National Library of Energy BETA

Sample records for ion fairview jasper

  1. Fairview Shores, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,PowerEvaporative||New Jersey:PublicLanes, Ohio:Fairview

  2. Joint Actinide Shock Physics Experimental Research - JASPER

    SciTech Connect (OSTI)

    2014-10-31

    Commonly known as JASPER the Joint Actinide Shock Physics Experimental Research facility is a two stage light gas gun used to study the behavior of plutonium and other materials under high pressures, temperatures, and strain rates.

  3. Joint Actinide Shock Physics Experimental Research - JASPER

    ScienceCinema (OSTI)

    None

    2015-01-09

    Commonly known as JASPER the Joint Actinide Shock Physics Experimental Research facility is a two stage light gas gun used to study the behavior of plutonium and other materials under high pressures, temperatures, and strain rates.

  4. LLNL Conducts First Plutonium Shot Using the JASPER Gas Gun ...

    National Nuclear Security Administration (NNSA)

    Conducts First Plutonium Shot Using the JASPER Gas Gun | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile...

  5. A Community Responds to Collective Trauma: An Ecological Analysis of the James Byrd Murder in Jasper, Texas

    E-Print Network [OSTI]

    Wicke, Thomas; Silver, Roxane Cohen

    2009-01-01

    and disasters. College Station, Texas: Hazard Reduction andData.com. (2004). Jasper, Texas. Retrieved March 20, 2004Byrd Murder in Jasper, Texas Thomas Wicke • Roxane Cohen

  6. Eighty years of change: vegetation in the montane ecoregion of Jasper National Park, Alberta,

    E-Print Network [OSTI]

    Macdonald, Ellen

    Eighty years of change: vegetation in the montane ecoregion of Jasper National Park, Alberta and dis- tribution in the montane ecoregion of Jasper National Park, in the Rocky Mountains of Alberta parc natio- nal de Jasper, situé dans les Montagnes Rocheuses en Alberta, au Canada. Une approche

  7. Jasper County Rural E M C | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:onItron (California) Jump to:Jaffrey, NewJamesJapan:Jasper

  8. City of Jasper, Indiana (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla,ThermalCuba City, WisconsinHartford,Jasper, Indiana (Utility

  9. An Archaeological Survey of the Proposed A-15 Pipeline in Central Jasper County, Texas 

    E-Print Network [OSTI]

    Moore, William

    2015-06-23

    An archaeological investigation of a 2908 foot pipeline (2.003 acres) in central Jasper County, Texas was performed by Brazos Valley Research Associates (BVRA) of Bryan, Texas in June of 2001. No archaeological sites were found to exist within...

  10. An Archaeological Survey of the Proposed Vastar A-109 Pipeline Western Jasper County, Texas 

    E-Print Network [OSTI]

    Moore, William

    2015-06-25

    An archaeological investigation of a 5333 foot pipeline (3.67 acres) in western Jasper County, Texas was performed by Brazos Valley Research Associates (BVRA) of Bryan, Texas in October 2001. No archaeological sites were found to exist within...

  11. A Community Responds to Collective Trauma: An Ecological Analysis of the James Byrd Murder in Jasper, Texas

    E-Print Network [OSTI]

    Wicke, Thomas; Silver, Roxane Cohen

    2009-01-01

    affect plea bargaining in murder cases? Evidence from NewAnalysis of the James Byrd Murder in Jasper, Texas ThomasAbstract The brutal murder of James Byrd Jr. in June 1998

  12. An Archaeological Survey of the Proposed ARCO Blackstone Mineral A-977 #1 Gas Pipeline in Jasper County, Texas 

    E-Print Network [OSTI]

    Moore, William

    2015-06-24

    An archaeological investigation of an 1884 foot pipeline (1.3 acres) in western Jasper County, Texas was performed by Brazos Valley Research Associates (BVRA) of Bryan, Texas in July 2001. No archaeological sites were found to exist within...

  13. A Phase I Cultural Resources Survey of the Proposed City of Kirbyville 2001 TCDP Water Project, Jasper County, Texas 

    E-Print Network [OSTI]

    Moore, William

    2015-06-30

    A Phase I cultural resources investigation of a 9.8 acre tract in central Jasper County, Texas was performed by Brazos Valley Research Associates of Bryan, Texas in June 2002. No prehistoric archaeological sites were found to exist within...

  14. An Archaeological Survey for the Riverbend Midstream Partners, LP Neches River Crossing Project in Jasper and Tyler Counties Texas 

    E-Print Network [OSTI]

    Moore, William

    2015-07-30

    RiverBend Midstream Partners, LP (client) proposes to install a natural gas pipeline that will pass beneath the Neches River in western Jasper and eastern Tyler counties, Texas. Brazos Valley Research Associates (BVRA) and Dixie Environmental...

  15. Energy-delay Tradeoff in Wireless Network Jasper Goseling, Richard J. Boucherie, and Jan-Kees van

    E-Print Network [OSTI]

    Boucherie, Richard J.

    Energy-delay Tradeoff in Wireless Network Coding Jasper Goseling, Richard J. Boucherie, and Jan for the minimum energy consumption and the minimum delay attainable in a network. 1 Introduction Current wireless, Enschede, The Netherlands May 23, 2011 Abstract A queueing model for wireless communication network

  16. Fairview, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,PowerEvaporative||New Jersey:PublicLanes,York:

  17. Fairview, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop,ErosionNewCoal Jump to:SheetWind Jump

  18. Fairview, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop,ErosionNewCoal Jump to:SheetWind JumpTexas: Energy

  19. Ion source

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA); Ehlers, Kenneth W. (Alamo, CA)

    1984-01-01

    A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species.

  20. Fairview Lanes, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,PowerEvaporative||New Jersey:PublicLanes, Ohio: Energy

  1. Fairview Park, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,PowerEvaporative||New Jersey:PublicLanes, Ohio:

  2. Fairview, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,PowerEvaporative||New Jersey:PublicLanes,

  3. Fairview, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,PowerEvaporative||New Jersey:PublicLanes,York: Energy

  4. New Fairview, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures LtdNeville, Ohio: Energy ResourcesCorporation JumpNew Mexico

  5. City of Fairview, Oklahoma (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtdEllsworth, Iowa (Utility Company) JumpAlabamaFairhope,

  6. Fairview City Corporation (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpA JumpGmbH EFCFBA FrancoFRED HomeFab

  7. Jasper Wind | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgency (IRENA) Jump to: navigation,Wind Jump to: navigation,

  8. Improved ion source

    DOE Patents [OSTI]

    Leung, K.N.; Ehlers, K.W.

    1982-05-04

    A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species,

  9. Ion Monitoring

    DOE Patents [OSTI]

    Orr, Christopher Henry (Calderbridge, GB); Luff, Craig Janson (Calderbridge, GB); Dockray, Thomas (Calderbridge, GB); Macarthur, Duncan Whittemore (Los Alamos, NM)

    2003-11-18

    The apparatus and method provide a technique for significantly reducing capacitance effects in detector electrodes arising due to movement of the instrument relative to the item/location being monitored in ion detection based techniques. The capacitance variations are rendered less significant by placing an electrically conducting element between the detector electrodes and the monitored location/item. Improved sensitivity and reduced noise signals arise as a result. The technique also provides apparatus and method suitable for monitoring elongate items which are unsuited to complete enclosure in one go within a chamber. The items are monitored part by part as the pass through the instrument, so increasing the range of items or locations which can be successfully monitored.

  10. Jasper Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8,OpenKentucky: EnergyFacilityIllinois:SouthLLC Jump to:

  11. Jasper, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8,OpenKentucky: EnergyFacilityIllinois:SouthLLC Jump

  12. Jasper Energy Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar Hydro Jump to: navigation,JumpIAEA EnergyOxyNortheast

  13. Lithium ion sources

    E-Print Network [OSTI]

    Roy, Prabir K.

    2014-01-01

    HIFAN 1866 Lithium ion sources by Prabir K. Roy, Wayne G.No. DE-AC02-05CH11231. Lithium ion sources Prabir K. Roya source of ?100 mA lithium ion current for the Neutralized

  14. Ion funnel ion trap and process

    DOE Patents [OSTI]

    Belov, Mikhail E [Richland, WA; Ibrahim, Yehia M [Richland, WA; Clowers, Biran H [West Richland, WA; Prior, David C [Hermiston, OR; Smith, Richard D [Richland, WA

    2011-02-15

    An ion funnel trap is described that includes a inlet portion, a trapping portion, and a outlet portion that couples, in normal operation, with an ion funnel. The ion trap operates efficiently at a pressure of .about.1 Torr and provides for: 1) removal of low mass-to-charge (m/z) ion species, 2) ion accumulation efficiency of up to 80%, 3) charge capacity of .about.10,000,000 elementary charges, 4) ion ejection time of 40 to 200 .mu.s, and 5) optimized variable ion accumulation times. Ion accumulation with low concentration peptide mixtures has shown an increase in analyte signal-to-noise ratios (SNR) of a factor of 30, and a greater than 10-fold improvement in SNR for multiply charged analytes.

  15. Microfabricated ion frequency standard

    DOE Patents [OSTI]

    Schwindt, Peter (Albuquerque, NM); Biedermann, Grant (Albuquerque, NM); Blain, Matthew G. (Albuquerque, NM); Stick, Daniel L. (Albuquerque, NM); Serkland, Darwin K. (Albuquerque, NM); Olsson, III, Roy H. (Albuquerque, NM)

    2010-12-28

    A microfabricated ion frequency standard (i.e. an ion clock) is disclosed with a permanently-sealed vacuum package containing a source of ytterbium (Yb) ions and an octupole ion trap. The source of Yb ions is a micro-hotplate which generates Yb atoms which are then ionized by a ultraviolet light-emitting diode or a field-emission electron source. The octupole ion trap, which confines the Yb ions, is formed from suspended electrodes on a number of stacked-up substrates. A microwave source excites a ground-state transition frequency of the Yb ions, with a frequency-doubled vertical-external-cavity laser (VECSEL) then exciting the Yb ions up to an excited state to produce fluorescent light which is used to tune the microwave source to the ground-state transition frequency, with the microwave source providing a precise frequency output for the ion clock.

  16. Microfabricated Ion Traps

    E-Print Network [OSTI]

    Marcus D. Hughes; Bjoern Lekitsch; Jiddu A. Broersma; Winfried K. Hensinger

    2011-06-28

    Ion traps offer the opportunity to study fundamental quantum systems with high level of accuracy highly decoupled from the environment. Individual atomic ions can be controlled and manipulated with electric fields, cooled to the ground state of motion with laser cooling and coherently manipulated using optical and microwave radiation. Microfabricated ion traps hold the advantage of allowing for smaller trap dimensions and better scalability towards large ion trap arrays also making them a vital ingredient for next generation quantum technologies. Here we provide an introduction into the principles and operation of microfabricated ion traps. We show an overview of material and electrical considerations which are vital for the design of such trap structures. We provide guidance in how to choose the appropriate fabrication design, consider different methods for the fabrication of microfabricated ion traps and discuss previously realized structures. We also discuss the phenomenon of anomalous heating of ions within ion traps, which becomes an important factor in the miniaturization of ion traps.

