth.

  13. Novel approaches to ionic chromatography

    SciTech Connect (OSTI)

    Dasgupta, P.K.

    1990-11-01

    Research during this reporting period, continued on ionic chromatography. Major progress has been made towards on-line on-demand generation of ultrapure chemicals by electrochemical means. The concentration of the generated material is governed electrochemically.

  14. Porous metallic bodies

    DOE Patents [OSTI]

    Landingham, R.L.

    1984-03-13

    Porous metallic bodies having a substantially uniform pore size of less than about 200 microns and a density of less than about 25 percent theoretical, as well as the method for making them, are disclosed. Group IIA, IIIB, IVB, VB, and rare earth metal hydrides a

  15. Hydrogen in an oscillating porous vycor glass

    SciTech Connect (OSTI)

    Kondo, Y.; Schindler, M.; Pobell, F.

    1995-10-01

    The authors investigate hydrogen in porous Vycor glass with a torsional oscillator technique. Although our primary purpose is searching for a superfluid transition of hydrogen supercooled in Vycor, we find that hydrogen molecules which are adsorbed and liquefied in Vycor at T > T{sub 3} (triple point of bulk H{sub 2}) leave the Vycor when decreasing the temperature to below a characteristic value T{sub c} < T{sub 3}. We discuss this phenomenon in terms of a free enregy balance between solid/liquid hydrogen inside and outside the Vycor.

  16. Solid oxide fuel cells having porous cathodes infiltrated with oxygen-reducing catalysts

    DOE Patents [OSTI]

    Liu, Meilin; Liu, Ze; Liu, Mingfei; Nie, Lifang; Mebane, David Spencer; Wilson, Lane Curtis; Surdoval, Wayne

    2014-08-12

    Solid-oxide fuel cells include an electrolyte and an anode electrically coupled to a first surface of the electrolyte. A cathode is provided, which is electrically coupled to a second surface of the electrolyte. The cathode includes a porous backbone having a porosity in a range from about 20% to about 70%. The porous backbone contains a mixed ionic-electronic conductor (MIEC) of a first material infiltrated with an oxygen-reducing catalyst of a second material different from the first material.

  17. Method for removing organic liquids from aqueous solutions and mixtures

    DOE Patents [OSTI]

    Hrubesh, Lawrence W.; Coronado, Paul R.; Dow, Jerome P.

    2004-03-23

    A method for removing organic liquids from aqueous solutions and mixtures. The method employs any porous material preferably in granular form and having small pores and a large specific surface area, that is hydrophobic so that liquid water does not readily wet its surface. In this method, organics, especially organic solvents that mix with and are more volatile than water, are separated from aqueous solution by preferentially evaporating across the liquid/solid boundary formed at the surfaces of the hydrophobic porous materials. Also, organic solvents that are immiscible with water, preferentially wet the surfaces of the hydrophobic material and are drawn within the porous materials by capillary action.

  18. Porous electrode preparation method

    DOE Patents [OSTI]

    Arons, R.M.; Dusek, J.T.

    1983-10-18

    A porous sintered plaque is provided with a bimodal porosity that is especially well suited for use as an electrode within a molten carbonate fuel cell. The coarse porosity is sufficient for admitting gases into contact with the reaction surfaces while the fine porosity is wetted with and retains molten electrolyte on the reaction sites. The electrode structure is prepared by providing a very fine powder of such as nickel oxide and blending the powder with a suitable decomposable binder to form a solid mass. The mass is comminuted into agglomerate size particles substantially larger than the fine oxide particles and formed into a cohesive compact for subsequent sintering. Sintering is carried out at sufficient conditions to bind the agglomerates together into a porous structure having both coarse and fine porosity. Where lithiated nickel oxide cathodes are prepared, the sintering conditions can be moderate enough to retain substantial quantities of lithium within the electrode for adequate conductivity. 2 figs.

  19. Porous electrode preparation method

    DOE Patents [OSTI]

    Arons, Richard M.; Dusek, Joseph T.

    1983-01-01

    A porous sintered plaque is provided with a bimodal porosity that is especially well suited for use as an electrode within a molten carbonate fuel cell. The coarse porosity is sufficient for admitting gases into contact with the reaction surfaces while the fine porosity is wetted with and retains molten electrolyte on the reaction sites. The electrode structure is prepared by providing a very fine powder of such as nickel oxide and blending the powder with a suitable decomposable binder to form a solid mass. The mass is comminuted into agglomerate size particles substantially larger than the fine oxide particles and formed into a cohesive compact for subsequent sintering. Sintering is carried out at sufficient conditions to bind the agglomerates together into a porous structure having both coarse and fine porosity. Where lithiated nickel oxide cathodes are prepared, the sintering conditions can be moderate enough to retain substantial quantities of lithium within the electrode for adequate conductivity.

  20. Porous polymer media

    DOE Patents [OSTI]

    Shepodd, Timothy J.

    2002-01-01

    Highly crosslinked monolithic porous polymer materials for chromatographic applications. By using solvent compositions that provide not only for polymerization of acrylate monomers in such a fashion that a porous polymer network is formed prior to phase separation but also for exchanging the polymerization solvent for a running buffer using electroosmotic flow, the need for high pressure purging is eliminated. The polymer materials have been shown to be an effective capillary electrochromatographic separations medium at lower field strengths than conventional polymer media. Further, because of their highly crosslinked nature these polymer materials are structurally stable in a wide range of organic and aqueous solvents and over a pH range of 2-12.

  1. Heat pipe effect in porous medium

    SciTech Connect (OSTI)

    Joseph, M.

    1992-12-01

    In this thesis a parametric study of the thermal and hydrologic characteristics of the fractured porous tuffs at Yucca Mountain, Nevada was conducted. The effects of different fracture and matrix properties including permeability, thermal conductivity, specific heat, porosity, and tortuosity on heat pipe performance in the vicinity of the waste package were observed. Computer simulations were carried out using TOUGH code on a Cray YMP-2 supercomputer. None of the fracture parameters affected the heat pipe performance except the mobility of the liquid in the fracture. Matrix permeability and thermal conductivity were found to have significant effect on the heat pipe performance. The effect of mass injection was studied for liquid water and air injected at the fracture boundary. A high rate of mass injection was required to produce any effect on the heat pipe. The fracture-matrix equilibrium is influenced by the matrix permeability and the matrix thermal conductivity.

  2. Method of preparing thin porous sheets of ceramic material

    SciTech Connect (OSTI)

    Swarr, T.E.; Nickols, R.C.; Krasij, M.

    1987-03-24

    A method is described of forming a thin porous sheet of ceramic material comprising: providing a slurry of fine ceramic particles and liquid carrier including binder material; spray drying the slurry to form generally spherical porous agglomerates having a rough surface texture; calcining the agglomerates at a sufficient temperature to drive off the binder material and fix the fine ceramic particles in agglomerates of spiky morphology while substantially maintaining the porosity of the particles; slurrying the calcined agglomerates with binder and volatile material to form a slip for casting as a tape; spreading a thin layer of the slip onto a smooth substrate and drying the slip to set the binder and drive off the volatile material to form a porous sheet of ceramic material.

  3. SCDAP/RELAP5 Modeling of Heat Transfer and Flow Losses in Lower Head Porous Debris

    SciTech Connect (OSTI)

    Siefken, Larry James; Coryell, Eric Wesley; Paik, Seungho; Kuo, Han Hsiung

    1999-07-01

    Designs are described for implementing models for calculating the heat transfer and flow losses in porous debris in the lower head of a reactor vessel. The COUPLE model in SCDAP/RELAP5 represents both the porous and nonporous debris that results from core material slumping into the lower head. Currently, the COUPLE model has the capability to model convective and radiative heat transfer from the surfaces of nonporous debris in a detailed manner and to model only in a simplistic manner the heat transfer from porous debris. In order to advance beyond the simplistic modeling for porous debris, designs are developed for detailed calculations of heat transfer and flow losses in porous debris. Correlations are identified for convective heat transfer in porous debris for the following modes of heat transfer; (1) forced convection to liquid, (2) forced convection to gas, (3) nucleate boiling, (4) transition boiling, and (5) film boiling. Interphase heat transfer is modeled in an approximate manner. Designs are described for models to calculate the flow losses and interphase drag of fluid flowing through the interstices of the porous debris, and to apply these variables in the momentum equations in the RELAP5 part of the code. Since the models for heat transfer and flow losses in porous debris in the lower head are designed for general application, a design is also described for implementation of these models to the analysis of porous debris in the core region. A test matrix is proposed for assessing the capability of the implemented models to calculate the heat transfer and flow losses in porous debris. The implementation of the models described in this report is expected to improve the COUPLE code calculation of the temperature distribution in porous debris and in the lower head that supports the debris. The implementation of these models is also expected to improve the calculation of the temperature and flow distribution in porous debris in the core region.

  4. Rigid porous filter

    DOE Patents [OSTI]

    Chiang, Ta-Kuan; Straub, Douglas L.; Dennis, Richard A.

    2000-01-01

    The present invention involves a porous rigid filter including a plurality of concentric filtration elements having internal flow passages and forming external flow passages there between. The present invention also involves a pressure vessel containing the filter for the removal of particulates from high pressure particulate containing gases, and further involves a method for using the filter to remove such particulates. The present filter has the advantage of requiring fewer filter elements due to the high surface area-to-volume ratio provided by the filter, requires a reduced pressure vessel size, and exhibits enhanced mechanical design properties, improved cleaning properties, configuration options, modularity and ease of fabrication.

  5. Metal recovery from porous materials (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Metal recovery from porous materials Title: Metal recovery from porous materials The present invention relates to recovery of metals. More specifically, the present invention ...

  6. Porous templated pyrolytic carbons as electrocatalyst components...

    Office of Scientific and Technical Information (OSTI)

    Porous templated pyrolytic carbons as electrocatalyst components. Citation Details In-Document Search Title: Porous templated pyrolytic carbons as electrocatalyst components. ...

  7. Evaluation of porous media heat exchangers for fusion applications

    SciTech Connect (OSTI)

    Rosenfeld, J.H.; Lindemuth, J.E.; North, M.T.; Watson, R.D.; Youchison, D.L.; Goulding, R.H.

    1996-07-01

    Several types of porous media heat exchangers are being evaluated for use in fusion applications. Broadly, these devices can be classified as capillary-pumped (heat pipes) or mechanically-pumped heat exchangers. Monel/water thermosyphon heat pipes with a porous metal wick are being evaluated for use in Faraday shields. A subscale prototype has been fabricated, and initial tests at Oak Ridge National Laboratory have shown favorable results. Alkali metal heat pipes have demonstrated absorbed heat flux capability of over 1000 MW/m{sup 2}. An advanced gyrotron microwave cavity is being developed that uses water cooling in a mechanically-pumped copper porous metal heat exchanger. Tests on a prototype demonstrated absorbed heat flux capability in excess of 100 MW/m{sup 2}. Porous metal heat exchangers with helium, water, or liquid metal coolants are being evaluated for plasma-facing component cooling. Tests on a helium/copper porous metal heat exchanger demonstrated absorbed heat flux capability in excess of 15 MW/m{sup 2}. Applications, conceptual designs, fabricated hardware, and test results are summarized. 22 refs., 5 figs., 2 tabs.

  8. Liquid-permeable electrode

    DOE Patents [OSTI]

    Folser, George R.

    1980-01-01

    Electrodes for use in an electrolytic cell, which are liquid-permeable and have low electrical resistance and high internal surface area are provided of a rigid, porous, carbonaceous matrix having activated carbon uniformly embedded throughout. The activated carbon may be catalyzed with platinum for improved electron transfer between electrode and electrolyte. Activated carbon is mixed with a powdered thermosetting phenolic resin and compacted to the desired shape in a heated mold to melt the resin and form the green electrode. The compact is then heated to a pyrolyzing temperature to carbonize and volatilize the resin, forming a rigid, porous structure. The permeable structure and high internal surface area are useful in electrolytic cells where it is necessary to continuously remove the products of the electrochemical reaction.

  9. Measurement of Interfacial Area Production and Permeability within Porous Media

    SciTech Connect (OSTI)

    Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H.

    2010-01-01

    An understanding of the pore-level interactions that affect multi-phase flow in porous media is important in many subsurface engineering applications, including enhanced oil recovery, remediation of dense non-aqueous liquid contaminated sites, and geologic CO2 sequestration. Standard models of two-phase flow in porous media have been shown to have several shortcomings, which might partially be overcome using a recently developed model based on thermodynamic principles that includes interfacial area as an additional parameter. A few static experimental studies have been previously performed, which allowed the determination of static parameters of the model, but no information exists concerning the interfacial area dynamic parameters. A new experimental porous flow cell that was constructed using stereolithography for two-phase gas-liquid flow studies was used in conjunction with an in-house analysis code to provide information on dynamic evolution of both fluid phases and gas-liquid interfaces. In this paper, we give a brief introduction to the new generalized model of two-phase flow model and describe how the stereolithography flow cell experimental setup was used to obtain the dynamic parameters for the interfacial area numerical model. In particular, the methods used to determine the interfacial area permeability and production terms are shown.

  10. NMR studies of metallic tin confined within porous matrices

    SciTech Connect (OSTI)

    Charnaya, E. V.; Tien, Cheng; Lee, M. K.; Kumzerov, Yu. A.

    2007-04-01

    {sup 119}Sn NMR studies were carried out for metallic tin confined within synthetic opal and porous glass. Tin was embedded into nanoporous matrices in the melted state under pressure. The Knight shift for liquid confined tin was found to decrease with decreasing pore size. Correlations between NMR line shapes, Knight shift, and pore filling were observed. The melting and freezing phase transitions of tin under confinement were studied through temperature dependences of NMR signals upon warming and cooling. Melting of tin within the opal matrix agreed well with the liquid skin model suggested for small isolated particles. The influence of the pore filling on the melting process was shown.

  11. Foam Generation in Homogeneous Porous Media

    SciTech Connect (OSTI)

    Gauglitz, Phillip A.; Friedman, F.; Kam, S. I.; Rossen, W. R.

    2002-10-01

    In steady gas-liquid flow in homogeneous porous media with surfactant present, there is often observed a critical injection velocity or pressure gradient ?grad p min? at which ?weak? or ?coarse? foam is abruptly converted into ?strong foam,? with reduction of one to two orders of magnitude in total mobility: i.e., ?foam generation.? Earlier research on foam generation is extended here with extensive data for a variety of porous media, permeabilities, gases (N2 and C02), surfactants, and temperatures. For bead and sandpacks, ?grad p min? scales like (1/k), where k is permeability, over 2 1/2 orders of magnitude in k; for consolidated media the relation is more complex. For dense C02 foam, ?grad p min? exists but can be less than 1 psi/ft. If pressure drop, rather than flow rates, is fixed, one observes and unstable regime between stable ?strong? and ?coarse? foam regimes; in the unstable regime ?grad p? is nonuniform in space or variable in time.

