National Library of Energy BETA

Sample records for ion nano titanate

  1. Method for removing metal ions from solution with titanate sorbents

    SciTech Connect (OSTI)

    Lundquist, S.H.; White, L.R.

    1999-11-23

    A method for removing metal ions from solution comprises the steps of providing titanate particles by spray-drying a solution or slurry comprising sorbent titanates having a particle size up to 20 micrometers, optionally in the presence of polymer free of cellulose functionality as binder. The sorbent is active towards heavy metals from Periodic Table (CAS version) Groups IA, IIA, IB, IIB, IIIB, and VIII, to provide monodisperse, substantially spherical particles in a yield of at least 70% of theoretical yield which have a particle size distribution in the range of 1 to 500 micrometers. The particles can be used free flowing in columns or beds, or entrapped in a nonwoven, fibrous web or matrix or a cast porous membrane, to selectively remove metal ions from aqueous or organic liquid.

  2. Method for removing metal ions from solution with titanate sorbents

    DOE Patents [OSTI]

    Lundquist, Susan H.; White, Lloyd R.

    1999-01-01

    A method for removing metal ions from solution comprises the steps of providing titanate particles by spray-drying a solution or slurry comprising sorbent titanates having a particle size up to 20 micrometers, optionally in the presence of polymer free of cellulose functionality as binder, said sorbent being active towards heavy metals from Periodic Table (CAS version) Groups IA, IIA, IB, IIB, IIIB, and VIII, to provide monodisperse, substantially spherical particles in a yield of at least 70 percent of theoretical yield and having a particle size distribution in the range of 1 to 500 micrometers. The particles can be used free flowing in columns or beds, or entrapped in a nonwoven, fibrous web or matrix or a cast porous membrane, to selectively remove metal ions from aqueous or organic liquid.

  3. Titan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    titan Titan Titan is a two-beam laser platform. The nanosecond "long-pulse" beam is one of the Janus lasers, up to 1 kJ at 1.053 μm. The "short-pulse" beam is 1-to-10 ps and energies up to 250 J, depending on pulse duration. With a minimum pulse width of a few μm, intensities of 1021 W/cm2 and a contrast of 10-5 are typical. The beams can be used together or independently. Titan Laser Facility 3D Views of Target Chamber First download appropriate software (PC or Mac)

  4. Formation of surface nano-structures by plasma expansion induced by highly charged ions

    SciTech Connect (OSTI)

    Moslem, W. M.; El-Said, A. S.

    2012-12-15

    Slow highly charged ions (HCIs) create surface nano-structures (nano-hillocks) on the quartz surface. The formation of hillocks was only possible by surpassing a potential energy threshold. By using the plasma expansion approach with suitable hydrodynamic equations, the creation mechanism of the nano-hillocks induced by HCIs is explained. Numerical analysis reveal that within the nanoscale created plasma region, the increase of the temperature causes an increase of the self-similar solution validity domain, and consequently the surface nano-hillocks become taller. Furthermore, the presence of the negative (positive) nano-dust particles would lead to increase (decrease) the nano-hillocks height.

  5. Understanding Li-ion battery processes at the atomic- to nano...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Understanding Li-ion battery processes at the atomic- to nano-scale Authors: Sullivan, J P ; Huang, Jianyu ; Shaw, M J ; Subramanian, A ; ...

  6. PILOT SCALE TESTING OF MONOSODIUM TITANATE MIXING FOR THE SRS SMALL COLUMN ION EXCHANGE PROCESS - 11224

    SciTech Connect (OSTI)

    Poirier, M.; Restivo, M.; Williams, M.; Herman, D.; Steeper, T.

    2011-01-25

    The Small Column Ion Exchange (SCIX) process is being developed to remove cesium, strontium, and select actinides from Savannah River Site (SRS) Liquid Waste using an existing waste tank (i.e., Tank 41H) to house the process. Savannah River National Laboratory (SRNL) is conducting pilot-scale mixing tests to determine the pump requirements for suspending monosodium titanate (MST), crystalline silicotitanate (CST), and simulated sludge. The purpose of this pilot scale testing is to determine the requirements for the pumps to suspend the MST particles so that they can contact the strontium and actinides in the liquid and be removed from the tank. The pilot-scale tank is a 1/10.85 linear scaled model of SRS Tank 41H. The tank diameter, tank liquid level, pump nozzle diameter, pump elevation, and cooling coil diameter are all 1/10.85 of their dimensions in Tank 41H. The pump locations correspond to the proposed locations in Tank 41H by the SCIX program (Risers B5 and B2 for two pump configurations and Risers B5, B3, and B1 for three pump configurations). The conclusions from this work follow: (i) Neither two standard slurry pumps nor two quad volute slurry pumps will provide sufficient power to initially suspend MST in an SRS waste tank. (ii) Two Submersible Mixer Pumps (SMPs) will provide sufficient power to initially suspend MST in an SRS waste tank. However, the testing shows the required pump discharge velocity is close to the maximum discharge velocity of the pump (within 12%). (iii) Three SMPs will provide sufficient power to initially suspend MST in an SRS waste tank. The testing shows the required pump discharge velocity is 66% of the maximum discharge velocity of the pump. (iv) Three SMPs are needed to resuspend MST that has settled in a waste tank at nominal 45 C for four weeks. The testing shows the required pump discharge velocity is 77% of the maximum discharge velocity of the pump. Two SMPs are not sufficient to resuspend MST that settled under these

  7. Status of the Bio-Nano electron cyclotron resonance ion source at Toyo University

    SciTech Connect (OSTI)

    Uchida, T.; Minezaki, H.; Ishihara, S.; Muramatsu, M.; Kitagawa, A.; Drentje, A. G.; Rcz, R.; Biri, S.; Asaji, T.; Kato, Y.; Yoshida, Y.; Graduate School of Engineering, Toyo University, Kawagoe 350-8585

    2014-02-15

    In the paper, the material science experiments, carried out recently using the Bio-Nano electron cyclotron resonance ion source (ECRIS) at Toyo University, are reported. We have investigated several methods to synthesize endohedral C{sub 60} using ion-ion and ion-molecule collision reaction in the ECRIS. Because of the simplicity of the configuration, we can install a large choice of additional equipment in the ECRIS. The Bio-Nano ECRIS is suitable not only to test the materials production but also to test technical developments to improve or understand the performance of an ECRIS.

  8. SELECTIVE REMOVAL OF STRONTIUM AND CESIUM FROM SIMULATED WASTE SOLUTION WITH TITANATE ION-EXCHANGERS IN A FILTER CARTRIDGE CONFIGURATIONS-12092

    SciTech Connect (OSTI)

    Oji, L.; Martin, K.; Hobbs, D.

    2012-01-03

    Experimental results for the selective removal of strontium and cesium from simulated waste solutions with monosodium titanate and crystalline silicotitanate laden filter cartridges are presented. In these proof-of-principle tests, effective uptake of both strontium-85 and cesium-137 were observed using ion-exchangers in this filter cartridge configuration. At low salt simulant conditions, the instantaneous decontamination factor for strontium-85 with monosodium titanate impregnated filter membrane cartridges measured 26, representing 96% strontium-85 removal efficiency. On the other hand, the strontium-85 instantaneous decontamination factor with co-sintered active monosodium titanate cartridges measured 40 or 98% Sr-85 removal efficiency. Strontium-85 removal with the monosodium titanate impregnated membrane cartridges and crystalline silicotitanate impregnated membrane cartridges, placed in series arrangement, produced an instantaneous decontamination factor of 41 compared to an instantaneous decontamination factor of 368 for strontium-85 with co-sintered active monosodium titanate cartridges and co-sintered active crystalline silicotitanate cartridges placed in series. Overall, polyethylene co-sintered active titanates cartridges performed as well as titanate impregnated filter membrane cartridges in the uptake of strontium. At low ionic strength conditions, there was a significant uptake of cesium-137 with co-sintered crystalline silicotitanate cartridges. Tests results with crystalline silicotitanate impregnated membrane cartridges for cesium-137 decontamination are currently being re-evaluated. Based on these preliminary findings we conclude that incorporating monosodium titanate and crystalline silicotitanate sorbents into membranes represent a promising method for the semicontinuous removal of radioisotopes of strontium and cesium from nuclear waste solutions.

  9. Amorphization resistance of nano-engineered SiC under heavy ion irradiation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Imada, Kenta; Ishimaru, Manabu; Xue, Haizhou; Zhang, Yanwen; Shannon, Steven C.; Weber, William J.

    2016-06-19

    Silicon carbide (SiC) with a high-density of planar defects (hereafter, ‘nano-engineered SiC’) and epitaxially-grown single-crystalline 3C-SiC were simultaneously irradiated with Au ions at room temperature, in order to compare their relative resistance to radiation-induced amorphization. Furthermore, it was found that the local threshold dose for amorphization is comparable for both samples under 2 MeV Au ion irradiation; whereas, nano-engineered SiC exhibits slightly greater radiation tolerance than single crystalline SiC under 10 MeV Au irradiation. Under 10 MeV Au ion irradiation, the dose for amorphization increased by about a factor of two in both nano-engineered and single crystal SiC due tomore » the local increase in electronic energy loss that enhanced dynamic recovery.« less

  10. Nano-Scale Secondary Ion Mass Spectrometry - A new analytical tool in biogeochemistry and soil ecology

    SciTech Connect (OSTI)

    Herrmann, A M; Ritz, K; Nunan, N; Clode, P L; Pett-Ridge, J; Kilburn, M R; Murphy, D V; O'Donnell, A G; Stockdale, E A

    2006-10-18

    Soils are structurally heterogeneous across a wide range of spatio-temporal scales. Consequently, external environmental conditions do not have a uniform effect throughout the soil, resulting in a large diversity of micro-habitats. It has been suggested that soil function can be studied without explicit consideration of such fine detail, but recent research has indicated that the micro-scale distribution of organisms may be of importance for a mechanistic understanding of many soil functions. Due to a lack of techniques with adequate sensitivity for data collection at appropriate scales, the question 'How important are various soil processes acting at different scales for ecological function?' is challenging to answer. The nano-scale secondary ion mass spectrometer (NanoSIMS) represents the latest generation of ion microprobes which link high-resolution microscopy with isotopic analysis. The main advantage of NanoSIMS over other secondary ion mass spectrometers is the ability to operate at high mass resolution, whilst maintaining both excellent signal transmission and spatial resolution ({approx}50 nm). NanoSIMS has been used previously in studies focusing on presolar materials from meteorites, in material science, biology, geology and mineralogy. Recently, the potential of NanoSIMS as a new tool in the study of biophysical interfaces in soils has been demonstrated. This paper describes the principles of NanoSIMS and discusses the potential of this tool to contribute to the field of biogeochemistry and soil ecology. Practical considerations (sample size and preparation, simultaneous collection of isotopes, mass resolution, isobaric interference and quantification of the isotopes of interest) are discussed. Adequate sample preparation avoiding biases in the interpretation of NanoSIMS data due to artifacts and identification of regions-of interest are of most concerns in using NanoSIMS as a new tool in biogeochemistry and soil ecology. Finally, we review the areas of

  11. Synthesis of nanosized sodium titanates

    DOE Patents [OSTI]

    Hobbs, David T.; Taylor-Pashow, Kathryn M. L.; Elvington, Mark C.

    2015-09-29

    Methods directed to the synthesis and peroxide-modification of nanosized monosodium titanate are described. Methods include combination of reactants at a low concentration to a solution including a nonionic surfactant. The nanosized monosodium titanate can exhibit high selectivity for sorbing various metallic ions.

  12. A three-dimensional carbon nano-network for high performance lithium ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tian, Miao; Wang, Wei; Liu, Yang; Jungjohann, Katherine L.; Thomas Harris, C.; Lee, Yung -Cheng; Yang, Ronggui

    2014-11-20

    Three-dimensional (3D) network structure has been envisioned as a superior architecture for lithium ion battery (LIB) electrodes, which enhances both ion and electron transport to significantly improve battery performance. Herein, a 3D carbon nano-network is fabricated through chemical vapor deposition of carbon on a scalably manufactured 3D porous anodic alumina (PAA) template. As a demonstration on the applicability of 3D carbon nano-network for LIB electrodes, the low conductivity active material, TiO2, is then uniformly coated on the 3D carbon nano-network using atomic layer deposition. High power performance is demonstrated in the 3D C/TiO2 electrodes, where the parallel tubes and gapsmore » in the 3D carbon nano-network facilitates fast Li ion transport. A large areal capacity of ~0.37 mAh·cm–2 is achieved due to the large TiO2 mass loading in the 60 µm-thick 3D C/TiO2 electrodes. At a test rate of C/5, the 3D C/TiO2 electrode with 18 nm-thick TiO2 delivers a high gravimetric capacity of ~240 mAh g–1, calculated with the mass of the whole electrode. A long cycle life of over 1000 cycles with a capacity retention of 91% is demonstrated at 1C. In this study, the effects of the electrical conductivity of carbon nano-network, ion diffusion, and the electrolyte permeability on the rate performance of these 3D C/TiO2 electrodes are systematically studied.« less

  13. A three-dimensional carbon nano-network for high performance lithium ion batteries

    SciTech Connect (OSTI)

    Tian, Miao; Wang, Wei; Liu, Yang; Jungjohann, Katherine L.; Thomas Harris, C.; Lee, Yung -Cheng; Yang, Ronggui

    2014-11-20

    Three-dimensional (3D) network structure has been envisioned as a superior architecture for lithium ion battery (LIB) electrodes, which enhances both ion and electron transport to significantly improve battery performance. Herein, a 3D carbon nano-network is fabricated through chemical vapor deposition of carbon on a scalably manufactured 3D porous anodic alumina (PAA) template. As a demonstration on the applicability of 3D carbon nano-network for LIB electrodes, the low conductivity active material, TiO2, is then uniformly coated on the 3D carbon nano-network using atomic layer deposition. High power performance is demonstrated in the 3D C/TiO2 electrodes, where the parallel tubes and gaps in the 3D carbon nano-network facilitates fast Li ion transport. A large areal capacity of ~0.37 mAh·cm–2 is achieved due to the large TiO2 mass loading in the 60 µm-thick 3D C/TiO2 electrodes. At a test rate of C/5, the 3D C/TiO2 electrode with 18 nm-thick TiO2 delivers a high gravimetric capacity of ~240 mAh g–1, calculated with the mass of the whole electrode. A long cycle life of over 1000 cycles with a capacity retention of 91% is demonstrated at 1C. In this study, the effects of the electrical conductivity of carbon nano-network, ion diffusion, and the electrolyte permeability on the rate performance of these 3D C/TiO2 electrodes are systematically studied.

  14. Controlled deposition of sulphur-containing semiconductor and dielectric nano-structured films on metals in SF{sub 6} ion-ion plasma

    SciTech Connect (OSTI)

    Rafalskyi, Dmytro; Bredin, Jrme; Aanesland, Ane

    2013-12-07

    In the present paper, the deposition processes and formation of films in SF{sub 6} ion-ion plasma, with positive and negative ion flows accelerated to the surface, are investigated. The PEGASES (acronym for Plasma Propulsion with Electronegative GASES) source is used as an ion-ion plasma source capable of generating almost ideal ion-ion plasma with negative ion to electron density ratio more than 2500. It is shown that film deposition in SF{sub 6} ion-ion plasma is very sensitive to the polarity of the incoming ions. The effect is observed for Cu, W, and Pt materials. The films formed on Cu electrodes during negative and positive ion assisted deposition were analyzed. Scanning electron microscope analysis has shown that both positive and negative ion fluxes influence the copper surface and leads to film formation, but with different structures of the surface: the low-energy positive ion bombardment causes the formation of a nano-pored film transparent for ions, while the negative ion bombardment leads to a continuous smooth insulating film. The transversal size of the pores in the porous film varies in the range 50500 nm, and further analysis of the film has shown that the film forms a diode together with the substrate preventing positive charge drain, and positive ions are neutralized by passing through the nano-pores. The film obtained with the negative ion bombardment has an insulating surface, but probably with a multi-layer structure: destroying the top surface layer allows to measure similar diode IV-characteristics as for the nano-pored film case. Basing on results, practical conclusions for the probes and electrodes cleaning in ion-ion SF{sub 6} plasmas have been made. Different applications are proposed for the discovered features of the controlled deposition from ion-ion plasmas, from Li-sulphur rechargeable batteries manufacturing and nanofluidics issues to the applications for microelectronics, including low-k materials formation.

  15. Band gap engineering by swift heavy ions irradiation induced amorphous nano-channels in LiNbO3

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sachan, Ritesh; Pakarinen, Olli H.; Liu, Peng; Patel, Maulik; Chisholm, Matthew F.; Zhang, Yanwen; Wang, Xuelin; Weber, William J.

    2015-04-01

    The irradiation of lithium niobate with swift heavy ions results in the creation of amorphous nano-sized channels along the incident ion path. These nano-channels are on the order of a hundred microns in length and could be useful for photonic applications. However, there are two major challenges in these nano-channels characterization; (i) it is difficult to investigate the structural characteristics of these nano-channels due to their very long length, and (ii) the analytical electron microscopic analysis of individual ion track is complicated due to electron beam sensitive nature of lithium niobate. Here, we report the first high resolution microscopic characterizationmore » of these amorphous nano-channels, widely known as ion-tracks, by direct imaging them at different depths in the material, and subsequently correlating the key characteristics with Se of ions. Energetic Kr ions (84Kr22 with 1.98 GeV energy) are used to irradiate single crystal lithium niobate with a fluence of 2x1010 ions/cm2, which results in the formation of individual ion tracks with a penetration depth of ~180 μm. Along the ion path, electron energy loss of the ions, which is responsible for creating the ion tracks, increases with depth under these conditions in LiNbO3, resulting in increases in track diameter of a factor of ~2 with depth. This diameter increase with electronic stopping power is consistent with predictions of the inelastic thermal spike model. We also show a new method to measure the band gap in individual ion track by using electron energy-loss spectroscopy.« less

  16. SELECTIVE REMOVAL OF STRONTIUM AND CESIUM FROM SIMULATED WASTE SOLUTION WITH TITANATE ION EXCHANGERS IN A FILTER CARTRIDGE CONFIGURATION

    SciTech Connect (OSTI)

    Oji, L.; Martin, K.; Hobbs, D.

    2011-05-26

    This report describes experimental results for the selective removal of strontium and cesium from simulated waste solutions using monosodium titanate (MST) and crystalline silicotitanate (CST)-laden filter cartridges. Four types of ion exchange cartridge media (CST and MST designed by both 3M and POROX{reg_sign}) were evaluated. In these proof-of-principle tests effective uptake of both Sr-85 and Cs-137 was observed. However, the experiments were not performed long enough to determine the saturation levels or breakthrough curve for each filter cartridge. POREX{reg_sign} MST cartridges, which by design were based on co-sintering of the active titanates with polyethylene particles, seem to perform as well as the 3M-designed MST cartridges (impregnated filter membrane design) in the uptake of strontium. At low salt simulant conditions (0.29 M Na{sup +}), the instantaneous decontamination factor (D{sub F}) for Sr-85 with the 3M-design MST cartridge measured 26, representing the removal of 96% of the Sr-85. On the other hand, the Sr-85 instantaneous D{sub F} with the POREX{reg_sign} design MST cartridge measured 40 or 98% removal of the Sr-85. Strontium removal with the 3M-design MST and CST cartridges placed in series filter arrangement produced an instantaneous decontamination factor of 41 or 97.6% removal compared to an instantaneous decontamination factor of 368 or 99.7% removal of the strontium with the POREX{reg_sign} MST and CST cartridge design placed in series. At high salt simulant conditions (5.6 M Na{sup +}), strontium removal with 3M-designed MST cartridge only and with 3M-designed MST and CST cartridges operated in a series configuration were identical. The instantaneous decontamination factor and the strontium removal efficiency, under the above configuration, averaged 8.6 and 88%, respectively. There were no POREX{reg_sign} cartridge experiments using the higher ionic strength simulant solution. At low salt simulant conditions, the uptake of Cs-137 with

  17. SELECTIVE REMOVAL OF STRONTIUM AND CESIUM FROM SIMULATED WASTE SOLUTION WITH TITANATE ION-EXCHANGERS IN A FILTER CARTRIDGE CONFIGURATIONS-12092

    SciTech Connect (OSTI)

    Oji, L.; Martin, K.; Hobbs, D.

    2011-11-10

    Experimental results for the selective removal of strontium and cesium from simulated waste solutions with monosodium titanate (MST) and crystalline silicotitanate (CST) laden filter cartridges are presented. In these proof-of-principle tests, effective uptake of both Sr-85 and Cs-137 were observed using ion-exchangers in this filter cartridge configuration. At low salt simulant conditions, the instantaneous decontamination factor (D{sub F}) for Sr-85 with MST impregnated filter membrane cartridges measured 26, representing 96% Sr-85 removal efficiency. On the other hand, the Sr-85 instantaneous D{sub F} with co-sintered active MST cartridges measured 40 or 98% Sr-85 removal efficiency. Strontium-85 removal with the MST impregnated membrane cartridges and CST impregnated membrane cartridges, placed in series arrangement, produced an instantaneous decontamination factor of 41 compared to an instantaneous decontamination factor of 368 for strontium-85 with co-sintered active MST cartridges and co-sintered active CST cartridges placed in series. Overall, polyethylene co-sintered active titanates cartridges performed as well as titanate impregnated filter membrane cartridges in the uptake of strontium. At low ionic strength conditions, there was a significant uptake of Cs-137 with co-sintered CST cartridges. Tests results with CST impregnated membrane cartridges for Cs-137 decontamination are currently being re-evaluated. Based on these preliminary findings we conclude that incorporating MST and CST sorbents into membranes represent a promising method for the semi-continuous removal of radioisotopes of strontium and cesium from nuclear waste solutions.

  18. PEROXOTITANATE- AND MONOSODIUM METAL-TITANATE COMPOUNDS AS INHIBITORS OF BACTERIAL GROWTH

    SciTech Connect (OSTI)

    Hobbs, D.

    2011-01-19

    Sodium titanates are ion-exchange materials that effectively bind a variety of metal ions over a wide pH range. Sodium titanates alone have no known adverse biological effects but metal-exchanged titanates (or metal titanates) can deliver metal ions to mammalian cells to alter cell processes in vitro. In this work, we test a hypothesis that metal-titanate compounds inhibit bacterial growth; demonstration of this principle is one prerequisite to developing metal-based, titanate-delivered antibacterial agents. Focusing initially on oral diseases, we exposed five species of oral bacteria to titanates for 24 h, with or without loading of Au(III), Pd(II), Pt(II), and Pt(IV), and measuring bacterial growth in planktonic assays through increases in optical density. In each experiment, bacterial growth was compared with control cultures of titanates or bacteria alone. We observed no suppression of bacterial growth by the sodium titanates alone, but significant (p < 0.05, two-sided t-tests) suppression was observed with metal-titanate compounds, particularly Au(III)-titanates, but with other metal titanates as well. Growth inhibition ranged from 15 to 100% depending on the metal ion and bacterial species involved. Furthermore, in specific cases, the titanates inhibited bacterial growth 5- to 375-fold versus metal ions alone, suggesting that titanates enhanced metal-bacteria interactions. This work supports further development of metal titanates as a novel class of antibacterials.

  19. THE IMPLANTATION AND INTERACTIONS OF O{sup +} IN TITAN'S ATMOSPHERE: LABORATORY MEASUREMENTS OF COLLISION-INDUCED DISSOCIATION OF N{sub 2} AND MODELING OF POSITIVE ION FORMATION

    SciTech Connect (OSTI)

    Shah, M. B.; Latimer, C. J.; Montenegro, E. C.; Tucker, O. J.; Johnson, R. E.; Smith, H. T.

    2009-10-01

    Energetic oxygen ions are an important component of the plasma incident onto Titan's atmosphere. Therefore, we report measurements of electron capture and ionization collisions of N{sub 2} with incident O{sup +} over the energy range 10-100 keV. Using time of flight coincidence counting techniques we also measured the collision-induced dissociation of N{sub 2} following ionization and electron capture. The electron capture and ionization cross sections were found to have comparable magnitudes. Capture collisions are dominated by non-dissociative processes with the dissociative processes providing contributions that are only slightly smaller. In contrast, ionization is entirely dominated by the dissociative processes. The energy distributions of the N{sup +} and N atom fragments ejected by 20, 50, and 100 keV incident O{sup +} projectiles have also been determined. These fragments carry considerable amounts of energy and if produce in the exobase region can readily escape. The cross sections measured here have been used with Cassini energetic ion and atmospheric density data to determine the ionization by and neutralization of energetic O{sup +} penetrating Titan's N{sub 2} rich atmosphere. Neutralization by charge exchange is found not to occur efficiently above Titan's exobase, so energetic particles with large gyroradii penetrate the atmosphere primarily as ions. When the energetic O{sup +} flux is large, we also show it is an important source of ionization and heating at depth into Titan's atmosphere and the fragments contribute to the net atmospheric loss rate.

  20. Physics and technology in the ion-cyclotron range of frequency on Tore Supra and TITAN test facility: implication for ITER

    SciTech Connect (OSTI)

    Litaudon, X; Bernard, J. M.; Colas, L.; Dumont, R. J.; Argouarch, A.; Bottollier-Curtet, H.; Bremond, S.; Champeaux, S.; Corre, Y.; Dumortier, P.; Firdaouss, M.; Guilhem, D.; Gunn, J. P.; Gouard, Ph.; Hoang, G T; Jacquot, Jonathan; Klepper, C Christopher; Kubic, M.; Kyrytsya, V.; Lombard, G.; Milanesio, D.; Messiaen, A.; Mollard, P.; Meyer, O.; Zarzoso, D.