  17. Life Cycle Analysis of Fairview Crescent Student Housing UBC Campus Vancouver

    E-Print Network [OSTI]

    the TRACI impact database to quantify the environmental impacts of the building assemblies. The outputs from the additional reports produced in CIVL 498C to analyze the potential environmental impacts of different building on the development's overall environmental impact. It was determined that the most influential component out

  18. Superconducting microfabricated ion traps

    E-Print Network [OSTI]

    Wang, Shannon Xuanyue

    We fabricate superconducting ion traps with niobium and niobium nitride and trap single [superscript 88]Sr ions at cryogenic temperatures. The superconducting transition is verified and characterized by measuring the ...

  19. Applications of decelerated ions

    SciTech Connect (OSTI)

    Johnson, B.M.

    1985-03-01

    Many facilities whose sole purpose had been to accelerate ion beams are now becoming decelerators as well. The development and current status of accel-decel operations is reviewed here. Applications of decelerated ions in atomic physics experiments are discussed.

  20. Electron-less negative ion extraction from ion-ion plasmas (Journal...

    Office of Scientific and Technical Information (OSTI)

    results showing that continuous negative ion extraction, without co-extracted electrons, is possible from highly electronegative SFsub 6 ion-ion plasma at low gas...

  1. Single Ion Implantation

    ScienceCinema (OSTI)

    Thomas Schenkel

    2010-01-08

    On the equipment needed to implant ions in silicon and other materials. More information: http://newscenter.lbl.gov/f...

  2. Negative ion generator

    DOE Patents [OSTI]

    Stinnett, R.W.

    1984-05-08

    A negative ion generator is formed from a magnetically insulated transmission line having a coating of graphite on the cathode for producing negative ions and a plurality of apertures on the opposed anode for the release of negative ions. Magnetic insulation keeps electrons from flowing from the cathode to the anode. A transverse magnetic field removes electrons which do escape through the apertures from the trajectory of the negative ions. 8 figs.

  3. Lithium ion sources

    E-Print Network [OSTI]

    Roy, Prabir K.

    2014-01-01

    HIFAN 1866 Lithium ion sources by Prabir K. Roy, Wayne G.No. DE-AC02-05CH11231. Lithium ion sources Prabir K. RoyUSA Abstract A 10.9 cm diameter lithium alumino-silicate ion

  4. Superconducting microfabricated ion traps

    E-Print Network [OSTI]

    Shannon X. Wang; Yufei Ge; Jaroslaw Labaziewicz; Eric Dauler; Karl Berggren; Isaac L. Chuang

    2010-12-14

    We fabricate superconducting ion traps with niobium and niobium nitride and trap single 88Sr ions at cryogenic temperatures. The superconducting transition is verified and characterized by measuring the resistance and critical current using a 4-wire measurement on the trap structure, and observing change in the rf reflection. The lowest observed heating rate is 2.1(3) quanta/sec at 800 kHz at 6 K and shows no significant change across the superconducting transition, suggesting that anomalous heating is primarily caused by noise sources on the surface. This demonstration of superconducting ion traps opens up possibilities for integrating trapped ions and molecular ions with superconducting devices.

  5. Microfabricated Ion Traps

    E-Print Network [OSTI]

    Hughes, Marcus D; Broersma, Jiddu A; Hensinger, Winfried K

    2011-01-01

    Ion traps offer the opportunity to study fundamental quantum systems with high level of accuracy highly decoupled from the environment. Individual atomic ions can be controlled and manipulated with electric fields, cooled to the ground state of motion with laser cooling and coherently manipulated using optical and microwave radiation. Microfabricated ion traps hold the advantage of allowing for smaller trap dimensions and better scalability towards large ion trap arrays also making them a vital ingredient for next generation quantum technologies. Here we provide an introduction into the principles and operation of microfabricated ion traps. We show an overview of material and electrical considerations which are vital for the design of such trap structures. We provide guidance in how to choose the appropriate fabrication design, consider different methods for the fabrication of microfabricated ion traps and discuss previously realized structures. We also discuss the phenomenon of anomalous heating of ions with...

  6. Microfabricated ion trap array

    DOE Patents [OSTI]

    Blain, Matthew G. (Albuquerque, NM); Fleming, James G. (Albuquerque, NM)

    2006-12-26

    A microfabricated ion trap array, comprising a plurality of ion traps having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale ion traps to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The reduced electrode voltage enables integration of the microfabricated ion trap array with on-chip circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of the microfabricated ion trap array can be realized in truly field portable, handheld microanalysis systems.

  7. BERNAS ION SOURCE DISCHARGE SIMULATION

    SciTech Connect (OSTI)

    RUDSKOY,I.; KULEVOY, T.V.; PETRENKO, S.V.; KUIBEDA, R.P.; SELEZNEV, D.N.; PERSHIN, V.I.; HERSHCOVITCH, A.; JOHNSON, B.M.; GUSHENETS, V.I.; OKS, E.M.; POOLE, H.J.

    2007-08-26

    The joint research and development program is continued to develop steady-state ion source of decaborane beam for ion implantation industry. Bemas ion source is the wide used ion source for ion implantation industry. The new simulation code was developed for the Bemas ion source discharge simulation. We present first results of the simulation for several materials interested in semiconductors. As well the comparison of results obtained with experimental data obtained at the ITEP ion source test-bench is presented.

  8. Ion photon emission microscope

    DOE Patents [OSTI]

    Doyle, Barney L. (Albuquerque, NM)

    2003-04-22

    An ion beam analysis system that creates microscopic multidimensional image maps of the effects of high energy ions from an unfocussed source upon a sample by correlating the exact entry point of an ion into a sample by projection imaging of the ion-induced photons emitted at that point with a signal from a detector that measures the interaction of that ion within the sample. The emitted photons are collected in the lens system of a conventional optical microscope, and projected on the image plane of a high resolution single photon position sensitive detector. Position signals from this photon detector are then correlated in time with electrical effects, including the malfunction of digital circuits, detected within the sample that were caused by the individual ion that created these photons initially.

  9. Ion beam generating apparatus

    DOE Patents [OSTI]

    Brown, Ian G. (1088 Woodside Rd., Berkeley, CA 94708); Galvin, James (2 Commodore #276, Emeryville, CA 94608)

    1987-01-01

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam.

  10. Ion beam generating apparatus

    DOE Patents [OSTI]

    Brown, I.G.; Galvin, J.

    1987-12-22

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam. 10 figs.

  11. Collection of ions

    DOE Patents [OSTI]

    Orr, Christopher Henry (Calderbridge, GB); Luff, Craig Janson (Calderbridge, GB); Dockray, Thomas (Calderbridge, GB); Macarthur, Duncan Whittemore (Los Alamos, NM); Bounds, John Alan (Los Alamos, NM); Koster, James E. (Los Alamos, NM)

    2001-01-01

    The apparatus and method provide an improved technique for detecting ions as the area from which ions are attracted to a detector is increased, consequently increasing the number of ions detected. This is achieved by providing the outer electrodes of the detector connected to the electrical potential, together with alternate intermediate electrodes. The other intermediate electrodes and preferably the housing are grounded. The technique renders such detection techniques more sensitive and gives them a lower threshold at which they can function.

  12. Correlation ion mobility spectroscopy

    DOE Patents [OSTI]

    Pfeifer, Kent B. (Los Lunas, NM); Rohde, Steven B. (Corrales, NM)

    2008-08-26

    Correlation ion mobility spectrometry (CIMS) uses gating modulation and correlation signal processing to improve IMS instrument performance. Closely spaced ion peaks can be resolved by adding discriminating codes to the gate and matched filtering for the received ion current signal, thereby improving sensitivity and resolution of an ion mobility spectrometer. CIMS can be used to improve the signal-to-noise ratio even for transient chemical samples. CIMS is especially advantageous for small geometry IMS drift tubes that can otherwise have poor resolution due to their small size.

  13. Development of ion sources for ion projection lithography

    SciTech Connect (OSTI)

    Lee, Y.; Gough, R.A.; Kunkel, W.B.; Leung, K.N.; Perkins, L.T.

    1996-05-01

    Multicusp ion sources are capable of generating ion beams with low axial energy spread as required by the Ion Projection Lithography (IPL). Longitudinal ion energy spread has been studied in two different types of plasma discharge: the filament discharge ion source characterized by its low axial energy spread, and the RF-driven ion source characterized by its long source lifetime. For He{sup +} ions, longitudinal ion energy spreads of 1-2 eV were measured for a filament discharge multicusp ion source which is within the IPL device requirements. Ion beams with larger axial energy spread were observed in the RF-driven source. A double-chamber ion source has been designed which combines the advantages of low axial energy spread of the filament discharge ion source with the long lifetime of the RF-driven source. The energy spread of the double chamber source is lower than that of the RF-driven source.

  14. Selective ion source

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA)

    1996-01-01

    A ion source is described wherein selected ions maybe extracted to the exclusion of unwanted ion species of higher ionization potential. Also described is a method of producing selected ions from a compound, such as P.sup.+ from PH.sub.3. The invention comprises a plasma chamber, an electron source, a means for introducing a gas to be ionized by electrons from the electron source, means for limiting electron energy from the electron source to a value between the ionization energy of the selected ion species and the greater ionization energy of an unwanted ion specie, and means for extracting the target ion specie from the plasma chamber. In one embodiment, the electrons are generated in a plasma cathode chamber immediately adjacent to the plasma chamber. A small extractor draws the electrons from the plasma cathode chamber into the relatively positive plasma chamber. The energy of the electrons extracted in this manner is easily controlled. The invention is particularly useful for doping silicon with P.sup.+, AS.sup.+, and B.sup.+ without the problematic presence of hydrogen, helium, water, or carbon oxide ions. Doped silicon is important for manufacture of semiconductors and semiconductor devices.

  15. Selective ion source

    DOE Patents [OSTI]

    Leung, K.N.

    1996-05-14

    A ion source is described wherein selected ions maybe extracted to the exclusion of unwanted ion species of higher ionization potential. Also described is a method of producing selected ions from a compound, such as P{sup +} from PH{sub 3}. The invention comprises a plasma chamber, an electron source, a means for introducing a gas to be ionized by electrons from the electron source, means for limiting electron energy from the electron source to a value between the ionization energy of the selected ion species and the greater ionization energy of an unwanted ion specie, and means for extracting the target ion specie from the plasma chamber. In one embodiment, the electrons are generated in a plasma cathode chamber immediately adjacent to the plasma chamber. A small extractor draws the electrons from the plasma cathode chamber into the relatively positive plasma chamber. The energy of the electrons extracted in this manner is easily controlled. The invention is particularly useful for doping silicon with P{sup +}, As{sup +}, and B{sup +} without the problematic presence of hydrogen, helium, water, or carbon oxide ions. Doped silicon is important for manufacture of semiconductors and semiconductor devices. 6 figs.

  16. Microfabricated cylindrical ion trap

    DOE Patents [OSTI]

    Blain, Matthew G.

    2005-03-22

    A microscale cylindrical ion trap, having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale cylindrical ion trap to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The microscale CIT has a reduced ion mean free path, allowing operation at higher pressures with less expensive and less bulky vacuum pumping system, and with lower battery power than conventional- and miniature-sized ion traps. The reduced electrode voltage enables integration of the microscale cylindrical ion trap with on-chip integrated circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of microscale cylindrical ion traps can be realized in truly field portable, handheld microanalysis systems.