  12. Controlled nanopatterning of a polymerized ionic liquid in a...

    Office of Scientific and Technical Information (OSTI)

    force microscopy (AFM), are versatile tools for creating nanoscale patterns utilizing a range of physical stimuli such as force, heat, or electric field confined to the nanoscale. ...

  13. Small nickel nanoparticle arrays from long chain imidazolium ionic liquids

    SciTech Connect (OSTI)

    Yang, Mei; Campbell, Paul S.; Santini, Catherine C.; Mudring, Anja -Verena

    2013-11-08

    A series of six long chain alkyl mono- and bi-cationic imidazolium based salts with bis(trifluoromethylsulfonyl)imide (NTf2–) as the anion were synthesized and characterized. Single crystal structure of 1-methyl-3-octadecylimidazolium bis(trifluoromethylsulfonyl)imide could be obtained by X-ray analysis. All these long chain alkyl imidazolium based ILs were applied in the synthesis of nickel nanoparticles via chemical decomposition of an organometallic precursor of nickel. In these media, spontaneous decomposition of Ni(COD)2 (COD = 1,5-cyclooctadiene) in the absence of H2 occurred giving small NPs (≤4 nm) with narrow size distributions. Interestingly, formation of regularly interspaced NP arrays was also observed in long chain ILs. Lastly, such array formation could be interesting for potential applications such as carbon nanotube growth.

  14. Atom transfer radical polymerization of ionic liquid monomer...

    Office of Scientific and Technical Information (OSTI)

    Date: 2014-08-01 OSTI Identifier: 1165556 Report Number(s): A-UNIV-PUB-081 Journal ID: ISSN 0887-624X DOE Contract Number: DE-FE0004000 Resource Type: Journal Article Resource...

  15. Ionic Liquids as Multifunctional Ashless Additives for Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    lubricant additives with promising physicalchemical properties and potential ... Vehicle Technologies Office Merit Review 2014: Can hard coatings and lubricant ...

  16. Influence of Solute Charge and Pyrrolidinium Ionic Liquid Alkyl...

    Office of Scientific and Technical Information (OSTI)

    Authors: Guo, Jianchang 1 ; Mahurin, Shannon Mark 1 ; Baker, Gary A 1 ; Hillesheim, Patrick C 1 ; Dai, Sheng 1 ; Shaw, Robert W 1 + Show Author Affiliations ORNL ...

  17. Copper ionic liquids: Tunable ligand and anion chemistries to...

    Office of Scientific and Technical Information (OSTI)

    chemistries to control electrochemistry and deposition morphology. Abstract not provided. ... Country of Publication: United States Language: English Word Cloud More Like This Full ...

  18. Ionic Liquid Pretreatment Process for Biomass Is Successfully...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    pretreatment process used in the production of biofuel can be executed at a larger scale than ever achieved before. Before biofuel can be generated from lignocellulosic feedstocks ...

  19. Small nickel nanoparticle arrays from long chain imidazolium ionic liquids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yang, Mei; Campbell, Paul S.; Santini, Catherine C.; Mudring, Anja -Verena

    2013-11-08

    A series of six long chain alkyl mono- and bi-cationic imidazolium based salts with bis(trifluoromethylsulfonyl)imide (NTf2–) as the anion were synthesized and characterized. Single crystal structure of 1-methyl-3-octadecylimidazolium bis(trifluoromethylsulfonyl)imide could be obtained by X-ray analysis. All these long chain alkyl imidazolium based ILs were applied in the synthesis of nickel nanoparticles via chemical decomposition of an organometallic precursor of nickel. In these media, spontaneous decomposition of Ni(COD)2 (COD = 1,5-cyclooctadiene) in the absence of H2 occurred giving small NPs (≤4 nm) with narrow size distributions. Interestingly, formation of regularly interspaced NP arrays was also observed in long chain ILs. Lastly,more » such array formation could be interesting for potential applications such as carbon nanotube growth.« less

  20. Fractionation and Removal of Solutes from Ionic Liquids - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LBL About This Technology Technology Marketing SummaryResearchers at the Joint BioEnergy Institute (JBEI) have developed a technology to fractionate and recover biomaterials...

  1. Carbon Films Produced from Ionic Liquid Precursors - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Fiber and Clean Energy: 4 Uses for Industry Carbon Fiber and Clean Energy: 4 Uses for Industry February 7, 2014 - 3:27pm Addthis Oxidized fibers move to a high temperature furnace, where material is converted into carbon fiber at Oak Ridge National Laboratory's Carbon Fiber Technology Facility (CFTC). The CFTC enables companies to test low-cost carbon fiber for use in several industries including the clean energy sector. | Photo courtesy of Oak Ridge National Laboratory Oxidized fibers

  2. Vehicle Technologies Office Merit Review 2014: Ionic Liquids...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting ...

  3. EERE Success Story-Ionic Liquid Pretreatment Process for Biomass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addthis Related Articles Strains of E. coli bacteria were engineered to digest switchgrass ... Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive America EERE ...

  4. Ultrastable Superbase-Derived Protic Ionic Liquids - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    materials and solvent systems in chemical reactions. ... This is a particular problem for fuel cell applications, as it ... Applications and Industries Fuel cells (PEM type) ...

  5. Ionic liquid pretreatment (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: Physical Biosciences Division Country of Publication: United States Language: English Subject: 09 BIOMASS FUELS; 59 BASIC BIOLOGICAL SCIENCES; BIOFUELS; BIOMASS; ...

  6. Molecular Design of Low Viscosity Ionic Liquid for High Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weatherize » Moisture Control Moisture Control Controlling moisture can make your home more energy-efficient, less costly to heat and cool, more comfortable, and prevent mold growth. Controlling moisture can make your home more energy-efficient, less costly to heat and cool, more comfortable, and prevent mold growth. Properly controlling moisture in your home will improve the effectiveness of your air sealing and insulation efforts, and these efforts in turn will help control moisture. The best

  7. ionic liquids biological-ly derived from lignin and hemicellulose

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Predictive Simulation of Engines Transportation Energy Consortiums Engine Combustion ... Results Pave the Way for Closed-Loop Biofuel Refineries Biofuels, Biomass, ...

  8. Fabricating solid carbon porous electrodes from powders

    DOE Patents [OSTI]

    Kaschmitter, J.L.; Tran, T.D.; Feikert, J.H.; Mayer, S.T.

    1997-06-10

    Fabrication is described for conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive deionization, and waste treatment. Electrodes fabricated from low surface area (<50 m{sup 2}/gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon composites with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to high surface area carbons, fuel cell electrodes can be produced. 1 fig.

  9. Fabricating solid carbon porous electrodes from powders

    DOE Patents [OSTI]

    Kaschmitter, James L.; Tran, Tri D.; Feikert, John H.; Mayer, Steven T.

    1997-01-01

    Fabrication of conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive dionization, and waste treatment. Electrodes fabricated from low surface area (<50 m.sup.2 /gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon compositives with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to be high surface area carbons, fuel cell electrodes can be produced.

  10. Filter casting nanoscale porous materials

    DOE Patents [OSTI]

    Hayes, Joel Ryan; Nyce, Gregory Walker; Kuntz, Joshua David

    2012-07-24

    A method of producing nanoporous material includes the steps of providing a liquid, providing nanoparticles, producing a slurry of the liquid and the nanoparticles, removing the liquid from the slurry, and producing a monolith.

  11. Filter casting nanoscale porous materials

    DOE Patents [OSTI]

    Hayes, Joel Ryan; Nyce, Gregory Walker; Kuntz, Jushua David

    2013-12-10

    A method of producing nanoporous material includes the steps of providing a liquid, providing nanoparticles, producing a slurry of the liquid and the nanoparticles, removing the liquid from the slurry, and producing monolith.

  12. Porous substrates filled with nanomaterials

    DOE Patents [OSTI]

    Worsley, Marcus A.; Baumann, Theodore F.; Satcher, Jr., Joe H.; Stadermann, Michael

    2014-08-19

    A composition comprising: at least one porous carbon monolith, such as a carbon aerogel, comprising internal pores, and at least one nanomaterial, such as carbon nanotubes, disposed uniformly throughout the internal pores. The nanomaterial can be disposed in the middle of the monolith. In addition, a method for making a monolithic solid with both high surface area and good bulk electrical conductivity is provided. A porous substrate having a thickness of 100 microns or more and comprising macropores throughout its thickness is prepared. At least one catalyst is deposited inside the porous substrate. Subsequently, chemical vapor deposition is used to uniformly deposit a nanomaterial in the macropores throughout the thickness of the porous substrate. Applications include electrical energy storage, such as batteries and capacitors, and hydrogen storage.

  13. Partially fluorinated cyclic ionic polymers and membranes

    DOE Patents [OSTI]

    Yang, Zhen-Yu

    2013-04-09

    Ionic polymers are made from selected partially fluorinated dienes, in which the repeat units are cycloaliphatic. The polymers are formed into membranes.

  14. Porous light-emitting compositions

    DOE Patents [OSTI]

    Burrell, Anthony K.; McCleskey, Thomas Mark; Jia, Quanxi; Bauer, Eve; Mueller, Alexander H.

    2012-04-17

    Light-emitting devices are prepared by coating a porous substrate using a polymer-assisted deposition process. Solutions of metal precursor and soluble polymers having binding properties for metal precursor were coated onto porous substrates. The coated substrates were heated at high temperatures under a suitable atmosphere. The result was a substrate with a conformal coating that did not substantially block the pores of the substrate.

  15. Porous polymeric materials for hydrogen storage (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Porous polymeric materials for hydrogen storage Title: Porous polymeric materials for hydrogen storage Porous polymers, tribenzohexazatriphenylene, poly-9,9'-spirobifluorene, ...

  16. Porous polymeric materials for hydrogen storage (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Porous polymeric materials for hydrogen storage Title: Porous polymeric materials for hydrogen storage A porous polymer, poly-9,9'-spirobifluorene and its derivatives for storage ...

  17. Fuel cell with interdigitated porous flow-field

    DOE Patents [OSTI]

    Wilson, M.S.

    1997-06-24

    A polymer electrolyte membrane (PEM) fuel cell is formed with an improved system for distributing gaseous reactants to the membrane surface. A PEM fuel cell has an ionic transport membrane with opposed catalytic surfaces formed thereon and separates gaseous reactants that undergo reactions at the catalytic surfaces of the membrane. The fuel cell may also include a thin gas diffusion layer having first and second sides with a first side contacting at least one of the catalytic surfaces. A macroporous flow-field with interdigitated inlet and outlet reactant channels contacts the second side of the thin gas diffusion layer for distributing one of the gaseous reactants over the thin gas diffusion layer for transport to an adjacent one of the catalytic surfaces of the membrane. The porous flow field may be formed from a hydrophilic material and provides uniform support across the backside of the electrode assembly to facilitate the use of thin backing layers. 9 figs.

  18. Fuel cell with interdigitated porous flow-field

    DOE Patents [OSTI]

    Wilson, Mahlon S.

    1997-01-01

    A polymer electrolyte membrane (PEM) fuel cell is formed with an improved system for distributing gaseous reactants to the membrane surface. A PEM fuel cell has an ionic transport membrane with opposed catalytic surfaces formed thereon and separates gaseous reactants that undergo reactions at the catalytic surfaces of the membrane. The fuel cell may also include a thin gas diffusion layer having first and second sides with a first side contacting at least one of the catalytic surfaces. A macroporous flow-field with interdigitated inlet and outlet reactant channels contacts the second side of the thin gas diffusion layer for distributing one of the gaseous reactants over the thin gas diffusion layer for transport to an adjacent one of the catalytic surfaces of the membrane. The porous flow field may be formed from a hydrophilic material and provides uniform support across the backside of the electrode assembly to facilitate the use of thin backing layers.

  19. Process for forming a porous silicon member in a crystalline silicon member

    DOE Patents [OSTI]

    Northrup, M. Allen; Yu, Conrad M.; Raley, Norman F.

    1999-01-01

    Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gasses in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters.

  20. Porous silicon structures with high surface area/specific pore size

    DOE Patents [OSTI]

    Northrup, M.A.; Yu, C.M.; Raley, N.F.

    1999-03-16

    Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gases in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters. 9 figs.

  1. Porous silicon structures with high surface area/specific pore size

    DOE Patents [OSTI]

    Northrup, M. Allen; Yu, Conrad M.; Raley, Norman F.

    1999-01-01

    Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gasses in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters.

  2. Nanoscale lubrication of ionic surfaces controlled via a strong...

    Office of Scientific and Technical Information (OSTI)

    Nanoscale lubrication of ionic surfaces controlled via a strong electric field Prev Next Title: Nanoscale lubrication of ionic surfaces controlled via a strong electric field ...

  3. TOUGHREACT Testing in High Ionic Strength Brine Sandstone Systems...

    Office of Scientific and Technical Information (OSTI)

    Title: TOUGHREACT Testing in High Ionic Strength Brine Sandstone Systems Deep saline formations and oil and gas reservoirs often contain concentrated brine solutions of ionic ...

  4. Decoupling of Ionic Transport from Segmental Relaxation in Polymer...

    Office of Scientific and Technical Information (OSTI)

    Publisher's Accepted Manuscript: Decoupling of Ionic Transport from Segmental Relaxation in Polymer Electrolytes Prev Next Title: Decoupling of Ionic Transport from Segmental ...

  5. Ionic Effects on the Behavior of Thermoresponsive PEO-PNIPAAm...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Ionic Effects on the Behavior of Thermoresponsive PEO-PNIPAAm Block Copolymers. Citation Details In-Document Search Title: Ionic Effects on the Behavior of...

  6. Foam Transport in Porous Media - A Review

    SciTech Connect (OSTI)

    Zhang, Z. F.; Freedman, Vicky L.; Zhong, Lirong

    2009-11-11

    Amendment solutions with or without surfactants have been used to remove contaminants from soil. However, it has drawbacks such that the amendment solution often mobilizes the plume, and its movement is controlled by gravity and preferential flow paths. Foam is an emulsion-like, two-phase system in which gas cells are dispersed in a liquid and separated by thin liquid films called lamellae. Potential advantages of using foams in sub-surface remediation include providing better control on the volume of fluids injected, uniformity of contact, and the ability to contain the migration of contaminant laden liquids. It is expected that foam can serve as a carrier of amendments for vadose zone remediation, e.g., at the Hanford Site. As part of the U.S. Department of Energy’s EM-20 program, a numerical simulation capability will be added to the Subsurface Transport Over Multiple Phases (STOMP) flow simulator. The primary purpose of this document is to review the modeling approaches of foam transport in porous media. However, as an aid to understanding the simulation approaches, some experiments under unsaturated conditions and the processes of foam transport are also reviewed. Foam may be formed when the surfactant concentration is above the critical micelle concentration. There are two main types of foams – the ball foam (microfoam) and the polyhedral foam. The characteristics of bulk foam are described by the properties such as foam quality, texture, stability, density, surface tension, disjoining pressure, etc. Foam has been used to flush contaminants such as metals, organics, and nonaqueous phase liquids from unsaturated soil. Ball foam, or colloidal gas aphrons, reportedly have been used for soil flushing in contaminated site remediation and was found to be more efficient than surfactant solutions on the basis of weight of contaminant removed per gram of surfactant. Experiments also indicate that the polyhedral foam can be used to enhance soil remediation. The

  7. SCDAP/RELAP5 modeling of heat transfer and flow losses in lower head porous debris. Revision 1

    SciTech Connect (OSTI)

    Siefken, L.J.; Coryell, E.W.; Paik, S.; Kuo, H.