    2013-01-01

    To support the design of an ITER ion-cyclotron range of frequency heating (ICRH) system and to mitigate risks of operation in ITER, CEA has initiated an ambitious Research & Development program accompanied by experiments on Tore Supra or test-bed facility together with a significant modelling effort. The paper summarizes the recent results in the following areas: Comprehensive characterization (experiments and modelling) of a new Faraday screen concept tested on the Tore Supra antenna. A new model is developed for calculating the ICRH sheath rectification at the antenna vicinity. The model is applied to calculate the local heat flux on Tore Supra and ITER ICRH antennas. Full-wave modelling of ITER ICRH heating and current drive scenarios with the EVE code. With 20 MW of power, a current of 400 kA could be driven on axis in the DT scenario. Comparison between DT and DT(3He) scenario is given for heating and current drive efficiencies. First operation of CW test-bed facility, TITAN, designed for ITER ICRH components testing and could host up to a quarter of an ITER antenna. R&D of high permittivity materials to improve load of test facilities to better simulate ITER plasma antenna loading conditions.

  1. Determination of ion track radii in amorphous matrices via formation of nano-clusters by ion-beam irradiation

    SciTech Connect (OSTI)

    Buljan, M.; Karlusic, M.; Bogdanovic-Radovic, I.; Jaksic, M.; Radic, N.; Salamon, K.; Bernstorff, S.

    2012-09-03

    We report on a method for the determination of ion track radii, formed in amorphous materials by ion-beam irradiation. The method is based on the addition to an amorphous matrix of a small amount of foreign atoms, which easily diffuse and form clusters when the temperature is sufficiently increased. The irradiation causes clustering of these atoms, and the final separations of the formed clusters are dependent on the parameters of the ion-beam. Comparison of the separations between the clusters that are formed by ions with different properties in the same type of material enables the determination of ion-track radii.

  2. Progress at the TITAN-EBIT

    SciTech Connect (OSTI)

    Klawitter, R.; Alanssari, M.; Frekers, D.; Chowdhury, U.; Gwinner, G.; Chaudhuri, A.; Grossheim, A.; Kwiatkowski, A. A.; Leach, K.; Schultz, B. E.; Dilling, J.; Lpez-Urrutia, J. R. Crespo; Ettenauer, S.; Gallant, A. T.; Macdonald, T. D.; Lennarz, A.; Simon, M. C.; Seeraji, S.; Andreoiu, C.

    2015-01-09

    Precision mass measurements of short-lived isotopes provide insight into a wide array of physics, including nuclear structure, nucleosynthesis, and tests of the Standard Model. The precision of Penning trap mass spectrometry (PTMS) measurements is limited by the lifetime of the isotopes of interest, but scales proportionally with their charge state q, making highly charged ions attractive for mass measurements of nuclides far from stability. TITAN, TRIUMF's Ion Trap(s) for Atomic and Nuclear science, is currently the only setup in the world coupling an EBIT to a rare isotope facility for the purpose of PTMS. Charge breeding ions for Penning trap mass spectrometry, however, entails specific set of challenges. To make use of its potential, efficiencies have to be high, breeding times have to be short and the ion energy spread has to be small. An overview of the TITAN facility and charge-breeding program is given, current and future developments are highlighted and some selected results are presented.

  3. The effect of acid–base clustering and ions on the growth of atmospheric nano-particles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lehtipalo, Katrianne; Rondo, Linda; Kontkanen, Jenni; Schobesberger, Siegfried; Jokinen, Tuija; Sarnela, Nina; Kürten, Andreas; Ehrhart, Sebastian; Franchin, Alessandro; Nieminen, Tuomo; et al

    2016-05-20

    The growth of freshly formed aerosol particles can be the bottleneck in their survival to cloud condensation nuclei. It is therefore crucial to understand how particles grow in the atmosphere. Insufficient experimental data has impeded a profound understanding of nano-particle growth under atmospheric conditions. Here we study nano-particle growth in the CLOUD (Cosmics Leaving OUtdoors Droplets) chamber, starting from the formation of molecular clusters. We present measured growth rates at sub-3 nm sizes with different atmospherically relevant concentrations of sulphuric acid, water, ammonia and dimethylamine. We find that atmospheric ions and small acid-base clusters, which are not generally accounted formore » in the measurement of sulphuric acid vapour, can participate in the growth process, leading to enhanced growth rates. The availability of compounds capable of stabilizing sulphuric acid clusters governs the magnitude of these effects and thus the exact growth mechanism. Furthermore, we bring these observations into a coherent framework and discuss their significance in the atmosphere.« less

  4. Electrospray neutralization process and apparatus for generation of nano-aerosol and nano-structured materials

    DOE Patents [OSTI]

    Bailey, Charles L.; Morozov, Victor; Vsevolodov, Nikolai N.

    2010-08-17

    The claimed invention describes methods and apparatuses for manufacturing nano-aerosols and nano-structured materials based on the neutralization of charged electrosprayed products with oppositely charged electrosprayed products. Electrosprayed products include molecular ions, nano-clusters and nano-fibers. Nano-aerosols can be generated when neutralization occurs in the gas phase. Neutralization of electrospan nano-fibers with molecular ions and charged nano-clusters may result in the formation of fibrous aerosols or free nano-mats. Nano-mats can also be produced on a suitable substrate, forming efficient nano-filters.

  5. The adsorption of rare earth ions using carbonized polydopamine nano shells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sun, Xiaoqi; Luo, Huimin; Mahurin, Shannon Mark; Dai, Sheng; Liu, Rui; Hou, Xisen; Dai, Sheng

    2016-01-07

    Herein we report the structure effects of nano carbon shells prepared by carbonized polydopamine for rare earth elements (REEs) adsorption for the first time. The solid carbon sphere, 60 nm carbon shell and 500 nm carbon shell were prepared and investigated for adsorption and desorption of REEs. The adsorption of carbon shells for REEs was found to be better than the solid carbon sphere. The effect of acidities on the adsorption and desorption properties was discussed in this study. The good adsorption performance of carbon shells can be attributed to their porous structure, large specific surface area, amine group andmore » carbonyl group of dopamine.« less

  6. Polar state in freestanding strontium titanate nanoparticles

    SciTech Connect (OSTI)

    Tyson, Trevor A. E-mail: sswong@bnl.gov Yu, Tian; Croft, Mark; Scofield, Megan E.; Bobb-Semple, Dara; Tao, Jing; Jaye, Cherno; Fischer, Daniel; Wong, Stanislaus S. E-mail: sswong@bnl.gov

    2014-09-01

    Monodispersed strontium titanate nanoparticles were prepared and studied in detail. It is found that ?10?nm as-prepared stoichiometric nanoparticles are in a polar structural state (possibly with ferroelectric properties) over a broad temperature range. A tetragonal structure, with possible reduction of the electronic hybridization, is found as the particle size is reduced. In the 10?nm particles, no change in the local Ti-off centering is seen between 20 and 300?K. The results indicate that nanoscale motifs of SrTiO{sub 3} may be utilized in data storage as assembled nano-particle arrays in applications where chemical stability, temperature stability, and low toxicity are critical issues.

  7. The TITAN reversed-field-pinch fusion reactor study

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    This report discusses the following topics: overview of titan-2 design; titan-2 fusion-power-core engineering; titan-2 divertor engineering; titan-2 tritium systems; titan-2 safety design and radioactive-waste disposal; and titan-2 maintenance procedures.

  8. Energy deficit of pulsed-laser field-ionized and field-emitted ions from non-metallic nano-tips

    SciTech Connect (OSTI)

    Arnoldi, L.; Silaeva, E. P.; Gaillard, A.; Vurpillot, F.; Blum, I.; Rigutti, L.; Deconihout, B.; Vella, A.

    2014-05-28

    The energy deficit of pulsed-laser field-evaporated ions and field-ionized atoms of an inert gas from the surface of a non-metallic nano-metric tip is reported as a function of the laser intensity, ion current, and temperature. A new model is proposed to explain these results, taking into account the resistive properties of non-metallic nano-tips. A good agreement between the theoretical predictions and the experimental results is obtained for all parameters investigated experimentally. This model is also used to discuss the evaporation behavior of oxides analyzed in laser-assisted atom probe tomography. New insight into the contribution of the electrostatic field and the laser illumination on the evaporation process of non-metallic materials is given.

  9. Blue light emitting SrSn(OH){sub 6} nano-rods doped with lanthanide ions (Eu{sup 3+}, Tb{sup 3+} and Dy{sup 3+})

    SciTech Connect (OSTI)

    Patel, D.K.; Nuwad, J.; Rajeswari, B.; Vishwanadh, B.; Sudarsan, V.; Vatsa, R.K.; Kadam, R.M.; Pillai, C.G.S.; Kulshreshtha, S.K.

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ? Room temperature synthesis of blue light emitting SrSn(OH){sub 6} nano-rods. ? Blue light emission originates from the recombination of self trapped excitons. ? There exists energy transfer from host to lanthanide ions in SrSn(OH){sub 6}:Ln nano-rods. ? Solubility of Eu{sup 3+} ions in SrSn(OH){sub 6} nano-rods is around 1.5 at%. -- Abstract: Blue light emitting SrSn(OH){sub 6} nano-rods were prepared in aqueous medium at room temperature. Presence of lanthanide ions in reaction medium during synthesis of nano-rods, leads to significant changes in the morphology of the nano-rods. Based on luminescence studies emission in the blue region from SrSn(OH){sub 6} nano-rods has been attributed to radiative recombination of self trapped excitons in the lattice. SrSn(OH){sub 6} nano-rods were doped with lanthanide ions like Eu{sup 3+}, Tb{sup 3+} and Dy{sup 3+} and their luminescence studies revealed that there exists energy transfer from host to lanthanide ions. From the luminescence studies on Eu{sup 3+} doped samples, it is confirmed that up to 1.5 at%, Eu{sup 3+} ions get incorporated at Sr{sup 2+} site in SrSn(OH){sub 6} lattice and beyond which a separate Eu{sup 3+} containing phase is formed. Part of the europium ions also exists as Eu{sup 2+} species in the lattice as confirmed by electron paramagnetic resonance (EPR) studies.

  10. Towards sub-200 nm nano-structuring of linear giant magneto-resistive spin valves by a direct focused ion beam milling process

    SciTech Connect (OSTI)

    Riedmüller, Benjamin; Huber, Felix; Herr, Ulrich

    2014-02-14

    In this work, we present a detailed investigation of a focused ion beam (FIB) assisted nano-structuring process for giant magneto-resistive (GMR) spin valve sensors. We have performed a quantitative study of the dependence of the GMR ratio as well as the sensor resistance on the ion dose, which is implanted in the active region of our sensors. These findings are correlated with the decrease of magneto-resistive properties after micro- and nano-structuring by the FIB and reveal the importance of ion damage which limits the applicability of FIB milling to GMR devices in the low μm range. Deposition of a protective layer (50 nm SiO{sub 2}) on top of the sensor structure before milling leads to a preservation of the magneto-resistive properties after the milling procedure down to sensor dimensions of ∼300 nm. The reduction of the sensor dimensions to the nanometer regime is accompanied by a shift of the GMR curves, and a modification of the saturation behavior. Both effects can be explained by a micromagnetic model including the magnetic interaction of free and pinned layer as well as the effect of the demagnetizing field of the free layer on the sensor behavior. The results demonstrate that the FIB technology can be successfully used to prepare spintronic nanostructures.

  11. Crystalline titanate catalyst supports

    DOE Patents [OSTI]

    Anthony, Rayford G.; Dosch, Robert G.

    1993-01-01

    A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

  12. Crystalline titanate catalyst supports

    DOE Patents [OSTI]

    Anthony, R.G.; Dosch, R.G.

    1993-01-05

    A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

  13. Zinc titanate sorbents

    DOE Patents [OSTI]

    Gupta, R.P.; Gangwal, S.K.; Jain, S.C.

    1998-02-03

    The present invention provides a zinc titanate sorbent material useful in desulfurization applications. The zinc titanate material is in the form of generally spherical particles of substantially uniform chemical distribution. The sorbent material is capable of absorbing sulfur compounds from a gaseous feed in an amount of at least about 15 weight percent based on the weight of the sorbent. The sorbent material is prepared by a process including: (a) forming a zinc oxide/titanium dioxide dry blend, (b) preparing a substantially uniform aqueous slurry comprising the zinc oxide/titanium dioxide dry blend, organic binder, and at least about 1 weight percent inorganic binder based on the solids weight of the slurry, (c) spray drying the slurry to produce substantially spherical particles, and (d) calcining the particles at a temperature of between about 750 to about 950 C. The dry blend is formed by mixing between about 0.5 to about 2 parts zinc oxide having a median particle size of less than about 0.5 microns, and about 1 part titanium dioxide having a median particle size of less than about 1 micron. The slurry contains substantially no free silica and may be prepared by the process including (1) preparing an aqueous solution of organic binder, (2) adding the dry blend to the aqueous solution of organic binder, and (3) adding the inorganic binder to the solution of organic binder, and blend. Additional reagents, such as a surfactant, may also be incorporated into the sorbent material. The present invention also provides a process for desulfurizing a gaseous stream. The process includes passing a gaseous stream through a reactor containing an attrition resistant zinc titanate sorbent material of the present invention.

  14. Zinc titanate sorbents

    DOE Patents [OSTI]

    Gupta, Raghubir P.; Gangwal, Santosh K.; Jain, Suresh C.

    1998-01-01

    The present invention provides a zinc titanate sorbent material useful in desulfurization applications. The zinc titanate material is in the form of generally spherical particles of substantially uniform chemical distribution. The sorbent material is capable of absorbing sulfur compounds from a gaseous feed in an amount of at least about 15 weight percent based on the weight of the sorbent. The sorbent material is prepared by a process including: (a) forming a zinc oxide/titanium dioxide dry blend, (b) preparing a substantially uniform aqueous slurry comprising the zinc oxide/titanium dioxide dry blend, organic binder, and at least about 1 weight percent inorganic binder based on the solids weight of the slurry, (c) spray drying the slurry to produce substantially spherical particles, and (d) calcining the particles at a temperature of between about 750.degree. C. to about 950.degree. C. The dry blend is formed by mixing between about 0.5 to about 2 parts zinc oxide having a median particle size of less than about 0.5 .mu., and about 1 part titanium dioxide having a median particle size of less than about 1 .mu.. The slurry contains substantially no free silica and may be prepared by the process including (1) preparing an aqueous solution of organic binder, (2) adding the dry blend to the aqueous solution of organic binder, and (3) adding the inorganic binder to the solution of organic binder, and blend. Additional reagents, such as a surfactant, may also be incorporated into the sorbent material. The present invention also provides a process for desulfurizing a gaseous stream. The process includes passing a gaseous stream through a reactor containing an attrition resistant zinc titanate sorbent material of the present invention.

  15. New Titan Supercomputer Named Fastest in the World | Department...

    Office of Environmental Management (EM)

    Titan Supercomputer Named Fastest in the World New Titan Supercomputer Named Fastest in ... WASHINGTON - U.S. Secretary of Energy Steven Chu today announced that Titan, a new ...

  16. Imaging Heterogeneous Ion Transfer: Lithium Ion Quantification...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantitative micro- and nano- probes were used for the in situ imaging of alkaline ion ... Implementation of technique onto a 120 nm nano-Hg electrode shows promising for battery ...

  17. LARGE ABUNDANCES OF POLYCYCLIC AROMATIC HYDROCARBONS IN TITAN'S UPPER ATMOSPHERE

    SciTech Connect (OSTI)

    Lopez-Puertas, M.; Funke, B.; Garcia-Comas, M.; Dinelli, B. M.; Adriani, A.; D'Aversa, E.; Moriconi, M. L.; Boersma, C.; Allamandola, L. J.

    2013-06-20

    In this paper, we analyze the strong unidentified emission near 3.28 {mu}m in Titan's upper daytime atmosphere recently discovered by Dinelli et al. We have studied it by using the NASA Ames PAH IR Spectroscopic Database. The polycyclic aromatic hydrocarbons (PAHs), after absorbing UV solar radiation, are able to emit strongly near 3.3 {mu}m. By using current models for the redistribution of the absorbed UV energy, we have explained the observed spectral feature and have derived the vertical distribution of PAH abundances in Titan's upper atmosphere. PAHs have been found to be present in large concentrations, about (2-3) Multiplication-Sign 10{sup 4} particles cm{sup -3}. The identified PAHs have 9-96 carbons, with a concentration-weighted average of 34 carbons. The mean mass is {approx}430 u; the mean area is about 0.53 nm{sup 2}; they are formed by 10-11 rings on average, and about one-third of them contain nitrogen atoms. Recently, benzene together with light aromatic species as well as small concentrations of heavy positive and negative ions have been detected in Titan's upper atmosphere. We suggest that the large concentrations of PAHs found here are the neutral counterpart of those positive and negative ions, which hence supports the theory that the origin of Titan main haze layer is located in the upper atmosphere.

  18. The TITAN reversed-field-pinch fusion reactor study

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    This report discusses research on the titan-1 fusion power core. The major topics covered are: titan-1 fusion-power-core engineering; titan-1 divertor engineering; titan-1 tritium systems; titan-1 safety design and radioactive-waste disposal; and titan-1 maintenance procedures.

  19. Nano Facts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nano Facts The concept of the extremely small world of nano is difficult to comprehend. Here are some facts to help put this incredible world into perspective * If we met for one ...

  20. Realizing the Full Potential of Insertion Anodes for Mg-ion Batteries Through the Nano-Structuring of Sn

    SciTech Connect (OSTI)

    Parent, Lucas R.; Cheng, Yingwen; Sushko, Petr; Shao, Yuyan; Liu, Jun; Wang, Chong M.; Browning, Nigel D.

    2015-02-11

    For next-generation rechargeable batteries, magnesium is of great interest as an alternative to Lithium due to its relative abundance, low toxicity, and bivalent charge (3833 mAh/cm3 and 2205 mAh/g). However, Mg-ion batteries face unique challenges related to the formation of anode passivation layers, anode-electrolyte-cathode incompatibilities, slow solid-state Mg2+ diffusion, and ion trapping. Using analytical (scanning) transmission electron microscopy ((S)TEM) and ab initio modeling, we have investigated Mg2+ intercalation and extraction mechanisms in β-SnSb alloy nanoparticles (NPs). During the first several charge-discharge cycles, the SnSb particles irreversibly break down into a network of pure-Sn and Sb-rich sub-particles, as Mg-ions replace Sn ions in the SnSb lattice. Once the morphology has stabilized, the small Sn NPs (< 20 nm) are responsible for the majority of reversible storage capacity, while the Sb-rich particles trap substitutional-Mg atoms in the lattice and are significantly less active. This result strongly indicates that pure-Sn nanoparticles on a graphene support can act as a high capacity anode for Mg-ion batteries.

  1. Large Particle Titanate Sorbents

    SciTech Connect (OSTI)

    Taylor-Pashow, K.

    2015-10-08

    This research project was aimed at developing a synthesis technique for producing large particle size monosodium titanate (MST) to benefit high level waste (HLW) processing at the Savannah River Site (SRS). Two applications were targeted, first increasing the size of the powdered MST used in batch contact processing to improve the filtration performance of the material, and second preparing a form of MST suitable for deployment in a column configuration. Increasing the particle size should lead to improvements in filtration flux, and decreased frequency of filter cleaning leading to improved throughput. Deployment of MST in a column configuration would allow for movement from a batch process to a more continuous process. Modifications to the typical MST synthesis led to an increase in the average particle size. Filtration testing on dead-end filters showed improved filtration rates with the larger particle material; however, no improvement in filtration rate was realized on a crossflow filter. In order to produce materials suitable for column deployment several approaches were examined. First, attempts were made to coat zirconium oxide microspheres (196 µm) with a layer of MST. This proved largely unsuccessful. An alternate approach was then taken synthesizing a porous monolith of MST which could be used as a column. Several parameters were tested, and conditions were found that were able to produce a continuous structure versus an agglomeration of particles. This monolith material showed Sr uptake comparable to that of previously evaluated samples of engineered MST in batch contact testing.

  2. Dielectric behavior of barium modified strontium bismuth titanate ceramic

    SciTech Connect (OSTI)

    Nayak, P.; Badapanda, T.; Anwar, S.; Panigrahi, S.

    2014-04-24

    Barium Modified Strontium Bismuth Titanate(SBT) ceramic with general formula Sr1?xBaxBi4Ti4O15 is prepared by solid state reaction route. The structural analysis of the ceramics was done by X-ray diffraction technique. The X-ray patterns show that all the compositions are of single phase with orthorhombic structure. The temperature dependent dielectric behavior shows that the transition temperature decreases with Ba content but the maximum dielectric constant increases. The decreases of the transition with increase in Ba{sup 2+} ion, may be due to the decrease of orthorhombicity by the incorporation of Ba{sup 2+} ion in SBT lattice.

  3. Formation of titanate nanostructures under different NaOH concentration and their application in wastewater treatment

    SciTech Connect (OSTI)

    Huang Jiquan; Cao Yongge; Deng Zhonghua; Tong Hao

    2011-03-15

    The effects of the concentration of NaOH on the formation and transformation of various titanate nanostructures were studied. With increasing NaOH concentration, three different formation mechanisms were proposed. Nanotubes can only be obtained under moderate NaOH conditions, and should transform into nanowires with prolonged hydrothermal treatment, and their formation rate is accelerated by increasing NaOH concentration. Low concentration of NaOH results in the direct formation of nanowires, while extra high concentration of NaOH leads to the formation of amorphous nanoparticles. Adsorption and photocatalysis studies show that titanate nanowires and nanotubes might be potential adsorbents for the removal of both heavy metal ions and dyes and photocatalysts for the removal of dyes from wastewater. -- Graphical abstract: The morphologies of the titanates depend deeply on the concentration of NaOH. With increasing NaOH concentration, three different formation mechanisms were proposed. The application of these titanate nanostructures in the wastewater treatment was studied. Display Omitted Research highlights: {yields} Effect of NaOH concentration on the structures of various titanates was reported. {yields} Three different formation mechanisms were presented with increasing NaOH concentration. {yields} Various titanates were used as adsorbents/photocatalysts in wastewater treatment.

  4. Silico-titanates and their methods of making and using

    DOE Patents [OSTI]

    Anthony, Rayford G.; Dosch, Robert G.; Philip, C. V.

    2002-01-01

    Noval silico-titanates and the methods of making and using the said titanates are disclosed. Nb-doped silico-titanates are particularly useful for selectively removing cesuim from radioactive wastes.

  5. Sandia National Laboratories: Remember the TITANS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Remember the TITANS Facebook Twitter YouTube Flickr RSS News Remember the TITANS Photography By Nick Kerekes Thursday, September 01, 2016 TITANS (Technical Internships to Advance National Security) University Days is an annual event that supports research and recruiting partnerships with Sandia's Academic Alliance/Campus Executive schools, the Minority Serving Institutions Partnership Program, and other universities across the country. About 20 faculty members participated in this year's event,

  6. China Titans Energy Technology Group Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Titans Energy Technology Group Co Ltd Jump to: navigation, search Name: China Titans Energy Technology Group Co Ltd Place: Zhuhai, Guangdong Province, China Sector: Solar,...

  7. Delaminated titanate and peroxotitanate photocatalysts. (Journal...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Delaminated titanate and peroxotitanate photocatalysts. Citation Details In-Document Search ... Publication Date: 2011-04-01 OSTI Identifier: 1108346 Report ...

  8. Titan Omsk Group | Open Energy Information

    Open Energy Info (EERE)

    Name: Titan Omsk Group Place: Omsk, Russian Federation Product: One of Russia's top chemical companies with a subsidiary, Silarus, which is planning on building a polysilicon...

  9. Electronic excitation induced amorphization in titanate pyrochlores: an ab initio molecular dynamics study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xiao, Haiyan Y.; Weber, William J.; Zhang, Yanwen; Zu, X. T.; Li, Sean

    2015-02-09

    In this study, the response of titanate pyrochlores (A2Ti2O7, A = Y, Gd and Sm) to electronic excitation is investigated utilizing an ab initio molecular dynamics method. All the titanate pyrochlores are found to undergo a crystalline-to-amorphous structural transition under a low concentration of electronic excitations. The transition temperature at which structural amorphization starts to occur depends on the concentration of electronic excitations. During the structural transition, O2-like molecules are formed, and this anion disorder further drives cation disorder that leads to an amorphous state. This study provides new insights into the mechanisms of amorphization in titanate pyrochlores under laser,more » electron and ion irradiations.« less

  10. Hydrogen diffusion in Lead Zirconate Titanate and Barium Titanate

    SciTech Connect (OSTI)

    Alvine, Kyle J.; Vijayakumar, M.; Bowden, Mark E.; Schemer-Kohrn, Alan L.; Pitman, Stan G.

    2012-08-28

    Hydrogen is a potential clean-burning, next-generation fuel for vehicle and stationary power. Unfortunately, hydrogen is also well known to have serious materials compatibility issues in metals, polymers, and ceramics. Piezoelectric actuator materials proposed for low-cost, high efficiency high-pressure hydrogen internal combustion engines (HICE) are known to degrade rapidly in hydrogen. This limits their potential use and poses challenges for HICE. Hydrogen-induced degradation of piezoelectrics is also an issue for low-pressure hydrogen passivation in ferroelectric random access memory. Currently, there is a lack of data in the literature on hydrogen species diffusion in piezoelectrics in the temperature range appropriate for the HICE as charged via a gaseous route. We present 1HNMR quantification of the local hydrogen species diffusion within lead zirconate titanate and barium titanate on samples charged by exposure to high-pressure gaseous hydrogen ?32?MPa. Results are discussed in context of theoretically predicted interstitial hydrogen lattice sites and aqueous charging experiments from existing literature.