  17. Ion mobility sensor system

    SciTech Connect (OSTI)

    Xu, Jun; Watson, David B.; Whitten, William B.

    2013-01-22

    An ion mobility sensor system including an ion mobility spectrometer and a differential mobility spectrometer coupled to the ion mobility spectrometer. The ion mobility spectrometer has a first chamber having first end and a second end extending along a first direction, and a first electrode system that generates a constant electric field parallel to the first direction. The differential mobility spectrometer includes a second chamber having a third end and a fourth end configured such that a fluid may flow in a second direction from the third end to the fourth end, and a second electrode system that generates an asymmetric electric field within an interior of the second chamber. Additionally, the ion mobility spectrometer and the differential mobility spectrometer form an interface region. Also, the first end and the third end are positioned facing one another so that the constant electric field enters the third end and overlaps the fluid flowing in the second direction.

  18. LANL: Ion Beam Materials Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and materials synthesis through ion implantation technology, and radiation damage stud- ies in gases, liquids, and solids. The laboratory's core is a 3.2 MV tandem ion...

  19. Metal-Ion-Mediated Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal-Ion-Mediated Reactions Metal-Ion-Mediated Reactions Print Monday, 19 December 2011 18:29 While mononuclear, polynuclear, and polymeric metal complexes are most often...

  20. Relating to ion detection

    DOE Patents [OSTI]

    Orr, Christopher Henry (Calderbridge, GB); Luff, Craig Janson (Calderbridge, GB); Dockray, Thomas (Calderbridge, GB); Macarthur, Duncan Whittemore (Los Alamos, NM)

    2001-01-01

    The apparatus and method provide a technique for improving detection of alpha and/or beta emitting sources on items or in locations using indirect means. The emission forms generate ions in a medium surrounding the item or location and the medium is then moved to a detecting location where the ions are discharged to give a measure of the emission levels. To increase the level of ions generated and render the system particularly applicable for narrow pipes and other forms of conduits, the medium pressure is increased above atmospheric pressure. STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

  1. Secondary ion collection and transport system for ion microprobe

    DOE Patents [OSTI]

    Ward, James W. (Canoga Park, CA); Schlanger, Herbert (Simi Valley, CA); McNulty, Jr., Hugh (Santa Monica, CA); Parker, Norman W. (Camarillo, CA)

    1985-01-01

    A secondary ion collection and transport system, for use with an ion microprobe, which is very compact and occupies only a small working distance, thereby enabling the primary ion beam to have a short focal length and high resolution. Ions sputtered from the target surface by the primary beam's impact are collected between two arcuate members having radii of curvature and applied voltages that cause only ions within a specified energy band to be collected. The collected ions are accelerated and focused in a transport section consisting of a plurality of spaced conductive members which are coaxial with and distributed along the desired ion path. Relatively high voltages are applied to alternate transport sections to produce accelerating electric fields sufficient to transport the ions through the section to an ion mass analyzer, while lower voltages are applied to the other transport sections to focus the ions and bring their velocity to a level compatible with the analyzing apparatus.

  2. Focused ion beam system

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA); Gough, Richard A. (Kensington, CA); Ji, Qing (Berkeley, CA); Lee, Yung-Hee Yvette (Berkeley, CA)

    1999-01-01

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 .mu.m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 .mu.m or less.

  3. Focused ion beam system

    DOE Patents [OSTI]

    Leung, K.; Gough, R.A.; Ji, Q.; Lee, Y.Y.

    1999-08-31

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 {mu}m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 m or less. 13 figs.

  4. HEAVY ION INERTIAL FUSION

    E-Print Network [OSTI]

    Keefe, D.

    2008-01-01

    Accelerators as Drivers for Inertially Confined Fusion, W.B.LBL-9332/SLAC-22l (1979) Fusion Driven by Heavy Ion Beams,OF CALIFORNIA f Accelerator & Fusion Research Division

  5. Ion exchange phenomena

    SciTech Connect (OSTI)

    Bourg, I.C.; Sposito, G.

    2011-05-01

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).

  6. Ion electric propulsion unit

    DOE Patents [OSTI]

    Light, Max E; Colestock, Patrick L

    2014-01-28

    An electron cyclotron resonance (ECR) thruster is disclosed having a plasma chamber which is electrically biased with a positive voltage. The chamber bias serves to efficiently accelerate and expel the positive ions from the chamber. Electrons follow the exiting ions, serving to provide an electrically neutral exhaust plume. In a further embodiment, a downstream shaping magnetic field serves to further accelerate and/or shape the exhaust plume.

  7. High current ion source

    DOE Patents [OSTI]

    Brown, Ian G. (1088 Woodside Rd., Berkeley, CA 94708); MacGill, Robert A. (645 Kern St., Richmond, CA 94805); Galvin, James E. (2 Commodore Dr. #276, Emeryville, CA 94608)

    1990-01-01

    An ion source utilizing a cathode and anode for producing an electric arc therebetween. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma leaves the generation region and expands through another regon. The density profile of the plasma may be flattened using a magnetic field formed within a vacuum chamber. Ions are extracted from the plasma to produce a high current broad on beam.

  8. Microwave ion source

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Reijonen, Jani; Thomae, Rainer W.

    2005-07-26

    A compact microwave ion source has a permanent magnet dipole field, a microwave launcher, and an extractor parallel to the source axis. The dipole field is in the form of a ring. The microwaves are launched from the middle of the dipole ring using a coaxial waveguide. Electrons are heated using ECR in the magnetic field. The ions are extracted from the side of the source from the middle of the dipole perpendicular to the source axis. The plasma density can be increased by boosting the microwave ion source by the addition of an RF antenna. Higher charge states can be achieved by increasing the microwave frequency. A xenon source with a magnetic pinch can be used to produce intense EUV radiation.

  9. Radioactive ion detector

    DOE Patents [OSTI]

    Bower, Kenneth E. (Los Alamos, NM); Weeks, Donald R. (Saratoga, CA)

    1997-01-01

    Apparatus for detecting the presence, in aqueous media, of substances which emit alpha and/or beta radiation and determining the oxidation state of these radioactive substances, that is, whether they are in cationic or anionic form. In one embodiment, a sensor assembly has two elements, one comprised of an ion-exchange material which binds cations and the other comprised of an ion-exchange material which binds anions. Each ion-exchange element is further comprised of a scintillation plastic and a photocurrent generator. When a radioactive substance to which the sensor is exposed binds to either element and emits alpha or beta particles, photons produced in the scintillation plastic illuminate the photocurrent generator of that element. Sensing apparatus senses generator output and thereby indicates whether cationic species or anionic species or both are present and also provides an indication of species quantity.

  10. Radioactive ion detector

    DOE Patents [OSTI]

    Bower, K.E.; Weeks, D.R.

    1997-08-12

    Apparatus for detecting the presence, in aqueous media, of substances which emit alpha and/or beta radiation and determining the oxidation state of these radioactive substances, that is, whether they are in cationic or anionic form. In one embodiment, a sensor assembly has two elements, one comprised of an ion-exchange material which binds cations and the other comprised of an ion-exchange material which binds anions. Each ion-exchange element is further comprised of a scintillation plastic and a photocurrent generator. When a radioactive substance to which the sensor is exposed binds to either element and emits alpha or beta particles, photons produced in the scintillation plastic illuminate the photocurrent generator of that element. Sensing apparatus senses generator output and thereby indicates whether cationic species or anionic species or both are present and also provides an indication of species quantity. 2 figs.

  11. Negative ion source

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA); Ehlers, Kenneth W. (Alamo, CA)

    1984-01-01

    An ionization vessel is divided into an ionizing zone and an extraction zone by a magnetic filter. The magnetic filter prevents high-energy electrons from crossing from the ionizing zone to the extraction zone. A small positive voltage impressed on a plasma grid, located adjacent an extraction grid, positively biases the plasma in the extraction zone to thereby prevent positive ions from migrating from the ionizing zone to the extraction zone. Low-energy electrons, which would ordinarily be dragged by the positive ions into the extraction zone, are thereby prevented from being present in the extraction zone and being extracted along with negative ions by the extraction grid. Additional electrons are suppressed from the output flux using ExB drift provided by permanent magnets and the extractor grid electrical field.

  12. Negative ion source

    DOE Patents [OSTI]

    Leung, K.N.; Ehlers, K.W.

    1984-12-04

    An ionization vessel is divided into an ionizing zone and an extraction zone by a magnetic filter. The magnetic filter prevents high-energy electrons from crossing from the ionizing zone to the extraction zone. A small positive voltage impressed on a plasma grid, located adjacent an extraction grid, positively biases the plasma in the extraction zone to thereby prevent positive ions from migrating from the ionizing zone to the extraction zone. Low-energy electrons, which would ordinarily be dragged by the positive ions into the extraction zone, are thereby prevented from being present in the extraction zone and being extracted along with negative ions by the extraction grid. Additional electrons are suppressed from the output flux using ExB drift provided by permanent magnets and the extractor grid electrical field. 14 figs.

  13. Negative ion source

    DOE Patents [OSTI]

    Leung, K.N.; Ehlers, K.W.

    1982-08-06

    An ionization vessel is divided into an ionizing zone and an extraction zone by a magnetic filter. The magnetic filter prevents high-energy electrons from crossing from the ionizing zone to the extraction zone. A small positive voltage impressed on a plasma grid, located adjacent an extraction grid, positively biases the plasma in the extraction zone to thereby prevent positive ions from migrating from the ionizing zone to the extraction zone. Low-energy electrons, which would ordinarily be dragged by the positive ions into the extraction zone, are thereby prevented from being present in the extraction zone and being extracted along with negative ions by the extraction grid. Additional electrons are suppressed from the output flux using ExB drift provided by permanent magnets and the extractor grid electrical field.

  14. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Carter, J. David; Wang, Xiaoping; Vaughey, John; Krumpelt, Michael

    2004-11-23

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  15. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Vaughey, John (Elmhurst, IL); Krumpelt, Michael (Naperville, IL); Wang, Xiaoping (Downers Grove, IL); Carter, J. David (Bolingbrook, IL)

    2003-01-01

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  16. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David

    2005-07-12

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  17. Asymmetric ion trap

    DOE Patents [OSTI]

    Barlow, S.E.; Alexander, M.L.; Follansbee, J.C.

    1997-12-02

    An ion trap having two end cap electrodes disposed asymmetrically about a center of a ring electrode is disclosed. The inner surface of the end cap electrodes are conformed to an asymmetric pair of equipotential lines of the harmonic formed by the application of voltages to the electrodes. The asymmetry of the end cap electrodes allows ejection of charged species through the closer of the two electrodes which in turn allows for simultaneously detecting anions and cations expelled from the ion trap through the use of two detectors charged with opposite polarity. 4 figs.

  18. Asymmetric ion trap

    DOE Patents [OSTI]

    Barlow, Stephan E. (Richland, WA); Alexander, Michael L. (Richland, WA); Follansbee, James C. (Pasco, WA)

    1997-01-01

    An ion trap having two end cap electrodes disposed asymmetrically about a center of a ring electrode. The inner surface of the end cap electrodes are conformed to an asymmetric pair of equipotential lines of the harmonic formed by the application of voltages to the electrodes. The asymmetry of the end cap electrodes allows ejection of charged species through the closer of the two electrodes which in turn allows for simultaneously detecting anions and cations expelled from the ion trap through the use of two detectors charged with opposite polarity.