    1999-05-01

    Designs are described for implementing models for calculating the heat transfer and flow losses in porous debris in the lower head of a reactor vessel. The COUPLE model in SCDAP/RELAP5 represents both the porous and nonporous debris that results from core material slumping into the lower head. Currently, the COUPLE model has the capability to model convective and radiative heat transfer from the surfaces of nonporous debris in a detailed manner and to model only in a simplistic manner the heat transfer from porous debris. In order to advance beyond the simplistic modeling for porous debris, designs are developed for detailed calculations of heat transfer and flow losses in porous debris. Correlations are identified for convective heat transfer in porous debris for the following modes of heat transfer; (1) forced convection to liquid, (2) forced convection to gas, (3) nucleate boiling, (4) transition boiling, and (5) film boiling. Interphase heat transfer is modeled in an approximate ma nner. Designs are described for models to calculate the flow losses and interphase drag of fluid flowing through the interstices of the porous debris, and to apply these variables in the momentum equations in the RELAP5 part of the code. Since the models for heat transfer and flow losses in porous debris in the lower head are designed for general application, a design is also described for implementation of these models to the analysis of porous debris in the core region. A test matrix is proposed for assessing the capability of the implemented models to calculate the heat transfer and flow losses in porous debris. The implementation of the models described in this report is expected to improve the COUPLE code calculation of the temperature distribution in porous debris and in the lower head that supports the debris. The implementation of these models is also expected to improve the calculation of the temperature and flow distribution in porous debris in the core region.

  8. Metal recovery from porous materials

    DOE Patents [OSTI]

    Sturcken, Edward F.

    1992-01-01

    A method for recovering plutonium and other metals from materials by leaching comprising the steps of incinerating the materials to form a porous matrix as the residue of incineration, immersing the matrix into acid in a microwave-transparent pressure vessel, sealing the pressure vessel, and applying microwaves so that the temperature and the pressure in the pressure vessel increase. The acid for recovering plutonium can be a mixture of HBF.sub.4 and HNO.sub.3 and preferably the pressure is increased to at least 100 PSI and the temperature to at least 200.degree. C. The porous material can be pulverized before immersion to further increase the leach rate.

  9. Process of preparing tritiated porous silicon

    DOE Patents [OSTI]

    Tam, Shiu-Wing

    1997-01-01

    A process of preparing tritiated porous silicon in which porous silicon is equilibrated with a gaseous vapor containing HT/T.sub.2 gas in a diluent for a time sufficient for tritium in the gas phase to replace hydrogen present in the pore surfaces of the porous silicon.

  10. Process of preparing tritiated porous silicon

    DOE Patents [OSTI]

    Tam, S.W.

    1997-02-18

    A process of preparing tritiated porous silicon is described in which porous silicon is equilibrated with a gaseous vapor containing HT/T{sub 2} gas in a diluent for a time sufficient for tritium in the gas phase to replace hydrogen present in the pore surfaces of the porous silicon. 1 fig.

  11. Metal recovery from porous materials

    DOE Patents [OSTI]

    Sturcken, E.F.

    1991-01-01

    The present invention relates to recovery of metals. More specifically, the present invention relates to the recovery of plutonium and other metals from porous materials using microwaves. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  12. Method of preparing thin porous sheets of ceramic material

    DOE Patents [OSTI]

    Swarr, Thomas E.; Nickols, Richard C.; Krasij, Myron

    1987-03-24

    A method of forming thin porous sheets of ceramic material for use as electrodes or other components in a molten carbonate fuel cell is disclosed. The method involves spray drying a slurry of fine ceramic particles in liquid carrier to produce generally spherical agglomerates of high porosity and a rough surface texture. The ceramic particles may include the electrode catalyst and the agglomerates can be calcined to improve mechanical strength. After slurrying with suitable volatile material and binder tape casting is used to form sheets that are sufficiently strong for further processing and handling in the assembly of a high temperature fuel cell.

  13. Method of preparing thin porous sheets of ceramic material

    DOE Patents [OSTI]

    Swarr, T.E.; Nickols, R.C.; Krasij, M.

    1984-05-23

    A method of forming thin porous sheets of ceramic material for use as electrodes or other components in a molten carbonate fuel cell is disclosed. The method involves spray drying a slurry of fine ceramic particles in liquid carrier to produce generally spherical agglomerates of high porosity and a rough surface texture. The ceramic particles may include the electrode catalyst and the agglomerates can be calcined to improve mechanical strength. After slurrying with suitable volatile material and binder tape casting is used to form sheets that are sufficiently strong for further processing and handling in the assembly of a high temperature fuel cell.

  14. Ionic conductors for solid oxide fuel cells

    DOE Patents [OSTI]

    Krumpelt, Michael; Bloom, Ira D.; Pullockaran, Jose D.; Myles, Kevin M.

    1993-01-01

    An electrolyte that operates at temperatures ranging from 600.degree. C. to 800.degree. C. is provided. The electrolyte conducts charge ionically as well as electronically. The ionic conductors include molecular framework structures having planes or channels large enough to transport oxides or hydrated protons and having net-positive or net-negative charges. Representative molecular framework structures include substituted aluminum phosphates, orthosilicates, silicoaluminates, cordierites, apatites, sodalites, and hollandites.

  15. Chirality-selected phase behaviour in ionic polypeptide complexes

    SciTech Connect (OSTI)

    Perry, Sarah L.; Leon, Lorraine; Hoffmann, Kyle Q.; Kade, Matthew J.; Priftis, Dimitrios; Black, Katie A.; Wong, Derek; Klein, Ryan A.; Pierce, III, Charles F.; Margossian, Khatcher O.; Whitmer, Jonathan K.; Qin, Jian; de Pablo, Juan J.; Tirrell, Matthew

    2015-01-14

    In this study, polyelectrolyte complexes present new opportunities for self-assembled soft matter. Factors determining whether the phase of the complex is solid or liquid remain unclear. Ionic polypeptides enable examination of the effects of stereochemistry on complex formation. Here we demonstrate that chirality determines the state of polyelectrolyte complexes, formed from mixing dilute solutions of oppositely charged polypeptides, via a combination of electrostatic and hydrogen-bonding interactions. Fluid complexes occur when at least one of the polypeptides in the mixture is racemic, which disrupts backbone hydrogen-bonding networks. Pairs of purely chiral polypeptides, of any sense, form compact, fibrillar solids with a β-sheet structure. Analogous behaviour occurs in micelles formed from polypeptide block copolymers with polyethylene oxide, where assembly into aggregates with either solid or fluid cores, and eventually into ordered phases at high concentrations, is possible. Chirality is an exploitable tool for manipulating material properties in polyelectrolyte complexation.

  16. Chirality-selected phase behaviour in ionic polypeptide complexes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Perry, Sarah L.; Leon, Lorraine; Hoffmann, Kyle Q.; Kade, Matthew J.; Priftis, Dimitrios; Black, Katie A.; Wong, Derek; Klein, Ryan A.; Pierce, III, Charles F.; Margossian, Khatcher O.; et al

    2015-01-14

    In this study, polyelectrolyte complexes present new opportunities for self-assembled soft matter. Factors determining whether the phase of the complex is solid or liquid remain unclear. Ionic polypeptides enable examination of the effects of stereochemistry on complex formation. Here we demonstrate that chirality determines the state of polyelectrolyte complexes, formed from mixing dilute solutions of oppositely charged polypeptides, via a combination of electrostatic and hydrogen-bonding interactions. Fluid complexes occur when at least one of the polypeptides in the mixture is racemic, which disrupts backbone hydrogen-bonding networks. Pairs of purely chiral polypeptides, of any sense, form compact, fibrillar solids with amore » β-sheet structure. Analogous behaviour occurs in micelles formed from polypeptide block copolymers with polyethylene oxide, where assembly into aggregates with either solid or fluid cores, and eventually into ordered phases at high concentrations, is possible. Chirality is an exploitable tool for manipulating material properties in polyelectrolyte complexation.« less

  17. Porous-electrode preparation method

    DOE Patents [OSTI]

    Arons, R.M.; Dusek, J.T.

    1981-09-17

    A porous sintered plaque is provided with a bimodal porosity that is especially well suited for use as an electrode within a molten carbonate fuel cell. The coarse porosity is sufficient for admitting gases into contact with the reaction surfaces while the fine porosity is wetted with and retains molten electrolyte on the reaction sites. The electrode structure is prepared by providing a very fine powder such as nickel oxide and blending the powder with a suitable decomposable binder to form a solid mass. The mass is comminuted into agglomerate size particles substantially larger than the fine oxide particles and formed into a cohesive compact for subsequent sintering. Sintering is carried out at sufficient conditions to bind the agglomerates together into a porous structure having both coarse and fine porosity. Where lithiated nickel oxide cathodes are prepared, the sintering conditions can be moderate enough to retain substantial quantities of lithium within the electrode for adequate conductivity.

  18. Metal recovery from porous materials

    DOE Patents [OSTI]

    Sturcken, E.F.

    1992-10-13

    A method is described for recovering plutonium and other metals from materials by leaching comprising the steps of incinerating the materials to form a porous matrix as the residue of incineration, immersing the matrix into acid in a microwave-transparent pressure vessel, sealing the pressure vessel, and applying microwaves so that the temperature and the pressure in the pressure vessel increase. The acid for recovering plutonium can be a mixture of HBF[sub 4] and HNO[sub 3] and preferably the pressure is increased to at least 100 PSI and the temperature to at least 200 C. The porous material can be pulverized before immersion to further increase the leach rate.

  19. POROUS WALL, HOLLOW GLASS MICROSPHERES

    SciTech Connect (OSTI)

    Sexton, W.

    2012-06-30

    Hollow Glass Microspheres (HGM) is not a new technology. All one has to do is go to the internet and Google{trademark} HGM. Anyone can buy HGM and they have a wide variety of uses. HGM are usually between 1 to 100 microns in diameter, although their size can range from 100 nanometers to 5 millimeters in diameter. HGM are used as lightweight filler in composite materials such as syntactic foam and lightweight concrete. In 1968 a patent was issued to W. Beck of the 3M{trademark} Company for 'Glass Bubbles Prepared by Reheating Solid Glass Particles'. In 1983 P. Howell was issued a patent for 'Glass Bubbles of Increased Collapse Strength' and in 1988 H. Marshall was issued a patent for 'Glass Microbubbles'. Now Google{trademark}, Porous Wall, Hollow Glass Microspheres (PW-HGMs), the key words here are Porous Wall. Almost every article has its beginning with the research done at the Savannah River National Laboratory (SRNL). The Savannah River Site (SRS) where SRNL is located has a long and successful history of working with hydrogen and its isotopes for national security, energy, waste management and environmental remediation applications. This includes more than 30 years of experience developing, processing, and implementing special ceramics, including glasses for a variety of Department of Energy (DOE) missions. In the case of glasses, SRS and SRNL have been involved in both the science and engineering of vitreous or glass based systems. As a part of this glass experience and expertise, SRNL has developed a number of niches in the glass arena, one of which is the development of porous glass systems for a variety of applications. These porous glass systems include sol gel glasses, which include both xerogels and aerogels, as well as phase separated glass compositions, that can be subsequently treated to produce another unique type of porosity within the glass forms. The porous glasses can increase the surface area compared to 'normal glasses of a 1 to 2 order of

  20. Centrifuge Techniques and Apparatus for Transport Experiments in Porous Media

    SciTech Connect (OSTI)

    Earl D. Mattson; Carl D. Paler; Robert W. Smith; Markus Flury

    2010-06-01

    This paper describes experimental approaches and apparatus that we have developed to study solute and colloid transport in porous media using Idaho National Laboratory's 2-m radius centrifuge. The ex-perimental techniques include water flux scaling with applied acceleration at the top of the column and sub-atmospheric pressure control at the column base, automation of data collection, and remote experimental con-trol over the internet. These apparatus include a constant displacement piston pump, a custom designed liquid fraction collector based on switching valve technology, and modified moisture monitoring equipment. Suc-cessful development of these experimental techniques and equipment is illustrated through application to transport of a conservative tracer through unsaturated sand column, with centrifugal acceleration up to 40 gs. Development of such experimental equipment that can withstand high accelerations enhances the centrifuge technique to conduct highly controlled unsaturated solute/colloid transport experiments and allows in-flight liquid sample collection of the effluent.

  1. Activation of porous MOF materials

    DOE Patents [OSTI]

    Hupp, Joseph T; Farha, Omar K

    2013-04-23

    A method for the treatment of solvent-containing MOF material to increase its internal surface area involves introducing a liquid into the MOF in which liquid the solvent is miscible, subjecting the MOF to supercritical conditions for a time to form supercritical fluid, and releasing the supercritical conditions to remove the supercritical fluid from the MOF. Prior to introducing the liquid into the MOF, occluded reaction solvent, such as DEF or DMF, in the MOF can be exchanged for the miscible solvent.

  2. Activation of porous MOF materials

    DOE Patents [OSTI]

    Hupp, Joseph T; Farha, Omar K

    2014-04-01

    A method for the treatment of solvent-containing MOF material to increase its internal surface area involves introducing a liquid into the MOF in which liquid the solvent is miscible, subjecting the MOF to supercritical conditions for a time to form supercritical fluid, and releasing the supercritical conditions to remove the supercritcal fluid from the MOF. Prior to introducing the liquid into the MOF, occluded reaction solvent, such as DEF or DMF, in the MOF can be exchanged for the miscible solvent.

  3. Synthesis of Poly(ionic liquid)s by Atom Transfer Radical Polymerizati...

    Office of Scientific and Technical Information (OSTI)

    Publication Date: 2014-10-14 OSTI Identifier: 1185116 DOE Contract Number: ER-45998; DMR-0969301; CHE-1039870 Resource Type: Journal Article Resource Relation: Journal Name: ...

  4. Porous Power Technologies | Open Energy Information

    Open Energy Info (EERE)

    80026 Product: Porous Power is a Colorado-based developer of microporous, laminatable battery separators. Coordinates: 42.706102, -88.48126 Show Map Loading map......