  11. Accelerated Application Development: The ORNL Titan Experience

    SciTech Connect (OSTI)

    Joubert, Wayne; Archibald, Richard K.; Berrill, Mark A.; Brown, W. Michael; Eisenbach, Markus; Grout, Ray; Larkin, Jeff; Levesque, John; Messer, Bronson; Norman, Matthew R.; Philip, Bobby; Sankaran, Ramanan; Tharrington, Arnold N.; Turner, John A.

    2015-05-09

    The use of computational accelerators such as NVIDIA GPUs and Intel Xeon Phi processors is now widespread in the high performance computing community, with many applications delivering impressive performance gains. However, programming these systems for high performance, performance portability and software maintainability has been a challenge. In this paper we discuss experiences porting applications to the Titan system. Titan, which began planning in 2009 and was deployed for general use in 2013, was the first multi-petaflop system based on accelerator hardware. To ready applications for accelerated computing, a preparedness effort was undertaken prior to delivery of Titan. In this paper we report experiences and lessons learned from this process and describe how users are currently making use of computational accelerators on Titan.

  12. Accelerated Application Development: The ORNL Titan Experience

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Joubert, Wayne; Archibald, Richard K.; Berrill, Mark A.; Brown, W. Michael; Eisenbach, Markus; Grout, Ray; Larkin, Jeff; Levesque, John; Messer, Bronson; Norman, Matthew R.; et al

    2015-05-09

    The use of computational accelerators such as NVIDIA GPUs and Intel Xeon Phi processors is now widespread in the high performance computing community, with many applications delivering impressive performance gains. However, programming these systems for high performance, performance portability and software maintainability has been a challenge. In this paper we discuss experiences porting applications to the Titan system. Titan, which began planning in 2009 and was deployed for general use in 2013, was the first multi-petaflop system based on accelerator hardware. To ready applications for accelerated computing, a preparedness effort was undertaken prior to delivery of Titan. In this papermore » we report experiences and lessons learned from this process and describe how users are currently making use of computational accelerators on Titan.« less

  13. Silver decorated titanate/titania nanostructures for efficient solar driven photocatalysis

    SciTech Connect (OSTI)

    Gong, Dangguo; Ho, Weng Chye Jeffrey; Tang Yuxin; Tay Qiuling; Lai Yuekun; Highfield, James George; Chen Zhong

    2012-05-15

    Photocatalysis has attracted significant interest to solve both the energy crisis and effectively combat environmental contamination. However, as the most widely used photocatalyst, titania (TiO{sub 2}) suffers from inefficient utilization of solar energy due to its wide band gap. In the present paper, we describe a method to extend the absorption edge of photocatalyst to visible region by the surface plasmon effect of silver. Silver ions are photo-reduced onto the surface of titanate nanotubes, which are synthesized by a conventional hydrothermal method. The as-synthesized Ag/titanate composite is transformed into Ag/titania nanoparticles by annealing at different temperatures. It is found that the interaction of Ag nanoparticles with the supports (titanate/titania) plays a key role for the visible light activity. The samples annealed at low temperature (<350 Degree-Sign C) do not show significant activity under our conditions, while the one annealed at 450 Degree-Sign C shows fast-degradation of methyl orange (MO) under visible light irradiation. The detailed mechanisms are also discussed. - Graphical abstract: Silver nanoparticles decorated titanate/titania as visible light active photocatalysts: silver nanoparticles could be excited by visible light due to its surface plasmon effect and excited electrons could be transferred to the conduction band of the semiconductor, where the reduction process occurs. Highlights: Black-Right-Pointing-Pointer Uniform Ag nanoparticles are photo-reduced onto titanate and titania nanostructures. Black-Right-Pointing-Pointer Titania crystal is formed by annealing hydrogen titanate at different temperatures. Black-Right-Pointing-Pointer Best visible-light activity is achieved by Ag-loaded titania annealed at 450 Degree-Sign C. Black-Right-Pointing-Pointer The visible light activity is attributed to the surface plasmonic resonance effect.

  14. A Three-Dimensional Carbon Nano-Network for High Performance...

    Office of Scientific and Technical Information (OSTI)

    A Three-Dimensional Carbon Nano-Network for High Performance Lithium Ion Batteries. Citation Details In-Document Search Title: A Three-Dimensional Carbon Nano-Network for High...

  15. TITAN'S TRANSPORT-DRIVEN METHANE CYCLE

    SciTech Connect (OSTI)

    Mitchell, Jonathan L.

    2012-09-10

    The mechanisms behind the occurrence of large cloud outbursts and precipitation on Titan have been disputed. A global- and annual-mean estimate of surface fluxes indicated only 1% of the insolation, or {approx}0.04 W m{sup -2}, is exchanged as sensible and/or latent fluxes. Since these fluxes are responsible for driving atmospheric convection, it has been argued that moist convection should be quite rare and precipitation even rarer, even if evaporation globally dominates the surface-atmosphere energy exchange. In contrast, climate simulations indicate substantial cloud formation and/or precipitation. We argue that the top-of-atmosphere (TOA) radiative imbalance is diagnostic of horizontal heat transport by Titan's atmosphere, and thus constrains the strength of the methane cycle. Simple calculations show the TOA radiative imbalance is {approx}0.5-1 W m{sup -2} in Titan's equatorial region, which implies 2-3 MW of latitudinal heat transport by the atmosphere. Our simulation of Titan's climate suggests this transport may occur primarily as latent heat, with net evaporation at the equator and net accumulation at higher latitudes. Thus, the methane cycle could be 10-20 times previous estimates. Opposing seasonal transport at solstices, compensation by sensible heat transport, and focusing of precipitation by large-scale dynamics could further enhance the local, instantaneous strength of Titan's methane cycle by a factor of several. A limited supply of surface liquids in regions of large surface radiative imbalance may throttle the methane cycle, and if so, we predict more frequent large storms over the lakes district during Titan's northern summer.

  16. Electronic excitation induced amorphization in titanate pyrochlores: an ab initio molecular dynamics study

    SciTech Connect (OSTI)

    Xiao, Haiyan Y.; Weber, William J.; Zhang, Yanwen; Zu, X. T.; Li, Sean

    2015-02-09

    In this study, the response of titanate pyrochlores (A2Ti2O7, A = Y, Gd and Sm) to electronic excitation is investigated utilizing an ab initio molecular dynamics method. All the titanate pyrochlores are found to undergo a crystalline-to-amorphous structural transition under a low concentration of electronic excitations. The transition temperature at which structural amorphization starts to occur depends on the concentration of electronic excitations. During the structural transition, O2-like molecules are formed, and this anion disorder further drives cation disorder that leads to an amorphous state. This study provides new insights into the mechanisms of amorphization in titanate pyrochlores under laser, electron and ion irradiations.

  17. A green synthesis of a layered titanate, potassium lithium titanate; lower temperature solid-state reaction and improved materials performance

    SciTech Connect (OSTI)

    Ogawa, Makoto; Morita, Masashi; Igarashi, Shota; Sato, Soh

    2013-10-15

    A layered titanate, potassium lithium titanate, with the size range from 0.1 to 30 m was prepared to show the effects of the particle size on the materials performance. The potassium lithium titanate was prepared by solid-state reaction as reported previously, where the reaction temperature was varied. The reported temperature for the titanate preparation was higher than 800 C, though 600 C is good enough to obtain single-phase potassium lithium titanate. The lower temperature synthesis is cost effective and the product exhibit better performance as photocatalysts due to surface reactivity. - Graphical abstract: Finite particle of a layered titanate, potassium lithium titanate, was prepared by solid-state reaction at lower temperature to show modified materials performance. Display Omitted - Highlights: Potassium lithium titanate was prepared by solid-state reaction. Lower temperature reaction resulted in smaller sized particles of titanate. 600 C was good enough to obtain single phased potassium lithium titanate. The product exhibited better performance as photocatalyst.

  18. Sandia National Laboratories: TITANS - Technical Internships to Advance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Security Facebook Twitter YouTube Flickr RSS TITANS - Technical Internships to Advance National Security Gain comprehensive national security experience Hands-on rotational opportunities with high-caliber technical mentors About TITANS Technical Internships to Advance National Security (TITANS) is an innovative Sandia program that allows you to choose a focused, stimulating internship experience in one of three technical tracks: Center for Analysis Systems and Applications (CASA) -

  19. Flipping the switch on magnetism in strontium titanate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flipping the switch on magnetism in strontium titanate Flipping the switch on magnetism in strontium titanate Researchers have found a way to magnetize this material using light, an effect that persists for hours at a time. March 27, 2014 Los Alamos postdoctoral fellow William Rice holds a crystal of strontium titanate up to the light. This crystal, previously thought to be nonmagnetic, turns out to have surprising magnetic features when treated with special "circularly polarized"

  20. Development of Linear Mode Detection for Top-down Ion Implantation...

    Office of Scientific and Technical Information (OSTI)

    - towards a two donor system in Si SNL nanoImplanter Single ion detectors Deterministic single ion implant Path forward to a two donor system This work was ...

  1. Fatigue of extracted lead zirconate titanate multilayer actuators...

    Office of Scientific and Technical Information (OSTI)

    Testing of large prototype lead zirconate titanate (PZT) stacks presents substantial technical challenges to electronic testing systems, so an alternative approach that uses ...

  2. Titan Energy Systems Enfinity JV | Open Energy Information

    Open Energy Info (EERE)

    Systems & Enfinity JV Place: Andhra Pradesh, India Sector: Solar Product: India-based joint venture to develop solar PV projects. References: Titan Energy Systems & Enfinity...

  3. New Titan Supercomputer Named Fastest in the World | Department...

    Broader source: Energy.gov (indexed) [DOE]

    This morning the "TOP500" list of the world's fastest supercomputers named Titan, a new ... the atmosphere at new levels to help researchers better understand future air quality. ...

  4. NanoDays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NanoDays NanoDays WHEN: Apr 03, 2015 10:00 AM - Apr 12, 2015 5:00 PM WHERE: Bradbury Science Museum 1350 Central Ave, Los Alamos, NM 87544, USA CONTACT: Jessica Privette 505 667-0375 CATEGORY: Bradbury Science INTERNAL: Calendar Login NanoDays - April 3-12, 2015 Event Description NanoDays is a nationwide festival of educational programs about nanoscale science and engineering and its potential impact on the future. The Bradbury Science Museum celebrates NanoDays during Spring Break week, April

  5. DETECTION OF PROPENE IN TITAN'S STRATOSPHERE

    SciTech Connect (OSTI)

    Nixon, C. A.; Flasar, F. M.; Jennings, D. E.; Bézard, B.; Vinatier, S.; Coustenis, A.; Teanby, N. A.; Sung, K.; Ansty, T. M.; Irwin, P. G. J.; Gorius, N.; Cottini, V.

    2013-10-10

    The Voyager 1 flyby of Titan in 1980 gave a first glimpse of the chemical complexity of Titan's atmosphere, detecting many new molecules with the infrared interferometer spectrometer (IRIS). These included propane (C{sub 3}H{sub 8}) and propyne (CH{sub 3}C{sub 2}H), while the intermediate-sized C{sub 3}H {sub x} hydrocarbon (C{sub 3}H{sub 6}) was curiously absent. Using spectra from the Composite Infrared Spectrometer on Cassini, we show the first positive detection of propene (C{sub 3}H{sub 6}) in Titan's stratosphere (5σ significance), finally filling the three-decade gap in the chemical sequence. We retrieve a vertical abundance profile from 100-250 km, that varies slowly with altitude from 2.0 ± 0.8 ppbv at 125 km, to 4.6 ± 1.5 ppbv at 200 km. The abundance of C{sub 3}H{sub 6} is less than both C{sub 3}H{sub 8} and CH{sub 3}C{sub 2}H, and we remark on an emerging paradigm in Titan's hydrocarbon abundances whereby alkanes > alkynes > alkenes within the C{sub 2}H {sub x} and C{sub 3}H {sub x} chemical families in the lower stratosphere. More generally, there appears to be much greater ubiquity and relative abundance of triple-bonded species than double-bonded, likely due to the greater resistance of triple bonds to photolysis and chemical attack.

  6. CHARACTERIZATION OF CLOUDS IN TITAN'S TROPICAL ATMOSPHERE

    SciTech Connect (OSTI)

    Griffith, Caitlin A.; Penteado, Paulo; Rodriguez, Sebastien; Baines, Kevin H.; Buratti, Bonnie; Sotin, Christophe; Clark, Roger; Nicholson, Phil; Jaumann, Ralf

    2009-09-10

    Images of Titan's clouds, possible over the past 10 years, indicate primarily discrete convective methane clouds near the south and north poles and an immense stratiform cloud, likely composed of ethane, around the north pole. Here we present spectral images from Cassini's Visual Mapping Infrared Spectrometer that reveal the increasing presence of clouds in Titan's tropical atmosphere. Radiative transfer analyses indicate similarities between summer polar and tropical methane clouds. Like their southern counterparts, tropical clouds consist of particles exceeding 5 {mu}m. They display discrete structures suggestive of convective cumuli. They prevail at a specific latitude band between 8 deg. - 20 deg. S, indicative of a circulation origin and the beginning of a circulation turnover. Yet, unlike the high latitude clouds that often reach 45 km altitude, these discrete tropical clouds, so far, remain capped to altitudes below 26 km. Such low convective clouds are consistent with the highly stable atmospheric conditions measured at the Huygens landing site. Their characteristics suggest that Titan's tropical atmosphere has a dry climate unlike the south polar atmosphere, and despite the numerous washes that carve the tropical landscape.

  7. A study of thermal properties of sodium titanate nanotubes synthesized by microwave-assisted hydrothermal method

    SciTech Connect (OSTI)

    Preda, Silviu; Rutar, Melita; Umek, Polona; Zaharescu, Maria

    2015-11-15

    Highlights: • The microwave-assisted hydrothermal route was used for titanate nanotubes synthesis. • Conversion to single-phase nanotube morphology completes after 8 h reaction time. • The nanotube morphology is stable up to 600 °C, as determined by in-situ XRD and SEM. • Sodium ions migrate to the surface due to thermal motion and structure condensation. - Abstract: Sodium titanate nanotubes (NaTiNTs) were synthesized by microwave-assisted hydrothermal treatment of commercial TiO{sub 2}, at constant temperature (135 °C) and different irradiation times (15 min, 1, 4, 8 and 16 h). The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, differential scanning calorimetry and specific surface area measurements. The irradiation time turned out to be the key parameter for morphological control of the material. Nanotubes were observed already after 15 min of microwave irradiation. The analyses of the products irradiated for 8 and 16 h confirm the complete transformation of the starting TiO{sub 2} powder to NaTiNTs. The nanotubes are open ended with multi-wall structures, with the average outer diameter of 8 nm and specific surface area up to 210 m{sup 2}/g. The morphology, surface area and crystal structure of the sodium titanate nanotubes synthesized by microwave-assisted hydrothermal method were similar to those obtained by conventional hydrothermal method.

  8. Synthesis of Mn-intercalated layered titanate by exfoliation-flocculation approach and its efficient photocatalytic activity under visible-light

    SciTech Connect (OSTI)

    Fu, Jie; Tian, Yanlong; Chang, Binbin; Li, Gengnan; Xi, Fengna; Dong, Xiaoping

    2012-12-15

    A novel Mn-intercalated layered titanate as highly active photocatalyst in visible-light region has been synthesized via a convenient and efficient exfoliation-flocculation approach with divalent Mn ions and monolayer titanate nanosheets. The 0.91 nm interlayer spacing of obtained photocatalyst is in accordance with the sum of the thickness of titanate nanosheet and the diameter of Mn ions. The yellow photocatalyst shows a spectral response in visible-light region and the calculated band gap is 2.59 eV. The photocatalytic performance of this material was evaluated by degradation and mineralization of an aqueous dye methylene blue under visible-light irradiation, and an enhanced photocatalytic activity in comparison with protonated titanate as well as the P25 TiO{sub 2} and N-doped TiO{sub 2} was obtained. Additionally, the layered structure is retained, no dye ions intercalating occurs during the photocatalysis process, and a {approx}90% photocatalytic activity can be remained after reusing 3 cycles. - Graphical abstract: Mn-intercalated layered titanate as a novel and efficient visible-light harvesting photocatalyst was synthesized via a convenient and efficient exfoliation-flocculation approach in a mild condition. Highlights: Black-Right-Pointing-Pointer Mn-intercalated titanate has been prepared by exfoliation-flocculation approach. Black-Right-Pointing-Pointer The as-prepared catalyst shows spectral response in the visible-light region. Black-Right-Pointing-Pointer Heat treatment at certain temperature enables formation of Mn-doped TiO{sub 2}. Black-Right-Pointing-Pointer Dye can be degradated effectively by the catalyst under visible light irradiation.

  9. NanoDays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NanoDays NanoDays WHEN: Mar 24, 2016 10:00 AM - Apr 03, 2016 5:00 PM WHERE: Bradbury Science Museum 1350 Central Ave, Los Alamos, NM 87544, USA CONTACT: Linda Anderman (505) 665-9196 CATEGORY: Bradbury INTERNAL: Calendar Login Event Description NanoDays is a national festival of educational programs about nanoscale science and engineering and it's potential impact on the future. The Bradbury Science Museum will celebrate NanoDays over local spring break, March 24 - April 3, 2016. At the

  10. Scalable k-means statistics with Titan.

    SciTech Connect (OSTI)

    Thompson, David C.; Bennett, Janine C.; Pebay, Philippe Pierre

    2009-11-01

    This report summarizes existing statistical engines in VTK/Titan and presents both the serial and parallel k-means statistics engines. It is a sequel to [PT08], [BPRT09], and [PT09] which studied the parallel descriptive, correlative, multi-correlative, principal component analysis, and contingency engines. The ease of use of the new parallel k-means engine is illustrated by the means of C++ code snippets and algorithm verification is provided. This report justifies the design of the statistics engines with parallel scalability in mind, and provides scalability and speed-up analysis results for the k-means engine.

  11. NanoCapillary Network Proton Conducting Membranes for High Temperature

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen/Air Fuel Cells | Department of Energy NanoCapillary Network Proton Conducting Membranes for High Temperature Hydrogen/Air Fuel Cells NanoCapillary Network Proton Conducting Membranes for High Temperature Hydrogen/Air Fuel Cells A presentation to the High Temperature Membranes Working Group meeting, May 19, 2006. pintauro.pdf (276.25 KB) More Documents & Publications High Temperature Membrane Working Group Vehicle Technologies Office Merit Review 2016: Li-Ion Battery Anodes from

  12. Chemical imaging of biological materials by NanoSIMS

    SciTech Connect (OSTI)

    Weber, P K; Smith, J B; Hutcheon, I D; Shmakov, A; Rybitskaya, I; Curran, H

    2004-08-23

    The NanoSIMS 50 represents the state -of-the-art for in situ microanalysis for secondary ion mass spectrometry (SIMS), combining unprecedented spatial resolution (as good as 50 nm) with ultra-high sensitivity (MDL of 200 atoms). The NanoSIMS incorporates an array of detectors, enabling simultaneous collection of 5 elements or isotopes originating from the same sputtered volume of a sample. The primary ion beam (Cs{sup +} or O{sup -}) can be scanned across the sample to produce quantitative secondary ion images. This capability for multiple isotope imaging with high spatial resolution is unique to the NanoSIMS and provides a novel new approach to the study of the distribution of elements in biological materials. We have applied this technique extensively to mammalian cells and bacterial spores. Results from these studies and critical analytical issues such as sample preparation, instrument tuning, and data processing will be discussed.

  13. METHANE GAS STABILIZES SUPERCOOLED ETHANE DROPLETS IN TITAN'S CLOUDS

    SciTech Connect (OSTI)

    Wang, Chia C.; Lang, E. Kathrin; Signorell, Ruth

    2010-03-20

    Strong evidence for ethane clouds in various regions of Titan's atmosphere has recently been found. Ethane is usually assumed to exist as ice particles in these clouds, although the possible role of liquid and supercooled liquid ethane droplets has been recognized. Here, we report on infrared spectroscopic measurements of ethane aerosols performed in the laboratory under conditions mimicking Titan's lower atmosphere. The results clearly show that liquid ethane droplets are significantly stabilized by methane gas which is ubiquitous in Titan's nitrogen atmosphere-a phenomenon that does not have a counterpart for water droplets in Earth's atmosphere. Our data imply that supercooled ethane droplets are much more abundant in Titan's clouds than previously anticipated. Possibly, these liquid droplets are even more important for cloud processes and the formation of lakes than ethane ice particles.

  14. PROTOSOLAR AMMONIA AS THE UNIQUE SOURCE OF TITAN's NITROGEN

    SciTech Connect (OSTI)

    Mandt, Kathleen E.; Mousis, Olivier; Gautier, Daniel

    2014-06-20

    The origin of Titan's nitrogen-rich atmosphere is thought to be ammonia ice, but this has not yet been confirmed. Furthermore, it is uncertain whether the building blocks of Titan formed within the Saturnian subnebula or in the colder protosolar nebula (PSN). Recent measurements of the nitrogen isotope ratio in cometary ammonia, combined with evolutionary constraints on the nitrogen isotopes in Titan's atmosphere provide firm evidence that the nitrogen in Titan's atmosphere must have originated as ammonia ice formed in the PSN under conditions similar to that of cometary formation. This result has important implications for the projected D/H ratio in cometary methane, nitrogen isotopic fractionation in the PSN and the source of nitrogen for Earth's atmosphere.

  15. The TITAN reversed-field-pinch fusion reactor study

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    This paper on titan plasma engineering contains papers on the following topics: reversed-field pinch as a fusion reactor; parametric systems studies; magnetics; burning-plasma simulations; plasma transient operations; current drive; and physics issues for compact RFP reactors.

  16. Realizing the Full Potential of Insertion Anodes for Mg-ion Batteries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Realizing the Full Potential of Insertion Anodes for Mg-ion Batteries Through the Nano-Str... This work highlights a potential route to improving performance by nano-structuring the ...

  17. ANALYSIS OF HARRELL MONOSODIUM TITANATE LOT #120111

    SciTech Connect (OSTI)

    Shehee, T.

    2012-02-21

    Monosodium titanate (MST) for use in the Actinide Removal Process (ARP) must be qualified and verified in advance. A single qualification sample for each batch of material is sent to SRNL for analysis, as well as a statistical sampling of verification samples. The Harrell Industries Lot No.120111 qualification and the first 12 verification samples met all the requirements in the specification indicating the material is acceptable for use in the process. Analyses of Pail 125 verification sample fails the criteria for solids content and has measurably lower pH, density, and total bottle weight. The verification sample for Pail 125 was retested for weight percent solids after checking that all of the solids had been suspended. The sample again failed to meet acceptance criteria. SRNL recommends accepting Pails 1 through 120. Pails 121 through 125 should be rejected and returned to the vendor.

  18. The TITAN Reversed-Field Pinch fusion reactor study

    SciTech Connect (OSTI)

    Not Available

    1988-03-01

    The TITAN Reversed-Field Pinch (RFP) fusion reactor study is a multi-institutional research effort to determine the technical feasibility and key developmental issues of an RFP fusion reactor, especially at high power density, and to determine the potential economics, operations, safety, and environmental features of high-mass-power-density fusion systems. The TITAN conceptual designs are DT burning, 1000 MWe power reactors based on the RFP confinement concept. The designs are compact, have a high neutron wall loading of 18 MW/m{sup 2} and a mass power density of 700 kWe/tonne. The inherent characteristics of the RFP confinement concept make fusion reactors with such a high mass power density possible. Two different detailed designs have emerged: the TITAN-I lithium-vanadium design, incorporating the integrated-blanket-coil concept; and the TITAN-II aqueous loop-in-pool design with ferritic steel structure. This report contains a collection of 16 papers on the results of the TITAN study which were presented at the International Symposium on Fusion Nuclear Technology. This collection describes the TITAN research effort, and specifically the TITAN-I and TITAN-II designs, summarizing the major results, the key technical issues, and the central conclusions and recommendations. Overall, the basic conclusions are that high-mass power-density fusion reactors appear to be technically feasible even with neutron wall loadings up to 20 MW/m{sup 2}; that single-piece maintenance of the FPC is possible and advantageous; that the economics of the reactor is enhanced by its compactness; and the safety and environmental features need not to be sacrificed in high-power-density designs. The fact that two design approaches have emerged, and others may also be possible, in some sense indicates the robustness of the general findings.

  19. DISCOVERY OF FOG AT THE SOUTH POLE OF TITAN

    SciTech Connect (OSTI)

    Brown, M. E.; Smith, A. L.; Chen, C.; Adamkovics, M.

    2009-11-20

    While Saturn's moon Titan appears to support an active methane hydrological cycle, no direct evidence for surface-atmosphere exchange has yet appeared. The indirect evidence, while compelling, could be misleading. It is possible, for example, that the identified lake features could be filled with ethane, an involatile long-term residue of atmospheric photolysis; the apparent stream and channel features could be ancient remnants of a previous climate; and the tropospheric methane clouds, while frequent, could cause no rain to reach the surface. We report here the detection of fog at the south pole of Titan during late summer using observations from the VIMS instrument on board the Cassini spacecraft. While terrestrial fog can form from a variety of causes, most of these processes are inoperable on Titan. Fog on Titan can only be caused by evaporation of nearly pure liquid methane; the detection of fog provides the first direct link between surface and atmospheric methane. Based on the detections presented here, liquid methane appears widespread at the south pole of Titan in late southern summer, and the hydrological cycle on Titan is currently active.

  20. Nano-composite materials

    DOE Patents [OSTI]

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland

    2010-05-25

    Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

  1. Hybrid Nano Carbon Fiber/Graphene Platelet-Based High-Capacity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Nano Carbon FiberGraphene Platelet-Based High-Capacity Anodes for Lithium Ion Batteries 2010 DOE EERE Vehicle Technologies Program Merit Review - Energy Storage Progress of ...