  19. Hydrogen ion microlithography

    DOE Patents [OSTI]

    Tsuo, Y.S.; Deb, S.K.

    1990-10-02

    Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing. 6 figs.

  20. Titanate Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca

    2014-01-01

    Company-v3832/Lithium-Ion-Batteries- Outlook-Alternative-Anodes for Sodium Ion Batteries Marca M. Doeff * , Jordirechargeable sodium ion batteries, particularly for large-

  1. Titanate Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2014-01-01

    Anodes for Sodium Ion Batteries Identification of a suitabledevelopment of sodium ion batteries, because graphite, theanode for lithium ion batteries, does not undergo sodium

  2. Advances in lithium-ion batteries

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01

    Advances in Lithium-Ion Batteries Edited by Walter A. vanpuzzling mysteries of lithium ion batteries. The book beginssuch importance to lithium ion batteries one is amazed that

  3. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01

    additive for lithium-ion batteries. Elec- trochemistryOptimization of Lithium-Ion Batteries PhD thesis (Universityfor Rechargeable Lithium-Ion Batteries. Journal of The

  4. Ion polarization in the MEIC figure-8 ion collider ring

    SciTech Connect (OSTI)

    V.S. Morozov, Ya.S. Derbenev, Y. Zhang, P. Chevtsov, A.M. Kondratenko, M.A. Kondratenko, Yu.N. Filatov

    2012-07-01

    The nuclear physics program envisaged at the Medium-energy Electron-Ion Collider (MEIC) currently being developed at the Jefferson Lab calls for collisions of 3-11 GeV/c longitudinally polarized electrons and 20-100 GeV/c, in equivalent proton momentum, longitudinally/ transversely polarized protons/ deuterons/ light ions. We present a scheme that provides the required ion polarization arrangement in the MEIC's ion collider ring.

  5. Photo ion spectrometer

    DOE Patents [OSTI]

    Gruen, D.M.; Young, C.E.; Pellin, M.J.

    1989-08-08

    A method and apparatus are described for extracting for quantitative analysis ions of selected atomic components of a sample. A lens system is configured to provide a slowly diminishing field region for a volume containing the selected atomic components, enabling accurate energy analysis of ions generated in the slowly diminishing field region. The lens system also enables focusing on a sample of a charged particle beam, such as an ion beam, along a path length perpendicular to the sample and extraction of the charged particles along a path length also perpendicular to the sample. Improvement of signal to noise ratio is achieved by laser excitation of ions to selected auto-ionization states before carrying out quantitative analysis. Accurate energy analysis of energetic charged particles is assured by using a preselected resistive thick film configuration disposed on an insulator substrate for generating predetermined electric field boundary conditions to achieve for analysis the required electric field potential. The spectrometer also is applicable in the fields of SIMS, ISS and electron spectroscopy. 8 figs.

  6. Pulsed ion beam source

    DOE Patents [OSTI]

    Greenly, J.B.

    1997-08-12

    An improved pulsed ion beam source is disclosed having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center. 12 figs.

  7. Laser driven ion accelerator

    DOE Patents [OSTI]

    Tajima, Toshiki

    2005-06-14

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  8. Laser driven ion accelerator

    DOE Patents [OSTI]

    Tajima, Toshiki

    2006-04-18

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  9. Lithium ion conducting electrolytes

    DOE Patents [OSTI]

    Angell, Charles Austen (Mesa, AZ); Liu, Changle (Midland, MI); Xu, Kang (Montgomery Village, MD); Skotheim, Terje A. (Tucson, AZ)

    1999-01-01

    The present invention relates generally to highly conductive alkali-metal ion non-crystalline electrolyte systems, and more particularly to novel and unique molten (liquid), rubbery, and solid electrolyte systems which are especially well suited for use with high current density electrolytic cells such as primary and secondary batteries.

  10. Ion Runaway in Lightning Discharges

    E-Print Network [OSTI]

    Landreman, Matt

    Runaway ions can be produced in plasmas with large electric fields, where the accelerating electric force is augmented by the low mean ionic charge due to the imbalance between the number of electrons and ions. Here we ...

  11. Characterization of an RF plasma ion source for ion implantation

    SciTech Connect (OSTI)

    Kopalidis, Peter M.; Wan Zhimin

    2012-11-06

    A novel inductively coupled RF plasma ion source has been developed for use in a beamline ion implanter. Ion density data have been taken with an array of four Langmuir probes spaced equally at the source extraction arc slit. These provide ion density uniformity information as a function of source pressure, RF power and gas mixture composition. In addition, total extracted ion beam current data are presented for the same conditions. The comparative advantages of the RF source in terms of higher beam current, reduced maintenance and overall productivity improvement compared to a hot cathode source are discussed.

  12. Laser driven compact ion accelerator

    DOE Patents [OSTI]

    Tajima, Toshiki

    2005-03-15

    A laser driven compact ion source including a light source that produces an energy pulse, a light source guide that guides the energy pulse to a target and produces an ion beam. The ion beam is transported to a desired destination.

  13. Advances in lithium-ion batteries

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01

    current reviews of the lithium ion battery literature byof view of the lithium ion battery scientist and engineer,

  14. Ion aggregation in high salt solutions: Ion network versus ion cluster

    SciTech Connect (OSTI)

    Kim, Seongheun; Kim, Heejae; Choi, Jun-Ho; Cho, Minhaeng

    2014-09-28

    The critical aggregation phenomena are ubiquitous in many self-assembling systems. Ions in high salt solutions could also spontaneously form larger ion aggregates, but their effects on hydrogen-bond structures in water have long been controversial. Here, carrying out molecular dynamics (MD) simulation studies of high salt solutions and comparing the MD simulation results with infrared absorption and pump-probe spectroscopy of O–D stretch mode of HDO in highly concentrated salt solutions and {sup 13}C-NMR chemical shift of S{sup 13}CN{sup ?} in KSCN solutions, we find evidence on the onset of ion aggregate and large-scale ion-ion network formation that concomitantly breaks water hydrogen-bond structure in certain salt solutions. Despite that these experimental results cannot provide direct evidence on the three-dimensional morphological structures of ion aggregates, they serve as reference data for verifying MD simulation methods. The MD results suggest that disrupted water hydrogen-bond network is intricately intertwined with ion-ion network. This further shows morphological variation of ion aggregate structures from ion cluster to ion network in high salt solutions that are interrelated to the onset of macroscopic aggregate formation and the water hydrogen-bond structure making and breaking processes induced by Hofmeister ions.

  15. Improved negative ion source

    DOE Patents [OSTI]

    Delmore, J.E.

    1984-05-01

    A method and apparatus for providing a negative ion source accelerates electrons away from a hot filament electron emitter into a region of crossed electric and magnetic fields arranged in a magnetron configuration. During a portion of the resulting cycloidal path, the electron velocity is reduced below its initial value. The electron accelerates as it leaves the surface at a rate of only slightly less than if there were no magnetic field, thereby preventing a charge buildup at the surface of the emitter. As the electron traverses the cycloid, it is decelerated during the second, third, and fourth quadrants, then reaccelerated as it approaches the end of the fourth quadrant to regain its original velocity. The minimum velocity occurs during the fourth quadrant, and corresponds to an electron temperature of 200 to 500/sup 0/C for the electric and magnetic fields commonly encountered in the ion sources of magnetic sector mass spectrometers. An ion source using the above-described thermalized electrons is also disclosed.

  16. Negative ion source

    DOE Patents [OSTI]

    Delmore, James E. (Idaho Falls, ID)

    1987-01-01

    A method and apparatus for providing a negative ion source accelerates electrons away from a hot filament electron emitter into a region of crossed electric and magnetic fields arranged in a magnetron configuration. During a portion of the resulting cycloidal path, the electron velocity is reduced below its initial value. The electron accelerates as it leaves the surface at a rate of only slightly less than if there were no magnetic field, thereby preventing a charge buildup at the surface of the emitter. As the electron traverses the cycloid, it is decelerated during the second, third, and fourth quadrants, then reeccelerated as it approaches the end of the fourth quadrant to regain its original velocity. The minimum velocity occurs during the fourth quadrant, and corresponds to an electron temperature of 200.degree. to 500.degree. for the electric and magnetic fields commonly encountered in the ion sources of magnetic sector mass spectrometers. An ion source using the above-described thermalized electrons is also disclosed.

  17. Electron string ion sources for carbon ion cancer therapy accelerators

    E-Print Network [OSTI]

    Boytsov, A Yu; Donets, E D; Donets, E E; Katagiri, K; Noda, K; Ponkin, D O; Ramzdorf, A Yu; Salnikov, V V; Shutov, V B

    2015-01-01

    The Electron String type of Ion Sources (ESIS) was developed, constructed and tested first in the Joint Institute for Nuclear Research. These ion sources can be the appropriate sources for production of pulsed C4+ and C6+ ion beams which can be used for cancer therapy accelerators. In fact the test ESIS Krion-6T already now at the solenoid magnetic field only 4.6 T provides more than 10^10 C4+ ions per pulse and about 5*10^9 C6+ ions per pulse. Such ion sources could be suitable for application at synchrotrons. It was also found, that Krion-6T can provide more than 10^11 C6+ ions per second at 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. As for production of 11C radioactive ion beams ESIS can be the most economic kind of ion source. To proof that the special cryogenic cell for pulse injection of gaseous species into electron string was successfully tested using the ESIS Krion-2M.

  18. Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques

    E-Print Network [OSTI]

    Doeff, Marca M.

    2013-01-01

    Alternatives to Current Lithium-Ion Batteries. Adv. EnergyElectrode Materials for Lithium Ion Batteries. MaterialsTechniques to the Study of Lithium Ion Batteries. J. Solid

  19. Electron beam ion source and electron beam ion trap (invited)

    SciTech Connect (OSTI)

    Becker, Reinard [Scientific Software Service, Kapellenweg 2a, D-63571 Gelnhausen (Germany); Kester, Oliver [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States)

    2010-02-15

    The electron beam ion source (EBIS) and its trap variant [electron beam ion trap (EBIT)] celebrated their 40th and 20th anniversary, respectively, at the EBIS/T Symposium 2007 in Heidelberg. These technologically challenging sources of highly charged ions have seen a broad development in many countries over the last decades. In contrast to most other ion sources the recipe of improvement was not ''sorcery'' but a clear understanding of the physical laws and obeying the technological constraints. This review will report important achievements of the past as well as promising developments in the future.

  20. A novel planar ion funnel design for miniature ion optics

    SciTech Connect (OSTI)

    Chaudhary, A.; Amerom, Friso H. W. van; Short, R. T.