  5. Gas sensor incorporating a porous framework

    DOE Patents [OSTI]

    Yaghi, Omar M.; Czaja, Alexander U.; Wang, Bo; Furukawa, Hiroyasu; Galatsis, Kosmas; Wang, Kang L.

    2013-07-09

    The disclosure provides sensor for gas sensing including CO.sub.2 gas sensors comprising a porous framework sensing area for binding an analyte gas.

  6. Gas sensor incorporating a porous framework

    DOE Patents [OSTI]

    Yaghi, Omar M; Czaja, Alexander U; Wang, Bo; Galatsis, Kosmas; Wang, Kang L; Furukawa, Hiroyasu

    2014-05-27

    The disclosure provides sensor for gas sensing including CO.sub.2 gas sensors comprising a porous framework sensing area for binding an analyte gas.

  7. Modeling Methane Adsorption in Interpenetrating Porous Polymer...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling Methane Adsorption in Interpenetrating Porous Polymer Networks Previous Next List Richard L. Martin, Mahdi Niknam Shahrak, Joseph A. Swisher, Cory M. Simon, Julian P....

  8. Porous Power Technologies LLC | Open Energy Information

    Open Energy Info (EERE)

    Region: Rockies Area Sector: Efficiency Product: Laminable, porous, absorbent Li-ion batteries Website: www.porouspower.com Coordinates: 40.0130129, -105.1327972 Show Map...

  9. Porous Polymer Networks: Synthesis, Porosity, and Applications...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Porous Polymer Networks: Synthesis, Porosity, and Applications in Gas StorageSeparation Previous Next List Weigang Lu, Daqiang Yuan, Dan Zhao, Christine Inge Schilling, Oliver...

  10. Supplementary information accompanying article %22Porous templated...

    Office of Scientific and Technical Information (OSTI)

    components%22. Citation Details In-Document Search Title: Supplementary information accompanying article %22Porous templated pyrolytic carbons as electrocatalyst components%22. ...

  11. Flagella-Mediated Differences in Deposition Dynamics for Azotobacter vinelandii in Porous Media

    SciTech Connect (OSTI)

    Lu, Nanxi; Bevard, Tara; Massoudieh, Arash; Zhang, Changyong; Dohnalkova, Alice; Zilles, Julie L.; Nguyen, Thanh H.

    2013-05-21

    A multi-scale approach was designed to investigate deposition of flagellated and non-flagellated strains of Azotobacter vinelandii in porous media. In a radial stagnation point flow cell (RSPF), the deposition rate of the flagellated strain (DJ77) on quartz was higher than that of the non-flagellated (Fla-) strain. In contrast, deposition of the Fla- strain exceeded that of DJ77 in two-dimensional silicon microfluidic models (micromodels) and in columns packed with glass beads. Direct cell counts in micromodel experiments showed decreasing values of clean collector removal efficiencies over time, suggesting that approaching cells were blocked from deposition by cells already attached to the collector surface. Column breakthrough curves for both strains also showed a decrease in deposition rates with time. Modeling results showed that blocking becomes effective for DJ77 strain at lower ionic strengths (1mM and 10mM), while for Fla- strain blocking was similar at all ionic strengths. In later stages of micromodel experiments, a ripening effect was also observed, where cells preferentially attached to already attached cells. Ripening happened earlier with the Fla- strain, which suggested that flagella interfered with ripening. Different mechanisms dominate at different stages of bacteria transport in porous media.

  12. Porous and porous-nonporous composites for battery electrodes

    SciTech Connect (OSTI)

    Herscovici, C.

    1990-04-24

    This patent describes a zinc-bromide electrochemical cell. It comprises: a cathode element comprising a pressure-molded porous composite comprising electrically conductive particulate carbon selected from the group consisting of carbon black, graphite and mixtures thereof having a particle size distribution of 0 to 45 {mu}m and a thermoplastic resin, the carbon and the resin being in a weight ratio from about 1:5 to 1:1; the composite characterized by 80--95% porosity by volume and a pore size diameter distribution from about 5 microns to about 200 microns.

  13. Electric dipole moments (EDM) of ionic atoms

    SciTech Connect (OSTI)

    Oshima, Sachiko

    2010-03-15

    Recent investigations show that the second-order perturbation calculations of electric dipole moments (EDM) from the finite nuclear size as well as the relativistic effects are all canceled out by the third-order perturbation effects and that this is due to electron screening. To derive the nucleon EDM from the nucleus, we propose to measure the EDM of an ionic system. In this case, it is shown that the nucleon EDM can survive by the reduction factor of 1/Z for the ionic system with one electron stripped off.

  14. LIQUID-LIQUID EXTRACTION COLUMNS

    DOE Patents [OSTI]

    Thornton, J.D.

    1957-12-31

    This patent relates to liquid-liquid extraction columns having a means for pulsing the liquid in the column to give it an oscillatory up and down movement, and consists of a packed column, an inlet pipe for the dispersed liquid phase and an outlet pipe for the continuous liquid phase located in the direct communication with the liquid in the lower part of said column, an inlet pipe for the continuous liquid phase and an outlet pipe for the dispersed liquid phase located in direct communication with the liquid in the upper part of said column, a tube having one end communicating with liquid in the lower part of said column and having its upper end located above the level of said outlet pipe for the dispersed phase, and a piston and cylinder connected to the upper end of said tube for applying a pulsating pneumatic pressure to the surface of the liquid in said tube so that said surface rises and falls in said tube.

  15. Porous titania or zirconia spheres

    SciTech Connect (OSTI)

    Wax, M.J.; Grasselli, R.K.

    1992-07-07

    This patent describes porous titania or zirconia spheres having a particle diameter of about 1 to 100 microns, a pore volume of about 0.1 to cc/g, and a pore diameter in the range of about 10 to 50 Angstrom units, which have been formed by spray drying a slurry of ultimate titania or zirconia particles having a diameter about equal to that of the desired pore diameter of the formed sphere; and a reactive binder, the binder being a soluble compound or a metal or metalloid which decomposes during the spray drying process to form an insoluble compound of the metal or metalloid.

  16. ZnO/porous-Si and TiO{sub 2}/porous-Si nanocomposite nanopillars

    SciTech Connect (OSTI)

    Wang, Dong, E-mail: dong.wang@tu-ilmenau.de; Yan, Yong; Schaaf, Peter [Chair Materials for Electronics, Institute of Materials Engineering and Institute of Micro- and Nanotechnologies MacroNano, TU Ilmenau, Gustav-Kirchhoff-Str. 5, 98693 Ilmenau (Germany); Sharp, Thomas [Oxford Instruments Plasma Technology Ltd., Yatton, Bristol BS49 4AP (United Kingdom); Schnherr, Sven; Ronning, Carsten [Institute for Solid State Physics, Friedrich Schiller University Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Ji, Ran [SUSS MicroTec Lithography GmbH, Schleissheimer Str. 90, 85748 Garching (Germany)

    2015-01-01

    Porous Si nanopillar arrays are used as templates for atomic layer deposition of ZnO and TiO{sub 2}, and thus, ZnO/porous-Si and TiO{sub 2}/porous-Si nanocomposite nanopillars are fabricated. The diffusion of the precursor molecules into the inside of the porous structure occurs via Knudsen diffusion and is strongly limited by the small pore size. The luminescence of the ZnO/porous-Si nanocomposite nanopillars is also investigated, and the optical emission can be changed and even quenched after a strong plasma treatment. Such nanocomposite nanopillars are interesting for photocatalysis and sensors.

  17. Modified normal-phase ion-pair chromatographic methods for the facile separation and purification of imidazolium-based ionic compounds

    SciTech Connect (OSTI)

    Urban, ND; Schenkel, MR; Robertson, LA; Noble, RD; Gin, DL

    2012-07-04

    lmidazolium- and oligo(imidazolium)-based ionic organic compounds are important in the design of room-temperature ionic liquid materials; however, the chromatographic analysis and separation of such compounds are often difficult. A convenient and inexpensive method for effective thin-layer chromatography (TLC) analysis and column chromatography separation of imidazolium-based ionic compounds is presented. Normal-phase ion-pair TLC is used to effectively analyze homologous mixtures of these ionic compounds. Subsequent separation of the mixtures is performed using ion-pair flash chromatography on normal-phase silica gel, yielding high levels of recovery. This method also results in a complete exchange of the counter anion on the imidazolium compounds to the anion of the ion-pair reagent. (C) 2012 Elsevier Ltd. All rights reserved.

  18. Microfluidic devices and methods including porous polymer monoliths...

    Office of Scientific and Technical Information (OSTI)

    Microfluidic devices and methods including porous polymer monoliths Title: Microfluidic devices and methods including porous polymer monoliths Microfluidic devices and methods ...

  19. Microfluidic devices and methods including porous polymer monoliths...

    Office of Scientific and Technical Information (OSTI)

    Microfluidic devices and methods including porous polymer monoliths Citation Details In-Document Search Title: Microfluidic devices and methods including porous polymer monoliths ...

  20. Thiazolothiazole-linked porous organic polymers

    SciTech Connect (OSTI)

    Zhu, Xiang; Tian, Chengcheng; Jin, Tian; Wang, Jitong; Mahurin, Shannon Mark; Mei, Wenwen; Xiong, Yan; Hu, Jun; Feng, Xinliang; Liu, Honglai; Dai, Sheng

    2014-10-07

    In this study, thiazolothiazole-linked porous organic polymers have been synthesized from a facile catalyst-free condensation reaction between aldehydes and dithiooxamide under solvothermal conditions. The resultant porous frameworks exhibit a highly selective uptake of CO2 over N2 under ambient conditions.

  1. Thiazolothiazole-linked porous organic polymers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhu, Xiang; Tian, Chengcheng; Jin, Tian; Wang, Jitong; Mahurin, Shannon Mark; Mei, Wenwen; Xiong, Yan; Hu, Jun; Feng, Xinliang; Liu, Honglai; et al

    2014-10-07

    In this study, thiazolothiazole-linked porous organic polymers have been synthesized from a facile catalyst-free condensation reaction between aldehydes and dithiooxamide under solvothermal conditions. The resultant porous frameworks exhibit a highly selective uptake of CO2 over N2 under ambient conditions.

  2. Microelectromechanical pump utilizing porous silicon

    DOE Patents [OSTI]

    Lantz, Jeffrey W.; Stalford, Harold L.

    2011-07-19

    A microelectromechanical (MEM) pump is disclosed which includes a porous silicon region sandwiched between an inlet chamber and an outlet chamber. The porous silicon region is formed in a silicon substrate and contains a number of pores extending between the inlet and outlet chambers, with each pore having a cross-section dimension about equal to or smaller than a mean free path of a gas being pumped. A thermal gradient is provided along the length of each pore by a heat source which can be an electrical resistance heater or an integrated circuit (IC). A channel can be formed through the silicon substrate so that inlet and outlet ports can be formed on the same side of the substrate, or so that multiple MEM pumps can be connected in series to form a multi-stage MEM pump. The MEM pump has applications for use in gas-phase MEM chemical analysis systems, and can also be used for passive cooling of ICs.

  3. Catalyst for hydrotreating carbonaceous liquids

    DOE Patents [OSTI]

    Berg, Lloyd; McCandless, Frank P.; Ramer, Ronald J.

    1982-01-01

    A catalyst for denitrogenating and desulfurating carbonaceous liquid such as solvent refined coal includes catalytic metal oxides impregnated within a porous base of mostly alumina with relatively large pore diameters, surface area and pore volume. The base material includes pore volumes of 0.7-0.85 ml/g, surface areas of 200-350 m.sup.2 /g and pore diameters of 85-200 Angstroms. The catalytic metals impregnated into these base materials include the oxides of Group VI metals, molybdenum and tungsten, and the oxides of Group VIII metals, nickel and cobalt, in various combinations. These catalysts and bases in combination have effectively promoted the removal of chemically combined sulfur and nitrogen within a continuous flowing mixture of carbonaceous liquid and hydrogen gas.

  4. LIQUID TARGET

    DOE Patents [OSTI]

    Martin, M.D.; Salsig, W.W. Jr.

    1959-01-13

    A liquid handling apparatus is presented for a liquid material which is to be irradiated. The apparatus consists essentially of a reservoir for the liquid, a target element, a drain tank and a drain lock chamber. The target is in the form of a looped tube, the upper end of which is adapted to be disposed in a beam of atomic particles. The lower end of the target tube is in communication with the liquid in the reservoir and a means is provided to continuously circulate the liquid material to be irradiated through the target tube. Means to heat the reservoir tank is provided in the event that a metal is to be used as the target material. The apparatus is provided with suitable valves and shielding to provide maximum safety in operation.

  5. METHOD OF IMPREGNATING A POROUS MATERIAL

    DOE Patents [OSTI]

    Steele, G.N.

    1960-06-01

    A method of impregnating a porous body with an inorganic uranium- containing salt is outlined and comprises dissolving a water-soluble uranium- containing salt in water; saturating the intercommunicating pores of the porous body with the salt solution; infusing ammonia gas into the intercommunicating pores of the body, the ammonia gas in water chemically reacting with the water- soluble uranium-containing salt in the water solvent to form a nonwater-soluble uranium-containing precipitant; and evaporating the volatile unprecipitated products from the intercommunicating pores whereby the uranium-containing precipitate is uniformly distributed in the intercommunicating peres of the porous body.

  6. A new stereolithography experimental porous flow device

    SciTech Connect (OSTI)

    Crandall, D.M.; Ahmadi, G.; Leonard, D.; Ferer, M.V.; Smith, D.H.

    2008-04-11

    A new method for constructing laboratory-scale porous media with increased pore-level variabilities for two-phase flow experiments is presented here. These devices have been created with stereolithography directly on glass, thus improving the stability of the model created with this precision rapid construction technique. The method of construction and improved parameters are discussed in detail, followed by a brief comparison of two-phase drainage results for air invasion into the water-saturated porous medium. Flow through the model porous medium is shown to substantiate theoretical fractal predictions.

  7. Liquid methanol under a static electric field

    SciTech Connect (OSTI)

    Cassone, Giuseppe; Giaquinta, Paolo V.; Saija, Franz; Saitta, A. Marco

    2015-02-07

    We report on an ab initio molecular dynamics study of liquid methanol under the effect of a static electric field. We found that the hydrogen-bond structure of methanol is more robust and persistent for field intensities below the molecular dissociation threshold whose value (?0.31 V/) turns out to be moderately larger than the corresponding estimate obtained for liquid water. A sustained ionic current, with ohmic current-voltage behavior, flows in this material for field intensities above 0.36 V/, as is also the case of water, but the resulting ionic conductivity (?0.40 S cm{sup ?1}) is at least one order of magnitude lower than that of water, a circumstance that evidences a lower efficiency of proton transfer processes. We surmise that this study may be relevant for the understanding of the properties and functioning of technological materials which exploit ionic conduction, such as direct-methanol fuel cells and Nafion membranes.

