National Library of Energy BETA

Sample records for ion transport membrane

  1. Ion transport membrane module and vessel system

    DOE Patents [OSTI]

    Stein, VanEric Edward; Carolan, Michael Francis; Chen, Christopher M.; Armstrong, Phillip Andrew; Wahle, Harold W.; Ohrn, Theodore R.; Kneidel, Kurt E.; Rackers, Keith Gerard; Blake, James Erik; Nataraj, Shankar; van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson

    2007-02-20

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  2. Ion transport membrane module and vessel system

    DOE Patents [OSTI]

    Stein, VanEric Edward (Allentown, PA); Carolan, Michael Francis (Allentown, PA); Chen, Christopher M. (Allentown, PA); Armstrong, Phillip Andrew (Orefield, PA); Wahle, Harold W. (North Canton, OH); Ohrn, Theodore R. (Alliance, OH); Kneidel, Kurt E. (Alliance, OH); Rackers, Keith Gerard (Louisville, OH); Blake, James Erik (Uniontown, OH); Nataraj, Shankar (Allentown, PA); Van Doorn, Rene Hendrik Elias (Obersulm-Willsbach, DE); Wilson, Merrill Anderson (West Jordan, UT)

    2012-02-14

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  3. Ion transport membrane module and vessel system

    DOE Patents [OSTI]

    Stein, VanEric Edward (Allentown, PA); Carolan, Michael Francis (Allentown, PA); Chen, Christopher M. (Allentown, PA); Armstrong, Phillip Andrew (Orefield, PA); Wahle, Harold W. (North Canton, OH); Ohrn, Theodore R. (Alliance, OH); Kneidel, Kurt E. (Alliance, OH); Rackers, Keith Gerard (Louisville, OH); Blake, James Erik (Uniontown, OH); Nataraj, Shankar (Allentown, PA); van Doorn, Rene Hendrik Elias (Obersulm-Willsbach, DE); Wilson, Merrill Anderson (West Jordan, UT)

    2008-02-26

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel.The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  4. Liners for ion transport membrane systems

    DOE Patents [OSTI]

    Carolan, Michael Francis (Allentown, PA); Miller, Christopher Francis (Macungie, PA)

    2010-08-10

    Ion transport membrane system comprising (a) a pressure vessel comprising an interior, an exterior, an inlet, an inlet conduit, an outlet, and an outlet conduit; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein the inlet and the outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; (c) a gas manifold having an interior surface wherein the gas manifold is in flow communication with the interior region of each of the planar ion transport membrane modules and with the exterior of the pressure vessel; and (d) a liner disposed within any of the inlet conduit, the outlet conduit, and the interior surface of the gas manifold.

  5. Fabrication of catalyzed ion transport membrane systems

    DOE Patents [OSTI]

    Carolan, Michael Francis; Kibby, Charles Leonard

    2013-06-04

    Process for fabricating a catalyzed ion transport membrane (ITM). In one embodiment, an uncatalyzed ITM is (a) contacted with a non-reducing gaseous stream while heating to a temperature and for a time period sufficient to provide an ITM possessing anion mobility; (b) contacted with a reducing gaseous stream for a time period sufficient to provide an ITM having anion mobility and essentially constant oxygen stoichiometry; (c) cooled while contacting the ITM with the reducing gaseous stream to provide an ITM having essentially constant oxygen stoichiometry and no anion mobility; and (d) treated by applying catalyst to at least one of (1) a porous mixed conducting multicomponent metallic oxide (MCMO) layer contiguous with a first side of a dense layer of MCMO and (2) a second side of the dense MCMO layer. In another embodiment, these steps are carried out in the alternative order of (a), (d), (b), and (c).

  6. Feed gas contaminant removal in ion transport membrane systems

    DOE Patents [OSTI]

    Underwood, Richard Paul (Allentown, PA); Makitka, III, Alexander (Hatfield, PA); Carolan, Michael Francis (Allentown, PA)

    2012-04-03

    An oxygen ion transport membrane process wherein a heated oxygen-containing gas having one or more contaminants is contacted with a reactive solid material to remove the one or more contaminants. The reactive solid material is provided as a deposit on a support. The one or more contaminant compounds in the heated oxygen-containing gas react with the reactive solid material. The contaminant-depleted oxygen-containing gas is contacted with a membrane, and oxygen is transported through the membrane to provide transported oxygen.

  7. Feed gas contaminant control in ion transport membrane systems

    DOE Patents [OSTI]

    Carolan, Michael Francis (Allentown, PA); Minford, Eric (Laurys Station, PA); Waldron, William Emil (Whitehall, PA)

    2009-07-07

    Ion transport membrane oxidation system comprising an enclosure having an interior and an interior surface, inlet piping having an internal surface and adapted to introduce a heated feed gas into the interior of the enclosure, and outlet piping adapted to withdraw a product gas from the interior of the enclosure; one or more planar ion transport membrane modules disposed in the interior of the enclosure, each membrane module comprising mixed metal oxide material; and a preheater adapted to heat a feed gas to provide the heated feed gas to the inlet piping, wherein the preheater comprises an interior surface. Any of the interior surfaces of the enclosure, the inlet piping, and the preheater may be lined with a copper-containing metal lining. Alternatively, any of the interior surfaces of the inlet piping and the preheater may be lined with a copper-containing metal lining and the enclosure may comprise copper.

  8. Ion transport membrane module and vessel system with directed internal gas flow

    DOE Patents [OSTI]

    Holmes, Michael Jerome (Thompson, ND); Ohrn, Theodore R. (Alliance, OH); Chen, Christopher Ming-Poh (Allentown, PA)

    2010-02-09

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an inlet adapted to introduce gas into the interior of the vessel, an outlet adapted to withdraw gas from the interior of the vessel, and an axis; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region; and (c) one or more gas flow control partitions disposed in the interior of the pressure vessel and adapted to change a direction of gas flow within the vessel.

  9. Ion transport membrane reactor systems and methods for producing synthesis gas

    DOE Patents [OSTI]

    Repasky, John Michael

    2015-05-12

    Embodiments of the present invention provide cost-effective systems and methods for producing a synthesis gas product using a steam reformer system and an ion transport membrane (ITM) reactor having multiple stages, without requiring inter-stage reactant injections. Embodiments of the present invention also provide techniques for compensating for membrane performance degradation and other changes in system operating conditions that negatively affect synthesis gas production.

  10. Cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    SciTech Connect (OSTI)

    Jacobson, Allan J; Wang, Shuangyan; Kim, Gun Tae

    2014-01-28

    Novel cathode, electrolyte and oxygen separation materials are disclosed that operate at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes based on oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  11. FINAL REPORT:Observation and Simulations of Transport of Molecules and Ions Across Model Membranes

    SciTech Connect (OSTI)

    MURAD, SOHAIL; JAMESON, CYNTHIA J

    2013-10-22

    During the this new grant we developed a robust methodology for investigating a wide range of properties of phospho-lipid bilayers. The approach developed is unique because despite using periodic boundary conditions, we can simulate an entire experiment or process in detail. For example, we can follow the entire permeation process in a lipid-membrane. This includes transport from the bulk aqueous phase to the lipid surface; permeation into the lipid; transport inside the lipid; and transport out of the lipid to the bulk aqueous phase again. We studied the transport of small gases in both the lipid itself and in model protein channels. In addition, we have examined the transport of nanocrystals through the lipid membrane, with the main goal of understanding the mechanical behavior of lipids under stress including water and ion leakage and lipid flip flop. Finally we have also examined in detail the deformation of lipids when under the influence of external fields, both mechanical and electrostatic (currently in progress). The important observations and conclusions from our studies are described in the main text of the report

  12. Smart membranes for nitrate removal, water purification, and selective ion transportation

    DOE Patents [OSTI]

    Wilson, William D. (Pleasanton, CA); Schaldach, Charlene M. (Pleasanton, CA); Bourcier, William L. (Livermore, CA); Paul, Phillip H. (Livermore, CA)

    2009-12-15

    A computer designed nanoengineered membrane for separation of dissolved species. One embodiment provides an apparatus for treatment of a fluid that includes ions comprising a microengineered porous membrane, a system for producing an electrical charge across the membrane, and a series of nanopores extending through the membrane. The nanopores have a pore size such that when the fluid contacts the membrane, the nanopores will be in a condition of double layer overlap and allow passage only of ions opposite to the electrical charge across the membrane.

  13. Selective transport of copper(I, II), cadmium(II), and zinc(II) ions through a supported liquid membrane containing bathocuproine, neocuproine, or bathophenanthroline

    SciTech Connect (OSTI)

    Saito, Takashi )

    1994-06-01

    Some selective transport systems for heavy metallic ions through a supported liquid membrane (SLM) containing a 2,2[prime]-dipyridyl derivative ligand, 4,7-diphenyl-2,9-dimethyl-1, 10-phenanthroline (bathocuproine), 2,9-dimethyl-1,10-phenanthroline (neocuproine), or 4,7-diphenyl-1,10-phenanthroline (bathophenanthroline), were investigated. The transport of copper(I, II), cadmium(II), zinc(II), lead(II), and cobalt(II) ions was accomplished with a halogen ion such as chloride, bromide, or iodide ion as a pairing ion species for any SLM. The ranking of the permeability of the metallic ions was Cu[sup +,2+], Zn[sup 2+], Cd[sup 2+] [much gt] Pb[sup 2+], Co[sup 2+]. When the oxidation-reduction potential gradient was used as a driving force for metallic ions, the transport of Cu[sup +] ions was higher than those of Cd[sup 2+] and Zn[sup 2+] ions for any SLM containing bathocuproine, neocuproine, or bathophenanthroline. On the other hand, in the transport system which used the concentration gradient of pairing ion species, the permeability of the Cu[sup 2+] ion decreased whereas that of the Cd[sup 2+] ion increased. Moreover, it was found that the different selectivity for the transport of metallic ions is produced by using various pairing ion species. 18 refs., 9 figs.

  14. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect (OSTI)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  15. Hydrogen transport membranes

    DOE Patents [OSTI]

    Mundschau, Michael V.

    2005-05-31

    Composite hydrogen transport membranes, which are used for extraction of hydrogen from gas mixtures are provided. Methods are described for supporting metals and metal alloys which have high hydrogen permeability, but which are either too thin to be self supporting, too weak to resist differential pressures across the membrane, or which become embrittled by hydrogen. Support materials are chosen to be lattice matched to the metals and metal alloys. Preferred metals with high permeability for hydrogen include vanadium, niobium, tantalum, zirconium, palladium, and alloys thereof. Hydrogen-permeable membranes include those in which the pores of a porous support matrix are blocked by hydrogen-permeable metals and metal alloys, those in which the pores of a porous metal matrix are blocked with materials which make the membrane impervious to gases other than hydrogen, and cermets fabricated by sintering powders of metals with powders of lattice-matched ceramic.

  16. Structures for Three Membrane Transport Proteins Yield Functional...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gradient of ions across the membrane is a process critical to the life and death of a cell. Membrane transport proteins-functioning either as channels or transporters-are the...

  17. Composite oxygen transport membrane

    DOE Patents [OSTI]

    Christie, Gervase Maxwell; Lane, Jonathan A.

    2014-08-05

    A method of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. In the porous fuel oxidation layer and the optional porous surface exchange layer, A is Calcium and in the dense separation layer A is not Calcium and, preferably is Strontium. Preferred materials are (La.sub.0.8Ca.sub.0.2).sub.0.95Cr.sub.0.5Mn.sub.0.5O.sub.3-.delta. for the porous fuel oxidation and optional porous surface exchange layers and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer. The use of such materials allows the membrane to sintered in air and without the use of pore formers to reduce membrane manufacturing costs. The use of materials, as described herein, for forming the porous layers have application for forming any type of porous structure, such as a catalyst support.

  18. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect (OSTI)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2003-01-01

    In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Processing of perovskites of LSC, LSF and LSCF composition for evaluation of mechanical properties as a function of environment are begun. The studies are to be in parallel with LSFCO composition to characterize the segregation of cations and slow crack growth in environmental conditions. La{sub 1-x}Sr{sub x}FeO{sub 3-d} has also been characterized for paramagnetic ordering at room temperature and the evolution of magnetic moments as a function of temperature are investigated. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport.

  19. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana

    2003-08-07

    In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/ Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Existing facilities were modified for evaluation of environmental assisted slow crack growth and creep in flexural mode. Processing of perovskites of LSC, LSF and LSCF composition were continued for evaluation of mechanical properties as a function of environment. These studies in parallel to those on the LSFCO composition is expect to yield important information on questions such as the role of cation segregation and the stability of the perovskite structure on crack initiation vs. crack growth. Studies have been continued on the La{sub 1-x}Sr{sub x}FeO{sub 3-d} composition using neutron diffraction and TGA studies. A transition from p-type to n-type of conductor was observed at relative low pO{sub 2}, at which the majority carriers changed from the holes to electrons because of the valence state decreases in Fe due to the further loss of oxygen. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport. Data obtained at 850 C show that the stoichiometry in La{sub 0.2}Sr{sub 0.8}Fe{sub 0.8}Cr{sub 0.2}O{sub 3-x} vary from {approx}2.85 to 2.6 over the pressure range studied. From the stoichiometry a lower limit of 2.6 corresponding to the reduction of all Fe{sup 4+} to Fe{sup 3+} and no reduction of Cr{sup 3+} is expected.

  20. Oxygen Transport Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay

    2008-08-30

    The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the small polaron conduction mechanism. Scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) were used to develop strategies to detect and characterize vacancy creation, dopant segregations and defect association in the oxygen conducting membrane material. The pO{sub 2} and temperature dependence of the conductivity, non-stoichiometry and thermal-expansion behavior of compositions with increasing complexity of substitution on the perovskite A and B sites were studied. Studies with the perovskite structure show anomalous behavior at low oxygen partial pressures (<10{sup -5} atm). The anomalies are due to non-equilibrium effects and can be avoided by using very strict criteria for the attainment of equilibrium. The slowness of the oxygen equilibration kinetics arises from two different mechanisms. In the first, a two phase region occurs between an oxygen vacancy ordered phase such as brownmillerite SrFeO{sub 2.5} and perovskite SrFeO{sub 3-x}. The slow kinetics is associated with crossing the two phase region. The width of the miscibility gap decreases with increasing temperature and consequently the effect is less pronounced at higher temperature. The preferred kinetic pathway to reduction of perovskite ferrites when the vacancy concentration corresponds to the formation of significant concentrations of Fe{sup 2+} is via the formation of a Ruddlesden-Popper (RP) phases as clearly observed in the case of La{sub 0.5}Sr{sub 0.5}FeO{sub 3-x} where LaSrFeO{sub 4} is found together with Fe. In more complex compositions, such as LSFTO, iron or iron rich phases are observed locally with no evidence for the presence of discrete RP phase. Fracture strength of tubular perovskite membranes was determined in air and in reducing atmospheric conditions. The strength of the membrane decreased with temperature and severity of reducing conditions although the strength distribution (Weibull parameter, m) was relatively unaltered. Surface and volume dominated the fracture origins and the overall fracture was purely transgranular. The dual phase membranes have been evaluated for structural properties. An increasing crack growth resistance was observed for the membranes heat-treated at 1000 C in air and N{sub 2} with increasing crack length. The combined effect of thermal and elastic mismatch stresses on the crack path was studied and the fracture behavior of the dual phase composite at the test conditions was analyzed. Ceramic/metal (C/M) seals are needed to form a leak-tight interface between the OTM and a nickel-base super alloy. It was concluded that Ni-based brazing alloys provided the best option in terms of brazing temperature and final operating conditions after analyzing several possible brazing systems. A mechanical testing procedure has been developed. This model was tested with model ceramic/metal systems but it is expected to be useful for testing concentric perovskite/metal seals.

  1. Catalyst containing oxygen transport membrane

    DOE Patents [OSTI]

    Christie, Gervase Maxwell; Wilson, Jamie Robyn; van Hassel, Bart Antonie

    2012-12-04

    A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a high average pore diameter and the intermediate porous layer has a lower permeability and lower pore diameter than the porous support layer. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.

  2. Nanoengineered membranes for controlled transport

    DOE Patents [OSTI]

    Doktycz, Mitchel J. (Oak Ridge, TN) [Oak Ridge, TN; Simpson, Michael L. (Knoxville, TN) [Knoxville, TN; McKnight, Timothy E. (Greenback, TN) [Greenback, TN; Melechko, Anatoli V. (Oak Ridge, TN) [Oak Ridge, TN; Lowndes, Douglas H. (Knoxville, TN) [Knoxville, TN; Guillorn, Michael A. (Knoxville, TN) [Knoxville, TN; Merkulov, Vladimir I. (Oak Ridge, TN) [Oak Ridge, TN

    2010-01-05

    A nanoengineered membrane for controlling material transport (e.g., molecular transport) is disclosed. The membrane includes a substrate, a cover definining a material transport channel between the substrate and the cover, and a plurality of fibers positioned in the channel and connected to an extending away from a surface of the substrate. The fibers are aligned perpendicular to the surface of the substrate, and have a width of 100 nanometers or less. The diffusion limits for material transport are controlled by the separation of the fibers. In one embodiment, chemical derivitization of carbon fibers may be undertaken to further affect the diffusion limits or affect selective permeability or facilitated transport. For example, a coating can be applied to at least a portion of the fibers. In another embodiment, individually addressable carbon nanofibers can be integrated with the membrane to provide an electrical driving force for material transport.

  3. Active membrane having uniform physico-chemically functionalized ion channels

    DOE Patents [OSTI]

    Gerald, II, Rex E; Ruscic, Katarina J; Sears, Devin N; Smith, Luis J; Klingler, Robert J; Rathke, Jerome W

    2012-09-24

    The present invention relates to a physicochemically-active porous membrane for electrochemical cells that purports dual functions: an electronic insulator (separator) and a unidirectional ion-transporter (electrolyte). The electrochemical cell membrane is activated for the transport of ions by contiguous ion coordination sites on the interior two-dimensional surfaces of the trans-membrane unidirectional pores. One dimension of the pore surface has a macroscopic length (1 nm-1000 .mu.m) and is directed parallel to the direction of an electric field, which is produced between the cathode and the anode electrodes of an electrochemical cell. The membrane material is designed to have physicochemical interaction with ions. Control of the extent of the interactions between the ions and the interior pore walls of the membrane and other materials, chemicals, or structures contained within the pores provides adjustability of the ionic conductivity of the membrane.

  4. Structures for Three Membrane Transport Proteins Yield Functional Insights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structures for Three Membrane Transport Proteins Yield Functional Insights Print Cells depend on contact with their outside environment in order to thrive. Two examples illustrate why: In one, information needed to guide cellular processes is constantly transmitted across cell membranes by specialized proteins, and in the other, maintaining the right gradient of ions across the membrane is a process critical to the life and death of a cell. Membrane transport proteins-functioning either as

  5. Structures for Three Membrane Transport Proteins Yield Functional Insights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structures for Three Membrane Transport Proteins Yield Functional Insights Print Cells depend on contact with their outside environment in order to thrive. Two examples illustrate why: In one, information needed to guide cellular processes is constantly transmitted across cell membranes by specialized proteins, and in the other, maintaining the right gradient of ions across the membrane is a process critical to the life and death of a cell. Membrane transport proteins-functioning either as

  6. Structures for Three Membrane Transport Proteins Yield Functional Insights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structures for Three Membrane Transport Proteins Yield Functional Insights Print Cells depend on contact with their outside environment in order to thrive. Two examples illustrate why: In one, information needed to guide cellular processes is constantly transmitted across cell membranes by specialized proteins, and in the other, maintaining the right gradient of ions across the membrane is a process critical to the life and death of a cell. Membrane transport proteins-functioning either as

  7. Structures for Three Membrane Transport Proteins Yield Functional Insights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structures for Three Membrane Transport Proteins Yield Functional Insights Structures for Three Membrane Transport Proteins Yield Functional Insights Print Wednesday, 27 January 2010 00:00 Cells depend on contact with their outside environment in order to thrive. Two examples illustrate why: In one, information needed to guide cellular processes is constantly transmitted across cell membranes by specialized proteins, and in the other, maintaining the right gradient of ions across the membrane is

  8. Structures for Three Membrane Transport Proteins Yield Functional Insights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structures for Three Membrane Transport Proteins Yield Functional Insights Print Cells depend on contact with their outside environment in order to thrive. Two examples illustrate why: In one, information needed to guide cellular processes is constantly transmitted across cell membranes by specialized proteins, and in the other, maintaining the right gradient of ions across the membrane is a process critical to the life and death of a cell. Membrane transport proteins-functioning either as

  9. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2006-05-01

    In this quarter a systematic analysis on the decomposition behavior of the OTM membranes at air and nitrogen were initiated to understand the structural and stoichiometric changes associated with elevated temperatures. Evaluation of the flexural strengths using 4-point bend test was also started for the dual phase membranes. Initial results on the synthesis of dual phase composite materials have been obtained. The measurements have focused on the compatibility of mixed conductors with the pure ionic conductors yttria stabilized zirconia (YSZ) and gadolinium doped ceria (GDC). The initial results obtained for three different mixed conductors suggest that (GDC) is the better choice. A new membrane permeation system has been designed and tested and sintering studies of biphasic systems are in progress.

  10. Carrier-mediated transport of actinide ions using supported liquid membranes containing TODGA as the carrier extractant

    SciTech Connect (OSTI)

    Panja, S.; Dakshinamoorthy, A.; Munshi, S.K.; Dey, P.K.; Mohapatra, P.K.; Manchanda, V.K.

    2008-07-01

    The transport behavior of Pu{sup 3+} under varying reducing conditions was investigated from a feed containing 3.0 M HNO{sub 3} into a receiver phase containing 0.1 M HNO{sub 3} using TODGA (N,N,N',N' - tetraoctyl-diglycolamide) as the carrier ligand. A mixture of 0.2 M hydroxyl ammonium nitrate and 0.2 M hydrazinium nitrate (used in the feed as the reducing agent) has been found to be effective for quantitative (>99%) transport of the trivalent Pu in about 3 h. Transport of trivalent plutonium in 3 h (>99%) was higher as compared to that of the tetravalent plutonium (94%), though their D values followed an opposite trend. The permeability coefficient (P) of Pu{sup 3+} was (4.63 {+-} 0.26) x 10{sup -3} cm/s as compared to (2.10 {+-} 0.14) x 10{sup -3} cm/s for Pu{sup 4+} and (3.67 {+-} 0.06) x 10{sup -3} cm/s Am{sup 3+}. P values of trivalent actinide ions such as Am{sup 3+}, Pu{sup 3+}, and Cm{sup 3+} are compared with their distribution data. (authors)

  11. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect (OSTI)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-07-01

    This is the fourth quarterly report on a new study to develop a ceramic membrane/metal joint. The first experiments using the La-Sr-Fe-O ceramic are reported. Some of the analysis performed on the samples obtained are commented upon. A set of experiments to characterize the mechanical strength and thermal fatigue properties of the joints has been designed and begun. Finite element models of joints used to model residual stresses are described.

  12. Interpenetrating polymer network ion exchange membranes and method for preparing same

    DOE Patents [OSTI]

    Alexandratos, Spiro D.; Danesi, Pier R.; Horwitz, E. Philip

    1989-01-01

    Interpenetrating polymer network ion exchange membranes include a microporous polymeric support film interpenetrated by an ion exchange polymer and are produced by absorbing and polymerizing monomers within the support film. The ion exchange polymer provides ion exchange ligands at the surface of and throughout the support film which have sufficient ligand mobility to extract and transport ions across the membrane.

  13. How the Membrane Protein AmtB Transports Ammonia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How the Membrane Protein AmtB Transports Ammonia How the Membrane Protein AmtB Transports Ammonia Print Wednesday, 25 May 2005 00:00 Membrane proteins provide molecular-sized entry and exit portals for the various substances that pass into and out of cells. While life scientists have solved the structures of protein channels for ions, uncharged solutes, and even water, up to now they have only been able to guess at the precise mechanisms by which gases (such as NH3, CO2, O2, NO, N2O, etc.) cross

  14. Transport diffusion of liquid water and methanol through membranes...

    Office of Scientific and Technical Information (OSTI)

    DIFFUSION; MEMBRANES; METHANOL; TRANSPORT; WATER; GOLD; SURFACES; COMPUTER CALCULATIONS DIFFUSION; WATER; METHANOL; GOLD; MEMBRANES; SURFACES; COMPUTER CALCULATIONS Word Cloud ...

  15. How the Membrane Protein AmtB Transports Ammonia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How the Membrane Protein AmtB Transports Ammonia Print Membrane proteins provide molecular-sized entry and exit portals for the various substances that pass into and out of cells. While life scientists have solved the structures of protein channels for ions, uncharged solutes, and even water, up to now they have only been able to guess at the precise mechanisms by which gases (such as NH3, CO2, O2, NO, N2O, etc.) cross biological membranes. But, with the first high-resolution structure of a

  16. How the Membrane Protein AmtB Transports Ammonia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How the Membrane Protein AmtB Transports Ammonia Print Membrane proteins provide molecular-sized entry and exit portals for the various substances that pass into and out of cells. While life scientists have solved the structures of protein channels for ions, uncharged solutes, and even water, up to now they have only been able to guess at the precise mechanisms by which gases (such as NH3, CO2, O2, NO, N2O, etc.) cross biological membranes. But, with the first high-resolution structure of a

  17. How the Membrane Protein AmtB Transports Ammonia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How the Membrane Protein AmtB Transports Ammonia Print Membrane proteins provide molecular-sized entry and exit portals for the various substances that pass into and out of cells. While life scientists have solved the structures of protein channels for ions, uncharged solutes, and even water, up to now they have only been able to guess at the precise mechanisms by which gases (such as NH3, CO2, O2, NO, N2O, etc.) cross biological membranes. But, with the first high-resolution structure of a

  18. How the Membrane Protein AmtB Transports Ammonia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How the Membrane Protein AmtB Transports Ammonia Print Membrane proteins provide molecular-sized entry and exit portals for the various substances that pass into and out of cells. While life scientists have solved the structures of protein channels for ions, uncharged solutes, and even water, up to now they have only been able to guess at the precise mechanisms by which gases (such as NH3, CO2, O2, NO, N2O, etc.) cross biological membranes. But, with the first high-resolution structure of a

  19. Advanced Hydrogen Transport Membrane for Coal Gasification

    Office of Scientific and Technical Information (OSTI)

    Hydrogen Transport Membrane for Coal Gasification DE-FE0004908 Praxair, Inc. Advanced Hydrogen Transport Membrane for Coal Gasification Final Report October 2010 - September 2015 Joseph Schwartz and David Makuch Praxair, Inc. J. Douglas Way, Jason Porter, Neil Patki, and Madison Kelley Colorado School of Mines Josh Stanislowski and Scott Tolbert University of North Dakota - Energy and Environmental Research Center December 23, 2015 PREPARED FOR THE UNITED STATES DEPARTMENT OF ENERGY Under

  20. Secondary ion collection and transport system for ion microprobe

    DOE Patents [OSTI]

    Ward, James W. (Canoga Park, CA); Schlanger, Herbert (Simi Valley, CA); McNulty, Jr., Hugh (Santa Monica, CA); Parker, Norman W. (Camarillo, CA)

    1985-01-01

    A secondary ion collection and transport system, for use with an ion microprobe, which is very compact and occupies only a small working distance, thereby enabling the primary ion beam to have a short focal length and high resolution. Ions sputtered from the target surface by the primary beam's impact are collected between two arcuate members having radii of curvature and applied voltages that cause only ions within a specified energy band to be collected. The collected ions are accelerated and focused in a transport section consisting of a plurality of spaced conductive members which are coaxial with and distributed along the desired ion path. Relatively high voltages are applied to alternate transport sections to produce accelerating electric fields sufficient to transport the ions through the section to an ion mass analyzer, while lower voltages are applied to the other transport sections to focus the ions and bring their velocity to a level compatible with the analyzing apparatus.

  1. Composite oxygen ion transport element

    DOE Patents [OSTI]

    Chen, Jack C. (Getzville, NY); Besecker, Charles J. (Batavia, IL); Chen, Hancun (Williamsville, NY); Robinson, Earil T. (Mentor, OH)

    2007-06-12

    A composite oxygen ion transport element that has a layered structure formed by a dense layer to transport oxygen ions and electrons and a porous support layer to provide mechanical support. The dense layer can be formed of a mixture of a mixed conductor, an ionic conductor, and a metal. The porous support layer can be fabricated from an oxide dispersion strengthened metal, a metal-reinforced intermetallic alloy, a boron-doped Mo.sub.5Si.sub.3-based intermetallic alloy or combinations thereof. The support layer can be provided with a network of non-interconnected pores and each of said pores communicates between opposite surfaces of said support layer. Such a support layer can be advantageously employed to reduce diffusion resistance in any type of element, including those using a different material makeup than that outlined above.

  2. Anion Exchange Membranes - Transport/Conductivity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Transport/Conductivity Anion Exchange Membranes - Transport/Conductivity Presentation at the AMFC Workshop, May 8-9, 2011, Arlington, VA PDF icon amfc_110811_aems_transport.pdf More Documents & Publications 2011 Alkaline Membrane Fuel Cell Workshop Final Report Alkaline Membrane Fuel Cell Workshop Welcome and OverviewInnovation Electrolyte Materials for AMFCs and AMFC Performance

  3. Electrolytic process to produce sodium hypochlorite using sodium ion conductive ceramic membranes

    DOE Patents [OSTI]

    Balagopal, Shekar; Malhotra, Vinod; Pendleton, Justin; Reid, Kathy Jo

    2012-09-18

    An electrochemical process for the production of sodium hypochlorite is disclosed. The process may potentially be used to produce sodium hypochlorite from seawater or low purity un-softened or NaCl-based salt solutions. The process utilizes a sodium ion conductive ceramic membrane, such as membranes based on NASICON-type materials, in an electrolytic cell. In the process, water is reduced at a cathode to form hydroxyl ions and hydrogen gas. Chloride ions from a sodium chloride solution are oxidized in the anolyte compartment to produce chlorine gas which reacts with water to produce hypochlorous and hydrochloric acid. Sodium ions are transported from the anolyte compartment to the catholyte compartment across the sodium ion conductive ceramic membrane. Sodium hydroxide is transported from the catholyte compartment to the anolyte compartment to produce sodium hypochlorite within the anolyte compartment.

  4. Advanced Hydrogen Transport Membrane for Coal Gasification (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect SciTech Connect Search Results Technical Report: Advanced Hydrogen Transport Membrane for Coal Gasification Citation Details In-Document Search Title: Advanced Hydrogen Transport Membrane for Coal Gasification A pilot-scale hydrogen transport membrane (HTM) separator was built that incorporated 98 membranes that were each 24 inches long. This separator used an advanced design to minimize the impact of concentration polarization and separated over 1000 scfh of

  5. How the Membrane Protein AmtB Transports Ammonia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How the Membrane Protein AmtB Transports Ammonia Print Membrane proteins provide molecular-sized entry and exit portals for the various substances that pass into and out of cells....

  6. Crossing Over: Nanostructures that Move Electrons and Ions Across Cellular Membranes

    SciTech Connect (OSTI)

    Ajo-Franklin, C. M.; Noy, A.

    2015-04-27

    Critical biological processes such as energy generation and signal transduction are driven by the flow of electrons and ions across the membranes of living cells. As a result, there is substantial interest in creating nanostructured materials that control transport of these charged species across biomembranes. The recent advances in the synthesis of de novo and protein nanostructures for transmembrane ion and electron transport and the mechanistic understanding underlying this transport are described. Moreover, this body of work highlights the promise such nanostructures hold for directing transmembrane transport of charged species as well as challenges that must be overcome to realize that potential.

  7. Crossing Over: Nanostructures that Move Electrons and Ions Across Cellular Membranes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ajo-Franklin, C. M.; Noy, A.

    2015-04-27

    Critical biological processes such as energy generation and signal transduction are driven by the flow of electrons and ions across the membranes of living cells. As a result, there is substantial interest in creating nanostructured materials that control transport of these charged species across biomembranes. The recent advances in the synthesis of de novo and protein nanostructures for transmembrane ion and electron transport and the mechanistic understanding underlying this transport are described. Moreover, this body of work highlights the promise such nanostructures hold for directing transmembrane transport of charged species as well as challenges that must be overcome to realizemore » that potential.« less

  8. Unique battery with an active membrane separator having uniform physico-chemically functionalized ion channels and a method making the same

    DOE Patents [OSTI]

    Gerald, II, Rex E. (Brookfield, IL); Ruscic, Katarina J. (Chicago, IL); Sears, Devin N. (Spruce Grove, CA); Smith, Luis J. (Natick, MA); Klingler, Robert J. (Glenview, IL); Rathke, Jerome W. (Homer Glen, IL)

    2012-02-21

    The invention relates to a unique battery having an active, porous membrane and method of making the same. More specifically the invention relates to a sealed battery system having a porous, metal oxide membrane with uniform, physicochemically functionalized ion channels capable of adjustable ionic interaction. The physicochemically-active porous membrane purports dual functions: an electronic insulator (separator) and a unidirectional ion-transporter (electrolyte). The electrochemical cell membrane is activated for the transport of ions by contiguous ion coordination sites on the interior two-dimensional surfaces of the trans-membrane unidirectional pores. The membrane material is designed to have physicochemical interaction with ions. Control of the extent of the interactions between the ions and the interior pore walls of the membrane and other materials, chemicals, or structures contained within the pores provides adjustability of the ionic conductivity of the membrane.

  9. Transport diffusion of liquid water and methanol through membranes (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Transport diffusion of liquid water and methanol through membranes Citation Details In-Document Search Title: Transport diffusion of liquid water and methanol through membranes The authors carried out dual-control-volume grand canonical molecular dynamics simulations of the transport diffusion of liquid water and methanol to vacuum under a fixed chemical potential gradient through a slit pore consisting of Au(111) surfaces covered by -CH{sub 3} and -OH terminated

  10. Membranes for nanometer-scale mass fast transport

    DOE Patents [OSTI]

    Bakajin, Olgica (San Leandro, CA); Holt, Jason (Berkeley, CA); Noy, Aleksandr (Belmont, CA); Park, Hyung Gyu (Oakland, CA)

    2011-10-18

    Nanoporous membranes comprising single walled, double walled, and multiwalled carbon nanotubes embedded in a matrix material were fabricated for fluid mechanics and mass transfer studies on the nanometer scale and commercial applications. Average pore size can be 2 nm to 20 nm, or seven nm or less, or two nanometers or less. The membrane can be free of large voids spanning the membrane such that transport of material such as gas or liquid occurs exclusively through the tubes. Fast fluid, vapor, and liquid transport are observed. Versatile micromachining methods can be used for membrane fabrication. A single chip can comprise multiple membranes. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.

  11. How the Membrane Protein AmtB Transports Ammonia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as AmtB) that passes ammonia gas molecules through the bacterial cell membrane of E. coli. The structure allowed them to deduce how a positively charged ammonium ion is...

  12. Membrane permeation process for dehydration of organic liquid mixtures using sulfonated ion-exchange polyalkene membranes

    DOE Patents [OSTI]

    Cabasso, Israel (131 Buckingham Ave., Syracuse, NY 13210); Korngold, Emmanuel (P.O. Box 1025, Beer-Sheva 84110, IL)

    1988-01-01

    A membrane permeation process for dehydrating a mixture of organic liquids, such as alcohols or close boiling, heat sensitive mixtures. The process comprises causing a component of the mixture to selectively sorb into one side of sulfonated ion-exchange polyalkene (e.g., polyethylene) membranes and selectively diffuse or flow therethrough, and then desorbing the component into a gas or liquid phase on the other side of the membranes.

  13. Hydrogen transport membranes for dehydrogenation reactions

    DOE Patents [OSTI]

    Balachandran; Uthamalingam (Hinsdale, IL)

    2008-02-12

    A method of converting C.sub.2 and/or higher alkanes to olefins by contacting a feedstock containing C.sub.2 and/or higher alkanes with a first surface of a metal composite membrane of a sintered homogenous mixture of an Al oxide or stabilized or partially stabilized Zr oxide ceramic powder and a metal powder of one or more of Pd, Nb, V, Zr, Ta and/or alloys or mixtures thereof. The alkanes dehydrogenate to olefins by contact with the first surface with substantially only atomic hydrogen from the dehydrogenation of the alkanes passing through the metal composite membrane. Apparatus for effecting the conversion and separation is also disclosed.

  14. Membranes with functionalized carbon nanotube pores for selective transport

    DOE Patents [OSTI]

    Bakajin, Olgica; Noy, Aleksandr; Fornasiero, Francesco; Park, Hyung Gyu; Holt, Jason K; Kim, Sangil

    2015-01-27

    Provided herein composition and methods for nanoporous membranes comprising single walled, double walled, or multi-walled carbon nanotubes embedded in a matrix material. Average pore size of the carbon nanotube can be 6 nm or less. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.

  15. Method of making a hydrogen transport membrane, and article

    DOE Patents [OSTI]

    Schwartz, Joseph M.; Corpus, Joseph M.; Lim, Hankwon

    2015-07-21

    The present invention relates to a method of manufacturing a hydrogen transport membrane and the composite article itself. More specifically, the invention relates to producing a membrane substrate, wherein the ceramic substrate is coated with a metal oxide slurry, thereby eliminating the need for an activation step prior to plating the ceramic membrane through an electroless plating process. The invention also relates to modifying the pore size and porosity of the substrate by oxidation or reduction of the particles deposited by the metal oxide slurry.

  16. Operation of staged membrane oxidation reactor systems

    DOE Patents [OSTI]

    Repasky, John Michael

    2012-10-16

    A method of operating a multi-stage ion transport membrane oxidation system. The method comprises providing a multi-stage ion transport membrane oxidation system with at least a first membrane oxidation stage and a second membrane oxidation stage, operating the ion transport membrane oxidation system at operating conditions including a characteristic temperature of the first membrane oxidation stage and a characteristic temperature of the second membrane oxidation stage; and controlling the production capacity and/or the product quality by changing the characteristic temperature of the first membrane oxidation stage and/or changing the characteristic temperature of the second membrane oxidation stage.

  17. Molecular Structure and Ion Transport near Electrode-Electrolyte Interfaces

    Office of Scientific and Technical Information (OSTI)

    in Lithium-Ion Batteries (Conference) | SciTech Connect Molecular Structure and Ion Transport near Electrode-Electrolyte Interfaces in Lithium-Ion Batteries Citation Details In-Document Search Title: Molecular Structure and Ion Transport near Electrode-Electrolyte Interfaces in Lithium-Ion Batteries Authors: Lordi, V ; Ong, M T ; Verners, O ; van Duin, A ; Draeger, E W ; Pask, J E Publication Date: 2014-11-03 OSTI Identifier: 1178394 Report Number(s): LLNL-CONF-663739 DOE Contract Number:

  18. Molecular Structure and Ion Transport near Electrode-Electrolyte Interfaces

    Office of Scientific and Technical Information (OSTI)

    in Lithium-Ion Batteries (Conference) | SciTech Connect Molecular Structure and Ion Transport near Electrode-Electrolyte Interfaces in Lithium-Ion Batteries Citation Details In-Document Search Title: Molecular Structure and Ion Transport near Electrode-Electrolyte Interfaces in Lithium-Ion Batteries × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a

  19. The Structure and Transport of Water and Hydrated Ions Within Hydrophobic, Nanoscale Channels

    SciTech Connect (OSTI)

    Holt, J K; Herberg, J L; Wu, Y; Schwegler, E; Mehta, A

    2009-06-15

    The purpose of this project includes an experimental and modeling investigation into water and hydrated ion structure and transport at nanomaterials interfaces. This is a topic relevant to understanding the function of many biological systems such as aquaporins that efficiently shuttle water and ion channels that permit selective transport of specific ions across cell membranes. Carbon nanotubes (CNT) are model nanoscale, hydrophobic channels that can be functionalized, making them artificial analogs for these biological channels. This project investigates the microscopic properties of water such as water density distributions and dynamics within CNTs using Nuclear Magnetic Resonance (NMR) and the structure of hydrated ions at CNT interfaces via X-ray Absorption Spectroscopy (XAS). Another component of this work is molecular simulation, which can predict experimental measurables such as the proton relaxation times, chemical shifts, and can compute the electronic structure of CNTs. Some of the fundamental questions this work is addressing are: (1) what is the length scale below which nanoscale effects such as molecular ordering become important, (2) is there a relationship between molecular ordering and transport?, and (3) how do ions interact with CNT interfaces? These are questions of interest to the scientific community, but they also impact the future generation of sensors, filters, and other devices that operate on the nanometer length scale. To enable some of the proposed applications of CNTs as ion filtration media and electrolytic supercapacitors, a detailed knowledge of water and ion structure at CNT interfaces is critical.

  20. Ion-modulated nonlinear electronic transport in carbon nanotube

    Office of Scientific and Technical Information (OSTI)

    bundle/RbAg{sub 4}I{sub 5} thin film composite nanostructures (Journal Article) | SciTech Connect Ion-modulated nonlinear electronic transport in carbon nanotube bundle/RbAg{sub 4}I{sub 5} thin film composite nanostructures Citation Details In-Document Search Title: Ion-modulated nonlinear electronic transport in carbon nanotube bundle/RbAg{sub 4}I{sub 5} thin film composite nanostructures We have explored the ion-modulated electronic transport properties of mixed ionic-electronic conductor

  1. Energetic ion transport by microturbulence is insignificant in tokamaks

    SciTech Connect (OSTI)

    Pace, D. C.; Petty, C. C.; Staebler, G. M.; Van Zeeland, M. A.; Waltz, R. E.; Austin, M. E.; Bass, E. M.; Budny, R. V.; Gorelenkova, M.; Grierson, B. A.; McCune, D. C.; Yuan, X.; Heidbrink, W. W.; Muscatello, C. M.; Zhu, Y. B.; Hillesheim, J. C.; Rhodes, T. L.; Wang, G.; Holcomb, C. T.; McKee, G. R.; and others

    2013-05-15

    Energetic ion transport due to microturbulence is investigated in magnetohydrodynamic-quiescent plasmas by way of neutral beam injection in the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)]. A range of on-axis and off-axis beam injection scenarios are employed to vary relevant parameters such as the character of the background microturbulence and the value of E{sub b}/T{sub e}, where E{sub b} is the energetic ion energy and T{sub e} the electron temperature. In all cases, it is found that any transport enhancement due to microturbulence is too small to observe experimentally. These transport effects are modeled using numerical and analytic expectations that calculate the energetic ion diffusivity due to microturbulence. It is determined that energetic ion transport due to coherent fluctuations (e.g., Alfvn eigenmodes) is a considerably larger effect and should therefore be considered more important for ITER.

  2. Ion-conduction mechanisms in NaSICON-type membranes for energy storage and utilization

    SciTech Connect (OSTI)

    McDaniel, Anthony H.; Ihlefeld, Jon F.; Bartelt, Norman Charles

    2015-10-01

    Next generation metal-ion conducting membranes are key to developing energy storage and utilization technologies like batteries and fuel ce lls. Sodium super-ionic conductors (aka NaSICON) are a class of compounds with AM 1 M 2 (PO 4 ) 3 stoichiometry where the choice of "A" and "M" cation varies widely. This report, which de scribes substitutional derivatives of NZP (NaZr 2 P 3 O 12 ), summarizes the accomplishments of a Laboratory D irected Research and Development (LDRD) project to analyze transport mec hanisms using a combination of in situ studies of structure, composition, and bonding, com bined with first principles theory and modeling. We developed an experimental platform and applied methods, such as synchrotron- based X-ray spectroscopies, to probe the electronic structure of compositionally well-controlled NaSICON films while in operation ( i.e ., conducting Na ions exposed to oxygen or water va por atmospheres). First principles theory and modeling were used to interpret the experimental observations and develop an enhanced understanding of atomistic processes that give rise to, and affect, ion conduction.

  3. Ion mixing, hydration, and transport in aqueous ionic systems

    SciTech Connect (OSTI)

    Tse, Ying-Lung Steve; Voth, Gregory A.; Witten, Thomas A.

    2015-05-14

    The enhancement effect on the ion mobility of fluoride (and that of chloride) in a polycationic system, as the chloride content increases, is shown to also exist in other more simple ionic systems with cations such as the cesium ion and an organic ammonium ion. As the chloride content increases, in addition to the finding that there is more unbound water associated with the cation, we also observe that the average lifetime of a hydrogen bond decreases. This change to the hydrogen bonds is correlated to significant changes to both the structural and dynamical properties of water. The more disordered water structure and faster water dynamics are hypothesized to be also responsible for the enhanced ion mobilities. Furthermore, when either the chloride content or hydration level is changed, the self-diffusion constant of each co-ion changes by almost the same factor, implying the existence of a single universal transport mechanism that determines ion mobilities.

  4. Advanced Hydrogen Transport Membranes for Vision 21 Fossil Fuel Plants

    SciTech Connect (OSTI)

    Carl R. Evenson; Shane E. Roark

    2006-03-31

    The objective of this project was to develop an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. A family of hydrogen separation membranes was developed including single phase mixed conducting ceramics, ceramic/ceramic composites, cermet membranes, cermet membranes containing a hydrogen permeable metal, and intermediate temperature composite layered membranes. Each membrane type had different operating parameters, advantages, and disadvantages that were documented over the course of the project. Research on these membranes progressed from ceramics to cermets to intermediate temperature composite layered membranes. During this progression performance was increased from 0.01 mL x min{sup -1} x cm{sup -2} up to 423 mL x min{sup -1} x cm{sup -2}. Eltron and team membranes not only developed each membrane type, but also membrane surface catalysis and impurity tolerance, creation of thin film membranes, alternative applications such as membrane promoted alkane dehydrogenation, demonstration of scale-up testing, and complete engineering documentation including process and mechanical considerations necessary for inclusion of Eltron membranes in a full scale integrated gasification combined cycle power plant. The results of this project directly led to a new $15 million program funded by the Department of Energy. This new project will focus exclusively on scale-up of this technology as part of the FutureGen initiative.

  5. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    DOE Patents [OSTI]

    Kelly, Sean M; Kromer, Brian R; Litwin, Michael M; Rosen, Lee J; Christie, Gervase Maxwell; Wilson, Jamie R; Kosowski, Lawrence W; Robinson, Charles

    2014-01-07

    A method and apparatus for producing heat used in a synthesis gas production is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the stream reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5.