    2014-10-01

    The novel planar ion funnel (PIF) design presented in this article emphasizes simple fabrication, assembly, and operation, making it amenable to extreme miniaturization. Simulations performed in SIMION 8.0 indicate that ion focusing can be achieved by using a gradient of electrostatic potentials on concentric metal rings in a plane. A prototype was fabricated on a 35 × 35 mm custom-designed printed circuit board (PCB) with a center hole for ions to pass through and a series of concentric circular metal rings of increasing diameter on the front side of the PCB. Metal vias on the PCB electrically connected each metal ring to a resistive potential divider that was soldered on the back of the PCB. The PIF was tested at 5.5 × 10?? Torr in a vacuum test setup that was equipped with a broad-beam ion source on the front and a micro channel plate (MCP) ion detector on the back of the PIF. The ion current recorded on the MCP anode during testing indicated a 23× increase in the ion transmission through the PIF when electric potentials were applied to the rings. These preliminary results demonstrate the functionality of a 2D ion funnel design with a much smaller footprint and simpler driving electronics than conventional 3D ion funnels. Future directions to improve the design and a possible micromachining approach to fabrication are discussed in the conclusions.

  1. Jasper County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8,OpenKentucky: EnergyFacility

  2. Jasper County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8,OpenKentucky: EnergyFacilityIllinois: Energy Resources

  3. Jasper County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8,OpenKentucky: EnergyFacilityIllinois: Energy

  4. Jasper County, Iowa: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8,OpenKentucky: EnergyFacilityIllinois: EnergyIowa: Energy

  5. Jasper County, Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8,OpenKentucky: EnergyFacilityIllinois: EnergyIowa:

  6. Jasper County, Missouri: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8,OpenKentucky: EnergyFacilityIllinois:

  7. Jasper County, South Carolina: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8,OpenKentucky: EnergyFacilityIllinois:South Carolina:

  8. Jasper County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8,OpenKentucky: EnergyFacilityIllinois:South

  9. Jasper, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8,OpenKentucky: EnergyFacilityIllinois:SouthLLC JumpNew

  10. City of Jasper, Texas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtdEllsworth,Hoisington, KansasHunnewell,Jackson City of

  11. Jasper-Newton Elec Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:onItron (California) Jump to:Jaffrey,

  12. Mini ion trap mass spectrometer

    DOE Patents [OSTI]

    Dietrich, Daniel D. (Livermore, CA); Keville, Robert F. (Valley Springs, CA)

    1995-01-01

    An ion trap which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10.sup.9 and commercial mass spectrometers requiring 10.sup.4 ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products.

  13. Mini ion trap mass spectrometer

    DOE Patents [OSTI]

    Dietrich, D.D.; Keville, R.F.

    1995-09-19

    An ion trap is described which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10{sup 9} and commercial mass spectrometers requiring 10{sup 4} ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products. 10 figs.

  14. Ion exchange technology assessment report

    SciTech Connect (OSTI)

    Duhn, E.F.

    1992-01-01

    In the execution of its charter, the SRS Ion Exchange Technology Assessment Team has determined that ion exchange (IX) technology has evolved to the point where it should now be considered as a viable alternative to the SRS reference ITP/LW/PH process. The ion exchange media available today offer the ability to design ion exchange processing systems tailored to the unique physical and chemical properties of SRS soluble HLW's. The technical assessment of IX technology and its applicability to the processing of SRS soluble HLW has demonstrated that IX is unquestionably a viable technology. A task team was chartered to evaluate the technology of ion exchange and its potential for replacing the present In-Tank Precipitation and proposed Late Wash processes to remove Cs, Sr, and Pu from soluble salt solutions at the Savannah River Site. This report documents the ion exchange technology assessment and conclusions of the task team.

  15. Ion exchange technology assessment report

    SciTech Connect (OSTI)

    Duhn, E.F.

    1992-12-31

    In the execution of its charter, the SRS Ion Exchange Technology Assessment Team has determined that ion exchange (IX) technology has evolved to the point where it should now be considered as a viable alternative to the SRS reference ITP/LW/PH process. The ion exchange media available today offer the ability to design ion exchange processing systems tailored to the unique physical and chemical properties of SRS soluble HLW`s. The technical assessment of IX technology and its applicability to the processing of SRS soluble HLW has demonstrated that IX is unquestionably a viable technology. A task team was chartered to evaluate the technology of ion exchange and its potential for replacing the present In-Tank Precipitation and proposed Late Wash processes to remove Cs, Sr, and Pu from soluble salt solutions at the Savannah River Site. This report documents the ion exchange technology assessment and conclusions of the task team.

  16. Compact ion accelerator source

    DOE Patents [OSTI]

    Schenkel, Thomas; Persaud, Arun; Kapadia, Rehan; Javey, Ali

    2014-04-29

    An ion source includes a conductive substrate, the substrate including a plurality of conductive nanostructures with free-standing tips formed on the substrate. A conductive catalytic coating is formed on the nanostructures and substrate for dissociation of a molecular species into an atomic species, the molecular species being brought in contact with the catalytic coating. A target electrode placed apart from the substrate, the target electrode being biased relative to the substrate with a first bias voltage to ionize the atomic species in proximity to the free-standing tips and attract the ionized atomic species from the substrate in the direction of the target electrode.

  17. Ion Beam Materials Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeat Pumps Heat PumpsfacilityviaGasforVendors »Ion Beam

  18. Investigation of an ion-ion hybrid Alfven wave resonator

    SciTech Connect (OSTI)

    Vincena, S. T.; Farmer, W. A.; Maggs, J. E.; Morales, G. J. [Physics and Astronomy Department, University of California, Los Angeles, Los Angeles, California 90095 (United States)

    2013-01-15

    A theoretical and experimental investigation is made of a wave resonator based on the concept of wave reflection along the confinement magnetic field at a spatial location where the wave frequency matches the local value of the ion-ion hybrid frequency. Such a situation can be realized by shear Alfven waves in a magnetized plasma with two ion species because this mode has zero parallel group velocity and experiences a cut-off at the ion-ion hybrid frequency. Since the ion-ion hybrid frequency is proportional to the magnetic field, it is expected that a magnetic well configuration in a two-ion plasma can result in an Alfven wave resonator. Such a concept has been proposed in various space plasma studies and could have relevance to mirror and tokamak fusion devices. This study demonstrates such a resonator in a controlled laboratory experiment using a H{sup +}-He{sup +} mixture. The resonator response is investigated by launching monochromatic waves and impulses from a magnetic loop antenna. The observed frequency spectra are found to agree with predictions of a theoretical model of trapped eigenmodes.

  19. A velocity map imaging spectrometer for electron?ion and ion?ion coincidence experiments with synchrotron radiation

    E-Print Network [OSTI]

    Rolles, D.; Advanced Light Source

    2008-01-01

    map imaging (VMI) spectrometer optimized for angle-resolved photoionization experiments with synchrotron radiation (map imaging spectrometer for electron-ion and ion-ion coincidence experiments with synchrotron radiation

  20. Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques

    E-Print Network [OSTI]

    Doeff, Marca M.

    2013-01-01

    Aluminum is used for lithium ion battery cathodes and alland copper is used for lithium ion battery anodes. After the

  1. Nanofabrication using focused ion beam

    E-Print Network [OSTI]

    Latif, Adnan

    Focused ion beam (FIB) technique uses a focused beam of ions to scan the surface of a specimen, analogous to the way scanning electron microscope (SEM) utilizes electrons. Recent developments in the FIB technology have led to beam spot size below...

  2. Solid lithium-ion electrolyte

    DOE Patents [OSTI]

    Zhang, J.G.; Benson, D.K.; Tracy, C.E.

    1998-02-10

    The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li{sub 2}O--CeO{sub 2}--SiO{sub 2} system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications. 12 figs.

  3. Thin film ion conducting coating

    DOE Patents [OSTI]

    Goldner, Ronald B. (Lexington, MA); Haas, Terry (Sudbury, MA); Wong, Kwok-Keung (Watertown, MA); Seward, George (Arlington, MA)

    1989-01-01

    Durable thin film ion conducting coatings are formed on a transparent glass substrate by the controlled deposition of the mixed oxides of lithium:tantalum or lithium:niobium. The coatings provide durable ion transport sources for thin film solid state storage batteries and electrochromic energy conservation devices.

  4. Laser acceleration of ion beams

    E-Print Network [OSTI]

    I. A. Egorova; A. V. Filatov; A. V. Prozorkevich; S. A. Smolyansky; D. B. Blaschke; M. Chubaryan

    2007-02-01

    We consider methods of charged particle acceleration by means of high-intensity lasers. As an application we discuss a laser booster for heavy ion beams provided, e.g. by the Dubna nuclotron. Simple estimates show that a cascade of crossed laser beams would be necessary to provide additional acceleration to gold ions of the order of GeV/nucleon.

  5. Solid lithium-ion electrolyte

    DOE Patents [OSTI]

    Zhang, Ji-Guang (Golden, CO); Benson, David K. (Golden, CO); Tracy, C. Edwin (Golden, CO)

    1998-01-01

    The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li.sub.2 O--CeO.sub.2 --SiO.sub.2 system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications.

  6. Photo ion spectrometer

    DOE Patents [OSTI]

    Gruen, D.M.; Young, C.E.; Pellin, M.J.

    1989-12-26

    A charged particle spectrometer is described for performing ultrasensitive quantitative analysis of selected atomic components removed from a sample. Significant improvements in performing energy and angular refocusing spectroscopy are accomplished by means of a two dimensional structure for generating predetermined electromagnetic field boundary conditions. Both resonance and non-resonance ionization of selected neutral atomic components allow accumulation of increased chemical information. A multiplexed operation between a SIMS mode and a neutral atomic component ionization mode with EARTOF analysis enables comparison of chemical information from secondary ions and neutral atomic components removed from the sample. An electronic system is described for switching high level signals, such as SIMS signals, directly to a transient recorder and through a charge amplifier to the transient recorder for a low level signal pulse counting mode, such as for a neutral atomic component ionization mode. 12 figs.

  7. Review of ion accelerators

    SciTech Connect (OSTI)

    Alonso, J.

    1990-06-01

    The field of ion acceleration to higher energies has grown rapidly in the last years. Many new facilities as well as substantial upgrades of existing facilities have extended the mass and energy range of available beams. Perhaps more significant for the long-term development of the field has been the expansion in the applications of these beams, and the building of facilities dedicated to areas outside of nuclear physics. This review will cover many of these new developments. Emphasis will be placed on accelerators with final energies above 50 MeV/amu. Facilities such as superconducting cyclotrons and storage rings are adequately covered in other review papers, and so will not be covered here.

  8. Photo ion spectrometer

    DOE Patents [OSTI]

    Gruen, Dieter M. (Downers Grove, IL); Young, Charles E. (Westmont, IL); Pellin, Michael J. (Naperville, IL)

    1989-01-01

    A charged particle spectrometer for performing ultrasensitive quantitative analysis of selected atomic components removed from a sample. Significant improvements in performing energy and angular refocusing spectroscopy are accomplished by means of a two dimensional structure for generating predetermined electromagnetic field boundary conditions. Both resonance and non-resonance ionization of selected neutral atomic components allow accumulation of increased chemical information. A multiplexed operation between a SIMS mode and a neutral atomic component ionization mode with EARTOF analysis enables comparison of chemical information from secondary ions and neutral atomic components removed from the sample. An electronic system is described for switching high level signals, such as SIMS signals, directly to a transient recorder and through a charge amplifier to the transient recorder for a low level signal pulse counting mode, such as for a neutral atomic component ionization mode.