  2. Hybrid Nano Carbon Fiber/Graphene Platelet-Based High-Capacity...

    Broader source: Energy.gov (indexed) [DOE]

    Evaluation es009jang2011o.pdf (764.62 KB) More Documents & Publications Hybrid Nano Carbon FiberGraphene Platelet-Based High-Capacity Anodes for Lithium Ion Batteries Progress ...

  3. Nano-scale Composite Hetero-structures: Novel High Capacity Reversible...

    Broader source: Energy.gov (indexed) [DOE]

    0kumta.pdf (1.9 MB) More Documents & Publications Nano-scale Composite Hetero-structures: Novel High Capacity Reversible Anodes for Lithium-ion Batteries Nanoscale ...

  4. Imaging Heterogeneous Ion Transfer: Lithium Ion Quantification using

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mercury Amalgams as In Situ Electrochemical Probes in Nonaqueous Media - Joint Center for Energy Storage Research October 24, 2014, Research Highlights Imaging Heterogeneous Ion Transfer: Lithium Ion Quantification using Mercury Amalgams as In Situ Electrochemical Probes in Nonaqueous Media Quantitative micro- and nano- probes were used for the in situ imaging of alkaline ion transfer processes at an electroactive surface. Detection of Li+, Na+ and K+ is possible. Scientific Achievement

  5. November 12, 2012: "Titan" named world's most powerful supercomputer |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2, 2012: "Titan" named world's most powerful supercomputer November 12, 2012: "Titan" named world's most powerful supercomputer November 12, 2012: "Titan" named world's most powerful supercomputer Secretary Chu announces that Titan, a new supercomputer located at DOE's Oak Ridge National Laboratory, has been named the world's most powerful according to the TOP500 list of the world's fastest supercomputers. Ten times more powerful than its

  6. ATOMIC CARBON IN THE UPPER ATMOSPHERE OF TITAN

    SciTech Connect (OSTI)

    Zhang, X.; Yung, Y. L.; Ajello, J. M.

    2010-01-01

    The atomic carbon emission C I line feature at 1657 A ({sup 3} P {sup 0} {sub J}-{sup 3} P{sub J} ) in the upper atmosphere of Titan is first identified from the airglow spectra obtained by the Cassini Ultra-violet Imaging Spectrograph. A one-dimensional photochemical model of Titan is used to study the photochemistry of atomic carbon on Titan. Reaction between CH and atomic hydrogen is the major source of atomic carbon, and reactions with hydrocarbons (C{sub 2}H{sub 2} and C{sub 2}H{sub 4}) are the most important loss processes. Resonance scattering of sunlight by atomic carbon is the dominant emission mechanism. The emission intensity calculations based on model results show good agreement with the observations.

  7. High temperature dielectric relaxation anomaly of Y? and Mn? doped barium strontium titanate ceramics

    SciTech Connect (OSTI)

    Yan, Shiguang; Mao, Chaoliang E-mail: xldong@mail.sic.ac.cn; Wang, Genshui; Yao, Chunhua; Cao, Fei; Dong, Xianlin E-mail: xldong@mail.sic.ac.cn

    2014-10-14

    Relaxation like dielectric anomaly is observed in Y? and Mn? doped barium strontium titanate ceramics when the temperature is over 450 K. Apart from the conventional dielectric relaxation analysis method with Debye or modified Debye equations, which is hard to give exact temperature dependence of the relaxation process, dielectric response in the form of complex impedance, assisted with Cole-Cole impedance model corrected equivalent circuits, is adopted to solve this problem and chase the polarization mechanism in this paper. Through this method, an excellent description to temperature dependence of the dielectric relaxation anomaly and its dominated factors are achieved. Further analysis reveals that the exponential decay of the Cole distribution parameter n with temperature is confirmed to be induced by the microscopic lattice distortion due to ions doping and the interaction between the defects. At last, a clear sight to polarization mechanism containing both the intrinsic dipolar polarization and extrinsic distributed oxygen vacancies hopping response under different temperature is obtained.

  8. Flexoelectricity in barium strontium titanate thin film

    SciTech Connect (OSTI)

    Kwon, Seol Ryung; Huang, Wenbin; Yuan, Fuh-Gwo; Jiang, Xiaoning; Shu, Longlong; Maria, Jon-Paul

    2014-10-06

    Flexoelectricity, the linear coupling between the strain gradient and the induced electric polarization, has been intensively studied as an alternative to piezoelectricity. Especially, it is of interest to develop flexoelectric devices on micro/nano scales due to the inherent scaling effect of flexoelectric effect. Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} thin film with a thickness of 130 nm was fabricated on a silicon wafer using a RF magnetron sputtering process. The flexoelectric coefficients of the prepared thin films were determined experimentally. It was revealed that the thin films possessed a transverse flexoelectric coefficient of 24.5 μC/m at Curie temperature (∼28 °C) and 17.44 μC/m at 41 °C. The measured flexoelectric coefficients are comparable to that of bulk BST ceramics, which are reported to be 10–100 μC/m. This result suggests that the flexoelectric thin film structures can be effectively used for micro/nano-sensing devices.

  9. Methods for producing monodispersed particles of barium titanate

    DOE Patents [OSTI]

    Hu, Zhong-Cheng

    2001-01-01

    The present invention is a low-temperature controlled method for producing high-quality, ultrafine monodispersed nanocrystalline microsphere powders of barium titanate and other pure or composite oxide materials having particles ranging from nanosized to micronsized particles. The method of the subject invention comprises a two-stage process. The first stage produces high quality monodispersed hydrous titania microsphere particles prepared by homogeneous precipitation via dielectric tuning in alcohol-water mixed solutions of inorganic salts. Titanium tetrachloride is used as an inorganic salt precursor material. The second stage converts the pure hydrous titania microsphere particles into crystalline barium titanate microsphere powders via low-temperature, hydrothermal reactions.

  10. Northern Virginia Technology Council Titans' Breakfast | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Northern Virginia Technology Council Titans' Breakfast Northern Virginia Technology Council Titans' Breakfast September 25, 2008 - 3:43pm Addthis Remarks as Prepared for Secretary Bodman Thank you, Gary. It is good to be here with all of you this morning to talk about America's energy future. You certainly don't need reminding that our world is confronting a rapidly growing demand for energy, rising prices, and an urgent need to produce and use energy more cleanly and efficiently in

  11. Rheology Of MonoSodium Titanate (MST) And Modified Mst (mMST) Mixtures Relevant To The Salt Waste Processing Facility

    SciTech Connect (OSTI)

    Koopman, D. C.; Martino, C. J.; Shehee, T. C.; Poirier, M. R.

    2013-07-31

    The Savannah River National Laboratory performed measurements of the rheology of suspensions and settled layers of treated material applicable to the Savannah River Site Salt Waste Processing Facility. Suspended solids mixtures included monosodium titanate (MST) or modified MST (mMST) at various solid concentrations and soluble ion concentrations with and without the inclusion of kaolin clay or simulated sludge. Layers of settled solids were MST/sludge or mMST/sludge mixtures, either with or without sorbed strontium, over a range of initial solids concentrations, soluble ion concentrations, and settling times.

  12. Ductility and work hardening in nano-sized metallic glasses

    SciTech Connect (OSTI)

    Chen, D. Z.; Gu, X. W.; An, Q.; Goddard, W. A.; Greer, J. R.

    2015-02-09

    In-situ nano-tensile experiments on 70 nm-diameter free-standing electroplated NiP metallic glass nanostructures reveal tensile true strains of ∼18%, an amount comparable to compositionally identical 100 nm-diameter focused ion beam samples and ∼3 times greater than 100 nm-diameter electroplated samples. Simultaneous in-situ observations and stress-strain data during post-elastic deformation reveal necking and work hardening, features uncharacteristic for metallic glasses. The evolution of free volume within molecular dynamics-simulated samples suggests a free surface-mediated relaxation mechanism in nano-sized metallic glasses.

  13. Attrition resistant, zinc titanate-containing, reduced sulfur sorbents

    DOE Patents [OSTI]

    Vierheilig, Albert A.; Gupta, Raghubir P.; Turk, Brian S.

    2004-11-02

    The disclosure is directed to sorbent compositions for removing reduced sulfur species (e.g., H.sub.2 S, COS and CS.sub.2) a feed stream. The sorbent is formed from a multi-phase composition including a zinc titanate phase and a zinc oxide-aluminate phase. The sorbent composition is substantially free of unreacted alumina.

  14. Nano C | Open Energy Information

    Open Energy Info (EERE)

    C Jump to: navigation, search Name: Nano-C Place: Westwood, Massachusetts Zip: 2090 Product: A Boston-based company that manufactures combustion based technology. Coordinates:...

  15. NanoReady Ltd | Open Energy Information

    Open Energy Info (EERE)

    NanoReady Ltd Jump to: navigation, search Name: NanoReady Ltd Place: Caesarea, Israel Zip: 38900 Sector: Solar Product: String representation "NanoReady devel ... nd solar cells."...

  16. PV Nano Cell | Open Energy Information

    Open Energy Info (EERE)

    Cell Jump to: navigation, search Name: PV Nano Cell Place: Israel Product: Israel-based firm focused on PV nano cell technology. References: PV Nano Cell1 This article is a stub....

  17. 2016 - Nano Days | MIT-Harvard Center for Excitonics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nano Days 5.26.2016 Nano Days - April 2, 2016

  18. Nano Design Works | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nano Design Works Share Speakers Andreas Roelofs Topic Programs Materials science Nanoscience Nano Design Works (NDW) capitalizes on the power of nanotechnology and provides ...

  19. Nano Particles - Supercritical Fluid Process - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Nano Particles ... Applications and Industries Nano particles, supercritical fluid, photovoltaic devices, ...

  20. Nano Tune Technologies Corp | Open Energy Information

    Open Energy Info (EERE)

    Product: Nano Tune use sol-gel processing technology to develop a high energy density & power storage devices. References: Nano Tune Technologies Corp.1 This article is...

  1. Photonic Metamaterials, Nano- plasmonics and Superlens | MIT...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nano-scale science and technology, meta- materials, nano-photonics and bio-technologies. ... Bulletin (Materials Research Society), Photonics Spectra, Materials Today, Physics Web, ...

  2. Nano-/micro metallic wire synthesis on Si substrate and their characterization

    SciTech Connect (OSTI)

    Kaur, Jaskiran Kaur, Harmanmeet Singh, Surinder; Kanjilal, Dinakar; Chakarvarti, Shiv Kumar

    2014-04-24

    Nano-/micro wires of copper are grown on semiconducting Si substrate using the template method. It involves the irradiation of 8 um thick polymeric layer coated on Si with150 MeV Ni ion beam at a fluence of 2E8. Later, by using the simple technique of electrodeposition, copper nano-/micro wires were grown via template synthesis. Synthesized wires were morphologically characterized using SEM and electrical characterization was carried out by finding I-V plot.

  3. Safety evaluation of RTG launches aboard Titan IV launch vehicles

    SciTech Connect (OSTI)

    Rosko, Robert J.; Loughin, Stephen

    1997-01-10

    The analytical tool used to evaluate accidents aboard a Titan IV launch vehicle involving a Radioisotope Thermoelectric Generator (RTG) is discussed. The Launch Accident Scenario Evaluation Program-Titan IV version (LASEP-T) uses a Monte Carlo approach to determine the response of an RTG to various threatening environments. The threatening environments arise from a complex interplay of probabilistic and deterministic processes, and are therefore parameterized by a set of random variables with probability distributions. The assessment of the RTG response to a given environment is based on both empirical data and theoretical modeling. Imbedding detailed, complex response models into the LASEP-T calculation was not practical. Simpler response models have been constructed to capture both the inherent variability due to the phenomenology of the accident scenario along with the uncertainty of predicting response behavior. The treatment of variability and uncertainty as it pertains to the launch accident evaluation of RTG response will be discussed.

  4. P-type conductivity in annealed strontium titanate

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Poole, Violet M.; Corolewski, Caleb D.; McCluskey, Matthew D.

    2015-12-17

    In this study, Hall-effect measurements indicate p-type conductivity in bulk, single-crystal strontium titanate (SrTiO3, or STO) samples that were annealed at 1200°C. Room temperature mobilities above 100 cm2/Vs were measured, an order of magnitude higher than those for electrons (5-10 cm2/Vs). Average hole densities were in the 109-1010 cm-3 range, consistent with a deep acceptor.

  5. CASSINI VIMS OBSERVATIONS SHOW ETHANE IS PRESENT IN TITAN'S RAINFALL

    SciTech Connect (OSTI)

    Dalba, Paul A.; Buratti, Bonnie J.; Baines, Kevin H.; Sotin, Christophe; Lawrence, Kenneth J.; Brown, Robert H.; Barnes, Jason W.; Clark, Roger N.; Nicholson, Philip D.

    2012-12-20

    Observations obtained over two years by the Cassini Imaging Science Subsystem suggest that rain showers fall on the surface. Using measurements obtained by the Visual Infrared Mapping Spectrometer, we identify the main component of the rain to be ethane, with methane as an additional component. We observe five or six probable rainfall events, at least one of which follows a brief equatorial cloud appearance, suggesting that frequent rainstorms occur on Titan. The rainfall evaporates, sublimates, or infiltrates on timescales of months, and in some cases it is associated with fluvial features but not with their creation or alteration. Thus, Titan exhibits frequent 'gentle rainfall' instead of, or in addition to, more catastrophic events that cut rivers and lay down large fluvial deposits. Freezing rain may also be present, and the standing liquid may exist as puddles interspersed with patches of frost. The extensive dune deposits found in the equatorial regions of Titan imply multi-season arid conditions there, which are consistent with small, but possibly frequent, amounts of rain, in analogy to terrestrial deserts.

  6. Midterm Summary of Japan-US Fusion Cooperation Program TITAN

    SciTech Connect (OSTI)

    Muroga, Takeo; Sze, Dai-Kai; Sokolov, Mikhail; Katoh, Yutai; Stoller, Roger E

    2011-01-01

    Japan-US cooperation program TITAN (Tritium, Irradiation and Thermofluid for America and Nippon) started in April 2007 as 6-year project. This is the summary report at the midterm of the project. Historical overview of the Japan-US cooperation programs and direction of the TITAN project in its second half are presented in addition to the technical highlights. Blankets are component systems whose principal functions are extraction of heat and tritium. Thus it is crucial to clarify the potentiality for controlling heat and tritium flow throughout the first wall, blanket and out-of-vessel recovery systems. The TITAN project continues the JUPITER-II activity but extends its scope including the first wall and the recovery systems with the title of 'Tritium and thermofluid control for magnetic and inertial confinement systems'. The objective of the program is to clarify the mechanisms of tritium and heat transfer throughout the first-wall, the blanket and the heat/tritium recovery systems under specific conditions to fusion such as irradiation, high heat flux, circulation and high magnetic fields. Based on integrated models, the breeding, transfer, inventory of tritium and heat extraction properties will be evaluated for some representative liquid breeder blankets and the necessary database will be obtained for focused research in the future.

  7. Nano-optomechanical transducer

    DOE Patents [OSTI]

    Rakich, Peter T; El-Kady, Ihab F; Olsson, Roy H; Su, Mehmet Fatih; Reinke, Charles; Camacho, Ryan; Wang, Zheng; Davids, Paul

    2013-12-03

    A nano-optomechanical transducer provides ultrabroadband coherent optomechanical transduction based on Mach-wave emission that uses enhanced photon-phonon coupling efficiencies by low impedance effective phononic medium, both electrostriction and radiation pressure to boost and tailor optomechanical forces, and highly dispersive electromagnetic modes that amplify both electrostriction and radiation pressure. The optomechanical transducer provides a large operating bandwidth and high efficiency while simultaneously having a small size and minimal power consumption, enabling a host of transformative phonon and signal processing capabilities. These capabilities include optomechanical transduction via pulsed phonon emission and up-conversion, broadband stimulated phonon emission and amplification, picosecond pulsed phonon lasers, broadband phononic modulators, and ultrahigh bandwidth true time delay and signal processing technologies.

  8. Structure and band gap determination of irradiation-induced amorphous nano-channels in LiNbO{sub 3}

    SciTech Connect (OSTI)

    Sachan, R. Pakarinen, O. H.; Chisholm, M. F.; Liu, P.; Patel, M. K.; Zhang, Y.; Wang, X. L.; Weber, W. J.

    2015-04-07

    The irradiation of lithium niobate with swift heavy ions results in the creation of amorphous nano-sized channels along the incident ion path. These nano-channels are on the order of a hundred microns in length and could be useful for photonic applications. However, there are two major challenges in these nano-channels characterization: (i) it is difficult to investigate the structural characteristics of these nano-channels due to their very long length and (ii) the analytical electron microscopic analysis of individual ion track is complicated due to electron beam sensitive nature of lithium niobate. Here, we report the first high resolution microscopic characterization of these amorphous nano-channels, widely known as ion-tracks, by direct imaging them at different depths in the material, and subsequently correlating the key characteristics with electronic energy loss of ions. Energetic Kr ions ({sup 84}Kr{sup 22} with 1.98?GeV energy) are used to irradiate single crystal lithium niobate with a fluence of 2 10{sup 10} ions/cm{sup 2}, which results in the formation of individual ion tracks with a penetration depth of ?180??m. Along the ion path, electron energy loss of the ions, which is responsible for creating the ion tracks, increases with depth under these conditions in LiNbO{sub 3}, resulting in increases in track diameter of a factor of ?2 with depth. This diameter increase with electronic energy loss is consistent with predictions of the inelastic thermal spike model. We also show a new method to measure the band gap in individual ion track by using electron energy-loss spectroscopy.

  9. Photosensitivity enhancement of PLZT ceramics by positive ion implantation

    DOE Patents [OSTI]

    Peercy, P.S.; Land, C.E.

    1980-06-13

    The photosensitivity of lead lanthanum zirconate titanate (PLZT) ceramic material used in high resolution, high contrast, and non-volatile photoferroelectric image storage and display devices is enhanced significantly by positive ion implantation of the PLZT near its surface. Ions that are implanted include H/sup +/, He/sup +/, Ar/sup +/, and a preferred co-implant of Ar/sup +/ and Ne/sup +/. The positive ion implantation advantageously serves to shift the band gap energy threshold of the PLZT material from near-uv light to visible blue light. As a result, photosensitivity enhancement is such that the positive ion implanted PLZT plate is sensitive even to sunlight and conventional room lighting, such as fluorescent and incandescent light sources. The method disclosed includes exposing the PLZT plate to these positive ions of sufficient density and with sufficient energy to provide an image. The PLZT material may have a lanthanum content ranging from 5 to 10%; a lead zirconate content ranging from 62 to 70 mole %; and a lead titanate content ranging from 38 to 30%. The region of ion implantation is in a range from 0.1 to 2 microns below the surface of the PLZT plate. Density of ions is in the range from 1 x 10/sup 12/ to 1 x 10/sup 17/ ions/cm/sup 2/ and having an energy in the range from 100 to 500 keV.

  10. ISOTOPIC RATIOS IN TITAN's METHANE: MEASUREMENTS AND MODELING

    SciTech Connect (OSTI)

    Nixon, C. A.; Achterberg, R. K.; Temelso, B.; Vinatier, S.; Bezard, B.; Coustenis, A.; Teanby, N. A.; Mandt, K. E.; Sherrill, C. D.; Irwin, P. G. J.; Jennings, D. E.; Romani, P. N.; Flasar, F. M.

    2012-04-20

    The existence of methane in Titan's atmosphere ({approx}6% level at the surface) presents a unique enigma, as photochemical models predict that the current inventory will be entirely depleted by photochemistry in a timescale of {approx}20 Myr. In this paper, we examine the clues available from isotopic ratios ({sup 12}C/{sup 13}C and D/H) in Titan's methane as to the past atmosphere history of this species. We first analyze recent infrared spectra of CH{sub 4} collected by the Cassini Composite Infrared Spectrometer, measuring simultaneously for the first time the abundances of all three detected minor isotopologues: {sup 13}CH{sub 4}, {sup 12}CH{sub 3}D, and {sup 13}CH{sub 3}D. From these we compute estimates of {sup 12}C/{sup 13}C = 86.5 {+-} 8.2 and D/H = (1.59 {+-} 0.33) Multiplication-Sign 10{sup -4}, in agreement with recent results from the Huygens GCMS and Cassini INMS instruments. We also use the transition state theory to estimate the fractionation that occurs in carbon and hydrogen during a critical reaction that plays a key role in the chemical depletion of Titan's methane: CH{sub 4} + C{sub 2}H {yields} CH{sub 3} + C{sub 2}H{sub 2}. Using these new measurements and predictions we proceed to model the time evolution of {sup 12}C/{sup 13}C and D/H in Titan's methane under several prototypical replenishment scenarios. In our Model 1 (no resupply of CH{sub 4}), we find that the present-day {sup 12}C/{sup 13}C implies that the CH{sub 4} entered the atmosphere 60-1600 Myr ago if methane is depleted by chemistry and photolysis alone, but much more recently-most likely less than 10 Myr ago-if hydrodynamic escape is also occurring. On the other hand, if methane has been continuously supplied at the replenishment rate then the isotopic ratios provide no constraints, and likewise for the case where atmospheric methane is increasing. We conclude by discussing how these findings may be combined with other evidence to constrain the overall history of the atmospheric

  11. Enhanced flexoelectricity through residual ferroelectricity in barium strontium titanate

    SciTech Connect (OSTI)

    Garten, Lauren M. Trolier-McKinstry, Susan

    2015-03-07

    Residual ferroelectricity is observed in barium strontium titanate ceramics over 30 °C above the global phase transition temperature, in the same temperature range in which anomalously large flexoelectric coefficients are reported. The application of a strain gradient leads to strain gradient-induced poling or flexoelectric poling. This was observed by the development of a remanent polarization in flexoelectric measurements, an induced d{sub 33} piezoelectric response even after the strain gradient was removed, and the production of an internal bias of 9 kV m{sup −1}. It is concluded that residual ferroelectric response considerably enhances the observed flexoelectric response.

  12. Strain engineered barium strontium titanate for tunable thin film resonators

    SciTech Connect (OSTI)

    Khassaf, H.; Khakpash, N.; Sun, F.; Sbrockey, N. M.; Tompa, G. S.; Kalkur, T. S.; Alpay, S. P.

    2014-05-19

    Piezoelectric properties of epitaxial (001) barium strontium titanate (BST) films are computed as functions of composition, misfit strain, and temperature using a non-linear thermodynamic model. Results show that through adjusting in-plane strains, a highly adaptive rhombohedral ferroelectric phase can be stabilized at room temperature with outstanding piezoelectric response exceeding those of lead based piezoceramics. Furthermore, by adjusting the composition and the in-plane misfit, an electrically tunable piezoelectric response can be obtained in the paraelectric state. These findings indicate that strain engineered BST films can be utilized in the development of electrically tunable and switchable surface and bulk acoustic wave resonators.

  13. Hydrogen peroxide modified sodium titanates with improved sorption capabilities

    DOE Patents [OSTI]

    Nyman, May D.; Hobbs, David T.

    2009-02-24

    The sorption capabilities (e.g., kinetics, selectivity, capacity) of the baseline monosodium titanate (MST) sorbent material currently being used to sequester Sr-90 and alpha-emitting radioisotopes at the Savannah River Site are significantly improved when treated with hydrogen peroxide; either during the original synthesis of MST, or, as a post-treatment step after the MST has been synthesized. It is expected that these peroxide-modified MST sorbent materials will have significantly improved sorption capabilities for non-radioactive cations found in industrial processes and waste streams.

  14. P-type conductivity in annealed strontium titanate

    SciTech Connect (OSTI)

    Poole, Violet M.; Corolewski, Caleb D.; McCluskey, Matthew D.

    2015-12-17

    In this study, Hall-effect measurements indicate p-type conductivity in bulk, single-crystal strontium titanate (SrTiO3, or STO) samples that were annealed at 1200°C. Room temperature mobilities above 100 cm2/Vs were measured, an order of magnitude higher than those for electrons (5-10 cm2/Vs). Average hole densities were in the 109-1010 cm-3 range, consistent with a deep acceptor.

  15. P-type conductivity in annealed strontium titanate

    SciTech Connect (OSTI)

    Poole, Violet M.; Corolewski, Caleb D.; McCluskey, Matthew D.

    2015-12-15

    Hall-effect measurements indicate p-type conductivity in bulk, single-crystal strontium titanate (SrTiO{sub 3}, or STO) samples that were annealed at 1200°C. Room-temperature mobilities above 100 cm{sup 2}/V s were measured, an order of magnitude higher than those for electrons (5-10 cm{sup 2}/V s). Average hole densities were in the 10{sup 9}-10{sup 10} cm{sup −3} range, consistent with a deep acceptor.

  16. INCORPORATION OF MONO SODIUM TITANATE AND CRYSTALLINE SILICOTITANATE FEEDS IN HIGH LEVEL NUCLEAR WASTE GLASS

    SciTech Connect (OSTI)

    Fox, K.; Johnson, F.; Edwards, T.

    2010-11-23

    Four series of glass compositions were selected, fabricated, and characterized as part of a study to determine the impacts of the addition of Crystalline Silicotitanate (CST) and Monosodium Titanate (MST) from the Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) glass waste form and the applicability of the DWPF process control models. All of the glasses studied were considerably more durable than the benchmark Environmental Assessment (EA) glass. The measured Product Consistency Test (PCT) responses were compared with the predicted values from the current DWPF durability model. One of the KT01-series and two of the KT03-series glasses had measured PCT responses that were outside the lower bound of the durability model. All of the KT04 glasses had durabilities that were predictable regardless of heat treatment or compositional view. In general, the measured viscosity values of the KT01, KT03, and KT04-series glasses are well predicted by the current DWPF viscosity model. The results of liquidus temperature (T{sub L}) measurements for the KT01-series glasses were mixed with regard to the predictability of the T{sub L} for each glass. All of the measured T{sub L} values were higher than the model predicted values, although most fell within the 95% confidence intervals. Overall, the results of this study show a reasonable ability to incorporate the anticipated SCIX streams into DWPF-type glass compositions with TiO{sub 2} concentrations of 4-5 wt % in glass.