  6. Aqua-vanadyl ion interaction with Nafion® membranes

    SciTech Connect (OSTI)

    Vijayakumar, Murugesan; Govind, Niranjan; Li, Bin; Wei, Xiaoliang; Nie, Zimin; Thevuthasan, Suntharampillai; Sprenkle, Vince L.; Wang, Wei

    2015-03-23

    Lack of comprehensive understanding about the interactions between Nafion membrane and battery electrolytes prevents the straightforward tailoring of optimal materials for redox flow battery applications. In this work, we analyzed the interaction between aqua-vanadyl cation and sulfonic sites within the pores of Nafion membranes using combined theoretical and experimental X-ray spectroscopic methods. Molecular level interactions, namely, solvent share and contact pair mechanisms are discussed based on Vanadium and Sulfur K-edge spectroscopic analysis.

  7. Aqua-vanadyl ion interaction with Nafion membranes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vijayakumar, Murugesan; Govind, Niranjan; Li, Bin; Wei, Xiaoliang; Nie, Zimin; Thevuthasan, Suntharampillai; Sprenkle, Vince L.; Wang, Wei

    2015-03-23

    Lack of comprehensive understanding about the interactions between Nafion membrane and battery electrolytes prevents the straightforward tailoring of optimal materials for redox flow battery applications. In this work, we analyzed the interaction between aqua-vanadyl cation and sulfonic sites within the pores of Nafion membranes using combined theoretical and experimental X-ray spectroscopic methods. Molecular level interactions, namely, solvent share and contact pair mechanisms are discussed based on Vanadium and Sulfur K-edge spectroscopic analysis.

  8. Feed gas contaminant removal in ion transport membrane systems

    DOE Patents [OSTI]

    Carolan, Michael Francis (Allentown, PA); Miller, Christopher Francis (Macungie, PA)

    2008-09-16

    Method for gas purification comprising (a) obtaining a feed gas stream containing one or more contaminants selected from the group consisting of volatile metal oxy-hydroxides, volatile metal oxides, and volatile silicon hydroxide; (b) contacting the feed gas stream with a reactive solid material in a guard bed and reacting at least a portion of the contaminants with the reactive solid material to form a solid reaction product in the guard bed; and (c) withdrawing from the guard bed a purified gas stream.

  9. Characterization of vanadium ion uptake in sulfonated diels alder poly(phenylene) membranes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lawton, Jamie; Jones, Amanda; Tang, Zhijiang; Lindsey, Melanie; Zawodzinski, Thomas A

    2015-11-28

    Sulfonated diels alder poly(phenylene) (SDAPP), alternative aromatic hydrocarbon membranes for vanadium redox flow batteries (VRFBs) are characterized using electron paramagnetic resonance (EPR). Membranes soaked in sulfuric acid and vanadyl sulfate are analyzed to determine the membrane environment in which the vanadyl ion (VO2+) diffuses in the membranes. These results are compared to Nafion 117 membranes. In contrast to Nafion, the VO2+ in SDAPP membranes exists in two different environments. The results of analysis of rotational diffusion determined from fits the EPR spectral lineshapes in comparison with previously reported permeation studies and measurements of partitioning functions reported here suggest that themore » diffusion pathways in SDAPP are very different than in Nafion.« less

  10. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Carl R. Evenson; Anthony F. Sammells; Richard T. Treglio; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Clive Brereton; Warren Wolfs; James Lockhart

    2004-10-21

    During this quarter, work was focused on characterizing the stability of layered composite membranes in a one hundred percent permeate environment. Permeation data was also collected on cermets as a function of thickness. A thin film deposition procedure was used to deposit dense thin BCY/Ni onto a tubular porous support. Thin film tubes were then tested for permeation at ambient pressure. Process flow diagrams were prepared for inclusion of hydrogen separation membranes into IGCC power plants under varying conditions. Finally, membrane promoted alkane dehydrogenation experiments were performed.

  11. Particle back-transport and permeate flux behavior in crossflow membrane filters

    SciTech Connect (OSTI)

    Chellam, S.; Wiesner, M.R.

    1997-03-01

    Particle residence time distributions in a membrane channel are interpreted to elucidate mechanisms of particle transport and colloidal fouling in membrane filtration. A comparison of particle size distributions in the membrane feed suspensions and deposited cakes provides evidence for selective particle transport and accumulation on membranes. These data support a previously hypothesized minimum in particle back-transport from the membrane as a function of particle size. The back-transport of smaller particles is apparently due to Brownian diffusion, while larger macrocolloids are controlled by an orthokinetic mechanism such as shear-induced diffusion. In all cases, cake specific resistances measured in the dead-end mode were higher than those of the corresponding feed suspensions. Also, cake specific resistances measured under a crossflow were higher than those in the dead-end mode. Further, the specific resistance of particle deposits on membranes increased with shear rate and decreased as the initial permeation rate increased, suggesting that cake morphology is an important parameter in determining permeate flux. Thus, the effects of hydrodynamics on cake resistance needs to be established before a comprehensive model for crossflow filtration can be derived. 17 refs., 7 figs., 1 tab.

  12. Ninth International Workshop on Plant Membrane Biology

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    This report is a compilation of abstracts from papers which were discussed at a workshop on plant membrane biology. Topics include: plasma membrane ATP-ases; plant-environment interactions, membrane receptors; signal transduction; ion channel physiology; biophysics and molecular biology; vaculor H+ pumps; sugar carriers; membrane transport; and cellular structure and function.

  13. Qualitative determination of H2S crossover rates in nation membranes using ion-probe techniques

    SciTech Connect (OSTI)

    Brosha, Eric L; Rockward, Tommy; Uribe, Francisco A; Garzon, Fernando H

    2008-01-01

    Polymer electrolyte membrane fuel cells are sensitive to impurities that may be present in either the oxidizer or fuel. H2S, even at the ppb level, will have a dramatic and adverse affect on fuel cell performance. The H2S permeability through dry and humidified Nafion PEMFC membranes was studied using ion probe techniques. A sulfide anti-oxidant buffer solution was used to trap and concentrate trace quantities of H2S that permeated through 50 cm2samples of Nafion 117 and 212 membranes using a partial pressure difference up to I030ppm at room temperature. Experiments were conducted for up to 24 hours in order to achieve sulfide ion concentrations high enough to be precisely determined by subsequent titration with Pb(N03)2. The rate of H2S crossover for dry 117 and 212 were identical at 1.2e-7 g/min. Humidification increased the crossover rate to 5.ge-7 glmin and 1.8e-6 glmin for 117 and 212 respectively. Although the data collected in this work show that the rate of H2S crossover increases with water content and reduced membrane thickness, an accurate determination of permeation constants from this work was not possible because the H2S partial pressure was not constant throughout the experiment.

  14. Catalyzed CO.sub.2-transport membrane on high surface area inorganic support

    DOE Patents [OSTI]

    Liu, Wei

    2014-05-06

    Disclosed are membranes and methods for making the same, which membranes provide improved permeability, stability, and cost-effective manufacturability, for separating CO.sub.2 from gas streams such as flue gas streams. High CO.sub.2 permeation flux is achieved by immobilizing an ultra-thin, optionally catalyzed fluid layer onto a meso-porous modification layer on a thin, porous inorganic substrate such as a porous metallic substrate. The CO.sub.2-selective liquid fluid blocks non-selective pores, and allows for selective absorption of CO.sub.2 from gas mixtures such as flue gas mixtures and subsequent transport to the permeation side of the membrane. Carbon dioxide permeance levels are in the order of 1.0.times.10.sup.-6 mol/(m.sup.2sPa) or better. Methods for making such membranes allow commercial scale membrane manufacturing at highly cost-effective rates when compared to conventional commercial-scale CO.sub.2 separation processes and equipment for the same and such membranes are operable on an industrial use scale.

  15. Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas

    SciTech Connect (OSTI)

    Dexin Wang

    2012-03-31

    The new waste heat and water recovery technology based on a nanoporous ceramic membrane vapor separation mechanism has been developed for power plant flue gas application. The recovered water vapor and its latent heat from the flue gas can increase the power plant boiler efficiency and reduce water consumption. This report describes the development of the Transport Membrane Condenser (TMC) technology in details for power plant flue gas application. The two-stage TMC design can achieve maximum heat and water recovery based on practical power plant flue gas and cooling water stream conditions. And the report includes: Two-stage TMC water and heat recovery system design based on potential host power plant coal fired flue gas conditions; Membrane performance optimization process based on the flue gas conditions, heat sink conditions, and water and heat transport rate requirement; Pilot-Scale Unit design, fabrication and performance validation test results. Laboratory test results showed the TMC system can exact significant amount of vapor and heat from the flue gases. The recovered water has been tested and proved of good quality, and the impact of SO{sub 2} in the flue gas on the membrane has been evaluated. The TMC pilot-scale system has been field tested with a slip stream of flue gas in a power plant to prove its long term real world operation performance. A TMC scale-up design approach has been investigated and an economic analysis of applying the technology has been performed.

  16. Molecular modeling of the morphology and transport properties of two direct methanol fuel cell membranes: phenylated sulfonated poly(ether ether ketone ketone) versus Nafion

    SciTech Connect (OSTI)

    Devanathan, Ramaswami; Idupulapati, Nagesh B.; Dupuis, Michel

    2012-08-14

    We have used molecular dynamics simulations to examine membrane morphology and the transport of water, methanol and hydronium in phenylated sulfonated poly ether ether ketone ketone (Ph-SPEEKK) and Nafion membranes at 360 K for a range of hydration levels. At comparable hydration levels, the pore diameter is smaller, the sulfonate groups are more closely packed, the hydronium ions are more strongly bound to sulfonate groups, and the diffusion of water and hydronium is slower in Ph-SPEEKK relative to the corresponding properties in Nafion. The aromatic carbon backbone of Ph-SPEEKK is less hydrophobic than the fluorocarbon backbone of Nafion. Water network percolation occurs at a hydration level ({lambda}) of {approx}8 H{sub 2}O/SO{sub 3}{sup -}. At {lambda} = 20, water, methanol and hydronium diffusion coefficients were 1.4 x 10{sup -5}, 0.6 x 10{sup -5} and 0.2 x 10{sup -5} cm{sup 2}/s, respectively. The pore network in Ph-SPEEKK evolves dynamically and develops wide pores for {lambda} > 20, which leads to a jump in methanol crossover and ion transport. This study demonstrates the potential of aromatic membranes as low-cost challengers to Nafion for direct methanol fuel cell applications and the need to develop innovative strategies to combat methanol crossover at high hydration levels.

  17. Vehicle Technologies Office Merit Review 2015: Optimization of Ion Transport in High-Energy Composite Cathodes

    Broader source: Energy.gov [DOE]

    Presentation given by UC San Diego at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about optimization of ion transport in...

  18. Investigation of ion and electron heat transport of high- T e...

    Office of Scientific and Technical Information (OSTI)

    Investigation of ion and electron heat transport of high- T e ECH heated discharges in the large helical device Citation Details In-Document Search This content will become...

  19. Investigation of ion and electron heat transport of high- T e ECH heated

    Office of Scientific and Technical Information (OSTI)

    discharges in the large helical device (Journal Article) | SciTech Connect Investigation of ion and electron heat transport of high- T e ECH heated discharges in the large helical device Citation Details In-Document Search This content will become publicly available on January 28, 2017 Title: Investigation of ion and electron heat transport of high- T e ECH heated discharges in the large helical device Authors: Pablant, N. A. ; Satake, S. ; Yokoyama, M. ; Gates, D. A. ; Bitter, M. ;

  20. Ion-modulated nonlinear electronic transport in carbon nanotube...

    Office of Scientific and Technical Information (OSTI)

    interference effect and interesting electronic transport of CNT, such as nonlinear current-voltage (I-V) characteristics and novel temperature dependence of the current. ...

  1. Transport and Failure in Li-ion Batteries | Stanford Synchrotron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Li-ion Batteries Monday, February 13, 2012 - 1:30pm SSRL Conference Room 137-322 Stephen J. Harris, General Motors R&D While battery performance is well predicted by the...

  2. Radial transport of energetic ions in the presence of trapped electron mode turbulence

    SciTech Connect (OSTI)

    Chowdhury, J.; Wang, W.; Ethier, S.; Manickam, J. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Ganesh, R. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2011-11-15

    The nature of transport of hot ions is studied in the presence of microturbulence generated by the trapped electron mode in a Tokamak using massively parallel, first principle based global nonlinear gyrokinetic simulation, and with the help of a passive tracer method. Passing and trapped hot ions are observed to exhibit inverse and inverse square scaling with energy, while those with isotropic pitch distribution are found to exhibit inverse dependence on energy. For all types of hot ions, namely, isotropic, passing, and trapped, the radial transport appears to be subdiffusive for the parameters considered.

  3. Staged membrane oxidation reactor system

    DOE Patents [OSTI]

    Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

    2012-09-11

    Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

  4. Staged membrane oxidation reactor system

    DOE Patents [OSTI]

    Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

    2014-05-20

    Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

  5. Staged membrane oxidation reactor system

    DOE Patents [OSTI]

    Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

    2013-04-16

    Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

  6. Design and characterization of a neutralized-transport experiment for heavy-ion fusion

    SciTech Connect (OSTI)

    Henestroza, E.; Eylon, S.; Roy, P.K.; Yu, S.S.; Anders, A.; Bieniosek, F.M.; Greenway, W.G.; Logan, B.G.; MacGill, R.A.; Shuman, D.B.; Vanecek, D.L.; Waldron, W.L.; Sharp, W.M.; Houck, T.L.; Davidson, R.C.; Efthimion, P.C.; Gilson, E.P.; Sefkow, A.B.; Welch, D.R.; Rose, D.V.; Olson, C.L.

    2004-03-14

    In heavy-ion inertial-confinement fusion systems, intense beams of ions must be transported from the exit of the final focus magnet system through the fusion chamber to hit millimeter-sized spots on the target. Effective plasma neutralization of intense ion beams in this final transport is essential for a heavy-ion fusion power plant to be economically competitive. The physics of neutralized drift has been studied extensively with particle-in-cell simulations. To provide quantitative comparisons of theoretical predictions with experiment, the Virtual National Laboratory for Heavy Ion Fusion has completed the construction and has begun experimentation with the Neutralized Transport Experiment (NTX). The experiment consists of three main sections, each with its own physics issues. The injector is designed to generate a very high-brightness, space-charge-dominated potassium beam while still allowing variable perveance by a beam aperturing technique. The magnetic-focusing section, consisting of four pulsed magnetic quadrupoles, permits the study of beam tuning, as well as the effects of phase space dilution due to higher-order nonlinear fields. In the final section, the converging ion beam exiting the magnetic section is transported through a drift region with plasma sources for beam neutralization, and the final spot size is measured under various conditions of neutralization. In this paper, we discuss the design and characterization of the three sections in detail and present initial results from the experiment.

  7. Production of permeable cellulose triacetate membranes

    DOE Patents [OSTI]

    Johnson, B.M.

    1986-12-23

    A phase inversion process for the preparation of cellulose triacetate (CTA) and regenerated cellulose membranes is disclosed. Such membranes are useful as supports for liquid membranes in facilitated transport processes, as microfiltration membranes, as dialysis or ultrafiltration membranes, and for the preparation of ion-selective electrodes. The process comprises the steps of preparing a casting solution of CTA in a solvent comprising a mixture of cyclohexanone and methylene chloride, casting a film from the casting solution, and immersing the cast film in a methanol bath. The resulting CTA membrane may then be hydrolyzed to regenerated cellulose using conventional techniques.

  8. Production of permeable cellulose triacetate membranes

    DOE Patents [OSTI]

    Johnson, Bruce M. (Bend, OR)

    1986-01-01

    A phase inversion process for the preparation of cellulose triacetate (CTA) and regenerated cellulose membranes is disclosed. Such membranes are useful as supports for liquid membranes in facilitated transport processes, as microfiltration membranes, as dialysis or ultrafiltration membranes, and for the preparation of ion-selective electrodes. The process comprises the steps of preparing a casting solution of CTA in a solvent comprising a mixture of cyclohexanone and methylene chloride, casting a film from the casting solution, and immersing the cast film in a methanol bath. The resulting CTA membrane may then be hydrolyzed to regenerated cellulose using conventional techniques.

  9. Charged Amino Acids (R83, E567, D617, E625, R669, and K678) of CusA Are Required for Metal Ion Transport in the Cus Efflux System

    SciTech Connect (OSTI)

    Su, Chih-Chia; Long, Feng; Lei, Hsiang-Ting; Reddy Bolla, Jani; Do, Sylvia V.; Rajashankar, Kanagalaghatta R.; Yu, Edward W. (Cornell); (Iowa State)

    2012-10-23

    Gram-negative bacteria expel various toxic chemicals via tripartite efflux pumps belonging to the resistance-nodulation-cell division superfamily. These pumps span both the inner and outer membranes of the cell. The three components of these tripartite systems are an inner-membrane, substrate-binding transporter (or pump); a periplasmic membrane fusion protein (or adaptor); and an outer-membrane-anchored channel. These three efflux proteins interact in the periplasmic space to form the three-part complexes. We previously presented the crystal structures of both the inner-membrane transporter CusA and membrane fusion protein CusB of the CusCBA tripartite efflux system from Escherichia coli. We also described the co-crystal structure of the CusBA adaptor-transporter, revealing that the trimeric CusA efflux pump assembles with six CusB protein molecules to form the complex CusB{sub 6}-CusA{sub 3}. We here report three different conformers of the crystal structures of CusBA-Cu(I), suggesting a mechanism on how Cu(I) binding initiates a sequence of conformational transitions in the transport cycle. Genetic analysis and transport assays indicate that charged residues, in addition to the methionine pairs and clusters, are essential for extruding metal ions out of the cell.

  10. A Discussion of Conductivity Testing in High Temperature Membranes (lessons learned in assessing transport)

    Broader source: Energy.gov [DOE]

    Presentation on conductivity testing in high temperature membranes given by Jim Boncella of Los Alamos National Laboratory at the High Temperature Membrane Working Group meeting in October 2005.

  11. Interplay between water uptake, ion interactions, and conductivity in an e-beam grafted poly(ethylene-co-tetrafluoroethylene) anion exchange membrane

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pandey, Tara P.; Maes, Ashley M.; Sarode, Himanshu N.; Peters, Bethanne D.; Lavina, Sandra; Vezzu, Keti; Yang, Yuan; Poynton, Simon D.; Varcoe, John R.; Seifert, Soenke; et al

    2014-12-23

    We demonstrate that the true hydroxide conductivity in an e-beam grafted poly(ethylene-co-tetrafluoroethylene) [ETFE] anion exchange membrane (AEM) is as high as 132 mS cm-1 at 80 °C and 95% RH, comparable to a proton exchange membrane, but with very much less water present in the film. To understand this behaviour we studied ion transport of hydroxide, carbonate, bicarbonate and chloride, as well as water uptake and distribution. Water uptake of the AEM in water vapor is an order of magnitude lower than when submerged in liquid water. In addition 19F pulse field gradient spin echo NMR indicates that there ismore » little tortuosity in the ionic pathways through the film. A complete analysis of the IR spectrum of the AEM and the analyses of water absorption using FT-IR led to conclusion that the fluorinated backbone chains do not interact with water and that two types of water domains exist within the membrane. Furthermore, the reduction in conductivity was measured during exposure of the OH- form of the AEM to air at 95% RH and was seen to be much slower than the reaction of CO2 with OH- as the amount of water in the film determines its ionic conductivity and at relative wet RHs its re-organization is slow.« less

  12. Interplay between water uptake, ion interactions, and conductivity in an e-beam grafted poly(ethylene-co-tetrafluoroethylene) anion exchange membrane

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pandey, Tara P.; Maes, Ashley M.; Sarode, Himanshu N.; Peters, Bethanne D.; Lavina, Sandra; Vezzù, Keti; Yang, Yuan; Poynton, Simon D.; Varcoe, John R.; Seifert, Soenke; et al

    2014-12-23

    We demonstrate that the true hydroxide conductivity in an e-beam grafted poly(ethylene-co-tetrafluoroethylene) [ETFE] anion exchange membrane (AEM) is as high as 132 mS cm-1 at 80 °C and 95% RH, comparable to a proton exchange membrane, but with very much less water present in the film. To understand this behaviour we studied ion transport of hydroxide, carbonate, bicarbonate and chloride, as well as water uptake and distribution. Water uptake of the AEM in water vapor is an order of magnitude lower than when submerged in liquid water. In addition 19F pulse field gradient spin echo NMR indicates that there ismore » little tortuosity in the ionic pathways through the film. A complete analysis of the IR spectrum of the AEM and the analyses of water absorption using FT-IR led to conclusion that the fluorinated backbone chains do not interact with water and that two types of water domains exist within the membrane. The reduction in conductivity was measured during exposure of the OH- form of the AEM to air at 95% RH and was seen to be much slower than the reaction of CO2 with OH- as the amount of water in the film determines its ionic conductivity and at relative wet RHs its re-organization is slow.« less

  13. Interplay between water uptake, ion interactions, and conductivity in an e-beam grafted poly(ethylene-co-tetrafluoroethylene) anion exchange membrane

    SciTech Connect (OSTI)

    Pandey, Tara P.; Maes, Ashley M.; Sarode, Himanshu N.; Peters, Bethanne D.; Lavina, Sandra; Vezz, Keti; Yang, Yuan; Poynton, Simon D.; Varcoe, John R.; Seifert, Soenke; Liberatore, Matthew W.; Di Noto, Vito; Herring, Andrew M.

    2014-12-23

    We demonstrate that the true hydroxide conductivity in an e-beam grafted poly(ethylene-co-tetrafluoroethylene) [ETFE] anion exchange membrane (AEM) is as high as 132 mS cm-1 at 80 C and 95% RH, comparable to a proton exchange membrane, but with very much less water present in the film. To understand this behaviour we studied ion transport of hydroxide, carbonate, bicarbonate and chloride, as well as water uptake and distribution. Water uptake of the AEM in water vapor is an order of magnitude lower than when submerged in liquid water. In addition 19F pulse field gradient spin echo NMR indicates that there is little tortuosity in the ionic pathways through the film. A complete analysis of the IR spectrum of the AEM and the analyses of water absorption using FT-IR led to conclusion that the fluorinated backbone chains do not interact with water and that two types of water domains exist within the membrane. The reduction in conductivity was measured during exposure of the OH- form of the AEM to air at 95% RH and was seen to be much slower than the reaction of CO2 with OH- as the amount of water in the film determines its ionic conductivity and at relative wet RHs its re-organization is slow.

  14. Impact of beam transport method on chamber and driver design for heavy ion inertial fusion energy

    SciTech Connect (OSTI)

    Rose, D.V.; Welch, D.R.; Olson, C.L.; Yu, S.S.; Neff, S.; Sharp, W.M.

    2002-12-01

    In heavy ion inertial fusion energy systems, intense beams of ions must be transported from the exit of the final focus magnet system through the target chamber to hit millimeter spot sizes on the target. In this paper, we examine three different modes of beam propagation: neutralized ballistic transport, assisted pinched transport, and self-pinched transport. The status of our understanding of these three modes is summarized, and the constraints imposed by beam propagation upon the chamber environment, as well as their compatibility with various chamber and target concepts, are considered. We conclude that, on the basis of our present understanding, there is a reasonable range of parameter space where beams can propagate in thick-liquid wall, wetted-wall, and dry-wall chambers.

  15. Energetic-particle-driven instabilities and induced fast-ion transport in a reversed field pinch

    SciTech Connect (OSTI)

    Lin, L.; Brower, D. L.; Ding, W. X.; Anderson, J. K.; Capecchi, W.; Eilerman, S.; Forest, C. B.; Koliner, J. J.; Nornberg, M. D.; Reusch, J.; Sarff, J. S.; Liu, D.

    2014-05-15

    Multiple bursty energetic-particle (EP) driven modes with fishbone-like structure are observed during 1?MW tangential neutral-beam injection in a reversed field pinch (RFP) device. The distinguishing features of the RFP, including large magnetic shear (tending to add stability) and weak toroidal magnetic field (leading to stronger drive), provide a complementary environment to tokamak and stellarator configurations for exploring basic understanding of EP instabilities. Detailed measurements of the EP mode characteristics and temporal-spatial dynamics reveal their influence on fast ion transport. Density fluctuations exhibit a dynamically evolving, inboard-outboard asymmetric spatial structure that peaks in the core where fast ions reside. The measured mode frequencies are close to the computed shear Alfvn frequency, a feature consistent with continuum modes destabilized by strong drive. The frequency pattern of the dominant mode depends on the fast-ion species. Multiple frequencies occur with deuterium fast ions compared to single frequency for hydrogen fast ions. Furthermore, as the safety factor (q) decreases, the toroidal mode number of the dominant EP mode transits from n=5 to n=6 while retaining the same poloidal mode number m=1. The transition occurs when the m=1, n=5 wave-particle resonance condition cannot be satisfied as the fast-ion safety factor (q{sub fi}) decreases. The fast-ion temporal dynamics, measured by a neutral particle analyzer, resemble a classical predator-prey relaxation oscillation. It contains a slow-growth phase arising from the beam fueling followed by a rapid drop when the EP modes peak, indicating that the fluctuation-induced transport maintains a stiff fast-ion density profile. The inferred transport rate is strongly enhanced with the onset of multiple EP modes.

  16. Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions

    SciTech Connect (OSTI)

    Valerio-Lizarraga, Cristhian A.; Lallement, Jean-Baptiste; Lettry, Jacques; Scrivens, Richard; Leon-Monzon, Ildefonso; Midttun, ystein; University of Oslo, Oslo

    2014-02-15

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H{sup ?} beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  17. Membrane architectures for ion-channel switch-based electrochemical biosensors

    DOE Patents [OSTI]

    Sansinena, Jose-Maria (Los Alamos, NM); Redondo, Antonio (Los Alamos, NM); Swanson, Basil I. (Los Alamos, NM); Yee, Chanel Kitmon (Davis, CA); Sapuri/Butti, Annapoorna R. (Davis, CA); Parikh, Atul N. (Woodland, CA); Yang, Calvin (Davis, CA)

    2008-10-28

    The present invention is directed to a process of forming a bilayer lipid membrane structure by depositing an organic layer having a defined surface area onto an electrically conductive substrate, removing portions of said organic layer upon said electrically conductive substrate whereby selected portions of said organic layer are removed to form defined voids within said defined surface area of said organic layer and defined islands of organic layer upon said electrically conductive substrate, and, depositing a bilayer lipid membrane over the defined voids and defined islands of organic layer upon said substrate whereby aqueous reservoirs are formed between said electrically conductive substrate and said bilayer lipid membrane, said bilayer lipid membrane characterized as spanning across the defined voids between said defined islands. A lipid membrane structure is also described together with an array of such lipid membrane structure.

  18. Separation of Olefin/Paraffin Mixtures With Carrier-Facilitated Transport Membranes

    SciTech Connect (OSTI)

    2004-07-01

    Use of Membranes Could Significantly Reduce Energy Costs. Olefins, a group of petrochemicals that includes ethylene and propylene, are the primary building blocks for the petrochemical industry.

  19. Shewanella oneidensis MR-1 Nanowires are Outer Membrane and Periplasmic Extensions of the Extracellular Electron Transport Components

    SciTech Connect (OSTI)

    Pirbadian, S.; Barchinger, S. E.; Leung, K. M.; Byun, H. S.; Jangir, Y.; Bouhenni, Rachida; Reed, Samantha B.; Romine, Margaret F.; Saffarini, Daad; Shi, Liang; Gorby, Yuri A.; Golbeck, J. H.; El-Naggar, Mohamed Y.

    2014-08-20

    Bacterial nanowires offer an extracellular electron transport (EET) pathway for linking the respiratory chain of bacteria to external surfaces, including oxidized metals in the environment and engineered electrodes in renewable energy devices. Despite the global, environmental, and technological consequences of this biotic-abiotic interaction, the composition, physiological relevance, and electron transport mechanisms of bacterial nanowires remain unclear. We report the first in vivo observations of the formation and respiratory impact of nanowires in the model metal-reducing microbe Shewanella neidensis MR-1. Using live fluorescence measurements, immunolabeling, and quantitative gene expression analysis, we report that S. oneidensis MR-1 nanowires are extensions of the outer membrane and periplasm that include the multiheme cytochromes responsible for EET, rather than pilin-based structures, as previously thought. These bacterial nanowires were also associated with outer membrane vesicles and vesicle chains, structures ubiquitous in gram-negative bacteria. Redoxfunctionalized membrane and vesicular extensions may represent a general microbial strategy for electron transport and energy distribution.

  20. High-intensity ion sources for accelerators with emphasis on H-beam formation and transport

    SciTech Connect (OSTI)

    Keller, Roderich [Los Alamos National Laboratory

    2009-01-01

    This paper lays out the fundamental working principles of a variety of high-current ion sources for accelerators in a tutorial manner, and gives examples of specific source types such as d. c. discharge- and rf-driven multicusp sources. Penning-type and ECR-based sources while discussing those principles, pointing out general performance limits as well as the performance parameters of specific sources. Laser-based, two-chamber-. and surface-ionization sources are briefly mentioned. Main aspects of this review are particle feed. ionization mechanism, beam formation and beam transport. Issues seen with beam formation and low-energy transport of negative hydrogen-ion beams are treated in detail.

  1. Transport rates and momentum isotropization of gluon matter in ultrarelativistic heavy-ion collisions

    SciTech Connect (OSTI)

    Xu Zhe; Greiner, Carsten

    2007-08-15

    To describe momentum isotropization of gluon matter produced in ultrarelativistic heavy-ion collisions, the transport rate of gluon drift and the transport collision rates of elastic (gg{r_reversible}gg) as well as inelastic (gg{r_reversible}ggg) perturbative quantum chromodynamics- (pQCD) scattering processes are introduced and calculated within the kinetic parton cascade Boltzmann approach of multiparton scatterings (BAMPS), which simulates the space-time evolution of partons. We define isotropization as the development of an anisotropic system as it reaches isotropy. The inverse of the introduced total transport rate gives the correct time scale of the momentum isotropization. The contributions of the various scattering processes to the momentum isotropization can be separated into the transport collision rates. In contrast to the transport cross section, the transport collision rate has an indirect but correctly implemented relationship with the collision-angle distribution. Based on the calculated transport collision rates from BAMPS for central Au+Au collisions at Relativistic Heavy Ion Collider energies, we show that pQCD gg{r_reversible}ggg bremsstrahlung processes isotropize the momentum five times more efficiently than elastic scatterings. The large efficiency of the bremsstrahlung stems mainly from its large momentum deflection. Due to kinematics, 2{yields}N (N>2) production processes allow more particles to become isotropic in momentum space and thus kinetically equilibrate more quickly than their back reactions or elastic scatterings. We also show that the relaxation time in the relaxation time approximation, which is often used, is strongly momentum dependent and thus cannot serve as a global quantity that describes kinetic equilibration.

  2. Benchmarking Heavy Ion Transport Codes FLUKA, HETC-HEDS MARS15, MCNPX, and PHITS

    SciTech Connect (OSTI)

    Ronningen, Reginald Martin; Remec, Igor; Heilbronn, Lawrence H.

    2013-06-07

    Powerful accelerators such as spallation neutron sources, muon-collider/neutrino facilities, and rare isotope beam facilities must be designed with the consideration that they handle the beam power reliably and safely, and they must be optimized to yield maximum performance relative to their design requirements. The simulation codes used for design purposes must produce reliable results. If not, component and facility designs can become costly, have limited lifetime and usefulness, and could even be unsafe. The objective of this proposal is to assess the performance of the currently available codes â?? PHITS, FLUKA, MARS15, MCNPX, and HETC-HEDS â?? that could be used for design simulations involving heavy ion transport. We plan to access their performance by performing simulations and comparing results against experimental data of benchmark quality. Quantitative knowledge of the biases and the uncertainties of the simulations is essential as this potentially impacts the safe, reliable and cost effective design of any future radioactive ion beam facility. Further benchmarking of heavy-ion transport codes was one of the actions recommended in the â??Report of the 2003 RIA R&D Workshop".

  3. Full-f Neoclassical Simulations toward a Predictive Model for H-mode Pedestal Ion Energy, Particle and Momentum Transport

    SciTech Connect (OSTI)

    Battaglia, D. J.; Boedo, J. A.; Burrell, K. H.; Chang, C. S.; Canik, J. M.; deGrassie, J. S.; Gerhardt, S. P.; Grierson, B. A.; Groebner, R. J.; Maingi, Rajesh; Smith, S. P.

    2014-09-01

    Energy and particle transport rates are decoupled in the H-mode edge since the ion thermal transport rate is primarily set by the neoclassical transport of the deuterium ions in the tail of the thermal energy distribution, while the net particle transport rate is set by anomalous transport of the colder bulk ions. Ion orbit loss drives the energy distributions away from Maxwellian, and describes the anisotropy, poloidal asymmetry and local minimum near the separatrix observed in the Ti profile. Non-Maxwellian distributions also drive large intrinsic edge flows, and the interaction of turbulence at the top of the pedestal with the intrinsic edge flow can generate an intrinsic core torque. The primary driver of the radial electric field (Er) in the pedestal and scrapeoff layer (SOL) are kinetic neoclassical effects, such as ion orbit loss of tail ions and parallel electron loss to the divertor. This paper describes the first multi-species kinetic neoclassical transport calculations for ELM-free H-mode pedestal and scrape-off layer on DIII-D using XGC0, a 5D full-f particle-in-cell drift-kinetic solver with self-consistent neutral recycling and sheath potentials. Quantitative agreement between the flux-driven simulation and the experimental electron density, impurity density and orthogonal measurements of impurity temperature and flow profiles is achieved by adding random-walk particle diffusion to the guiding-center drift motion. This interpretative technique quantifies the role of neoclassical, anomalous and neutral transport to the overall pedestal structure, and consequently illustrates the importance of including kinetic effects self-consistently in transport calculations around transport barriers.

  4. Super Boiler: Packed Media/Transport Membrane Boiler Development and Demonstration

    SciTech Connect (OSTI)

    Liss, William E; Cygan, David F

    2013-04-17

    Gas Technology Institute (GTI) and Cleaver-Brooks developed a new gas-fired steam generation system???¢????????the Super Boiler???¢????????for increased energy efficiency, reduced equipment size, and reduced emissions. The system consists of a firetube boiler with a unique staged furnace design, a two-stage burner system with engineered internal recirculation and inter-stage cooling integral to the boiler, unique convective pass design with extended internal surfaces for enhanced heat transfer, and a novel integrated heat recovery system to extract maximum energy from the flue gas. With these combined innovations, the Super Boiler technical goals were set at 94% HHV fuel efficiency, operation on natural gas with <5 ppmv NOx (referenced to 3%O2), and 50% smaller than conventional boilers of similar steam output. To demonstrate these technical goals, the project culminated in the industrial demonstration of this new high-efficiency technology on a 300 HP boiler at Clement Pappas, a juice bottler located in Ontario, California. The Super Boiler combustion system is based on two stage combustion which combines air staging, internal flue gas recirculation, inter-stage cooling, and unique fuel-air mixing technology to achieve low emissions rather than external flue gas recirculation which is most commonly used today. The two-stage combustion provides lower emissions because of the integrated design of the boiler and combustion system which permit precise control of peak flame temperatures in both primary and secondary stages of combustion. To reduce equipment size, the Super Boiler's dual furnace design increases radiant heat transfer to the furnace walls, allowing shorter overall furnace length, and also employs convective tubes with extended surfaces that increase heat transfer by up to 18-fold compared to conventional bare tubes. In this way, a two-pass boiler can achieve the same efficiency as a traditional three or four-pass firetube boiler design. The Super Boiler is consequently up to 50% smaller in footprint, has a smaller diameter, and is up to 50% lower in weight, resulting in very compact design with reduced material cost and labor costs, while requiring less boiler room floor space. For enhanced energy efficiency, the heat recovery system uses a transport membrane condenser (TMC), a humidifying air heater (HAH), and a split-stage economizer to extract maximum energy from the flue gas. The TMC is a new innovation that pulls a major portion of water vapor produced by the combustion process from the flue gases along with its sensible and latent heat. This results in nearly 100% transfer of heat to the boiler feed water. The HAH improves the effectiveness of the TMC, particularly in steam systems that do not have a large amount of cold makeup water. In addition, the HAH humidifies the combustion air to reduce NOx formation. The split-stage economizer preheats boiler feed water in the same way as a conventional economizer, but extracts more heat by working in tandem with the TMC and HAH to reduce flue gas temperature. These components are designed to work synergistically to achieve energy efficiencies of 92-94% which is 10-15% higher than today???¢????????s typical firetube boilers.

  5. Transport and Failure in Li-ion Batteries | Stanford Synchrotron Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lightsource Transport and Failure in Li-ion Batteries Monday, February 13, 2012 - 1:30pm SSRL Conference Room 137-322 Stephen J. Harris, General Motors R&D While battery performance is well predicted by the macrohomogeneous model of Newman and co-workers, predicting degradation and failure remains a challenge. It may be that, like most materials, failure depends on local imperfections and inhomogeneities. We use tomographic data to evaluate the homogeneity of the tortuosity of the

  6. Nanowire-integrated microporous silicon membrane for continuous fluid transport in micro cooling device

    SciTech Connect (OSTI)

    So, Hongyun; Pisano, Albert P.; Cheng, Jim C.

    2013-10-14

    We report an efficient passive micro pump system combining the physical properties of nanowires and micropores. This nanowire-integrated microporous silicon membrane was created to feed coolant continuously onto the surface of the wick in a micro cooling device to ensure it remains hydrated and in case of dryout, allow for regeneration of the system. The membrane was fabricated by photoelectrochemical etching to form micropores followed by hydrothermal growth of nanowires. This study shows a promising approach to address thermal management challenges for next generation electronic devices with absence of external power.

  7. Uranium transport in Topopah Spring tuff: An ion-microscope investigation

    SciTech Connect (OSTI)

    McKeegan, K.D.; Phinney, D.; Oversby, V.M.; Buchholtz-ten Brink, M.; Smith, D.K.

    1988-10-01

    We investigated the effect of different methods of surface preparation on ion-microscope profiles of uranium concentration (added to the sample by diffusion from an aqueous solution) vs depth in a welded, devitrified, tuffaceous rock from Yucca Mountain. The concentration profiles were used to study transport of uranium in the tuff. Four wafers of rock were prepared from primary drill core material and finished by polishing with increasingly finer abrasive material. Final polishes were made with 400 grit SiC, 600 grit SiC, 0.3 um alumina, and 0.05 um alumina. The polished tuff wafers were exposed for eight hours to a solution of groundwater doped with 2 ppM 235-U. The wafers were then examined by SEM and the ion microscope was used to measure the lateral and depth distributions of 235-U and other isotopes in the wafer. No systematic correlation of the measured 235-U concentration- vs-depth profiles with the degree of surface finish was observed, indicating that the polishing does not affect the measurable transport of U in the tuff. A zone of enhanced 235-U concentration was observed in the upper few microns, which we attribute to sorption onto surfaces of exposed pores. Concentrations of 235-U were elevated above background to depths >15 um, indicating that rapid transport paths exist. When the uranium distribution near the surface of the wafer was modelled by an error function, an upper limit for a slower transport path was defined by an apparent diffusion coefficient of approximately 10{sup {minus}13} cm{sup 2}/s. 5 refs., 5 figs., 1 tab.

  8. Method and system for producing hydrogen using sodium ion separation membranes

    DOE Patents [OSTI]

    Bingham, Dennis N; Klingler, Kerry M; Turner, Terry D; Wilding, Bruce M; Frost, Lyman

    2013-05-21

    A method of producing hydrogen from sodium hydroxide and water is disclosed. The method comprises separating sodium from a first aqueous sodium hydroxide stream in a sodium ion separator, feeding the sodium produced in the sodium ion separator to a sodium reactor, reacting the sodium in the sodium reactor with water, and producing a second aqueous sodium hydroxide stream and hydrogen. The method may also comprise reusing the second aqueous sodium hydroxide stream by combining the second aqueous sodium hydroxide stream with the first aqueous sodium hydroxide stream. A system of producing hydrogen is also disclosed.

  9. Uranium transport in Topopah spring tuff; An ion-microscope investigation

    SciTech Connect (OSTI)

    McKeegan, K.D.; Phinney, D.; Oversby, V.M.; Buchholtz-tenBrink, M.; Smith, D.K.

    1989-12-31

    The authors discuss their investigation of the effect of different methods of surface preparation on ion-microscope profiles of uranium concentration (added to the sample by diffusion from an aqueous solution) vs depth in a welded, devitrified, tuffaceous rock from Yucca Mountain. The concentration profiles were used to study transport of uranium in the tuff. Four wafers of rock were prepared from primary drill core material and finished by polishing with increasingly finer abrasive material. Final polishes were made with 400 grit SiC, 600 grit SiC, 0.3{mu}m alumina, and 0.05{mu}m alumina. The polished tuff wafers were exposed for eight hours to a solution of groundwater doped with 2 ppm 235-U. The wafers were then examined by SEM and the ion microscope was used to measure the lateral and depth distributions of 235-U and other isotopes in the wafer. No systematic correlation of the measured 235-U concentration- vs-depth profiles with the degree of surface finish was observed, indicating that the polishing does not affect the measurable transport of U in the tuff.

  10. Studies on low energy beam transport for high intensity high charged ions at IMP

    SciTech Connect (OSTI)

    Yang, Y. Lu, W.; Fang, X.; University of Chinese Academy of Sciences, Beijing 100039 ; Sun, L. T.; Hu, Q.; Cao, Y.; Feng, Y. C.; Zhang, X. Z.; Zhao, H. W.; Xie, D. Z.

    2014-02-15

    Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou (SECRAL) is an advanced fully superconducting ECR ion source at IMP designed to be operational at the microwave frequency of 1824 GHz. The existing SECRAL beam transmission line is composed of a solenoid lens and a 110 analyzing magnet. Simulations of particle tracking with 3D space charge effect and realistic 3D magnetic fields through the line were performed using particle-in-cell code. The results of the beam dynamics show that such a low energy beam is very sensitive to the space charge effect and significantly suffers from the second-order aberration of the analyzing magnet resulting in large emittance. However, the second-order aberration could be reduced by adding compensating sextupole components in the beam line. On this basis, a new 110 analyzing magnet with relatively larger acceptance and smaller aberration is designed and will be used in the design of low energy beam transport line for a new superconducting ECR ion source SECRAL-II. The features of the analyzer and the corresponding beam trajectory calculation will be detailed and discussed in this paper.

  11. Compounds having aromatic rings and side-chain amide-functionality and a method for transporting monovalent anions across biological membranes using the same

    DOE Patents [OSTI]

    Davis, Jeffery T. (College Park, MD); Sidorov, Vladimir (Richmond, VA); Kotch, Frank W. (New Phila., PA)

    2008-04-08

    A compound containing at least two aromatic rings covalently bonded together, with each aromatic ring containing at least one oxyacetamide-based side chain, the compound being capable of forming a chloride ion channel across a lipid bilayer, and transporting chloride ion across the lipid bilayer.

  12. Final Technical Report DE-FG02-08ER41540. Establishing the Transport Properties of QCD With Heavy Ion Reactions

    SciTech Connect (OSTI)

    Teaney, Derek

    2015-03-17

    We review the results of the DE-FG02-08ER41540, "Establishing the transport properties of QCD with heavy ion reactions"

  13. Heavy-quark production in ultrarelativistic heavy-ion collisions within a partonic transport model

    SciTech Connect (OSTI)

    Uphoff, Jan; Fochler, Oliver; Greiner, Carsten; Xu Zhe

    2010-10-15

    The production and space-time evolution of charm and bottom quarks in nucleus-nucleus collisions at the BNL Relativistic Heavy Ion Collider (RHIC) and the CERN Large Hadron Collider (LHC) are investigated with the partonic transport model BAMPS (Boltzmann approach of multiparton scatterings). Heavy quarks, produced in primary hard parton scatterings during nucleon-nucleon collisions, are sampled using the Monte Carlo event generator pythia or the leading-order minijet model in conjunction with the Glauber model, revealing a strong sensitivity on the parton distribution functions, scales, and heavy-quark mass. In a comprehensive study exploring different charm masses, K factors, and possible initial gluon conditions, secondary production and the evolution of heavy quarks are examined within a fully dynamic BAMPS simulation for central heavy-ion collisions at RHIC and LHC. Although charm production in the quark-gluon plasma can be neglected at RHIC, it is significant at LHC but very sensitive to the initial conditions and the charm mass. Bottom production in the quark-gluon plasma, however, is negligible both at RHIC and LHC.

  14. Protein Flips Lipids Across Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protein Flips Lipids Across Membranes Print Found ubiquitously in both bacteria and humans, membrane proteins of the adenosine triphosphate (ATP)-binding cassette (ABC) transporter...

  15. Multi-block sulfonated poly(phenylene) copolymer proton exchange membranes

    DOE Patents [OSTI]

    Fujimoto, Cy H. (Albuquerque, NM); Hibbs, Michael (Albuquerque, NM); Ambrosini, Andrea (Albuquerque, NM)

    2012-02-07

    Improved multi-block sulfonated poly(phenylene) copolymer compositions, methods of making the same, and their use as proton exchange membranes (PEM) in hydrogen fuel cells, direct methanol fuel cells, in electrode casting solutions and electrodes. The multi-block architecture has defined, controllable hydrophobic and hydrophilic segments. These improved membranes have better ion transport (proton conductivity) and water swelling properties.

  16. Micro-patterning of ionic reservoirs within a double bilayer lipid membrane to fabricate a 2D array of ion-channel switch based electrochemical biosensors

    SciTech Connect (OSTI)

    Sansinena, J. M.; Yee, C. K.; Sapuri, A.; Swanson, Basil I.; Redondo, A.; Parikh, A. N.

    2004-01-01

    We present a simple approach for the design of ionic reservoir arrays within a double phospholipid bilayer to ultimately develop a 2D array of ion-channel switch based electrochemical biosensors. As a first step, a primary bilayer lipid membrane is deposited onto an array of electrodes patterned onto a substrate surface. Subsequently, an array of microvoids is created within the bilayer by a wet photolithographic patterning of phospholipid bilayers using a deep UV light source and a quartz/chrome photomask. To ensure registry, the photomask used to pattern bilayers is designed to match up the microvoids within the primary bilayer with the array of electrodes on the substrate surface. The deposition of a secondary bilayer lipid membrane onto the primary bilayer that spans across the patterned microvoids leads to the formation of the array of ionic reservoirs within the double phospholipid bilayer. This is accomplished using giant unilamellar vesicles and by exploiting membrane electrostatics. The use of ion-channels incorporated into the secondary bilayer that covers the individual ionic reservoirs allows the construction of a 2D array of ion-channel switch based electrochemical biosensors that are able to recognize different target-agents simultaneously.