  9. Solenoid and monocusp ion source

    DOE Patents [OSTI]

    Brainard, John Paul (Albuquerque, NM); Burns, Erskine John Thomas (Albuquerque, NM); Draper, Charles Hadley (Albuquerque, NM)

    1997-01-01

    An ion source which generates hydrogen ions having high atomic purity incorporates a solenoidal permanent magnets to increase the electron path length. In a sealed envelope, electrons emitted from a cathode traverse the magnetic field lines of a solenoid and a monocusp magnet between the cathode and a reflector at the monocusp. As electrons collide with gas, the molecular gas forms a plasma. An anode grazes the outer boundary of the plasma. Molecular ions and high energy electrons remain substantially on the cathode side of the cusp, but as the ions and electrons are scattered to the aperture side of the cusp, additional collisions create atomic ions. The increased electron path length allows for smaller diameters and lower operating pressures.

  10. Solenoid and monocusp ion source

    DOE Patents [OSTI]

    Brainard, J.P.; Burns, E.J.T.; Draper, C.H.

    1997-10-07

    An ion source which generates hydrogen ions having high atomic purity incorporates a solenoidal permanent magnets to increase the electron path length. In a sealed envelope, electrons emitted from a cathode traverse the magnetic field lines of a solenoid and a monocusp magnet between the cathode and a reflector at the monocusp. As electrons collide with gas, the molecular gas forms a plasma. An anode grazes the outer boundary of the plasma. Molecular ions and high energy electrons remain substantially on the cathode side of the cusp, but as the ions and electrons are scattered to the aperture side of the cusp, additional collisions create atomic ions. The increased electron path length allows for smaller diameters and lower operating pressures. 6 figs.

  11. Ion chamber based neutron detectors

    DOE Patents [OSTI]

    Derzon, Mark S; Galambos, Paul C; Renzi, Ronald F

    2014-12-16

    A neutron detector with monolithically integrated readout circuitry, including: a bonded semiconductor die; an ion chamber formed in the bonded semiconductor die; a first electrode and a second electrode formed in the ion chamber; a neutron absorbing material filling the ion chamber; and the readout circuitry which is electrically coupled to the first and second electrodes. The bonded semiconductor die includes an etched semiconductor substrate bonded to an active semiconductor substrate. The readout circuitry is formed in a portion of the active semiconductor substrate. The ion chamber has a substantially planar first surface on which the first electrode is formed and a substantially planar second surface, parallel to the first surface, on which the second electrode is formed. The distance between the first electrode and the second electrode may be equal to or less than the 50% attenuation length for neutrons in the neutron absorbing material filling the ion chamber.

  12. Advances in lithium-ion batteries

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01

    current reviews of the lithium ion battery literature byof view of the lithium ion battery scientist and engineer,lithium ion batteries. The chapter on aging summarizes the effects of the chemistry on the battery

  13. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01

    Model for Aging of Lithium-Ion Battery Cells. Journal of TheSalts Formed on the Lithium-Ion Battery Negative Electrodeion batteries In a lithium ion battery, positively charged

  14. Challenges for Na-ion Negative Electrodes

    E-Print Network [OSTI]

    Chevrier, Vincent L.

    Na-ion batteries have been proposed as candidates for replacing Li-ion batteries. In this paper we examine the viability of Na-ion negative electrode materials based on Na alloys or hard carbons in terms of volumetric ...

  15. Aluminum ion batteries: electrolytes and cathodes

    E-Print Network [OSTI]

    Reed, Luke

    2015-01-01

    in High-Power Lithium-Ion Batteries for Use in Hybridas Cathodes for Lithium-Ion Batteries. Chem. Mater. 2011,seen in magnesium or lithium ion batteries would operate at

  16. 4th Generation ECR Ion Sources

    E-Print Network [OSTI]

    Lyneis, Claude M.

    2010-01-01

    4th Generation ECR Ion Sources Claude M Lyneis, D. Leitner,to developing a 4 th generation ECR ion source with an RFover current 3 rd generation ECR ion sources, which operate

  17. Phosphonic acid based ion exchange resins

    DOE Patents [OSTI]

    Horwitz, E. Philip (Naperville, IL); Alexandratos, Spiro D. (Knoxville, TN); Gatrone, Ralph C. (Naperville, IL); Chiarizia, Ronato (Oak Park, IL)

    1994-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene disphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  18. Phosphonic acid based ion exchange resins

    DOE Patents [OSTI]

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1996-07-23

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.

  19. Phosphonic acid based ion exchange resins

    DOE Patents [OSTI]

    Horwitz, E. Philip (Naperville, IL); Alexandratos, Spiro D. (Knoxville, TN); Gatrone, Ralph C. (Naperville, IL); Chiarizia, Ronato (Oak Park, IL)

    1996-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  20. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01

    experimental data from plastic lithium ion cells. Journal ofelectrolyte additive for lithium-ion batteries. Elec-Model for Aging of Lithium-Ion Battery Cells. Journal of The

  1. Phosphonic acid based ion exchange resins

    DOE Patents [OSTI]

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1994-01-25

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 9 figures.

  2. Searching for Jets in Heavy Ion Collisions

    E-Print Network [OSTI]

    Salur, Sevil

    2008-01-01

    measurements with full jet reconstruction in heavy ionDirect measurement of jets in s N N = 200 GeV Heavy Ion5–12, 2008 Searching for Jets in Heavy Ion Collisions Sevil

  3. Ion Rings for Magnetic Fusion

    SciTech Connect (OSTI)

    Greenly, John, B.

    2005-07-31

    This Final Technical Report presents the results of the program, Ion Rings for Magnetic Fusion, which was carried out under Department of Energy funding during the period August, 1993 to January, 2005. The central objective of the program was to study the properties of field-reversed configurations formed by ion rings. In order to reach this objective, our experimental program, called the Field-reversed Ion Ring Experiment, FIREX, undertook to develop an efficient, economical technology for the production of field-reversed ion rings. A field-reversed configuration (FRC) in which the azimuthal (field-reversing) current is carried by ions with gyro-radius comparable to the magnetic separatrix radius is called a field-reversed ion ring. A background plasma is required for charge neutralization of the ring, and this plasma will be confined within the ring's closed magnetic flux. Ion rings have long been of interest as the basis of compact magnetic fusion reactors, as the basis for a high-power accelerator for an inertial fusion driver, and for other applications of high power ion beams or plasmas of high energy density. Specifically, the FIREX program was intended to address the longstanding question of the contribution of large-orbit ions to the observed stability of experimental FRCs to the MHD tilt mode. Typical experimental FRCs with s {approx} 2-4, where s is the ratio of separatrix radius to ion gyro-radius, have been stable to tilting, but desired values for a fusion reactor, s > 20, should be unstable. The FIREX ring would consist of a plasma with large s for the background ions, but with s {approx} 1 for the ring ions. By varying the proportions of these two populations, the minimum proportion of large-orbit ions necessary for stability could be determined. The incorporation of large-orbit ions, perhaps by neutral-beam injection, into an FRC has been advanced for the purpose of stabilizing, heating, controlling angular momentum, and aiding the formation of a reactor-scale FRC, and the FIREX program was intended to test the ideas behind this approach. We will describe in this report the technological development path and advances in physics understanding that allowed FIREX to reach a regime in which ion rings were reproducibly created with up to about half the current necessary to produce field reversal. Unfortunately, the experiments were limited to this level by a fundamental, unanticipated aspect of the physics of strong ion rings in plasma. The FIREX ring is a strongly anisotropic, current-carrying population of ions moving faster than the Alfven speed in the background plasma. The rapidly changing ring current excites very large-amplitude Alfven waves in the plasma, and these waves strongly affect the ring, causing rapid energy loss in a way that is not compatible with the success of the ring trapping scenario around which FIREX was designed. The result was that FIREX rings were always very short-lived. We will discuss the implication of these results for possible future use of large-orbit ions in FRCs. In short, it appears that a certain range of the parameters characterizing the ring Alfven mach number and distribution function must be avoided to allow the existence of a long-lived energetic ion component in an FRC. This report will explain why FIREX experimental results cannot be directly scaled to quantitatively predict this range for a particular FRC configuration. This will require accurate, three-dimensional simulations. FIREX results do constitute a very good dataset for validating such a code, and simulations already carried out during this program provide a guide to the important physics involved.

  4. Universal collisional activation ion trap mass spectrometry

    DOE Patents [OSTI]

    McLuckey, Scott A. (Oak Ridge, TN); Goeringer, Douglas E. (Oak Ridge, TN); Glish, Gary L. (Oak Ridge, TN)

    1993-01-01

    A universal collisional activation ion trap comprises an ion trapping means containing a bath gas and having connected thereto a noise signal generator. A method of operating a universal collisional activation ion trap comprises the steps of: providing an ion trapping means; introducing into the ion trapping means a bath gas; and, generating a noise signal within the ion trapping means; introducing into the ion trapping means a substance that, when acted upon by the noise signal, undergoes collisional activation to form product ions.

  5. Sodium Titanate Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2014-01-01

    for  Sodium  Ion  Batteries   One   of   the   challenges  of   sodium   ion   batteries   is   identification   of  for   use   in   batteries.   Our   recent   work   has  

  6. Ion transport through cell membrane channels

    E-Print Network [OSTI]

    Jan Gomulkiewicz; Jacek Miekisz; Stanislaw Miekisz

    2007-06-05

    We discuss various models of ion transport through cell membrane channels. Recent experimental data shows that sizes of ion channels are compared to those of ions and that only few ions may be simultaneously in any single channel. Theoretical description of ion transport in such channels should therefore take into account interactions between ions and between ions and channel proteins. This is not satisfied by macroscopic continuum models based on Poisson-Nernst-Planck equations. More realistic descriptions of ion transport are offered by microscopic Brownian and molecular dynamics. One should also take into account a dynamical character of the channel structure. This is not yet addressed in the literature

  7. Universal collisional activation ion trap mass spectrometry

    DOE Patents [OSTI]

    McLuckey, S.A.; Goeringer, D.E.; Glish, G.L.

    1993-04-27

    A universal collisional activation ion trap comprises an ion trapping means containing a bath gas and having connected thereto a noise signal generator. A method of operating a universal collisional activation ion trap comprises the steps of: providing an ion trapping means; introducing into the ion trapping means a bath gas; and, generating a noise signal within the ion trapping means; introducing into the ion trapping means a substance that, when acted upon by the noise signal, undergoes collisional activation to form product ions.

  8. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields

    E-Print Network [OSTI]

    Kwan, J.W.

    2008-01-01

    ion drivers for inertial confinement fusion, was achieved.ion driver beams for inertial confinement fusion, they weredriver beams for inertial confinement fusion were successful

  9. Nanocomposite Materials for Lithium-Ion Batteries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    abuse tolerant lithium-ion (Li-ion) batteries is an important step in electrifying the drive train and facilitating widespread adoption of HEVs and PHEVs. Nanocomposite...