  8. Apparatus and method for electrochemical modification of liquids

    DOE Patents [OSTI]

    James, Patrick I

    2015-04-21

    An apparatus for electrochemical modification of liquid streams employing an electrolytic cell which includes an anode compartment defined by an anode structure where oxidation is effected, containing a liquid electrolyte anolyte, and a cathode compartment defined by a cathode structure where reduction is effected containing a liquid electrolyte catholyte. In addition, the electrolytic cell includes at least one additional compartment arranged at least partially between the anode compartment and the cathode compartment and separated from the anode compartment and the cathode compartment by a separator structure arranged to supports ionic conduction of current between the anode structure and the cathode structure.

  9. Kelvin Probe Force Microscopy in liquid using Electrochemical Force Microscopy

    SciTech Connect (OSTI)

    Collins, Liam; Jesse, Stephen; Kilpatrick, J.; Tselev, Alexander; Okatan, Mahmut Baris; Kalinin, Sergei V.; Rodriguez, Brian

    2015-01-01

    Conventional closed loop-Kelvin probe force microscopy (KPFM) has emerged as a powerful technique for probing electric and transport phenomena at the solid-gas interface. The extension of KPFM capabilities to probe electrostatic and electrochemical phenomena at the solid–liquid interface is of interest for a broad range of applications from energy storage to biological systems. However, the operation of KPFM implicitly relies on the presence of a linear lossless dielectric in the probe-sample gap, a condition which is violated for ionically-active liquids (e.g., when diffuse charge dynamics are present). Here, electrostatic and electrochemical measurements are demonstrated in ionically-active (polar isopropanol, milli-Q water and aqueous NaCl) and ionically-inactive (non-polar decane) liquids by electrochemical force microscopy (EcFM), a multidimensional (i.e., bias- and time-resolved) spectroscopy method. In the absence of mobile charges (ambient and non-polar liquids), KPFM and EcFM are both feasible, yielding comparable contact potential difference (CPD) values. In ionically-active liquids, KPFM is not possible and EcFM can be used to measure the dynamic CPD and a rich spectrum of information pertaining to charge screening, ion diffusion, and electrochemical processes (e.g., Faradaic reactions). EcFM measurements conducted in isopropanol and milli-Q water over Au and highly ordered pyrolytic graphite electrodes demonstrate both sample- and solvent-dependent features. Finally, the feasibility of using EcFM as a local force-based mapping technique of material-dependent electrostatic and electrochemical response is investigated. The resultant high dimensional dataset is visualized using a purely statistical approach that does not require a priori physical models, allowing for qualitative mapping of electrostatic and electrochemical material properties at the solid–liquid interface.

  10. Kelvin Probe Force Microscopy in liquid using Electrochemical Force Microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Collins, Liam; Jesse, Stephen; Kilpatrick, J.; Tselev, Alexander; Okatan, Mahmut Baris; Kalinin, Sergei V.; Rodriguez, Brian

    2015-01-01

    Conventional closed loop-Kelvin probe force microscopy (KPFM) has emerged as a powerful technique for probing electric and transport phenomena at the solid-gas interface. The extension of KPFM capabilities to probe electrostatic and electrochemical phenomena at the solid–liquid interface is of interest for a broad range of applications from energy storage to biological systems. However, the operation of KPFM implicitly relies on the presence of a linear lossless dielectric in the probe-sample gap, a condition which is violated for ionically-active liquids (e.g., when diffuse charge dynamics are present). Here, electrostatic and electrochemical measurements are demonstrated in ionically-active (polar isopropanol, milli-Q watermore » and aqueous NaCl) and ionically-inactive (non-polar decane) liquids by electrochemical force microscopy (EcFM), a multidimensional (i.e., bias- and time-resolved) spectroscopy method. In the absence of mobile charges (ambient and non-polar liquids), KPFM and EcFM are both feasible, yielding comparable contact potential difference (CPD) values. In ionically-active liquids, KPFM is not possible and EcFM can be used to measure the dynamic CPD and a rich spectrum of information pertaining to charge screening, ion diffusion, and electrochemical processes (e.g., Faradaic reactions). EcFM measurements conducted in isopropanol and milli-Q water over Au and highly ordered pyrolytic graphite electrodes demonstrate both sample- and solvent-dependent features. Finally, the feasibility of using EcFM as a local force-based mapping technique of material-dependent electrostatic and electrochemical response is investigated. The resultant high dimensional dataset is visualized using a purely statistical approach that does not require a priori physical models, allowing for qualitative mapping of electrostatic and electrochemical material properties at the solid–liquid interface.« less

  11. Porous polymeric materials for hydrogen storage

    DOE Patents [OSTI]

    Yu, Luping; Liu, Di-Jia; Yuan, Shengwen; Yang, Junbing

    2013-04-02

    A porous polymer, poly-9,9'-spirobifluorene and its derivatives for storage of H.sub.2 are prepared through a chemical synthesis method. The porous polymers have high specific surface area and narrow pore size distribution. Hydrogen uptake measurements conducted for these polymers determined a higher hydrogen storage capacity at the ambient temperature over that of the benchmark materials. The method of preparing such polymers, includes oxidatively activating solids by CO.sub.2/steam oxidation and supercritical water treatment.

  12. Method for preparing porous metal hydride compacts

    DOE Patents [OSTI]

    Ron, Moshe; Gruen, Dieter M.; Mendelsohn, Marshall H.; Sheft, Irving

    1981-01-01

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  13. SRNL POROUS WALL GLASS MICROSPHERES

    SciTech Connect (OSTI)

    Wicks, G; Leung Heung, L; Ray Schumacher, R

    2008-04-15

    The Savannah River National Laboratory (SRNL) has developed a new medium for storage of hydrogen and other gases. This involves fabrication of thin, Porous Walled, Hollow Glass Microspheres (PW-HGMs), with diameters generally in the range of 1 to several hundred microns. What is unique about the glass microballons is that porosity has been induced and controlled within the thin, one micron thick walls, on the scale of 10 to several thousand Angstroms. This porosity results in interesting properties including the ability to use these channels to fill the microballons with special absorbents and other materials, thus providing a contained environment even for reactive species. Gases can now enter the microspheres and be retained on the absorbents, resulting in solid-state and contained storage of even reactive species. Also, the porosity can be altered and controlled in various ways, and even used to filter mixed gas streams within a system. SRNL is involved in about a half dozen different programs involving these PW-HGMs and an overview of some of these activities and results emerging are presented.

  14. Association of a Multifunctional Ionic Block Copolymer in a Selective...

    Office of Scientific and Technical Information (OSTI)

    Results Journal Article: Association of a Multifunctional Ionic Block Copolymer in a Selective Solvent. Citation Details ... Publication Date: 2014-04-01 OSTI Identifier: 1143261 Report ...

  15. Final Report for DE-FG02-93ER14376,Ionic Transport in Electrochemical Media

    SciTech Connect (OSTI)

    J. W. Halley

    2009-05-20

    This project was a molecular dynamics study of the relevant issues associated with the structure and transport of lithium in polymer electrolytes such as polyethylene oxide(PEO). In close collaboration with quantum chemist Larry Curtiss and neutron scatterers David Lee Price and Marie-Louise Saboungi at Argonne, we used molecular dynamics to study the local structure and dynamics and ion transport in the polymer. The studies elucidated the mechanism of Li transport in PEO, revealing that the rate limiting step is extremely sensitive to the magnitude of the torsion forces in the backbone of the polymer. Because the torsion forces are difficult to manipulate chemically, this makes it easier to understand why improving the conductivity of PEO based electrolytes has proven to be very difficult. We studied the transport properties of cations in ionic liquids as possible additives to polymer membranes for batteries and fuel cells and found preliminary indications that the transport is enhanced near phase separation in acid-ionic liquid mixtures.

  16. Joining of porous silicon carbide bodies

    DOE Patents [OSTI]

    Bates, Carl H.; Couhig, John T.; Pelletier, Paul J.

    1990-05-01

    A method of joining two porous bodies of silicon carbide is disclosed. It entails utilizing an aqueous slip of a similar silicon carbide as was used to form the porous bodies, including the sintering aids, and a binder to initially join the porous bodies together. Then the composite structure is subjected to cold isostatic pressing to form a joint having good handling strength. Then the composite structure is subjected to pressureless sintering to form the final strong bond. Optionally, after the sintering the structure is subjected to hot isostatic pressing to further improve the joint and densify the structure. The result is a composite structure in which the joint is almost indistinguishable from the silicon carbide pieces which it joins.

  17. Nonisothermal Two-Phase Porous Flow

    Energy Science and Technology Software Center (OSTI)

    1992-02-21

    NORIA is a finite element program that simultaneously solves four nonlinear parabolic, partial differential equations that describe the transport of water, water vapor, air, and energy through partially saturated porous media. NORIA is designed for the analysis of two-dimensional, non-isothermal, unsaturated porous flow problems. Nearly all material properties, such as permeability, can either be set to constant values or defined as functions of the dependent and independent variables by user-supplied subroutines. The gas phase ismore » taken to be ideal. NORIA is intended to solve nonisothermal problems in which large gradients are expected in the gas pressure.« less

  18. Porous ceramic scaffolds with complex architectures

    SciTech Connect (OSTI)

    Saiz, Eduardo; Munch, Etienne; Franco, Jaime; Deville, Sylvain; Hunger, Phillip; Saiz, Eduardo; Tomsia, Antoni P.

    2008-03-15

    This work compares two novel techniques for the fabrication of ceramic scaffolds for bone tissue engineering with complex porosity: robocasting and freeze casting. Both techniques are based on the preparation of concentrated ceramic suspensions with suitable properties for the process. In robocasting, the computer-guided deposition of the suspensions is used to build porous materials with designed three dimensional (3-D) geometries and microstructures. Freeze casting uses ice crystals as a template to form porous lamellar ceramic materials. Preliminary results on the compressive strengths of the materials are also reported.

  19. Bounds on Transport Coefficients of Porous Media

    SciTech Connect (OSTI)

    Berryman, J G

    2005-03-21

    An analytical formulation of conductivity bounds by Bergman and Milton is used in a different way to obtain rigorous bounds on the real transport coefficients (electrical conductivity, thermal conductivity, and/or fluid permeability) of a fluid-saturated porous medium. These bounds do not depend explicitly on the porosity, but rather on two formation factors--one associated with the pore space and the other with the solid frame. Hashin-Shtrikman bounds for transport in random polycrystals of porous-material laminates will also be discussed.

  20. Porous polymeric materials for hydrogen storage

    DOE Patents [OSTI]

    Yu, Luping; Liu, Di-Jia; Yuan, Shengwen; Yang, Junbing

    2011-12-13

    Porous polymers, tribenzohexazatriphenylene, poly-9,9'-spirobifluorene, poly-tetraphenyl methane and their derivatives for storage of H.sub.2 prepared through a chemical synthesis method. The porous polymers have high specific surface area and narrow pore size distribution. Hydrogen uptake measurements conducted for these polymers determined a higher hydrogen storage capacity at the ambient temperature over that of the benchmark materials. The method of preparing such polymers, includes oxidatively activating solids by CO.sub.2/steam oxidation and supercritical water treatment.

  1. Porous Polymeric Composite Separators for Redox Flow Batteries

    SciTech Connect (OSTI)

    Wei, Xiaoliang; Li, Bin; Wang, Wei

    2015-04-03

    This invited review paper describes the current status of the porous separator for redox flow battery application.

  2. Methods of forming and using porous structures for energy efficient separation of light gases by capillary condensation

    DOE Patents [OSTI]

    Calamur, Narasimhan; Carrera, Martin E.; Devlin, David J.; Archuleta, Tom

    2000-01-01

    The present invention relates to an improved method and apparatus for separating one or more condensable compounds from a mixture of two or more gases of differing volatilities by capillary fractionation in a membrane-type apparatus, and a method of forming porous structures therefor. More particularly, the invention includes methods of forming and using an apparatus consisting, at least in part, of a porous structure having capillary-type passages extending between a plurality of small openings on the first side and larger openings on a second side of the structure, the passages being adapted to permit a condensed liquid to flow therethrough substantially by capillary forces, whereby vapors from the mixture are condensed, at least in part, and substantially in and adjacent to the openings on the first side, and are caused to flow in a condensed liquid state, substantially in the absence of vapor, from the openings on the first side to the openings on the second side.

  3. Liquid electrode

    DOE Patents [OSTI]

    Ekechukwu, Amy A.

    1994-01-01

    A dropping electrolyte electrode for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions.

  4. Porous Si structure as moisture sensor

    SciTech Connect (OSTI)

    Peterson, D.W.; Nguyen, L.T.

    1996-12-31

    Development and characterization of a capacitive moisture sensor made from porous Si is presented. The sensor development was in support of the DoD funded Plastic Package Availability program and was intended for the detection of pinholes and defects in moisture barrier coatings applied to ICs during fabrication or during the plastic encapsulation assembly process.

  5. Method of making porous ceramic fluoride

    DOE Patents [OSTI]

    Reiner, Robert H. (Knoxville, TN); Holcombe, Cressie E. (Farragut, TN)

    1990-01-01

    A process for making a porous ceramic composite where fumed silica particles are coated with a nitrate, preferably aluminum nitrate. Next the nitrate is converted to an oxide and formed into a desired configuration. This configuration is heated to convert the oxide to an oxide silicate which is then react with HF, resulting in the fluoride ceramic, preferably aluminum fluoride.

  6. Porous radiant burners having increased radiant output

    DOE Patents [OSTI]

    Tong, Timothy W.; Sathe, Sanjeev B.; Peck, Robert E.

    1990-01-01

    Means and methods for enhancing the output of radiant energy from a porous radiant burner by minimizing the scattering and increasing the adsorption, and thus emission of such energy by the use of randomly dispersed ceramic fibers of sub-micron diameter in the fabrication of ceramic fiber matrix burners and for use therein.

  7. Zein Recovery Using Non-Porous Membranes

    DOE Patents [OSTI]

    Mairal, Anurag P.; Ng, Alvin; Wijmans, Johannes G.

    2005-01-25

    A membrane process for treating zein solutions to increase the zein concentration in the solution. The process uses a non-porous membrane that preferentially permeates the solvent and rejects the zein. Optionally, the process can be operated as a diafiltration process to yield a concentrate of high zein purity.

  8. Improvement of SOFC electrodes using mixed ionic-electronic conductors

    SciTech Connect (OSTI)

    Matsuzaki, Y.; Hishinuma, M.

    1996-12-31

    Since the electrode reaction of SOFC is limited to the proximity of a triple phase boundary (TPB), the local current density at the electrode and electrolyte interface is larger than mean current density, which causes large ohmic and electrode polarization. This paper describes an application of mixed ionic-electronic conductors to reduce such polarization by means of (1) enhancing ionic conductivity of the electrolyte surface layer by coating a high ionic conductors, and (2) reducing the local current density by increasing the electrochemically active sites.