  17. PHOTODISSOCIATION DYNAMICS OF METHYLAMINE CATION AND ITS RELEVANCE TO TITAN'S IONOSPHERE

    SciTech Connect (OSTI)

    Singh, Prashant Chandra; Shen Lei; Zhou Jia; Schlegel, H. Bernhard; Suits, Arthur G.

    2010-02-10

    Photodissociation of CH{sub 3}NH{sub 2} {sup +} has been studied using the DC sliced ion imaging technique and ab initio calculations in order to understand the formation of HCNH{sup +}, an important molecule in Titan's ionosphere. Our experimental and theoretical observations show that hydrogen loss from CH{sub 3}NH{sub 2} {sup +} has two channels: one giving rise to the triplet species CH{sub 3}NH{sup +}, while the other product is CH{sub 2}NH{sub 2} {sup +}. The latter then decomposes further to form HCNH{sup +}. H{sub 2} loss from CH{sub 3}NH{sub 2} {sup +} has only one channel, yielding CH{sub 2}NH{sup +}. This species further loses H to form HCNH{sup +}. The branching ratio of the H, H{sub 2}, and H+H{sub 2} loss channels is found to be 4.2:1:2.5. This is ascribed to the fact that, at these energies, the H loss has one stable triplet product channel, while most of the H{sub 2} loss product further decomposes to HCNH{sup +}.

  18. Virus and Bacterial Cell Chemical Analysis by NanoSIMS

    SciTech Connect (OSTI)

    Weber, P; Holt, J

    2008-07-28

    In past work for the Department of Homeland Security, the LLNL NanoSIMS team has succeeded in extracting quantitative elemental composition at sub-micron resolution from bacterial spores using nanometer-scale secondary ion mass spectrometry (NanoSIMS). The purpose of this task is to test our NanoSIMS capabilities on viruses and bacterial cells. This initial work has proven successful. We imaged Tobacco Mosaic Virus (TMV) and Bacillus anthracis Sterne cells using scanning electron microscopy (SEM) and then analyzed those samples by NanoSIMS. We were able resolve individual viral particles ({approx}18 nm by 300 nm) in the SEM and extract correlated elemental composition in the NanoSIMS. The phosphorous/carbon ratio observed in TMV is comparable to that seen in bacterial spores (0.033), as was the chlorine/carbon ratio (0.11). TMV elemental composition is consistent from spot to spot, and TMV is readily distinguished from debris by NanoSIMS analysis. Bacterial cells were readily identified in the SEM and relocated in the NanoSIMS for elemental analysis. The Ba Sterne cells were observed to have a measurably lower phosphorous/carbon ratio (0.005), as compared to the spores produced in the same run (0.02). The chlorine/carbon ratio was approximately 2.5X larger in the cells (0.2) versus the spores (0.08), while the fluorine/carbon ratio was approximately 10X lower in the cells (0.008) than the spores (0.08). Silicon/carbon ratios for both cells and spores encompassed a comparable range. The initial data in this study suggest that high resolution analysis is useful because it allows the target agent to be analyzed separate from particulates and other debris. High resolution analysis would also be useful for trace sample analysis. The next step in this work is to determine the potential utility of elemental signatures in these kinds of samples. We recommend bulk analyses of media and agent samples to determine the range of media compositions in use, and to determine how

  19. Ion beam lithography system

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2005-08-02

    A maskless plasma-formed ion beam lithography tool provides for patterning of sub-50 nm features on large area flat or curved substrate surfaces. The system is very compact and does not require an accelerator column and electrostatic beam scanning components. The patterns are formed by switching beamlets on or off from a two electrode blanking system with the substrate being scanned mechanically in one dimension. This arrangement can provide a maskless nano-beam lithography tool for economic and high throughput processing.

  20. Photosensitivity enhancement of PLZT ceramics by positive ion implantation

    DOE Patents [OSTI]

    Land, Cecil E.; Peercy, Paul S.

    1983-01-01

    The photosensitivity of lead lanthanum zirconate titanate (PLZT) ceramic material used in high resolution, high contrast, and non-volatile photoferroelectric image storage and display devices is enhanced significantly by positive ion implantation of the PLZT near its surface. Implanted ions include H.sup.+, He.sup.+, Ne.sup.+, Ar.sup.+, as well as chemically reactive ions from Fe, Cr, and Al. The positive ion implantation advantageously serves to shift the absorption characteristics of the PLZT material from near-UV light to visible light. As a result, photosensitivity enhancement is such that the positive ion implanted PLZT plate is sensitive even to sunlight and conventional room lighting, such as fluorescent and incandescent light sources. The method disclosed includes exposing the PLZT plate to the positive ions at sufficient density, from 1.times.10.sup.12 to 1.times.10.sup.17, and with sufficient energy, from 100 to 500 KeV, to provide photosensitivity enhancement. The PLZT material may have a lanthanum content ranging from 5 to 10%, a lead zirconate content of 62 to 70 mole %, and a lead titanate content of 38 to 30%. The ions are implanted at a depth of 0.1 to 2 microns below the surface of the PLZT plate.

  1. Safety evaluation of RTG launches aboard Titan IV launch vehicles

    SciTech Connect (OSTI)

    Rosko, R.J.; Loughin, S.

    1997-01-01

    The analytical tool used to evaluate accidents aboard a Titan IV launch vehicle involving a Radioisotope Thermoelectric Generator (RTG) is discussed. The Launch Accident Scenario Evaluation Program-Titan IV version (LASEP-T) uses a Monte Carlo approach to determine the response of an RTG to various threatening environments. The threatening environments arise from a complex interplay of probabilistic and deterministic processes, and are therefore parameterized by a set of random variables with probability distributions. The assessment of the RTG response to a given environment is based on both empirical data and theoretical modeling. Imbedding detailed, complex response models into the LASEP-T calculation was not practical. Simpler response models have been constructed to capture both the inherent variability due to the phenomenology of the accident scenario along with the uncertainty of predicting response behavior. The treatment of variability and uncertainty as it pertains to the launch accident evaluation of RTG response will be discussed. {copyright} {ital 1997 American Institute of Physics.}

  2. AN ESTIMATE OF THE CHEMICAL COMPOSITION OF TITAN's LAKES

    SciTech Connect (OSTI)

    Cordier, Daniel; Mousis, Olivier; Lunine, Jonathan I.; Lavvas, Panayotis; Vuitton, Veronique

    2009-12-20

    Hundreds of radar-dark patches interpreted as lakes have been discovered in the north and south polar regions of Titan. We have estimated the composition of these lakes by using the direct abundance measurements from the Gas Chromatograph Mass Spectrometer aboard the Huygens probe and recent photochemical models based on the vertical temperature profile derived by the Huygens Atmospheric Structure Instrument. Thermodynamic equilibrium is assumed between the atmosphere and the lakes, which are also considered nonideal solutions. We find that the main constituents of the lakes are ethane (C{sub 2}H{sub 6}) (approx76%-79%), propane (C{sub 3}H{sub 8}) (approx7%-8%), methane (CH{sub 4}) (approx5%-10%), hydrogen cyanide (HCN) (approx2%-3%), butene (C{sub 4}H{sub 8}) (approx1%), butane (C{sub 4}H{sub 10}) (approx1%), and acetylene (C{sub 2}H{sub 2}) (approx1%). The calculated composition of lakes is then substantially different from what has been expected from models elaborated prior to the exploration of Titan by the Cassini-Huygens spacecraft.

  3. Spray drying of metal alkoxide sol for strontium titanate ceramics

    SciTech Connect (OSTI)

    Varma, H.K.; Pillai, P.K.; Mani, T.V.; Warrier, K.G.K.; Damodaran, A.D.

    1994-01-01

    Conditions for obtaining a stable sol in an isopropyl alcohol-water medium containing titanium isopropoxide and strontium nitrate, and acetic acid as a modifier, have been described. Spray drying of the sol results in submicrometer spherical agglomerates which on further thermal decomposition yield submicrometer particles of strontium titanate at temperatures as low as 500 C. The thermal decomposition characteristics of the spray-dried precursor and the development of strontium titanate phase have been discussed. Calcined precursor powder possesses a specific surface area of 12 m{sup 2}/g, a compaction density of 57%, and a sintered density of > 98%. The optimum sintering temperature of such a powder was 1450 C, which resulted in a sintered grain size around 1.5 {mu}m. Further, such a sintered sample had a dielectric constant of 260 and a loss factor of 0.008 at 1 kHz. This method appears to be very convenient with respect to handling of stable sols and thus avoids the usual difficulties regarding extended gelation as well as inhomogeneous precipitation.

  4. Untangling the Chemical Evolution of Titan's Atmosphere and Surface -- From Homogeneous to Heterogeneous Chemistry

    SciTech Connect (OSTI)

    Kaiser, Ralf I.; Maksyutenko, Pavlo; Ennis, Courtney; Zhang, Fangtong; Gu, Xibin; Krishtal, Sergey P.; Mebel, Alexander M.; Kostko, Oleg; Ahmed, Musahid

    2010-03-16

    The arrival of the Cassini-Huygens probe at Saturn's moon Titan - the only Solar System body besides Earth and Venus with a solid surface and a thick atmosphere with a pressure of 1.4 atm at surface level - in 2004 opened up a new chapter in the history of Solar System exploration. The mission revealed Titan as a world with striking Earth-like landscapes involving hydrocarbon lakes and seas as well as sand dunes and lava-like features interspersed with craters and icy mountains of hitherto unknown chemical composition. The discovery of a dynamic atmosphere and active weather system illustrates further the similarities between Titan and Earth. The aerosol-based haze layers, which give Titan its orange-brownish color, are not only Titan's most prominent optically visible features, but also play a crucial role in determining Titan's thermal structure and chemistry. These smog-like haze layers are thought to be very similar to those that were present in Earth's atmosphere before life developed more than 3.8 billion years ago, absorbing the destructive ultraviolet radiation from the Sun, thus acting as 'prebiotic ozone' to preserve astrobiologically important molecules on Titan. Compared to Earth, Titan's low surface temperature of 94 K and the absence of liquid water preclude the evolution of biological chemistry as we know it. Exactly because of these low temperatures, Titan provides us with a unique prebiotic 'atmospheric laboratory' yielding vital clues - at the frozen stage - on the likely chemical composition of the atmosphere of the primitive Earth. However, the underlying chemical processes, which initiate the haze formation from simple molecules, have been not understood well to date.

  5. Nano Design Works | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Works Nano Design Works (NDW) capitalizes on the power of nanotechnology and provides ... looking to make a big impact with tiny materials. PDF icon ArgonneNanoDesignWorks

  6. Nano-Composite Materials - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Nano-Composite Materials National Renewable Energy ... have developed a method of producing a nano-composite material by co-sputtering a ...

  7. Magnetic nano-particles | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetic nano-particles The student will be involved in assembling CoFe2O4 nano-particles onto Si wafers for further studies by X-ray magnetic circular dichroism (XMCD) that will...

  8. Ion source

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Ehlers, Kenneth W.

    1984-01-01

    A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species.

  9. Nonlinear transport in ionic liquid gated strontium titanate nanowires

    SciTech Connect (OSTI)

    Bretz-Sullivan, Terence M.; Goldman, A. M.

    2015-09-14

    Measurements of the current-voltage (I–V) characteristics of ionic liquid gated nanometer scale channels of strontium titanate have been carried out. At low gate voltages, the I–V characteristics exhibit a large voltage threshold for conduction and a nonlinear power law behavior at all temperatures measured. The source-drain current of these nanowires scales as a power law of the difference between the source-drain voltage and the threshold voltage. The scaling behavior of the I–V characteristic is reminiscent of collective electronic transport through an array of quantum dots. At large gate voltages, the narrow channel acts as a quasi-1D wire whose conductance follows Landauer's formula for multichannel transport.

  10. Production of Synroc ceramics from titanate gel microspheres

    SciTech Connect (OSTI)

    Sizgek, E.; Bartlett, J.R.; Woolfrey, J.L.; Vance, E.R.

    1994-12-31

    Synroc is a multi-component titanate ceramic, designed to immobilise High Level Waste (HLW) from nuclear fuel reprocessing plants. Synroc precursor powders have been previously produced by various methods, such as oxide and alkoxide-hydrolysis routes. However, various technological aspects of HLW processing make the use of free-flowing, dust-free, highly sinterable precursor powders desirable. Such powders have been produced by spray-drying colloidal precursors, yielding microspherical particles with controlled porosity. These particles were readily impregnated with 20 wt% simulated high-level nuclear waste solutions, calcined at 1023 K and subsequently hot-pressed to produce dense Synroc monoliths. This paper discusses the preparation and fabrication of Synroc monoliths from the microspheres and their physical properties. The resulting microstructures and leaching characteristics of the Synroc monoliths are also presented.

  11. OSTIblog Articles in the Titan Topic | OSTI, US Dept of Energy Office of

    Office of Scientific and Technical Information (OSTI)

    Scientific and Technical Information Titan Topic A banner year expected for high-performance computing by Kathy Chambers 05 Feb, 2014 in Science Communications 14246 Titan2.jpg A banner year expected for high-performance computing Read more about 14246 Just seven miles south of our OSTI facility in Oak Ridge, Tennessee is a national treasure - the Oak Ridge National Laboratory (ORNL). ORNL is DOE's largest multi-program laboratory where remarkable scientific expertise and world-class

  12. From nano lab to how we measure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From nano lab to how we measure At the Bradbury Latest Issue:September 2016 all issues All Issues » submit From nano lab to how we measure Scientist in the Spotlight, 11 a.m. to 1 p.m., Saturday, September 10 There are activities for all ages! Stop by for some fun Seeing nano Come by and play in a simplified version of a nano lab! Nano means one billionth of something so a nanometer is one billionth of a meter. To help put that in perspective, a sheet of newspaper is about 100,000 nanometers

  13. LEACHING OF TITANIUM FROM MONOSODIUM TITANATE AND MODIFIED MST

    SciTech Connect (OSTI)

    Taylor-Pashow, K.; Fondeur, F.; Fink, S.

    2012-08-01

    Analysis of a fouled coalescer and pre-filters from Actinide Removal Process/Modular Caustic Side Solvent Extraction Unit (ARP/MCU) operations showed evidence of Ti containing solids. Based on these results a series of tests were planned to examine the extent of Ti leaching from monosodium titanate (MST) and modified monosodium titanate (mMST) in various solutions. The solutions tested included a series of salt solutions with varying free hydroxide concentrations, two sodium hydroxide concentrations, 9 wt % and 15 wt %, nitric and oxalic acid solutions. Overall, the amount of Ti leached from the MST and mMST was much greater in the acid solutions compared to the sodium hydroxide or salt solutions, which is consistent with the expected trend. The leaching data also showed that increasing hydroxide concentration, whether pure NaOH solution used for filter cleaning in ARP or the waste salt solution, increased the amount of Ti leached from both the MST and mMST. For the respective nominal contact times with the MST solids - for filter cleaning or the normal filter operation, the dissolved Ti concentrations are comparable suggesting either cause may contribute to the increased Ti fouling on the MCU coalescers. Tests showed that Ti containing solids could be precipitated from solution after the addition of scrub acid and a decrease in temperature similar to expected in MCU operations. FTIR analysis of these solids showed some similarity to the solids observed on the fouled coalescer and pre-filters. Although only a cursory study, this information suggests that the practice of increasing free hydroxide in feed solutions to MCU as a mitigation to aluminosilicate formation may be offset by the impact of formation of Ti solids in the overall process. Additional consideration of this finding from MCU and SWPF operation is warranted.

  14. Comparative Study of Structural Damage Under Irradiation in SiC Nano-structured and Conventional Ceramics

    SciTech Connect (OSTI)

    Leconte, Yann; Herlin-Boime, Nathalie; Reynaud, Cecile; Thome, Lionel

    2008-07-01

    In the context of research on new materials for next generation nuclear reactors, it becomes more and more interesting to know what can be the advantages of nano-structured materials for such applications. In this study, we performed irradiation experiments on micro-structured and nano-structured {beta}-SiC samples, with 95 MeV Xe and 4 MeV Au ions. The structure of the samples was characterized before and after irradiation by grazing incidence X-ray diffraction and Raman spectroscopy. The results showed the occurrence of a synergy between electronic and nuclear energy loss in both samples with 95 MeV Xe ions, while the nano-structured pellet was found to have a better resistance to the irradiation with 4 MeV Au ions. (authors)

  15. Fabrication and characterization of cerium-doped barium titanate inverse opal by sol-gel method

    SciTech Connect (OSTI)

    Jin Yi; Zhu Yihua Yang Xiaoling; Li Chunzhong; Zhou Jinghong

    2007-01-15

    Cerium-doped barium titanate inverted opal was synthesized from barium acetate contained cerous acetate and tetrabutyl titanate in the interstitial spaces of a polystyrene (PS) opal. This procedure involves infiltration of precursors into the interstices of the PS opal template followed by hydrolytic polycondensation of the precursors to amorphous barium titanate and removal of the PS opal by calcination. The morphologies of opal and inverse opal were characterized by scanning electron microscope (SEM). The pores were characterized by mercury intrusion porosimetry (MIP). X-ray photoelectron spectroscopy (XPS) investigation showed the doping structure of cerium, barium and titanium. And powder X-ray diffraction allows one to observe the influence of doping degree on the grain size. The lattice parameters, crystal size and lattice strain were calculated by the Rietveld refinement method. The synthesis of cerium-doped barium titanate inverted opals provides an opportunity to electrically and optically engineer the photonic band structure and the possibility of developing tunable three-dimensional photonic crystal devices. - Graphical abstract: Cerium-doped barium titanate inverted opal was synthesized from barium acetate acid contained cerous acetate and tetrabutyl titanate in the interstitial spaces of a PS opal, which involves infiltration of precursors into the interstices of the PS opal template and removal of the PS opal by calcination.

  16. nano_argonne.jpg | OSTI, US Dept of Energy Office of Scientific and

    Office of Scientific and Technical Information (OSTI)

    Technical Information nano_argonne

  17. Photoactive transparent nano-crystalline glass-ceramic for remazole red dye degradation

    SciTech Connect (OSTI)

    Gad-Allah, Tarek A.; Margha, Fatma H.

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ? Preparation and characterization of novel transparent nanocrystalline glass-ceramic. ? Precipitation of photoactive phases by using controlled heat-treatment. ? Conservation of transparency along with photoactivity. ? Using the prepared nanocrystalline glass-ceramic in water purification. -- Abstract: Transparent glass ceramic material was prepared from alkali-borosilicate glass containing titania by proper heat treatment scheme. The prepared samples were characterized using differential thermal analysis, X-ray diffraction, transmission electron microscope, selected area electron diffraction and UVvisible spectroscopy. The applied heat treatment program allowed the crystallization of nano-crystalline anatase, rutile, barium titanate, titanium borate and silicate phases while maintaining the transparency. The precipitated nano-crystalline anatase and rutile phases were responsible for the observed high photocatalytic activity of the prepared samples. Samples of 24.29 and 32.39 TiO{sub 2} wt% showed better efficiency for the decolorization of remazole red dye compared with commercial-TiO{sub 2} used in preparation of glass-ceramic. The reuse of prepared glass-ceramic photocatalyst with nearly same efficiency for different times was also proved.

  18. THE HYDROTHERMAL REACTIONS OF MONOSODIUM TITANATE, CRYSTALLINE SILICOTITANATE AND SLUDGE IN THE MODULAR SALT PROCESS: A LITERATURE SURVEY

    SciTech Connect (OSTI)

    Fondeur, F.; Pennebaker, F.; Fink, S.

    2010-11-11

    The use of crystalline silicotitanate (CST) is proposed for an at-tank process to treat High Level Waste at the Savannah River Site. The proposed configuration includes deployment of ion exchange columns suspended in the risers of existing tanks to process salt waste without building a new facility. The CST is available in an engineered form, designated as IE-911-CW, from UOP. Prior data indicates CST has a proclivity to agglomerate from deposits of silica rich compounds present in the alkaline waste solutions. This report documents the prior literature and provides guidance for the design and operations that include CST to mitigate that risk. The proposed operation will also add monosodium titanate (MST) to the supernate of the tank prior to the ion exchange operation to remove strontium and select alpha-emitting actinides. The cesium loaded CST is ground and then passed forward to the sludge washing tank as feed to the Defense Waste Processing Facility (DWPF). Similarly, the MST will be transferred to the sludge washing tank. Sludge processing includes the potential to leach aluminum from the solids at elevated temperature (e.g., 65 C) using concentrated (3M) sodium hydroxide solutions. Prior literature indicates that both CST and MST will agglomerate and form higher yield stress slurries with exposure to elevated temperatures. This report assessed that data and provides guidance on minimizing the impact of CST and MST on sludge transfer and aluminum leaching sludge.

  19. Method for ion implantation induced embedded particle formation via reduction

    DOE Patents [OSTI]

    Hampikian, Janet M; Hunt, Eden M

    2001-01-01

    A method for ion implantation induced embedded particle formation via reduction with the steps of ion implantation with an ion/element that will chemically reduce the chosen substrate material, implantation of the ion/element to a sufficient concentration and at a sufficient energy for particle formation, and control of the temperature of the substrate during implantation. A preferred embodiment includes the formation of particles which are nano-dimensional (<100 m-n in size). The phase of the particles may be affected by control of the substrate temperature during and/or after the ion implantation process.

  20. CO2 Conversion By Nano Heaters

    ScienceCinema (OSTI)

    None

    2014-06-23

    A graduate student named Oshadha Ranasingha created this animation on the research he performed on nano heaters while working at NETL.

  1. Reducing Logistics Footprints and Replenishment Demands: Nano...

    Office of Scientific and Technical Information (OSTI)

    Logistics Footprints and Replenishment Demands: Nano-engineered Silica Aerogels a Proven Method for Water Treatment Citation Details In-Document Search Title: Reducing Logistics ...

  2. CO2 Conversion By Nano Heaters

    SciTech Connect (OSTI)

    2014-03-11

    A graduate student named Oshadha Ranasingha created this animation on the research he performed on nano heaters while working at NETL.

  3. Reducing Logistics Footprints and Replenishment Demands: Nano...

    Office of Scientific and Technical Information (OSTI)

    Water Treatment Citation Details In-Document Search Title: Reducing Logistics Footprints and Replenishment Demands: Nano-engineered Silica Aerogels a Proven Method for Water ...

  4. C3Nano, inc | Open Energy Information

    Open Energy Info (EERE)

    has emerged from Stanford University in Stanford, California. C3Nano, inc. is team of students from Stanford University, who recently won the Massachusetts Institute of Technology...

  5. Nano Nouvelle Pty Ltd | Open Energy Information

    Open Energy Info (EERE)

    Energy Product: Nano-Nouvelle uses advanced materials technology, including nanotechnology, to develop technology in key large markets. Its particular focus is on...

  6. Hexagonal phase transformation in the engineered scavenger compound lithium titanate

    SciTech Connect (OSTI)

    Collins, W.K.; Riley, W.D.; Jong, B.W.

    1993-01-01

    Engineered scavenger compounds (ESC's) developed by the US Bureau of Mines are a novel class of compounds that selectively can recover a desired element from a solid or molten alloy. Lithium titanate (Li[sub 2]Ti[sub 3]O[sub 7] or Li[sub 2]O [center dot] 3TiO[sub 2]) is used as an ESC to recover lithium (Li) from aluminum-lithium (Al-Li) alloys. X-ray diffraction measurements have shown that Li[sub 2]Ti[sub 3]O[sub 7] undergoes a phase change during scavenging from an orthorhombic structure to a hexagonal structure. This change is due to the incorporation of lithium in the matrix of the material and the effect of temperature. Although both phases are metastable, the hexagonal phase that forms during the scavenging of lithium from Al-Li alloys appears to be the more stable phase. Recovering lithium from the ESC by electrodeposition does not cause the structure to revert to the orthorhombic phase. The orthorhombic and the hexagonal structures of Li[sub 2]Ti[sub 3]O[sub 7] have similar scavenging capacities for lithium. This report proposes a new mechanism for the phase transformation.

  7. Experimental and computational studies on stacking faults in zinc titanate

    SciTech Connect (OSTI)

    Sun, W.; Ageh, V.; Mohseni, H.; Scharf, T. W. E-mail: Jincheng.Du@unt.edu; Du, J. E-mail: Jincheng.Du@unt.edu

    2014-06-16

    Zinc titanate (ZnTiO{sub 3}) thin films grown by atomic layer deposition with ilmenite structure have recently been identified as an excellent solid lubricant, where low interfacial shear and friction are achieved due to intrafilm shear velocity accommodation in sliding contacts. In this Letter, high resolution transmission electron microscopy with electron diffraction revealed that extensive stacking faults are present on ZnTiO{sub 3} textured (104) planes. These growth stacking faults serve as a pathway for dislocations to glide parallel to the sliding direction and hence achieve low interfacial shear/friction. Generalized stacking fault energy plots also known as ?-surfaces were computed for the (104) surface of ZnTiO{sub 3} using energy minimization method with classical effective partial charge potential and verified by using density functional theory first principles calculations for stacking fault energies along certain directions. These two are in qualitative agreement but classical simulations generally overestimate the energies. In addition, the lowest energy path was determined to be along the [451{sup }] direction and the most favorable glide system is (104) ?451{sup }? that is responsible for the experimentally observed sliding-induced ductility.