  17. Mesoscale Phase-Field Modeling of Charge Transport in Nanocomposite Electrodes for Lithium-ion Batteries

    SciTech Connect (OSTI)

    Hu, Shenyang Y.; Li, Yulan; Rosso, Kevin M.; Sushko, Maria L.

    2013-01-10

    A phase-field model is developed to investigate the influence of microstructure, thermodynamic and kinetic properties, and charging conditions on charged particle transport in nanocomposite electrodes. Two sets of field variables are used to describe the microstructure. One is comprised of the order parameters describing size, orientation and spatial distributions of nanoparticles, and the other is comprised of the concentrations of mobile species. A porous nanoparticle microstructure filled with electrolyte is taken as a model system to test the phase-field model. Inhomogeneous and anisotropic dielectric constants and mobilities of charged particles, and stresses associated with lattice deformation due to Li-ion insertion/extraction are considered in the model. Iteration methods are used to find the elastic and electric fields in an elastically and electrically inhomogeneous medium. The results demonstrate that the model is capable of predicting charge separation associated with the formation of a double layer at the electrochemical interface between solid and electrolyte, and the effect of microstructure, inhomogeneous and anisotropic thermodynamic and kinetic properties, charge rates, and stresses on voltage versus current density and capacity during charging and discharging.

  18. Strongly enhanced oxygen ion transport through samarium-doped CeO2 nanopillars in nanocomposite films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yang, Sang Mo; Lee, Shinbuhm; Jian, Jie; Zhang, Wenrui; Lu, Ping; Jia, Quanxi; Wang, Haiyan; Won Noh, Tae; Kalinin, Sergei V.; MacManus‐Driscoll, Judith L.

    2015-10-08

    Enhancement of oxygen ion conductivity in oxides is important for low-temperature (<500 °C) operation of solid oxide fuel cells, sensors and other ionotronic devices. While huge ion conductivity has been demonstrated in planar heterostructure films, there has been considerable debate over the origin of the conductivity enhancement, in part because of the difficulties of probing buried ion transport channels. Here we create a practical geometry for device miniaturization, consisting of highly crystalline micrometre-thick vertical nanocolumns of Sm-doped CeO2 embedded in supporting matrices of SrTiO3. The ionic conductivity is higher by one order of magnitude than plain Sm-doped CeO2films. Then bymore » using scanning probe microscopy, we show that the fast ion-conducting channels are not exclusively restricted to the interface but also are localized at the Sm-doped CeO2 nanopillars. Furthermore, this work offers a pathway to realize spatially localized fast ion transport in oxides of micrometre thickness.« less

  19. Strongly enhanced oxygen ion transport through samarium-doped CeO2 nanopillars in nanocomposite films

    SciTech Connect (OSTI)

    Yang, Sang Mo; Lee, Shinbuhm; Jian, Jie; Zhang, Wenrui; Lu, Ping; Jia, Quanxi; Wang, Haiyan; Won Noh, Tae; Kalinin, Sergei V.; MacManus?Driscoll, Judith L.

    2015-10-08

    Enhancement of oxygen ion conductivity in oxides is important for low-temperature (<500 C) operation of solid oxide fuel cells, sensors and other ionotronic devices. While huge ion conductivity has been demonstrated in planar heterostructure films, there has been considerable debate over the origin of the conductivity enhancement, in part because of the difficulties of probing buried ion transport channels. Here we create a practical geometry for device miniaturization, consisting of highly crystalline micrometre-thick vertical nanocolumns of Sm-doped CeO2 embedded in supporting matrices of SrTiO3. The ionic conductivity is higher by one order of magnitude than plain Sm-doped CeO2films. Then by using scanning probe microscopy, we show that the fast ion-conducting channels are not exclusively restricted to the interface but also are localized at the Sm-doped CeO2 nanopillars. Furthermore, this work offers a pathway to realize spatially localized fast ion transport in oxides of micrometre thickness.

  20. Strongly enhanced oxygen ion transport through samarium-doped CeO2 nanopillars in nanocomposite films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yang, Sangmo; Lee, Shinbuhm; Jian, Jie; Zhang, Wenrui; Lu, Ping; Jia, Quanxi; Wang, Haiyan; Noh, Tae Won; Kalinin, Sergei V.; MacManus-Driscoll, Judith L.

    2015-10-08

    Enhancement of oxygen ion conductivity in oxides is important for low-temperature (<500 °C) operation of solid oxide fuel cells, sensors and other ionotronic devices. While huge ion conductivity has been demonstrated in planar heterostructure films, there has been considerable debate over the origin of the conductivity enhancement, in part because of the difficulties of probing buried ion transport channels. Here we create a practical geometry for device miniaturization, consisting of highly crystalline micrometre-thick vertical nanocolumns of Sm-doped CeO2 embedded in supporting matrices of SrTiO3. The ionic conductivity is higher by one order of magnitude than plain Sm-doped CeO2 films. Bymore » using scanning probe microscopy, we show that the fast ion-conducting channels are not exclusively restricted to the interface but also are localized at the Sm-doped CeO2 nanopillars. This work offers a pathway to realize spatially localized fast ion transport in oxides of micrometre thickness.« less

  1. Fast-ion transport in q{sub min}>2, high-? steady-state scenarios on DIII-D

    SciTech Connect (OSTI)

    Holcomb, C. T.; Heidbrink, W. W.; Collins, C.; Ferron, J. R.; Van Zeeland, M. A.; Garofalo, A. M.; Bass, E. M.; Luce, T. C.; Pace, D. C.; Solomon, W. M.; Mueller, D.; Grierson, B.; Podesta, M.; Gong, X.; Ren, Q.; Park, J. M.; Kim, K.; Turco, F.

    2015-05-15

    Results from experiments on DIII-D [J. L. Luxon, Fusion Sci. Technol. 48, 828 (2005)] aimed at developing high ? steady-state operating scenarios with high-q{sub min} confirm that fast-ion transport is a critical issue for advanced tokamak development using neutral beam injection current drive. In DIII-D, greater than 11 MW of neutral beam heating power is applied with the intent of maximizing ?{sub N} and the noninductive current drive. However, in scenarios with q{sub min}>2 that target the typical range of q{sub 95}= 57 used in next-step steady-state reactor models, Alfvn eigenmodes cause greater fast-ion transport than classical models predict. This enhanced transport reduces the absorbed neutral beam heating power and current drive and limits the achievable ?{sub N}. In contrast, similar plasmas except with q{sub min} just above 1 have approximately classical fast-ion transport. Experiments that take q{sub min}>3 plasmas to higher ?{sub P} with q{sub 95}= 1112 for testing long pulse operation exhibit regimes of better than expected thermal confinement. Compared to the standard high-q{sub min} scenario, the high ?{sub P} cases have shorter slowing-down time and lower ??{sub fast}, and this reduces the drive for Alfvnic modes, yielding nearly classical fast-ion transport, high values of normalized confinement, ?{sub N}, and noninductive current fraction. These results suggest DIII-D might obtain better performance in lower-q{sub 95}, high-q{sub min} plasmas using broader neutral beam heating profiles and increased direct electron heating power to lower the drive for Alfvn eigenmodes.

  2. Proton conducting ceramic membranes for hydrogen separation

    DOE Patents [OSTI]

    Elangovan, S. (South Jordan, UT); Nair, Balakrishnan G. (Sandy, UT); Small, Troy (Midvale, UT); Heck, Brian (Salt Lake City, UT)

    2011-09-06

    A multi-phase proton conducting material comprising a proton-conducting ceramic phase and a stabilizing ceramic phase. Under the presence of a partial pressure gradient of hydrogen across the membrane or under the influence of an electrical potential, a membrane fabricated with this material selectively transports hydrogen ions through the proton conducting phase, which results in ultrahigh purity hydrogen permeation through the membrane. The stabilizing ceramic phase may be substantially structurally and chemically identical to at least one product of a reaction between the proton conducting phase and at least one expected gas under operating conditions of a membrane fabricated using the material. In a barium cerate-based proton conducting membrane, one stabilizing phase is ceria.

  3. Research and development of proton-exchange membrane (PEM) fuel cell system for transportation applications. Phase I final report

    SciTech Connect (OSTI)

    1996-01-01

    Objective during Phase I was to develop a methanol-fueled 10-kW fuel cell power source and evaluate its feasibility for transportation applications. This report documents research on component (fuel cell stack, fuel processor, power source ancillaries and system sensors) development and the 10-kW power source system integration and test. The conceptual design study for a PEM fuel cell powered vehicle was documented in an earlier report (DOE/CH/10435-01) and is summarized herein. Major achievements in the program include development of advanced membrane and thin-film low Pt-loaded electrode assemblies that in reference cell testing with reformate-air reactants yielded performance exceeding the program target (0.7 V at 1000 amps/ft{sup 2}); identification of oxidation catalysts and operating conditions that routinely result in very low CO levels ({le} 10 ppm) in the fuel processor reformate, thus avoiding degradation of the fuel cell stack performance; and successful integrated operation of a 10-kW fuel cell stack on reformate from the fuel processor.

  4. Transport of radioactive ion beams and related safety issues: The {sup 132}Sn{sup +} case study

    SciTech Connect (OSTI)

    Osswald, F. Bouquerel, E.; Boutin, D.; Dinkov, A.; Sellam, A.

    2014-12-15

    The transport of intense radioactive ion beam currents requires a careful design in order to limit the beam losses, the contamination and thus the dose rates. Some investigations based on numerical models and calculations have been performed in the framework of the SPIRAL 2 project to evaluate the performance of a low energy beam transport line located between the isotope separation on line (ISOL) production cell and the experiment areas. The paper presents the results of the transverse phase-space analysis, the beam losses assessment, the resulting contamination, and radioactivity levels. They show that reasonable beam transmission, emittance growth, and dose rates can be achieved considering the current standards.

  5. Plasma channel and Z-pinch dynamics for heavy ion transport

    SciTech Connect (OSTI)

    Ponce-Marquez, David

    2002-07-09

    A self stabilized, free standing, z-pinch plasma channel has been proposed to deliver the high intensity heavy ion beam from the end of a driver to the fuel target in a heavy ion inertial fusion power plant. The z-pinch relaxes emittance and energy spread requirements requiring a lower cost driver. A z-pinch transport would reduce the number of beam entry port holes to the target chamber from over a hundred to four as compared to neutralized ballistic focusing thus reducing the driver hardware exposure to neutron flux. Experiments where a double pulse discharge technique is used, z-pinch plasma channels with enhanced stability are achieved. Typical parameters are 7 kV pre-pulse discharge and 30 kV main bank discharge with 50 kA of channel current in a 7 torr background gas atmosphere. This work is an experimental study of these plasma channels examining the relevant physics necessary to understand and model such plasmas. Laser diagnostics measured the dynamical properties of neutrals and plasma. Schlieren and phase contrast techniques probe the pre-pulse gas dynamics and infrared interferometry and faraday effect polarimetry are used on the z-pinch to study its electron density and current distribution. Stability and repeatability of the z-pinch depend on the initial conditions set by the pre-pulse. Results show that the z-pinch channel is wall stabilized by an on-axis gas density depression created by the pre-pulse through hydrodynamic expansion where the ratio of the initial gas density to the final gas density is > 10/1. The low on-axis density favors avalanching along the desired path for the main bank discharge. Pinch time is around 2 s from the main bank discharge initiation with a FWHM of {approx} 2 cm. Results also show that typical main bank discharge plasma densities reach 10{sup 17} cm{sup -3} peak on axis for a 30 kV, 7 torr gas nitrogen discharge. Current rise time is limited by the circuit-channel inductance with the highest contribution to the impedance due to the plasma. There is no direct evidence of surface currents due to high frequency skin effects and magnetic field experiments indicate that > 70% of the current carried by the channel is enclosed within FWHM of the channel. Code-experiment benchmark comparisons show that simulations capture the main mechanisms of the channel evolution, but complete atomic models need to be incorporated.

  6. Systematic computational and experimental investigation of lithium-ion transport mechanisms in polyester-based polymer electrolytes

    SciTech Connect (OSTI)

    Webb, Michael A.; Jung, Yukyung; Pesko, Danielle M.; Savoie, Brett M.; Yamamoto, Umi; Coates, Geoffrey W.; Balsara, Nitash P.; Wang, Zhen -Gang; Miller, III, Thomas F.

    2015-07-10

    Understanding the mechanisms of lithium-ion transport in polymers is crucial for the design of polymer electrolytes. We combine modular synthesis, electrochemical characterization, and molecular simulation to investigate lithium-ion transport in a new family of polyester-based polymers and in poly(ethylene oxide) (PEO). Theoretical predictions of glass-transition temperatures and ionic conductivities in the polymers agree well with experimental measurements. Interestingly, both the experiments and simulations indicate that the ionic conductivity of PEO, relative to the polyesters, is far higher than would be expected from its relative glass-transition temperature. The simulations reveal that diffusion of the lithium cations in the polyesters proceeds via a different mechanism than in PEO, and analysis of the distribution of available cation solvation sites in the various polymers provides a novel and intuitive way to explain the experimentally observed ionic conductivities. This work provides a platform for the evaluation and prediction of ionic conductivities in polymer electrolyte materials.

  7. Survey of ion-acoustic-instability particle simulations and relevance to laser-fusion thermal-transport inhibition

    SciTech Connect (OSTI)

    Mead, W.C.

    1980-09-11

    Ion acoustic turbulence is examined as one mechanism which could contribute to the inhibition of electron thermal transport which has been inferred from many laser-plasma experiments. The behavior of the ion acoustic instability is discussed from the viewpoint of the literature of 2-dimensional particle-in-cell simulations. Simulation techniques, limitations, and reported saturation mechanisms and levels are discussed. A scaling law for the effective collision frequency ..nu..* can be fit to several workers' results to within an order-of-magnitude. The inferred ..nu..* is shown to be 1-2 orders-of-magnitude too small to account for the transport inhibition seen in Nd-laser-produced plasmas. Several differences between the simulation conditions and laser-produced plasma conditions are noted.

  8. Membranes > Batteries & Fuel Cells > Research > The Energy Materials Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Cornell Batteries & Fuel Cells In This Section Battery Anodes Battery Cathodes Depletion Aggregation Membranes Membranes Fig. 1 PEM Fuel Cell Fuel cells are highly efficient devices that convert the chemical energy stored in a fuel directly intoelectricity. Within a fuel cell, the polymer electrolyte membrane (PEM) serves as the conducting interface between the anode and cathode, transporting the ions (Figure 1). As a result, the PEM is a central, and often performance-limiting,

  9. Bulk matter evolution and extraction of jet transport parameters in heavy-ion collisions at energies available at the BNL Relativistic Heavy Ion Collider (RHIC)

    SciTech Connect (OSTI)

    Chen Xiaofang; Greiner, Carsten; Wang Enke; Wang Xinnian; Xu Zhe

    2010-06-15

    Within the picture of jet quenching induced by multiple parton scattering and gluon bremsstrahlung, medium modification of parton fragmentation functions and therefore the suppression of large transverse-momentum hadron spectra are controlled by both the value and the space-time profile of the jet transport parameter along the jet propagation path. Experimental data on single-hadron suppression in high-energy heavy-ion collisions at the Relativistic Heavy Ion Collider energy are analyzed within the higher-twist (HT) approach to the medium-modified fragmentation functions and the next-to-leading order perturbative QCD parton model. Assuming that the jet transport parameter q is proportional to the particle number density in both quark gluon plasma (QGP) and hadronic phase, experimental data on jet quenching in deeply inelastic scattering off nuclear targets can provide guidance on q{sub h} in the hot hadronic matter. One can then study the dependence of the extracted initial value of jet-quenching parameter q{sub 0} at initial time tau{sub 0} on the bulk medium evolution. Effects of transverse expansion, radial flow, phase transition, and nonequilibrium evolution are examined. The extracted values are found to vary from q{sub 0}tau{sub 0}=0.54 GeV{sup 2} in the (1+3)d ideal hydrodynamic model to 0.96 GeV{sup 2} in a cascade model, with the main differences coming from the initial nonequilibrium evolution and the later hadronic evolution. The overall contribution to jet quenching from the hadronic phase, about 22%-44%, is found to be significant. Therefore, a realistic description of the early nonequilibrium parton evolution and later hadronic interaction will be critical for accurate extraction of the jet transport parameter in the strongly interacting QGP phase in high-energy heavy-ion collisions.

  10. Novel Energy Sources -Material Architecture and Charge Transport in Solid State Ionic Materials for Rechargeable Li ion Batteries

    SciTech Connect (OSTI)

    Katiyar, Ram S; Gmez, M; Majumder, S B; Morell, G; Tomar, M S; Smotkin, E; Bhattacharya, P; Ishikawa, Y

    2009-01-19

    Since its introduction in the consumer market at the beginning of 1990s by Sony Corporation Li-ion rechargeable battery and LiCoO2 cathode is an inseparable couple for highly reliable practical applications. However, a separation is inevitable as Li-ion rechargeable battery industry demand more and more from this well serving cathode. Spinel-type lithium manganate (e.g., LiMn2O4), lithium-based layered oxide materials (e.g., LiNiO2) and lithium-based olivine-type compounds (e.g., LiFePO4) are nowadays being extensively studied for application as alternate cathode materials in Li-ion rechargeable batteries. Primary goal of this project was the advancement of Li-ion rechargeable battery to meet the future demands of the energy sector. Major part of the research emphasized on the investigation of electrodes and solid electrolyte materials for improving the charge transport properties in Li-ion rechargeable batteries. Theoretical computational methods were used to select electrodes and electrolyte material with enhanced structural and physical properties. The effect of nano-particles on enhancing the battery performance was also examined. Satisfactory progress has been made in the bulk form and our efforts on realizing micro-battery based on thin films is close to give dividend and work is progressing well in this direction.

  11. Solenoid transport of a heavy ion beam for warm dense matterstudies and inertial confinement fusion

    SciTech Connect (OSTI)

    Armijo, Julien

    2006-10-01

    From February to July 2006, I have been doing research as a guest at Lawrence Berkeley National Laboratory (LBNL), in the Heavy Ion Fusion group. This internship, which counts as one semester in my master's program in France, I was very pleased to do it in a field that I consider has the beauty of fundamental physics, and at the same time the special appeal of a quest for a long-term and environmentally-respectful energy source. During my stay at LBNL, I have been involved in three projects, all of them related to Neutralized Drift Compression Experiment (NDCX). The first one, experimental and analytical, has consisted in measuring the effects of the eddy currents induced by the pulsed magnets in the conducting plates of the source and diagnostic chambers of the Solenoid Transport Experiment (STX, which is a subset of NDCX). We have modeled the effect and run finite-element simulations that have reproduced the perturbation to the field. Then, we have modified WARP, the Particle-In-Cell code used to model the whole experiment, in order to import realistic fields including the eddy current effects and some details of each magnet. The second project has been to take part in a campaign of WARP simulations of the same experiment to understand the leakage of electrons that was observed in the experiment as a consequence to some diagnostics and the failure of the electrostatic electron trap. The simulations have shown qualitative agreement with the measured phenomena, but are still in progress. The third project, rather theoretical, has been related to the upcoming target experiment of a thin aluminum foil heated by a beam to the 1-eV range. At the beginning I helped by analyzing simulations of the hydrodynamic expansion and cooling of the heated material. But, progressively, my work turned into making estimates for the nature of the liquid/vapor two-phase flow. In particular, I have been working on criteria and models to predict the formation of droplets, their size, and their partial or total evaporation in the expanding flow.

  12. Membrane Applications at Ceramatec

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Membrane Applications at Ceramatec Solid Electrolyte Ion Conductors CO 2 to Syngas GTL Advanced Batteries oxygen Fluorine Hydrogen Alkali metals Specialty Chemicals Waste Remediation Disinfection Chemicals Sensors Agro- chemicals Organo- metallics Biofuels Commercial Pilot Bench Next Generation - Ceramic membrane devices Historical Effort:  Crystalline alkali ions (Li, K, Na) conducting membranes * Selective and conductive at low temperatures (R.T. to 150 o C) * Material development and

  13. Composite fuel cell membranes

    DOE Patents [OSTI]

    Plowman, Keith R. (Lake Jackson, TX); Rehg, Timothy J. (Lake Jackson, TX); Davis, Larry W. (West Columbia, TX); Carl, William P. (Marble Falls, TX); Cisar, Alan J. (Cypress, TX); Eastland, Charles S. (West Columbia, TX)

    1997-01-01

    A bilayer or trilayer composite ion exchange membrane suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.

  14. Composite fuel cell membranes

    DOE Patents [OSTI]

    Plowman, K.R.; Rehg, T.J.; Davis, L.W.; Carl, W.P.; Cisar, A.J.; Eastland, C.S.

    1997-08-05

    A bilayer or trilayer composite ion exchange membrane is described suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.

  15. Momentum transport in the vicinity of q{sub min} in reverse shear tokamaks due to ion temperature gradient turbulence

    SciTech Connect (OSTI)

    Singh, Rameswar; Laboratoire de Physique des Plasmas, Ecole Polytechnique route de Saclay, 91128 Palaiseau Cedex ; Singh, R; WCI Center for Fusion Theory, National Fusion Research Institute, Daejeon 305-333 ; Jhang, Hogun; Diamond, P. H.; Center for Momentum Transport and Flow Organization, University of California, San Diego, California 92093; Center for Astrophysics and Space Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093-0424

    2014-01-15

    We present an analytic study of momentum transport of tokamak plasmas in the vicinity of minimum safety factor (q) position in reversed magnetic shear configuration. Slab ion temperature gradient modes with an equilibrium flow profile are considered in this study. Quasi-linear calculations of momentum flux clearly show the novel effects of q-curvature on the generation of intrinsic rotation and mean poloidal flow without invoking reflectional symmetry breaking of parallel wavenumber (k{sub ?}). This q-curvature effect originates from the inherent asymmetry in k{sub ?} populations with respect to a rational surface due to the quadratic proportionality of k{sub ?} when q-curvature is taken into account. Discussions are made of possible implications of q-curvature induced plasma flows on internal transport barrier formation in reversed shear tokamaks.

  16. Synthesis of an un-supported, high-flow ZSM-22 zeolite membrane

    DOE Patents [OSTI]

    Thoma, Steven G. (Albuquerque, NM); Nenoff, Tina M. (Albuquerque, NM)

    2006-10-10

    Novel methods for synthesizing wholly un-supported, high-flow catalytic membranes consisting of 100% crystalline ZSM-22 crystals with no binder phase, having sufficient porosity to allow high Weight Hourly Space Velocities of feedstock to pass through without generating back pressure. The ZSM-22 membranes perform favorably to existing bulk ZSM-22 catalysts (e.g., via 1-butene conversion and selectivity). The method of membrane synthesis, based on Vapor Phase Transport, allows free-standing, binder-less membranes to be fabricated in varied geometries and sizes so that membranes can be tailor-made for particular geometries applications. The ZSM-22 precursor gel may be consolidated into a semi-cohesive body prior to vapor phase crystallization, for example, by uniaxial pressing. These crystalline membranes may be modified by ion exchange, pore ion exchange, framework exchange, synthesis modification techniques to incorporate other elements into the framework, such as K, H, Mg, Zn, V, Ga, and Pt.

  17. Manipulation of transport hysteresis on graphene field effect transistors with Ga ion irradiation

    SciTech Connect (OSTI)

    Wang, Quan, E-mail: wangq@mail.ujs.edu.cn [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Liu, Shuai; Ren, Naifei [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2014-09-29

    We have studied the effect of Ga ion irradiation on the controllable hysteretic behavior of graphene field effect transistors fabricated on Si/SO{sub 2} substrates. The various densities of defects in graphene were monitored by Raman spectrum. It was found that the Dirac point shifted to the positive gate voltage constantly, while the hysteretic behavior was enhanced first and then weakened, with the dose of ion irradiation increasing. By contrasting the trap charges density induced by dopant and the total density of effective trap charges, it demonstrated that adsorbate doping was not the decisive factor that induced the hysteretic behavior. The tunneling between the defect sites induced by ion irradiation was also an important cause for the hysteresis.

  18. Systematic computational and experimental investigation of lithium-ion transport mechanisms in polyester-based polymer electrolytes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Webb, Michael A.; Jung, Yukyung; Pesko, Danielle M.; Savoie, Brett M.; Yamamoto, Umi; Coates, Geoffrey W.; Balsara, Nitash P.; Wang, Zhen -Gang; Miller, III, Thomas F.

    2015-07-10

    Understanding the mechanisms of lithium-ion transport in polymers is crucial for the design of polymer electrolytes. We combine modular synthesis, electrochemical characterization, and molecular simulation to investigate lithium-ion transport in a new family of polyester-based polymers and in poly(ethylene oxide) (PEO). Theoretical predictions of glass-transition temperatures and ionic conductivities in the polymers agree well with experimental measurements. Interestingly, both the experiments and simulations indicate that the ionic conductivity of PEO, relative to the polyesters, is far higher than would be expected from its relative glass-transition temperature. The simulations reveal that diffusion of the lithium cations in the polyesters proceeds viamore » a different mechanism than in PEO, and analysis of the distribution of available cation solvation sites in the various polymers provides a novel and intuitive way to explain the experimentally observed ionic conductivities. This work provides a platform for the evaluation and prediction of ionic conductivities in polymer electrolyte materials.« less

  19. Electron capture and electron transport by fast ions penetrating solids: An open quantum system approach with sources and sinks

    SciTech Connect (OSTI)

    Seliger, Marek; Reinhold, Carlos O.; Minami, Tatsuya; Schultz, David R.; Pindzola, Michael S.; Yoshida, Shuhei; Burgdoerfer, Joachim; Lamour, Emily; Rozet, Jean-Pierre; Vernhet, Dominique

    2007-03-15

    We present a joint theoretical and experimental study of the time evolution of electronic states of highly charged hydrogenic ions formed by capture during transmission through solids as they undergo multiple collisions and radiative decay. For this transport problem we have developed an inhomogeneous nonunitary Lindblad master equation that allows for a description of open quantum systems with both sinks (electron loss) and source (capture) present. We apply this theoretical framework to study transient coherences created in electron capture by 13.6 MeV/amu Ar{sup 18+} ions transmitted through amorphous carbon foils and decoherence during subsequent interaction with the foil. In the limit of thin targets we can directly probe electron capture cross sections under single collision conditions, while for thicker targets we follow the partially coherent dynamics of the open quantum system in interaction with the solid as a function of interaction time. The calculated results are in close agreement with experimental data obtained at the LISE facility in GANIL. Photon intensities from excited argon ions were determined through high resolution x-ray spectroscopy in which individual fine structure components were resolved. Measurements were performed for a wide range of carbon foil thickness to study the time development of the excited state populations.

  20. Electron Capture and Electron Transport by Fast Ions Penetrating Solids: An open Quantum System Approach with Sources and Sinks

    SciTech Connect (OSTI)

    Seliger, M.

    2007-03-01

    We present a joint theoretical and experimental study of the time evolution of electronic states of highly charged hydrogenic ions formed by capture during transmission through solids as they undergo multiple collisions and radiative decay. For this transport problem we have developed an inhomogeneous nonunitary Lindblad master equation that allows for a description of open quantum systems with both sinks (electron loss) and source (capture) present. We apply this theoretical framework to study transient coherences created in electron capture by 13.6 MeV/amu Ar18+ ions transmitted through amorphous carbon foils and decoherence during subsequent interaction with the foil. In the limit of thin targets we can directly probe electron capture cross sections under single collision conditions, while for thicker targets we follow the partially coherent dynamics of the open quantum system in interaction with the solid as a function of interaction time. The calculated results are in close agreement with experimental data obtained at the LISE facility in GANIL. Photon intensities from excited argon ions were determined through high resolution x-ray spectroscopy in which individual fine structure components were resolved. Measurements were performed for a wide range of carbon foil thickness to study the time development of the excited state populations.

  1. Understanding extraction and beam transport in the ISIS H{sup -} Penning surface plasma ion source

    SciTech Connect (OSTI)

    Faircloth, D. C.; Letchford, A. P.; Gabor, C.; Whitehead, M. O.; Wood, T.; Jolly, S.; Pozimski, J.; Savage, P.; Woods, M.

    2008-02-15

    The ISIS H{sup -} Penning surface plasma source has been developed to produce beam currents up to 70 mA and pulse lengths up to 1.5 ms at 50 Hz. This paper details the investigation into beam extraction and beam transport in an attempt to understand the beam emittance and to try to improve the emittance. A scintillator profile measurement technique has been developed to assess the performance of different plasma electrode apertures, extraction electrode geometries, and postextraction acceleration configurations. This work shows that the present extraction, beam transport, and postacceleration system are suboptimal and further work is required to improve it.

  2. transportation

    National Nuclear Security Administration (NNSA)

    security missions undertaken by the U.S. government.

    Pantex Plant's Calvin Nelson honored as Analyst of the Year for Transportation Security http:nnsa.energy.gov...

  3. Chemical and radiation stability of a proprietary cesium ion exchange material manufactured from WWL membrane and SuperLig{reg_sign} 644

    SciTech Connect (OSTI)

    Brown, G.N.; Carson, K.J.; DesChane, J.R.; Elovich, R.J.; Berry, P.K.

    1996-09-01

    Pretreatment of nuclear process wastes for ion exchange removal of Cs and other radionuclides is one way to minimize amount of high-level radioactive waste at Hanford. This study evaluated Cs-selective SuperLig{reg_sign}644 (IBC Advanced Technologies, American Fork UT) entrapped in a proprietary WWL web membrane (3M) for chemical/radiation stability in simulated caustic neutralized current acid waste (NCAW), 0.5M HNO{sub 3}, water, and air. After exposure up to 2.0E+09 rad, the material was evaluated for Cs uptake in 5M sodium NCAW simulants with varying Cs contents. Radiolytic stability appears to be sufficient for ion exchange pretreatment of radioactive Cs: essentially no decrease in Cs selectivity or loading (Kd) was observed during {sup 60}Cs gamma irradiation in water or 0.5M HNO{sub 3} up to 1.0E+09 rad. Cs Kd decreased by a factor of 2 after 2.0E+09 rad exposure. Cs Kd did not change during irradiation in 5M NCAW or ambient air up to 1.0E+08 rad, but decreased by more than an order of magnitude between 1.0E+08 and 2.0E+09 rad (not typical of process conditions). Chemical stability under caustic conditions is lower than in air or under neutral/acidic conditions. Results indicate that this material is less stable in caustic solution irrespective of radiation exposure. Samples of the membrane retained their physical form throughout the entire experiment and were only slightly brittle after exposure to 2.0E+09 rad. (The material evaluated was a finely ground (400 mesh) particulate engineered to form a polymeric fiber (WWL), not the macroscopic form of SuperLig{reg_sign} 644 resin (20 to 50 mesh).)

  4. ACCELERATION OF LOW-ENERGY IONS AT PARALLEL SHOCKS WITH A FOCUSED TRANSPORT MODEL

    SciTech Connect (OSTI)

    Zuo, Pingbing; Zhang, Ming; Rassoul, Hamid K.

    2013-04-10

    We present a test particle simulation on the injection and acceleration of low-energy suprathermal particles by parallel shocks with a focused transport model. The focused transport equation contains all necessary physics of shock acceleration, but avoids the limitation of diffusive shock acceleration (DSA) that requires a small pitch angle anisotropy. This simulation verifies that the particles with speeds of a fraction of to a few times the shock speed can indeed be directly injected and accelerated into the DSA regime by parallel shocks. At higher energies starting from a few times the shock speed, the energy spectrum of accelerated particles is a power law with the same spectral index as the solution of standard DSA theory, although the particles are highly anisotropic in the upstream region. The intensity, however, is different from that predicted by DSA theory, indicating a different level of injection efficiency. It is found that the shock strength, the injection speed, and the intensity of an electric cross-shock potential (CSP) jump can affect the injection efficiency of the low-energy particles. A stronger shock has a higher injection efficiency. In addition, if the speed of injected particles is above a few times the shock speed, the produced power-law spectrum is consistent with the prediction of standard DSA theory in both its intensity and spectrum index with an injection efficiency of 1. CSP can increase the injection efficiency through direct particle reflection back upstream, but it has little effect on the energetic particle acceleration once the speed of injected particles is beyond a few times the shock speed. This test particle simulation proves that the focused transport theory is an extension of DSA theory with the capability of predicting the efficiency of particle injection.

  5. Polyarylether composition and membrane

    DOE Patents [OSTI]

    Hung, Joyce; Brunelle, Daniel Joseph; Harmon, Marianne Elisabeth; Moore, David Roger; Stone, Joshua James; Zhou, Hongyi; Suriano, Joseph Anthony

    2010-11-09

    A composition including a polyarylether copolymer is provided. The copolymer includes a polyarylether backbone; and a sulfonated oligomeric group bonded to the polyarylether suitable for use as a cation conducting membrane. Method of bonding a sulfonated oligomeric group to the polyarylether backbone to form a polyarylether copolymer. The membrane may be formed from the polyarylether copolymer composition. The chain length of the sulfonated oligomeric group may be controlled to affect or control the ion conductivity of the membrane.

  6. Structural features and enhanced high-temperature oxygen ion transport in SrFe{sub 1-x}Ta{sub x}O{sub 3-{delta}}

    SciTech Connect (OSTI)

    Markov, Alexey A.; Shalaeva, Elizaveta V.; Tyutyunnik, Alexander P.; Kuchin, Vasily V.; Patrakeev, Mikhail V.; Leonidov, Ilya A.; Kozhevnikov, Victor L.

    2013-01-15

    Structural features, oxygen non-stoichiometry and transport properties are studied in the oxide series SrFe{sub 1-x}Ta{sub x}O{sub 3-{delta}}, where x=0.2, 0.3 and 0.4. X-ray diffraction and electron microscopy data evidence formation of the inhomogeneous materials at x=0.3 and 0.4, which include phase constituents with a cubic perovskite and a double perovskite structure types. The composition, the amount and the typical grain size of the phase inhomogeneities are shown to depend both on doping and oxygen content. The increased oxygen-ion conductivity is observed in oxygen depleted materials, which is explained by the increase in the amount of cubic perovskite-like phase and development of interfacial pathways favorable for enhanced oxygen ion transport. - Graphical abstract: The structural studies, oxygen content and conductivity measurements suggest that oxygen depletion from the double perovskite phase constituent of SrFe{sub 1-x}Ta{sub x}O{sub 3-{delta}} for x>0.2 is accompanied by formation of pathways for fast ion transport. Black-Small-Square Highlights: Black-Right-Pointing-Pointer The double perovskite type regions are shown to exist in SrFe{sub 1-x}Ta{sub x}O{sub 3-{delta}}. Black-Right-Pointing-Pointer The oxygen depletion is accompanied with phase separation. Black-Right-Pointing-Pointer The phase separation favors formation of pathways for enhanced oxygen ion transport.

  7. WIPP Documents - Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation

  8. Unique battery with a multi-functional, physicochemically active membrane separator/electrolyte-electrode monolith and a method making the same

    DOE Patents [OSTI]

    Gerald, II, Rex E; Ruscic, Katarina J; Sears, Devin N; Smith, Luis J; Klinger, Robert J; Rathke, Jerome W

    2013-11-26

    The invention relates to a unique battery having a physicochemically active membrane separator/electrolyte-electrode monolith and method of making the same. The Applicant's invented battery employs a physicochemically active membrane separator/electrolyte-electrode that acts as a separator, electrolyte, and electrode, within the same monolithic structure. The chemical composition, physical arrangement of molecules, and physical geometry of the pores play a role in the sequestration and conduction of ions. In one preferred embodiment, ions are transported via the ion-hoping mechanism where the oxygens of the Al.sub.2O.sub.3 wall are available for positive ion coordination (i.e. Li.sup.+). This active membrane-electrode composite can be adjusted to a desired level of ion conductivity by manipulating the chemical composition and structure of the pore wall to either increase or decrease ion conduction.

  9. Unique battery with a multi-functional, physicochemically active membrane separator/electrolyte-electrode monolith and a method making the same

    DOE Patents [OSTI]

    Gerald II, Rex E.; Ruscic, Katarina J.; Sears, Devin N.; Smith, Luis J.; Klingler, Robert J.; Rathke, Jerome W.

    2012-07-24

    The invention relates to a unique battery having a physicochemically active membrane separator/electrolyte-electrode monolith and method of making the same. The Applicant's invented battery employs a physicochemically active membrane separator/electrolyte-electrode that acts as a separator, electrolyte, and electrode, within the same monolithic structure. The chemical composition, physical arrangement of molecules, and physical geometry of the pores play a role in the sequestration and conduction of ions. In one preferred embodiment, ions are transported via the ion-hoping mechanism where the oxygens of the Al2O3 wall are available for positive ion coordination (i.e. Li+). This active membrane-electrode composite can be adjusted to a desired level of ion conductivity by manipulating the chemical composition and structure of the pore wall to either increase or decrease ion conduction.

  10. Anion exchange membrane

    DOE Patents [OSTI]

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  11. Production, formation, and transport of high-brightness atomic hydrogen beam studies for the relativistic heavy ion collider polarized source upgrade

    SciTech Connect (OSTI)

    Kolmogorov, A. Stupishin, N.; Atoian, G.; Ritter, J.; Zelenski, A.; Davydenko, V.; Ivanov, A.; Novosibirsk State University, Novosibirsk

    2014-02-15

    The RHIC polarized H{sup ?} ion source had been successfully upgraded to higher intensity and polarization by using a very high brightness fast atomic beam source developed at BINP, Novosibirsk. In this source the proton beam is extracted by a four-grid multi-aperture ion optical system and neutralized in the H{sub 2} gas cell downstream from the grids. The proton beam is extracted from plasma emitter with a low transverse ion temperature of ?0.2 eV which is formed by plasma jet expansion from the arc plasma generator. The multi-hole grids are spherically shaped to produce geometrical beam focusing. Proton beam formation and transport of atomic beam were experimentally studied at test bench.

  12. Battery utilizing ceramic membranes

    DOE Patents [OSTI]

    Yahnke, Mark S. (Berkeley, CA); Shlomo, Golan (Haifa, IL); Anderson, Marc A. (Madison, WI)

    1994-01-01

    A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range.

  13. Membrane stabilizer

    DOE Patents [OSTI]

    Mingenbach, William A. (P.O. Box 49, Taos, NM 87571)

    1988-01-01

    A device is provided for stabilizing a flexible membrane secured within a frame, wherein a plurality of elongated arms are disposed radially from a central hub which penetrates the membrane, said arms imposing alternately against opposite sides of the membrane, thus warping and tensioning the membrane into a condition of improved stability. The membrane may be an opaque or translucent sheet or other material.

  14. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications: Conceptual vehicle design report pure fuel cell powertrain vehicle

    SciTech Connect (OSTI)

    Oei, D.; Kinnelly, A.; Sims, R.; Sulek, M.; Wernette, D.

    1997-02-01

    In partial fulfillment of the Department of Energy (DOE) Contract No. DE-AC02-94CE50389, {open_quotes}Direct-Hydrogen-Fueled Proton-Exchange-Membrane (PEM) Fuel Cell for Transportation Applications{close_quotes}, this preliminary report addresses the conceptual design and packaging of a fuel cell-only powered vehicle. Three classes of vehicles are considered in this design and packaging exercise, the Aspire representing the small vehicle class, the Taurus or Aluminum Intensive Vehicle (AIV) Sable representing the mid-size vehicle and the E-150 Econoline representing the van-size class. A fuel cell system spreadsheet model and Ford`s Corporate Vehicle Simulation Program (CVSP) were utilized to determine the size and the weight of the fuel cell required to power a particular size vehicle. The fuel cell power system must meet the required performance criteria for each vehicle. In this vehicle design and packaging exercise, the following assumptions were made: fuel cell power system density of 0.33 kW/kg and 0.33 kg/liter, platinum catalyst loading less than or equal to 0.25 mg/cm{sup 2} total and hydrogen tanks containing gaseous hydrogen under 340 atm (5000 psia) pressure. The fuel cell power system includes gas conditioning, thermal management, humidity control, and blowers or compressors, where appropriate. This conceptual design of a fuel cell-only powered vehicle will help in the determination of the propulsion system requirements for a vehicle powered by a PEMFC engine in lieu of the internal combustion (IC) engine. Only basic performance level requirements are considered for the three classes of vehicles in this report. Each vehicle will contain one or more hydrogen storage tanks and hydrogen fuel for 560 km (350 mi) driving range. Under these circumstances, the packaging of a fuel cell-only powered vehicle is increasingly difficult as the vehicle size diminishes.

  15. Composite solid polymer electrolyte membranes

    DOE Patents [OSTI]

    Formato, Richard M. (Shrewsbury, MA); Kovar, Robert F. (Wrentham, MA); Osenar, Paul (Watertown, MA); Landrau, Nelson (Marlborough, MA); Rubin, Leslie S. (Newton, MA)

    2001-06-19

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  16. Composite solid polymer electrolyte membranes

    DOE Patents [OSTI]

    Formato, Richard M.; Kovar, Robert F.; Osenar, Paul; Landrau, Nelson; Rubin, Leslie S.

    2006-05-30

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  17. Ion Exclusion by Sub 2-nm Carbon Nanotube Pores (Conference) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Conference: Ion Exclusion by Sub 2-nm Carbon Nanotube Pores Citation Details In-Document Search Title: Ion Exclusion by Sub 2-nm Carbon Nanotube Pores Carbon nanotubes offer an outstanding platform for studying molecular transport at nanoscale, and have become promising materials for nanofluidics and membrane technology due to their unique combination of physical, chemical, mechanical, and electronic properties. In particular, both simulations and experiments have proved that fluid

  18. Membrane stabilizer

    DOE Patents [OSTI]

    Mingenbach, W.A.

    1988-02-09

    A device is provided for stabilizing a flexible membrane secured within a frame, wherein a plurality of elongated arms are disposed radially from a central hub which penetrates the membrane, said arms imposing alternately against opposite sides of the membrane, thus warping and tensioning the membrane into a condition of improved stability. The membrane may be an opaque or translucent sheet or other material. 10 figs.

  19. MDR-ABC Transporters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cell membrane is one of the defining elements of life. It defines the border of each cell and allows the cell to maintain a chemical composition significantly different from its surroundings. The cell membrane does this in two principal ways. First, the double layer of lipid molecules that compose the cell membrane blocks the passage of most chemicals into and out of the cell. Second, membrane proteins embedded in this lipid bilayer facilitate the passage of particular ions and molecules, either

  20. Proton conducting membrane for fuel cells

    DOE Patents [OSTI]

    Colombo, Daniel G.; Krumpelt, Michael; Myers, Deborah J.; Kopasz, John P.

    2007-03-27

    An ion conducting membrane comprising dendrimeric polymers covalently linked into a network structure. The dendrimeric polymers have acid functional terminal groups and may be covalently linked via linking compounds, cross-coupling reactions, or copolymerization reactions. The ion conducting membranes may be produced by various methods and used in fuel cells.

  1. Proton conducting membrane for fuel cells

    DOE Patents [OSTI]

    Colombo, Daniel G.; Krumpelt, Michael; Myers, Deborah J.; Kopasz, John P.

    2005-12-20

    An ion conducting membrane comprising dendrimeric polymers covalently linked into a network structure. The dendrimeric polymers have acid functional terminal groups and may be covalently linked via linking compounds, cross-coupling reactions, or copolymerization reactions. The ion conducting membranes may be produced by various methods and used in fuel cells.

  2. Nanocrystalline Separation Membrane for Improved Hydrogen Flux...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Improved Hydrogen Flux New processing technique to develop ionic transport membranes with improved ionic and electronic conductivity Savannah River National Laboratory...

  3. Protein Flips Lipids Across Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protein Flips Lipids Across Membranes Protein Flips Lipids Across Membranes Print Wednesday, 26 October 2005 00:00 Found ubiquitously in both bacteria and humans, membrane proteins of the adenosine triphosphate (ATP)-binding cassette (ABC) transporter family have been implicated in both antibiotic and cancer-drug resistance. The mechanisms used by these proteins to expel toxins from cells therefore represent key targets for the development of drugs designed to combat the growing problem of

  4. Solid-state membrane module

    DOE Patents [OSTI]

    Gordon, John Howard (Salt Lake City, UT); Taylor, Dale M. (Murray, UT)

    2011-06-07

    Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.

  5. Battery utilizing ceramic membranes

    DOE Patents [OSTI]

    Yahnke, M.S.; Shlomo, G.; Anderson, M.A.

    1994-08-30

    A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range. 2 figs.

  6. Membranes, methods of making membranes, and methods of separating gases using membranes

    DOE Patents [OSTI]

    Ho, W. S. Winston

    2012-10-02

    Membranes, methods of making membranes, and methods of separating gases using membranes are provided. The membranes can include at least one hydrophilic polymer, at least one cross-linking agent, at least one base, and at least one amino compound. The methods of separating gases using membranes can include contacting a gas stream containing at least one of CO.sub.2, H.sub.2S, and HCl with one side of a nonporous and at least one of CO.sub.2, H.sub.2S, and HCl selectively permeable membrane such that at least one of CO.sub.2, H.sub.2S, and HCl is selectively transported through the membrane.

  7. Folding and Function of Proteorhodopsins in Photoenergy Transducing Membranes

    SciTech Connect (OSTI)

    Spudich, John L

    2012-08-10

    The overall research objectives are to develop proteorhodopsin (PR) proteins as a model system for {alpha}?-helical membrane protein insertion and folding, and to advance understanding of the diversity and mechanisms of PRs, a large family of photoenergy transducers (~4000 identified) abundant in the worlds oceans. Specific aims are: (1) To develop a highefficiency genetic selection procedure for light-driven proton-pumping in E. coli cells. Such a procedure would provide a positive selection method for proper folding and function of PRs in the E. coli membrane. (2) Characterize flash-induced absorption changes and photocurrents in PR variants in organisms from various environments, and their expression level and function when expressed in E. coli. Subaims are to: (a) elucidate the relationship of the transport mechanism to mechanisms of other microbial rhodopsins, some of which like PRs function as ion transporters and some of which use light energy to activate signaling pathways (sensory rhodopsins); and (b) identify important residues and chemical events in light-driven proton transport by PRs. In addition to their importance to the energy of the biosphere PRs have attracted interest for their potential for use in making photoenergy-transducing membranes for bioengineering applications.

  8. Multicomponent membranes

    DOE Patents [OSTI]

    Kulprathipanja, Santi; Kulkarni, Sudhir S.; Funk, Edward W.