  9. Structural simulations of nanomaterials self-assembled from ionic macrocycles.

    SciTech Connect (OSTI)

    van Swol, Frank B.; Medforth, Craig John

    2010-10-01

    Recent research at Sandia has discovered a new class of organic binary ionic solids with tunable optical, electronic, and photochemical properties. These nanomaterials, consisting of a novel class of organic binary ionic solids, are currently being developed at Sandia for applications in batteries, supercapacitors, and solar energy technologies. They are composed of self-assembled oligomeric arrays of very large anions and large cations, but their crucial internal arrangement is thus far unknown. This report describes (a) the development of a relevant model of nonconvex particles decorated with ions interacting through short-ranged Yukawa potentials, and (b) the results of initial Monte Carlo simulations of the self-assembly binary ionic solids.

  10. Liquid electrode

    DOE Patents [OSTI]

    Ekechukwu, A.A.

    1994-07-05

    A dropping electrolyte electrode is described for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions. 2 figures.

  11. Process for the production of liquid hydrocarbons

    DOE Patents [OSTI]

    Bhatt, Bharat Lajjaram; Engel, Dirk Coenraad; Heydorn, Edward Clyde; Senden, Matthijis Maria Gerardus

    2006-06-27

    The present invention concerns a process for the preparation of liquid hydrocarbons which process comprises contacting synthesis gas with a slurry of solid catalyst particles and a liquid in a reactor vessel by introducing the synthesis gas at a low level into the slurry at conditions suitable for conversion of the synthesis gas into liquid hydrocarbons, the solid catalyst particles comprising a catalytic active metal selected from cobalt or iron on a porous refractory oxide carrier, preferably selected from silica, alumina, titania, zirconia or mixtures thereof, the catalyst being present in an amount between 10 and 40 vol. percent based on total slurry volume liquids and solids, and separating liquid material from the solid catalyst particles by using a filtration system comprising an asymmetric filtration medium (the selective side at the slurry side), in which filtration system the average pressure differential over the filtration medium is at least 0.1 bar, in which process the particle size distribution is such that at least a certain amount of the catalyst particles is smaller than the average pore size of the selective layer of the filtration medium. The invention also comprises an apparatus to carry out the process described above.

  12. Enhanced ionic conductivity in oxide heterostructures

    SciTech Connect (OSTI)

    Garcia-Barriocanal, Javier; Rivera-Calzada, Alberto; Varela del Arco, Maria; Sefrioui, Z.; Iborra, Enrique; Leon, C.; Pennycook, Stephen J; Santamaria, J.

    2010-01-01

    Fuel cells are electrochemical devices used to generate energy out of hydrogen. In a fuel cell, two conducting electrodes are separated by an electrolyte that is permeable to ions (either hydrogen or oxygen, depending on the fuel-cell category) but not to electrons. An electrode catalytic process yields the ionic species, which are transported through the electrolyte, while electrons blocked by the electrolyte pass through the external circuit. Polymeric membrane (PEMFC) or phosphoric acid fuel cells (PAFC) operating at low temperatures are the preferred option for transportation because of their quite large efficiencies (50%), compared with gasoline combustion engines (25%). Other uses are also being considered, such as battery replacements for personal electronics and stationary or portable emergency power. Solid-oxide fuel cells (SOFCs), operating at high temperatures, are a better option for stationary power generation because of their scalability. Here O{sup 2-} ions are the mobile species that travel at elevated temperatures (800-1000 C) through a solid electrolyte material to react with H{sup +} ions in the anode to produce water (Fig. 1). The high operating temperatures of solid oxide fuel cells are a major impediment to their widespread use in power generation. Thus, reducing this operating temperature is currently a major materials research goal, involving the search for novel electrolytes as well as active catalysts for electrode kinetics (oxygen reduction and hydrogen oxidation). Among oxide-ion conductors, those of anion-deficient fluorite structures such as yttria-stabilized zirconia (YSZ), xY{sub 2}O{sub 3}:(1-x) ZrO{sub 2}, are extensively used as electrolytes in SOFCs. Doping with Y{sub 2}O{sub 3} is known to stabilize the cubic fluorite structure of ZrO{sub 2} and to supply the oxygen vacancies responsible for the ionic conduction. These materials are characterized by a large number of mobile oxygen vacancies, which are randomly distributed in the

  13. Two-Phase Flow Within Porous Media Analogies: Application Towards CO2 Sequestration

    SciTech Connect (OSTI)

    Crandall, D.M. Clarkson University, Potsdam, NY); Ahmadi, G.; Smith, D.H.

    2007-04-20

    Geologic carbon dioxide sequestration (GCO2S) involves the capture of large quantities of CO2 from point-source emitters and pumping this greenhouse gas to subsurface reservoirs (USDOE, 2006). The mechanisms of two-phase fluid displacement in GCO2S, where a less viscous fluid displaces a more viscous fluid in a heterogeneous porous domain is similar to enhanced oil recovery activities. Direct observation of gas-liquid interface movement in geologic reservoirs is difficult due to location and opacity. Over the past decades, complex, interconnected pore-throat models have been developed and used to study multiphase flow interactions in porous media, both experimentally (Buckley, 1994) and numerically (Blunt, 2001). This work expands upon previous experimental research with the use of a new type of heterogeneous flowcell, created with stereolithography (SL). Numerical solutions using the Volume-of-Fluid (VOF) model with the same flowcell geometry, are shown to be in good agreement with the drainage experiments, where the defending fluid wets the surface. This computational model is then used to model imbibition, the case of the invading fluid preferentially wetting the surface. Low capillary flows and imbibition conditions are shown to increase the storage volume of the invading fluid in the porous medium.

  14. Low-frequency dilatational wave propagation through unsaturated porous media containing two immiscible fluids

    SciTech Connect (OSTI)

    Lo, W.-C.; Sposito, G.; Majer, E.

    2007-02-01

    An analytical theory is presented for the low-frequency behavior of dilatational waves propagating through a homogeneous elastic porous medium containing two immiscible fluids. The theory is based on the Berryman-Thigpen-Chin (BTC) model, in which capillary pressure effects are neglected. We show that the BTC model equations in the frequency domain can be transformed, at sufficiently low frequencies, into a dissipative wave equation (telegraph equation) and a propagating wave equation in the time domain. These partial differential equations describe two independent modes of dilatational wave motion that are analogous to the Biot fast and slow compressional waves in a single-fluid system. The equations can be solved analytically under a variety of initial and boundary conditions. The stipulation of 'low frequency' underlying the derivation of our equations in the time domain is shown to require that the excitation frequency of wave motions be much smaller than a critical frequency. This frequency is shown to be the inverse of an intrinsic time scale that depends on an effective kinematic shear viscosity of the interstitial fluids and the intrinsic permeability of the porous medium. Numerical calculations indicate that the critical frequency in both unconsolidated and consolidated materials containing water and a nonaqueous phase liquid ranges typically from kHz to MHz. Thus engineering problems involving the dynamic response of an unsaturated porous medium to low excitation frequencies (e.g. seismic wave stimulation) should be accurately modeled by our equations after suitable initial and boundary conditions are imposed.

  15. Water uptake, ionic conductivity and swelling properties of anion-exchange membrane

    SciTech Connect (OSTI)

    Duan, QJ; Ge, SH; Wang, CY

    2013-12-01

    Water uptake, ionic conductivity and dimensional change of the anion-exchange membrane made by Tokuyama Corporation (A201 membrane) are investigated at different temperatures and water activities. Specifically, the amount of water taken up by membranes exposed to water vapor and membranes soaked in liquid water is determined. The water uptake of the A201 membrane increases with water content as well as temperature. In addition, water sorption data shows Schroeder's paradox for the AEMs investigated. The swelling properties of the A201 membrane exhibit improved dimensional stability compared with Nafion membrane. Water sorption of the A201 membrane occurs with a substantial negative excess volume of mixing. The threshold value of hydrophilic fraction in the A201 membrane for ionic conductivity is around 0.34, above which, the conductivity begins to rise quickly. This indicates that a change in the connectivity of the hydrophilic domains occurs when hydrophilic fraction approaches 0.34. (C) 2013 Elsevier B.V. All rights reserved.

  16. Plasmas in Multiphase Media: Bubble Enhanced Discharges in Liquids and Plasma/Liquid Phase Boundaries

    SciTech Connect (OSTI)

    Kushner, Mark Jay

    2014-07-10

    In this research project, the interaction of atmospheric pressure plasmas with multi-phase media was computationally investigated. Multi-phase media includes liquids, particles, complex materials and porous surfaces. Although this investigation addressed fundamental plasma transport and chemical processes, the outcomes directly and beneficially affected applications including biotechnology, medicine and environmental remediation (e.g., water purification). During this project, we made advances in our understanding of the interaction of atmospheric pressure plasmas in the form of dielectric barrier discharges and plasma jets with organic materials and liquids. We also made advances in our ability to use computer modeling to represent these complex processes. We determined the method that atmospheric pressure plasmas flow along solid and liquid surfaces, and through endoscopic like tubes, deliver optical and high energy ion activation energy to organic and liquid surfaces, and produce reactivity in thin liquid layers, as might cover a wound. We determined the mechanisms whereby plasmas can deliver activation energy to the inside of liquids by sustaining plasmas in bubbles. These findings are important to the advancement of new technology areas such as plasma medicine

  17. Production of sintered porous metal fluoride pellets

    DOE Patents [OSTI]

    Anderson, L.W.; Stephenson, M.J.

    1973-12-25

    Porous pellets characterized by a moderately reactive crust and a softer core of higher reactivity are produced by forming agglomerates containing a metal fluoride powder and a selected amount ofwater. The metal fluoride is selected to be sinterable and essentially non-reactive with gaseous fluorinating agents. The agglomerates are contacted with a gaseous fluorinating agent under controlled conditions whereby the heat generated by localized reaction of the agent and water is limited to values effccting bonding by localized sintering. Porous pellets composed of cryolite (Na/sub 3/AlF/sub 6/) can be used to selectively remove trace quantities of niobium pentafluoride from a feed gas consisting predominantly of uranium hexafluoride. (Official Gazette)

  18. Experimental Investigation of the Effective Foam Viscosity in Unsaturated Porous Media

    SciTech Connect (OSTI)

    Zhang, Z. F.; Zhong, Lirong; White, Mark D.; Szecsody, James E.

    2012-11-01

    Foam has the potential to effectively carry and distribute either aqueous or gaseous amendments to the deep vadose zone for contaminant remediation. However, the transport of foam in porous media is complicated because flow characteristics such as the effective viscosity are affected not only by foam properties but also by the sediment properties and flow conditions. We determined the average effective foam viscosity via a series of laboratory experiments and found that the effective foam viscosity increased with the liquid fraction in foam, the injection rate, and sediment permeability. These impacts are quantified with an empirical expression, which is further demonstrated with data from literature. The results show that the liquid fraction in foam and sediment permeability are two primary factors affecting effective foam viscosity. These results suggest that, when foam is used in deep vadose zone remediation, foam flow will not suffer from gravitational drainage and can distribute amendments uniformly in heterogeneous sediments.

  19. Electronically and ionically conducting electrodes for thermoelectric generators

    DOE Patents [OSTI]

    Novak, Robert F.; Weber, Neill

    1987-01-01

    A composite article comprising a porous cermet electrode on a dense solid electrolyte and method of making same. The cerment electrode comprises beta-type-alumina and refractory metal.

  20. Experimentally Measured Interfacial Area during Gas Injection into Saturated Porous Media: An Air Sparging Analogy

    SciTech Connect (OSTI)

    Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H., Bromhal, Grant

    2010-01-01

    The amount of interfacial area (awn) between air and subsurface liquids during air-sparging can limit the rate of site remediation. Lateral movement within porous media could be encountered during air-sparging operations when air moves along the bottom of a low-permeability lens. This study was conducted to directly measure the amount of awn between air and water flowing within a bench-scale porous flow cell during the lateral movement of air along the upper edge of the cell during air injections into an initially water-saturated flow cell. Four different cell orientations were used to evaluate the effect of air injection rates and porous media geometries on the amount of awn between fluids. Air was injected at flow rates that varied by three orders of magnitude, and for each flow cellover this range of injection rates little change in awn was noted. A wider variation in awn was observed when air moved through different regions for the different flow cell orientations. These results are in good agreement with the experimental findings of Waduge et al. (2007), who performed experiments in a larger sand-pack flow cell, and determined that air-sparging efficiency is nearly independent of flow rate but highly dependent on the porous structure. By directly measuring the awn, and showing that awn does not vary greatly with changes in injection rate, we show that the lack of improvement to remediation rates is because there is a weak dependence of the awn on the air injection rate.

  1. Pore-scale dynamics of salt transport and distribution in drying porous media

    SciTech Connect (OSTI)

    Shokri, Nima

    2014-01-15

    Understanding the physics of water evaporation from saline porous media is important in many natural and engineering applications such as durability of building materials and preservation of monuments, water quality, and mineral-fluid interactions. We applied synchrotron x-ray micro-tomography to investigate the pore-scale dynamics of dissolved salt distribution in a three dimensional drying saline porous media using a cylindrical plastic column (15 mm in height and 8 mm in diameter) packed with sand particles saturated with CaI{sub 2} solution (5% concentration by mass) with a spatial and temporal resolution of 12 ?m and 30 min, respectively. Every time the drying sand column was set to be imaged, two different images were recorded using distinct synchrotron x-rays energies immediately above and below the K-edge value of Iodine. Taking the difference between pixel gray values enabled us to delineate the spatial and temporal distribution of CaI{sub 2} concentration at pore scale. Results indicate that during early stages of evaporation, air preferentially invades large pores at the surface while finer pores remain saturated and connected to the wet zone at bottom via capillary-induced liquid flow acting as evaporating spots. Consequently, the salt concentration increases preferentially in finer pores where evaporation occurs. Higher salt concentration was observed close to the evaporating surface indicating a convection-driven process. The obtained salt profiles were used to evaluate the numerical solution of the convection-diffusion equation (CDE). Results show that the macro-scale CDE could capture the overall trend of the measured salt profiles but fail to produce the exact slope of the profiles. Our results shed new insight on the physics of salt transport and its complex dynamics in drying porous media and establish synchrotron x-ray tomography as an effective tool to investigate the dynamics of salt transport in porous media at high spatial and temporal

  2. REDISTRIBUTOR FOR LIQUID-LIQUID EXTRACTION COLUMNS

    DOE Patents [OSTI]

    Bradley, J.G.

    1957-10-29

    An improved baffle plate construction to intimately mix immiscible liquid solvents for solvent extraction processes in a liquid-liquid pulse column is described. To prevent the light and heavy liquids from forming separate continuous homogeneous vertical channels through sections of the column, a baffle having radially placed rectangular louvers with deflection plates opening upon alternate sides of the baffle is placed in the column, normal to the axis. This improvement substantially completely reduces strippiig losses due to poor mixing.