  8. Nanoscale Strontium Titanate Photocatalysts for Overall Water Splitting

    SciTech Connect (OSTI)

    Townsend, Troy K.; Browning, Nigel D.; Osterloh, Frank

    2012-08-28

    SrTiO3 (STO) is a large band gap (3.2 eV) semiconductor that catalyzes the overall water splitting reaction under UV light irradiation in the presence of a NiO cocatalyst. As we show here, the reactivity persists in nanoscale particles of the material, although the process is less effective at the nanoscale. To reach these conclusions, Bulk STO, 30 5 nm STO, and 6.5 1 nm STO were synthesized by three different methods, their crystal structures verified with XRD and their morphology observed with HRTEM before and after NiO deposition. In connection with NiO, all samples split water into stoichiometric mixtures of H2 and O2, but the activity is decreasing from 28 ?mol H2 g1 h1 (bulk STO), to 19.4 ?mol H2 g1 h1 (30 nm STO), and 3.0 ?mol H2 g1 h1 (6.5 nm STO). The reasons for this decrease are an increase of the water oxidation overpotential for the smaller particles and reduced light absorption due to a quantum size effect. Overall, these findings establish the first nanoscale titanate photocatalyst for overall water splitting.

  9. 'Nano'tubes, Surface Area & NanoSolar Cells

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    This unit takes students through several introductory lessons designed to gain a better understanding of the 'nano' scale as it relates to the creation of a (dye-sensitized) solar cell (DSSC). The introductory lessons guide students through activities covering volume, surface area and density and exploration of the relationship between these factors. The unit culminates with students building a Gratzel cell, a solar cell employing a layer of nanospheres of TiO2 as the semiconductor and blackberry juice as the light absorber in a non-Si-based solar cell. Students are able to build a small solar cell and test its efficiency.

  10. Nano-composite stainless steel (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Patent: Nano-composite stainless steel Citation Details In-Document Search Title: Nano-composite stainless steel A composite stainless steel composition is composed essentially of, ...

  11. Wear-Resistant, Nano-Composite Steel Coatings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wear-Resistant, Nano-Composite Steel Coatings Laser Processing Techniques Used for the ... wear resistant nano-composite coatings and components for a wide range of applications. ...

  12. Tools for the Microbiome: Nano and Beyond (Journal Article) ...

    Office of Scientific and Technical Information (OSTI)

    Tools for the Microbiome: Nano and Beyond Prev Next Title: Tools for the Microbiome: Nano and Beyond Authors: Biteen, Julie S. ; Blainey, Paul C. ; Cardon, Zoe G. ; Chun, ...

  13. Small and Powerful: Pushing the Boundaries of Nano-Magnets |...

    Office of Science (SC) Website

    and Powerful: Pushing the Boundaries of Nano-Magnets Basic Energy Sciences (BES) BES ... Small and Powerful: Pushing the Boundaries of Nano-Magnets Newly discovered particles ...

  14. Vehicle Technologies Office Merit Review 2015: Metal Oxide Nano...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metal Oxide Nano-Array Catalysts for Low Temperature Diesel Oxidation Vehicle Technologies Office Merit Review 2015: Metal Oxide Nano-Array Catalysts for Low Temperature Diesel ...

  15. NanoComposite Stainless Steel Powder Technologies (Technical...

    Office of Scientific and Technical Information (OSTI)

    NanoComposite Stainless Steel Powder Technologies Citation Details In-Document Search Title: NanoComposite Stainless Steel Powder Technologies You are accessing a document from ...

  16. 2011 Final Report - Nano-Oxide Photocatalysis for Solar Energy...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: 2011 Final Report - Nano-Oxide Photocatalysis for Solar Energy Conversion Citation Details In-Document Search Title: 2011 Final Report - Nano-Oxide Photocatalysis ...

  17. Micro- & Nano-Technologies Enabling More Compact, Lightweight...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Micro- & Nano-Technologies Enabling More Compact, Lightweight Thermoelectric Power Generation & Cooling Systems Micro- & Nano-Technologies Enabling ...

  18. Korea Advanced Nano Fab Center KANC | Open Energy Information

    Open Energy Info (EERE)

    Korea (Republic) Zip: 443-270 Product: String representation "The Korea Advan ... f nano devices." is too long. References: Korea Advanced Nano Fab Center (KANC)1 This...

  19. COSMIC-RAY-MEDIATED FORMATION OF BENZENE ON THE SURFACE OF SATURN'S MOON TITAN

    SciTech Connect (OSTI)

    Zhou Li; Zheng Weijun; Kaiser, Ralf I.; Landera, Alexander; Mebel, Alexander M.; Liang, Mao-Chang; Yung, Yuk L.

    2010-08-01

    The aromatic benzene molecule (C{sub 6}H{sub 6})-a central building block of polycyclic aromatic hydrocarbon molecules-is of crucial importance for the understanding of the organic chemistry of Saturn's largest moon, Titan. Here, we show via laboratory experiments and electronic structure calculations that the benzene molecule can be formed on Titan's surface in situ via non-equilibrium chemistry by cosmic-ray processing of low-temperature acetylene (C{sub 2}H{sub 2}) ices. The actual yield of benzene depends strongly on the surface coverage. We suggest that the cosmic-ray-mediated chemistry on Titan's surface could be the dominant source of benzene, i.e., a factor of at least two orders of magnitude higher compared to previously modeled precipitation rates, in those regions of the surface which have a high surface coverage of acetylene.

  20. Highly aligned arrays of high aspect ratio barium titanate nanowires via hydrothermal synthesis

    SciTech Connect (OSTI)

    Bowland, Christopher C.; Zhou, Zhi; Malakooti, Mohammad H.; Sodano, Henry A.

    2015-06-01

    We report on the development of a hydrothermal synthesis procedure that results in the growth of highly aligned arrays of high aspect ratio barium titanate nanowires. Using a multiple step, scalable hydrothermal reaction, a textured titanium dioxide film is deposited on titanium foil upon which highly aligned nanowires are grown via homoepitaxy and converted to barium titanate. Scanning electron microscope images clearly illustrate the effect the textured film has on the degree of orientation of the nanowires. The alignment of nanowires is quantified by calculating the Herman's Orientation Factor, which reveals a 58% improvement in orientation as compared to growth in the absence of the textured film. The ferroelectric properties of barium titanate combined with the development of this scalable growth procedure provide a powerful route towards increasing the efficiency and performance of nanowire-based devices in future real-world applications such as sensing and power harvesting.

  1. Preparation and photocatalytic properties of AgISnO{sub 2} nano-composites

    SciTech Connect (OSTI)

    Wen, Biao; Wang, Xiao-Hui; Lu, Juan; Cao, Jia-Lei; Wang, Zuo-Shan

    2013-05-15

    Highlights: ? AgISnO{sub 2} nano-composites have been successfully synthesized. ? As-prepared AgISnO{sub 2} nano-composites own the excellent visible light photocatalytic activity. ? As-prepared AgISnO{sub 2} nano-composites own the excellent stability. - Abstract: AgI doped SnO{sub 2} nano-composites were prepared by the chemical coprecipitation method and were characterized by the X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy. Results showed that main of the I{sup ?} ions remained in the AgI lattice which is highly dispersed in the system. The photo-catalytic experiments performed under visible light irradiation using methylene blue as the pollutant revealed that not only the photo-catalytic activity but also the stability of SnO{sub 2} based photocatalyst could be improved by introduction of an appropriate amount of AgI, and the result was further supported by the UVVis diffuse reflection spectra and the electron spin-resonance spectra. Among all of the samples, AgISnO{sub 2} nano-composite with 2At% AgI exhibited the best catalytic efficiency and stability.

  2. Dipole nano-laser: Theory and properties

    SciTech Connect (OSTI)

    Ghannam, T.

    2014-03-31

    In this paper we outline the main quantum properties of the system of nano-based laser called Dipole Nano-Laser emphasizing mainly on its ability to produce coherent light and for different configurations such as different embedding materials and subjecting it to an external classical electric field.

  3. SORPTION BEHAVIOR OF MONOSODIUM TITANATE AND AMORPHOUS PEROXOTITANATE MATERIALS UNDER WEAKLY ACIDIC CONDITIONS

    SciTech Connect (OSTI)

    Hobbs, D.; Elvington, M.; Click, D.

    2009-11-11

    Inorganic, titanate-based sorbents are tested with respect to adsorption of a variety of sorbates under weakly acidic conditions (pH 3). Specifically, monosodium titanate (MST) and amorphous peroxotitanate (APT) sorption characteristics are initially probed through a screening process consisting of a pair of mixed metal solutions containing a total of 29 sorbates including alkali metals, alkaline earth metals, transition metals, metalloids and nonmetals. MST and APT sorption characteristics are further analyzed individually with chromium(III) and cadmium(II) using a batch method at ambient laboratory temperature, varying concentrations of the sorbents and sorbates and contact times. Maximum sorbate loadings are obtained from the respective adsorption isotherms.

  4. Nanophotonic production, modulation and switching of ions by silicon microcolumn arrays

    DOE Patents [OSTI]

    Vertes, Akos; Walker, Bennett N.

    2012-02-07

    The production and use of silicon microcolumn arrays that harvest light from a laser pulse to produce ions are described. The systems of the present invention seem to behave like a quasi-periodic antenna array with ion yields that show profound dependence on the plane of laser light polarization and the angle of incidence. By providing photonic ion sources, this enables enhanced control of ion production on a micro/nano scale and direct integration with miniaturized analytical devices.

  5. Nanophotonic production, modulation and switching of ions by silicon microcolumn arrays

    DOE Patents [OSTI]

    Vertes, Akos; Walker, Bennett N.

    2013-09-10

    The production and use of silicon microcolumn arrays that harvest light from a laser pulse to produce ions are described. The systems of the present invention seem to behave like a quasi-periodic antenna array with ion yields that show profound dependence on the plane of laser light polarization and the angle of incidence. By providing photonic ion sources, this enables enhanced control of ion production on a micro/nano scale and direct integration with miniaturized analytical devices.

  6. Nanophotonic production, modulation and switching of ions by silicon microcolumn arrays

    DOE Patents [OSTI]

    Vertes, Akos; Walker, Bennett N

    2015-04-07

    The production and use of silicon microcolumn arrays that harvest light from a laser pulse to produce ions are described. The systems of the present invention seem to behave like a quasi-periodic antenna array with ion yields that show profound dependence on the plane of laser light polarization and the angle of incidence. By providing photonic ion sources, this enables enhanced control of ion production on a micro/nano scale and direct integration with miniaturized analytical devices.

  7. Graphene nanoribbon superlattices fabricated via He ion lithography

    SciTech Connect (OSTI)

    Archanjo, Braulio S.; Fragneaud, Benjamin; Gustavo Canado, Luiz; Winston, Donald; Miao, Feng; Alberto Achete, Carlos; Medeiros-Ribeiro, Gilberto

    2014-05-12

    Single-step nano-lithography was performed on graphene sheets using a helium ion microscope. Parallel defect lines of ?1??m length and ?5?nm width were written to form nanoribbon gratings down to 20?nm pitch. Polarized Raman spectroscopy shows that crystallographic orientation of the nanoribbons was partially maintained at their lateral edges, indicating a high-fidelity lithography process. Furthermore, Raman analysis of large exposure areas with different ion doses reveals that He ions produce point defects with radii ? 2 smaller than do Ga ions, demonstrating that scanning-He{sup +}-beam lithography can texture graphene with less damage.

  8. THE INFLUENCE OF BENZENE AS A TRACE REACTANT IN TITAN AEROSOL ANALOGS

    SciTech Connect (OSTI)

    Trainer, Melissa G.; Sebree, Joshua A.; Heidi Yoon, Y.; Tolbert, Margaret A.

    2013-03-20

    Benzene has been detected in Titan's atmosphere by Cassini instruments, with concentrations ranging from sub-ppb in the stratosphere to ppm in the ionosphere. Sustained levels of benzene in the haze formation region could signify that it is an important reactant in the formation of Titan's organic aerosol. To date, there have not been laboratory investigations to assess the influence of benzene on aerosol properties. We report a laboratory study on the chemical composition of organic aerosol formed from C{sub 6}H{sub 6}/CH{sub 4}/N{sub 2} via far ultraviolet irradiation (120-200 nm). The compositional results are compared to those from aerosol generated by a more ''traditional Titan'' mixture of CH{sub 4}/N{sub 2}. Our results show that even a trace amount of C{sub 6}H{sub 6} (10 ppm) has significant impact on the chemical composition and production rates of organic aerosol. There are several pathways by which photolyzed benzene may react to form larger molecules, both with and without the presence of CH{sub 4}, but many of these reaction mechanisms are only beginning to be explored for the conditions at Titan. Continued work investigating the influence of benzene in aerosol growth will advance understanding of this previously unstudied reaction system.

  9. Attrition resistant, zinc titanate-containing, reduced sulfur sorbents and methods of use thereof

    DOE Patents [OSTI]

    Vierheilig, Albert A.; Gupta, Raghubir P.; Turk, Brian S.

    2006-06-27

    Reduced sulfur gas species (e.g., H.sub.2S, COS and CS.sub.2) are removed from a gas stream by compositions wherein a zinc titanate ingredient is associated with a metal oxide-aluminate phase material in the same particle species. Nonlimiting examples of metal oxides comprising the compositions include magnesium oxide, zinc oxide, calcium oxide, nickel oxide, etc.

  10. Long-term superelastic cycling at nano-scale in Cu-Al-Ni shape memory alloy micropillars

    SciTech Connect (OSTI)

    San Juan, J. Gómez-Cortés, J. F.

    2014-01-06

    Superelastic behavior at nano-scale has been studied along cycling in Cu-Al-Ni shape memory alloy micropillars. Arrays of square micropillars were produced by focused ion beam milling, on slides of [001] oriented Cu-Al-Ni single crystals. Superelastic behavior of micropillars, due to the stress-induced martensitic transformation, has been studied by nano-compression tests during thousand cycles, and its evolution has been followed along cycling. Each pillar has undergone more than thousand cycles without any detrimental evolution. Moreover, we demonstrate that after thousand cycles they exhibit a perfectly reproducible and completely recoverable superelastic behavior.

  11. DNA Assembly Line for Nano-Construction

    ScienceCinema (OSTI)

    Oleg Gang

    2010-01-08

    Building on the idea of using DNA to link up nanoparticles scientists at Brookhaven National Lab have designed a molecular assembly line for high-precision nano-construction. Nanofabrication is essential for exploiting the unique properties of nanoparticl

  12. Cima NanoTech | Open Energy Information

    Open Energy Info (EERE)

    including nanoparticle conductive inks and transparent conductive coatings for solar cells. References: Cima NanoTech1 This article is a stub. You can help OpenEI by...

  13. Lipid bilayers on nano-templates

    DOE Patents [OSTI]

    Noy, Aleksandr; Artyukhin, Alexander B.; Bakajin, Olgica; Stoeve, Pieter

    2009-08-04

    A lipid bilayer on a nano-template comprising a nanotube or nanowire and a lipid bilayer around the nanotube or nanowire. One embodiment provides a method of fabricating a lipid bilayer on a nano-template comprising the steps of providing a nanotube or nanowire and forming a lipid bilayer around the polymer cushion. One embodiment provides a protein pore in the lipid bilayer. In one embodiment the protein pore is sensitive to specific agents

  14. Nano structural anodes for radiation detectors

    SciTech Connect (OSTI)

    Cordaro, Joseph V.; Serkiz, Steven M.; McWhorter, Christopher S.; Sexton, Lindsay T.; Retterer, Scott T.

    2015-07-07

    Anodes for proportional radiation counters and a process of making the anodes is provided. The nano-sized anodes when present within an anode array provide: significantly higher detection efficiencies due to the inherently higher electric field, are amenable to miniaturization, have low power requirements, and exhibit a small electromagnetic field signal. The nano-sized anodes with the incorporation of neutron absorbing elements (e.g., .sup.10B) allow the use of neutron detectors that do not use .sup.3He.

  15. ION SOURCE

    DOE Patents [OSTI]

    Martina, E.F.

    1958-04-22

    An improved ion source particularly adapted to provide an intense beam of ions with minimum neutral molecule egress from the source is described. The ion source structure includes means for establishing an oscillating electron discharge, including an apertured cathode at one end of the discharge. The egress of ions from the source is in a pencil like beam. This desirable form of withdrawal of the ions from the plasma created by the discharge is achieved by shaping the field at the aperture of the cathode. A tubular insulator is extended into the plasma from the aperture and in cooperation with the electric fields at the cathode end of the discharge focuses the ions from the source,

  16. Nanostructured aluminium titanate (Al{sub 2}TiO{sub 5}) particles and nanofibers: Synthesis and mechanism of microstructural evolution

    SciTech Connect (OSTI)

    Azarniya, Abolfazl; Azarniya, Amir; Hosseini, Hamid Reza Madaah; Simchi, Abdolreza

    2015-05-15

    In this study, aluminium titanate (AT) particles and nanofibers were synthesized through citrate sol gel and sol gel-assisted electrospinning methods in both nanostructured powder and nanofiber forms. The results of X-ray diffraction analysis, field-emission scanning electron microscopy and differential thermal analysis showed that the synthetic products benefit a nanostructured nature with a grain size less than 70 nm. The optimal values for time and temperature at which a roughly pure AT is attained were determined as 2 h and 900 °C, respectively. It was found that the sol gel precursor bears an amorphous structure till 700 °C and begins to be crystallized to alumina, anatase and AT at higher temperatures. Moreover, AT tends to decompose into rutile and alumina at temperatures higher than 900 °C and its degradation rate reaches a maximum at temperatures near to 1100 °C. In this synthesis, citric acid was used as a chelating agent for Al{sup 3} {sup +} and Ti{sup 4} {sup +} ions and it was shown that a low citric acid-to-metal cation ratio leads to larger numbers of nuclei during crystallization and smaller grain size. Finally, a model was suggested to describe the microstructural evolution of AT compound based on a nucleation and growth regime. - Graphical abstract: Display Omitted - Highlights: • We synthesized aluminium titanate ceramic in both powder and nanofiber forms. • The methods in use were citrate sol gel and sol gel-assisted electrospinning. • Powders and nanofibers bear a nanostructured nature with a grain size less than 70 nm. • A model is suggested to describe microstructural evolution of synthetic products.

  17. Optimizing white light luminescence in Dy{sup 3+}-doped Lu{sub 3}Ga{sub 5}O{sub 12} nano-garnets

    SciTech Connect (OSTI)

    Haritha, P.; Linganna, K.; Venkatramu, V.; Martn, I. R.; Monteseguro, V.; Rodrguez-Mendoza, U. R.; Babu, P.; Len-Luis, S. F.; Jayasankar, C. K.; Lavn, V.

    2014-11-07

    Trivalent dysprosium-doped Lu{sub 3}Ga{sub 5}O{sub 12} nano-garnets have been prepared by sol-gel method and characterized by X-ray powder diffraction, high-resolution transmission electron microscopy, dynamic light scattering, and laser excited spectroscopy. Under a cw 457?nm laser excitation, the white luminescence properties of Lu{sub 3}Ga{sub 5}O{sub 12} nano-garnets have been studied as a function of the optically active Dy{sup 3+} ion concentration and at low temperature. Decay curves for the {sup 4}F{sub 9/2} level of Dy{sup 3+} ion exhibit non-exponential nature for all the Dy{sup 3+} concentrations, which have been well-fitted to a generalized energy transfer model for a quadrupole-quadrupole interaction between Dy{sup 3+} ions without diffusion. From these data, a simple rate-equations model can be applied to predict that intense white luminescence could be obtained from 1.8?mol% Dy{sup 3+} ions-doped nano-garnets, which is in good agreement with experimental results. Chromaticity color coordinates and correlated color temperatures have been determined as a function of temperature and are found to be within the white light region for all Dy{sup 3+} concentrations. These results indicate that 2.0?mol% Dy{sup 3+} ions doped nano-garnet could be useful for white light emitting device applications.

  18. Micromechanical tests of ion irradiated materials: Atomistic simulations and experiments

    SciTech Connect (OSTI)

    Shin, C.; Jin, H. H.; Kwon, J.

    2012-07-01

    We investigated irradiation effects on Fe-Cr binary alloys by using a nano-indentation combined with a continuous stiffness measurement (CSM) technique. We modeled the nano-indentation test by using a finite element method. We could extract the intrinsic hardness and the yield stress of an irradiation hardened region by using a so-called inverse method. SiC micro-pillars of various sizes were fabricated by mask and inductively coupled plasma etching technique and compressed by using flat punch nano-indentation. Compressive fracture strength showed a clear specimen size effect. Brittle-to-Ductile transition at room temperature was observed as the specimen size decreases. The effect of irradiation on the fracture strength of SiC micro-pillars was evaluated by performing ion irradiation with Si ions. We have performed molecular dynamics simulations of nano-indentation and nano-pillar compression tests. Radiation effect was observed which is found to be due to the interaction of dislocations nucleated by spherical indenter with pre-existing radiation defects (voids). These atomistic simulations are expected to significantly contribute to the investigation of the fundamental deformation mechanism of small scale irradiated materials. (authors)

  19. Self-organized titanium oxide nano-channels for resistive memory application

    SciTech Connect (OSTI)

    Barman, A.; Saini, C. P.; Dhar, S.; Kanjilal, A.; Sarkar, P.; Satpati, B.; Bhattacharyya, S. R.

    2015-12-14

    Towards developing next generation scalable TiO{sub 2}-based resistive switching (RS) memory devices, the efficacy of 50 keV Ar{sup +}-ion irradiation to achieve self-organized nano-channel based structures at a threshold fluence of 5 × 10{sup 16} ions/cm{sup 2} at ambient temperature is presented. Although x-ray diffraction results suggest the amorphization of as-grown TiO{sub 2} layers, detailed transmission electron microscopy study reveals fluence-dependent evolution of voids and eventual formation of self-organized nano-channels between them. Moreover, gradual increase of TiO/Ti{sub 2}O{sub 3} in the near surface region, as monitored by x-ray photoelectron spectroscopy, establishes the upsurge in oxygen deficient centers. The impact of structural and chemical modification on local RS behavior has also been investigated by current-voltage measurements in conductive atomic force microscopy, while memory application is manifested by fabricating Pt/TiO{sub 2}/Pt/Ti/SiO{sub 2}/Si devices. Finally, the underlying mechanism of our experimental results has been analyzed and discussed in the light of oxygen vacancy migration through nano-channels.

  20. The TITAN Reversed-Field Pinch fusion reactor study: Scoping phase report

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    The TITAN research program is a multi-institutional effort to determine the potential of the Reversed-Field Pinch (RFP) magnetic fusion concept as a compact, high-power-density, and ''attractive'' fusion energy system from economic (cost of electricity, COE), environmental, and operational viewpoints. In particular, a high neutron wall loading design (18 MW/m/sup 2/) has been chosen as the reference case in order to quantify the issue of engineering practicality, to determine the physics requirements and plasma operating mode, to assess significant benefits of compact systems, and to illuminate the main drawbacks. The program has been divided into two phases, each roughly one year in length: the Scoping Phase and the Design Phase. During the scoping phase, the TITAN design team has defined the parameter space for a high mass power density (MPD) RFP reactor, and explored a variety of approaches to the design of major subsystems. Two major design approaches consistent with high MPD and low COE, the lithium-vanadium blanket design and aqueous loop-in-pool design, have been selected for more detailed engineering evaluation in the design phase. The program has retained a balance in its approach to investigating high MPD systems. On the one hand, parametric investigations of both subsystems and overall system performance are carried out. On the other hand, more detailed analysis and engineering design and integration are performed, appropriate to determining the technical feasibility of the high MPD approach to RFP fusion reactors. This report describes the work of the scoping phase activities of the TITAN program. A synopsis of the principal technical findings and a brief description of the TITAN multiple-design approach is given. The individual chapters on Plasma Physics and Engineering, Parameter Systems Studies, Divertor, Reactor Engineering, and Fusion Power Core Engineering have been cataloged separately.

  1. An investigation of aluminum titanate-spinel composites behavior in radiation

    SciTech Connect (OSTI)

    Cevikbas, G.; Tugrul, A. B.; Boyraz, T.; Buyuk, B.; Onen, U.

    2015-03-30

    In the present work, the radiation attenuation properties of Aluminum titanate (Al{sub 2}TiO{sub 5})-Spinel (MgAl{sub 2}O{sub 4}) ceramics composites were investigated. Al{sub 2}TiO{sub 5}-MgAl{sub 2}O{sub 4} ceramics composites which have different Al{sub 2}TiO{sub 5} percentages (0%, 5% and 10%) were produced and performed against gamma sources. Cs-137 and Co-60 were used as gamma radiation sources. Transmission technique was used in the experiments. The linear and mass attenuation coefficients of the samples were carried out for gamma radiation sources. The experimental results were compared with the theoretical mass attenuation coefficients which were calculated by using XCOM computer code. Increasing Al{sub 2}TiO{sub 5} percentage in the Aluminum titanate/ Spinel ceramics composites causes the higher linear and mass attenuation coefficients of the composites against Cs-137 and Co-60 gamma radioisotopes. Therefore Also theoretical mass attenuation coefficients are compatible with the experimental results. In conclusion, increasing the Aluminum titanate ratio in the Al{sub 2}TiO{sub 5}-MgAl{sub 2}O{sub 4} ceramics composites increases the gamma shielding property of the Al{sub 2}TiO{sub 5}-MgAl{sub 2}O{sub 4} ceramics for nuclear shielding applications.

  2. Composite solid oxide fuel cell anode based on ceria and strontium titanate

    DOE Patents [OSTI]

    Marina, Olga A.; Pederson, Larry R.