    1988-01-01

    A multicomponent membrane which may be used for separating various components which are present in a fluid feed mixture comprises a mixture of a plasticizer such as a glycol and an organic polymer cast upon a porous organic polymer support. The membrane may be prepared by casting an emulsion or a solution of the plasticizer and polymer on the porous support, evaporating the solvent and recovering the membrane after curing.

  9. Numerical and experimental study of atomic transport and Balmer line intensity in Linac4 negative ion source

    SciTech Connect (OSTI)

    Shibata, T. Nishida, K.; Hatayama, A.; Mattei, S.; Lettry, J.

    2015-04-08

    Time structure of Balmer H{sub ?} line intensity in Linac4 RF plasma has been analyzed by the combined simulation model of atomic transport and Collisional-Radiative models. As a preliminary result, time variation of the line intensity in the ignition phase of RF plasma is calculated and compared with the experimental results by photometry. For the comparison, spatial distribution of the local H{sub ?} photon emission rate at each time is calculated from the numerical model. The contribution of the local photon emission rates to the observed line intensity via optical viewing port is also investigated by application of the mock-up of the optical viewing port and the known light source. It has been clarified from the analyses that the higher and the lower peaks of the H{sub ?} line intensity observed during 1 RF cycle is mainly due to the different spatial distributions in the electron energy distribution function and the resultant local photon emission rate. These results support previous suggestion that the existence of the capacitive electric field in axial direction leads to the higher/lower peaks of the line intensity.

  10. Ion Power Inc | Open Energy Information

    Open Energy Info (EERE)

    19720 Product: Manufacturer of membrane electrode assemblies (MEAs) for fuel cell and water electrolyser applications. References: Ion Power Inc1 This article is a stub. You...

  11. Protein Flips Lipids Across Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protein Flips Lipids Across Membranes Print Found ubiquitously in both bacteria and humans, membrane proteins of the adenosine triphosphate (ATP)-binding cassette (ABC) transporter family have been implicated in both antibiotic and cancer-drug resistance. The mechanisms used by these proteins to expel toxins from cells therefore represent key targets for the development of drugs designed to combat the growing problem of multidrug resistance. Toward this end, researchers from The Scripps Research

  12. Computational and experimental platform for understanding and optimizing water flux and salt rejection in nanoporous membranes.

    SciTech Connect (OSTI)

    Rempe, Susan B.

    2010-09-01

    Affordable clean water is both a global and a national security issue as lack of it can cause death, disease, and international tension. Furthermore, efficient water filtration reduces the demand for energy, another national issue. The best current solution to clean water lies in reverse osmosis (RO) membranes that remove salts from water with applied pressure, but widely used polymeric membrane technology is energy intensive and produces water depleted in useful electrolytes. Furthermore incremental improvements, based on engineering solutions rather than new materials, have yielded only modest gains in performance over the last 25 years. We have pursued a creative and innovative new approach to membrane design and development for cheap desalination membranes by approaching the problem at the molecular level of pore design. Our inspiration comes from natural biological channels, which permit faster water transport than current reverse osmosis membranes and selectively pass healthy ions. Aiming for an order-of-magnitude improvement over mature polymer technology carries significant inherent risks. The success of our fundamental research effort lies in our exploiting, extending, and integrating recent advances by our team in theory, modeling, nano-fabrication and platform development. A combined theoretical and experimental platform has been developed to understand the interplay between water flux and ion rejection in precisely-defined nano-channels. Our innovative functionalization of solid state nanoporous membranes with organic protein-mimetic polymers achieves 3-fold improvement in water flux over commercial RO membranes and has yielded a pending patent and industrial interest. Our success has generated useful contributions to energy storage, nanoscience, and membrane technology research and development important for national health and prosperity.

  13. Ion Removal - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Advanced Materials Find More Like This Return to Search Ion Removal Idaho National Laboratory Contact INL About This Technology Technology Marketing Summary INL's ion removal technology leverages the ability of phosphazene polymers discriminate between water and metal ions, which allows water to pass through the membrane while retaining the ions. Description The inherent chemical and thermal stability of the phosphazene polymers are an added strengths for separating and

  14. Single nanopore transport of synthetic and biological polyelectrolytes in three-dimensional hybrid microfluidic/nanofluidic devices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    King, Travis L.; Gatimu, Enid N.; Bohn, Paul W.

    2009-01-02

    This paper presents a study of electrokinetic transport in single nanopores integrated into vertically-stacked three-dimensional hybrid microfluidic/nanofluidic structures. In these devices single nanopores, created by focused ion beam (FIB) milling in thin polymer films, provide fluidic connection between two vertically separated, perpendicular microfluidic channels. Experiments address both systems in which the nanoporous membrane is composed of the same (homojunction) or different (heterojunction) polymer as the microfluidic channels. These devices are then used to study the electrokinetic transport properties of synthetic (i.e., polystyrene sulfonate and polyallylamine) and biological (i.e.,DNA) polyelectrolytes across these nanopores. Single nanopore transport of polyelectrolytes across these nanoporesmore » using both electrical current measurements and confocal microscopy. Both optical and electrical measurements indicate that electroosmotic transport is predominant over electrophoresis in single nanopores with d > 180 nm, consistent with results obtained under similar conditions for nanocapillary array membranes.« less

  15. The RCK Domain of the KtrAB K+ Transporter: Multiple Conformations of an Octameric Ring

    SciTech Connect (OSTI)

    Albright,R.; Vazquez Ibar, J.; Kim, C.; Gruner, S.; Morais-Cabral, J.

    2006-01-01

    The KtrAB ion transporter is a complex of the KtrB membrane protein and KtrA, an RCK domain. RCK domains regulate eukaryotic and prokaryotic membrane proteins involved in K{sup +} transport. Conflicting functional models have proposed two different oligomeric arrangements for RCK domains, tetramer versus octamer. Our results for the KtrAB RCK domain clearly show an octamer in solution and in the crystal. We determined the structure of this protein in three different octameric ring conformations that resemble the RCK-domain octamer observed in the MthK potassium channel but show striking differences in size and symmetry. We present experimental evidence for the association between one RCK octameric ring and two KtrB membrane proteins. These results provide insights into the quaternary organization of the KtrAB transporter and its mechanism of activation and show that the RCK-domain octameric ring model is generally applicable to other ion-transport systems.

  16. COMBUSTION-ASSISTED CO2 CAPTURE USING MECC MEMBRANES

    SciTech Connect (OSTI)

    Brinkman, K.; Gray, J.

    2012-03-30

    Mixed Electron and Carbonate ion Conductor (MECC) membranes have been proposed as a means to separate CO{sub 2} from power plant flue gas. Here a modified MECC CO{sub 2} capture process is analyzed that supplements retentate pressurization and permeate evacuation as a means to create a CO{sub 2} driving force with a process assisted by the catalytic combustion of syngas on the permeate side of the membrane. The combustion reactions consume transported oxygen, making it unavailable for the backwards transport reaction. With this change, the MECC capture system becomes exothermic, and steam for electricity production may be generated from the waste heat. Greater than 90% of the CO{sub 2} in the flue gas may be captured, and a compressed CO{sub 2} product stream is produced. A fossil-fueled power plant using this process would consume 14% more fuel per unit electricity produced than a power plant with no CO{sub 2} capture system, and has the potential to meet U.S. DOE's goal that deployment of a CO{sub 2} capture system at a fossil-fueled power plant should not increase the cost of electricity from the combined facility by more than 30%.

  17. Fuel cell water transport

    DOE Patents [OSTI]

    Vanderborgh, Nicholas E. (Los Alamos, NM); Hedstrom, James C. (Los Alamos, NM)

    1990-01-01

    The moisture content and temperature of hydrogen and oxygen gases is regulated throughout traverse of the gases in a fuel cell incorporating a solid polymer membrane. At least one of the gases traverses a first flow field adjacent the solid polymer membrane, where chemical reactions occur to generate an electrical current. A second flow field is located sequential with the first flow field and incorporates a membrane for effective water transport. A control fluid is then circulated adjacent the second membrane on the face opposite the fuel cell gas wherein moisture is either transported from the control fluid to humidify a fuel gas, e.g., hydrogen, or to the control fluid to prevent excess water buildup in the oxidizer gas, e.g., oxygen. Evaporation of water into the control gas and the control gas temperature act to control the fuel cell gas temperatures throughout the traverse of the fuel cell by the gases.

  18. Omniphobic Membrane for Robust Membrane Distillation

    SciTech Connect (OSTI)

    Lin, SH; Nejati, S; Boo, C; Hu, YX; Osuji, CO; Ehmelech, M

    2014-11-01

    In this work, we fabricate an omniphobic microporous membrane for membrane distillation (MD) by modifying a hydrophilic glass fiber membrane with silica nanoparticles followed by surface fluorination and polymer coating. The modified glass fiber membrane exhibits an anti-wetting property not only against water but also against low surface tension organic solvents that easily wet a hydrophobic polytetrafluoroethylene (PTFE) membrane that is commonly used in MD applications. By comparing the performance of the PTFE and omniphobic membranes in direct contact MD experiments in the presence of a surfactant (sodium dodecyl sulfate, SDS), we show that SDS wets the hydrophobic PTFE membrane but not the omniphobic membrane. Our results suggest that omniphobic membranes are critical for MD applications with feed waters containing surface active species, such as oil and gas produced water, to prevent membrane pore wetting.

  19. Laser driven compact ion accelerator

    DOE Patents [OSTI]

    Tajima, Toshiki

    2005-03-15

    A laser driven compact ion source including a light source that produces an energy pulse, a light source guide that guides the energy pulse to a target and produces an ion beam. The ion beam is transported to a desired destination.

  20. Acidic Ion Exchange Membrane - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CSM About This Technology Technology Marketing SummaryIn this invention we report the synthesis of a copolymer of vinyl phosphonic acid (VPA) and vinyl zirconium phosphorous (VZP)...

  1. Solid state proton and electron mediating membrane and use in catalytic membrane reactors

    DOE Patents [OSTI]

    White, James H.; Schwartz, Michael; Sammells, Anthony F.

    1998-01-01

    This invention provides catalytic proton and electron mediating membranes useful in catalytic reactors. The membranes have an oxidation and a reduction surface and comprise a single-phase mixed metal oxide material of the formula: AB.sub.1-x B'.sub.x O.sub.3-y wherein A is selected from Ca, Sr or Ba ions; B is selected from Ce, Tb, Pr, or Th ions; B' is selected from Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Al, Ga, or In ions, or combinations thereof; and x is greater than or equal to 0.02 and less than or equal to 0.5. The membranes can further comprise a catalyst on either the oxidation or reduction surface, or both. Membranes include those which are fabricated-by combining powders of metal oxides or metal carbonates of metal A ion, metal B ion and metal B' ion such that the stoichiometric ratio A:B:B' is 1:1-x:x where 0.2.ltoreq..times.0.5, repeatedly calcining and milling the combined powders until a single-phase material is obtained and pressing and sintering the singlephase material to obtain a membrane.

  2. Solid state proton and electron mediating membrane and use in catalytic membrane reactors

    DOE Patents [OSTI]

    White, J.H.; Schwartz, M.; Sammells, A.F.

    1998-10-13

    This invention provides catalytic proton and electron mediating membranes useful in catalytic reactors. The membranes have an oxidation and a reduction surface and comprise a single-phase mixed metal oxide material of the formula: AB{sub 1{minus}x}B{prime}{sub x}O{sub 3{minus}y} wherein A is selected from Ca, Sr or Ba ions; B is selected from Ce, Tb, Pr, or Th ions; B{prime} is selected from Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Al, Ga, or In ions, or combinations thereof; and x is greater than or equal to 0.02 and less than or equal to 0.5. The membranes can further comprise a catalyst on either the oxidation or reduction surface, or both. Membranes include those which are fabricated by combining powders of metal oxides or metal carbonates of metal A ion, metal B ion and metal B{prime} ion such that the stoichiometric ratio A:B:B{prime} is 1:1{minus}x:x where 0.2{<=}{times}0.5, repeatedly calcining and milling the combined powders until a single-phase material is obtained and pressing and sintering the single phase material to obtain a membrane. 6 figs.

  3. Gas phase fractionation method using porous ceramic membrane

    DOE Patents [OSTI]

    Peterson, Reid A. (Madison, WI); Hill, Jr., Charles G. (Madison, WI); Anderson, Marc A. (Madison, WI)

    1996-01-01

    Flaw-free porous ceramic membranes fabricated from metal sols and coated onto a porous support are advantageously used in gas phase fractionation methods. Mean pore diameters of less than 40 .ANG., preferably 5-20 .ANG. and most preferably about 15 .ANG., are permeable at lower pressures than existing membranes. Condensation of gases in small pores and non-Knudsen membrane transport mechanisms are employed to facilitate and increase membrane permeability and permselectivity.

  4. 2003 High Temperature Membrane Working Group Meeting Archives | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy High Temperature Membrane Working Group Meeting Archives 2003 High Temperature Membrane Working Group Meeting Archives View 2003 meeting presentations from the High Temperature Membrane Working Group. October 17, 2003, Orlando, Florida High T Membrane Development at Foster-Miller, Bindu Nair, Foster-Miller Highly Sulfonated Polymers for High Temperature Applications, Morton Litt, Case Western Reserve University Assessing Transport in New Electrolytes, Bryan Pivovar, LANL

  5. Magnetic Membrane System

    DOE Patents [OSTI]

    McElfresh, Michael W.; (Livermore, CA); Lucas, Matthew S.; (Pasadena, CA)

    2004-12-30

    The present invention provides a membrane with magnetic particles. In one embodiment the membrane is created by mixing particles in a non-magnetic base. The membrane may act as an actuator, a sensor, a pump, a valve, or other device. A magnet is operatively connected to the membrane. The magnet acts on and changes the shape of the membrane.

  6. RADIATION STABILITY OF NAFION MEMBRANES USED FOR ISOTOPE SEPARATION BY PROTON EXCHANGE MEMBRANE ELECTROLYSIS

    SciTech Connect (OSTI)

    Fox, E

    2009-05-15

    Proton Exchange Membrane Electrolyzers have potential interest for use for hydrogen isotope separation from water. In order for PEME to be fully utilized, more information is needed on the stability of Nafion when exposed to radiation. This work examines Nafion 117 under varying exposure conditions, including dose rate, total dosage and atmospheric condition. Analytical tools, such as FT-IR, ion exchange capacity, DMA and TIC-TOC were used to characterize the exposed membranes. Analysis of the water from saturated membranes can provide important data on the stability of the membranes during radiation exposure. It was found that the dose rate of exposure plays an important role in membrane degradation. Potential mechanisms for membrane degradation include peroxide formation by free radicals.

  7. Measurement of plasma current dependent changes in impurity transport...

    Office of Scientific and Technical Information (OSTI)

    simultaneous agreement between experiment and simulation in both the impurity particle transport and ion heat transport channels is attainable within experimental more ...

  8. Microcomposite Fuel Cell Membranes

    Broader source: Energy.gov [DOE]

    Summary of microcomposite fuel cell membrane work presented to the High Temperature Membrane Working Group Meeting, Orlando FL, October 17, 2003

  9. Solution dewatering with concomitant ion removal

    DOE Patents [OSTI]

    Peterson, Eric S.; Marshall, Douglas W.; Stone, Mark L.

    2003-08-05

    One of the biggest needs in the separations and waste handling and reduction area is a method for dewatering ion-containing solutions. Unexpectedly, it has been found that phosphazene polymers can discriminate between water and metal ions, allowing water to pass through the membrane while retaining the ions. This unexpected result, along with the inherent chemical and thermal stability of the phosphazene polymers, yields a powerful tool for separating and dewatering metal-ion-containing solutions.

  10. Ion source

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA); Ehlers, Kenneth W. (Alamo, CA)

    1984-01-01

    A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species.

  11. Corrugated Membrane Fuel Cell Structures | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Corrugated Membrane Fuel Cell Structures Corrugated Membrane Fuel Cell Structures These slides were presented at the 2010 New Fuel Cell Projects Meeting on September 28, 2010. PDF icon 4_ion_power_grot.pdf More Documents & Publications Breakout Group 3: Water Management US DRIVE Fuel Cell Technical Team Roadmap Automotive Perspective on PEM Evaluation

  12. Composite sensor membrane

    DOE Patents [OSTI]

    Majumdar, Arun (Orinda, CA); Satyanarayana, Srinath (Berkeley, CA); Yue, Min (Albany, CA)

    2008-03-18

    A sensor may include a membrane to deflect in response to a change in surface stress, where a layer on the membrane is to couple one or more probe molecules with the membrane. The membrane may deflect when a target molecule reacts with one or more probe molecules.

  13. Use of Membranes in Non-Traditional Applications and Emerging Markets

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Use of Membranes in Non-Traditional Applications and Emerging Markets DOE Membrane Technology Workshop July 24, 2012 Zissis Dardas Group Leader, Environmental Science Physical Sciences Department United Technologies Research Center US Energy Consumption* 33% 28% 39% Transportation Aircraft Fuel tank inerting Fuel deoxygenation Automotive PEM Fuel Cells Perishable Transport (O 2 /N 2 separation) UTC Membrane Applications for Energy & Environment Polymer membranes significantly enhance the

  14. Resolving the mystery of transport within internal transport barriers

    SciTech Connect (OSTI)

    Staebler, G. M.; Belli, E. A.; Candy, J.; Waltz, R. E.; Greenfield, C. M.; Lao, L. L.; Smith, S. P.; Kinsey, J. E.; Grierson, B. A.; Chrystal, C.

    2014-05-15

    The Trapped Gyro-Landau Fluid (TGLF) quasi-linear model [G. M. Staebler, et al., Phys. Plasmas 12, 102508 (2005)], which is calibrated to nonlinear gyrokinetic turbulence simulations, is now able to predict the electron density, electron and ion temperatures, and ion toroidal rotation simultaneously for internal transport barrier (ITB) discharges. This is a strong validation of gyrokinetic theory of ITBs, requiring multiple instabilities responsible for transport in different channels at different scales. The mystery of transport inside the ITB is that momentum and particle transport is far above the predicted neoclassical levels in apparent contradiction with the expectation from the theory of suppression of turbulence by EB velocity shear. The success of TGLF in predicting ITB transport is due to the inclusion of ion gyro-radius scale modes that become dominant at high EB velocity shear and to improvements to TGLF that allow momentum transport from gyrokinetic turbulence to be faithfully modeled.

  15. Microsoft PowerPoint - Nano Sep Membrane for H2 Flux brief.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are a key enabling technology for energy conversion devices. Ionic transport membranes must have both proton and electronic conductivity to function as hydrogen separation...

  16. Corrugated Membrane Fuel Cell Structures

    SciTech Connect (OSTI)

    Grot, Stephen President, Ion Power Inc.

    2013-09-30

    One of the most challenging aspects of traditional PEM fuel cell stacks is the difficulty achieving the platinum catalyst utilization target of 0.2 gPt/kWe set forth by the DOE. Good catalyst utilization can be achieved with state-of-the-art catalyst coated membranes (CCM) when low catalyst loadings (<0.3 mg/cm2) are used at a low current. However, when low platinum loadings are used, the peak power density is lower than conventional loadings, requiring a larger total active area and a larger bipolar plate. This results in a lower overall stack power density not meeting the DOE target. By corrugating the fuel cell membrane electrode structure, Ion Power?s goal is to realize both the Pt utilization targets as well as the power density targets of the DOE. This will be achieved by demonstrating a fuel cell single cell (50 cm2) with a twofold increase in the membrane active area over the geometric area of the cell by corrugating the MEA structure. The corrugating structure must be able to demonstrate the target properties of < 10 mOhm-cm2 electrical resistance at > 20 psi compressive strength over the active area, in combination with offering at least 80% of power density that can be achieved by using the same MEA in a flat plate structure. Corrugated membrane fuel cell structures also have the potential to meet DOE power density targets by essentially packaging more membrane area into the same fuel cell volume as compared to conventional stack constructions.

  17. A Simple Index for Characterizing Charge Transport in Molecular...

    Office of Scientific and Technical Information (OSTI)

    solar (fuels), photosynthesis (natural and artificial), bio-inspired, hydrogen and fuel cells, electrodes - solar, defects, charge transport, spin dynamics, membrane, materials...

  18. Investigation of Micro- and Macro-Scale Transport Processes for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CX-002287: Categorical Exclusion Determination Progress and Status on Through-Plane Resistance and Conductivity Measurement of Fuel Cell Membranes Transport Modeling Working Group ...

  19. Composite metal membranes for hydrogen separation applications

    SciTech Connect (OSTI)

    Moss, T.S.; Dye, R.C.

    1997-06-01

    A novel multilayer metal membrane has been developed that can be used for the separation of hydrogen from feed streams with near perfect selectivity. The membrane is comprised of very thin layers of fully dense palladium film deposited on both sides of a thin Group V metal foil, ion-milled prior to sputtering of the palladium. Palladium loading are kept low using the thin film deposition technology: 0.0012 grams of palladium per square centimeter of membrane is typically used, although thinner coatings have been employed. This membrane operates at temperatures on the order of 300 C and is capable of high rates of hydrogen flow. Flows are dependent on the pressure differential applied to the membrane, but flows of 105 sccm/cm{sup 2} and higher are regularly observed with differentials below one atmosphere. Long term testing of the membrane for a period in excess of 775 hours under constant conditions showed stable flows and an 85% hydrogen recovery efficiency. A system has been successfully applied to the hydrogen handling system of a proton exchange membrane fuel cell and was tested using a pseudo-reformate feed stream without any degradation in performance.

  20. Thin film ion conducting coating

    DOE Patents [OSTI]

    Goldner, Ronald B. (Lexington, MA); Haas, Terry (Sudbury, MA); Wong, Kwok-Keung (Watertown, MA); Seward, George (Arlington, MA)

    1989-01-01

    Durable thin film ion conducting coatings are formed on a transparent glass substrate by the controlled deposition of the mixed oxides of lithium:tantalum or lithium:niobium. The coatings provide durable ion transport sources for thin film solid state storage batteries and electrochromic energy conservation devices.

  1. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David

    2005-07-12

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  2. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Carter, J. David; Wang, Xiaoping; Vaughey, John; Krumpelt, Michael

    2004-11-23

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  3. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Vaughey, John (Elmhurst, IL); Krumpelt, Michael (Naperville, IL); Wang, Xiaoping (Downers Grove, IL); Carter, J. David (Bolingbrook, IL)

    2003-01-01

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  4. A Mechanistic Study of Chemically Modified Inorganic Membranes for Gas and Liquid Separations

    SciTech Connect (OSTI)

    Way, J Douglas

    2011-01-21

    This final report will summarize the progress made during the period August 1, 1993 - October 31, 2010 with support from DOE grant number DE-FG03-93ER14363. The objectives of the research have been to investigate the transport mechanisms in micro- and mesoporous, metal oxide membranes and to examine the relationship between the microstructure of the membrane, the membrane surface chemistry, and the separation performance of the membrane. Examples of the membrane materials under investigation are the microporous silica hollow fiber membrane manufactured by PPG Industries, chemically modified mesoporous oxide membranes, and polymer membranes containing microporous oxides (mixed matrix membranes). Analytical techniques such as NMR, FTIR and Raman spectroscopy, thermal analysis, and gas adsorption were used to investigate membrane microstructure and to probe the chemical interactions occurring at the gas-membrane interface.

  5. Supported inorganic membranes

    DOE Patents [OSTI]

    Sehgal, Rakesh; Brinker, Charles Jeffrey

    1998-01-01

    Supported inorganic membranes capable of molecular sieving, and methods for their production, are provided. The subject membranes exhibit high flux and high selectivity. The subject membranes are substantially defect free and less than about 100 nm thick. The pores of the subject membranes have an average critical pore radius of less than about 5 .ANG., and have a narrow pore size distribution. The subject membranes are prepared by coating a porous substrate with a polymeric sol, preferably under conditions of low relative pressure of the liquid constituents of the sol. The coated substrate is dried and calcined to produce the subject supported membrane. Also provided are methods of derivatizing the surface of supported inorganic membranes with metal alkoxides. The subject membranes find use in a variety of applications, such as the separation of constituents of gaseous streams, as catalysts and catalyst supports, and the like.

  6. Composite zeolite membranes

    DOE Patents [OSTI]

    Nenoff, Tina M. (Albuquerque, NM); Thoma, Steven G. (Albuquerque, NM); Ashley, Carol S. (Albuquerque, NM); Reed, Scott T. (Albuquerque, NM)

    2002-01-01

    A new class of composite zeolite membranes and synthesis techniques therefor has been invented. These membranes are essentially defect-free, and exhibit large levels of transmembrane flux and of chemical and isotopic selectivity.

  7. Hybrid adsorptive membrane reactor

    DOE Patents [OSTI]

    Tsotsis, Theodore T. (Huntington Beach, CA); Sahimi, Muhammad (Altadena, CA); Fayyaz-Najafi, Babak (Richmond, CA); Harale, Aadesh (Los Angeles, CA); Park, Byoung-Gi (Yeosu, KR); Liu, Paul K. T. (Lafayette Hill, PA)

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  8. Membrane Technology Workshop

    Broader source: Energy.gov [DOE]

    At the Membrane Technology Workshop (held July 24, 2012, in Rosemont, IL), stakeholders from industry and academia explored the status of membrane research and development (R&D). Participants ...

  9. Membrane Technology Workshop

    Broader source: Energy.gov [DOE]

    Presentation by Charles Page (Air Products & Chemicals, Inc.) for the Membrane Technology Workshop held July 24, 2012

  10. Membrane Permeation Testing System

    Energy Innovation Portal (Marketing Summaries) [EERE]

    A simple and rapid method for the screening of the permeability and selectivity of membranes for gas separation has been developed. A high throughput membrane testing system permits simultaneous evaluation of multiple membranes under conditions of moderate pressure and temperature for both pure gases and gas mixtures. The modular design, on-line sample analysis, and automation-competence of the technology provides a cost-effective approach to identify the optimal membrane for a given gas...

  11. Meniscus Membranes For Separation

    DOE Patents [OSTI]

    Dye, Robert C. (Irvine, CA); Jorgensen, Betty (Jemez Springs, NM); Pesiri, David R. (Aliso Viejo, CA)

    2005-09-20

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  12. Meniscus membranes for separations

    DOE Patents [OSTI]

    Dye, Robert C. (Irvine, CA); Jorgensen, Betty (Jemez Springs, NM); Pesiri, David R. (Aliso Viejo, CA)

    2004-01-27

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  13. Polyphosphazene semipermeable membranes

    DOE Patents [OSTI]

    Allen, Charles A. (Idaho Falls, ID); McCaffrey, Robert R. (Idaho Falls, ID); Cummings, Daniel G. (Idaho Falls, ID); Grey, Alan E. (Idaho Falls, ID); Jessup, Janine S. (Darlington, ID); McAtee, Richard E. (Idaho Falls, ID)

    1988-01-01

    A semipermeable, inorganic membrane is disclosed; the membrane is prepared from a phosphazene polymer and, by the selective substitution of the constituent groups bound to the phosphorous in the polymer structure, the selective passage of fluid from a feedstream can be controlled. Resistance to high temperatures and harsh chemical environments is observed in the use of the phosphazene polymers as semipermeable membranes.

  14. Cadmium sulfide membranes

    DOE Patents [OSTI]

    Spanhel, Lubomir (Madison, WI); Anderson, Marc A. (Madison, WI)

    1991-10-22

    A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

  15. Cadmium sulfide membranes

    DOE Patents [OSTI]

    Spanhel, Lubomir (Madison, WI); Anderson, Marc A. (Madison, WI)

    1992-07-07

    A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

  16. Nanoporous Polytetrafluoroethylene/Silica Composite Separator as a High-Performance All-Vanadium Redox Flow Battery Membrane

    SciTech Connect (OSTI)

    Wei, Xiaoliang; Nie, Zimin; Luo, Qingtao; Li, Bin; Chen, Baowei; Simmons, Kevin L.; Sprenkle, Vincent L.; Wang, Wei

    2013-09-02

    Driven by the motivation of searching for low-cost membrane alternatives, a novel nanoporous polytetrafluoroethylene/silica composite separator has been prepared and evaluated for its use in all-vanadium mixed-acid redox flow battery. This separator consisting of silica particles enmeshed in a polytetrafluoroethylene fibril matrix has no ion exchange capacity and is featured with unique nanoporous structures, which function as the ion transport channels in redox flow battery operation, with an average pore size of 38nm and a porosity of 48%. This separator has produced excellent electrochemical performance in the all-vanadium mixed-acid system with energy efficiency delivery comparable to Nafion membrane and superior rate capability and temperature tolerance. The separator also demonstrates an exceptional capacity retention capability over extended cycling, offering additional operational latitude towards conveniently mitigating the capacity decay that is inevitable for Nafion. Because of the inexpensive raw materials and simple preparation protocol, the separator is particularly low-cost, estimated to be at least an order of magnitude more inexpensive than Nafion. Plus the proven chemical stability due to the same backbone material as Nafion, this separator possesses a good combination of critical membrane requirements and shows great potential to promote market penetration of the all-vanadium redox flow battery by enabling significant reduction of capital and cycle costs.

  17. Ligand-gated Diffusion Across the Bacterial Outer Membrane

    SciTech Connect (OSTI)

    B Lepore; M Indic; H Pham; E Hearn; D Patel; B van den Berg

    2011-12-31

    Ligand-gated channels, in which a substrate transport pathway is formed as a result of the binding of a small-molecule chemical messenger, constitute a diverse class of membrane proteins with important functions in prokaryotic and eukaryotic organisms. Despite their widespread nature, no ligand-gated channels have yet been found within the outer membrane (OM) of Gram-negative bacteria. Here we show, using in vivo transport assays, intrinsic tryptophan fluorescence and X-ray crystallography, that high-affinity (submicromolar) substrate binding to the OM long-chain fatty acid transporter FadL from Escherichia coli causes conformational changes in the N terminus that open up a channel for substrate diffusion. The OM long-chain fatty acid transporter FadL from E. coli is a unique paradigm for OM diffusion-driven transport, in which ligand gating within a {beta}-barrel membrane protein is a prerequisite for channel formation.

  18. Enzymatically active high-flux selectively gas-permeable membranes

    DOE Patents [OSTI]

    Jiang, Ying-Bing; Cecchi, Joseph L.; Rempe, Susan; FU, Yaqin; Brinker, C. Jeffrey

    2016-01-26

    An ultra-thin, catalyzed liquid transport medium-based membrane structure fabricated with a porous supporting substrate may be used for separating an object species such as a carbon dioxide object species. Carbon dioxide flux through this membrane structures may be several orders of magnitude higher than traditional polymer membranes with a high selectivity to carbon dioxide. Other gases such as molecular oxygen, molecular hydrogen, and other species including non-gaseous species, for example ionic materials, may be separated using variations to the membrane discussed.

  19. Molecular Mechanism of Biological Proton Transport

    SciTech Connect (OSTI)

    Pomes, R.

    1998-09-01

    Proton transport across lipid membranes is a fundamental aspect of biological energy transduction (metabolism). This function is mediated by a Grotthuss mechanism involving proton hopping along hydrogen-bonded networks embedded in membrane-spanning proteins. Using molecular simulations, the authors have explored the structural, dynamic, and thermodynamic properties giving rise to long-range proton translocation in hydrogen-bonded networks involving water molecules, or water wires, which are emerging as ubiquitous H{sup +}-transport devices in biological systems.

  20. Substituted polyacetylene separation membrane

    DOE Patents [OSTI]

    Pinnau, Ingo (Palo Alto, CA); Morisato, Atsushi (Tokyo, JP)

    1998-01-13

    A separation membrane useful for gas separation, particularly separation of C.sub.2+ hydrocarbons from natural gas. The invention encompasses the membrane itself, methods of making it and processes for using it. The membrane comprises a polymer having repeating units of a hydrocarbon-based, disubstituted polyacetylene, having the general formula: ##STR1## wherein R.sub.1 is chosen from the group consisting of C.sub.1 -C.sub.4 alkyl and phenyl, and wherein R.sub.2 is chosen from the group consisting of hydrogen and phenyl. In the most preferred embodiment, the membrane comprises poly(4-methyl-2-pentyne) PMP!. The membrane exhibits good chemical resistance and has super-glassy properties with regard to separating certain large, condensable permeant species from smaller, less-condensable permeant species. The membranes may also be useful in other fluid separations.

  1. Substituted polyacetylene separation membrane

    DOE Patents [OSTI]

    Pinnau, I.; Morisato, Atsushi

    1998-01-13

    A separation membrane is described which is useful for gas separation, particularly separation of C{sub 2+} hydrocarbons from natural gas. The invention encompasses the membrane itself, methods of making it and processes for using it. The membrane comprises a polymer having repeating units of a hydrocarbon-based, disubstituted polyacetylene, having the general formula shown in the accompanying diagram, wherein R{sub 1} is chosen from the group consisting of C{sub 1}-C{sub 4} alkyl and phenyl, and wherein R{sub 2} is chosen from the group consisting of hydrogen and phenyl. In the most preferred embodiment, the membrane comprises poly(4-methyl-2-pentyne) [PMP]. The membrane exhibits good chemical resistance and has super-glassy properties with regard to separating certain large, condensable permeant species from smaller, less-condensable permeant species. The membranes may also be useful in other fluid separations. 4 figs.

  2. Siloxane-grafted membranes

    DOE Patents [OSTI]

    Friesen, D.T.; Obligin, A.S.

    1989-10-31

    Composite cellulosic semipermeable membranes are disclosed which are the covalently bonded reaction product of an asymmetric cellulosic semipermeable membrane and a polysiloxane containing reactive functional group. The two reactants chemically bond by ether, ester, amide or acrylate linkages to form a siloxane-grafted cellulosic membrane having superior selectivity and flux stability. Selectivity may be enhanced by wetting the surface with a swelling agent such as water.

  3. Transportation Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transportation-research TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Transportation Research Current Research Overview The U.S. Department of Transportation (USDOT) has established its only high-performance computing and engineering analysis research facility at Argonne National Laboratory to provide applications support in key areas of applied research and development for the USDOT community. The Transportation Research and

  4. Alternate Fuel Cell Membranes for Energy Independence

    SciTech Connect (OSTI)

    Storey, Robson, F.; Mauritz, Kenneth, A.; Patton, Derek, L.; Savin, Daniel, A.

    2012-12-18

    The overall objective of this project was the development and evaluation of novel hydrocarbon fuel cell (FC) membranes that possess high temperature performance and long term chemical/mechanical durability in proton exchange membrane (PEM) fuel cells (FC). The major research theme was synthesis of aromatic hydrocarbon polymers of the poly(arylene ether sulfone) (PAES) type containing sulfonic acid groups tethered to the backbone via perfluorinated alkylene linkages and in some cases also directly attached to the phenylene groups along the backbone. Other research themes were the use of nitrogen-based heterocyclics instead of acid groups for proton conduction, which provides high temperature, low relative humidity membranes with high mechanical/thermal/chemical stability and pendant moieties that exhibit high proton conductivities in the absence of water, and synthesis of block copolymers consisting of a proton conducting block coupled to poly(perfluorinated propylene oxide) (PFPO) blocks. Accomplishments of the project were as follows: 1) establishment of a vertically integrated program of synthesis, characterization, and evaluation of FC membranes, 2) establishment of benchmark membrane performance data based on Nafion for comparison to experimental membrane performance, 3) development of a new perfluoroalkyl sulfonate monomer, N,N-diisopropylethylammonium 2,2-bis(p-hydroxyphenyl) pentafluoropropanesulfonate (HPPS), 4) synthesis of random and block copolymer membranes from HPPS, 5) synthesis of block copolymer membranes containing high-acid-concentration hydrophilic blocks consisting of HPPS and 3,3'-disulfonate-4,4'-dichlorodiphenylsulfone (sDCDPS), 6) development of synthetic routes to aromatic polymer backbones containing pendent 1H-1,2,3-triazole moieties, 7) development of coupling strategies to create phase-separated block copolymers between hydrophilic sulfonated prepolymers and commodity polymers such as PFPO, 8) establishment of basic performance properties of experimental membranes, 9) fabrication and FC performance testing of membrane electrode assemblies (MEA) from experimental membranes, and 10) measurement of ex situ and in situ membrane durability of experimental membranes. Although none of the experimental hydrocarbon membranes that issued from the project displayed proton conductivities that met DOE requirements, the project contributed to our basic understanding of membrane structure-property relationships in a number of key respects. An important finding of the benchmark studies is that physical degradation associated with humidity and temperature variations in the FC tend to open new fuel crossover pathways and act synergistically with chemical degradation to accelerate overall membrane degradation. Thus, for long term membrane survival and efficient fuel utilization, membranes must withstand internal stresses due to humidity and temperature changes. In this respect, rigid aromatic hydrocarbon fuel cell membranes, e.g. PAES, offer an advantage over un-modified Nafion membranes. The benchmark studies also showed that broadband dielectric spectroscopy is a potentially powerful tool in assessing shifts in the fundamental macromolecular dynamics caused by Nafion chemical degradation, and thus, this technique is of relevance in interrogating proton exchange membrane durability in fuel cells and macromolecular dynamics as coupled to proton migration, which is of fundamental relevance in proton exchange membranes in fuel cells. A key finding from the hydrocarbon membrane synthesis effort was that rigid aromatic polymers containing isolated ion exchange groups tethered tightly to the backbone (short tether), such as HPPS, provide excellent mechanical and durability properties but do not provide sufficient conductivity, in either random or block configuration, when used as the sole ion exchange monomer. However, we continue to hypothesize that longer tethers, and tethered groups spaced more closely within the hydrophilic chain elements of the polymer, will yield highly conductive materials with excellent mechanical properties. Another key finding is the superior performance of PAES membranes upon being subjected to open circuit voltage (OCV) testing. Throughout the course of the experiment, OCV for the PAES not only stayed higher but also decayed at a much lower rate, which is attributed to better dimensional stability and improved mechanical and gas barrier properties. The rigid backbone reinforcement of PAES adds gas diffusion tortuosity that restricts membrane degradation and OCV loss due to reduced fuel crossover. The overall results of creep, contractile stress and mechanical tensile tests confirm the conclusion that degraded MEAs of PAES membrane can handle stress and are more likely to be more durable in a fuel cell, even after subjected to 62h of OCV degradation.

  5. Radiation Transport

    SciTech Connect (OSTI)

    Urbatsch, Todd James

    2015-06-15

    We present an overview of radiation transport, covering terminology, blackbody raditation, opacities, Boltzmann transport theory, approximations to the transport equation. Next we introduce several transport methods. We present a section on Caseology, observing transport boundary layers. We briefly broach topics of software development, including verification and validation, and we close with a section on high energy-density experiments that highlight and support radiation transport.

  6. Microporous alumina ceramic membranes

    DOE Patents [OSTI]

    Anderson, M.A.; Guangyao Sheng.

    1993-05-04

    Several methods are disclosed for the preparation microporous alumina ceramic membranes. For the first time, porous alumina membranes are made which have mean pore sizes less than 100 Angstroms and substantially no pores larger than that size. The methods are based on improved sol-gel techniques.

  7. Membrane module assembly

    DOE Patents [OSTI]

    Kaschemekat, J.

    1994-03-15

    A membrane module assembly is described which is adapted to provide a flow path for the incoming feed stream that forces it into prolonged heat-exchanging contact with a heating or cooling mechanism. Membrane separation processes employing the module assembly are also disclosed. The assembly is particularly useful for gas separation or pervaporation. 2 figures.

  8. Polymide gas separation membranes

    DOE Patents [OSTI]

    Ding, Yong; Bikson, Benjamin; Nelson, Joyce Katz

    2004-09-14

    Soluble polyamic acid salt (PAAS) precursors comprised of tertiary and quaternary amines, ammonium cations, sulfonium cations, or phosphonium cations, are prepared and fabricated into membranes that are subsequently imidized and converted into rigid-rod polyimide articles, such as membranes with desirable gas separation properties. A method of enhancing solubility of PAAS polymers in alcohols is also disclosed.

  9. Membrane module assembly

    DOE Patents [OSTI]

    Kaschemekat, Jurgen (Palo Alto, CA)

    1994-01-01

    A membrane module assembly adapted to provide a flow path for the incoming feed stream that forces it into prolonged heat-exchanging contact with a heating or cooling mechanism. Membrane separation processes employing the module assembly are also disclosed. The assembly is particularly useful for gas separation or pervaporation.

  10. Microporous alumina ceramic membranes

    DOE Patents [OSTI]

    Anderson, Marc A. (Madison, WI); Sheng, Guangyao (Madison, WI)

    1993-01-01

    Several methods are disclosed for the preparation microporous alumina ceramic membranes. For the first time, porous alumina membranes are made which have mean pore sizes less than 100 Angstroms and substantially no pores larger than that size. The methods are based on improved sol-gel techniques.

  11. Membrane projection lithography

    DOE Patents [OSTI]

    Burckel, David Bruce; Davids, Paul S; Resnick, Paul J; Draper, Bruce L

    2015-03-17

    The various technologies presented herein relate to a three dimensional manufacturing technique for application with semiconductor technologies. A membrane layer can be formed over a cavity. An opening can be formed in the membrane such that the membrane can act as a mask layer to the underlying wall surfaces and bottom surface of the cavity. A beam to facilitate an operation comprising any of implantation, etching or deposition can be directed through the opening onto the underlying surface, with the opening acting as a mask to control the area of the underlying surfaces on which any of implantation occurs, material is removed, and/or material is deposited. The membrane can be removed, a new membrane placed over the cavity and a new opening formed to facilitate another implantation, etching, or deposition operation. By changing the direction of the beam different wall/bottom surfaces can be utilized to form a plurality of structures.

  12. With low projected manufacturing costs, high ion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    low projected manufacturing costs, high ion conductivities, reduced cross-over, chemical and thermal stability in both acidic and alkaline environments, the Sandia membrane technology is positioned to lower the cost of many energy-water systems. Poly (phenylene)-based Hydrocarbon Membrane Separators With a larger component of our electricity generation coming from intermittent and variable sources, stationary energy storage and local power generation will be essential for continued growth of the

  13. Novel Redox Shuttles for Overcharge Protection of Lithium-Ion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Redox Shuttles for Overcharge Protection of Lithium-Ion Batteries Technology available for licensing: Electrolytes containing novel redox shuttles (electron transporters) for...

  14. Integrated Ceramic Membrane System for Hydrogen Production

    SciTech Connect (OSTI)

    Schwartz, Joseph; Lim, Hankwon; Drnevich, Raymond

    2010-08-05

    Phase I was a technoeconomic feasibility study that defined the process scheme for the integrated ceramic membrane system for hydrogen production and determined the plan for Phase II. The hydrogen production system is comprised of an oxygen transport membrane (OTM) and a hydrogen transport membrane (HTM). Two process options were evaluated: 1) Integrated OTM-HTM reactor in this configuration, the HTM was a ceramic proton conductor operating at temperatures up to 900C, and 2) Sequential OTM and HTM reactors in this configuration, the HTM was assumed to be a Pd alloy operating at less than 600C. The analysis suggested that there are no technical issues related to either system that cannot be managed. The process with the sequential reactors was found to be more efficient, less expensive, and more likely to be commercialized in a shorter time than the single reactor. Therefore, Phase II focused on the sequential reactor system, specifically, the second stage, or the HTM portion. Work on the OTM portion was conducted in a separate program. Phase IIA began in February 2003. Candidate substrate materials and alloys were identified and porous ceramic tubes were produced and coated with Pd. Much effort was made to develop porous substrates with reasonable pore sizes suitable for Pd alloy coating. The second generation of tubes showed some improvement in pore size control, but this was not enough to get a viable membrane. Further improvements were made to the porous ceramic tube manufacturing process. When a support tube was successfully coated, the membrane was tested to determine the hydrogen flux. The results from all these tests were used to update the technoeconomic analysis from Phase I to confirm that the sequential membrane reactor system can potentially be a low-cost hydrogen supply option when using an existing membrane on a larger scale. Phase IIB began in October 2004 and focused on demonstrating an integrated HTM/water gas shift (WGS) reactor to increase CO conversion and produce more hydrogen than a standard water gas shift reactor would. Substantial improvements in substrate and membrane performance were achieved in another DOE project (DE-FC26-07NT43054). These improved membranes were used for testing in a water gas shift environment in this program. The amount of net H2 generated (defined as the difference of hydrogen produced and fed) was greater than would be produced at equilibrium using conventional water gas shift reactors up to 75 psig because of the shift in equilibrium caused by continuous hydrogen removal. However, methanation happened at higher pressures, 100 and 125 psig, and resulted in less net H2 generated than would be expected by equilibrium conversion alone. An effort to avoid methanation by testing in more oxidizing conditions (by increasing CO2/CO ratio in a feed gas) was successful and net H2 generated was higher (40-60%) than a conventional reactor at equilibrium at all pressures tested (up to 125 psig). A model was developed to predict reactor performance in both cases with and without methanation. The required membrane area depends on conditions, but the required membrane area is about 10 ft2 to produce about 2000 scfh of hydrogen. The maximum amount of hydrogen that can be produced in a membrane reactor decreased significantly due to methanation from about 2600 scfh to about 2400 scfh. Therefore, it is critical to eliminate methanation to fully benefit from the use of a membrane in the reaction. Other modeling work showed that operating a membrane reactor at higher temperature provides an opportunity to make the reactor smaller and potentially provides a significant capital cost savings compared to a shift reactor/PSA combination.

  15. Method and apparatus for removing ions from soil

    DOE Patents [OSTI]

    Bibler, J.P.

    1993-03-02

    A method and apparatus are presented for selectively removing species of ions from an area of soil. Permeable membranes 14 and 18 impregnated with an ion exchange resin that is specific to one or more species of chemical ions are inserted into ground 12 in close proximity to, and on opposing sides of, a soil area of interest 22. An electric potential is applied across electrodes 26 and 28 to cause the migration of ions out of soil area 22 toward the membranes 14 and 18. Preferably, the resin exchanges ions of sodium or hydrogen for ions of mercury that it captures from soil area 22. Once membranes 14 and 18 become substantially saturated with mercury ions, the potential applied across electrodes 26 and 28 is discontinued and membranes 14 and 18 are preferably removed from soil 12 for storage or recovery of the ions. The membranes are also preferably impregnated with a buffer to inhibit the effect of the hydrolysis of water by current from the electrodes.