  3. Phytoremediation of ionic and methyl mercury pollution

    SciTech Connect (OSTI)

    Meagher, R.B.

    1998-06-01

    'The long-term objective of the research is to manipulate single-gene traits into plants, enabling them to process heavy metals and remediate heavy-metal pollution by resistance, sequestration, removal, and management of these contaminants. The authors are focused on mercury pollution as a case study of this plant genetic engineering approach. The working hypothesis behind this proposal was that transgenic plants expressing both the bacterial organo mercury lyase (merB) and the mercuric ion reductase gene (merA) will: (A) remove the mercury from polluted sites and (B) prevent methyl mercury from entering the food chain. The results from the research are so positive that the technology will undoubtedly be applied in the very near future to cleaning large mercury contaminates sites. Many such sites were not remediable previously due to the excessive costs and the negative environmental impact of conventional mechanical-chemical technologies. At the time this grant was awarded 20 months ago, the authors had successfully engineered a small model plant, Arabidopsis thaliana, to use a highly modified bacterial mercuric ion reductase gene, merA9, to detoxify ionic mercury (Hg(II)), reducing it to much less toxic and volatile metallic Hg(0) (Rugh et al., 1996). Seeds from these plants germinate, grow, and set seed at normal growth rates on levels of Hg(II) that are lethal to normal plants. In assays on transgenic seedlings suspended in a solution of Hg(II), 10 ng of Hg(0) was evolved per min per mg wet weight of plant tissue. At that time, the authors had no information on expression of merA in any other plant species, nor had the authors tested merB in any plant. However, the results were so startlingly positive and well received that they clearly presaged a paradigm shift in the field of environmental remediation.'

  4. Gas impermeable glaze for sealing a porous ceramic surface

    DOE Patents [OSTI]

    Reed, Scott T.; Stone, Ronald G.; Nenoff, Tina M.; Trudell, Daniel E.; Thoma, Steven G.

    2004-04-06

    A process for fabricating a gas impermeable seal on a porous ceramic surface using a thin, glass-based, pinhole free glaze. The process can be used to fabricate gas impermeable end seals on porous alumina tubes used as filter media. The porous alumina tubes can have an inorganic microporous thin film separation membrane on the inner surface, which can be used for high temperature gas separation processes.

  5. EERE Success Story-Tennessee, Pennsylvania: Porous Power Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improves Lithium Ion Battery, Wins R&D 100 Award | Department of Energy Tennessee, Pennsylvania: Porous Power Technologies Improves Lithium Ion Battery, Wins R&D 100 Award EERE Success Story-Tennessee, Pennsylvania: Porous Power Technologies Improves Lithium Ion Battery, Wins R&D 100 Award August 19, 2013 - 2:16pm Addthis Porous Power Technologies, partnered with Oak Ridge National Laboratory (ORNL), developed SYMMETRIX HPX-F, a nanocomposite separator for improved lithium-ion

  6. Highly porous metal-organic framework sustained with 12-connected...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highly porous metal-organic framework sustained with 12-connected nanoscopic octahedra Previous Next List Weigang Lu , Daqiang Yuan , Trevor A. Makal , Zhangwen Wei , Jian-Rong Li ...

  7. Carbon Dioxide Geological Sequestration in Fractured Porous Rocks

    Office of Scientific and Technical Information (OSTI)

    Training and Research on Probabilistic Hydro-Thermo-Mechanical Modeling of Carbon Dioxide Geological Sequestration in Fractured Porous Rocks Gutierrez, Marte 54 ENVIRONMENTAL...

  8. Microfluidic devices and methods including porous polymer monoliths...

    Office of Scientific and Technical Information (OSTI)

    The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to ...

  9. Polyamine-Tethered Porous Polymer Networks for Carbon Dioxide...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and the largest selectivity (see graph) of any porous material reported to date. It also had outstanding physicochemical stability and could be regenerated under mild conditions...

  10. Characterization of fluid distributions in porous media by NMR...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 02 PETROLEUM; 54 ENVIRONMENTAL SCIENCES; POROUS MATERIALS; PORE STRUCTURE; FLUID FLOW; ENHANCED RECOVERY; REMEDIAL ...

  11. Sulfonate-Grafted Porous Polymer Networks for Preferential CO2...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sulfonate-Grafted Porous Polymer Networks for Preferential CO2 Adsorption at Low Pressure Previous Next List Weigang Lu, Daqiang Yuan, Julian Sculley, Dan Zhao, Rajamani Krishna,...

  12. Building multiple adsorption sites in porous polymer networks...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building multiple adsorption sites in porous polymer networks for carbon capture applications Previous Next List Weigang Lu, Wolfgang M. Verdegaal, Jiamei Yu, Perla B Balbuena,...

  13. Evaluating different classes of porous materials for carbon capture...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    emission from power plants. In particular, amongst several separation strategies, adsorption by nano-porous materials is regarded as a potential means to efficiently capture CO2...

  14. High Co2 Emissions Through Porous Media- Transport Mechanisms...

    Open Energy Info (EERE)

    Co2 Emissions Through Porous Media- Transport Mechanisms And Implications For Flux Measurement And Fractionation Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  15. Stable benzimidazole-incorporated porous polymer network for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stable benzimidazole-incorporated porous polymer network for carbon capture with high efficiency and low cost Previous Next List Muwei Zhang, Zachary Perry, Jinhee Park, Hong-Cai...

  16. Synthesis, Structure, and Metalation of Two New Highly Porous...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synthesis, Structure, and Metalation of Two New Highly Porous Zirconium Metal-Organic Frameworks Previous Next List William Morris, Boris Volosskiy, Selcuk Demir, Felipe Gndara,...

  17. Efficient Determination of Accurate Force Fields for Porous Material...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficient Determination of Accurate Force Fields for Porous Material Using ab Initio Total Energy Calculations Previous Next List Jihan Kim, Li-Chiang Lin, Kyuho Lee, Jeffrey B. ...

  18. Estimating Liquid Fluxes in Thermally Perturbed Fractured Rock Using Measured Temperature Profiles

    SciTech Connect (OSTI)

    J.T. Birkholzer

    2005-02-14

    A new temperature-profile method was recently developed for analyzing perturbed flow conditions in superheated porous media. The method uses high-resolution temperature data to estimate the magnitude of the heat-driven liquid and gas fluxes that form as a result of boiling, condensation, and recirculation of pore water. In this paper, we evaluate the applicability of this new method to the more complex flow behavior in fractured formations with porous rock matrix. In such formations, with their intrinsic heterogeneity, the porous but low-permeable matrix provides most of the mass and heat storage capacity, and dominates conductive heat transfer, Fractures, on the other hand, offer highly effective conduits for gas and liquid flow, thereby generating significant convective heat transfer. After establishing the accuracy of the temperature-profile method for fractured porous formations, we apply the method in analyzing the perturbed flow conditions in a large-scale underground heater test conducted in unsaturated fractured porous tuff. The flux estimates for this test indicate a significant reflux of water near the heat source, on the order of a few hundred millimeter per year-much larger than the ambient percolation flux of only a few millimeter per year.

  19. Safetygram #9- Liquid Hydrogen

    Broader source: Energy.gov [DOE]

    Hydrogen is colorless as a liquid. Its vapors are colorless, odorless, tasteless, and highly flammable.

  20. Production of porous coating on a prosthesis

    DOE Patents [OSTI]

    Sump, Kenneth R.

    1987-01-01

    Preselected surface areas of a prosthesis are covered by a blend of matching primary metallic particles and expendable particles. The particles are compressed and heated to assure that deformation and metallurgical bonding occurs between them and between the primary particles and the surface boundaries of the prosthesis. Porosity is achieved by removal of the expendable material. The result is a coating including discrete bonded particles separated by a network of interconnected voids presenting a homogeneous porous coating about the substrate. It has strength suitable for bone implant usage without intermediate adhesives, and adequate porosity to promote subsequent bone ingrowth.

  1. Electrode With Porous Three-Dimensional Support

    DOE Patents [OSTI]

    Bernard, Patrick; Dauchier, Jean-Michel; Simonneau, Olivier

    1999-07-27

    Electrode including a paste containing particles of electrochemically active material and a conductive support consisting of a three-dimensional porous material comprising strands delimiting contiguous pores communicating via passages, characterized in that the average width L in .mu.m of said passages is related to the average diameter .O slashed. in .mu.m of said particles by the following equation, in which W and Y are dimensionless coefficients: wherein W=0.16 Y=1.69 X=202.4 .mu.m and Z=80 .mu.m

  2. Reservoir performance in viscoelastic porous media

    SciTech Connect (OSTI)

    Rago, F.M.; Ohkuma, H.; Sepehrnoori, K.; Thompson, T.W.

    1982-01-01

    The mass balance equations for a two-phase two-component fluid system are written for viscoelastic porous media. The resulting equations are approximated by finite differences and the resulting numerical simulator is used to conduct a sensitivity study on the effects of uniaxial viscoelastic deformation in geopressured aquifers. Results of this study indicate that viscoelastic deformation may have considerable influence on the pressure maintenance of these aquifers. A numerical model of the geopressured aquifer in Brazoria County, Texas, is constructed and the numerical simulator is used to predict the ultimate recovery of solution gas from this viscoelastic geopressured aquifer.

  3. A rigid porous filter and filtration method

    SciTech Connect (OSTI)

    Chiang, Ta-Kuan; Straub, Douglas, Straub L.; Dennis, Richard A.

    1998-12-01

    The present invention involves a porous rigid filter comprising a plurality of concentric filtration elements having internal flow passages and forming external flow passages there between. The present invention also involves a pressure vessel containing the filter for the removal of particulate from high pressure particulate containing gases, and further involves a method for using the filter to remove such particulate. The present filter has the advantage of requiring fewer filter elements due to the high surface area- to-volume ratio provided by the filter, requires a reduced pressure vessel size, and exhibits enhanced mechanical design properties, improved cleaning properties, configuration options, modularity and ease of fabrication.

  4. Ionic Liquid Pretreatment Process for Biomass Is Successfully Implemented at Larger Scale

    Broader source: Energy.gov [DOE]

    DOE-funded researchers have shown that a new, highly effective pretreatment process used in the production of biofuel can be executed at a larger scale than ever achieved before.

  5. Novel Fission-Product Separation Based on Room Temperature Ionic Liquids

    SciTech Connect (OSTI)

    Luo, Huimin; Dai, Sheng; Bonnesen, Peter V.; Buchanan, A.C.; Rogers, Robin D.; Holbrey, John D.; Hussey, Charles L.

    2005-01-19

    This presentation was given at the DOE Office of Science-Environmental Management Science Program (EMSP) High-Level Waste Workshop held on January 19-20, 2005 at the Savannah River Site.

  6. Ionic Liquids Used as Wear Reduction, Wins R&D 100 Award | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    that can be used as friction and wear reduction additives for lubricating oils. ... that can be used as friction and wear reduction additives for lubricating oils. ...

  7. Surface layering and melting in an ionic liquid studied by resonant...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hard X-ray reflectivity, small- and wide-angle X-ray scattering, and infrared spectroscopy uncovered an intriguing melting mechanism for the layered region,...

  8. Inexpensive, Nonfluorinated (or Partially Fluorinated) Anions for Lithium Salts and Ionic Liquids for Lithium Battery Electrolytes

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  9. Ionic Liquids as Multi-Functional Lubricant Additives to Enhance Engine Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  10. Homogeneous Hydrogenation of CO? to Methyl Formate Utilizing Switchable Ionic Liquids

    SciTech Connect (OSTI)

    Yadav, Mahendra; Linehan, John C.; Karkamkar, Abhijeet J.; Van Der Eide, Edwin F.; Heldebrant, David J.

    2014-09-15

    Capture of CO? and subsequent hydrogenation allows for base/alcohol-catalyzed conversion of CO? to methylformate in one pot. The conversion of CO? proceeds via alkylcarbonates, to formate salts and then formate esters, which can be catalyzed by base and alcohol with the only byproduct being water. The system operates at mild conditions (300 psi H?, 140 C). Reactivity is strongly influenced by temperature and choice of solvent. In the presence of excess of base (DBU) formate is predominant product while in excess of methanol methyl formate is major product. 110 C yields formate salts, 140 C promotes methylformate. The authors acknowledge internal Laboratory Directed Re-search and Development (LDRD) funding from Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the U.S. Department of Energy.

  11. Project Profile: Thermally-Stable Ionic Liquid Carriers forNanopartic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    From the initial screening of IL thermal stabilities, the best candidates are being further investigated with the addition of nanoparticles. Innovation During the last two decades, ...

  12. 1,2,3-triazolium ionic liquids (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    States) Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 54 ENVIRONMENTAL SCIENCES

  13. Inexpensive, Nonfluorinated (or Partially Fluorinated) Anions for Lithium Salts and Ionic Liquids for Lithium Battery Electrolytes

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  14. Understanding the effect of side groups in ionic liquids on carbon...

    Office of Scientific and Technical Information (OSTI)

    However, the understanding of the underlying structure-property relationships has been slower to develop. As a step in the effort to alleviate this deficiency, the influence of ...

  15. 1,2,3-triazolium ionic liquids (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Compositions of the invention should be useful in the separation of gases and, perhaps, as catalysts for many reactions. Authors: Luebke, David ; Nulwala, Hunaid ; Tang, Chau ...

  16. Inexpensive, Nonfluorinated Anions for Lithium Salts and Ionic Liquids for Lithium Battery Electrolytes

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  17. Inexpensive, Nonfluorinated (or Partially Fluorinated) Anions for Lithium Salts and Ionic Liquids for Lithium Battery Electrolytes

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  18. Modeling of Gas-Liquid Flow Through An Interconnected Channel Matrix

    SciTech Connect (OSTI)

    Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane.H

    2009-01-01

    The motion of a less viscous, non-wetting gas into a liquid-saturated porous medium is known as drainage. Drainage is an important process in environmental applications, such as enhanced oil recovery and geologic CO2 sequestration. Understanding what conditions will increase the volume of gas that can saturate an initially water-saturated porous medium is of importance for predictions of the total CO2 volume that can be sequestered in known geologic formations. To further the understanding of how drainage flow properties are related to different injection flow-rates, a porous medium consisting of interconnected channels and pores was manufactured to perform bench-top experiments of drainage. Additionally, a finite-volume model of this interconnected channel matrix was constructed. Numerical simulations of constant-rate injection into the model porous medium are first shown to compare favorably to the bench-top experiments. The fluid and injection properties of the drainage process were then varied to evaluate the flow conditions which would maximize the volume of gas trapped within the porous medium. In particular, CO2 displacing brine within the porous medium was modeled, with representative subsurface temperatures and fluid properties. It was shown with these fluid conditions a higher final saturation of the invading less-viscous CO2 was obtained, as compared to air into water experiments at similar injection rates.