  10. Electrically Switched Cesium Ion Exchange

    SciTech Connect (OSTI)

    JPH Sukamto; ML Lilga; RK Orth

    1998-10-23

    This report discusses the results of work to develop Electrically Switched Ion Exchange (ESIX) for separations of ions from waste streams relevant to DOE site clean-up. ESIX combines ion exchange and electrochemistry to provide a selective, reversible method for radionuclide separation that lowers costs and minimizes secondary waste generation typically associated with conventional ion exchange. In the ESIX process, an electroactive ion exchange film is deposited onto. a high surface area electrode, and ion uptake and elution are controlled directly by modulating the potential of the film. As a result, the production of secondary waste is minimized, since the large volumes of solution associated with elution, wash, and regeneration cycles typical of standard ion exchange are not needed for the ESIX process. The document is presented in two parts: Part I, the Summary Report, discusses the objectives of the project, describes the ESIX concept and the approach taken, and summarizes the major results; Part II, the Technology Description, provides a technical description of the experimental procedures and in-depth discussions on modeling, case studies, and cost comparisons between ESIX and currently used technologies.

  11. Multi-source ion funnel

    DOE Patents [OSTI]

    Tang, Keqi; Belov, Mikhail B.; Tolmachev, Aleksey V.; Udseth, Harold R.; Smith, Richard D.

    2005-12-27

    A method for introducing ions generated in a region of relatively high pressure into a region of relatively low pressure by providing at least two electrospray ion sources, providing at least two capillary inlets configured to direct ions generated by the electrospray sources into and through each of the capillary inlets, providing at least two sets of primary elements having apertures, each set of elements having a receiving end and an emitting end, the primary sets of elements configured to receive a ions from the capillary inlets at the receiving ends, and providing a secondary set of elements having apertures having a receiving end and an emitting end, the secondary set of elements configured to receive said ions from the emitting end of the primary sets of elements and emit said ions from said emitting end of the secondary set of elements. The method may further include the step of providing at least one jet disturber positioned within at least one of the sets of primary elements, providing a voltage, such as a dc voltage, in the jet disturber, thereby adjusting the transmission of ions through at least one of the sets of primary elements.

  12. Reducing ion beam noise of vacuum arc ion sources

    E-Print Network [OSTI]

    Anders, Andre; Hollinger, Ralph

    2001-01-01

    in the expanding vacuum arc plasma and operating in the ion3 Schematic of the vacuum arc plasma generator (arc cathodeUnfortunately, vacuum arc plasmas are rapidly fluctuating

  13. Shuttling of ions for characterization of a microfabricated ion trap

    E-Print Network [OSTI]

    Fisher, Zachary (Zachary Kenneth)

    2012-01-01

    In this thesis, I present experimental results demonstrating the characterization of a planar Paul trap. I discuss the theory of ion trapping and analyze the voltages required for shuttling. Next, the characteristics of a ...

  14. Three chamber negative ion source

    DOE Patents [OSTI]

    Leung, K.N.; Ehlers, K.W.; Hiskes, J.R.

    1983-11-10

    It is an object of this invention provide a negative ion source which efficiently provides a large flux of negatively ionized particles. This invention provides a volume source of negative ions which has a current density sufficient for magnetic fusion applications and has electrons suppressed from the output. It is still another object of this invention to provide a volume source of negative ions which can be electrostatically accelerated to high energies and subsequently neutralized to form a high energy neutral beam for use with a magnetically confined plasma.

  15. Improved ion optics for introduction of ions into a 9.4-T Fourier transform ion cyclotron resonance mass spectrometer

    SciTech Connect (OSTI)

    Chen, Yu; Leach, Franklin E.; Kaiser, Nathan K.; Dang, Xibei; Ibrahim, Yehia M.; Norheim, Randolph V.; Anderson, Gordon A.; Smith, Richard D.; Marshall, Alan G.

    2015-01-01

    Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry provides unparalleled mass accuracy and resolving power.[1],[2] With electrospray ionization (ESI), ions are typically transferred into the mass spectrometer through a skimmer, which serves as a conductance-limiting orifice. However, the skimmer allows only a small fraction of incoming ions to enter the mass spectrometer. An ion funnel, originally developed by Smith and coworkers at Pacific Northwest National Laboratory (PNNL)[3-5] provides much more efficient ion focusing and transfer. The large entrance aperture of the ion funnel allows almost all ions emanating from a heated capillary to be efficiently captured and transferred, resulting in nearly lossless transmission.

  16. Neon Ion Beam Lithography (NIBL)

    E-Print Network [OSTI]

    Winston, Donald

    Existing techniques for electron- and ion-beam lithography, routinely employed for nanoscale device fabrication and mask/mold prototyping, do not simultaneously achieve efficient (low fluence) exposure and high resolution. ...

  17. Surface trap for ytterbium ions

    E-Print Network [OSTI]

    Campbell, Jonathan A. (Jonathan Alan)

    2006-01-01

    We conducted an experiment to load a shallow planar ion trap from a cold atom source of Ytterbium using photoionization. The surface trap consisted of a three-rod radio frequency Paul trap fabricated using standard printed ...

  18. Ion bombardment in RF photoguns

    SciTech Connect (OSTI)

    Pozdeyev,E.; Kayran, D.; Litvinenko, V. N.

    2009-05-04

    A linac-ring eRHIC design requires a high-intensity CW source of polarized electrons. An SRF gun is viable option that can deliver the required beam. Numerical simulations presented elsewhere have shown that ion bombardment can occur in an RF gun, possibly limiting lifetime of a NEA GaAs cathode. In this paper, we analytically solve the equations of motion of ions in an RF gun using the ponderomotive potential of the Rf field. We apply the method to the BNL 1/2-cell SRF photogun and demonstrate that a significant portion of ions produced in the gun can reach the cathode if no special precautions are taken. Also, the paper discusses possible mitigation techniques that can reduce the rate of ion bombardment.

  19. Continuous Bed Ion Exchange Column

    E-Print Network [OSTI]

    Lebendiker, Mario

    UNOTM Q&S Continuous Bed Ion Exchange Column Instruction Manual Catalog Numbers 720-0001, 720 with 5 column volumes of water. Elevated backpressures may occur when wash- ing with deionized water. Do

  20. Quantum logic with molecular ions

    E-Print Network [OSTI]

    Wolf, Fabian; Heip, Jan C; Gebert, Florian; Shi, Chunyan; Schmidt, Piet O

    2015-01-01

    Laser spectroscopy of cold and trapped molecular ions is a powerful tool for fundamental physics, including the determination of fundamental constants, the laboratory test for their possible variation, and the search for a possible electric dipole moment of the electron. Optical clocks based on molecular ions sensitive to some of these effects are expected to achieve uncertainties approaching the $10^{-18}$ level. While the complexity of molecular structure facilitates these applications, the absence of cycling transitions poses a challenge for direct laser cooling, quantum state control, and detection. Previously employed state detection techniques based on photo-dissociation or chemical reactions are destructive and therefore inefficient. Here we experimentally demonstrate non-destructive state detection of a single trapped molecular ion through its strong Coulomb coupling to a well-controlled co-trapped atomic ion. An algorithm based on a state-dependent optical dipole force(ODF) changes the internal state...

  1. Heavy ion medical accelerator options

    SciTech Connect (OSTI)

    Gough, R.A.; Alonso, J.R.

    1985-01-01

    This paper briefly explores the accelerator technology available for heavy ion medical accelerators in the mass range of 1 to 40 (protons through argon). Machines that are designed to produce the required intensities of a particular design ion, such as silicon (mass 28), can satisfy the intensity requirements for all lighter ions, and can produce beams with higher mass, such as argon, at somewhat reduced, but still useful intensity levels. They can also provide beams of radioactive ions, such as carbon-11 and neon-19, which are useful in diagnostic imaging and for directly verifiable treatments. These accelerators are all based on proven technology, and can be built at predictable costs. It is the conclusion of several design studies that they can be operated reliably in a hospital-based environment. 8 refs., 22 figs.

  2. Vitrification of ion exchange resins

    DOE Patents [OSTI]

    Cicero-Herman, Connie A. (Aiken, SC); Workman, Rhonda Jackson (North Augusta, SC)

    2001-01-01

    The present invention relates to vitrification of ion exchange resins that have become loaded with hazardous or radioactive wastes, in a way that produces a homogenous and durable waste form and reduces the disposal volume of the resin. The methods of the present invention involve directly adding borosilicate glass formers and an oxidizer to the ion exchange resin and heating the mixture at sufficient temperature to produce homogeneous glass.

  3. Orthogonal ion injection apparatus and process

    DOE Patents [OSTI]

    Kurulugama, Ruwan T; Belov, Mikhail E

    2014-04-15

    An orthogonal ion injection apparatus and process are described in which ions are directly injected into an ion guide orthogonal to the ion guide axis through an inlet opening located on a side of the ion guide. The end of the heated capillary is placed inside the ion guide such that the ions are directly injected into DC and RF fields inside the ion guide, which efficiently confines ions inside the ion guide. Liquid droplets created by the ionization source that are carried through the capillary into the ion guide are removed from the ion guide by a strong directional gas flow through an inlet opening on the opposite side of the ion guide. Strong DC and RF fields divert ions into the ion guide. In-guide orthogonal injection yields a noise level that is a factor of 1.5 to 2 lower than conventional inline injection known in the art. Signal intensities for low m/z ions are greater compared to convention inline injection under the same processing conditions.

  4. Lens system for a photo ion spectrometer

    DOE Patents [OSTI]

    Gruen, D.M.; Young, C.E.; Pellin, M.J.

    1990-11-27

    A lens system in a photo ion spectrometer for manipulating a primary ion beam and ionized atomic component is disclosed. The atomic components are removed from a sample by a primary ion beam using the lens system, and the ions are extracted for analysis. The lens system further includes ionization resistant coatings for protecting the lens system. 8 figs.

  5. Lens system for a photo ion spectrometer

    DOE Patents [OSTI]

    Gruen, Dieter M. (Downers Grove, IL); Young, Charles E. (Westmont, IL); Pellin, Michael J. (Napersville, IL)

    1990-01-01

    A lens system in a photo ion spectrometer for manipulating a primary ion beam and ionized atomic component. The atomic components are removed from a sample by a primary ion beam using the lens system, and the ions are extracted for analysis. The lens system further includes ionization resistant coatings for protecting the lens system.

  6. Overview of Light-Ion Beam Therapy

    E-Print Network [OSTI]

    Chu, William T.