  16. Method and apparatus for removing ions from soil

    DOE Patents [OSTI]

    Bibler, Jane P. (813 E. Rollingwood Rd., Aiken, SC 29801)

    1993-01-01

    A method and apparatus for selectively removing species of ions from an area of soil. Permeable membranes 14 and 18 impregnated with an ion exchange resin that is specific to one or more species of chemical ions are inserted into ground 12 in close proximity to, and on opposing sides of, a soil area of interest 22. An electric potential is applied across electrodes 26 and 28 to cause the migration of ions out of soil area 22 toward the membranes 14 and 18. Preferably, the resin exchanges ions of sodium or hydrogen for ions of mercury that it captures from soil area 22. Once membranes 14 and 18 become substantially saturated with mercury ions, the potential applied across electrodes 26 and 28 is discontinued and membranes 14 and 18 are preferably removed from soil 12 for storage or recovery of the ions. The membranes are also preferably impregnated with a buffer to inhibit the effect of the hydrolysis of water by current from the electrodes.

  17. Catalytic nanoporous membranes

    DOE Patents [OSTI]

    Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

    2013-08-27

    A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

  18. Diels Alder polyphenylene anion exchange membrane for nonaqueous redox flow batteries

    SciTech Connect (OSTI)

    Small, Leo J.; Pratt, III, Harry D.; Fujimoto, Cy H.; Anderson, Travis M.

    2015-10-23

    Here highly conductive, solvent-resistant anionic Diels Alder polyphenylene (DAPP) membranes were synthesized with three different ionic contents and tested in an ionic liquid-based nonaqueous redox flow battery (RFB). These membranes display 310 increase in conductivity in propylene carbonate compared to some commercially available (aqueous) anion exchange membranes. The membrane with an ion content of 1.5 meq/g (DAPP1.5) proved too brittle for operation in a RFB, while the membrane with an ion content of 2.5 meq/g (DAPP2.5) allowed excessive movement of solvent and poor electrochemical yields (capacity fade). Despite having lower voltage efficiencies compared to DAPP2.5, the membrane with an intermediate ion content of 2.0 meq/g (DAPP2.0) exhibited higher coulombic efficiencies (96.4% vs. 89.1%) and electrochemical yields (21.6% vs. 10.9%) after 50 cycles. Crossover of the electroactive species was the primary reason for decreased electrochemical yields. Analysis of the anolyte and catholyte revealed degradation of the electroactive species and formation of a film at the membrane-solution interface. Increases in membrane resistance were attributed to mechanical and thermal aging of the membrane; no chemical change was observed. As a result, improvements in the ionic selectivity and ionic conductivity of the membrane will increase the electrochemical yield and voltage efficiency of future nonaqueous redox flow batteries.

  19. Diels Alder polyphenylene anion exchange membrane for nonaqueous redox flow batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Small, Leo J.; Pratt, III, Harry D.; Fujimoto, Cy H.; Anderson, Travis M.

    2015-10-23

    Here highly conductive, solvent-resistant anionic Diels Alder polyphenylene (DAPP) membranes were synthesized with three different ionic contents and tested in an ionic liquid-based nonaqueous redox flow battery (RFB). These membranes display 3–10× increase in conductivity in propylene carbonate compared to some commercially available (aqueous) anion exchange membranes. The membrane with an ion content of 1.5 meq/g (DAPP1.5) proved too brittle for operation in a RFB, while the membrane with an ion content of 2.5 meq/g (DAPP2.5) allowed excessive movement of solvent and poor electrochemical yields (capacity fade). Despite having lower voltage efficiencies compared to DAPP2.5, the membrane with an intermediatemore » ion content of 2.0 meq/g (DAPP2.0) exhibited higher coulombic efficiencies (96.4% vs. 89.1%) and electrochemical yields (21.6% vs. 10.9%) after 50 cycles. Crossover of the electroactive species was the primary reason for decreased electrochemical yields. Analysis of the anolyte and catholyte revealed degradation of the electroactive species and formation of a film at the membrane-solution interface. Increases in membrane resistance were attributed to mechanical and thermal aging of the membrane; no chemical change was observed. As a result, improvements in the ionic selectivity and ionic conductivity of the membrane will increase the electrochemical yield and voltage efficiency of future nonaqueous redox flow batteries.« less

  20. Novel, Ceramic Membrane System For Hydrogen Separation

    SciTech Connect (OSTI)

    Elangovan, S.

    2012-12-31

    Separation of hydrogen from coal gas represents one of the most promising ways to produce alternative sources of fuel. Ceramatec, teamed with CoorsTek and Sandia National Laboratories has developed materials technology for a pressure driven, high temperature proton-electron mixed conducting membrane system to remove hydrogen from the syngas. This system separates high purity hydrogen and isolates high pressure CO{sub 2} as the retentate, which is amenable to low cost capture and transport to storage sites. The team demonstrated a highly efficient, pressure-driven hydrogen separation membrane to generate high purity hydrogen from syngas using a novel ceramic-ceramic composite membrane. Recognizing the benefits and limitations of present membrane systems, the all-ceramic system has been developed to address the key technical challenges related to materials performance under actual operating conditions, while retaining the advantages of thermal and process compatibility offered by the ceramic membranes. The feasibility of the concept has already been demonstrated at Ceramatec. This project developed advanced materials composition for potential integration with water gas shift rectors to maximize the hydrogenproduction.

  1. High Temperature Membrane Working Group

    Broader source: Energy.gov [DOE]

    The High Temperature Membrane Working Group consists of government, industry, and university researchers interested in developing high temperature membranes for fuel cells.

  2. Nanoengineered membrane electrode assembly interface

    DOE Patents [OSTI]

    Song, Yujiang; Shelnutt, John A

    2013-08-06

    A membrane electrode structure suitable for use in a membrane electrode assembly (MEA) that comprises membrane-affixed metal nanoparticles whose formation is controlled by a photochemical process that controls deposition of the metal nanoparticles using a photocatalyst integrated with a polymer electrolyte membrane, such as an ionomer membrane. Impregnation of the polymer membrane with the photocatalyst prior to metal deposition greatly reduces the required amount of metal precursor in the deposition reaction solution by restricting metal reduction substantially to the formation of metal nanoparticles affixed on or near the surface of the polymer membrane with minimal formation of metallic particles not directly associated with the membrane.

  3. Rotating bubble membrane radiator

    DOE Patents [OSTI]

    Webb, Brent J. (West Richland, WA); Coomes, Edmund P. (West Richland, WA)

    1988-12-06

    A heat radiator useful for expelling waste heat from a power generating system aboard a space vehicle is disclosed. Liquid to be cooled is passed to the interior of a rotating bubble membrane radiator, where it is sprayed into the interior of the bubble. Liquid impacting upon the interior surface of the bubble is cooled and the heat radiated from the outer surface of the membrane. Cooled liquid is collected by the action of centrifical force about the equator of the rotating membrane and returned to the power system. Details regarding a complete space power system employing the radiator are given.

  4. Cyclic membrane separation process

    DOE Patents [OSTI]

    Bowser, John

    2004-04-13

    A cyclic process for controlling environmental emissions of volatile organic compounds (VOC) from vapor recovery in storage and dispensing operations of liquids maintains a vacuum in the storage tank ullage. In one of a two-part cyclic process ullage vapor is discharged through a vapor recovery system in which VOC are stripped from vented gas with a selectively gas permeable membrane. In the other part, the membrane is inoperative while gas pressure rises in the ullage. Ambient air is charged to the membrane separation unit during the latter part of the cycle.

  5. Cyclic membrane separation process

    DOE Patents [OSTI]

    Nemser, Stuart M.

    2005-05-03

    A cyclic process for controlling environmental emissions of volatile organic compounds (VOC) from vapor recovery in storage and dispensing operations of liquids maintains a vacuum in the storage tank ullage. In the first part of a two-part cyclic process ullage vapor is discharged through a vapor recovery system in which VOC are stripped from vented gas with a selectively gas permeable membrane. In the second part, the membrane is inoperative while gas pressure rises in the ullage. In one aspect of this invention, a vacuum is drawn in the membrane separation unit thus reducing overall VOC emissions.

  6. Composite metal membrane

    DOE Patents [OSTI]

    Peachey, N.M.; Dye, R.C.; Snow, R.C.; Birdsell, S.A.

    1998-04-14

    A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

  7. Composite metal membrane

    DOE Patents [OSTI]

    Peachey, Nathaniel M. (Espanola, NM); Dye, Robert C. (Los Alamos, NM); Snow, Ronny C. (Los Alamos, NM); Birdsell, Stephan A. (Los Alamos, NM)

    1998-01-01

    A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

  8. Proton Channel Orientation in Block-Copolymer Electrolyte Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the environment. Polymer electrolyte membranes (PEMs), with hydrophilic, proton-conducting channels

  9. Proton Channel Orientation in Block-Copolymer Electrolyte Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the environment. Polymer electrolyte membranes (PEMs), with hydrophilic, proton-conducting channels

  10. Proton Channel Orientation in Block-Copolymer Electrolyte Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the environment. Polymer electrolyte membranes (PEMs), with hydrophilic, proton-conducting channels

  11. Proton Channel Orientation in Block-Copolymer Electrolyte Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the environment. Polymer electrolyte membranes (PEMs), with hydrophilic, proton-conducting channels

  12. Proton Channel Orientation in Block-Copolymer Electrolyte Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the environment. Polymer electrolyte membranes (PEMs), with hydrophilic, proton-conducting channels

  13. Proton Channel Orientation in Block-Copolymer Electrolyte Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Wednesday, 27 January 2010 00:00 Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the

  14. Proton Channel Orientation in Block-Copolymer Electrolyte Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the environment. Polymer electrolyte membranes (PEMs), with hydrophilic, proton-conducting channels

  15. Proton Channel Orientation in Block-Copolymer Electrolyte Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the environment. Polymer electrolyte membranes (PEMs), with hydrophilic, proton-conducting channels

  16. Proton Channel Orientation in Block-Copolymer Electrolyte Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the environment. Polymer electrolyte membranes (PEMs), with hydrophilic, proton-conducting channels

  17. National Alliance for Advanced Transportation Battery Cell Manufacture...

    Open Energy Info (EERE)

    Manufacture Product: US-based consortium formed to research, develop, and mass produce lithium ion batteries. References: National Alliance for Advanced Transportation Battery Cell...

  18. Microsoft Word - CLC_transporters bh

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Revealing a New Conformational State in a Chloride/Proton Exchanger "CLC" transporters are secondary active-transport membrane proteins that catalyze the transmembrane exchange of chloride (Cl - ) for protons (H + ). This exchange plays an essential role in proper cardiovascular, neuronal, muscular and epithelial functions. Several diseases arise from CLC defects, and several CLCs are therapeutic targets. For example, the CLC-7 transporter plays a critical role in bone remodeling

  19. Fuel cell membrane humidification

    DOE Patents [OSTI]

    Wilson, Mahlon S. (Los Alamos, NM)

    1999-01-01

    A polymer electrolyte membrane fuel cell assembly has an anode side and a cathode side separated by the membrane and generating electrical current by electrochemical reactions between a fuel gas and an oxidant. The anode side comprises a hydrophobic gas diffusion backing contacting one side of the membrane and having hydrophilic areas therein for providing liquid water directly to the one side of the membrane through the hydrophilic areas of the gas diffusion backing. In a preferred embodiment, the hydrophilic areas of the gas diffusion backing are formed by sewing a hydrophilic thread through the backing. Liquid water is distributed over the gas diffusion backing in distribution channels that are separate from the fuel distribution channels.

  20. Membrane reference electrode

    DOE Patents [OSTI]

    Redey, Laszlo; Bloom, Ira D.

    1989-01-01

    A reference electrode utilizes a small thin, flat membrane of a highly conductive glass placed on a small diameter insulator tube having a reference material inside in contact with an internal voltage lead. When the sensor is placed in a non-aqueous ionic electrolytic solution, the concentration difference across the glass membrane generates a low voltage signal in precise relationship to the concentration of the species to be measured with high spatial resolution.

  1. Membrane reference electrode

    DOE Patents [OSTI]

    Redey, L.; Bloom, I.D.

    1988-01-21

    A reference electrode utilizes a small thin, flat membrane of a highly conductive glass placed on a small diameter insulator tube having a reference material inside in contact with an internal voltage lead. When the sensor is placed in a non-aqueous ionic electrolytic solution, the concentration difference across the glass membrane generates a low voltage signal in precise relationship to the concentration of the species to be measured, with high spatial resolution. 2 figs.

  2. Membrane separation of hydrocarbons

    DOE Patents [OSTI]

    Funk, Edward W.; Kulkarni, Sudhir S.; Chang, Y. Alice

    1986-01-01

    Mixtures of heavy oils and light hydrocarbons may be separated by passing the mixture over a polymeric membrane which comprises a polymer capable of maintaining its integrity in the presence of hydrocarbon compounds at temperature ranging from about ambient to about 100.degree. C. and pressures ranging from about 50 to about 1000 psi. The membranes which possess pore sizes ranging from about 10 to about 500 Angstroms are cast from a solvent solution and recovered.

  3. Alkaline Membrane Electrolysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RPTnnnn Membrane-Based Electrolysis: Overview * Many cost and efficiency advancements still feasible for PEM electrolysis - >50% reduction in membrane thickness - >90% reduction in catalyst loading - Improved O 2 evolution activity - Part integration and high speed manufacturing - Balance of plant improvements: drying, electronics * AEM electrolysis can enable new cost curve - Will need to balance with potential efficiency loss based on OH- conduction - Durability still needs significant

  4. Membrane Technology Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Page - Air Products & Chemicals, Inc. Chicago 24 July 2012 Modules & Vessels Membranes System Design: Pretreatment & Controls Three Critical Areas So Much Work! Performance  Thick dense films in the lab do not perform the same as the thin skin separating layer of the actual membrane  Mixed gas + contaminant vs. pure gas data basis  Reference conditions vs. realistic operating environment  Wall resistance and fiber morphology/geometry effects Cost / availability of polymer

  5. Microprobes aluminosilicate ceramic membranes

    DOE Patents [OSTI]

    Anderson, Marc A. (2114 Chadbourne Ave., Madison, WI 53705); Sheng, Guangyao (45 N. Orchard St., Madison, WI 53715)

    1993-01-01

    Methods have been developed to make mixed alumina-silicate and aluminosilicate particulate microporous ceramic membranes. One method involves the making of separate alumina and silica sols which are then mixed. Another method involves the creation of a combined sol with aluminosilicate particles. The resulting combined alumina and silica membranes have high surface area, a very small pore size, and a very good temperature stability.

  6. Novel membrane technology for green ethylene production.

    SciTech Connect (OSTI)

    Balachandran, U.; Lee, T. H.; Dorris, S. E.; Udovich, C. A.; Scouten, C. G.; Marshall, C. L.

    2008-01-01

    Ethylene is currently produced by pyrolysis of ethane in the presence of steam. This reaction requires substantial energy input, and the equilibrium conversion is thermodynamically limited. The reaction also produces significant amounts of greenhouse gases (CO and CO{sub 2}) because of the direct contact between carbon and steam. Argonne has demonstrated a new way to make ethylene via ethane dehydrogenation using a dense hydrogen transport membrane (HTM) to drive the unfavorable equilibrium conversion. Preliminary experiments show that the new approach can produce ethylene yields well above existing pyrolysis technology and also significantly above the thermodynamic equilibrium limit, while completely eliminating the production of greenhouse gases. With Argonne's approach, a disk-type dense ceramic/metal composite (cermet) membrane is used to produce ethylene by dehydrogenation of ethane at 850 C. The gas-transport membrane reactor combines a reversible chemical reaction with selective separation of one product species and leads to increased reactant conversion to the desired product. In an experiment ethane was passed over one side of the HTM membrane and air over the other side. The hydrogen produced by the dehydrogenation of ethane was removed and transported through the HTM to the air side. The air provided the driving force required for the transport of hydrogen through the HTM. The reaction between transported hydrogen and oxygen in air can provide the energy needed for the dehydrogenation reaction. At 850 C and 1-atm pressure, equilibrium conversion of ethane normally limits the ethylene yield to 64%, but Argonne has shown that an ethylene yield of 69% with a selectivity of 88% can be obtained under the same conditions. Coking was not a problem in runs extending over several weeks. Further improved HTM materials will lower the temperature required for high conversion at a reasonable residence time, while the lower temperature will suppress unwanted side reactions and prolong membrane life. With the Argonne approach, oxygen does not contact the ethane/ethylene stream, so oxidation products are not formed. Consequently, higher selectivity to ethylene and fewer by-products can be achieved. Some benefits are: (1) Simplifies overall product purification and processing schemes; (2) Results in greater energy efficiency; (3) Completely eliminates greenhouse gases from the reactor section; and (4) Lowers the cost of the 'back end' purification train, which accounts for about 70% of the capital cost of a conventional ethylene production unit.

  7. Beam Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Transport Beam Transport A simplified drawing of the beam transport system from the linac to Target-1 (Lujan Center), Target-2 (Blue Room) and Target-4 is shown below. In usual operation beam is transported from the linac through the pulsed Ring Injection Kicker (RIKI) magnet. When RIKI is switched on, the beam is injected into the storage ring with the time structure shown here. The beam is accumulated in the PSR and then transported to Target-1. beam_transport1 Simplified drawing of the

  8. Catalytic nanoporous membranes

    DOE Patents [OSTI]

    Pellin, Michael J. (Naperville, IL); Hryn, John N. (Naperville, IL); Elam, Jeffrey W. (Elmhurst, IL)

    2009-12-01

    A nanoporous catalytic membrane which displays several unique features including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity.

  9. Highly Stripped Ion Sources for MeV Ion Implantation

    SciTech Connect (OSTI)

    Hershcovitch, Ady

    2009-06-30

    Original technical objectives of CRADA number PVI C-03-09 between BNL and Poole Ventura, Inc. (PVI) were to develop an intense, high charge state, ion source for MeV ion implanters. Present day high-energy ion implanters utilize low charge state (usually single charge) ion sources in combination with rf accelerators. Usually, a MV LINAC is used for acceleration of a few rnA. It is desirable to have instead an intense, high charge state ion source on a relatively low energy platform (de acceleration) to generate high-energy ion beams for implantation. This de acceleration of ions will be far more efficient (in energy utilization). The resultant implanter will be smaller in size. It will generate higher quality ion beams (with lower emittance) for fabrication of superior semiconductor products. In addition to energy and cost savings, the implanter will operate at a lower level of health risks associated with ion implantation. An additional aim of the project was to producing a product that can lead to long­ term job creation in Russia and/or in the US. R&D was conducted in two Russian Centers (one in Tomsk and Seversk, the other in Moscow) under the guidance ofPVI personnel and the BNL PI. Multiple approaches were pursued, developed, and tested at various locations with the best candidate for commercialization delivered and tested at on an implanter at the PVI client Axcelis. Technical developments were exciting: record output currents of high charge state phosphorus and antimony were achieved; a Calutron-Bemas ion source with a 70% output of boron ion current (compared to 25% in present state-of-the-art). Record steady state output currents of higher charge state phosphorous and antimony and P ions: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+} Sb {sup 4 +}, Sb{sup 5+}, and Sb{sup 6+} respectively. Ultimate commercialization goals did not succeed (even though a number of the products like high charge state phosphorus and antimony could have resulted in a lower power consumption of 30 kW/implanter) for the following reasons (which were discovered after R&D completion): record output of high charge state phosphorous would have thermally damage wafers; record high charge state of antimony requires tool (ion implanting machine in ion implantation jargon) modification, which did not make economic sense due to the small number of users. Nevertheless, BNL has benefited from advances in high-charge state ion generation, due to high charge state ions need for RHIC preinjection. High fraction boron ion was delivered to PVI client Axcelis for retrofit and implantation testing; the source could have reduced beam preinjector power consumption by a factor of 3.5. But, since the source generated some lithium (though in miniscule amounts); last minute decision was made not to employ the source in implanters. R&D of novel transport and gasless plasmaless deceleration, as well as decaborane molecular ion source to mitigate space charge problems in low energy shallow ion implantation was also conducted though results were not yet ready for commercialization. Future work should be focused on gasless plasmaless transport and deceleration as well as on molecular ions due to their significance to low energy, shallow implantation; which is the last frontier of ion implantation. To summarize the significant accomplishments: 1. Record steady state output currents of high charge state phosphorous, P, ions in particle milli-Ampere: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA). 2. Record steady state output currents of high charge state antimony, Sb, ions in particle milli-Ampere: Sb{sup 3+} (16.2 pmA), Sb{sup 4+} (7.6 pmA), Sb{sup 5+} (3.3 pmA), and Sb{sup 6+} (2.2 pmA). 3. 70% output of boron ion current (compared to 25% in present state-of-the-art) from a Calutron-Bemas ion source. These accomplishments have the potential of benefiting the semiconductor manufacturing industry by lowering power consumption by as much as 30 kW per ion implanter. Major problem was meeting commercialization goals did not succeed for the following reasons (which were discovered after R&D completion): record output of high charge state phosphorous would have thermally damage wafers; record high charge state of antimony requires tool (ion implanting machine in ion implantation jargon) modification, which did not make economic sense due to the small number of users. High fraction boron ion was delivered to PVI client Axcelis for retrofit and implantation testing; the source could have reduced beam preinjector power consumption by a factor of 3.5. But, since the source generated some lithium (though in miniscule amounts); last minute decision was made not to employ the source in implanters. An additional noteworthy reason for failure to commercialize is the fact that the ion implantation manufacturing industry had been in a very deep bust cycle. BNL, however, has benefited from advances in high-charge state ion generation, due to the need high charge state ions in some RHIC preinjectors. Since the invention of the transistor, the trend has been to miniaturize semiconductor devices. As semiconductors become smaller (and get miniaturized), ion energy needed for implantation decreases, since shallow implantation is desired. But, due to space charge (intra-ion repulsion) effects, forming and transporting ion beams becomes a rather difficult task. A few small manufacturers of low quality semiconductors use plasma immersion to circumvent the problem. However, in plasma immersion undesired plasma impurity ions are also implanted; hence, the quality of those semiconductors is poor. For high quality miniature semiconductor manufacturing, pure, low energy ion beams are utilized. But, low energy ion implanters are characterized by low current (much lower than desirable) and, therefore, low production rates. Consequently, increasing the current of pure low energy ion beams is of paramount importance to the semiconductor industry. Basically, the semiconductor industry needs higher currents and purer ion low energy beams. Therefore R&D of novel transport and gasless plasmaless deceleration, as well as decaborane molecular ion source to mitigate space charge problems in low energy shallow ion implantation was also conducted though results were not yet ready for commercialization. Future work should be focused on gasless plasmaless transport and deceleration as well as cin molecular ions due to their significance to low energy, shallow implantation, which is the last frontier of ion implantation.

  10. Calcium-Mediated Regulation of Proton-Coupled Sodium Transport - Final Report

    SciTech Connect (OSTI)

    Schumaker, Karen S

    2013-10-24

    The long-term goal of our experiments was to understand mechanisms that regulate energy coupling by ion currents in plants. Activities of living organisms require chemical, mechanical, osmotic or electrical work, the energy for which is supplied by metabolism. Adenosine triphosphate (ATP) has long been recognized as the universal energy currency, with metabolism supporting the synthesis of ATP and the hydrolysis of ATP being used for the subsequent work. However, ATP is not the only energy currency in living organisms. A second and very different energy currency links metabolism to work by the movement of ions passing from one side of a membrane to the other. These ion currents play a major role in energy capture and they support a range of physiological processes from the active transport of nutrients to the spatial control of growth and development. In Arabidopsis thaliana (Arabidopsis), the activity of a plasma membrane Na+/H+ exchanger, SALT OVERLY SENSITIVE1 (SOS1), is essential for regulation of sodium ion homeostasis during plant growth in saline conditions. Mutations in SOS1 result in severely reduced seedling growth in the presence of salt compared to the growth of wild type. SOS1 is a secondary active transporter coupling movement of sodium ions out of the cell using energy stored in the transplasma membrane proton gradient, thereby preventing the build-up of toxic levels of sodium in the cytosol. SOS1 is regulated by complexes containing the SOS2 and CALCINEURIN B-LIKE10 (CBL10) or SOS3 proteins. CBL10 and SOS3 (also identified as CBL4) encode EF-hand calcium sensors that interact physically with and activate SOS2, a serine/threonine protein kinase. The CBL10/SOS2 or SOS3/SOS2 complexes then activate SOS1 Na+/H+ exchange activity. We completed our studies to understand how SOS1 activity is regulated. Specifically, we asked: (1) how does CBL10 regulate SOS1 activity? (2) What role do two putative CBL10-interacting proteins play in SOS1 regulation? (3) Are there differences in the regulation and/or activity of SOS1 in plants differing in their adaptation to salinity?

  11. High Temperature Membrane Working Group

    Broader source: Energy.gov [DOE]

    This presentation provides an overview of the High Temperature Membrane Working Group Meeting in May 2007.

  12. Final Report for DE-FG02-93ER14376,Ionic Transport in Electrochemical Media

    SciTech Connect (OSTI)

    J. W. Halley

    2009-05-20

    This project was a molecular dynamics study of the relevant issues associated with the structure and transport of lithium in polymer electrolytes such as polyethylene oxide(PEO). In close collaboration with quantum chemist Larry Curtiss and neutron scatterers David Lee Price and Marie-Louise Saboungi at Argonne, we used molecular dynamics to study the local structure and dynamics and ion transport in the polymer. The studies elucidated the mechanism of Li transport in PEO, revealing that the rate limiting step is extremely sensitive to the magnitude of the torsion forces in the backbone of the polymer. Because the torsion forces are difficult to manipulate chemically, this makes it easier to understand why improving the conductivity of PEO based electrolytes has proven to be very difficult. We studied the transport properties of cations in ionic liquids as possible additives to polymer membranes for batteries and fuel cells and found preliminary indications that the transport is enhanced near phase separation in acid-ionic liquid mixtures.

  13. WIPP Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transuranic Waste Transportation Container Documents Documents related to transuranic waste containers and packages. CBFO Tribal Program Information about WIPP shipments across tribal lands. Transportation Centralized Procurement Program - The Centralized Procurement Program provides a common method to procure standard items used in the packaging and handling of transuranic wasted destined for WIPP. Transuranic Waste Transportation Routes - A map showing transuranic waste generator sites and

  14. Transport Reactor Development Unit Modification to Provide a Syngas Slipstream at Elevated Conditions to Enable Separation of 100 LB/D of Hydrogen by Hydrogen Separation Membranes Year - 6 Activity 1.15 - Development of a National Center for Hydrogen Technology

    SciTech Connect (OSTI)

    Schlasner, Steven

    2012-03-01

    Gasification of coal when associated with carbon dioxide capture and sequestration has the potential to provide low-cost as well as low-carbon hydrogen for electric power, fuels or chemicals production. The key element to the success of this concept is inexpensive, effective separation of hydrogen from carbon dioxide in synthesis gas. Many studies indicate that membrane technology is one of the most, if not the most, economical means of accomplishing separation; however, the advancement of hydrogen separation membrane technology is hampered by the absence of experience or demonstration that the technology is effective economically and environmentally at larger scales. While encouraging performance has been observed at bench scale (less than 12 lb/d hydrogen), it would be imprudent to pursue a largescale demonstration without testing at least one intermediate scale, such as 100 lb/d hydrogen. Among its many gasifiers, the Energy & Environmental Research Center is home to the transport reactor demonstration unit (TRDU), a unit capable of firing 200—500 lb/hr of coal to produce 400 scfm of synthesis gas containing more than 200 lb/d of hydrogen. The TRDU and associated downstream processing equipment has demonstrated the capability of producing a syngas over a wide range of temperatures and contaminant levels — some of which approximate conditions of commercial-scale gasifiers. Until this activity, however, the maximum pressure of the TRDU’ s product syngas was 120 psig, well below the 400+ psig pressures of existing large gasifiers. This activity installed a high-temperature compressor capable of accepting the range of TRDU products up to 450°F and compressing them to 500 psig, a pressure comparable to some large scale gasifiers. Thus, with heating or cooling downstream of the TRDU compressor, the unit is now able to present a near-raw to clean gasifier synthesis gas containing more than 100 lb/d of hydrogen at up to 500 psig over a wide range of temperatures to hydrogen separation membranes or other equipment for development and demonstration.

  15. Transportation Fuel Supply | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SheetsTransportation Fuel Supply content top Transportation Fuel Supply

  16. Ion focusing

    DOE Patents [OSTI]

    Cooks, Robert Graham; Baird, Zane; Peng, Wen-Ping

    2015-11-10

    The invention generally relates to apparatuses for focusing ions at or above ambient pressure and methods of use thereof. In certain embodiments, the invention provides an apparatus for focusing ions that includes an electrode having a cavity, at least one inlet within the electrode configured to operatively couple with an ionization source, such that discharge generated by the ionization source is injected into the cavity of the electrode, and an outlet. The cavity in the electrode is shaped such that upon application of voltage to the electrode, ions within the cavity are focused and directed to the outlet, which is positioned such that a proximal end of the outlet receives the focused ions and a distal end of the outlet is open to ambient pressure.

  17. Supported microporous ceramic membranes

    DOE Patents [OSTI]

    Webster, Elizabeth (Madison, WI); Anderson, Marc (Madison, WI)

    1993-01-01

    A method for permformation of microporous ceramic membranes onto a porous support includes placing a colloidal suspension of metal or metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane useful for ultrafiltration, reverse osmosis, or molecular sieving having mean pore sizes less than 100 Angstroms.

  18. Supported microporous ceramic membranes

    DOE Patents [OSTI]

    Webster, E.; Anderson, M.

    1993-12-14

    A method for the formation of microporous ceramic membranes onto a porous support includes placing a colloidal suspension of metal or metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane useful for ultrafiltration, reverse osmosis, or molecular sieving having mean pore sizes less than 100 Angstroms. 4 figures.

  19. An ultra-thin diamond membrane as a transmission particle detector and vacuum window for external microbeams

    SciTech Connect (OSTI)

    Grilj, V.; Skukan, N.; Jaki?, M.; Pomorski, M.; Kada, W.; Iwamoto, N.; Kamiya, T.; Ohshima, T.

    2013-12-09

    Several applications of external microbeam techniques demand a very accurate and controlled dose delivery. To satisfy these requirements when post-sample ion detection is not feasible, we constructed a transmission single-ion detector based on an ultra-thin diamond membrane. The negligible intrinsic noise provides an excellent signal-to-noise ratio and enables a hit-detection efficiency of close to 100%, even for energetic protons, while the small thickness of the membrane limits beam spreading. Moreover, because of the superb mechanical stiffness of diamond, this membrane can simultaneously serve as a vacuum window and allow the extraction of an ion microbeam into the atmosphere.

  20. Systems and methods for selective hydrogen transport and measurement

    DOE Patents [OSTI]

    Glatzmaier, Gregory C

    2013-10-29

    Systems and methods for selectively removing hydrogen gas from a hydrogen-containing fluid volume are disclosed. An exemplary system includes a proton exchange membrane (PEM) selectively permeable to hydrogen by exclusively conducting hydrogen ions. The system also includes metal deposited as layers onto opposite sides or faces of the PEM to form a membrane-electrode assembly (MEA), each layer functioning as an electrode so that the MEA functions as an electrochemical cell in which the ionic conductors are hydrogen ions, and the MEA functioning as a hydrogen selective membrane (HSM) when located at the boundary between a hydrogen-containing fluid volume and a second fluid.

  1. Overcharge Protection Prevents Exploding Lithium Ion Batteries - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Overcharge Protection Prevents Exploding Lithium Ion Batteries Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing Summary Berkeley Lab scientists Guoying Chen and Thomas J. Richardson have invented a new type of separator membrane that prevents dangerous overcharge and overdischarge conditions in rechargeable lithium-ion batteries, i.e., exploding lithium ion batteries. This low cost separator, with electroactive polymers

  2. Hydrogen separation membranes annual report for FY 2006.

    SciTech Connect (OSTI)

    Balachandran, U.; Chen, L.; Ciocco, M.; Doctor, R. D.; Dorris, S.E.; Emerson, J. E.; Fisher, B.; Lee, T. H.; Killmeyer, R. P.; Morreale,B.; Picciolo, J. J.; Siriwardane, R. V.; Song, S. J.

    2007-02-05

    The objective of this work is to develop dense ceramic membranes for separating hydrogen from other gaseous components in a nongalvanic mode, i.e., without using an external power supply or electrical circuitry. This goal of this project is to develop two types of dense ceramic membrane for producing hydrogen nongalvanically, i.e., without electrodes or external power supply, at commercially significant fluxes under industrially relevant operating conditions. The first type of membrane, hydrogen transport membranes (HTMs), will be used to separate hydrogen from gas mixtures such as the product streams from coal gasification, methane partial oxidation, and water-gas shift reactions. Potential ancillary uses of HTMs include dehydrogenation and olefin production, as well as hydrogen recovery in petroleum refineries and ammonia synthesis plants, the largest current users of deliberately produced hydrogen. The second type of membrane, oxygen transport membranes (OTMs), will produce hydrogen by nongalvanically removing oxygen that is generated when water dissociates at elevated temperatures. This report describes progress that was made during FY 2006 on the development of OTM and HTM materials.

  3. Greening Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Goal 2: Greening Transportation LANL supports and encourages employees to reduce their personal greenhouse gas emissions by offering various commuting and work schedule options. Our goal is to reduce emissions related to employee travel and commuting to and from work by 13 percent. Energy Conservation» Efficient Water Use & Management» High Performance Sustainable Buildings» Greening Transportation» Green Purchasing & Green Technology» Pollution Prevention» Science

  4. Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Transportation Energyadmin2015-05-14T22:34:50+00:00 Transportation Energy The national-level objective for the future is to create a carbon-neutral fleet that is powered by low-carbon US sources. Sandia delivers advanced technologies and design tools to the broad transportation sector in the following areas: Predictive Simulation of Engines Fuel sprays and their transition from the liquid to gas phase and computationally tractable models that capture the physics of combustion. Convergence of

  5. Hydrogen-selective membrane

    DOE Patents [OSTI]

    Collins, John P. (Boulder, CO); Way, J. Douglas (Boulder, CO)

    1997-01-01

    A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 .mu.m but typically less than about 20 .mu.m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m.sup.2. s at a temperature of greater than about 500.degree. C. and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500.degree. C. and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400.degree. C. and less than about 1000.degree. C. before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process.

  6. Hydrogen-Selective Membrane

    DOE Patents [OSTI]

    Collins, John P. (Boulder, CO); Way, J. Douglas (Boulder, CO)

    1995-09-19

    A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 .mu.m but typically less than about 20 .mu.m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m.sup.2.s at a temperature of greater than about 500.degree. C. and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500.degree. C. and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400.degree. C. and less than about 1000.degree. C. before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process.

  7. Hydrogen-selective membrane

    DOE Patents [OSTI]

    Collins, J.P.; Way, J.D.

    1995-09-19

    A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 {micro}m but typically less than about 20 {micro}m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m{sup 2}s at a temperature of greater than about 500 C and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500 C and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400 C and less than about 1000 C before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process. 9 figs.

  8. Hydrogen-selective membrane

    DOE Patents [OSTI]

    Collins, J.P.; Way, J.D.

    1997-07-29

    A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 {micro}m but typically less than about 20 {micro}m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m{sup 2} s at a temperature of greater than about 500 C and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500 C and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400 C and less than about 1000 C before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process. 9 figs.

  9. Sustainable Transportation

    SciTech Connect (OSTI)

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in transportation technologies, alternative fuels, and fuel cell technologies.

  10. Conception and construction of an LPG tank using a composite membrane technology

    SciTech Connect (OSTI)

    Fuvel, P.; Claude, J.

    1985-03-01

    TECHNIGAZ and TOTAL C.F.P. have developed a new LPG storage technology derived from the membrane concept used for LNG storage and transportation. This technology called GMS uses a composite membrane as primary barrier. A 2 000 m/sup 3/ storage pilot unit, based on that concept, is under construction in TOTAL's refinery at DUNKIRK (France) since September 1983.

  11. DOE Technical Targets for Fuel Cell Systems for Transportation Applications

    Broader source: Energy.gov [DOE]

    These tables list the U.S. Department of Energy (DOE) technical targets for integrated polymer electrolyte membrane (PEM) fuel cell power systems and fuel cell stacks operating on direct hydrogen for transportation applications.

  12. Durable Fuel Cell Membrane Electrode Assembly (MEA)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Durable Fuel Cell Membrane Electrode Assembly (MEA) Durable Fuel Cell Membrane Electrode Assembly (MEA) A revolutionary method of building a membrane electrode assembly (MEA) for...

  13. Ceramic membranes having macroscopic channels

    DOE Patents [OSTI]

    Anderson, M.A.; Peterson, R.A.

    1996-09-03

    Methods have been developed to make porous ceramic membranes having macroscopic channels therethrough. The novel membranes are formed by temporarily supporting the sol-gel membrane precursor on an organic support which is ultimately removed from the interior of the membrane, preferably by pyrolysis or by chemical destruction. The organic support may also include an inorganic metal portion that remains on destruction of the organic portion, providing structural support and/or chemical reactivity to the membrane. The channels formed when the organic support is destroyed provide the ability to withdraw small catalytic products or size-separated molecules from the metal oxide membrane. In addition, the channel-containing membranes retain all of the advantages of existing porous ceramic membranes. 1 fig.

  14. Ceramic membranes having macroscopic channels

    DOE Patents [OSTI]

    Anderson, Marc A. (Madison, WI); Peterson, Reid A. (Madison, WI)

    1996-01-01

    Methods have been developed to make porous ceramic membranes having macroscopic channels therethrough. The novel membranes are formed by temporarily supporting the sol-gel membrane precursor on an organic support which is ultimately removed from the interior of the membrane, preferably by pyrolysis or by chemical destruction. The organic support may also include an inorganic metal portion that remains on destruction of the organic portion, providing structural support and/or chemical reactivity to the membrane. The channels formed when the organic support is destroyed provide the ability to withdraw small catalytic products or size-separated molecules from the metal oxide membrane. In addition, the channel-containing membranes retain all of the advantages of existing porous ceramic membranes.

  15. Automotive Perspective on Membrane Evaluation

    Broader source: Energy.gov [DOE]

    Presentation at the 2008 High Temperature Membrane Working Group Meeting held June 9, 2008, in Washington, DC

  16. Ion mobility spectrometer using frequency-domain separation

    DOE Patents [OSTI]

    Martin, Stephen J. (Albuquerque, NM); Butler, Michael A. (Albuquerque, NM); Frye, Gregory C. (Cedar Crest, NM); Schubert, W. Kent (Albuquerque, NM)

    1998-01-01

    An apparatus and method is provided for separating and analyzing chemical species in an ion mobility spectrometer using a frequency-domain technique wherein the ions generated from the chemical species are selectively transported through an ion flow channel having a moving electrical potential therein. The moving electrical potential allows the ions to be selected according to ion mobility, with certain of the ions being transported to an ion detector and other of the ions being effectively discriminated against. The apparatus and method have applications for sensitive chemical detection and analysis for monitoring of exhaust gases, hazardous waste sites, industrial processes, aerospace systems, non-proliferation, and treaty verification. The apparatus can be formed as a microelectromechanical device (i.e. a micromachine).

  17. Ion mobility spectrometer using frequency-domain separation

    DOE Patents [OSTI]

    Martin, S.J.; Butler, M.A.; Frye, G.C.; Schubert, W.K.

    1998-08-04

    An apparatus and method are provided for separating and analyzing chemical species in an ion mobility spectrometer using a frequency-domain technique wherein the ions generated from the chemical species are selectively transported through an ion flow channel having a moving electrical potential therein. The moving electrical potential allows the ions to be selected according to ion mobility, with certain of the ions being transported to an ion detector and other of the ions being effectively discriminated against. The apparatus and method have applications for sensitive chemical detection and analysis for monitoring of exhaust gases, hazardous waste sites, industrial processes, aerospace systems, non-proliferation, and treaty verification. The apparatus can be formed as a microelectromechanical device (i.e. a micromachine). 6 figs.

  18. Membrane separation of hydrocarbons

    DOE Patents [OSTI]

    Chang, Y. Alice; Kulkarni, Sudhir S.; Funk, Edward W.

    1986-01-01

    Mixtures of heavy oils and light hydrocarbons may be separated by passing the mixture through a polymeric membrane. The membrane which is utilized to effect the separation comprises a polymer which is capable of maintaining its integrity in the presence of hydrocarbon compounds and which has been modified by being subjected to the action of a sulfonating agent. Sulfonating agents which may be employed will include fuming sulfuric acid, chlorosulfonic acid, sulfur trioxide, etc., the surface or bulk modified polymer will contain a degree of sulfonation ranging from about 15 to about 50%. The separation process is effected at temperatures ranging from about ambient to about 100.degree. C. and pressures ranging from about 50 to about 1000 psig.

  19. Inhomogeneity smoothing using density valley formed by ion beam deposition

    Office of Scientific and Technical Information (OSTI)

    in ICF fuel pellet (Journal Article) | SciTech Connect Inhomogeneity smoothing using density valley formed by ion beam deposition in ICF fuel pellet Citation Details In-Document Search Title: Inhomogeneity smoothing using density valley formed by ion beam deposition in ICF fuel pellet We study the beam non-uniformity smoothing effect of the radiation transport in the density valley formed by an ion-beam deposition in an ion-beam inertial confinement fusion pellets by numerical simulation.

  20. Recycling of used perfluorosulfonic acid membranes

    DOE Patents [OSTI]

    Grot, Stephen (Middletown, DE); Grot, Walther (Chadds Ford, PA)

    2007-08-14

    A method for recovering and recycling catalyst coated fuel cell membranes includes dissolving the used membranes in water and solvent, heating the dissolved membranes under pressure and separating the components. Active membranes are produced from the recycled materials.

  1. Novel Catalytic Membrane Reactors

    SciTech Connect (OSTI)

    Stuart Nemser, PhD

    2010-10-01

    There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

  2. Final Report - Membranes and MEA's for Dry, Hot Operating Conditions

    SciTech Connect (OSTI)

    Hamrock, Steven J.

    2011-06-30

    The focus of this program was to develop a new Proton Exchange Membrane (PEM) which can operate under hotter, dryer conditions than the state of the art membranes today and integrate it into a Membrane Electrode Assembly (MEA). These MEA's should meet the performance and durability requirements outlined in the solicitation, operating under low humidification conditions and at temperatures ranging from -20???ºC to 120???ºC, to meet 2010 DOE technical targets for membranes. This membrane should operate under low humidification conditions and at temperatures ranging from -20???ºC to 120???ºC in order to meet DOE HFCIT 2010 commercialization targets for automotive fuel cells. Membranes developed in this program may also have improved durability and performance characteristics making them useful in stationary fuel cell applications. The new membranes, and the MEA?¢????s comprising them, should be manufacturable at high volumes and at costs which can meet industry and DOE targets. This work included: A) Studies to better understand factors controlling proton transport within the electrolyte membrane, mechanisms of polymer degradation (in situ and ex situ) and membrane durability in an MEA; B) Development of new polymers with increased proton conductivity over the range of temperatures from -20???ºC to 120???ºC and at lower levels of humidification and with improved chemical and mechanical stability; C) Development of new membrane additives for increased durability and conductivity under these dry conditions; D) Integration of these new materials into membranes and membranes into MEA?¢????s, including catalyst and gas diffusion layer selection and integration; E) Verification that these materials can be made using processes which are scalable to commercial volumes using cost effective methods; F) MEA testing in single cells using realistic automotive testing protocols. This project addresses technical barriers A (Durability) and C (Performance) from the Fuel Cells section of the 2005 Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year R&D Plan. In the course of this four-year program we developed a new PEM with improved proton conductivity, chemical stability and mechanical stability. We incorporated this new membrane into MEAs and evaluated performance and durability.

  3. Highly charged ion secondary ion mass spectroscopy

    DOE Patents [OSTI]

    Hamza, Alex V.; Schenkel, Thomas; Barnes, Alan V.; Schneider, Dieter H.

    2001-01-01

    A secondary ion mass spectrometer using slow, highly charged ions produced in an electron beam ion trap permits ultra-sensitive surface analysis and high spatial resolution simultaneously. The spectrometer comprises an ion source producing a primary ion beam of highly charged ions that are directed at a target surface, a mass analyzer, and a microchannel plate detector of secondary ions that are sputtered from the target surface after interaction with the primary beam. The unusually high secondary ion yield permits the use of coincidence counting, in which the secondary ion stops are detected in coincidence with a particular secondary ion. The association of specific molecular species can be correlated. The unique multiple secondary nature of the highly charged ion interaction enables this new analytical technique.

  4. How the Membrane Protein AmtB Transports Ammonia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    were grown in the absence of any ammonium derivative and in the presence of ammonium sulfate or methyl ammonium sulfate. A stereo view of the monomeric ammonia channel viewed...

  5. How the Membrane Protein AmtB Transports Ammonia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the uncharged NH3 "gas." A Doorway for Letting Ammonia into Cells Like any factory, a biological cell takes in raw materials and energy and expels waste products. What goes in...

  6. Trifluorostyrene containing compounds, and their use in polymer electrolyte membranes

    DOE Patents [OSTI]

    Choudhury, Biswajit (Kingston, CA); Roelofs, Mark Gerrit (Hockessin, DE); Yang; Zhen-Yu (Hockessin, DE)

    2009-07-21

    A fluorinated ion exchange polymer is prepared by grafting a monomer onto a base polymer, wherein the grafting monomer is selected from the group consisting of structure 1a, 1b and mixture thereof; ##STR00001## wherein Y is selected from the group consisting of --R.sub.FSO.sub.2F, --R.sub.FSO.sub.3M, --R.sub.SO.sub.2NH.sub.2 and --R.sub.FSO.sub.2N(M)SO.sub.2R.sup.2.sub.F, where in M is hydrogen, an alkali cation or ammonium; and R.sub.F and R.sup.2.sub.F are perfluorinated or partially fluorinated, and may optionally include ether oxygens; and n is between 1 and 2 for 1a, or n is between 1 and 3 for 1b. These ion exchange polymers are useful is preparing catalyst coated membranes and membrane electrode assemblies for fuel cells.