  19. ELECTRICAL REGULATING APPARATUS INCLUDING AN IONIC CURRENT REGULATOR

    DOE Patents [OSTI]

    Brackney, H.W.

    1958-08-12

    An apparatus is described for regulating the operation of an electromagmetic charged particle separator lt consists of an electrical circuit for innproving the regulation of the accelerating voltage of a calutron when the ionic current regulator control means is disconnected. The novel circuit arrangement connects the input of the ionic current regulator to a voltage divider. in association with a second voltage regulatora to furnish an accelerating voltage output which remains constant at a mean value instead of zero as has been the practice.

  20. Composite mixed oxide ionic and electronic conductors for hydrogen separation

    DOE Patents [OSTI]

    Gopalan, Srikanth; Pal, Uday B.; Karthikeyan, Annamalai; Hengdong, Cui

    2009-09-15

    A mixed ionic and electronic conducting membrane includes a two-phase solid state ceramic composite, wherein the first phase comprises an oxygen ion conductor and the second phase comprises an n-type electronically conductive oxide, wherein the electronically conductive oxide is stable at an oxygen partial pressure as low as 10.sup.-20 atm and has an electronic conductivity of at least 1 S/cm. A hydrogen separation system and related methods using the mixed ionic and electronic conducting membrane are described.

  1. Cubic Ionic Conductor Ceramics for Alkali Ion Batteries - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cuban Missile Crisis Cuban Missile Crisis Cuba Reconnaissance reveals Soviet missiles in Cuba. The United States blockades Cuba for 13 days until the Soviet Union agrees to remove its missiles Portal

    Advanced Materials Advanced Materials Find More Like This Return to Search Cubic Ionic Conductor Ceramics for Alkali Ion Batteries Brookhaven National Laboratory Contact BNL About This Technology Publications: PDF Document Publication Ionic conduction in cubic Na3TiP3O9N, a secondary Na-ion

  2. Tritium labeling of organic compounds deposited on porous structures

    DOE Patents [OSTI]

    Ehrenkaufer, Richard L. E.; Wolf, Alfred P.; Hembree, Wylie C.

    1979-01-01

    An improved process for labeling organic compounds with tritium is carried out by depositing the selected compound on the extensive surface of a porous structure such as a membrane filter and exposing the membrane containing the compound to tritium gas activated by the microwave discharge technique. The labeled compound is then recovered from the porous structure.

  3. Sulfur cathode hosted in porous organic polymeric matrices

    DOE Patents [OSTI]

    Zhang, Zhengcheng; Weng, Wei; Yuan, Shengwen; Amine, Khalil

    2016-02-09

    A composite material includes a porous organic polymer and an electrochemically active material, wherein the porous organic polymer contains a plurality of pores having a diameter of from about 0.1 nm to about 100 nm, and the electrochemically active material is disposed within the pores.

  4. Elucidating through-plane liquid water profile in a polymer electrolyte membrane fuel cell.

    SciTech Connect (OSTI)

    Wang, Yun; Chen, Ken Shuang

    2010-10-01

    In this paper, a numerical model incorporating micro-porous layers (MPLs) is presented for simulating water transport within the gas diffusion layers (GDLs) and MPLs as well as across their interfaces in a polymer electrolyte membrane (PEM) fuel cell. One-dimensional analysis is conducted to investigate the impacts of MPL and GDL properties on the liquid-water profile across the anode GDL-MPL and cathode MPL-GDL regions. Furthermore, two-dimensional numerical simulations that take MPLs into account are also carried out to elucidate liquid water transport, particularly through-plane liquid-water profile in a PEM fuel cell. Results from case studies are presented.

  5. Fluid Flow Within Fractured Porous Media

    SciTech Connect (OSTI)

    Crandall, D.M.; Ahmadi, G.; Smith, D.H.; Bromhal, G.S.

    2006-10-01

    Fractures provide preferential flow paths to subterranean fluid flows. In reservoir scale modeling of geologic flows fractures must be approximated by fairly simple formulations. Often this is accomplished by assuming fractures are parallel plates subjected to an applied pressure gradient. This is known as the cubic law. An induced fracture in Berea sandstone has been digitized to perform numerical flow simulations. A commercially available computational fluid dynamics software package has been used to solve the flow through this model. Single phase flows have been compared to experimental works in the literature to evaluate the accuracy with which this model can be applied. Common methods of fracture geometry classification are also calculated and compared to experimentally obtained values. Flow through regions of the fracture where the upper and lower fracture walls meet (zero aperture) are shown to induce a strong channeling effect on the flow. This model is expanded to include a domain of surrounding porous media through which the flow can travel. The inclusion of a realistic permeability in this media shows that the regions of small and zero apertures contribute to the greatest pressure losses over the fracture length and flow through the porous media is most prevalent in these regions. The flow through the fracture is shown to be the largest contributor to the net flow through the media. From this work, a novel flow relationship is proposed for flow through fractured media.

  6. Anisotropic porous metals production by melt processing

    SciTech Connect (OSTI)

    Shapovalov, V.; Boiko, L.; Baldwin, M.D.; Maguire, M.C.; Zanner, F.J.

    1997-02-01

    The collapse of the Soviet Union has left many of its scientific institutes and technical universities without their traditional backbone of financial support. In an effort to stem the export of science to nations advocating nuclear proliferation, and to acquire potentially useful technology, several US government-sponsored programs have arise to mine the best of former USSR scientific advances. In the field of metallurgy, the earliest institutes to be investigated by Sandia National Laboratories are located in Ukraine. In particular, scientists at the State Metallurgical Academy have developed unique porous metals, resembling what could be described as gas-solid ``eutectic``. While porous metals are available in the US and other western countries, none have the remarkable structure and properties of these materials. Sandia began a collaborative program with the Ukrainian scientists to bring this technology to the US, verify the claims regarding these materials, and begin production of the so-called Gasars. This paper will describe the casting process technology and metallurgy associated with the production of Gasars, and will review the progress of the collaborative project.

  7. Microwave impregnation of porous materials with thermal energy storage materials

    DOE Patents [OSTI]

    Benson, D.K.; Burrows, R.W.

    1993-04-13

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  8. Microwave impregnation of porous materials with thermal energy storage materials

    DOE Patents [OSTI]

    Benson, David K.; Burrows, Richard W.

    1993-01-01

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  9. Microwave impregnation of porous materials with thermal energy storage materials

    SciTech Connect (OSTI)

    Benson, D.K.; Burrows, R.W.

    1992-12-31

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  10. Fabricating porous materials using interpenetrating inorganic-organic composite gels

    DOE Patents [OSTI]

    Seo, Dong-Kyun; Volosin, Alex

    2016-06-14

    Porous materials are fabricated using interpenetrating inorganic-organic composite gels. A mixture or precursor solution including an inorganic gel precursor, an organic polymer gel precursor, and a solvent is treated to form an inorganic wet gel including the organic polymer gel precursor and the solvent. The inorganic wet gel is then treated to form a composite wet gel including an organic polymer network in the body of the inorganic wet gel, producing an interpenetrating inorganic-organic composite gel. The composite wet gel is dried to form a composite material including the organic polymer network and an inorganic network component. The composite material can be treated further to form a porous composite material, a porous polymer or polymer composite, a porous metal oxide, and other porous materials.

  11. Supported liquid inorganic membranes for nuclear waste separation

    SciTech Connect (OSTI)

    Bhave, Ramesh R; DeBusk, Melanie M; DelCul, Guillermo D; Delmau, Laetitia H; Narula, Chaitanya K

    2015-04-07

    A system and method for the extraction of americium from radioactive waste solutions. The method includes the transfer of highly oxidized americium from an acidic aqueous feed solution through an immobilized liquid membrane to an organic receiving solvent, for example tributyl phosphate. The immobilized liquid membrane includes porous support and separating layers loaded with tributyl phosphate. The extracted solution is subsequently stripped of americium and recycled at the immobilized liquid membrane as neat tributyl phosphate for the continuous extraction of americium. The sequestered americium can be used as a nuclear fuel, a nuclear fuel component or a radiation source, and the remaining constituent elements in the aqueous feed solution can be stored in glassified waste forms substantially free of americium.

  12. Heat exchangers comprising at least one porous member positioned within a casing

    DOE Patents [OSTI]

    Turner, Terry D.; Wilding, Bruce M

    2011-11-22

    A heat exchanger and associated methods for sublimating solid particles therein, for conveying fluids therethrough, or both. The heat exchanger includes a chamber, and a porous member having a porous wall having pores in communication with the chamber and an interior of the porous member. A first fluid is conveyed into the porous member while a second fluid is conveyed into the porous member through the porous wall. The second fluid may form a positive flow boundary layer along the porous wall to reduce or eliminate substantial contact between the first fluid and the interior of the porous wall. The combined first and second fluids are conveyed out of the porous member. Additionally, the first fluid and the second fluid may each be conveyed into the porous member at different temperatures and may exit the porous member at substantially the same temperature.

  13. Monitoring Phase Behavior of Sub- and Supercritical CO2 Confined in Porous Fractal Silica with 85% Porosity

    SciTech Connect (OSTI)

    Melnichenko, Yuri B; Mayama, Dr Hiroyuki; Cheng, Gang; Cheng, Gang; Blach, Tomasz P

    2010-01-01

    Phase behavior of CO{sub 2} confined in porous fractal silica with volume fraction of SiO{sub 2} {phi}{sub 5} = 0.15 was investigated using small-angle neutron scattering (SANS) and ultrasmall-angle neutron scattering (USANS) techniques. The range of fluid densities (0 < ({rho}{sub CO{sub 2}}){sub bulk} < 0.977 g/cm{sup 3}) and temperatures (T = 22 C, 35 and 60 C) corresponded to gaseous, liquid, near critical and supercritical conditions of the bulk fluid. The results revealed formation of a dense adsorbed phase in small pores with sizes D < 40 {angstrom} at all temperatures. At low pressure (P < 55 bar, ({rho}{sub CO{sub 2}}){sub bulk} < 0.2 g/cm{sup 3}) the average fluid density in pores may exceed the density of bulk fluid by a factor up to 6.5 at T = 22 C. This 'enrichment factor' gradually decreases with temperature, however significant fluid densification in small pores still exists at temperature T = 60 C, i.e., far above the liquid?gas critical temperature of bulk CO{sub 2} (T{sub c} = 31.1 C). Larger pores are only partially filled with liquid-like adsorbed layer which coexists with unadsorbed fluid in the pore core. With increasing pressure, all pores become uniformly filled with the fluid, showing no measurable enrichment or depletion of the porous matrix with CO{sub 2}.

  14. Liquid level detector

    DOE Patents [OSTI]

    Grasso, Albert P.

    1986-01-01

    A liquid level detector for low pressure boilers. A boiler tank, from which apor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.

  15. Liquid level detector

    DOE Patents [OSTI]

    Grasso, A.P.

    1984-02-21

    A liquid level detector for low pressure boilers. A boiler tank, from which vapor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.

  16. Foam-assisted delivery of nanoscale zero valent iron in porous media

    SciTech Connect (OSTI)

    Ding, Yuanzhao; Liu, Bo; Shen, Xin; Zhong, Lirong; Li, Xiqing

    2013-09-01

    Foam is potentially a promising vehicle to deliver nanoparticles for vadose zone remediation as foam can overcome the intrinsic problems associated with solution-based delivery, such as preferential flow and contaminant mobilization. In this work, the feasibility of using foam to deliver nanoscale zero valent iron (nZVI) in unsaturated porous media was investigated. Foams generated using surfactant sodium lauryl ether sulfate (SLES) showed excellent ability to carry nZVI. SLES and nZVI concentrations in the foaming solutions did not affect the percentages of nZVI concentrations in foams relative to nZVI concentrations in the solutions. When foams carrying nZVI were injected through the unsaturated columns, the fractions of nZVI exiting the column were much higher than those when nZVI was injected in liquid. The enhanced nZVI transport implies that foam delivery could significantly increase the radius of influence of injected nZVI. The type and concentrations of surfactants and the influent nZVI concentrations did not noticeably affect nZVI transport during foam delivery. In contrast, nZVI retention increased considerably as the grain size of porous media decreased. Oxidation of foam-delivered nZVI due to oxygen diffusion into unsaturated porous media was visually examined using a flow cell. It was demonstrated that if foams are injected to cover a deep vadose zone layer, oxidation would only cause a small fraction of foam-delivered nZVI to be oxidized before it reacts with contaminants.

  17. Method for forming porous platinum films

    DOE Patents [OSTI]

    Maya, Leon

    2000-01-01

    A method for forming a platinum film includes providing a substrate, sputtering a crystalline platinum oxide layer over at least a portion of the substrate, and reducing the crystalline platinum oxide layer to form the platinum film. A device includes a non-conductive substrate and a platinum layer having a density of between about 2 and 5 g/cm.sup.3 formed over at least a portion of the non-conductive substrate. The platinum films produced in accordance with the present invention provide porous films suitable for use as electrodes, yet require few processing steps. Thus, such films are less costly. Such films may be formed on both conductive and non-conductive substrates. While the invention has been illustrated with platinum, other metals, such as noble metals, that form a low density oxide when reactively sputtered may also be used.

  18. Precision liquid level sensor

    DOE Patents [OSTI]

    Field, M.E.; Sullivan, W.H.

    A precision liquid level sensor utilizes a balanced bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge.

  19. Porous silicon ring resonator for compact, high sensitivity biosensing applications

    SciTech Connect (OSTI)

    Rodriguez, Gilberto A.; Hu, Shuren; Weiss, Sharon M.

    2015-01-01

    A ring resonator is patterned on a porous silicon slab waveguide to produce a compact, high quality factor biosensor with a large internal surface area available for enhanced recognition of biological and chemical molecules. The porous nature of the ring resonator allows molecules to directly interact with the guided mode. Quality factors near 10,000 were measured for porous silicon ring resonators with a radius of 25 ?m. A bulk detection sensitivity of 380 nm/RIU was measured upon exposure to salt water solutions. Specific detection of nucleic acid molecules was demonstrated with a surface detection sensitivity of 4 pm/nM.

  20. Thin, porous metal sheets and methods for making the same

    SciTech Connect (OSTI)

    Liu, Wei; Li, Xiaohong Shari; Canfield, Nathan L.

    2015-07-14

    Thin, porous metal sheets and methods for forming them are presented to enable a variety of applications and devices. The thin, porous metal sheets are less than or equal to approximately 200 .mu.m thick, have a porosity between 25% and 75% by volume, and have pores with an average diameter less than or equal to approximately 2 .mu.m. The thin, porous metal sheets can be fabricated by preparing a slurry having between 10 and 50 wt % solvent and between 20 and 80 wt % powder of a metal precursor. The average particle size in the metal precursor powder should be between 100 nm and 5 .mu.m.