    2008-12-23

    An anode and method of making the same wherein the anode consists of two separate phases, one consisting of a doped strontium titanate phase and one consisting of a doped cerium oxide phase. The strontium titanate phase consists of Sr.sub.1-xM.sub.xTiO.sub.3-.delta., where M is either yttrium (Y), scandium (Sc), or lanthanum (La), where "x" may vary typically from about 0.01 to about 0.5, and where .delta. is indicative of some degree of oxygen non-stoichiometry. A small quantity of cerium may also substitute for titanium in the strontium titanate lattice. The cerium oxide consists of N.sub.yCe.sub.1-yO.sub.2-.delta., where N is either niobium (Nb), vanadium (V), antimony (Sb) or tantalum (Ta) and where "y" may vary typically from about 0.001 to about 0.1 and wherein the ratio of Ti in said first phase to the sum of Ce and N in the second phase is between about 0.2 to about 0.75. Small quantities of strontium, yttrium, and/or lanthanum may additionally substitute into the cerium oxide lattice. The combination of these two phases results in better performance than either phase used separately as an anode for solid oxide fuel cell or other electrochemical device.

  3. Self-Assembled Silica Nano-Composite Polymer Electrolytes: Synthesis, Rheology & Electrochemistry

    SciTech Connect (OSTI)

    Khan, Saad A.: Fedkiw Peter S.; Baker, Gregory L.

    2007-01-24

    The ultimate objectives of this research are to understand the principles underpinning nano-composite polymer electrolytes (CPEs) and facilitate development of novel CPEs that are low-cost, have high conductivities, large Li+ transference numbers, improved electrolyte-electrode interfacial stability, yield long cycle life, exhibit mechanical stability and are easily processable. Our approach is to use nanoparticulate silica fillers to formulate novel composite electrolytes consisting of surface-modified fumed silica nano-particles in polyethylene oxides (PEO) in the presence of lithium salts. We intend to design single-ion conducting silica nanoparticles which provide CPEs with high Li+ transference numbers. We also will develop low-Mw (molecular weight), high-Mw and crosslinked PEO electrolytes with tunable properties in terms of conductivity, transference number, interfacial stability, processability and mechanical strength

  4. ION SWITCH

    DOE Patents [OSTI]

    Cook, B.

    1959-02-10

    An ion switch capable of transferring large magnitudes of power is described. An ion switch constructed in accordance with the invention includes a pair of spaced control electrodes disposed in a highly evacuated region for connection in a conventional circuit to control the passing of power therethrough. A controllable ionic conduction path is provided directiy between the control electrodes by a source unit to close the ion switch. Conventional power supply means are provided to trigger the source unit and control the magnitude, durations and pulse repetition rate of the aforementioned ionic conduction path.

  5. Self-Assembly of Polymer Nano-Elements on Sapphire

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Self-Assembly of Polymer Nano-Elements on Sapphire Print Self-assembly of polymers ... electron-beam lithographic techniques or nano-imprint lithography, but these methods are ...

  6. Nano-Composite Arsenic Sorbent - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Nano-Composite Arsenic Sorbent N-CAS: A low cost, ... Contact INL About This Technology Publications: PDF Document Publication Nano-Composite ...

  7. A Nano Surface Icephobic Coating Delays Ice Formation | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nano Surface Icephobic Coating Delays Ice Formation Click to email this to a friend (Opens ... A Nano Surface Icephobic Coating Delays Ice Formation Azar Alizadeh 2012.03.08 Hi folks, ...

  8. A New Route to Nano Self-Assembly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nano Self-Assembly Print If the promise of nanotechnology is to be ... available nanoparticles over multiple length scales, ranging from the nano to the macro. ...

  9. Self-Assembly of Polymer Nano-Elements on Sapphire

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Self-Assembly of Polymer Nano-Elements on Sapphire Self-Assembly of Polymer Nano-Elements on Sapphire Print Wednesday, 25 March 2009 00:00 Self-assembly of polymers promises to ...

  10. A New Route to Nano Self-Assembly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nano Self-Assembly A New Route to Nano Self-Assembly Print Wednesday, 24 February 2010 00:00 If the promise of nanotechnology is to be fulfilled, nanoparticles will ...

  11. Nano tech Silicon India Ltd | Open Energy Information

    Open Energy Info (EERE)

    tech Silicon India Ltd Jump to: navigation, search Name: Nano-tech Silicon India Ltd Place: Hyderabad, Andhra Pradesh, India Product: Nano-tech Silicon is a manufacturer of PV...

  12. NanoMas Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    Product: NanoMas develops silver nanoparticle-based dyes which can be used in printable solar cells and other printable electronics. References: NanoMas Technologies Inc.1 This...

  13. ION SOURCE

    DOE Patents [OSTI]

    Leland, W.T.

    1960-01-01

    The ion source described essentially eliminater the problem of deposits of nonconducting materials forming on parts of the ion source by certain corrosive gases. This problem is met by removing both filament and trap from the ion chamber, spacing them apart and outside the chamber end walls, placing a focusing cylinder about the filament tip to form a thin collimated electron stream, aligning the cylinder, slits in the walls, and trap so that the electron stream does not bombard any part in the source, and heating the trap, which is bombarded by electrons, to a temperature hotter than that in the ion chamber, so that the tendency to build up a deposit caused by electron bombardment is offset by the extra heating supplied only to the trap.

  14. Ion focusing

    DOE Patents [OSTI]

    Cooks, Robert Graham; Baird, Zane; Peng, Wen-Ping

    2015-11-10

    The invention generally relates to apparatuses for focusing ions at or above ambient pressure and methods of use thereof. In certain embodiments, the invention provides an apparatus for focusing ions that includes an electrode having a cavity, at least one inlet within the electrode configured to operatively couple with an ionization source, such that discharge generated by the ionization source is injected into the cavity of the electrode, and an outlet. The cavity in the electrode is shaped such that upon application of voltage to the electrode, ions within the cavity are focused and directed to the outlet, which is positioned such that a proximal end of the outlet receives the focused ions and a distal end of the outlet is open to ambient pressure.

  15. Nano-material and method of fabrication

    DOE Patents [OSTI]

    Menchhofer, Paul A; Seals, Roland D; Howe, Jane Y; Wang, Wei

    2015-02-03

    A fluffy nano-material and method of manufacture are described. At 2000.times. magnification the fluffy nanomaterial has the appearance of raw, uncarded wool, with individual fiber lengths ranging from approximately four microns to twenty microns. Powder-based nanocatalysts are dispersed in the fluffy nanomaterial. The production of fluffy nanomaterial typically involves flowing about 125 cc/min of organic vapor at a pressure of about 400 torr over powder-based nano-catalysts for a period of time that may range from approximately thirty minutes to twenty-four hours.

  16. Nano Communication Networks Update | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nano Communication Networks Update Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Nano Communication Networks Update Steve Bush 2011.12.09 Hi everybody, In my last blog I talked about some of the work I have been doing pertaining to advanced communications for the Smart Grid. However, I wanted to post a blog updating

  17. Desensitizing nano powders to electrostatic discharge ignition

    SciTech Connect (OSTI)

    Steelman, Ryan; Clark, Billy; Pantoya, Michelle L.; Heaps, Ronald J.; Daniels, Michael A.

    2015-08-01

    Electrostatic discharge (ESD) is a main cause for ignition in powder media ranging from grain silos to fireworks. Nanoscale particles are orders of magnitude more ESD ignition sensitive than their micron scale counterparts. This study shows that at least 13 vol. % carbon nanotubes (CNT) added to nano-aluminum and nano-copper oxide particles (nAl + CuO) eliminates ESD ignition sensitivity. The CNT act as a conduit for electric energy and directs electric charge through the powder to desensitize the reactive mixture to ignition. For nanoparticles, the required CNT concentration for desensitizing ESD ignition acts as a diluent to quench energy propagation.

  18. ION SOURCE

    DOE Patents [OSTI]

    Bell, W.A. Jr.; Love, L.O.; Prater, W.K.

    1958-01-28

    An ion source is presented capable of producing ions of elements which vaporize only at exceedingly high temperatures, i.e.,--1500 degrees to 3000 deg C. The ion source utilizes beams of electrons focused into a first chamber housing the material to be ionized to heat the material and thereby cause it to vaporize. An adjacent second chamber receives the vaporized material through an interconnecting passage, and ionization of the vaporized material occurs in this chamber. The ionization action is produced by an arc discharge sustained between a second clectron emitting filament and the walls of the chamber which are at different potentials. The resultant ionized material egresses from a passageway in the second chamber. Using this device, materials which in the past could not be processed in mass spectometers may be satisfactorily ionized for such applications.

  19. Irradiation-induced nano-voids in strained tin precipitates in silicon

    SciTech Connect (OSTI)

    Gaiduk, P. I., E-mail: gaiduk@phys.au.dk [Department of Physics and Astronomy/iNANO, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C (Denmark); Department of Physical Electronics and Nanotechnology, Belarusian State University, prosp. Nezavisimosti, 4, 220030 Minsk (Belarus); Lundsgaard Hansen, J., E-mail: johnlh@phys.au.dk; Nylandsted Larsen, A., E-mail: anl@phys.au.dk [Department of Physics and Astronomy/iNANO, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C (Denmark)

    2014-04-14

    We report on self-assembling of spherically shaped voids in nanometer size strained Sn precipitates after irradiation with He{sup +} ions in different conditions. It is found that high-temperature irradiation induces vacancies which are collected by compressively strained Sn precipitates enhancing of out-diffusion of Sn atoms from the precipitates. Nano-voids formation takes place simultaneously with a ?- to ?-phase transformation in the Sn precipitates. Post-irradiation thermal treatment leads to the removal of voids and a backward transformation of the Sn phase to ?-phase. Strain-enhanced separation of point defects along with vacancy assisted Sn out-diffusion and precipitate dissolution are discussed.

  20. THE ROLE OF METHANOL IN THE CRYSTALLIZATION OF TITAN'S PRIMORDIAL OCEAN

    SciTech Connect (OSTI)

    Deschamps, Frederic; Mousis, Olivier; Lunine, Jonathan I.

    2010-12-01

    A key parameter that controls the crystallization of primordial oceans in large icy moons is the presence of anti-freeze compounds, which may have maintained primordial oceans over the age of the solar system. Here we investigate the influence of methanol, a possible anti-freeze candidate, on the crystallization of Titan's primordial ocean. Using a thermodynamic model of the solar nebula and assuming a plausible composition of its initial gas phase, we first calculate the condensation sequence of ices in Saturn's feeding zone, and show that in Titan's building blocks methanol can have a mass fraction of {approx}4 wt% relative to water, i.e., methanol can be up to four times more abundant than ammonia. We then combine available data on the phase diagram of the water-methanol system and scaling laws derived from thermal convection to estimate the influence of methanol on the dynamics of the outer ice I shell and on the heat transfer through this layer. For a fraction of methanol consistent with the building blocks composition we determined, the vigor of convection in the ice I shell is strongly reduced. The effect of 5 wt% methanol is equivalent to that of 3 wt% ammonia. Thus, if methanol is present in the primordial ocean of Titan, the crystallization may stop, and a sub-surface ocean may be maintained between the ice I and high-pressure ice layers. A preliminary estimate indicates that the presence of 4 wt% methanol and 1 wt% ammonia may result in an ocean of thickness at least 90 km.

  1. Structural and crystal chemical properties of rare-earth titanate pyrochlores

    SciTech Connect (OSTI)

    Farmer, James Matthew; Boatner, Lynn A; Chakoumakos, Bryan C; Du, Mao-Hua; Lance, Michael J; Rawn, Claudia J.; Bryan, Jeff C.

    2014-01-01

    Rare-earth titanates, RE2Ti2O7 (where RE = a rare-earth) with the pyrochlore structure continue to be investigated for use as potential stable host materials for nuclear and actinide-rich wastes. Accordingly, the present work is directed towards the elucidation of the fundamental structural, physical, and thermochemical properties of this class of compounds. Single-crystals of the rare earth pyrochlores were synthesized using a high-temperature flux technique and were subsequently characterized using single-crystal X-ray diffraction. The cubic lattice parameters display an approximately linear correlation with the RE-site cation radius. Theoretical calculations of the lattice constants and bond lengths of the subject materials were carried out using density functional theory, and the results are compared to the experimental values. The Sm and Eu titanates exhibit a covalency increase between the REO8 and TiO6 polyhedra resulting in a deviation from the increasing linear lattice parameter through the transition series. Gd2Ti2O7 with the 4f7 half-filled f-orbital Gd3+ sub-shell exhibits the lowest 48f oxygen positional parameter. The coefficient of thermal expansion for the rare-earth titanate series is approximately linear, and it has a range of 10.1 11.2 x 10-6 C-1. Raman spectroscopy indicated that the ~530 cm-1 peak associated with the Ti-O stretching mode follows a general trend of decreasing frequency with increasing RE reduced mass.

  2. CRITICAL REVIEW OF N, N{sup +}, N{sup +} {sub 2}, N{sup ++}, And N{sup ++} {sub 2} MAIN PRODUCTION PROCESSES AND REACTIONS OF RELEVANCE TO TITAN'S ATMOSPHERE

    SciTech Connect (OSTI)

    Dutuit, Odile; Thissen, Roland; Vuitton, Veronique; Canosa, Andre; Picard, Sebastien Le; Loison, Jean-Christophe; Ascenzi, Daniela; Tosi, Paolo; Franceschi, Pietro; Price, Stephen D.; Lavvas, Panayotis

    2013-02-15

    This paper is a detailed critical review of the production processes and reactions of N, N{sup +}, N{sup +} {sub 2}, N{sup ++}, and N{sup ++} {sub 2} of relevance to Titan's atmosphere. The review includes neutral, ion-molecule, and recombination reactions. The review covers all possible active nitrogen species under Titan's atmospheric conditions, specifically N{sub 2} (A {sup 3}{Sigma}{sup +} {sub u}), N ({sup 4} S), N ({sup 2} D), N ({sup 2} P), N{sup +} {sub 2}, N{sup +} ({sup 3} P), N{sup +} ({sup 1} D), N{sup ++} {sub 2}, and N{sup ++} species, and includes a critical survey of the reactions of N, N{sup +}, N{sup +} {sub 2}, N{sup ++}, and N{sup ++} {sub 2} with N{sub 2}, H{sub 2}, D{sub 2}, CH{sub 4}, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, C{sub 2}H{sub 6}, C{sub 3}H{sub 8} and the deuterated hydrocarbon analogs, as well as the recombination reactions of N{sup +} {sub 2}, N{sup +}, N{sup ++} {sub 2}, and N{sup ++}. Production processes, lifetimes, and quenching by collisions with N{sub 2} of all reactant species are reviewed. The N ({sup 4} S) state is reactive with radicals and its reactions with CH{sub 2}, CH{sub 3}, C{sub 2}H{sub 3}, and C{sub 2}H{sub 5} are reviewed. Metastable states N{sub 2} (A {sup 3}{Sigma}{sup +} {sub u}), N ({sup 2} D), and N ({sup 2} P) are either reactive or quenched by collisions with the target molecules reviewed. The reactions of N{sup +} ({sup 1} D) have similar rate constants as N{sup +} ({sup 3} P), but the product branching ratios differ significantly. Temperature effects and the role of the kinetic energy content of reactants are investigated. In all cases, experimental uncertainties of laboratory data are reported or estimated. Recommended values with uncertainties, or estimated values when no data are available, are given for rate constants and product branching ratios at 300 K and at the atmospheric temperature range of Titan (150-200 K for neutral reactions and 150 K for ion reactions).

  3. Comparative study of broadband electrodynamic properties of single-crystal and thin-film strontium titanate

    SciTech Connect (OSTI)

    Findikoglu, A. T.; Jia, Q. X.; Kwon, C.; Reagor, D. W.; Kaduchak, G.; Rasmussen, K. Oe.; Bishop, A. R.

    1999-12-27

    We have used a coplanar waveguide structure to study broadband electrodynamic properties of single-crystal and thin-film strontium titanate. We have incorporated both time- and frequency-domain measurements to determine small-signal effective refractive index and loss tangent as functions of frequency (up to 4 GHz), dc bias (up to 10{sup 6} V/m), and cryogenic temperature (17 and 60 K). The large-signal impulse response of the devices and the associated phenomenological nonlinear wave equation illustrate how dissipation and nonlinearity combine to produce the overall response in the large-signal regime. (c) 1999 American Institute of Physics.

  4. Fluidizable zinc titanate materials with high chemical reactivity and attrition resistance

    DOE Patents [OSTI]

    Gupta, R.P.; Gangwal, S.K.; Jain, S.C.

    1993-10-19

    Highly durable and chemically reactive zinc titanate materials are prepared in a particle size range of 50 to 400 [mu]m suitable for a fluidized-bed reactor for removing reduced sulfur species in a gaseous form by granulating a mixture of fine zinc oxide and titanium oxide with inorganic and organic binders and by optional additions of small amounts of activators such as CoO and MoO[sub 3]; and then indurating it at 800 to 900 C for a time sufficient to produce attrition-resistant granules.

  5. Effect of samarium doping on the dielectric behavior of barium zircomium titanate ceramic

    SciTech Connect (OSTI)

    Badapanda, T.; Sarangi, S.; Behera, B.; Anwar, S.; Sinha, T. P.

    2014-04-24

    Samarium doped Barium Zirconium Titanate ceramic with general formula Ba{sub 1?x}Sm{sub 2x/3}Zr{sub 0.05}Ti{sub 0.95}O{sub 3} [x=0.0,0.01,0.02,0.03,0.04] has been prepared by high energy ball milling. The X-ray diffraction (XRD) patterns confirmed that these ceramics have a single phase with perovskite-type upto x?0.03 and a small secondary phase exist at x=0.04. The temperature dependent dielectric study shows a ferroelectric phase transition and transition temperature decreases with an increase in the Samarium content.

  6. Fluidizable zinc titanate materials with high chemical reactivity and attrition resistance

    DOE Patents [OSTI]

    Gupta, Raghubir P.; Gangwal, Santosh K.; Jain, Suresh C.

    1993-01-01

    Highly durable and chemically reactive zinc titanate materials are prepared in a particle size range of 50 to 400 .mu.m suitable for a fluidized-bed reactor for removing reduced sulfur species in a gaseous form by granulating a mixture of fine zinc oxide and titanium oxide with inorganic and organic binders and by optional additions of small amounts of activators such as CoO and MoO.sub.3 ; and then indurating it at 800.degree. to 900.degree. C. for a time sufficient to produce attrition-resistant granules.

  7. ANALYSIS OF HARRELL MONOSODIUM TITANATE LOT #s 46000606120, 46000722120, AND 46000808120

    SciTech Connect (OSTI)

    Taylor-Pashow, K.

    2012-10-08

    Monosodium titanate (MST) for use in the Actinide Removal Process (ARP) must be qualified and verified in advance. A single qualification sample for each batch of material is sent to SRNL for analysis, as well as a statistical sampling of verification samples. The Harrell Industries Lot #s 46000706120, 46000722120, and 460008081120 qualification and verification samples met each of the selected specification requirements that were tested with the exception of a few pails being marginally below the lower weight percent solids limit. These deviations from the specifications are viewed as negligible since the corresponding density of the slurries indicates no appreciable shortage of MST solids. Therefore, SRNL recommends acceptance and use of these pails.

  8. Nitrogen-sensitized dual phase titanate/titania for visible-light driven phenol degradation

    SciTech Connect (OSTI)

    Cheng, Yu Hua; Subramaniam, Vishnu P.; Gong, Dangguo; Tang, Yuxin; Highfield, James; Pehkonen, Simo O.; Pichat, Pierre; Chen, Zhong

    2012-12-15

    A dual-phase material (DP-160) comprising hydrated titanate (H{sub 2}Ti{sub 3}O{sub 7}{center_dot}xH{sub 2}O) and anatase (TiO{sub 2}) was synthesized in a low-temperature one-pot process in the presence of triethylamine (TEA) as the N-source. The unique structure exhibits strong visible light absorption. The chromophore is linked to Ti-N bonds derived from both surface sensitization and sub-surface (bulk) doping. From transmission electron microscope (TEM) and textural studies by N{sub 2} physisorption, the composite exists as mesoporous particles with a grain size of {approx}20 nm and mean pore diameter of 3.5 nm, responsible for the high surface area ({approx}180 m{sup 2}/g). DP-160 demonstrated photocatalytic activity in the degradation of phenol under visible light ({lambda}>420 nm). The activity of the composite was further enhanced by a small addition (0.001 M) of H{sub 2}O{sub 2}, which also gave rise to some visible light activity in the control samples. This effect is believed to be associated with the surface peroxo-titanate complex. GC-MS analyses showed that the intermediate products of phenol degradation induced by visible light irradiation of DP-160 did not differ from those obtained by UV (band-gap) irradiation of TiO{sub 2}. The overall performance of the composite is attributed to efficient excitation via inter-band states (due to N-doping), surface sensitization, improved adsorptive properties of aromatic compounds due to the N-carbonaceous overlayer, and the presence of heterojunctions that are known to promote directional charge transfer in other mixed-phase titanias like Degussa P25. - graphical abstract: Nitrogen-sensitized dual phase titanate/titania photocatalyst showing extended visible light absorption and efficient photocatalytic degradation of phenol. Highlights: Black-Right-Pointing-Pointer Low temperature one-pot synthesis of visible light active dual phase photocatalyst. Black-Right-Pointing-Pointer The dual phase consists of

  9. Maskless, resistless ion beam lithography

    SciTech Connect (OSTI)

    Ji, Qing

    2003-03-10

    As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements, such as O{sub 2}{sup +}, BF{sub 2}{sup +}, P{sup +} etc., for surface modification and doping applications. With optimized source condition, around 85% of BF{sub 2}{sup +}, over 90% of O{sub 2}{sup +} and P{sup +} have been achieved. The brightness of the multicusp-plasma ion source is a key issue for its application to maskless ion beam lithography. It can be substantially improved by optimizing the source configuration and extractor geometry. Measured brightness of 2 keV He{sup +} beam is as high as 440 A/cm{sup 2} {center_dot} Sr, which represents a 30x improvement over prior work. Direct patterning of Si thin film using a focused O{sub 2}{sup +} ion beam has been investigated. A thin surface oxide film can be selectively formed using 3 keV O{sub 2}{sup +} ions with the dose of 10{sup 15} cm{sup -2}. The oxide can then serve as a hard mask for patterning of the Si film. The process flow and the experimental results for directly patterned poly-Si features

  10. ION PUMP

    DOE Patents [OSTI]

    Milleron, N.

    1961-01-01

    An ion pump and pumping method are given for low vacuum pressures in which gases introduced into a pumping cavity are ionized and thereafter directed and accelerated into a quantity of liquid gettering metal where they are absorbed. In the preferred embodiment the metal is disposed as a liquid pool upon one electrode of a Phillips ion gauge type pump. Means are provided for continuously and remotely withdrawing and degassing the gettering metal. The liquid gettering metal may be heated if desired, although various combinations of gallium, indium, tin, bismuth, and lead, the preferred metals, have very low melting points. A background pressure of evaporated gettering metal may be provided by means of a resistance heated refractory metal wick protruding from the surface of the pcol of gettering metal.

  11. Asphaltenes-based polymer nano-composites

    DOE Patents [OSTI]

    Bowen, III, Daniel E

    2013-12-17

    Inventive composite materials are provided. The composite is preferably a nano-composite, and comprises an asphaltene, or a mixture of asphaltenes, blended with a polymer. The polymer can be any polymer in need of altered properties, including those selected from the group consisting of epoxies, acrylics, urethanes, silicones, cyanoacrylates, vulcanized rubber, phenol-formaldehyde, melamine-formaldehyde, urea-formaldehyde, imides, esters, cyanate esters, allyl resins.

  12. Bioforensics: Characterization of biological weapons agents by NanoSIMS

    SciTech Connect (OSTI)

    Weber, P K; Ghosal, S; Leighton, T J; Wheeler, K E; Hutcheon, I D

    2007-02-26

    The anthrax attacks of Fall 2001 highlight the need to develop forensic methods based on multiple identifiers to determine the origin of biological weapons agents. Genetic typing methods (i.e., DNA and RNA-based) provide one attribution technology, but genetic information alone is not usually sufficient to determine the provenance of the material. Non-genetic identifiers, including elemental and isotopic signatures, provide complementary information that can be used to identify the means, geographic location and date of production. Under LDRD funding, we have successfully developed the techniques necessary to perform bioforensic characterization with the NanoSIMS at the individual spore level. We have developed methods for elemental and isotopic characterization at the single spore scale. We have developed methods for analyzing spore sections to map elemental abundance within spores. We have developed rapid focused ion beam (FIB) sectioning techniques for spores to preserve elemental and structural integrity. And we have developed a high-resolution depth profiling method to characterize the elemental distribution in individual spores without sectioning. We used these newly developed methods to study the controls on elemental abundances in spores, characterize the elemental distribution of in spores, and to study elemental uptake by spores. Our work under this LDRD project attracted FBI and DHS funding for applied purposes.

  13. A TRANSMISSION SPECTRUM OF TITAN'S NORTH POLAR ATMOSPHERE FROM A SPECULAR REFLECTION OF THE SUN

    SciTech Connect (OSTI)

    Barnes, Jason W.; Clark, Roger N.; Sotin, Christophe; Buratti, Bonnie J.; dmkovics, Mt; Appr, Thomas; Rodriguez, Sebastien; Brown, Robert H.; Baines, Kevin H.; Le Moulic, Stphane; Nicholson, Philip D.