  7. Pilot Scale Water Gas Shift - Membrane Device for Hydrogen from Coal

    SciTech Connect (OSTI)

    Barton, Tom

    2013-06-30

    The objectives of the project were to build pilot scale hydrogen separation systems for use in a gasification product stream. This device would demonstrate fabrication and manufacturing techniques for producing commercially ready facilities. The design was a 2 lb/day hydrogen device which included composite hydrogen separation membranes, a water gas shift monolith catalyst, and stainless steel structural components. Synkera Technologies was to prepare hydrogen separation membranes with metallic rims, and to adjust the alloy composition in their membranes to a palladium-gold composition which is sulfur resistant. Chart was to confirm their brazing technology for bonding the metallic rims of the composite membranes to their structural components and design and build the 2 lbs/day device incorporating membranes and catalysts. WRI prepared the catalysts and completed the testing of the membranes and devices on coal derived syngas. The reactor incorporated eighteen 2'' by 7'' composite palladium alloy membranes. These membranes were assembled with three stacks of three paired membranes. Initial vacuum testing and visual inspection indicated that some membranes were cracked, either in transportation or in testing. During replacement of the failed membranes, while pulling a vacuum on the back side of the membranes, folds were formed in the flexible composite membranes. In some instances these folds led to cracks, primarily at the interface between the alumina and the aluminum rim. The design of the 2 lb/day device was compromised by the lack of any membrane isolation. A leak in any membrane failed the entire device. A large number of tests were undertaken to bring the full 2 lb per day hydrogen capacity on line, but no single test lasted more than 48 hours. Subsequent tests to replace the mechanical seals with brazing have been promising, but the technology remains promising but not proven.

  8. Decoherence and dephasing errors caused by the dc Stark effect in rapid ion

    Office of Scientific and Technical Information (OSTI)

    transport (Journal Article) | SciTech Connect Decoherence and dephasing errors caused by the dc Stark effect in rapid ion transport Citation Details In-Document Search Title: Decoherence and dephasing errors caused by the dc Stark effect in rapid ion transport We investigate the error due to the dc Stark effect for quantum information processing for trapped ion quantum computers using the scalable architecture proposed in D. Wineland et al. [J. Res. Natl. Inst. Stand. Technol. 103, 259

  9. Ion Stancu

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Search for Neutrino Oscillations with MiniBooNE Ion Stancu University of Alabama Frontiers in Neutrino Physics APC, Paris, October 6th, 2011 06.10.2011
FNP
 2
 Ion
Stancu
-
University
of
Alabama
 Introduction Review of the MiniBooNE oscillation results: * Motivation for MiniBooNE: testing the LSND signal * MiniBooNE design strategy and assumptions * Neutrino oscillation results: PRL 98, 231801 (2007) & PRL 102, 101802 (2009) * Antineutrino oscillation results: PRL 103,

  10. Improved ion source

    DOE Patents [OSTI]

    Leung, K.N.; Ehlers, K.W.

    1982-05-04

    A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species,

  11. Supported liquid membrane electrochemical separators

    DOE Patents [OSTI]

    Pemsler, J. Paul (Lexington, MA); Dempsey, Michael D. (Revere, MA)

    1986-01-01

    Supported liquid membrane separators improve the flexibility, efficiency and service life of electrochemical cells for a variety of applications. In the field of electrochemical storage, an alkaline secondary battery with improved service life is described in which a supported liquid membrane is interposed between the positive and negative electrodes. The supported liquid membranes of this invention can be used in energy production and storage systems, electrosynthesis systems, and in systems for the electrowinning and electrorefining of metals.

  12. The change of microstructure and thermal properties in ion irradiated carbon nanotube mats as a function of ion penetration depth

    SciTech Connect (OSTI)

    Aitkaliyeva, A. [Materials Science and Engineering Program, Texas A and M University, College Station, Texas 77843 (United States)] [Materials Science and Engineering Program, Texas A and M University, College Station, Texas 77843 (United States); Shao, L. [Materials Science and Engineering Program, Texas A and M University, College Station, Texas 77843 (United States) [Materials Science and Engineering Program, Texas A and M University, College Station, Texas 77843 (United States); Department of Nuclear Engineering, Texas A and M University, College Station, Texas 77843 (United States)

    2013-02-11

    A stack of three carbon nanotube (CNT) mats was irradiated with 3 MeV He ions. The change in structural and thermal properties of individual mats as a function of ion penetration depth was characterized using electron microscopy and laser flash techniques. Ion irradiation can enhance thermal conductivity of the mats by introducing inter-tube displacements, which improve phonon transport across adjacent nanotubes. The enhancement, however, is reduced at higher damage levels due to the increasing phonon-defect scattering within the tubes. This study demonstrates the feasibility of using ion irradiation to manipulate thermal transport in carbon nanotubes.

  13. Composite membrane with integral rim

    DOE Patents [OSTI]

    Routkevitch, Dmitri; Polyakov, Oleg G

    2015-01-27

    Composite membranes that are adapted for separation, purification, filtration, analysis, reaction and sensing. The composite membranes can include a porous support structure having elongate pore channels extending through the support structure. The composite membrane also includes an active layer comprising an active layer material, where the active layer material is completely disposed within the pore channels between the surfaces of the support structure. The active layer is intimately integrated within the support structure, thus enabling great robustness, reliability, resistance to mechanical stress and thermal cycling, and high selectivity. Methods for the fabrication of composite membranes are also provided.

  14. Protein Flips Lipids Across Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    molecular complex is caught at a moment following the transporter's "power stroke," the force-generating part of the transport cycle. This snapshot suggests a mechanism by which...

  15. Potentiometric measurement of polymer-membrane electrodes based on lanthanum

    SciTech Connect (OSTI)

    Saefurohman, Asep Buchari, Noviandri, Indra; Syoni

    2014-03-24

    Quantitative analysis of rare earth elements which are considered as the standard method that has a high accuracy, and detection limits achieved by the order of ppm is inductively coupled plasma atomic emission spectroscopy (ICPAES). But these tools are expensive and valuable analysis of the high cost of implementation. In this study be made and characterized selective electrode for the determination of rare earth ions is potentiometric. Membrane manufacturing techniques studied is based on immersion (liquid impregnated membrane) in PTFE 0.5 pore size. As ionophores to be used tri butyl phosphate (TBP) and bis(2-etylhexyl) hydrogen phosphate. There is no report previously that TBP used as ionophore in polymeric membrane based lanthanum. Some parameters that affect the performance of membrane electrode such as membrane composition, membrane thickness, and types of membrane materials studied in this research. Manufacturing of Ion Selective Electrodes (ISE) Lanthanum (La) by means of impregnation La membrane in TBP in kerosene solution has been done and showed performance for ISE-La. FTIR spectrum results for PTFE 0.5 pore size which impregnated in TBP and PTFE blank showed difference of spectra in the top 1257 cm{sup ?1}, 1031 cm{sup ?1} and 794.7 cm{sup ?1} for P=O stretching and stretching POC from group ?OP =O. The result showed shift wave number for P =O stretching of the cluster (?OP=O) in PTFE-TBP mixture that is at the peak of 1230 cm{sup ?1} indicated that no interaction bond between hydroxyl group of molecules with molecular clusters fosforil of TBP or R{sub 3}P = O. The membrane had stable responses in pH range between 1 and 9. Good responses were obtained using 10{sup ?3} M La(III) internal solution, which produced relatively high potential. ISE-La showed relatively good performances. The electrode had a response time of 294.5 second and could be use for 50 days. The linear range was between 10{sup ?5} and 10{sup ?1} M.

  16. Oxygen-permeable ceramic membranes for gas separation

    SciTech Connect (OSTI)

    Balachandran, U.; Ma, B.; Maiya, P.S.; Dusek, J.T.; Mieville, R.L.; Picciolo, J.J.

    1998-02-01

    Mixed-conducting oxides have a wide range of applications, including fuel cells, gas separation systems, sensors, and electrocatalytic equipment. Dense ceramic membranes made of mixed-conducting oxides are particularly attractive for gas separation and methane conversion processes. Membranes made of Sr-Fe-Co oxide, which exhibits high combined electronic and oxygen ionic conductivities, can be used to selectively transport oxygen during the partial oxidation of methane to synthesis gas (syngas, i.e., CO + H{sub 2}). The authors have fabricated tubular Sr{sub 2}Fe{sub 2}CoO{sub 6+{delta}} membranes and tested them (some for more than 1,000 h) in a methane conversion reactor that was operating at 850--950 C. An oxygen permeation flux of {approx} 10 scc/cm{sup 2} {center_dot} min was obtained at 900 C in a tubular membrane with a wall thickness of 0.75 mm. Using a gas-tight electrochemical cell, the authors have also measured the steady-state oxygen permeability of flat Sr{sub 2}Fe{sub 2}CoO{sub 6+{delta}} membranes as a function of temperature and oxygen partial pressure(pO{sub 2}). Steady-state oxygen permeability increases with increasing temperature and with the difference in pO{sub 2} on the two sides of the membrane. At 900 C, an oxygen permeability of {approx} 2.5 scc/cm{sup 2} {center_dot} min was obtained in a 2.9-mm-thick membrane. This value agrees with that obtained in methane conversion reactor experiments. Current-voltage (I-V) characteristics determined in the gas-tight cell indicate that bulk effect, rather than surface exchange effect, is the main limiting factor for oxygen permeation of {approx} 1-mm-thick Sr{sub 2}Fe{sub 2}CoO{sub 6+{delta}} membranes at elevated temperatures (> 650 C).

  17. Membrane Separator for Redox Flow Batteries that Utilize Anion Radical Mediators.

    SciTech Connect (OSTI)

    Delnick, Frank M.

    2014-10-01

    A Na + ion conducting polyethylene oxide membrane is developed for an organic electrolyte redox flow battery that utilizes anion radical mediators. To achieve high specific ionic conductivity, tetraethyleneglycol dimethylether (TEGDME) is used as a plasticizer to reduce crystallinity and increase the free volume of the gel film. This membrane is physically and chemically stable in TEGDME electrolyte that contains highly reactive biphenyl anion radical mediators.

  18. Short wavelength ion temperature gradient turbulence

    SciTech Connect (OSTI)

    Chowdhury, J.; Ganesh, R. [Institute for Plasma Research, Bhat, Gandhinagar (India); Brunner, S.; Lapillonne, X.; Villard, L. [CRPP, Association EURATOM-Confederation Suisse, EPFL, 1015 Lausanne (Switzerland); Jenko, F. [Max-Planck-Institut fuer Plasmaphysik Boltzmannstr. 2, D-85748 Garching (Germany)

    2012-10-15

    The ion temperature gradient (ITG) mode in the high wavenumber regime (k{sub y}{rho}{sub s}>1), referred to as short wavelength ion temperature gradient mode (SWITG) is studied using the nonlinear gyrokinetic electromagnetic code GENE. It is shown that, although the SWITG mode may be linearly more unstable than the standard long wavelength (k{sub y}{rho}{sub s}<1) ITG mode, nonlinearly its contribution to the total thermal ion heat transport is found to be low. We interpret this as resulting from an increased zonal flow shearing effect on the SWITG mode suppression.

  19. High Flux Metallic Membranes for Hydrogen Recovery and Membrane Reactors

    SciTech Connect (OSTI)

    Buxbaum, Robert

    2010-06-30

    We made and tested over 250 new alloys for use as lower cost, higher flux hydrogen extraction membrane materials. Most of these were intermetallic, or contained significant intermetallic content, particularly based on B2 alloy compositions with at least one refractory component; B2 intermetallics resemble BCC alloys, in structure, but the atoms have relatively fixed positions, with one atom at the corners of the cube, the other at the centers. The target materals we were looking for would contain little or no expensive elements, no strongly toxic or radioactive elements, would have high flux to hydrogen, while being fabricable, brazable, and relatively immune to hydrogen embrittlement and corrosion in operation. The best combination of properties of the membrane materials we developed was, in my opinion, a Pd-coated membrane consisting of V -9 atomic % Pd. This material was relatively cheap, had 5 times the flux of Pd under the same pressure differential, was reasonably easy to fabricate and braze, and not bad in terms of embrittlement. Based on all these factors we project, about 1/3 the cost of Pd, on an area basis for a membrane designed to last 20 years, or 1/15 the cost on a flux basis. Alternatives to this membrane replaced significant fractions of the Pd with Ni and or Co. The cost for these membranes was lower, but so was the flux. We produced successful brazed products from the membrane materials, and made them into flat sheets. We tested, unsuccessfully, several means of fabricating thematerials into tubes, and eventually built a membrane reactor using a new, flat-plate design: a disc and doughnut arrangement, a design that seems well- suited to clean hydrogen production from coal. The membranes and reactor were tested successfully at Western Research. A larger equipment company (Chart Industries) produced similar results using a different flat-plate reactor design. Cost projections of the membrane are shown to be attractive.

  20. Ion Monitoring

    DOE Patents [OSTI]

    Orr, Christopher Henry (Calderbridge, GB); Luff, Craig Janson (Calderbridge, GB); Dockray, Thomas (Calderbridge, GB); Macarthur, Duncan Whittemore (Los Alamos, NM)

    2003-11-18

    The apparatus and method provide a technique for significantly reducing capacitance effects in detector electrodes arising due to movement of the instrument relative to the item/location being monitored in ion detection based techniques. The capacitance variations are rendered less significant by placing an electrically conducting element between the detector electrodes and the monitored location/item. Improved sensitivity and reduced noise signals arise as a result. The technique also provides apparatus and method suitable for monitoring elongate items which are unsuited to complete enclosure in one go within a chamber. The items are monitored part by part as the pass through the instrument, so increasing the range of items or locations which can be successfully monitored.

  1. Ion mobility sensor

    DOE Patents [OSTI]

    Koo, Jackson C.; Yu, Conrad M.

    2005-08-23

    An ion mobility sensor which can detect both ion and molecules simultaneously. Thus, one can measure the relative arrival times between various ions and molecules. Different ions have different mobility in air, and the ion sensor enables measurement of ion mobility, from which one can identify the various ions and molecules. The ion mobility sensor which utilizes a pair of glow discharge devices may be designed for coupling with an existing gas chromatograph, where various gas molecules are already separated, but numbers of each kind of molecules are relatively small, and in such cases a conventional ion mobility sensor cannot be utilized.

  2. Hydrogen separation membranes annual report for FY 2010.

    SciTech Connect (OSTI)

    Balachandran, U.; Dorris, S. E; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J.

    2011-03-14

    The objective of this work is to develop dense ceramic membranes for separating hydrogen from other gaseous components in a nongalvanic mode, i.e., without using an external power supply or electrical circuitry. The goal of this project is to develop dense hydrogen transport membranes (HTMs) that nongalvanically (i.e., without electrodes or external power supply) separate hydrogen from gas mixtures at commercially significant fluxes under industrially relevant operating conditions. These membranes will be used to separate hydrogen from gas mixtures such as the product streams from coal gasification, methane partial oxidation, and water-gas shift reactions. Potential ancillary uses of HTMs include dehydrogenation and olefin production, as well as hydrogen recovery in petroleum refineries and ammonia synthesis plants, the largest current users of deliberately produced hydrogen. This report describes the results from the development and testing of HTM materials during FY 2010.

  3. Palladium-coated zirconium membranes for oxidative extraction of hydrogen

    SciTech Connect (OSTI)

    Hsu, C.; Buxbaum, R.E.

    1987-01-01

    Palladium-coated metal membranes are attractive choices for low pressure, high temperature hydrogen and hydrogen isotope extractions, e.g. from fusion blanket fluids. The authors present experimental data on hydrogen transport through palladium-coated zirconium membranes at 600 - 700/sup 0/K. The upstream hydrogen pressure range is 10/sup -4/ to 10/sup -6/ torr and an oxygen-containing gas flows over the downstream side of the membrane. Thus, the irreversible oxidation reaction drives the flux. Deuterium permeabilities in zirconium are 2.00x10/sup -6/exp(59/T)+-20% g-mol/m.s.Pa/sup 1/2/, similar to the values obtained from diffusivity and solubility measurements. Extrapolated deuterium absorptive sticking coefficients on palladium are about .05.

  4. Electrochemical membrane incinerator

    DOE Patents [OSTI]

    Johnson, Dennis C. (Ames, IA); Houk, Linda L. (Ames, IA); Feng, Jianren (Ames, IA)

    2001-03-20

    Electrochemical incineration of p-benzoquinone was evaluated as a model for the mineralization of carbon in toxic aromatic compounds. A Ti or Pt anode was coated with a film of the oxides of Ti, Ru, Sn and Sb. This quaternary metal oxide film was stable; elemental analysis of the electrolyzed solution indicated the concentration of these metal ions to be 3 .mu.g/L or less. The anode showed good reactivity for the electrochemical incineration of benzoquinone. The use of a dissolved salt matrix as the so-called "supporting electrolyte" was eliminated in favor of a solid-state electrolyte sandwiched between the anode and cathode.

  5. Ion Trapping, Storage, and Ejection in Structures for Lossless Ion Manipulations

    SciTech Connect (OSTI)

    Zhang, Xinyu; Garimella, Venkata BS; Prost, Spencer A.; Webb, Ian K.; Chen, Tsung-Chi; Tang, Keqi; Tolmachev, Aleksey V.; Norheim, Randolph V.; Baker, Erin Shammel; Anderson, Gordon A.; Ibrahim, Yehia M.; Smith, Richard D.

    2015-06-16

    A structure for lossless ion manipulation (SLIM) module was constructed with electrode arrays patterned on a pair of parallel printed circuit boards (PCB) separated by 5 mm and utilized to investigate capabilities for ion trapping at 4 Torr. Positive ions were confined by application of RF having alternating phases on a series of inner rung electrodes and by positive DC potentials on surrounding guard electrodes on each PCB. An axial DC field was also introduced by stepwise varying the DC potential of the inner rung electrodes so as to control the ion transport and accumulation inside the ion trap. We show that ions could be trapped and accumulated with 100% efficiency, stored for at least 5 hours with no losses, and could be rapidly ejected from the SLIM trap.

  6. Gas separations using ceramic membranes

    SciTech Connect (OSTI)

    Liu, P.K.T.; Lin, C.L.; Flowers, D.L.; Wu, J.C.S.; Smith, G.W.

    1992-12-01

    Alcoa`s commercial membrane with 40{Angstrom} pore diameter has been identified as one of the potential candidates for high temperature gas separations. This asymmetric multiple layer membrane have been well characterized and evaluated. It has excellent thermal stability and acceptably hydrothermal stability at {approximately}650{degree}C or above. Gas separations with this membrane follow Knudsen diffusion. Its selectivity is suitable for bulk separations, or for reduction/elimination of H{sub 2}S and NH{sub 3} via selective removal of hydrogen. An improved separation efficiency with this membrane is highly desirable for applications involving hydrogen separation, and the removal of trace contaminants, such as H{sub 2}S and NH{sub 3}. One of the effective avenues in improving the efficiency of the existing membrane is to narrow its pore size through surface modifications. Thus membranes with a smaller pore size can be readily available through minor modifications of the existing commercial product. In this paper focus is on the morphological characterization and performance evaluation of hydrogen-selective and zeolitic membranes developed from existing commercial membranes.

  7. Gas separations using ceramic membranes

    SciTech Connect (OSTI)

    Liu, P.K.T.; Lin, C.L.; Flowers, D.L.; Wu, J.C.S.; Smith, G.W.

    1992-01-01

    Alcoa's commercial membrane with 40[Angstrom] pore diameter has been identified as one of the potential candidates for high temperature gas separations. This asymmetric multiple layer membrane have been well characterized and evaluated. It has excellent thermal stability and acceptably hydrothermal stability at [approximately]650[degree]C or above. Gas separations with this membrane follow Knudsen diffusion. Its selectivity is suitable for bulk separations, or for reduction/elimination of H[sub 2]S and NH[sub 3] via selective removal of hydrogen. An improved separation efficiency with this membrane is highly desirable for applications involving hydrogen separation, and the removal of trace contaminants, such as H[sub 2]S and NH[sub 3]. One of the effective avenues in improving the efficiency of the existing membrane is to narrow its pore size through surface modifications. Thus membranes with a smaller pore size can be readily available through minor modifications of the existing commercial product. In this paper focus is on the morphological characterization and performance evaluation of hydrogen-selective and zeolitic membranes developed from existing commercial membranes.

  8. Olefin separation membrane and process

    DOE Patents [OSTI]

    Pinnau, I.; Toy, L.G.; Casillas, C.

    1997-09-23

    A membrane and process are disclosed for separating unsaturated hydrocarbons from fluid mixtures. The membrane and process differ from previously known membranes and processes, in that the feed and permeate streams can both be dry, the membrane need not be water or solvent swollen, and the membrane is characterized by a selectivity for an unsaturated hydrocarbon over a saturated hydrocarbon having the same number of carbon atoms of at least about 20, and a pressure-normalized flux of said unsaturated hydrocarbon of at least about 5{times}10{sup {minus}6}cm{sup 3}(STP)/cm{sup 2}{center_dot}s{center_dot}cmHg, said flux and selectivity being measured with a gas mixture containing said unsaturated and saturated hydrocarbons, and in a substantially dry environment. 4 figs.

  9. Hydrogen Selective Exfoliated Zeolite Membranes

    SciTech Connect (OSTI)

    Tsapatsis, Michael; Daoutidis, Prodromos; Elyassi, Bahman; Lima, Fernando; Iyer, Aparna; Agrawal, Kumar; Sabnis, Sanket

    2015-04-06

    The objective of this project was to develop and evaluate an innovative membrane technology at process conditions that would be representative of Integrated Gasification Combined Cycle (IGCC) advanced power generation with pre-combustion capture of carbon dioxide (CO2). This research focused on hydrogen (H2)-selective zeolite membranes that could be utilized to separate conditioned syngas into H2-rich and CO2-rich components. Both experiments and process design and optimization calculations were performed to evaluate the concept of ultra-thin membranes made from zeolites nanosheets. In this work, efforts in the laboratory were made to tackle two fundamental challenges in application of zeolite membranes in harsh industrial environments, namely, membrane thickness and membrane stability. Conventional zeolite membranes have thicknesses in the micron range, limiting their performance. In this research, we developed a method for fabrication of ultimately thin zeolite membranes based on zeolite nanosheets. A range of layered zeolites (MWW, RWR, NSI structure types) suitable for hydrogen separation was successfully exfoliated to their constituent nanosheets. Further, membranes were made from one of these zeolites, MWW, to demonstrate the potential of this group of materials. Moreover, long-term steam stability of these zeolites (up to 6 months) was investigated in high concentrations of steam (35 mol% and 95 mole%), high pressure (10 barg), and high temperatures (350 °C and 600 °C) relevant to conditions of water-gas-shift and steam methane reforming reactions. It was found that certain nanosheets are stable, and that stability depends on the concentration of structural defects. Additionally, models that represent a water-gas-shift (WGS) membrane reactor equipped with the zeolite membrane were developed for systems studies. These studies had the aim of analyzing the effect of the membrane reactor integration into IGCC plants in terms of performance and economic aspects of the plants. Specifically, simulation and design optimization studies were performed using the developed stand-alone membrane reactor models to identify the membrane selectivity and permeance characteristics necessary to achieve desired targets of CO2 capture and H2 recovery, as well as guide the selection of the optimal reactor design that minimizes the membrane cost as a function of its surface area required. The isothermal membrane reactor model was also integrated into IGCC system models using both the MATLAB and Aspen software platforms and techno-economic analyses of the integrated plants have been carried out to evaluate the feasibility of replacing current technologies for pre-combustion capture by the proposed novel approach in terms of satisfying stream constraints and achieving the DOE target goal of 90% CO2 capture. The results of the performed analyses based on present value of annuity calculations showed break even costs for the membrane reactor within the feasible range for membrane fabrication. However, the predicted membrane performance used in these simulations exceeded the performance achieved experimentally. Therefore, further work is required to improve membrane performance.

  10. Olefin separation membrane and process

    DOE Patents [OSTI]

    Pinnau, Ingo (Palo Alto, CA); Toy, Lora G. (San Francisco, CA); Casillas, Carlos (San Jose, CA)

    1997-01-01

    A membrane and process for separating unsaturated hydrocarbons from fluid mixtures. The membrane and process differ from previously known membranes and processes, in that the feed and permeate streams can both be dry, the membrane need not be water or solvent swollen, and the membrane is characterized by a selectivity for an unsaturated hydrocarbon over a saturated hydrocarbon having the same number of carbon atoms of at least about 20, and a pressure-normalized flux of said unsaturated hydrocarbon of at least about 5.times.10.sup.-6 cm.sup.3 (STP)/cm.sup.2 .multidot.s.multidot.cmHg, said flux and selectivity being measured with a gas mixture containing said unsaturated and saturated hydrocarbons, and in a substantially dry environment.

  11. Amorphous Alloy Membranes for High Temperature Hydrogen Separation

    SciTech Connect (OSTI)

    Coulter, K

    2013-09-30

    At the beginning of this project, thin film amorphous alloy membranes were considered a nascent but promising new technology for industrial-scale hydrogen gas separations from coal- derived syngas. This project used a combination of theoretical modeling, advanced physical vapor deposition fabricating, and laboratory and gasifier testing to develop amorphous alloy membranes that had the potential to meet Department of Energy (DOE) targets in the testing strategies outlined in the NETL Membrane Test Protocol. The project is complete with Southwest Research Institute (SwRI), Georgia Institute of Technology (GT), and Western Research Institute (WRI) having all operated independently and concurrently. GT studied the hydrogen transport properties of several amorphous alloys and found that ZrCu and ZrCuTi were the most promising candidates. GT also evaluated the hydrogen transport properties of V, Nb and Ta membranes coated with different transition-metal carbides (TMCs) (TM = Ti, Hf, Zr) catalytic layers by employing first-principles calculations together with statistical mechanics methods and determined that TiC was the most promising material to provide catalytic hydrogen dissociation. SwRI developed magnetron coating techniques to deposit a range of amorphous alloys onto both porous discs and tubular substrates. Unfortunately none of the amorphous alloys could be deposited without pinhole defects that undermined the selectivity of the membranes. WRI tested the thermal properties of the ZrCu and ZrNi alloys and found that under reducing environments the upper temperature limit of operation without recrystallization is ~250 C. There were four publications generated from this project with two additional manuscripts in progress and six presentations were made at national and international technical conferences. The combination of the pinhole defects and the lack of high temperature stability make the theoretically identified most promising candidate amorphous alloys unsuitable for application as hydrogen separation membranes in coal fire systems.

  12. Performance modelling of a proton exchange membrane fuel cell

    SciTech Connect (OSTI)

    Marr, C.; Li, X.

    1998-12-31

    This paper presents a performance model of a proton exchange membrane fuel cell that has sufficient accuracy for engineering applications with reduced computational requirements. The model includes electrochemical reaction in the catalyst layers and formulation for electrical resistance in the membrane, electrodes and bipolar plates, and employs engineering correlation for the reactant gas transport in the flow channels and through the electrodes. It is shown that the present model predictions are in reasonable agreement with known experimental observations, indicating that the present model can be employed for fuel cell stack and system modeling. The effect of various operating and design parameters on the cell performance has been investigated. It is found that mass transport limitations are the largest cause of performance loss in the cell when graphite is used as the material for bipolar plates and electrodes. If conducting polymers are substituted as construction materials, cell performance is expected to suffer considerably at high current densities due to their reduced electrical conductivity.

  13. Identifying Calcium Channels and Porters in Plant Membranes

    SciTech Connect (OSTI)

    Sze, Heven

    1998-04-01

    The overall objectives of the proposal submitted in 6/90 was to understand how Ca was transported across plant membranes, and how these transport pathways were regulated. Ca participates in many cellular processes, including the transduction of hormonal and environmental signals, secretion, and protein folding. These processes depend on the coordination of passive Ca fluxes via channels and active Ca pumps; however these transport pathways are poorly understood in plants. We had, therefore, proposed to identify and characterize Ca transport proteins, such as the inositol-1 ,4,5-trisphosphate (IP3)-sensitive Ca channels and Ca pumps. We have had difficulties characterizing and cloning the IP3-sensitive Ca channel, but have made considerable progress on the biochemical characterization, and partial purification of a 120 kD Ca-pumping ATPase. We have begun to determine the structure of Ca pumps by molecular cloning and have already obtained a partial cDNA with features characteristic of Ca pumps.

  14. Ion funnel ion trap and process

    DOE Patents [OSTI]

    Belov, Mikhail E [Richland, WA; Ibrahim, Yehia M [Richland, WA; Clowers, Biran H [West Richland, WA; Prior, David C [Hermiston, OR; Smith, Richard D [Richland, WA

    2011-02-15

    An ion funnel trap is described that includes a inlet portion, a trapping portion, and a outlet portion that couples, in normal operation, with an ion funnel. The ion trap operates efficiently at a pressure of .about.1 Torr and provides for: 1) removal of low mass-to-charge (m/z) ion species, 2) ion accumulation efficiency of up to 80%, 3) charge capacity of .about.10,000,000 elementary charges, 4) ion ejection time of 40 to 200 .mu.s, and 5) optimized variable ion accumulation times. Ion accumulation with low concentration peptide mixtures has shown an increase in analyte signal-to-noise ratios (SNR) of a factor of 30, and a greater than 10-fold improvement in SNR for multiply charged analytes.

  15. Metal ion complexation by ionizable crown ethers. Final report, January 1, 1988--June 30, 1994

    SciTech Connect (OSTI)

    Bartsch, R.A.

    1994-12-31

    During the report period a variety of new lipophilic ionizable crown ethers with pendent proton-ionizable groups has been synthesized. The ligands possess one or more ionizable group (carboxylic acid, phosphonic acid monoethyl ester, para-nitrophenol, phosphonic acid) attached to crown ether, monoazacrown ether or diazacrown ether frameworks. These novel chelating agents have either pendent or inward-facing proton-ionizable groups. Such lipophilic proton-ionizable crown ethers are designed for use in multiphase metal ion separations (solvent extraction, liquid membrane transport). In addition a series of proton-ionizable crown ethers without lipophilic groups was prepared to study how structural variations within the ligand influence metal ion complexation in homogeneous media as assessed by NMR spectroscopy or titration calorimetry. A third class of new metal ion-complexing agents is a series of lipophilic acyclic polyether dicarboxylic acids. Competitive solvent extractions of alkali metal and alkaline earth cations and of the mixed species have been conducted to reveal the influence of ring size, nature and attachment site of the lipophilic group, sidearm length, and proton-ionizable group identity and location upon the selectivity and efficiency of metal ion complexation. In addition to such studies of structural variation within the lipophilic proton-ionizable crown ether, the effect of changing the organic solvent and variation of the stripping conditions have been assessed. The influence of structural variations within lipophilic acyclic polyether dicarboxylic acids upon competitive solvent extraction of alkaline earth cations has been probed. Also a new chromogenic, di-ionizable crown ether with extremely high selectivity for Hg{sup 2+} has been discovered.

  16. Quasilinear Carbon Transport In An Impurity Hole Plasma In LHD

    Office of Scientific and Technical Information (OSTI)

    ... A detailed quantitative accounting of any changes in ion ... The hrst is the qualitative nature of the issue to be ... However, close study of that transport analysis reveals a ...

  17. Characterization of Traveling Wave Ion Mobility Separations in Structures for Lossless Ion Manipulations

    SciTech Connect (OSTI)

    Hamid, Ahmed M.; Ibrahim, Yehia M.; Garimella, Venkata BS; Webb, Ian K.; Deng, Liulin; Chen, Tsung-Chi; Anderson, Gordon A.; Prost, Spencer A.; Norheim, Randolph V.; Tolmachev, Aleksey V.; Smith, Richard D.

    2015-10-28

    We report on the development and characterization of a new traveling wave-based Structure for Lossless Ion Manipulations (TW-SLIM) for ion mobility separations (IMS). The TW-SLIM module uses a parallel array of RF electrodes for ion confinement, spaced by an array of short DC electrodes to which a TW can be applied to drive ion motion. The ability of the TW-SLIM for efficient ion confinement, lossless ion transport, and ion mobility separations at different RF and TW parameters is reported. The TW-SLIM module is shown to allow transfers a wide mass range of ions (200-2500 Da) utilizing a confining RF waveform (1 MHz and 300 Vp-p), and low TW amplitudes (<20 V). Also, the short module achieved an ion mobility peak capacity of 24 and a peak generation rate of 1014 s-1 for TW speeds of <210 m/s. TW-SLIM performance was characterized over a wide range of RF and DC voltage parameters, and demonstrated robust performance. The combined attributes of flexible design and low voltage requirements for traveling wave IMS, provide a basis for SLIM devices incorporating extended series of ion manipulations.

  18. PROTON-CONDUCTING DENSE CERAMIC MEMBRANES FOR HYDROGEN SEPARATION

    SciTech Connect (OSTI)

    Jerry Y. S. Lin; Scott Cheng; Vineet Gupta

    2003-12-01

    Dense perovskite-type structured ceramic membranes, SrCe{sub 0.95}Tm{sub 0.05}O{sub 3} (SCTm), of different thickness, were prepared by the dry-press method. Membrane thickness was varied from 3 mm to 150 {micro}m. The hydrogen permeation flux was found to be inversely proportional to the thickness of the dense films, indicating that the bulk diffusion rather than the surface reaction played a dominant role in the H{sub 2} transport through these dense membranes within the studied thickness range. Hydrogen permeation flux increases with increasing upstream hydrogen partial pressure and decreasing downstream hydrogen partial pressure. The activation energy for hydrogen permeation through the SCTm membrane is about 116 kJ/mol in 600-700 C and 16 kJ/mol in 750-950 C. This indicates a change in the electrical and protonic conduction mechanism at around 700 C. Pd-Cu thin films were synthesized with elemental palladium and copper targets by the sequential R.F. sputter deposition on porous substrates. Pd-Cu alloy films could be formed after proper annealing. The deposited Pd-Cu films were gas-tight. This result demonstrated the feasibility of obtaining an ultrathin SCTm film by the sequential sputter deposition of Sr, Ce and Tm metals followed by proper annealing and oxidation. Such ultrathin SCTm membranes will offer sufficiently high hydrogen permeance for practical applications.

  19. New Membranes for PEM Fuel Cells

    Broader source: Energy.gov [DOE]

    Presentation on New Membranes for PEM Fuel Cells to the High Temperature Membrane Working Group Meeting held in Arlington, Virginia, May 26,2005.

  20. Membrane Protein Crystallization in Lipidic Mesophases. Hosting...

    Office of Scientific and Technical Information (OSTI)

    Membrane Protein Crystallization in Lipidic Mesophases. Hosting Lipid Effects on the ... Citation Details In-Document Search Title: Membrane Protein Crystallization in Lipidic ...

  1. Acid Doped Membranes for High Temperature PEMFC

    Broader source: Energy.gov [DOE]

    Presentation on Acid Doped Membranes for High Temperature PEMFC to the High Temperature Membrane Working Group, May 25, 2004 in Philadelphia, PA.

  2. Fullerene-Nafion Composite Recast Membranes

    Broader source: Energy.gov [DOE]

    Presentation on Fullerene-Nafion Composite Recast Membranes to the High Temperature Membrane Working Group Meeting held in Arlington, Virginia, May 26,2005.

  3. Apparatus for tensioning a heliostat membrane

    DOE Patents [OSTI]

    Sallis, Daniel V. (P.O. Box 554, Littleton, CO 80120)

    1986-01-01

    An apparatus for pneumatically or hydraulically tensioning a membrane, which stretched membrane can support a reflective surface for use as a heliostat in a solar energy collection system.

  4. Metallic Membrane Materials Development for Hydrogen Production...

    Office of Scientific and Technical Information (OSTI)

    Metallic Membrane Materials Development for Hydrogen Production from Coal Derived Syngas Citation Details In-Document Search Title: Metallic Membrane Materials Development for...

  5. Webinar: Hydrogen Production by Polymer Electrolyte Membrane...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner and Proton Webinar: Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotligh...

  6. Membrane and MEA Accelerated Stress Test Protocols

    Broader source: Energy.gov [DOE]

    This presentation on fuel cell membrane and MEA stress test protocols was given by T. Benjamin at the High Temperature Membrane Working Group Meeting in May 2007.

  7. Functionalized inorganic membranes for gas separation

    DOE Patents [OSTI]

    Ku, Anthony Yu-Chung (Rexford, NY); Ruud, James Anthony (Delmar, NY); Molaison, Jennifer Lynn (Marietta, GA); Schick, Louis Andrew ,(Delmar, NY); Ramaswamy, Vidya (Niskayuna, NY)

    2008-07-08

    A porous membrane for separation of carbon dioxide from a fluid stream at a temperature higher than about 200.degree. C. with selectivity higher than Knudsen diffusion selectivity. The porous membrane comprises a porous support layer comprising alumina, silica, zirconia or stabilized zirconia; a porous separation layer comprising alumina, silica, zirconia or stabilized zirconia, and a functional layer comprising a ceramic oxide contactable with the fluid stream to preferentially transport carbon dioxide. In particular, the functional layer may be MgO, CaO, SrO, BaO, La.sub.2O.sub.3, CeO.sub.2, ATiO.sub.3, AZrO.sub.3, AAl.sub.2O.sub.4, A.sup.1FeO.sub.3, A.sup.1MnO.sub.3, A.sup.1CoO.sub.3, A.sup.1NiO.sub.3, A.sup.2HfO.sub.3, A.sup.3CeO.sub.3, Li.sub.2ZrO.sub.3, Li.sub.2SiO.sub.3, Li.sub.2TiO.sub.3 or a mixture thereof; wherein A is Mg, Ca, Sr or Ba; A.sup.1 is La, Ca, Sr or Ba; A.sup.2 is Ca, Sr or Ba; and A.sup.3 is Sr or Ba.

  8. Thermally tolerant multilayer metal membrane

    DOE Patents [OSTI]

    Dye, Robert C. (Los Alamos, NM); Snow, Ronny C. (Los Alamos, NM)

    2001-01-01

    A composite metal membrane including a first metal layer of a Group IVB or Group VB metal sandwiched between two layers of a Group VIIIB metal selected from the group consisting of palladium, platinum, nickel, rhodium, iridium, cobalt, and alloys thereof, and a non-continuous layer of a metal chalcogenide upon one layer of the Group VIIIB metal is disclosed together with a process for the recovery of hydrogen from a gaseous mixture using such a composite membrane and a process for forming such a composite metal membrane.

  9. Transport mechanisms in nanopores and nanochannels: Can we mimic nature?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tagliazucchi, Mario; Szleifer, Igal

    2014-11-03

    The last few years have witnessed major advancements in the synthesis, modification, characterization and modeling of nanometer-size solid-state channels and pores. Future applications in sensing, energy conversion and purification technologies will critically rely on qualitative improvements in the control over the selectivity, directionality and responsiveness of these nanochannels and nanopores. It is not surprising, therefore, that researchers in the field seek inspiration in biological ion channels and ion pumps, paradigmatic examples of transport selectivity. This work reviews our current fundamental understanding of the mechanisms of transport of ions and larger cargoes through nanopores and nanochannels by examining recent experimental andmoretheoretical work. It is argued that that structure and transport in biological channels and polyelectrolyte-modified synthetic nanopores are strongly coupled: the structure dictates transport and transport affects the structure. We compare synthetic and biological systems throughout this review to conclude that while they present interesting similarities, they also have striking differences.less

  10. Transport mechanisms in nanopores and nanochannels: Can we mimic nature?

    SciTech Connect (OSTI)

    Tagliazucchi, Mario [Northwestern Univ., Evanston, IL (United States); Szleifer, Igal [Northwestern Univ., Evanston, IL (United States)

    2014-11-03

    The last few years have witnessed major advancements in the synthesis, modification, characterization and modeling of nanometer-size solid-state channels and pores. Future applications in sensing, energy conversion and purification technologies will critically rely on qualitative improvements in the control over the selectivity, directionality and responsiveness of these nanochannels and nanopores. It is not surprising, therefore, that researchers in the field seek inspiration in biological ion channels and ion pumps, paradigmatic examples of transport selectivity. This work reviews our current fundamental understanding of the mechanisms of transport of ions and larger cargoes through nanopores and nanochannels by examining recent experimental and theoretical work. It is argued that that structure and transport in biological channels and polyelectrolyte-modified synthetic nanopores are strongly coupled: the structure dictates transport and transport affects the structure. We compare synthetic and biological systems throughout this review to conclude that while they present interesting similarities, they also have striking differences.

  11. Layered plasma polymer composite membranes

    DOE Patents [OSTI]

    Babcock, W.C.

    1994-10-11

    Layered plasma polymer composite fluid separation membranes are disclosed, which comprise alternating selective and permeable layers for a total of at least 2n layers, where n is [>=]2 and is the number of selective layers. 2 figs.

  12. Alkaline Membrane Fuel Cell Workshop

    Broader source: Energy.gov [DOE]

    A workshop on alkaline membrane fuel cells (AMFC) was held May 8-9, 2011, before the 2011 Hydrogen and Fuel Cells Annual Merit Review, at Crystal Gateway Marriott in Arlington, Virginia.

  13. Layered plasma polymer composite membranes

    DOE Patents [OSTI]

    Babcock, Walter C. (Bend, OR)

    1994-01-01

    Layered plasma polymer composite fluid separation membranes are disclosed, which comprise alternating selective and permeable layers for a total of at least 2n layers, where n is .gtoreq.2 and is the number of selective layers.

  14. Surface Segregation in a PdCu Alloy Hydrogen Separation Membrane

    SciTech Connect (OSTI)

    Miller, J.B.; Matranga, C.S.; Gellman, A.J.

    2007-06-01

    Separation of hydrogen from mixed gas streams is an important step for hydrogen generation technologies, including hydrocarbon reforming and coal/biomass gasification. Dense palladium-based membranes have received significant attention for this application because of palladiums ability to dissociatively adsorb molecular hydrogen at its surface for subsequent transport of hydrogen atoms through its bulk. Alloying palladium with minor components, like copper, has been shown to improve both the membranes structural characteristics and resistance to poisoning of its catalytic surface [1]. Surface segregationa composition difference between the bulk material and its surfaceis common in alloys and can affect important surface processes. Rational design of alloy membranes requires that surface segregation be understood, and possibly controlled. In this work, we examine surface segregation in a polycrystalline Pd70Cu30 hydrogen separation membrane as a function of thermal treatment and adsorption of hydrogen sulfide.

  15. Gas separation membrane module assembly

    DOE Patents [OSTI]

    Wynn, Nicholas P (Palo Alto, CA); Fulton, Donald A. (Fairfield, CA)

    2009-03-31

    A gas-separation membrane module assembly and a gas-separation process using the assembly. The assembly includes a set of tubes, each containing gas-separation membranes, arranged within a housing. The housing contains a tube sheet that divides the space within the housing into two gas-tight spaces. A permeate collection system within the housing gathers permeate gas from the tubes for discharge from the housing.

  16. Solid-state membrane module

    DOE Patents [OSTI]

    Hinklin, Thomas Ray; Lewinsohn, Charles Arthur

    2015-06-30

    A module for separating oxygen from an oxygen-containing gaseous mixture comprising planar solid-state membrane units, each membrane unit comprising planar dense mixed conducting oxides layers, planar channel-free porous support layers, and one or more planar intermediate support layers comprising at least one channeled porous support layer. The porosity of the planar channeled porous support layers is less than the porosity of the planar channel-free porous support layers.

  17. Membranes - Phosphazene - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Membranes - Phosphazene Idaho National Laboratory Contact INL About This Technology Technology Marketing Summary INL's new phosphazene membrane technology provides a method for making polydichlorophosphazene using solid state reactants that simplifies previous processes with a "single pot" two-step process. The process eliminates use of chlorinated hydrocarbon solvents, reducing the costs of equipment and increasing economies. Polyphosphazene polymers are inorganic in nature and

  18. Method and apparatus for producing oxygen and nitrogen and membrane therefor

    DOE Patents [OSTI]

    Roman, I.C.; Baker, R.W.

    1985-09-17

    Process and apparatus for the separation and purification of oxygen and nitrogen as well as a novel membrane useful therein are disclosed. The process utilizes novel facilitated transport membranes to selectively transport oxygen from one gaseous stream to another, leaving nitrogen as a byproduct. In the method, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a polar organic membrane which separates a gaseous feed stream such as atmospheric air and a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form at the interface of the feed stream with the membrane, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form at the interface of the product stream with the membrane. In an alternate mode of operation, the feed stream is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form at the interface of the feed stream with the membrane and the product stream is maintained at a sufficiently high temperature to keep the carrier in its deoxygenated form at the interface of the product stream with the membrane. Under such conditions, the carrier acts as a shuttle, picking up oxygen at the feed side of the membrane, diffusing across the membrane as the oxygenated complex, releasing oxygen to the product stream, and then diffusing back to the feed side to repeat the process. Exceptionally and unexpectedly high O[sub 2]/N[sub 2] selectivity, on the order of 10 to 30, is obtained, as well as exceptionally high oxygen permeability, on the order of 6 to 15 [times] 10[sup [minus]8] cm[sup 3]-cm/cm[sup 2]-sec-cmHg, as well as a long membrane life of in excess of 3 months, making the process commercially feasible. 2 figs.

  19. Method and apparatus for producing oxygen and nitrogen and membrane therefor

    DOE Patents [OSTI]

    Roman, Ian C. (Bend, OR); Baker, Richard W. (Bend, OR)

    1985-01-01

    Process and apparatus for the separation and purification of oxygen and nitrogen as well as a novel membrane useful therein are disclosed. The process utilizes novel facilitated transport membranes to selectively transport oxygen from one gaseous stream to another, leaving nitrogen as a byproduct. In the method, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a polar organic membrane which separates a gaseous feed stream such as atmospheric air and a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form at the interface of the feed stream with the membrane, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form at the interface of the product stream with the membrane. In an alternate mode of operation, the feed stream is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form at the interface of the feed stream with the membrane and the product stream is maintained at a sufficiently high temperature to keep the carrier in its deoxygenated form at the interface of the product stream with the membrane. Under such conditions, the carrier acts as a shuttle, picking up oxygen at the feed side of the membrane, diffusing across the membrane as the oxygenated complex, releasing oxygen to the product stream, and then diffusing back to the feed side to repeat the process. Exceptionally and unexpectedly high O.sub.2 /N.sub.2 selectivity, on the order of 10 to 30, is obtained, as well as exceptionally high oxygen permeability, on the order of 6 to 15.times.10.sup.-8 cm.sup.3 -cm/cm.sup.2 -sec-cmHg, as well as a long membrane life of in excess of 3 months, making the process commercially feasible.

  20. Rechargeable lithium-ion cell

    DOE Patents [OSTI]

    Bechtold, Dieter (Bad Vilbel, DE); Bartke, Dietrich (Kelkheim, DE); Kramer, Peter (Konigstein, DE); Kretzschmar, Reiner (Kelkheim, DE); Vollbert, Jurgen (Hattersheim, DE)

    1999-01-01

    The invention relates to a rechargeable lithium-ion cell, a method for its manufacture, and its application. The cell is distinguished by the fact that it has a metallic housing (21) which is electrically insulated internally by two half shells (15), which cover electrode plates (8) and main output tabs (7) and are composed of a non-conductive material, where the metallic housing is electrically insulated externally by means of an insulation coating. The cell also has a bursting membrane (4) which, in its normal position, is located above the electrolyte level of the cell (1). In addition, the cell has a twisting protection (6) which extends over the entire surface of the cover (2) and provides centering and assembly functions for the electrode package, which comprises the electrode plates (8).

  1. Microfabricated ion frequency standard

    DOE Patents [OSTI]

    Schwindt, Peter (Albuquerque, NM); Biedermann, Grant (Albuquerque, NM); Blain, Matthew G. (Albuquerque, NM); Stick, Daniel L. (Albuquerque, NM); Serkland, Darwin K. (Albuquerque, NM); Olsson, III, Roy H. (Albuquerque, NM)

    2010-12-28

    A microfabricated ion frequency standard (i.e. an ion clock) is disclosed with a permanently-sealed vacuum package containing a source of ytterbium (Yb) ions and an octupole ion trap. The source of Yb ions is a micro-hotplate which generates Yb atoms which are then ionized by a ultraviolet light-emitting diode or a field-emission electron source. The octupole ion trap, which confines the Yb ions, is formed from suspended electrodes on a number of stacked-up substrates. A microwave source excites a ground-state transition frequency of the Yb ions, with a frequency-doubled vertical-external-cavity laser (VECSEL) then exciting the Yb ions up to an excited state to produce fluorescent light which is used to tune the microwave source to the ground-state transition frequency, with the microwave source providing a precise frequency output for the ion clock.

  2. An all permanent magnet electron cyclotron resonance ion source for heavy ion therapy

    SciTech Connect (OSTI)

    Cao, Yun Li, Jia Qing; Sun, Liang Ting; Zhang, Xue Zhen; Feng, Yu Cheng; Wang, Hui; Ma, Bao Hua; Li, Xi Xia

    2014-02-15

    A high charge state all permanent Electron Cyclotron Resonance ion source, Lanzhou All Permanent ECR ion source no. 3-LAPECR3, has been successfully built at IMP in 2012, which will serve as the ion injector of the Heavy Ion Medical Machine (HIMM) project. As a commercial device, LAPECR3 features a compact structure, small size, and low cost. According to HIMM scenario more than 100 e?A of C{sup 5+} ion beam should be extracted from the ion source, and the beam emittance better than 75 ?*mm*mrad. In recent commissioning, about 120 e?A of C{sup 5+} ion beam was got when work gas was CH{sub 4} while about 262 e?A of C{sup 5+} ion beam was obtained when work gas was C{sub 2}H{sub 2} gas. The design and construction of the ion source and its low-energy transportation beam line, and the preliminary commissioning results will be presented in detail in this paper.

  3. Hydrogen purifier module with membrane support

    DOE Patents [OSTI]

    A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.

    2012-07-24

    A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.

  4. Stopping Power and Range of Ions in Matter

    Energy Science and Technology Software Center (OSTI)

    2001-06-19

    SRIM is a group of programs which calculate the stopping and range of ions (10ev - 2 GeV/amu) into matter. TRIM (the Transport of Ions in Matter) is the most comprehensive program included. Trim will accept complex targets made of compound materials with up to eight layers, each with different materials. It will calculate both the final 3d distribution of the inner ions and also all kinetic phenomena associated with the ion''s energy loss; targetmore » damage, sputtering, ionization, and phonon production. All targets atom cascades in the target are followed in detail. It can be used for physics of recoil cascades, physics of sputtering, the stopping of ions in compounds and stopping power for ions in gases; This included radiation damage from neutron , electrons, and photons.« less

  5. Tensioning device for a stretched membrane collector

    DOE Patents [OSTI]

    Murphy, Lawrence M. (Lakewood, CO)

    1984-01-01

    Disclosed is a solar concentrating collector comprising an elastic membrane member for concentrating sunlight, a frame for holding the membrane member in plane and in tension, and a tensioning means for varying the tension of the membrane member. The tensioning means is disposed at the frame and is adapted to releasably attach the membrane member thereto. The tensioning means is also adapted to uniformly and symmetrically subject the membrane member to stretching forces such that membrane stresses produced thereby are distributed uniformly over a thickness of the membrane member and reciprocal twisting moments are substantially prevented from acting about said frame.

  6. Tensioning device for a stretched membrane collector

    DOE Patents [OSTI]

    Murphy, L.M.

    1984-01-01

    Disclosed is a solar concentrating collector comprising an elestic membrane member for concentrating sunlight, a frame for holding the membrane member in plane and in tension, and a tensioning means for varying the tension of the membrane member. The tensioning means is disposed at the frame and is adapted to releasably attach the membrane member thereto. The tensioning means is also adapted to uniformly and symmetrically subject the membrane member to stretching forces such that membrane stresses produced thereby are distributed uniformly over a thickness of the membrane member and reciprocal twisting moments are substantially prevented from acting about said frame.

  7. Organic fluid permeation through fluoropolymer membranes

    DOE Patents [OSTI]

    Nemser, Stuart M.; Kosaraju, Praveen; Bowser, John

    2015-07-14

    Separation of the components of liquid mixtures is achieved by contacting a liquid mixture with a nonporous membrane having a fluoropolymer selectively permeable layer and imposing a pressure gradient across the membrane from feed side to permeate side. Unusually high transmembrane flux is obtained when the membrane is subjected to one or more process conditions prior to separation. These include (a) leaving some residual amount of membrane casting solvent in the membrane, and (b) contacting the membrane with a component of the mixture to be separated for a duration effective to saturate the membrane with the component.

  8. Ion sources for ion implantation technology (invited)

    SciTech Connect (OSTI)

    Sakai, Shigeki Hamamoto, Nariaki; Inouchi, Yutaka; Umisedo, Sei; Miyamoto, Naoki

    2014-02-15

    Ion sources for ion implantation are introduced. The technique is applied not only to large scale integration (LSI) devices but also to flat panel display. For LSI fabrication, ion source scheduled maintenance cycle is most important. For CMOS image sensor devices, metal contamination at implanted wafer is most important. On the other hand, to fabricate miniaturized devices, cluster ion implantation has been proposed to make shallow PN junction. While for power devices such as silicon carbide, aluminum ion is required. For doping processes of LCD fabrication, a large ion source is required. The extraction area is about 150 cm 10 cm, and the beam uniformity is important as well as the total target beam current.

  9. Palladium-coated Vanadium-alloy membranes for Hydrogen Separation.

    SciTech Connect (OSTI)

    Paglieri, S. N. (Stephen N.); Pesiri, D. R. (David R.); Dye, R. C. (Robert C.); Birdsell, S. A. (Stephen A.); Snow, R. C. (Ronny C.)

    2005-01-01

    Hydrogen-separating membranes have the potential to generate pure hydrogen from abundant fossil fuel supplies such as coal, for use in fuel cells. Foils of V{sub 0.95}Ti{sub 0.05} and V{sub 0.88}Cu{sub 0.12} (at. %) coated with thin films of Pd or Pd alloy (Pd-Ag) were fabricated and tested for hydrogen permeability and stability during operation at temperatures from 320-450 C. Vanadium-alloy foils were ion-milled and coatings between 50 and 200 nm thick were applied to both sides insitu, via electron beam evaporation PVD. The membranes were completely permselective for hydrogen. Hydrogen flux stability was dependent on palladium coating thickness, with constant flux observed during tests at 350 C, and slow decline observed at 400 C that accelerated at higher temperatures.

  10. Cocktails and Ions - 88-Inch Cyclotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cocktails and Ions BASE Ion List Download as a .pdf

  11. Membrane Technology Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop Membrane Technology Workshop July 24, 2012 At the Membrane Technology Workshop (held July 24, 2012, in Rosemont, IL), stakeholders from industry and academia explored the status of membrane research and development (R&D). Participants discussed R&D barriers, emerging applications, and advanced membrane technologies in commercial and industrial applications. Presenters provided an overview of the DOE Advanced Manufacturing Office, results of previous membrane workshops, and

  12. membrane-process | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CO2 Capture Membrane Process for Power Plant Flue Gas Project No.: DE-NT0005313 (click on image to enlarge) Research Triangle Institute (RTI) International is researching fluorinated polymer membranes for carbon dioxide capture. RTI's research effort includes membrane materials development, module design, and process design. RTI is pursuing the development of two hollow-fiber membrane materials. First, RTI is working with Generon to develop a membrane material constructed of polycarbonate-based

  13. Challenges in Bio-Inspired Membranes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHALLENGES IN BIO-INSPIRED MEMBRANES JUN LIU PACIFIC NORTHWEST NATIONAL LABORATORY, RICHLAND, WA 99252 Supported by Transformational Materials Science Initiative (PNNL), Basic Energy Science, Office of Science, Department of Energy OUTLINE 2  Attributes of biological membranes  Importance of selective membranes in energy Current efforts in bio-inspired membranes  Future directions through self-assembly? Lessons form biological membranes to develop low cost energy storage devices

  14. Broad beam ion implanter

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA)

    1996-01-01

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes.

  15. Membrane-Organized Chemical Photoredox Systems

    SciTech Connect (OSTI)

    Hurst, James K.

    2014-09-18

    This project has three interrelated goals relevant to solar water photolysis, which are to develop: (1) vesicle-organized assemblies for H2 photoproduction that utilize pyrylium and structurally related compounds as combined photosensitizers and cyclic electroneutral transmembrane electron carriers; (2) transmembrane redox systems whose reaction rates can be modulated by light; and (3) homogeneous catalysts for water oxidation. . In area (1), initial efforts to photogenerate H2 from vectorially-organized vesicles containing occluded colloidal Pt and commonly available pyrylium ions as transmembrane redox mediators were unsuccessful. New pyrylium compounds with significantly lower reduction potentials have been synthesized to address this problem, their apparent redox potentials in functioning systems have been now evaluated by using a series of occluded viologens, and H2 photoproduction has been demonstrated in continuous illumination experiments. In area (2), spirooxazine-quinone dyads have been synthesized and their capacity to function as redox mediators across bilayer membranes has been evaluated through continuous photolysis and transient spectrophotometric measurements. Photoisomerization of the spiro moiety to the ring-open mero form caused net quantum yields to decrease significantly, providing a basis for photoregulation of transmembrane redox. Research on water oxidation (area 3) has been directed at understanding mechanisms of catalysis by cis,cis-[(bpy)2Ru(OH2)]2O4+ and related polyimine complexes. Using a variety of physical techniques, we have: (i) identified the redox state of the complex ion that is catalytically active; (ii) shown using 18O isotopic labeling that there are two reaction pathways, both of which involve participation of solvent H2O; and (iii) detected and characterized by EPR and resonance Raman spectroscopies new species which may be key intermediates in the catalytic cycle.

  16. Continuous production of polymethylpentene membranes

    DOE Patents [OSTI]

    Epperson, B.J.; Burnett, L.J.; Helm, V.D.

    1983-11-15

    Gas separation membranes may be prepared in a continuous manner by passing a porous support which may, if so desired, be backed by a fabric through a solution of polymethylpentene dissolved in an organic solvent such as hexane. The support member is passed through the solution while one side thereof is in contact with a roller, thereby permitting only one side of the support member to be coated with the polymer. After continuously withdrawing the support member from the bath, the solvent is allowed to evaporate and the resulting membrane is recovered.

  17. Material review of Li ion battery separators

    SciTech Connect (OSTI)

    Weber, Christoph J. Geiger, Sigrid; Falusi, Sandra; Roth, Michael

    2014-06-16

    Separators for Li Ion batteries have a strong impact on cell production, cell performance, life, as well as reliability and safety. The separator market volume is about 500 million m{sup 2} mainly based on consumer applications. It is expected to grow strongly over the next decade for mobile and stationary applications using large cells. At present, the market is essentially served by polyolefine membranes. Such membranes have some technological limitations, such as wettability, porosity, penetration resistance, shrinkage and meltdown. The development of a cell failure due to internal short circuit is potentially closely related to separator material properties. Consequently, advanced separators became an intense area of worldwide research and development activity in academia and industry. New separator technologies are being developed especially to address safety and reliability related property improvements.

  18. ION Engineering | Open Energy Information

    Open Energy Info (EERE)

    ION Engineering Jump to: navigation, search Name: ION Engineering Place: Boulder, Colorado Zip: 80301 Sector: Carbon Product: ION is the first clean-tech company to successfully...

  19. Transportation Systems Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling TRANSPORTATION SYSTEMS MODELING Overview of TSM Transportation systems modeling research at TRACC uses the TRANSIMS (Transportation Analysis SIMulation System) traffic micro simulation code developed by the U.S. Department of Transportation (USDOT). The TRANSIMS code represents the latest generation of traffic simulation codes developed jointly under multiyear programs by USDOT, the

  20. Applications of decelerated ions

    SciTech Connect (OSTI)

    Johnson, B.M.

    1985-03-01

    Many facilities whose sole purpose had been to accelerate ion beams are now becoming decelerators as well. The development and current status of accel-decel operations is reviewed here. Applications of decelerated ions in atomic physics experiments are discussed.

  1. Ion Beam Materials Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the individual researchers' needs. The core of the laboratory consists of a 3 MV NEC tandem accelerator, a 200 kV Varian ion implanter, and a 200 kV Danfysik ion implanter...

  2. Universal Membrane Classification Scheme: Maximizing the Return on High Temperature PEM Membrane Research

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation on maximizing the return of high temperature PEM membrane research was given at the High Temperature Membrane Working Group Meeting in May 2007.

  3. Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them

    DOE Patents [OSTI]

    Schwartz, Michael; White, James H.; Sammells, Anthony F.

    2001-01-01

    A process for production of synthesis gas employing a catalytic membrane reactor wherein the membrane comprises a mixed metal oxide material.

  4. Fuel Cells for Transportation - Research and Development: Program Abstracts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Research and Development: Program Abstracts Fuel Cells for Transportation - Research and Development: Program Abstracts Remarkable progress has been achieved in the development of proton-exchange-membrane(PEM) fuel cell technology since the U.S. Department of Energy (DOE) initiated a significant developmental program in the early 1990s. This progress has stimulated enormous interest worldwide in developing fuel cell products for transportation as well as for stationary

  5. Hydrogen separation membranes annual report for FY 2009.

    SciTech Connect (OSTI)

    Balachandran, U.; Dorris, S. E.; Lu, Y.; Emerson, J. E.; Park, C. Y.; Lee, T. H.; Picciolo, J. J.; Energy Systems

    2010-04-16

    The objective of this work is to develop dense ceramic membranes for separating hydrogen from other gaseous components in a nongalvanic mode, i.e., without using an external power supply or electrical circuitry. The goal of this project is to develop dense hydrogen transport membranes (HTMs) that nongalvanically (i.e., without electrodes or external power supply) separate hydrogen from gas mixtures at commercially significant fluxes under industrially relevant operating conditions. HTMs will be used to separate hydrogen from gas mixtures such as the product streams from coal gasification, methane partial oxidation, and water-gas shift reactions. Potential ancillary uses of HTMs include dehydrogenation and olefin production, as well as hydrogen recovery in petroleum refineries and ammonia synthesis plants, the largest current users of deliberately produced hydrogen. This report describes the results from the development and testing of HTM materials during FY 2009.

  6. Hydrogen separation membranes annual report for FY 2008.

    SciTech Connect (OSTI)

    Balachandran, U.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J.; Energy Systems

    2009-03-17

    The objective of this work is to develop dense ceramic membranes for separating hydrogen from other gaseous components in a nongalvanic mode, i.e., without using an external power supply or electrical circuitry. The goal of this project is to develop dense hydrogen transport membranes (HTMs) that nongalvanically (i.e., without electrodes or external power supply) separate hydrogen from gas mixtures at commercially significant fluxes under industrially relevant operating conditions. HTMs will be used to separate hydrogen from gas mixtures such as the product streams from coal gasification, methane partial oxidation, and water-gas shift reactions. Potential ancillary uses of HTMs include dehydrogenation and olefin production, as well as hydrogen recovery in petroleum refineries and ammonia synthesis plants, the largest current users of deliberately produced hydrogen. This report describes progress that was made during Fy 2008 on the development of HTM materials.

  7. Solvent-resistant microporous polymide membranes

    DOE Patents [OSTI]

    Miller, W.K.; McCray, S.B.; Friesen, D.T.

    1998-03-10

    An asymmetric microporous membrane with exceptional solvent resistance and highly desirable permeability is disclosed. The membrane is made by a solution-casting or solution-spinning process from a copolyamic acid comprising the condensation reaction product in a solvent of at least three reactants selected from certain diamines and dianhydrides and post-treated to imidize and in some cases cross-link the copolyamic acid. The membrane is useful as an uncoated membrane for ultrafiltration, microfiltration, and membrane contactor applications, or may be used as a support for a permselective coating to form a composite membrane useful in gas separations, reverse osmosis, nanofiltration, pervaporation, or vapor permeation.

  8. Solvent-resistant microporous polymide membranes

    DOE Patents [OSTI]

    Miller, Warren K. (Bend, OR); McCray, Scott B. (Bend, OR); Friesen, Dwayne T. (Bend, OR)

    1998-01-01

    An asymmetric microporous membrane with exceptional solvent resistance and highly desirable permeability is disclosed. The membrane is made by a solution-casting or solution-spinning process from a copolyamic acid comprising the condensation reaction product in a solvent of at least three reactants selected from certain diamines and dianhydrides and post-treated to imidize and in some cases cross-link the copolyamic acid. The membrane is useful as an uncoated membrane for ultrafiltration, microfiltration, and membrane contactor applications, or may be used as a support for a permselective coating to form a composite membrane useful in gas separations, reverse osmosis, nanofiltration, pervaporation, or vapor permeation.

  9. Through-plane conductivities of membranes for nonaqueous redox flow batteries

    SciTech Connect (OSTI)

    Anderson, Travis Mark; Small, Leo J.; Pratt, III, Harry D.; Hudak, Nicholas S.

    2015-08-13

    In this study, nonaqueous redox flow batteries (RFB) leverage nonaqueous solvents to enable higher operating voltages compared to their aqueous counterparts. Most commercial components for flow batteries, however, are designed for aqueous use. One critical component, the ion-selective membrane, provides ionic conductance between electrodes while preventing crossover of electroactive species. Here we evaluate the area-specific conductances and through-plane conductivities of commercially available microporous separators (Celgard 2400, 2500) and anion exchange membranes (Neosepta AFX, Neosepta AHA, Fumasep FAP-450, Fumasep FAP-PK) soaked in acetonitrile, propylene carbonate, or two imidazolium-based ionic liquids. Fumasep membranes combined with acetonitrile-based electrolyte solutions provided the highest conductance values and conductivities by far. When tested in ionic liquids, all anion exchange membranes displayed conductivities greater than those of the Celgard microporous separators, though the separators decreased thickness-enabled conductances on par with the most conductive anion exchange membranes. Ionic conductivity is not the only consideration when choosing an anion exchange membrane; testing of FAP-450 and FAP-PK membranes in a nonaqueous RFB demonstrated that the increased mechanical stability of PEEK-supported FAP-PK minimized swelling, in turn decreasing solvent mediated crossover and enabling greater electrochemical yields (40% vs. 4%) and Coulombic efficiencies (94% vs. 90%) compared to the unsupported, higher conductance FAP-450.

  10. Through-plane conductivities of membranes for nonaqueous redox flow batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Anderson, Travis Mark; Small, Leo J.; Pratt, III, Harry D.; Hudak, Nicholas S.

    2015-08-13

    In this study, nonaqueous redox flow batteries (RFB) leverage nonaqueous solvents to enable higher operating voltages compared to their aqueous counterparts. Most commercial components for flow batteries, however, are designed for aqueous use. One critical component, the ion-selective membrane, provides ionic conductance between electrodes while preventing crossover of electroactive species. Here we evaluate the area-specific conductances and through-plane conductivities of commercially available microporous separators (Celgard 2400, 2500) and anion exchange membranes (Neosepta AFX, Neosepta AHA, Fumasep FAP-450, Fumasep FAP-PK) soaked in acetonitrile, propylene carbonate, or two imidazolium-based ionic liquids. Fumasep membranes combined with acetonitrile-based electrolyte solutions provided the highest conductancemore » values and conductivities by far. When tested in ionic liquids, all anion exchange membranes displayed conductivities greater than those of the Celgard microporous separators, though the separators’ decreased thickness-enabled conductances on par with the most conductive anion exchange membranes. Ionic conductivity is not the only consideration when choosing an anion exchange membrane; testing of FAP-450 and FAP-PK membranes in a nonaqueous RFB demonstrated that the increased mechanical stability of PEEK-supported FAP-PK minimized swelling, in turn decreasing solvent mediated crossover and enabling greater electrochemical yields (40% vs. 4%) and Coulombic efficiencies (94% vs. 90%) compared to the unsupported, higher conductance FAP-450.« less

  11. Single Ion Implantation

    ScienceCinema (OSTI)

    Thomas Schenkel

    2010-01-08

    On the equipment needed to implant ions in silicon and other materials. More information: http://newscenter.lbl.gov/f...

  12. Negative ion generator

    DOE Patents [OSTI]

    Stinnett, R.W.

    1984-05-08

    A negative ion generator is formed from a magnetically insulated transmission line having a coating of graphite on the cathode for producing negative ions and a plurality of apertures on the opposed anode for the release of negative ions. Magnetic insulation keeps electrons from flowing from the cathode to the anode. A transverse magnetic field removes electrons which do escape through the apertures from the trajectory of the negative ions. 8 figs.

  13. Negative ion generator

    DOE Patents [OSTI]

    Stinnett, Regan W. (Albuquerque, NM)

    1984-01-01

    A negative ion generator is formed from a magnetically insulated transmission line having a coating of graphite on the cathode for producing negative ions and a plurality of apertures on the opposed anode for the release of negative ions. Magnetic insulation keeps electrons from flowing from the cathode to the anode. A transverse magnetic field removes electrons which do escape through the apertures from the trajectory of the negative ions.

  14. A hollow cathode ion source for production of primary ions for the BNL electron beam ion source

    SciTech Connect (OSTI)

    Alessi, James Beebe, Edward; Carlson, Charles; McCafferty, Daniel; Pikin, Alexander; Ritter, John

    2014-02-15

    A hollow cathode ion source, based on one developed at Saclay, has been modified significantly and used for several years to produce all primary 1+ ions injected into the Relativistic Heavy Ion Collider Electron Beam Ion Source (EBIS) at Brookhaven. Currents of tens to hundreds of microamperes have been produced for 1+ ions of He, C, O, Ne, Si, Ar, Ti, Fe, Cu, Kr, Xe, Ta, Au, and U. The source is very simple, relying on a glow discharge using a noble gas, between anode and a solid cathode containing the desired species. Ions of both the working gas and ionized sputtered cathode material are extracted, and then the desired species is selected using an ExB filter before being transported into the EBIS trap for charge breeding. The source operates pulsed with long life and excellent stability for most species. Reliable ignition of the discharge at low gas pressure is facilitated by the use of capacitive coupling from a simple toy plasma globe. The source design, and operating experience for the various species, is presented.

  15. Preparation of gas selective membranes

    DOE Patents [OSTI]

    Kulprathipanja, S.; Kulkarni, S.S.; Funk, E.W.

    1988-06-14

    Gas separation membranes which possess improved characteristics as exemplified by selectivity and flux may be prepared by coating a porous organic polymer support with a solution or emulsion of a plasticizer and an organic polymer, said coating being effected at subatmospheric pressures in order to increase the penetration depth of the coating material.

  16. Preparation of gas selective membranes

    DOE Patents [OSTI]

    Kulprathipanja, Santi; Kulkarni, Sudhir S.; Funk, Edward W.

    1988-01-01

    Gas separation membranes which possess improved characteristics as exemplified by selectivity and flux may be prepared by coating a porous organic polymer support with a solution or emulsion of a plasticizer and an organic polymer, said coating being effected at subatmospheric pressures in order to increase the penetration depth of the coating material.

  17. Ion temperature gradient driven turbulence with strong trapped ion

    Office of Scientific and Technical Information (OSTI)

    resonance (Journal Article) | SciTech Connect Ion temperature gradient driven turbulence with strong trapped ion resonance Citation Details In-Document Search Title: Ion temperature gradient driven turbulence with strong trapped ion resonance A theory to describe basic characterization of ion temperature gradient driven turbulence with strong trapped ion resonance is presented. The role of trapped ion granulations, clusters of trapped ions correlated by precession resonance, is the focus.

  18. Rab proteins: The key regulators of intracellular vesicle transport

    SciTech Connect (OSTI)

    Bhuin, Tanmay; Roy, Jagat Kumar

    2014-10-15

    Vesicular/membrane trafficking essentially regulates the compartmentalization and abundance of proteins within the cells and contributes in many signalling pathways. This membrane transport in eukaryotic cells is a complex process regulated by a large and diverse array of proteins. A large group of monomeric small GTPases; the Rabs are essential components of this membrane trafficking route. Most of the Rabs are ubiquitously expressed proteins and have been implicated in vesicle formation, vesicle motility/delivery along cytoskeleton elements and docking/fusion at target membranes through the recruitment of effectors. Functional impairments of Rabs affecting transport pathways manifest different diseases. Rab functions are accompanied by cyclical activation and inactivation of GTP-bound and GDP-bound forms between the cytosol and membranes which is regulated by upstream regulators. Rab proteins are characterized by their distinct sub-cellular localization and regulate a wide variety of endocytic, transcytic and exocytic transport pathways. Mutations of Rabs affect cell growth, motility and other biological processes. - Highlights: Rab proteins regulate different signalling pathways. Deregulation of Rabs is the fundamental causes of a variety of human diseases. This paper gives potential directions in developing therapeutic targets. This paper also gives ample directions for modulating pathways central to normal physiology. These are the huge challenges for drug discovery and delivery in near future.

  19. Cell-free system for synthesizing membrane proteins cell free method for synthesizing membrane proteins

    DOE Patents [OSTI]

    Laible, Philip D; Hanson, Deborah K

    2013-06-04

    The invention provides an in vitro method for producing proteins, membrane proteins, membrane-associated proteins, and soluble proteins that interact with membrane-associated proteins for assembly into an oligomeric complex or that require association with a membrane for proper folding. The method comprises, supplying intracytoplasmic membranes from organisms; modifying protein composition of intracytoplasmic membranes from organism by modifying DNA to delete genes encoding functions of the organism not associated with the formation of the intracytoplasmic membranes; generating appropriate DNA or RNA templates that encode the target protein; and mixing the intracytoplasmic membranes with the template and a transcription/translation-competent cellular extract to cause simultaneous production of the membrane proteins and encapsulation of the membrane proteins within the intracytoplasmic membranes.

  20. ASU nitrogen sweep gas in hydrogen separation membrane for production of HRSG duct burner fuel

    DOE Patents [OSTI]

    Panuccio, Gregory J.; Raybold, Troy M.; Jamal, Agil; Drnevich, Raymond Francis

    2013-04-02

    The present invention relates to the use of low pressure N2 from an air separation unit (ASU) for use as a sweep gas in a hydrogen transport membrane (HTM) to increase syngas H2 recovery and make a near-atmospheric pressure (less than or equal to about 25 psia) fuel for supplemental firing in the heat recovery steam generator (HRSG) duct burner.

  1. Nanoporous carbon catalytic membranes and method for making the same

    DOE Patents [OSTI]

    Foley, Henry C. (Hockessin, DE); Strano, Michael (Wilmington, DE); Acharya, Madhav (New Castle, DE); Raich, Brenda A. (Houston, TX)

    2002-01-01

    Catalytic membranes comprising highly-dispersed, catalytically-active metals in nanoporous carbon membranes and a novel single-phase process to produce the membranes.

  2. Novel Membranes and Systems for Industrial and Municipal Water...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    performance membranes are key to reduce energy consumption Project Objective Achieve 50% energy reduction in membrane processes through Novel membranes & systems ...

  3. Renaturing Membrane Proteins in the Lipid Cubic Phase, a Nanoporous...

    Office of Scientific and Technical Information (OSTI)

    Renaturing Membrane Proteins in the Lipid Cubic Phase, a Nanoporous Membrane Mimetic Citation Details In-Document Search Title: Renaturing Membrane Proteins in the Lipid Cubic ...

  4. Waste treatment by reverse osmosis and membrane processes: Industrial. (Latest citations from the EI compendex*plus database). Published Search

    SciTech Connect (OSTI)

    1995-09-01

    The bibliography contains citations concerning the use of membranes in the treatment of industrial wastewaters. Reverse osmosis, ion exchange, electrodialysis, liquid membranes, and ultrafiltration techniques are described. Wastewater treatments for removal of metals, ammonia, sodium compounds, nitrates, fluorides, dyes, biologicals, and radioactive waste using membrane technology are discussed. Applications of this technology to the chemical, petrochemical, pulp, textile, steel, ore treatment, electro-plating, and other wastewater and groundwater-remediation industries are included.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  5. Waste treatment by reverse osmosis and membrane processes: Industrial. (Latest citations from the Compendex database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    The bibliography contains citations concerning the use of membranes in the treatment of industrial wastewaters. Reverse osmosis, ion exchange, electrodialysis, liquid membranes, and ultrafiltration techniques are described. Wastewater treatments for removal of metals, ammonia, sodium compounds, nitrates, fluorides, dyes, biologicals, and radioactive waste using membrane technology are discussed. Applications of this technology to the chemical, petrochemical, pulp, textile, steel, ore treatment, electro-plating, and other wastewater and groundwater-remediation industries are included. (Contains 250 citations and includes a subject term index and title list.)

  6. Waste treatment by reverse osmosis and membrane processes: Industrial. (Latest citations from the EI Compendex*Plus database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    The bibliography contains citations concerning the use of membranes in the treatment of industrial wastewaters. Reverse osmosis, ion exchange, electrodialysis, liquid membranes, and ultrafiltration techniques are described. Wastewater treatments for removal of metals, ammonia, sodium compounds, nitrates, fluorides, dyes, biologicals, and radioactive waste using membrane technology are discussed. Applications of this technology to the chemical, petrochemical, pulp, textile, steel, ore treatment, electro-plating, and other wastewater and groundwater-remediation industries are included. (Contains 250 citations and includes a subject term index and title list.)

  7. NREL: Transportation Research - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    work on fuel cell electric vehicle technologies. Transportation and Hydrogen Newsletter Stay up to date on NREL's RD&D of transportation and hydrogen technologies with this...

  8. Transportation Emergency Preparedness Program

    Office of Environmental Management (EM)

    Stakeholders Forum 1 Planning for a Shipment Campaign Identifying Responders Needs National Transportation Stakeholders Forum Tom Clawson US Department of Energy Transportation...

  9. Constant pressure high throughput membrane permeation testing...

    Office of Scientific and Technical Information (OSTI)

    system provides a pressurized flow of a feed and sweep gas to each membrane testing cell in a plurality of membrane testing cells while a stream of retentate gas from each...

  10. Tetrakis-amido high flux membranes

    DOE Patents [OSTI]

    McCray, S.B.

    1989-10-24

    Composite RO membranes of a microporous polymeric support and a polyamide reaction product of a tetrakis-aminomethyl compound and a polyacylhalide are disclosed, said membranes exhibiting high flux and good chlorine resistance.

  11. Tetrakis-amido high flux membranes

    DOE Patents [OSTI]

    McCray, Scott B. (Bend, OR)

    1989-01-01

    Composite RO membranes of a microporous polymeric support and a polyamide reaction product of a tetrakis-aminomethyl compound and a polyacylhalide are disclosed, said membranes exhibiting high flux and good chlorine resistance.

  12. Using Fuel Cell Membranes to Improve Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Membranes to Improve Power As part of its Sustainable Energy Program, Sandia National Laboratories works to find new ways to use fuel cell membranes to improve energy...

  13. Ion cyclotron resonance cell

    DOE Patents [OSTI]

    Weller, Robert R. (Aiken, SC)

    1995-01-01

    An ion cyclotron resonance cell having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions.

  14. Ion cyclotron resonance cell

    DOE Patents [OSTI]

    Weller, R.R.

    1995-02-14

    An ion cyclotron resonance cell is disclosed having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions. 5 figs.

  15. Transport behavior of water molecules through two-dimensional nanopores

    SciTech Connect (OSTI)

    Zhu, Chongqin; Li, Hui; Meng, Sheng

    2014-11-14

    Water transport through a two-dimensional nanoporous membrane has attracted increasing attention in recent years thanks to great demands in water purification and desalination applications. However, few studies have been reported on the microscopic mechanisms of water transport through structured nanopores, especially at the atomistic scale. Here we investigate the microstructure of water flow through two-dimensional model graphene membrane containing a variety of nanopores of different size by using molecular dynamics simulations. Our results clearly indicate that the continuum flow transits to discrete molecular flow patterns with decreasing pore sizes. While for pores with a diameter ?15 water flux exhibits a linear dependence on the pore area, a nonlinear relationship between water flux and pore area has been identified for smaller pores. We attribute this deviation from linear behavior to the presence of discrete water flow, which is strongly influenced by the water-membrane interaction and hydrogen bonding between water molecules.

  16. Microfabricated ion trap array

    DOE Patents [OSTI]

    Blain, Matthew G. (Albuquerque, NM); Fleming, James G. (Albuquerque, NM)

    2006-12-26

    A microfabricated ion trap array, comprising a plurality of ion traps having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale ion traps to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The reduced electrode voltage enables integration of the microfabricated ion trap array with on-chip circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of the microfabricated ion trap array can be realized in truly field portable, handheld microanalysis systems.

  17. Basic Physics of Tokamak Transport Final Technical Report.

    SciTech Connect (OSTI)

    Sen, Amiya K.

    2014-05-12

    The goal of this grant has been to study the basic physics of various sources of anomalous transport in tokamaks. Anomalous transport in tokamaks continues to be one of the major problems in magnetic fusion research. As a tokamak is not a physics device by design, direct experimental observation and identification of the instabilities responsible for transport, as well as physics studies of the transport in tokamaks, have been difficult and of limited value. It is noted that direct experimental observation, identification and physics study of microinstabilities including ITG, ETG, and trapped electron/ion modes in tokamaks has been very difficult and nearly impossible. The primary reasons are co-existence of many instabilities, their broadband fluctuation spectra, lack of flexibility for parameter scans and absence of good local diagnostics. This has motivated us to study the suspected tokamak instabilities and their transport consequences in a simpler, steady state Columbia Linear Machine (CLM) with collisionless plasma and the flexibility of wide parameter variations. Earlier work as part of this grant was focused on both ITG turbulence, widely believed to be a primary source of ion thermal transport in tokamaks, and the effects of isotope scaling on transport levels. Prior work from our research team has produced and definitively identified both the slab and toroidal branches of this instability and determined the physics criteria for their existence. All the experimentally observed linear physics corroborate well with theoretical predictions. However, one of the large areas of research dealt with turbulent transport results that indicate some significant differences between our experimental results and most theoretical predictions. Latter years of this proposal were focused on anomalous electron transport with a special focus on ETG. There are several advanced tokamak scenarios with internal transport barriers (ITB), when the ion transport is reduced to neoclassical values by combined mechanisms of ExB and diamagnetic flow shear suppression of the ion temperature gradient (ITG) instabilities. However, even when the ion transport is strongly suppressed, the electron transport remains highly anomalous. The most plausible physics scenario for the anomalous electron transport is based on electron temperature gradient (ETG) instabilities. This instability is an electron analog of and nearly isomorphic to the ITG instability, which we had studied before extensively. However, this isomorphism is broken nonlinearily. It is noted that as the typical ETG mode growth rates are larger (in contrast to ITG modes) than ExB shearing rates in usual tokamaks, the flow shear suppression of ETG modes is highly unlikely. This motivated a broader range of investigations of other physics scenarios of nonlinear saturation and transport scaling of ETG modes.

  18. Agenda: High Temperature Membrane Working Group Meeting

    Broader source: Energy.gov [DOE]

    Agenda for the High Temperature Membrane Working Group (HTMWG) meeting on May 18, 2009, in Arlington, Virginia

  19. Challenges in Bio-Inspired Membranes

    Broader source: Energy.gov [DOE]

    Presentation by Jun Lin (Pacific Northwest National Laboratory, PNNL) for the Membrane Technology Workshop held July 24, 2012

  20. Membrane Permeation Testing System - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis Energy Analysis Find More Like This Return to Search Membrane Permeation Testing System National Energy Technology Laboratory Contact NETL About This Technology Publications: PDF Document Publication Constant Pressure High Throughput Membrane Permeation Testing System (443 KB) Technology Marketing Summary A simple and rapid method for the screening of the permeability and selectivity of membranes for gas separation has been developed. A high throughput membrane testing system permits

  1. Ceramic membrane reactor with two reactant gases at different pressures

    DOE Patents [OSTI]

    Balachandran, Uthamalingam (Hinsdale, IL); Mieville, Rodney L. (Glen Ellyn, IL)

    2001-01-01

    The invention is a ceramic membrane reactor for syngas production having a reaction chamber, an inlet in the reactor for natural gas intake, a plurality of oxygen permeating ceramic slabs inside the reaction chamber with each slab having a plurality of passages paralleling the gas flow for transporting air through the reaction chamber, a manifold affixed to one end of the reaction chamber for intake of air connected to the slabs, a second manifold affixed to the reactor for removing the oxygen depleted air, and an outlet in the reaction chamber for removing syngas.

  2. Inorganic dual-layer microporous supported membranes

    DOE Patents [OSTI]

    Brinker, C. Jeffrey; Tsai, Chung-Yi; Lu, Yungfeng

    2003-03-25

    The present invention provides for a dual-layer inorganic microporous membrane capable of molecular sieving, and methods for production of the membranes. The inorganic microporous supported membrane includes a porous substrate which supports a first inorganic porous membrane having an average pore size of less than about 25 .ANG. and a second inorganic porous membrane coating the first inorganic membrane having an average pore size of less than about 6 .ANG.. The dual-layered membrane is produced by contacting the porous substrate with a surfactant-template polymeric sol, resulting in a surfactant sol coated membrane support. The surfactant sol coated membrane support is dried, producing a surfactant-templated polymer-coated substrate which is calcined to produce an intermediate layer surfactant-templated membrane. The intermediate layer surfactant-templated membrane is then contacted with a second polymeric sol producing a polymeric sol coated substrate which is dried producing an inorganic polymeric coated substrate. The inorganic polymeric coated substrate is then calcined producing an inorganic dual-layered microporous supported membrane in accordance with the present invention.

  3. Simple Colorimetric Determination of the Manganese Content in Photosynthetic Membranes

    SciTech Connect (OSTI)

    Semin, B. K.; Seibert, M.

    2009-01-01

    The functional Mn content of intact photosystem II membrane fragments was measured as 4.06 {+-} 0.13 Mn/reaction center when determined using a simple, sensitive colorimetric assay that will also work with thylakoids and core complexes. This procedure requires minimal sample material, does not need expensive assay equipment, requires four simple steps, and only takes 20-30 min to perform. These include (a) removal of the adventitious Mn ions by CaCl{sub 2} treatment of the membranes, (b) extraction of the Mn from the O{sub 2}-evolving complex with hydrochloric acid, (c) purification of the extract by centrifugation followed by filtration of the supernatant through an Acrodisc syringe filter (0.2 {micro}m nylon membrane), and (d) colorimetric determination of Mn in the extract using the reaction of the chromogenic agent, 3,3',5,5'-tetramethylbenzidine, with previously oxidized Mn(II) cations carried out at high pH. The colorimetric assay itself has been used previously by Serrat (Mikrochim Acta 129:77-80, 1998) for assaying Mn concentrations in sea water and drinking water.

  4. Deionization and desalination using electrostatic ion pumping

    DOE Patents [OSTI]

    Bourcier, William L.; Aines, Roger D.; Haslam, Jeffery J.; Schaldach, Charlene M.; O'Brien, Kevin C.; Cussler, Edward

    2013-06-11

    The present invention provides a new method and apparatus/system for purifying ionic solutions, such as, for example, desalinating water, using engineered charged surfaces to sorb ions from such solutions. Surface charge is applied externally, and is synchronized with oscillatory fluid movements between substantially parallel charged plates. Ions are held in place during fluid movement in one direction (because they are held in the electrical double layer), and released for transport during fluid movement in the opposite direction by removing the applied electric field. In this way the ions, such as salt, are "ratcheted" across the charged surface from the feed side to the concentrate side. The process itself is very simple and involves only pumps, charged surfaces, and manifolds for fluid collection.

  5. Electrochemical Lithium Ion Battery Performance Model

    Energy Science and Technology Software Center (OSTI)

    2007-03-29

    The Electrochemical Lithium Ion Battery Performance Model allows for the computer prediction of the basic thermal, electrical, and electrochemical performance of a lithium ion cell with simplified geometry. The model solves governing equations describing the movement of lithium ions within and between the negative and positive electrodes. The governing equations were first formulated by Fuller, Doyle, and Newman and published in J. Electrochemical Society in 1994. The present model solves the partial differential equations governingmore »charge transfer kinetics and charge, species, heat transports in a computationally-efficient manner using the finite volume method, with special consideration given for solving the model under conditions of applied current, voltage, power, and load resistance.« less

  6. Deionization and desalination using electrostatic ion pumping

    DOE Patents [OSTI]

    Bourcier, William L. (Livermore, CA); Aines, Roger D. (Livermore, CA); Haslam, Jeffery J. (Livermore, CA); Schaldach, Charlene M. (Pleasanton, CA); O'Brien, Kevin C. (San Ramon, CA); Cussler, Edward (Edina, MN)

    2011-07-19

    The present invention provides a new method and apparatus/system for purifying ionic solutions, such as, for example, desalinating water, using engineered charged surfaces to sorb ions from such solutions. Surface charge is applied externally, and is synchronized with oscillatory fluid movements between substantially parallel charged plates. Ions are held in place during fluid movement in one direction (because they are held in the electrical double layer), and released for transport during fluid movement in the opposite direction by removing the applied electric field. In this way the ions, such as salt, are "ratcheted" across the charged surface from the feed side to the concentrate side. The process itself is very simple and involves only pumps, charged surfaces, and manifolds for fluid collection.

  7. Low energy beam transport system developments

    SciTech Connect (OSTI)

    Dudnikov, V.; Han, B.; Stockli, M.; Welton, R.; Dudnikova, G.

    2015-04-08

    For high brightness beam production it is important to preserve the brightness in the low energy beam transport system (LEBT) used to transport and match the ion beams to the next stage of acceleration, usually an RFQ. While electrostatic focusing can be problematic for high current beam transport, reliable electrostatic LEBT operation has been demonstrated with H{sup ?} beams up to 60?mA. Now, however, it is commonly accepted that an optimal LEBT for high current accelerator applications consists of focusing solenoids with space charge compensation. Two-solenoid LEBTs are successfully used for high current (>100?mA) proton beam transport. Preservation of low emittances (~0.15 ? mm-mrad) requires the addition of a heavy gas (Xe, Kr), which causes ~5% of proton loss in a 1?m long LEBT. Similar Xe densities would be required to preserve low emittances of H{sup ?} beams, but such gas densities cause unacceptably high H{sup ?} beam losses. A short LEBT with only one short solenoid, movable for RFQ matching, can be used for reduced negative ion stripping. A strong electrostatic-focusing LEBT has been successfully adopted for transport of high current H{sup ?} beams in the SNS Front End. Some modifications of such electrostatic LEBTs are expected to improve the reliable transport of intense positive and negative ion beams without greatly degrading their low emittances. We concentrate on processes that determine the beam brightness degradation and on their prevention. Proposed improvements to the SNS electrostatic LEBT are discussed.

  8. Ion impact distribution over plasma exposed nanocone arrays

    SciTech Connect (OSTI)

    Mehrabian, S. [Laser and Plasma Research Institute, Shahid Beheshti University, Evin, Tehran 1983963113 (Iran, Islamic Republic of); Plasma Sources and Applications Center, NIE, Nanyang Technological University, 637616 Singapore (Singapore); Xu, S. [Plasma Sources and Applications Center, NIE, Nanyang Technological University, 637616 Singapore (Singapore); Qaemi, A. A. [Physics Department, Shahid Beheshti University, Evin, Tehran 1983963113 (Iran, Islamic Republic of); Shokri, B. [Laser and Plasma Research Institute, Shahid Beheshti University, Evin, Tehran 1983963113 (Iran, Islamic Republic of); Physics Department, Shahid Beheshti University, Evin, Tehran 1983963113 (Iran, Islamic Republic of); Ostrikov, K. [Plasma Nanoscience Center Australia (PNCA), CSIRO Materials Science and Engineering, P.O. Box 218 Lindfield, New South Wales 2070 (Australia); Plasma Nanoscience, School of Physics, University of Sydney, Sydney, New South Wales 2006 (Australia); Plasma Sources and Applications Center, NIE, Nanyang Technological University, 637616 Singapore (Singapore)

    2013-03-15

    The effect of an ordered array of nanocones on a conducting substrate immersed in the plasma on the transport of the plasma ions is investigated. The real conical shape of the cones is rigorously incorporated into the model. The movement of 10{sup 5} CH{sub 3}{sup +} ions in the plasma sheath modified by the nanocone array is simulated. The ions are driven by the electric fields produced by the sheath and the nanostructures. The surface charge density and the total charge on the nanotips with different aspect ratios are computed. The ion transport simulation provides important characteristics of the displacement and velocity of the ions. The relative ion distribution along the lateral surfaces of the carbon nanotips is computed as well. It is shown that a rigorous account of the realistic nanostructure shape leads to very different distribution of the ion fluxes on the nanostructured surfaces compared to the previously reported works. The ion flux distribution is a critical factor in the nucleation process on the substrate and determines the nanostructure growth patterns.

  9. Final Report: Computer Simulation of Osmosis and Reverse Osmosis in Structured Membranes

    SciTech Connect (OSTI)

    Sohail Murad

    2012-01-03

    Molecular simulation methods were developed as part of this project to increase our fundamental understanding of membrane based separation systems. Our simulations clarified for example that steric (size) effects had a significant impact on the desalination membranes. Previously it was thought the separation was entirely driven by coulombic force (attractive/repulsive forces at the membrane surfaces). Steric effects played an important role, because salt ions in brackish water are never present alone, but are strongly hydrated which effectively increases their size, and makes it impossible to enter a membrane, while the smaller water molecules can enter more readily. Membrane surface effects did play a role in increasing the flux of water, but not in the separation itself. In addition we also developed simulation methods to study ion exchange, gas separations, and pervaporation. The methods developed were used to once again increase our fundamental understanding of these separation processes. For example our studies showed that when the separation factor of gases in membranes can be significantly affected by the presence of another gas, it is generally because the separation mechanism has changed. For example in the case of nitrogen and carbon dioxide, in their pure state the separation factor is determined by diffusion, while in mixtures it is influenced more by adsorption in the membrane (zeolite in our case) Finally we developed a new technique using the NMR chemical shift to determine intermolecular interactions for mixtures. For polar-nonpolar systems such as Xe dissolved in water we were able to significantly improve the accuracy of gas solubilities, which are very sensitive to the cross interaction between water and Xe.