    2013-11-10

    Cassini/VIMS T85 observations of a solar specular reflection off of Kivu Lacus (87.4N 241.1E) provide an empirical transmission spectrum of Titan's atmosphere. Because this observation was acquired from short range (33,000 km), its intensity makes it visible within the 2.0, 2.7, and 2.8 ?m atmospheric windows in addition to the 5 ?m window where all previous specular reflections have been seen. The resulting measurement of the total one-way normal atmospheric optical depth (corresponding to haze scattering plus haze and gas absorption) provides strong empirical constraints on radiative transfer models. Using those models, we find that the total haze column abundance in our observation is 20% higher than the Huygens equatorial value. Ours is the first measurement in the 2-5 ?m wavelength range that probes all the way to the surface in Titan's arctic, where the vast majority of surface liquids are located. The specular technique complements other probes of atmospheric properties such as solar occultations and the direct measurements from Huygens. In breaking the degeneracy between surface and atmospheric absorptions, our measured optical depths will help to drive future calculations of deconvolved surface albedo spectra.

  14. Visible light carrier generation in co-doped epitaxial titanate films

    SciTech Connect (OSTI)

    Comes, Ryan B.; Smolin, Sergey Y.; Kaspar, Tiffany C.; Gao, Ran; Apgar, Brent A.; Martin, Lane W.; Bowden, Mark E.; Baxter, Jason; Chambers, Scott A.

    2015-03-02

    Perovskite titanates such as SrTiO3 (STO) exhibit a wide range of important functional properties, including high electron mobility, ferroelectricitywhich may be valuable in photovoltaic applicationsand excellent photocatalytic performance. The wide optical band gap of titanates limits their use in these applications, however, making them ill-suited for integration into solar energy harvesting technologies. Our recent work has shown that by doping STO with equal concentrations of La and Cr we can enhance visible light absorption in epitaxial thin films while avoiding any compensating defects. In this work, we explore the optical properties of photoexcited carriers in these films. Using spectroscopic ellipsometry, we show that the Cr3+ dopants, which produce electronic states immediately above the top of the O 2p valence band in STO reduce the direct band gap of the material from 3.75 eV to between 2.4 and 2.7 eV depending on doping levels. Transient reflectance measurements confirm that optically generated carriers have a recombination lifetime comparable to that of STO and are in agreement with the observations from ellipsometry. Finally, through photoelectrochemical yield measurements, we show that these co-doped films exhibit enhanced visible light photocatalysis when compared to pure STO.

  15. Visible light carrier generation in co-doped epitaxial titanate films

    SciTech Connect (OSTI)

    Comes, Ryan B. Kaspar, Tiffany C.; Chambers, Scott A.; Smolin, Sergey Y.; Baxter, Jason B.; Gao, Ran; Apgar, Brent A.; Martin, Lane W.; Bowden, Mark E.

    2015-03-02

    Perovskite titanates such as SrTiO{sub 3} (STO) exhibit a wide range of important functional properties, including ferroelectricity and excellent photocatalytic performance. The wide optical band gap of titanates limits their use in these applications; however, making them ill-suited for integration into solar energy harvesting technologies. Our recent work has shown that by doping STO with equal concentrations of La and Cr, we can enhance visible light absorption in epitaxial thin films while avoiding any compensating defects. In this work, we explore the optical properties of photoexcited carriers in these films. Using spectroscopic ellipsometry, we show that the Cr{sup 3+} dopants, which produce electronic states immediately above the top of the O 2p valence band in STO reduce the direct band gap of the material from 3.75?eV to 2.42.7?eV depending on doping levels. Transient reflectance spectroscopy measurements are in agreement with the observations from ellipsometry and confirm that optically generated carriers are present for longer than 2?ns. Finally, through photoelectrochemical methylene blue degradation measurements, we show that these co-doped films exhibit enhanced visible light photocatalysis when compared to pure STO.

  16. PHOTODISSOCIATION OF THE DIACETYLENE DIMER AND IMPLICATIONS FOR HYDROCARBON GROWTH IN TITAN'S ATMOSPHERE

    SciTech Connect (OSTI)

    Huang Cunshun; Silva, Ruchira; Gichuhi, Wilson K.; Suits, Arthur G.; Zhang Fangtong; Kaiser, Ralf I.; Kislov, Vadim V.; Mebel, Alexander M.

    2010-05-10

    The surface of Titan is obscured by multiple aerosol layers whose composition and formation mechanism have remained poorly understood. These organic haze layers are believed to arise from photolysis and electron impact triggered chemistry in the dense nitrogen (N{sub 2}) and methane (CH{sub 4}) atmosphere involving highly unsaturated hydrocarbon molecules such as acetylene (HCCH), diacetylene (HCCCCH), and triacetylene (HCCCCCCH). Here we show via laboratory studies combined with electronic structure calculations that the photodissociation of the diacetylene dimer ((HCCCCH){sub 2}) readily initiates atomic hydrogen loss and atomic hydrogen transfer reactions forming two prototypes of resonantly stabilized free radicals, C{sub 4}H{sub 3} and C{sub 8}H{sub 3}, respectively. These structures represent hydrogenated polyynes which can neither be synthesized via traditional photodissociation pathways of the monomer nor via hydrogen addition to the polyynes. The photodissociation dynamics of mixed dimers involving acetylene, diacetylene, and even triacetylene present a novel, hitherto overlooked reaction class and show the potential to synthesize more complex, resonantly stabilized free radicals considered to be major building blocks to polycyclic aromatic hydrocarbons in Titan's low-temperature atmosphere.

  17. Electrochemical method of producing nano-scaled graphene platelets

    SciTech Connect (OSTI)

    Zhamu, Aruna; Jang, Joan; Jang, Bor Z.

    2013-09-03

    A method of producing nano-scaled graphene platelets with an average thickness smaller than 30 nm from a layered graphite material. The method comprises (a) forming a carboxylic acid-intercalated graphite compound by an electrochemical reaction; (b) exposing the intercalated graphite compound to a thermal shock to produce exfoliated graphite; and (c) subjecting the exfoliated graphite to a mechanical shearing treatment to produce the nano-scaled graphene platelets. Preferred carboxylic acids are formic acid and acetic acid. The exfoliation step in the instant invention does not involve the evolution of undesirable species, such as NO.sub.x and SO.sub.x, which are common by-products of exfoliating conventional sulfuric or nitric acid-intercalated graphite compounds. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  18. Highly charged ion secondary ion mass spectroscopy

    DOE Patents [OSTI]

    Hamza, Alex V.; Schenkel, Thomas; Barnes, Alan V.; Schneider, Dieter H.

    2001-01-01

    A secondary ion mass spectrometer using slow, highly charged ions produced in an electron beam ion trap permits ultra-sensitive surface analysis and high spatial resolution simultaneously. The spectrometer comprises an ion source producing a primary ion beam of highly charged ions that are directed at a target surface, a mass analyzer, and a microchannel plate detector of secondary ions that are sputtered from the target surface after interaction with the primary beam. The unusually high secondary ion yield permits the use of coincidence counting, in which the secondary ion stops are detected in coincidence with a particular secondary ion. The association of specific molecular species can be correlated. The unique multiple secondary nature of the highly charged ion interaction enables this new analytical technique.

  19. Los Alamos shares Nano 50 award for directed assembly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nano 50 award for directed assembly Los Alamos shares Nano 50 award for directed assembly Nano 50 Awards recognize "the top 50 technologies, products, and innovators that have significantly impacted, or will impact, the development of nanotechnology." September 3, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

  20. Thickness-dependent structural arrangement in nano-confined imidazolium-based ionic liquid films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rouha, Michael; Cummings, Peter T.

    2014-12-24

    Here we report that a fundamental understanding of interfacial processes in nano-confined ionic liquids is crucial to increase the performance of modern energy storage devices. It is well-known that interfaces between electrodes and ionic liquids exhibit structures distinct from that of the bulk liquid. Following the recent interest in these systems, we studied the structure of thin ionic liquid films confined in flexible uncharged carbon nano-pores by using fully-atomistic molecular dynamics simulations. We show that the interfacial ions self-assemble into a closely-packed chequerboard-like pattern, formed by both cations and anions in direct contact with the pore wall, and that withinmore » this structure we find changes dependent on the thickness of the confined films. At low coverages a dense layer is formed in which both the imidazolium-ring and its alkyl-tail lie parallel to the pore wall. With increasing coverage the alkyl-chains reorient perpendicular to the surface, making space for additional ions until a densified highly ordered layer is formed. This wall-induced self-patterning into interfacial layers with significantly higher than bulk density is consistent with recent experimental and theoretical studies of similar systems. Lastly, this work reveals additional molecular-level details on the effect of the film-thickness on the structure and density of the ionic liquid.« less

  1. Method for making fine and ultrafine spherical particles of zirconium titanate and other mixed metal oxide systems

    DOE Patents [OSTI]

    Hu, Michael Z.

    2006-05-23

    Disclosed is a method for making amorphous spherical particles of zirconium titanate and crystalline spherical particles of zirconium titanate comprising the steps of mixing an aqueous solution of zirconium salt and an aqueous solution of titanium salt into a mixed solution having equal moles of zirconium and titanium and having a total salt concentration in the range from 0.01 M to about 0.5 M. A stearic dispersant and an organic solvent is added to the mixed salt solution, subjecting the zirconium salt and the titanium salt in the mixed solution to a coprecipitation reaction forming a solution containing amorphous spherical particles of zirconium titanate wherein the volume ratio of the organic solvent to aqueous part is in the range from 1 to 5. The solution of amorphous spherical particles is incubated in an oven at a temperature .ltoreq.100.degree. C. for a period of time .ltoreq.24 hours converting the amorphous particles to fine or ultrafine crystalline spherical particles of zirconium titanate.

  2. A micro-structured ion-implanted magnonic crystal

    SciTech Connect (OSTI)

    Obry, Bjoern; Pirro, Philipp; Chumak, Andrii V.; Ciubotaru, Florin; Serga, Alexander A.; Hillebrands, Burkard; Braecher, Thomas; Graduate School Materials Science in Mainz, D-67663 Kaiserslautern ; Osten, Julia; Fassbender, Juergen

    2013-05-20

    We investigate spin-wave propagation in a microstructured magnonic-crystal waveguide fabricated by localized ion implantation. The irradiation caused a periodic variation in the saturation magnetization along the waveguide. As a consequence, the spin-wave transmission spectrum exhibits a set of frequency bands, where spin-wave propagation is suppressed. A weak modification of the saturation magnetization by 7% is sufficient to decrease the spin-wave transmission in the band gaps by a factor of 10. These results evidence the applicability of localized ion implantation for the fabrication of efficient micron- and nano-sized magnonic crystals for magnon spintronic applications.

  3. Nano-sized structured layered positive electrode materials to...

    Office of Scientific and Technical Information (OSTI)

    positive electrode materials to enable high energy density and high rate capability lithium batteries Title: Nano-sized structured layered positive electrode materials to ...

  4. Nano Design Works: Industry's contact for emerging tech, leading...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Works: Industry's contact for emerging tech, leading tools, and experts Argonne's Nano Design Works gives companies and entrepreneurs the solutions that enable technological ...

  5. 2011 Final Report - Nano-Oxide Photocatalysis for Solar Energy...

    Office of Scientific and Technical Information (OSTI)

    Photocatalysis for Solar Energy Conversion Citation Details In-Document Search Title: 2011 Final Report - Nano-Oxide Photocatalysis for Solar Energy Conversion You are ...

  6. Nano-based PCMs for building energy efficiency

    SciTech Connect (OSTI)

    Biswas, Kaushik

    2016-01-01

    Thermal storage using phase change materials (PCMs) is seen as a viable method for improving the energy efficiency of buildings. PCMs have been used in building applications in various forms PCM slurries in heat exchangers, macro- or microencapsulated PCMs in building envelopes, bulk PCM for modulating photovoltaic temperatures, etc. In the last decade a new class of PCMs, called nano-enhanced PCM (or nanoPCM), has been extensively investigated with the goal of improving the heat transfer and thermal storage properties of PCMs. NanoPCMs can primarily be categorized as nano-encapsulated PCMs and nanoparticle-PCM composites. The former are nano-sized capsules in which the PCM forms the core and is surrounded by a high-conductivity membrane or shell. The latter consist of PCM supported within nanostructures or nanoparticles dispersed in PCMs. This article reviews the current state of nanoPCM synthesis and characterization of their heat transfer and thermal storage properties. Further, a critical review of nanoPCM applications and their potential energy benefits is performed. Nano-enhanced PCMs exhibit higher thermal conductivities than regular PCM. However, whether the higher conductivity is desirable in all applications and if the property enhancements are worth the cost and effort needed to create nanoPCMs are questions that still need to be answered.

  7. BioCentric Energy Inc formerly Nano Chemical Systems Holdings...

    Open Energy Info (EERE)

    search Name: BioCentric Energy Inc (formerly Nano Chemical Systems Holdings) Place: Santa Ana, California Zip: 90707 Product: California-based development-stage company that...

  8. Nano, photonic research gets boost from new 3-D visualization...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of nanotechnology, particularly nanofilms, photonics and micro- and nano-electronics. ... Total External Reflection", published online this month in the journal Nature Photonics. ...

  9. Tools for the Microbiome: Nano and Beyond (Journal Article) ...

    Office of Scientific and Technical Information (OSTI)

    Title: Tools for the Microbiome: Nano and Beyond Authors: Biteen, Julie S. ; Blainey, Paul C. ; Cardon, Zoe G. ; Chun, Miyoung ; Church, George M. ; Dorrestein, Pieter C. ;...

  10. Sustainable Nano-Materials: What is happening at the cellular...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nano-Materials What is happening at the cellular level? Art J. Ragauskas, Institute of Paper Science and Technology Georgia Institute of Technology Advanced Materials: Cellular ...

  11. Nano Structure Control and Selectivity of Hydrogen Release from...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nano Structure Control and Selectivity of Hydrogen Release from Hydrogen Storage Pacific Northwest National Laboratory Contact PNNL About This Technology Illustration depicting...

  12. NanoBright Technologies Pte Ltd | Open Energy Information

    Open Energy Info (EERE)

    develops luminescent materials, including substances used to improve the efficiency of solar cells. References: NanoBright Technologies Pte Ltd1 This article is a stub. You...

  13. Nano-focused Bremstrahlung Isochromat Spectroscopy (nBIS) Determinatio...

    Office of Scientific and Technical Information (OSTI)

    Spectroscopy (nBIS) Determination of the Unoccupied Electronic Structure of Pu Citation Details In-Document Search Title: Nano-focused Bremstrahlung Isochromat Spectroscopy ...

  14. OSTIblog Articles in the nano Topic | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    nano Topic Nano research in DOE collections by Kathy Chambers 24 Jul, 2012 in Science Communications 4311 Javey-baseball-300x266.jpg Nano research in DOE collections Read more ...

  15. Ion Stancu

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Search for Neutrino Oscillations with MiniBooNE Ion Stancu University of Alabama Frontiers in Neutrino Physics APC, Paris, October 6th, 2011 06.10.2011
FNP
 2
 Ion
Stancu
-
University
of
Alabama
 Introduction Review of the MiniBooNE oscillation results: * Motivation for MiniBooNE: testing the LSND signal * MiniBooNE design strategy and assumptions * Neutrino oscillation results: PRL 98, 231801 (2007) & PRL 102, 101802 (2009) * Antineutrino oscillation results: PRL 103,

  16. Improved ion source

    DOE Patents [OSTI]

    Leung, K.N.; Ehlers, K.W.

    1982-05-04

    A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species,

  17. ION GUN

    DOE Patents [OSTI]

    Dandl, R.A.

    1961-10-24

    An ion gun is described for the production of an electrically neutral ionized plasma. The ion gun comprises an anode and a cathode mounted in concentric relationship with a narrow annulus between. The facing surfaces of the rear portions of the anode and cathode are recessed to form an annular manifold. Positioned within this manifold is an annular intermediate electrode aligned with the an nulus between the anode and cathode. Gas is fed to the manifold and an arc discharge is established between the anode and cathode. The gas is then withdrawn from the manifold through the annulus between the anode and cathode by a pressure differential. The gas is then ionized by the arc discharge across the annulus. The ionized gas is withdrawn from the annulus by the combined effects of the pressure differential and a collimating magnetic field. In a 3000 gauss magnetic field, an arc voltage of 1800 volts, and an arc current of 0.2 amp, a plasma of about 3 x 10/sup 11/ particles/cc is obtained. (AEC)

  18. "Plastic" Solar Cells: Self-Assembly of Bulk HeterojunctionNano...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Self-Assembly of Bulk Heterojunction Nano-Materials by Spontaneous Phase Separation ... self-assembly of bulk heterojunction (BHJ) nano-materials by spontaneous phase separation. ...

  19. Nano-structures Thermoelectric Materals - Part 1 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Nano-structures Thermoelectric Materals - Part 1 2002 DEER Conference Presentation: RTI International 2002_deer_venkatasubramanian1.pdf (1.13 MB) More Documents & Publications Nano-structures Thermoelectric Materals - Part 2 Recent Device Developments with Advanced Bulk Thermoelectric Materials at RTI Thermoelectric Developments for Vehicular Applications

  20. Nano-structures Thermoelectric Materals - Part 2 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Nano-structures Thermoelectric Materals - Part 2 2002 DEER Conference Presentation: RTI International 2002_deer_venkatasubramanian2.pdf (3.14 MB) More Documents & Publications Nano-structures Thermoelectric Materals - Part 1 Recent Device Developments with Advanced Bulk Thermoelectric Materials at RTI The 60% Efficient Diesel Engine: Probably, Possible, Or Just a Fantasy?

  1. Preserving Diesel Exhaust Ultrafine (Nano-) Particulate Structure in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Genotoxicity Studies to Support Engineering Development of Emission Controls | Department of Energy Preserving Diesel Exhaust Ultrafine (Nano-) Particulate Structure in Genotoxicity Studies to Support Engineering Development of Emission Controls Preserving Diesel Exhaust Ultrafine (Nano-) Particulate Structure in Genotoxicity Studies to Support Engineering Development of Emission Controls Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER

  2. Ion mobility sensor

    DOE Patents [OSTI]

    Koo, Jackson C.; Yu, Conrad M.

    2005-08-23

    An ion mobility sensor which can detect both ion and molecules simultaneously. Thus, one can measure the relative arrival times between various ions and molecules. Different ions have different mobility in air, and the ion sensor enables measurement of ion mobility, from which one can identify the various ions and molecules. The ion mobility sensor which utilizes a pair of glow discharge devices may be designed for coupling with an existing gas chromatograph, where various gas molecules are already separated, but numbers of each kind of molecules are relatively small, and in such cases a conventional ion mobility sensor cannot be utilized.

  3. Ion Monitoring

    DOE Patents [OSTI]

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2003-11-18

    The apparatus and method provide a technique for significantly reducing capacitance effects in detector electrodes arising due to movement of the instrument relative to the item/location being monitored in ion detection based techniques. The capacitance variations are rendered less significant by placing an electrically conducting element between the detector electrodes and the monitored location/item. Improved sensitivity and reduced noise signals arise as a result. The technique also provides apparatus and method suitable for monitoring elongate items which are unsuited to complete enclosure in one go within a chamber. The items are monitored part by part as the pass through the instrument, so increasing the range of items or locations which can be successfully monitored.

  4. ION SOURCE

    DOE Patents [OSTI]

    Brobeck, W.M.

    1959-04-14

    This patent deals with calutrons and more particularly to an arrangement therein whereby charged bottles in a calutron source unit may be replaced without admitting atmospheric air to the calutron vacuum chamber. As described, an ion unit is disposed within a vacuum tank and has a reservoir open toward a wall of the tank. A spike projects from thc source into the reservoir. When a charge bottle is placed in the reservoir, the spike breaks a frangible seal on the bottle. After the contents of the bottle are expended the bottle may be withdrawn and replaced with another charge bottle by a varuum lock arrangement in conjunction with an arm for manipulating the bottle.

  5. Microstructural, dielectric and magnetic properties of multiferroic composite system barium strontium titanate nickel cobalt ferrite

    SciTech Connect (OSTI)

    Pahuja, Poonam Tandon, R. P.

    2015-05-15

    Multiferroic composites (1-x) Ba{sub 0.95}Sr{sub 0.05}TiO{sub 3} + (x) Ni{sub 0.8}Co{sub 0.2}Fe{sub 2}O{sub 4} (where x = 0.1, 0.2, 0.3, 0.4) has been prepared by solid state reaction method. X-ray diffraction analysis of the composite samples confirmed the presence of both barium strontium titanate (BST) and nickel cobalt ferrite (NCF) phases. FESEM images indicated the well dispersion of NCF grains among BST grains. Dielectric constant and loss of the composite samples decreases with increase in frequency following Maxwell-Wagner relaxation mechanism. Composite sample with highest ferrite content possesses highest values of remanent and saturation magnetization.

  6. Accurate spectroscopic characterization of protonated oxirane: a potential prebiotic species in Titan's atmosphere

    SciTech Connect (OSTI)

    Puzzarini, Cristina; Ali, Ashraf; Biczysko, Malgorzata; Barone, Vincenzo

    2014-09-10

    An accurate spectroscopic characterization of protonated oxirane has been carried out by means of state-of-the-art computational methods and approaches. The calculated spectroscopic parameters from our recent computational investigation of oxirane together with the corresponding experimental data available were used to assess the accuracy of our predicted rotational and IR spectra of protonated oxirane. We found an accuracy of about 10 cm{sup –1} for vibrational transitions (fundamentals as well as overtones and combination bands) and, in relative terms, of 0.1% for rotational transitions. We are therefore confident that the spectroscopic data provided herein are a valuable support for the detection of protonated oxirane not only in Titan's atmosphere but also in the interstellar medium.

  7. Elaboration and characterization of doped barium titanate films for gas sensing

    SciTech Connect (OSTI)

    Romh, M. A. El Fasquelle, D. Mascot, M.; Dputier, S.

    2014-11-05

    Barium titanate (BaTiO{sub 3}) thick films were prepared from commercial powder to develop and optimize the film elaboration. Then, BaTiO{sub 3} was doped by strontium and iron to increase the conductivity by a double substitution on site A and B of the perovskite structure in view to develop semiconductor gas sensors. Film inks were prepared by mixing BT and BSTF powder with an organic vehicle, using a ratio of 50:50; 60:40, respectively and deposited on alumina substrates. The BT and BSTF films were sintered at 1100C for 2h. The structural and physical properties of the films have been studied by using X-ray diffraction (XRD) and scanning electron microscope (SEM). The dielectric measurements showed a huge increase in the a.c. conductivity for the BSTF films, by a factor of 10000 at low frequency, when the temperature ranges from 25C to 500C.

  8. Nano-superconducting quantum interference devices with suspended junctions

    SciTech Connect (OSTI)

    Hazra, D.; Hasselbach, K.; Kirtley, J. R.

    2014-04-14

    Nano-Superconducting Quantum Interference Devices (nano-SQUIDs) are usually fabricated from a single layer of either Nb or Al. We describe here a simple method for fabricating suspended nano-bridges in Nb/Al thin-film bilayers. We use these suspended bridges, which act as Josephson weak links, to fabricate nano-SQUIDs which show critical current oscillations at temperatures up to 1.5?K and magnetic flux densities up to over 20?mT. These nano-SQUIDs exhibit flux modulation depths intermediate between all-Al and all-Nb devices, with some of the desirable characteristics of both. The suspended geometry is attractive for magnetic single nanoparticle measurements.

  9. Blocking effect of crystalglass interface in lanthanum doped barium strontium titanate glassceramics

    SciTech Connect (OSTI)

    Wang, Xiangrong; Zhang, Yong; Baturin, Ivan; Liang, Tongxiang

    2013-10-15

    Graphical abstract: The blocking effect of the crystalglass interface on the carrier transport behavior in the lanthanum doped barium strontium titanate glassceramics: preparation and characterization. - Highlights: La{sub 2}O{sub 3} addition promotes the crystallization of the major crystalline phase. The Z? and M? peaks exist a significant mismatch for 0.5 mol% La{sub 2}O{sub 3} addition. The Z? and M? peaks separate obviously for 1.0 mol% La{sub 2}O{sub 3} addition. Crystallite impedance decreases while crystalglass interface impedance increases. La{sub 2}O{sub 3} addition increases blocking factor of the crystalglass interface. - Abstract: The microstructures and dielectric properties in La{sub 2}O{sub 3}-doped barium strontium titanate glassceramics have been investigated by scanning electron microscopy (SEM) and impedance spectroscopy. SEM analysis indicated that La{sub 2}O{sub 3} additive decreases the average crystallite size. Impedance spectroscopy revealed that the positions of Z? and M? peaks are close for undoped samples. When La{sub 2}O{sub 3} concentration is 0.5 mol%, the Z? and M? peaks show a significant mismatch. Furthermore, these peaks separate obviously for 1.0 mol% La{sub 2}O{sub 3} addition. With increasing La{sub 2}O{sub 3} concentration, the contribution of the crystallite impedance becomes smaller, while the contribution of the crystalglass interface impedance becomes larger. More interestingly, it was found that La{sub 2}O{sub 3} additive increases blocking factor of the crystalglass interface in the temperature range of 250450 C. This may be attributed to a decrease of activation energy of the crystallite and an increase of the crystalglass interface area.

  10. Ion funnel ion trap and process

    DOE Patents [OSTI]

    Belov, Mikhail E [Richland, WA; Ibrahim, Yehia M [Richland, WA; Clowers, Biran H [West Richland, WA; Prior, David C [Hermiston, OR; Smith, Richard D [Richland, WA

    2011-02-15

    An ion funnel trap is described that includes a inlet portion, a trapping portion, and a outlet portion that couples, in normal operation, with an ion funnel. The ion trap operates efficiently at a pressure of .about.1 Torr and provides for: 1) removal of low mass-to-charge (m/z) ion species, 2) ion accumulation efficiency of up to 80%, 3) charge capacity of .about.10,000,000 elementary charges, 4) ion ejection time of 40 to 200 .mu.s, and 5) optimized variable ion accumulation times. Ion accumulation with low concentration peptide mixtures has shown an increase in analyte signal-to-noise ratios (SNR) of a factor of 30, and a greater than 10-fold improvement in SNR for multiply charged analytes.