  10. Kinetic neoclassical transport in the H-mode pedestal

    SciTech Connect (OSTI)

    Battaglia, D. J.; Chang, C. S.; Ku, S.; Grierson, B. A.; Burrell, K. H.; Grassie, J. S. de

    2014-07-15

    Multi-species kinetic neoclassical transport through the QH-mode pedestal and scrape-off layer on DIII-D is calculated using XGC0, a 5D full-f particle-in-cell drift-kinetic solver with self-consistent neutral recycling and sheath potentials. Quantitative agreement between the flux-driven simulation and the experimental electron density, impurity density, and orthogonal measurements of impurity temperature and flow profiles is achieved by adding random-walk particle diffusion to the guiding-center drift motion. The radial electric field (E{sub r}) that maintains ambipolar transport across flux surfaces and to the wall is computed self-consistently on closed and open magnetic field lines and is in excellent agreement with experiment. The E{sub r} inside the separatrix is the unique solution that balances the outward flux of thermal tail deuterium ions against the outward neoclassical electron flux and inward pinch of impurity and colder deuterium ions. Particle transport in the pedestal is primarily due to anomalous transport, while the ion heat and momentum transport are primarily due to the neoclassical transport. The full-f treatment quantifies the non-Maxwellian energy distributions that describe a number of experimental observations in low-collisionallity pedestals on DIII-D, including intrinsic co-I{sub p} parallel flows in the pedestal, ion temperature anisotropy, and large impurity temperatures in the scrape-off layer.

  11. Transportation Organization and Functions

    Broader source: Energy.gov [DOE]

    Office of Packaging and Transportation list of organizations and functions, with a list of acronyms.

  12. Surface selective membranes for carbon dioxide separation

    SciTech Connect (OSTI)

    Luebke, D.R.; Pennline, H.W.; Myers, C.R.

    2005-09-01

    In this study, hybrid membranes have been developed for the selective separation of CO2 from mixtures containing H2. Beginning with commercially available Pall alumina membrane tubes with nominal pore diameter of 5 nm, hybrids were produced by silation with a variety of functionalities designed to facilitate the selective adsorption of CO2 onto the pore surface. The goal is to produce a membrane which can harness the power of surface diffusion to give the selectivity of polymer membranes with the permeance of inorganic membranes.

  13. Process for restoring membrane permeation properties

    DOE Patents [OSTI]

    Pinnau, I.; Toy, L.G.; Casillas, C.G.

    1997-05-20

    A process is described for restoring the selectivity of high-free-volume, glassy polymer membranes for condensable components over less-condensable components or non-condensable components of a gas mixture. The process involves exposing the membrane to suitable sorbent vapor, such as propane or butane, thereby reopening the microvoids that make up the free volume. The selectivity of an aged membrane may be restored to 70--100% of its original value. The selectivity of a membrane which is known to age over time can also be maintained by keeping the membrane in a vapor environment when it is not in use. 8 figs.

  14. Dense, layered membranes for hydrogen separation

    DOE Patents [OSTI]

    Roark, Shane E.; MacKay, Richard; Mundschau, Michael V.

    2006-02-21

    This invention provides hydrogen-permeable membranes for separation of hydrogen from hydrogen-containing gases. The membranes are multi-layer having a central hydrogen-permeable layer with one or more catalyst layers, barrier layers, and/or protective layers. The invention also relates to membrane reactors employing the hydrogen-permeable membranes of the invention and to methods for separation of hydrogen from a hydrogen-containing gas using the membranes and reactors. The reactors of this invention can be combined with additional reactor systems for direct use of the separated hydrogen.

  15. Process for restoring membrane permeation properties

    DOE Patents [OSTI]

    Pinnau, Ingo (Palo Alto, CA); Toy, Lora G. (San Francisco, CA); Casillas, Carlos G. (San Jose, CA)

    1997-05-20

    A process for restoring the selectivity of high-flee-volume, glassy polymer membranes for condensable components over less-condensable components or non-condensable components of a gas mixture. The process involves exposing the membrane to suitable sorbent vapor, such as propane or butane, thereby reopening the microvoids that make up the free volume. The selectivity of an aged membrane may be restored to 70-100% of its original value. The selectivity of a membrane which is known to age over time can also be maintained by keeping the membrane in a vapor environment when it is not in use.

  16. membrane-mtr | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Low-Pressure Membrane Contactors for CO2 Capture Project No.: DE-FE0007553 Membrane Technology and Research, Inc. (MTR) is developing a new type of membrane contactor (or mega-module) to separate carbon dioxide (CO2) from power plant flue gas. This module's membrane area is 500 square meters, 20 to 25 times larger than that of current modules used for CO2 capture. A 500-MWe coal power plant requires 0.5 to 1 million square meters of membrane to achieve 90 percent CO2 capture. The new

  17. Separation of metals by supported liquid membrane

    DOE Patents [OSTI]

    Takigawa, Doreen Y. (Los Alamos, NM)

    1992-01-01

    A supported liquid membrane system for the separation of a preselected chemical species within a feedstream, preferably an aqueous feedstream, includes a feed compartment containing a feed solution having at least one preselected chemical species therein, a stripping compartment containing a stripping solution therein, and a microporous polybenzimidazole membrane situated between the compartments, the microporous polybenzimidazole membrane containing an extractant mixture selective for the preselected chemical species within the membrane pores is disclosed along with a method of separating preselected chemical species from a feedstream with such a system, and a supported liquid membrane for use in such a system.

  18. Charge exchange molecular ion source

    DOE Patents [OSTI]

    Vella, Michael C.

    2003-06-03

    Ions, particularly molecular ions with multiple dopant nucleons per ion, are produced by charge exchange. An ion source contains a minimum of two regions separated by a physical barrier and utilizes charge exchange to enhance production of a desired ion species. The essential elements are a plasma chamber for production of ions of a first species, a physical separator, and a charge transfer chamber where ions of the first species from the plasma chamber undergo charge exchange or transfer with the reactant atom or molecules to produce ions of a second species. Molecular ions may be produced which are useful for ion implantation.

  19. Polymer gel electrolytes for application in aluminum deposition and rechargeable aluminum ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sun, Xiao -Guang; Fang, Youxing; Jiang, Xueguang; Yoshii, Kazuki; Tsuda, Tetsuya; Dai, Sheng

    2015-10-22

    Polymer gel electrolyte using AlCl3 complexed acrylamide as functional monomer and ionic liquids based on acidic mixture of 1-ethyl-3-methylimidazolium chloride (EMImCl) and AlCl3 as plasticizer has been successfully prepared for the first time by free radical polymerization. Aluminum deposition is successfully obtained with a polymer gel membrane contianing 80 wt% ionic liquid. As a result, the polymer gel membranes are also good candidates for rechargeable aluminum ion batteries.

  20. Photo-switchable membrane and method

    DOE Patents [OSTI]

    Marshall, Kenneth L; Glowacki, Eric

    2013-05-07

    Switchable gas permeation membranes in which a photo-switchable low-molecular-weight liquid crystalline (LC) material acts as the active element, and a method of making such membranes. Different LC eutectic mixtures were doped with mesogenic azo dyes and infused into track-etched porous membranes with regular cylindrical pores. Photo-induced isothermal phase changes in the imbibed mesogenic material afforded large, reversible changes in the permeability of the photo-switchable membrane to nitrogen. For example, membranes imbibed with a photo-switchable cyanobiphenyl LC material demonstrated low permeability in the nematic state, while the photo-generated isotropic state demonstrated a 16.times.-greater sorption coefficient. Both states obey a high linear sorption behavior in accordance with Henry's Law. In contrast, membranes imbibed with a photo-switchable phenyl benzoate LC material showed the opposite permeability behavior to the biphenyl-imbibed membrane, along with nonlinear sorption behavior.

  1. Dialysis membrane for separation on microchips

    DOE Patents [OSTI]

    Singh, Anup K.; Kirby, Brian J.; Shepodd, Timothy J.

    2010-07-13

    Laser-induced phase-separation polymerization of a porous acrylate polymer is used for in-situ fabrication of dialysis membranes inside glass microchannels. A shaped 355 nm laser beam is used to produce a porous polymer membrane with a thickness of about 15 .mu.m, which bonds to the glass microchannel and forms a semi-permeable membrane. Differential permeation through a membrane formed with pentaerythritol triacrylate was observed and quantified by comparing the response of the membrane to fluorescein and fluorescently tagging 200 nm latex microspheres. Differential permeation was observed and quantified by comparing the response to rhodamine 560 and lactalbumin protein in a membrane formed with SPE-methylene bisacrylamide. The porous membranes illustrate the capability for the present technique to integrate sample cleanup into chip-based analysis systems.

  2. NREL: Transportation Research - Transportation and Hydrogen Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation and Hydrogen Newsletter The Transportation and Hydrogen Newsletter is a monthly electronic newsletter that provides information on NREL's research, development, and deployment of transportation and hydrogen technologies. Photo of a stack of newspapers January 2016 Issue Sustainable Mobility Read the latest issue of the newsletter. Subscribe: To receive new issues by email, subscribe to the newsletter. Archives: For past issues, read the newsletter archives. Printable Version

  3. Ion photon emission microscope

    DOE Patents [OSTI]

    Doyle, Barney L. (Albuquerque, NM)

    2003-04-22

    An ion beam analysis system that creates microscopic multidimensional image maps of the effects of high energy ions from an unfocussed source upon a sample by correlating the exact entry point of an ion into a sample by projection imaging of the ion-induced photons emitted at that point with a signal from a detector that measures the interaction of that ion within the sample. The emitted photons are collected in the lens system of a conventional optical microscope, and projected on the image plane of a high resolution single photon position sensitive detector. Position signals from this photon detector are then correlated in time with electrical effects, including the malfunction of digital circuits, detected within the sample that were caused by the individual ion that created these photons initially.

  4. Adsorbent for metal ions and method of making and using

    DOE Patents [OSTI]

    White, L.R.; Lundquist, S.H.

    1999-08-10

    A method comprises the step of spray-drying a solution or slurry comprising (alkali metal or ammonium) (metal) hexacyanoferrate particles in a liquid, to provide monodisperse, substantially spherical particles in a yield of at least 70 percent of theoretical yield and having a particle size in the range of 1 to 500 micrometers, said particles being active towards Cs ions. The particles, which can be of a single salt or a combination of salts, can be used free flowing, in columns or beds, or entrapped in a nonwoven, fibrous web or matrix or a cast porous membrane, to selectively remove Cs ions from aqueous solutions. 2 figs.

  5. Adsorbent for metal ions and method of making and using

    DOE Patents [OSTI]

    White, Lloyd R.; Lundquist, Susan H.

    2000-01-01

    A method comprises the step of spray-drying a solution or slurry comprising (alkali metal or ammonium) (metal) hexacyanoferrate particles in a liquid, to provide monodisperse, substantially spherical particles in a yield of at least 70 percent of theoretical yield and having a particle size in the range of 1 to 500 micrometers, said particles being active towards Cs ions. The particles, which can be of a single salt or a combination of salts, can be used free flowing, in columns or beds, or entrapped in a nonwoven, fibrous web or matrix or a cast porous membrane, to selectively remove Cs ions from aqueous solutions.

  6. Adsorbent for metal ions and method of making and using

    DOE Patents [OSTI]

    White, Lloyd R.; Lundquist, Susan H.

    1999-01-01

    A method comprises the step of spray-drying a solution or slurry comprising (alkali metal or ammonium) (metal) hexacyanoferrate particles in a liquid, to provide monodisperse, substantially spherical particles in a yield of at least 70 percent of theoretical yield and having a particle size in the range of 1 to 500 micrometers, said particles being active towards Cs ions. The particles, which can be of a single salt or a combination of salts, can be used free flowing, in columns or beds, or entrapped in a nonwoven, fibrous web or matrix or a cast porous membrane, to selectively remove Cs ions from aqueous solutions.

  7. Ion irradiation tolerance of graphene as studied by atomistic simulations

    SciTech Connect (OSTI)

    Ahlgren, E. H.; Lehtinen, O.; Kotakoski, J.; Krasheninnikov, A. V.

    2012-06-04

    As impermeable to gas molecules and at the same time transparent to high-energy ions, graphene has been suggested as a window material for separating a high-vacuum ion beam system from targets kept at ambient conditions. However, accumulation of irradiation-induced damage in the graphene membrane may give rise to its mechanical failure. Using atomistic simulations, we demonstrate that irradiated graphene even with a high vacancy concentration does not show signs of such instability, indicating a considerable robustness of graphene windows. We further show that upper and lower estimates for the irradiation damage in graphene can be set using a simple model.

  8. Adsorbent for metal ions and method of making and using

    SciTech Connect (OSTI)

    White, L.R.; Lundquist, S.H.

    2000-07-25

    A method comprises the step of spray-drying a solution or slurry comprising (alkali metal or ammonium) (metal) hexacyanoferrate particles in a liquid, to provide monodisperse, substantially spherical particles in a yield of at least 70 percent of theoretical yield and having a particle size in the range of 1 to 500 micrometers, said particles being active towards Cs ions. The particles, which can be of a single salt or a combination of salts, can be used free flowing, in columns or beds, or entrapped in a nonwoven, fibrous web or matrix or a cast porous membrane, to selectively remove Cs ions from aqueous solutions.

  9. Molecular Structure and Ion Transport near Electrode-Electrolyte...

    Office of Scientific and Technical Information (OSTI)

    Publication: United States Language: English Subject: 36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; 25 ENERGY STORAGE Word Cloud More Like This...

  10. Strongly enhanced oxygen ion transport through samarium-doped...

    Office of Scientific and Technical Information (OSTI)

    1 ; MacManus-Driscoll, Judith L. 2 + Show Author Affiliations ORNL University of Cambridge Texas A&M University Sandia National Laboratories (SNL) Los Alamos National...

  11. Molecular Structure and Ion Transport near Electrode-Electrolyte...

    Office of Scientific and Technical Information (OSTI)

    J E 36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; 25 ENERGY STORAGE Abstract not provided Lawrence Livermore National Laboratory (LLNL),...

  12. Molecular Structure and Ion Transport near Electrode-Electrolyte...

    Office of Scientific and Technical Information (OSTI)

    Presented at: 249th ACS National Meeting & Exposition, Denver, CO, United States, Mar 22 - Mar 26, 2015 Research Org: Lawrence Livermore National Laboratory (LLNL),...

  13. NREL: Transportation Research - Sustainable Transportation Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an introduction to sustainable transportation. NREL research supports development of electric, hybrid, hydrogen fuel cell, biofuel, natural gas, and propane vehicle technologies. ...

  14. Collection of ions

    DOE Patents [OSTI]

    Orr, Christopher Henry (Calderbridge, GB); Luff, Craig Janson (Calderbridge, GB); Dockray, Thomas (Calderbridge, GB); Macarthur, Duncan Whittemore (Los Alamos, NM); Bounds, John Alan (Los Alamos, NM); Koster, James E. (Los Alamos, NM)

    2001-01-01

    The apparatus and method provide an improved technique for detecting ions as the area from which ions are attracted to a detector is increased, consequently increasing the number of ions detected. This is achieved by providing the outer electrodes of the detector connected to the electrical potential, together with alternate intermediate electrodes. The other intermediate electrodes and preferably the housing are grounded. The technique renders such detection techniques more sensitive and gives them a lower threshold at which they can function.

  15. Ion beam generating apparatus

    DOE Patents [OSTI]

    Brown, I.G.; Galvin, J.

    1987-12-22

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam. 10 figs.

  16. Ion beam generating apparatus

    DOE Patents [OSTI]

    Brown, Ian G. (1088 Woodside Rd., Berkeley, CA 94708); Galvin, James (2 Commodore #276, Emeryville, CA 94608)

    1987-01-01

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam.

  17. Characterization of commercial proton exchange membrane materials after exposure to beta and gamma radiation

    SciTech Connect (OSTI)

    Thomson, S.N.; Carson, R.; Muirhead, C.; Li, H.; Castillo, I.; Boniface, H.; Suppiah, S.; Ratnayake, A.; Robinson, J.

    2015-03-15

    Proton Exchange Membrane (PEM) type electrolysis cells have a potential use for tritium removal and heavy water upgrading. AECL is currently exposing various commercial PEM materials to both gamma (Cobalt-60 source) and beta (tritiated water) radiation to study the effects of radiation on these materials. This paper summarizes the testing methods and results that have been collected to date. The PEM materials that are or have been exposed to radiation are: Nafion 112, 212, 117 and 1110. Membrane characterization pre- and post- exposure consists of non-destructive inspection (FTIR, SEM/XPS), mechanical (tensile strength, percentage elongation, and modulus), electrical (resistance), or chemical (ion-exchange capacity - IEC). It has appeared that the best characterization techniques to compare exposed versus unexposed membranes were IEC, ultimate tensile strength and percent elongation. These testing techniques are easy and cheap to perform. The non-destructive tests, such as SEM and FTIR did not provide particularly useful information on radiation-induced degradation. Where changes in material properties were measured after radiation exposure, they would be expected to result in poorer cell performance. However, for modest ?-radiation exposure, all membranes showed a slight decrease in cell voltage (better performance). In contrast, the one ?-radiation exposed membrane did show the expected increase in cell voltage. The counterintuitive trend for ?-radiation exposed membranes is not yet understood. Based on these preliminary results, it appears that ?- and ?-radiation exposures have different effects.

  18. BERNAS ION SOURCE DISCHARGE SIMULATION

    SciTech Connect (OSTI)

    RUDSKOY,I.; KULEVOY, T.V.; PETRENKO, S.V.; KUIBEDA, R.P.; SELEZNEV, D.N.; PERSHIN, V.I.; HERSHCOVITCH, A.; JOHNSON, B.M.; GUSHENETS, V.I.; OKS, E.M.; POOLE, H.J.

    2007-08-26

    The joint research and development program is continued to develop steady-state ion source of decaborane beam for ion implantation industry. Bemas ion source is the wide used ion source for ion implantation industry. The new simulation code was developed for the Bemas ion source discharge simulation. We present first results of the simulation for several materials interested in semiconductors. As well the comparison of results obtained with experimental data obtained at the ITEP ion source test-bench is presented.

  19. Correlation ion mobility spectroscopy

    DOE Patents [OSTI]

    Pfeifer, Kent B. (Los Lunas, NM); Rohde, Steven B. (Corrales, NM)

    2008-08-26

    Correlation ion mobility spectrometry (CIMS) uses gating modulation and correlation signal processing to improve IMS instrument performance. Closely spaced ion peaks can be resolved by adding discriminating codes to the gate and matched filtering for the received ion current signal, thereby improving sensitivity and resolution of an ion mobility spectrometer. CIMS can be used to improve the signal-to-noise ratio even for transient chemical samples. CIMS is especially advantageous for small geometry IMS drift tubes that can otherwise have poor resolution due to their small size.

  20. Hybrid Solvent-Membrane CO2 Capture: A Solvent/Membrane Hybrid Post-combustion CO2 Capture Process for Existing Coal-Fired Power Plants

    SciTech Connect (OSTI)

    2010-07-01

    IMPACCT Project: The University of Kentucky is developing a hybrid approach to capturing CO2 from the exhaust gas of coal-fired power plants. In the first, CO2 is removed as flue gas is passed through an aqueous ammonium-based solvent. In the second, carbon-rich solution from the CO2 absorber is passed through a membrane that is designed to selectively transport the bound carbon, enhancing its concentration on the permeate side. The team’s approach would combine the best of both membrane- and solventbased carbon capture technologies. Under the ARPA-E award, the team is enabling the membrane operation to be a drop-in solution.

  1. Helium, Iron and Electron Particle Transport and Energy Transport Studies on the TFTR Tokamak

    DOE R&D Accomplishments [OSTI]

    Synakowski, E. J.; Efthimion, P. C.; Rewoldt, G.; Stratton, B. C.; Tang, W. M.; Grek, B.; Hill, K. W.; Hulse, R. A.; Johnson, D .W.; Mansfield, D. K.; McCune, D.; Mikkelsen, D. R.; Park, H. K.; Ramsey, A. T.; Redi, M. H.; Scott, S. D.; Taylor, G.; Timberlake, J.; Zarnstorff, M. C. (Princeton Univ., NJ (United States). Plasma Physics Lab.); Kissick, M. W. (Wisconsin Univ., Madison, WI (United States))

    1993-03-01

    Results from helium, iron, and electron transport on TFTR in L-mode and Supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power are presented. They are compared to results from thermal transport analysis based on power balance. Particle diffusivities and thermal conductivities are radially hollow and larger than neoclassical values, except possibly near the magnetic axis. The ion channel dominates over the electron channel in both particle and thermal diffusion. A peaked helium profile, supported by inward convection that is stronger than predicted by neoclassical theory, is measured in the Supershot The helium profile shape is consistent with predictions from quasilinear electrostatic drift-wave theory. While the perturbative particle diffusion coefficients of all three species are similar in the Supershot, differences are found in the L-Mode. Quasilinear theory calculations of the ratios of impurity diffusivities are in good accord with measurements. Theory estimates indicate that the ion heat flux should be larger than the electron heat flux, consistent with power balance analysis. However, theoretical values of the ratio of the ion to electron heat flux can be more than a factor of three larger than experimental values. A correlation between helium diffusion and ion thermal transport is observed and has favorable implications for sustained ignition of a tokamak fusion reactor.

  2. Innovative Concepts Phase I: Inorganic Membranes for CO2/N2 Separation

    SciTech Connect (OSTI)

    William Desisto

    2003-09-23

    Silica membranes were prepared using a novel technique of catalyzed-atomic layer deposition of silica within a mesoporous matrix. Pyridine was used to catalyze the silicon chloride attachment to the hydroxylated silica surface at room temperature. This half-reaction was followed by the hydration of the surface with water regenerating surface hydroxyls and completing one reaction cycle. The technique resulted in the self-limited pore size reduction of the mesoporous matrix to pore sizes near 1 nm. The self-limited reaction was presumed to be the exclusion of the large catalyst molecule from the pore entrance. In addition to pore size reduction, viscous flow defects were repaired without significantly reducing overall porosity of the membrane. In addition, we investigated the ability of amine-functionalization to enhance the CO{sub 2} transport in silica membranes. Specifically, we examined three synthesis techniques for functionalizing silica membranes with amino groups that resulted in different surface chemistries of the silica membranes. These differences were correlated with changes in the CO{sub 2} facilitation characteristics. It was found that high loadings of amino groups where interaction with the silica surface was minimized promoted the highest CO{sub 2} transport.

  3. Membranes for separation of carbon dioxide

    DOE Patents [OSTI]

    Ku, Anthony Yu-Chung (Rexford, NY); Ruud, James Anthony (Delmar, NY); Ramaswamy, Vidya (Niskayuna, NY); Willson, Patrick Daniel (Latham, NY); Gao, Yan (Niskayuna, NY)

    2011-03-01

    Methods for separating carbon dioxide from a fluid stream at a temperature higher than about 200.degree. C. with selectivity higher than Knudsen diffusion selectivity include contacting a porous membrane with the fluid stream to preferentially transport carbon dioxide. The porous membrane includes a porous support and a continuous porous separation layer disposed on a surface of the porous support and extending between the fluid stream and the porous support layer. The porous support comprises alumina, silica, zirconia, stabilized zirconia, stainless steel, titanium, nickel-based alloys, aluminum-based alloys, zirconium-based alloys or a combination thereof. Median pore size of the porous separation layer is less than about 10 nm, and the porous separation layer comprises titania, MgO, CaO, SrO, BaO, La.sub.2O.sub.3, CeO.sub.2, HfO.sub.2, Y.sub.2O.sub.3, VO.sub.z, NbO.sub.z, TaO.sub.z, ATiO.sub.3, AZrO.sub.3, AAl.sub.2O.sub.4, A.sup.1FeO.sub.3, A.sup.1MnO.sub.3, A.sup.1CoO.sub.3, A.sup.1NiO.sub.3, A.sup.2HfO.sub.3, A.sup.3 CeO.sub.3, Li.sub.2ZrO.sub.3, Li.sub.2SiO.sub.3, Li.sub.2TiO.sub.3, Li.sub.2HfO.sub.3, A.sup.4N.sup.1.sub.yO.sub.z, Y.sub.xN.sup.1.sub.yO.sub.z, La.sub.xN.sup.1.sub.yO.sub.z, HfN.sup.2.sub.yO.sub.z, or a combination thereof; wherein A is La, Mg, Ca, Sr or Ba; A.sup.1 is La, Ca, Sr or Ba; A.sup.2 is Ca, Sr or Ba; A.sup.3 is Sr or Ba; A.sup.4 is Mg, Ca, Sr, Ba, Ti or Zr; N.sup.1 is V, Nb, Ta, Cr, Mo, W, Mn, Si or Ge; N.sup.2 is V, Mo, W or Si; x is 1 or 2; y ranges from 1 to 3; and z ranges from 2 to 7.

  4. Secure Transportation Management

    SciTech Connect (OSTI)

    Gibbs, P. W.

    2014-10-15

    Secure Transport Management Course (STMC) course provides managers with information related to procedures and equipment used to successfully transport special nuclear material. This workshop outlines these procedures and reinforces the information presented with the aid of numerous practical examples. The course focuses on understanding the regulatory framework for secure transportation of special nuclear materials, identifying the insider and outsider threat(s) to secure transportation, organization of a secure transportation unit, management and supervision of secure transportation units, equipment and facilities required, training and qualification needed.

  5. Microfabricated cylindrical ion trap

    DOE Patents [OSTI]

    Blain, Matthew G.

    2005-03-22

    A microscale cylindrical ion trap, having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale cylindrical ion trap to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The microscale CIT has a reduced ion mean free path, allowing operation at higher pressures with less expensive and less bulky vacuum pumping system, and with lower battery power than conventional- and miniature-sized ion traps. The reduced electrode voltage enables integration of the microscale cylindrical ion trap with on-chip integrated circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of microscale cylindrical ion traps can be realized in truly field portable, handheld microanalysis systems.

  6. Selective ion source

    DOE Patents [OSTI]

    Leung, K.N.

    1996-05-14

    A ion source is described wherein selected ions maybe extracted to the exclusion of unwanted ion species of higher ionization potential. Also described is a method of producing selected ions from a compound, such as P{sup +} from PH{sub 3}. The invention comprises a plasma chamber, an electron source, a means for introducing a gas to be ionized by electrons from the electron source, means for limiting electron energy from the electron source to a value between the ionization energy of the selected ion species and the greater ionization energy of an unwanted ion specie, and means for extracting the target ion specie from the plasma chamber. In one embodiment, the electrons are generated in a plasma cathode chamber immediately adjacent to the plasma chamber. A small extractor draws the electrons from the plasma cathode chamber into the relatively positive plasma chamber. The energy of the electrons extracted in this manner is easily controlled. The invention is particularly useful for doping silicon with P{sup +}, As{sup +}, and B{sup +} without the problematic presence of hydrogen, helium, water, or carbon oxide ions. Doped silicon is important for manufacture of semiconductors and semiconductor devices. 6 figs.

  7. Selective ion source

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA)

    1996-01-01

    A ion source is described wherein selected ions maybe extracted to the exclusion of unwanted ion species of higher ionization potential. Also described is a method of producing selected ions from a compound, such as P.sup.+ from PH.sub.3. The invention comprises a plasma chamber, an electron source, a means for introducing a gas to be ionized by electrons from the electron source, means for limiting electron energy from the electron source to a value between the ionization energy of the selected ion species and the greater ionization energy of an unwanted ion specie, and means for extracting the target ion specie from the plasma chamber. In one embodiment, the electrons are generated in a plasma cathode chamber immediately adjacent to the plasma chamber. A small extractor draws the electrons from the plasma cathode chamber into the relatively positive plasma chamber. The energy of the electrons extracted in this manner is easily controlled. The invention is particularly useful for doping silicon with P.sup.+, AS.sup.+, and B.sup.+ without the problematic presence of hydrogen, helium, water, or carbon oxide ions. Doped silicon is important for manufacture of semiconductors and semiconductor devices.

  8. Development of ion sources for ion projection lithography

    SciTech Connect (OSTI)

    Lee, Y.; Gough, R.A.; Kunkel, W.B.; Leung, K.N.; Perkins, L.T.

    1996-05-01

    Multicusp ion sources are capable of generating ion beams with low axial energy spread as required by the Ion Projection Lithography (IPL). Longitudinal ion energy spread has been studied in two different types of plasma discharge: the filament discharge ion source characterized by its low axial energy spread, and the RF-driven ion source characterized by its long source lifetime. For He{sup +} ions, longitudinal ion energy spreads of 1-2 eV were measured for a filament discharge multicusp ion source which is within the IPL device requirements. Ion beams with larger axial energy spread were observed in the RF-driven source. A double-chamber ion source has been designed which combines the advantages of low axial energy spread of the filament discharge ion source with the long lifetime of the RF-driven source. The energy spread of the double chamber source is lower than that of the RF-driven source.

  9. Production of Endohedral Fullerenes by Ion Implantation

    SciTech Connect (OSTI)

    Diener, M.D.; Alford, J. M.; Mirzadeh, S.

    2007-05-31

    The empty interior cavity of fullerenes has long been touted for containment of radionuclides during in vivo transport, during radioimmunotherapy (RIT) and radioimaging for example. As the chemistry required to open a hole in fullerene is complex and exceedingly unlikely to occur in vivo, and conformational stability of the fullerene cage is absolute, atoms trapped within fullerenes can only be released during extremely energetic events. Encapsulating radionuclides in fullerenes could therefore potentially eliminate undesired toxicity resulting from leakage and catabolism of radionuclides administered with other techniques. At the start of this project however, methods for production of transition metal and p-electron metal endohedral fullerenes were completely unknown, and only one method for production of endohedral radiofullerenes was known. They therefore investigated three different methods for the production of therapeutically useful endohedral metallofullerenes: (1) implantation of ions using the high intensity ion beam at the Oak Ridge National Laboratory (ORNL) Surface Modification and Characterization Research Center (SMAC) and fullerenes as the target; (2) implantation of ions using the recoil energy following alpha decay; and (3) implantation of ions using the recoil energy following neutron capture, using ORNL's High Flux Isotope Reactor (HFIR) as a thermal neutron source. While they were unable to obtain evidence of successful implantation using the ion beam at SMAC, recoil following alpha decay and neutron capture were both found to be economically viable methods for the production of therapeutically useful radiofullerenes. In this report, the procedures for preparing fullerenes containing the isotopes {sup 212}Pb, {sup 212}Bi, {sup 213}Bi, and {sup 177}Lu are described. None of these endohedral fullerenes had ever previously been prepared, and all of these radioisotopes are actively under investigation for RIT. Additionally, the chemistry for derivatizing the radiofullerenes for water-solubility and a method for removing exohedral radionuclides are reported. The methods and chemistry developed during this CRADA are the crucial first steps for the development of fullerenes as a method superior to existing technologies for in vivo transport of radionuclides.

  10. Ion mobility sensor system

    DOE Patents [OSTI]

    Xu, Jun; Watson, David B.; Whitten, William B.

    2013-01-22

    An ion mobility sensor system including an ion mobility spectrometer and a differential mobility spectrometer coupled to the ion mobility spectrometer. The ion mobility spectrometer has a first chamber having first end and a second end extending along a first direction, and a first electrode system that generates a constant electric field parallel to the first direction. The differential mobility spectrometer includes a second chamber having a third end and a fourth end configured such that a fluid may flow in a second direction from the third end to the fourth end, and a second electrode system that generates an asymmetric electric field within an interior of the second chamber. Additionally, the ion mobility spectrometer and the differential mobility spectrometer form an interface region. Also, the first end and the third end are positioned facing one another so that the constant electric field enters the third end and overlaps the fluid flowing in the second direction.

  11. Advanced membrane electrode assemblies for fuel cells

    DOE Patents [OSTI]

    Kim, Yu Seung; Pivovar, Bryan S

    2014-02-25

    A method of preparing advanced membrane electrode assemblies (MEA) for use in fuel cells. A base polymer is selected for a base membrane. An electrode composition is selected to optimize properties exhibited by the membrane electrode assembly based on the selection of the base polymer. A property-tuning coating layer composition is selected based on compatibility with the base polymer and the electrode composition. A solvent is selected based on the interaction of the solvent with the base polymer and the property-tuning coating layer composition. The MEA is assembled by preparing the base membrane and then applying the property-tuning coating layer to form a composite membrane. Finally, a catalyst is applied to the composite membrane.

  12. Advanced membrane electrode assemblies for fuel cells

    DOE Patents [OSTI]

    Kim, Yu Seung; Pivovar, Bryan S.

    2012-07-24

    A method of preparing advanced membrane electrode assemblies (MEA) for use in fuel cells. A base polymer is selected for a base membrane. An electrode composition is selected to optimize properties exhibited by the membrane electrode assembly based on the selection of the base polymer. A property-tuning coating layer composition is selected based on compatibility with the base polymer and the electrode composition. A solvent is selected based on the interaction of the solvent with the base polymer and the property-tuning coating layer composition. The MEA is assembled by preparing the base membrane and then applying the property-tuning coating layer to form a composite membrane. Finally, a catalyst is applied to the composite membrane.

  13. Nanofibrous membrane-based absorption refrigeration system

    SciTech Connect (OSTI)

    Isfahani, RN; Sampath, K; Moghaddam, S

    2013-12-01

    This paper presents a study on the efficacy of highly porous nanofibrous membranes for application in membrane-based absorbers and desorbers. Permeability studies showed that membranes with a pore size greater than about one micron have a sufficient permeability for application in the absorber heat exchanger. Membranes with smaller pores were found to be adequate for the desorber heat exchanger. The membranes were implemented in experimental membrane-based absorber and desorber modules and successfully tested. Parametric studies were conducted on both absorber and desorber processes. Studies on the absorption process were focused on the effects of water vapor pressure, cooling water temperature, and the solution velocity on the absorption rate. Desorption studies were conducted on the effects of wall temperature, vapor and solution pressures, and the solution velocity on the desorption rate. Significantly higher absorption and desorption rates than in the falling film absorbers and desorbers were achieved. Published by Elsevier Ltd.

  14. Method of fabrication of supported liquid membranes

    DOE Patents [OSTI]

    Luebke, David R.; Hong, Lei; Myers, Christina R.

    2015-11-17

    Method for the fabrication of a supported liquid membrane having a dense layer in contact with a porous layer, and a membrane liquid layer within the interconnected pores of the porous layer. The dense layer is comprised of a solidified material having an average pore size less than or equal to about 0.1 nanometer, while the porous layer is comprised of a plurality of interconnected pores and has an average pore size greater than 10 nanometers. The supported liquid membrane is fabricated through the preparation of a casting solution of a membrane liquid and a volatile solvent. A pressure difference is established across the dense layer and porous layer, the casting solution is applied to the porous layer, and the low viscosity casting solution is drawn toward the dense layer. The volatile solvent is evaporated and the membrane liquid precipitates, generating a membrane liquid layer in close proximity to the dense layer.

  15. Preparation and characterization of composite membrane for high temperature gas separation

    SciTech Connect (OSTI)

    Ilias, S.; King, F.G.

    1998-03-26

    A new class of perm-selective inorganic membrane was developed by electroless deposition of palladium thin-film on a microporous {alpha}-alumina ceramic substrate ({phi}39 mm x 2 mm thickness, nominal pore size 150 nm and open porosity {approx} 42 %). The new membrane was characterized by Scanning Electron Micrography (SEM), Energy Dispersive X-ray Analysis (EDX) and conducting permeability experiments with hydrogen, helium, argon and carbon dioxide at temperatures from 473 K to 673 K and feed pressures from 136 kPa to 274 kPa. The results indicate that the membrane has both high permeability and selectivity for hydrogen. The hydrogen transport through the Pd-composite membrane closely followed Sievert's law. A theoretical model is presented to describe the performance of a single-stage permeation process. The model uses a unified mathematical formulation and calculation methods for two flow patterns (cocurrent and countercurrent) with two permeable components and a nonpermeable fraction in the feed and a sweep stream in the permeate. The countercurrent flow pattern is always better than the cocurrent flow pattern with respect to stage cut and membrane area. The effect of flow configuration decreases with increasing membrane selectivity or with decreasing permeate/feed ratio.

  16. Transportation Management Workshop: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    This report is a compilation of discussions presented at the Transportation Management Workshop held in Gaithersburg, Maryland. Topics include waste packaging, personnel training, robotics, transportation routing, certification, containers, and waste classification.

  17. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-27

    Establishes safety requirements for the proper packaging and transportation of offsite shipments and onsite transfers of hazardous materials andor modal transport. Cancels DOE 1540.2 and DOE 5480.3

  18. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-27

    Establishes safety requirements for the proper packaging and transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. Canceled by DOE 460.1A

  19. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-02

    Establishes safety requirements for the proper packaging and transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. Cancels DOE O 460.1.

  20. Transportation Energy Futures Study

    Broader source: Energy.gov [DOE]

    Transportation accounts for 71% of total U.S. petroleum consumption and 33% of total greenhouse gas emissions. The Transportation Energy Futures (TEF) study examines underexplored oil-savings and...

  1. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-05-14

    The order establishes safety requirements for the proper packaging and transportation of DOE, including NNSA, offsite shipments and onsite transfers of radioactive and other hazardous materials and for modal transportation. Supersedes DOE O 460.1B.

  2. Hydrogen Production by Polymer Electrolyte Membrane (PEM)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolysis-Spotlight on Giner and Proton | Department of Energy by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner and Proton Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner and Proton Presentation slides and speaker biographies from the DOE Fuel Cell Technologies Office webinar "Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner and Proton" held on May 23, 2011. PDF icon Water

  3. Zeolite Nanosheet Membrane Process - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Zeolite Nanosheet Membrane Process University of Minnesota DOE Grant Recipients Contact GRANT About This Technology Technology Marketing Summary Zeolite Nanosheet Membranes for use as a Molecular Sieve A method of zeolite membrane fabrication that gives high aspect ratio nanosheets with high purity and precise pore structure has been developed. When combined with other technologies created by the research group, such

  4. Review of Historical Membrane Workshop Results

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review of Historical Membrane Workshop Results Sharon Robinson Oak Ridge National Laboratory Membrane Technology Workshop DOE Advanced Manufacturing Office Chicago, IL July 24, 2012 2 Managed by UT-Battelle for the U.S. Department of Energy Previous Membrane R&D Needs Studies * Workshop reports and documents developed for DOE OIT/ITP/AMO to support the Technology Vision2020: The Chemical Industry (1996) as requested by the White House Office of Science and Technology Policy - Separation

  5. Water Transport Within the STack: Water Transport Exploratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Within the STack: Water Transport Exploratory Studies Water Transport Within the STack: Water Transport Exploratory Studies Part of a 100 million fuel cell award announced by DOE ...

  6. Transportation Storage Interface

    Office of Environmental Management (EM)

    of Future Extended Storage and Transportation Transportation-Storage Interface James Rubenstone Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission National Transportation Stakeholders Forum May 2012 ♦ Knoxville, Tennessee Overview * Changing policy environment * Regulatory framework-current and future * Extended storage and transportation-technical information needs * Next Steps 2 Current Policy Environment * U.S. national policy for disposition of spent

  7. Natural gas treatment process using PTMSP membrane

    DOE Patents [OSTI]

    Toy, L.G.; Pinnau, I.

    1996-03-26

    A process is described for separating C{sub 3}+ hydrocarbons, particularly propane and butane, from natural gas. The process uses a poly(trimethylsilylpropyne) membrane. 6 figs.

  8. Experimental phasing for structure determination using membrane...

    Office of Scientific and Technical Information (OSTI)

    ...rane-protein crystals grown by the lipid cubic phase method Citation Details In-Document Search Title: Experimental phasing for structure determination using membrane-protein ...

  9. Partially fluorinated cyclic ionic polymers and membranes

    DOE Patents [OSTI]

    Yang, Zhen-Yu

    2013-04-09

    Ionic polymers are made from selected partially fluorinated dienes, in which the repeat units are cycloaliphatic. The polymers are formed into membranes.

  10. Composite membranes and methods for making same

    DOE Patents [OSTI]

    Routkevitch, Dmitri; Polyakov, Oleg G

    2012-07-03

    Composite membranes that are adapted for separation, purification, filtration, analysis, reaction and sensing. The composite membranes can include a porous support structure having elongate pore channels extending through the support structure. The composite membrane also includes an active layer comprising an active layer material, where the active layer material is completely disposed within the pore channels between the surfaces of the support structure. The active layer is intimately integrated within the support structure, thus enabling great robustness, reliability, resistance to mechanical stress and thermal cycling, and high selectivity. Methods for the fabrication of composite membranes are also provided.

  11. Natural gas treatment process using PTMSP membrane

    DOE Patents [OSTI]

    Toy, Lora G. (San Francisco, CA); Pinnau, Ingo (Palo Alto, CA)

    1996-01-01

    A process for separating C.sub.3 + hydrocarbons, particularly propane and butane, from natural gas. The process uses a poly(trimethylsilylpropyne) membrane.

  12. Inorganic Membranes for Refinery Gas Separations

    SciTech Connect (OSTI)

    2009-02-01

    This factsheet describes a research project whose goal is to push the performance limits of inorganic membranes for large-scale gas separations in refinery applications.

  13. Constant pressure high throughput membrane permeation testing...

    Office of Scientific and Technical Information (OSTI)

    and flow rates on each side of the planar membrane throughout a sampling cycle. A digital controller may be utilized to position the retentate and permeate multiport valves...

  14. Robust Polymer Composite Membranes for Hydrogen Separation |...

    Broader source: Energy.gov (indexed) [DOE]

    polymercompositemembranes.pdf More Documents & Publications Process Intensification with Integrated Water-Gas-Shift Membrane Reactor Process Development and Scale-up of Advanced...

  15. Measuring Physical Properties of Polymer Electrolyte Membranes

    Broader source: Energy.gov [DOE]

    Presented by Cortney Mittelsteadt of Giner Electrochemical Systems, LLC, at the DOE High Temperature Membrane Working Group held September 14, 2006.

  16. Metallic Membrane Materials Development for Hydrogen Production...

    Office of Scientific and Technical Information (OSTI)

    Title: Metallic Membrane Materials Development for Hydrogen Production from Coal Derived Syngas The goals of Office of Clean Coal are: (1) Improved energy security; (2) Reduced ...

  17. Advanced Membrane Technology for Hydrocarbon Separations

    SciTech Connect (OSTI)

    2004-07-01

    This factsheet describes a research project whose goal is to develop and demonstrate a membrane technology for superior, robust, low-cost natural gas dehydration.

  18. Nanoporous, Metal Carbide, Surface Diffusion Membranes for High Temperature Hydrogen Separations

    SciTech Connect (OSTI)

    Way, J.; Wolden, Colin

    2013-09-30

    Colorado School of Mines (CSM) developed high temperature, hydrogen permeable membranes that contain no platinum group metals with the goal of separating hydrogen from gas mixtures representative of gasification of carbon feedstocks such as coal or biomass in order to meet DOE NETL 2015 hydrogen membrane performance targets. We employed a dual synthesis strategy centered on transition metal carbides. In the first approach, novel, high temperature, surface diffusion membranes based on nanoporous Mo{sub 2}C were fabricated on ceramic supports. These were produced in a two step process that consisted of molybdenum oxide deposition followed by thermal carburization. Our best Mo{sub 2}C surface diffusion membrane achieved a pure hydrogen flux of 367 SCFH/ft{sup 2} at a feed pressure of only 20 psig. The highest H{sub 2}/N{sub 2} selectivity obtained with this approach was 4.9. A transport model using dusty gas theory was derived to describe the hydrogen transport in the Mo{sub 2}C coated, surface diffusion membranes. The second class of membranes developed were dense metal foils of BCC metals such as vanadium coated with thin (< 60 nm) Mo{sub 2}C catalyst layers. We have fabricated a Mo{sub 2}C/V composite membrane that in pure gas testing delivered a H{sub 2} flux of 238 SCFH/ft{sup 2} at 600 C and 100 psig, with no detectable He permeance. This exceeds the 2010 DOE Target flux. This flux is 2.8 times that of pure Pd at the same membrane thickness and test conditions and over 79% of the 2015 flux target. In mixed gas testing we achieved a permeate purity of ?99.99%, satisfying the permeate purity milestone, but the hydrogen permeance was low, ~0.2 SCFH/ft{sup 2}.psi. However, during testing of a Mo{sub 2}C coated Pd alloy membrane with DOE 1 feed gas mixture a hydrogen permeance of >2 SCFH/ft{sup 2}.psi was obtained which was stable during the entire test, meeting the permeance associated with the 2010 DOE target flux. Lastly, the Mo{sub 2}C/V composite membranes were shown to be stable for at least 168 hours = one week, including cycling at high temperature and alternating He/H{sub 2} exposure.

  19. transport Lau, Hoi-Kwan; James, Daniel F. V. [Department of Physics...

    Office of Scientific and Technical Information (OSTI)

    Stark effect in rapid ion transport Lau, Hoi-Kwan; James, Daniel F. V. Department of Physics, University of Toronto, 60 Saint George Street, Toronto, M5S 1A7 Ontario (Canada) 71...

  20. H{sup -} beam transport experiments in a solenoid low energy beam transport

    SciTech Connect (OSTI)

    Gabor, C.; Back, J. J.; Faircloth, D. C.; Lawrie, S. R.; Letchford, A. P.; Izaola, Z.

    2012-02-15

    The Front End Test Stand (FETS) is located at Rutherford Appleton Laboratory and aims for a high current, fast chopped 3 MeV H{sup -} ion beam suitable for future high power proton accelerators like ISIS upgrade. The main components of the front end are the Penning ion source, a low energy beam transport line, an radio-frequency quadrupole (RFQ) and a medium energy beam transport (MEBT) providing also a chopper section and rebuncher. FETS is in the stage of commissioning its low energy beam transport (LEBT) line consisting of three solenoids. The LEBT has to transport an H{sup -} high current beam (up to 60 mA) at 65 keV. This is the injection energy of the beam into the RFQ. The main diagnostics are slit-slit emittance scanners for each transversal plane. For optimizing the matching to the RFQ, experiments have been performed with a variety of solenoid settings to better understand the actual beam transport. Occasionally, source parameters such as extractor slit width and beam energy were varied as well. The paper also discusses simulations based on these measurements.