    2006-01-01

    measurements using various dosimeters. Discussions of theseamong ion-beam centers • Dosimeter calibrations • Do you

  7. Beyond Conventional Cathode Materials for Li-ion Batteries and Na-ion Batteries Nickel fluoride conversion materials and P2 type Na-ion intercalation cathodes /

    E-Print Network [OSTI]

    Lee, Dae Hoe

    2013-01-01

    Electrode for Sodium Ion Batteries. Chemistry of Materialsnickel fluoride in Li ion batteries. Electrochimica Actafor advanced lithium ion batteries. Materials Science and

  8. Beyond Conventional Cathode Materials for Li-ion Batteries and Na-ion Batteries Nickel fluoride conversion materials and P2 type Na-ion intercalation cathodes /

    E-Print Network [OSTI]

    Lee, Dae Hoe

    2013-01-01

    for advanced lithium ion batteries. Materials Science andin high voltage lithium ion batteries: A joint experimentalof rechargeable lithium-ion batteries after prolonged

  9. Observations of strong ion-ion correlations in dense plasmas

    SciTech Connect (OSTI)

    Ma, T., E-mail: ma8@llnl.gov; Pak, A.; Landen, O. L.; Le Pape, S.; Turnbull, D.; Döppner, T. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)] [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Fletcher, L.; Galtier, E.; Hastings, J.; Lee, H. J.; Nagler, B.; Glenzer, S. H. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)] [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Chapman, D. A. [Plasma Physics Group, AWE plc, Reading RG7 4PR (United Kingdom) [Plasma Physics Group, AWE plc, Reading RG7 4PR (United Kingdom); Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Falcone, R. W. [Physics Department, University of California, Berkeley, California 94720 (United States)] [Physics Department, University of California, Berkeley, California 94720 (United States); Fortmann, C. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States) [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Department of Physics and Astronomy, University of California, Los Angeles, California 90095 (United States); Gericke, D. O. [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)] [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Gregori, G.; White, T. G. [University of Oxford, Clarendon Laboratory, Oxford OX1 3PU (United Kingdom)] [University of Oxford, Clarendon Laboratory, Oxford OX1 3PU (United Kingdom); Neumayer, P. [Extreme Matter Institute, GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany)] [Extreme Matter Institute, GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany); Vorberger, J. [Max Planck Institut für Physik komplexer Systeme, Nötthnizer Straße 38, 01187 Dresden (Germany)] [Max Planck Institut für Physik komplexer Systeme, Nötthnizer Straße 38, 01187 Dresden (Germany); and others

    2014-05-15

    Using simultaneous spectrally, angularly, and temporally resolved x-ray scattering, we measure the pronounced ion-ion correlation peak in a strongly coupled plasma. Laser-driven shock-compressed aluminum at ?3× solid density is probed with high-energy photons at 17.9?keV created by molybdenum He-? emission in a laser-driven plasma source. The measured elastic scattering feature shows a well-pronounced correlation peak at a wave vector of k=4Å{sup ?1}. The magnitude of this correlation peak cannot be described by standard plasma theories employing a linear screened Coulomb potential. Advanced models, including a strong short-range repulsion due to the inner structure of the aluminum ions are however in good agreement with the scattering data. These studies have demonstrated a new highly accurate diagnostic technique to directly measure the state of compression and the ion-ion correlations. We have since applied this new method in single-shot wave-number resolved S(k) measurements to characterize the physical properties of dense plasmas.

  10. Medical heavy ion accelerator proposals

    SciTech Connect (OSTI)

    Gough, R.A.

    1985-05-01

    For several decades, accelerators designed primarily for research in nuclear and high energy physics have been adapted for biomedical research including radiotherapeutic treatment of human diseases such as pituitary disorders, cancer, and more recently, arteriovascular malformations. The particles used in these treatments include pions, protons and heavier ions such as carbon, neon, silicon and argon. Maximum beam energies must be available to penetrate into an equivalent of about 30 cm of water, requiring treatment beams of 250 to 1000 MeV/nucleon. Certain special treatments of superficial melanoma, however, require that beam energies as low as 70 MeV/nucleon also be available. Intensities must be adequate to complete a 100 rad treatment fraction in about 1 minute. For most heavy ion treatments, this corresponds to 10/sup 7/-10/sup 9/ ions/second at the patient. Because this research is best conducted in a dedicated, hospital-based facility, and because of the clinical need for ultra-high reliability, the construction of new and dedicated facilities has been proposed. Heavy ion accelerators can provide a variety of ions and energies, permitting treatment plans that exploit the properties of the ion best suited to each individual treatment, and that employ radioactive beams (such as /sup 11/C and /sup 19/Ne) to precisely confirm the dose localization. The favored technical approach in these proposals utilizes a conventional, strong-focusing synchrotron capable of fast switching between ions and energies, and servicing multiple treatment rooms. Specialized techniques for shaping the dose to conform to irregularly-shaped target volumes, while simultaneously sparing surrounding, healthy tissue and critical structures, are employed in each treatment room, together with the sophisticated dosimetry necessary for verification, monitoring, and patient safety. 3 refs., 8 figs.

  11. Modeling the ion density distribution in collisional cooling RF multipole ion guides

    SciTech Connect (OSTI)

    Tolmachev, Aleksey V.; Udseth, Harold R.; Smith, Richard D.

    2003-01-01

    Collisional cooling radio frequency (RF) multipoles are widely used in mass spectrometry, as ion guides and two-dimensional (2D) ion traps. Understanding the behavior of ions in these devices is important in choosing a multipole configuration. We have developed a computer model based on ion trajectory calculations in the RF multipole electric field, taking into account ion-ion and ion-neutral interactions. The two-dimensional model for idealized infinite RF multipoles gives accurate description of the ion density distribution. We consider first a basic case of a single m/z ion cloud in the 2D RF quadrupole after equilibrium is reached. Approximate theoretical relationships for the ion cloud configuration in the 2D ion trap are tested based on simulations results. Next we proceed with a case of an ion cloud consisting of several different m/z ion species. The ion relaxation dynamics and the process of establishing the stratified ion density distribution are followed. Simulations reveal a different relaxation dynamics for the axial and radial ion kinetic energy components. The kinetic energy relaxation rate is dependent on ion population and bath gas pressure. The equilibrium distribution agrees well with the ion stratification theory, as demonstrated by simulations for RF quadrupole and octupole 2D ion traps.

  12. Maskless, resistless ion beam lithography

    SciTech Connect (OSTI)

    Ji, Qing

    2003-03-10

    As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements, such as O{sub 2}{sup +}, BF{sub 2}{sup +}, P{sup +} etc., for surface modification and doping applications. With optimized source condition, around 85% of BF{sub 2}{sup +}, over 90% of O{sub 2}{sup +} and P{sup +} have been achieved. The brightness of the multicusp-plasma ion source is a key issue for its application to maskless ion beam lithography. It can be substantially improved by optimizing the source configuration and extractor geometry. Measured brightness of 2 keV He{sup +} beam is as high as 440 A/cm{sup 2} {center_dot} Sr, which represents a 30x improvement over prior work. Direct patterning of Si thin film using a focused O{sub 2}{sup +} ion beam has been investigated. A thin surface oxide film can be selectively formed using 3 keV O{sub 2}{sup +} ions with the dose of 10{sup 15} cm{sup -2}. The oxide can then serve as a hard mask for patterning of the Si film. The process flow and the experimental results for directly patterned poly-Si features are presented. The formation of shallow pn-junctions in bulk silicon wafers by scanning focused P{sup +} beam implantation at 5 keV is also presented. With implantation dose of around 10{sup 16} cm{sup -2}, the electron concentration is about 2.5 x 10{sup 18} cm{sup -3} and electron mobility is around 200 cm{sup 2}/V{center_dot}s. To demonstrate the suitability of scanning FIB lithography for the manufacture of integrated circuit devices, SOI MOSFET fabrication using the maskless, resistless ion beam lithography is demonstrated. An array of microcolumns can be built by stacking multi-aperture electrode and insulator layers. Because the multicusp plasma source can achieve uniform ion density over a large area, it can be used in conjunction with the array of microcolumns, for massively parallel FIB processing to achieve reasonable exposure throughput.

  13. Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques

    E-Print Network [OSTI]

    Doeff, Marca M.

    2013-01-01

    Rechargeable Sodium-Ion Batteries: Potential Alternatives toCurrent Lithium-Ion Batteries. Adv. Energy Mater. 2 (2012):J. , Rojo, T. Na-ion Batteries, Recent Advances and Present

  14. Voltage, Stability and Diffusion Barrier Differences between Sodium-ion and Lithium-ion Intercalation Materials

    E-Print Network [OSTI]

    Ong, Shyue Ping

    To evaluate the potential of Na-ion batteries, we contrast in this work the difference between Na-ion and Li-ion based intercalation chemistries in terms of three key battery properties—voltage, phase stability and diffusion ...

  15. Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques

    E-Print Network [OSTI]

    Doeff, Marca M.

    2013-01-01

    Alternatives to Current Lithium-Ion Batteries. Adv. EnergyMaterials for Lithium Ion Batteries. Materials Matters. 7 4.to the Study of Lithium Ion Batteries. J. Solid State

  16. Characterization of an iodine-based ionic liquid ion source and studies on ion fragmentation

    E-Print Network [OSTI]

    Fedkiw, Timothy Peter

    2010-01-01

    Electrosprays are a well studied source of charged droplets and ions. A specific subclass is the ionic liquid ion source (ILIS), which produce ion beams from the electrostatically stressed meniscus of ionic liquids. ILIS ...

  17. Three chamber negative ion source

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA); Ehlers, Kenneth W. (Alamo, CA); Hiskes, John R. (Livermore, CA)

    1985-01-01

    A negative ion vessel is divided into an excitation chamber, a negative ionization chamber and an extraction chamber by two magnetic filters. Input means introduces neutral molecules into a first chamber where a first electron discharge means vibrationally excites the molecules which migrate to a second chamber. In the second chamber a second electron discharge means ionizes the molecules, producing negative ions which are extracted into or by a third chamber. A first magnetic filter prevents high energy electrons from entering the negative ionization chamber from the excitation chamber. A second magnetic filter prevents high energy electrons from entering the extraction chamber from the negative ionizing chamber. An extraction grid at the end of the negative ion vessel attracts negative ions into the third chamber and accelerates them. Another grid, located adjacent to the extraction grid, carries a small positive voltage in order to inhibit positive ions from migrating into the extraction chamber and contour the plasma potential. Additional electrons can be suppressed from the output flux using ExB forces provided by magnetic field means and the extractor grid electric potential.

  18. Categorical ExclusIon DeterminatIon Fornl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B LReportsDeterminatIon Fornl ProjectDeterminatIon Fornl Project

  19. Method for reduction of selected ion intensities in confined ion beams

    DOE Patents [OSTI]

    Eiden, Gregory C. (Richland, WA); Barinaga, Charles J. (Richland, WA); Koppenaal, David W. (Richland, WA)

    1998-01-01

    A method for producing an ion beam having an increased proportion of analyte ions compared to carrier gas ions is disclosed. Specifically, the method has the step of addition of a charge transfer gas to the carrier analyte combination that accepts charge from the carrier gas ions yet minimally accepts charge from the analyte ions thereby selectively neutralizing the carrier gas ions. Also disclosed is the method as employed in various analytical instruments including an inductively coupled plasma mass spectrometer.

  20. Apparatus for reduction of selected ion intensities in confined ion beams

    DOE Patents [OSTI]

    Eiden, Gregory C. (Richland, WA); Barinaga, Charles J. (Richland, WA); Koppenaal, David W. (Richland, WA)

    2001-01-01

    An apparatus for producing an ion beam having an increased proportion of analyte ions compared to carrier gas ions is disclosed. Specifically, the apparatus has an ion trap or a collision cell containing a reagent gas wherein the reagent gas accepts charge from the analyte ions thereby selectively neutralizing the carrier gas ions. Also disclosed is the collision cell as employed in various locations within analytical instruments including an inductively coupled plasma mass spectrometer.

  1. Method for reduction of selected ion intensities in confined ion beams

    DOE Patents [OSTI]

    Eiden, G.C.; Barinaga, C.J.; Koppenaal, D.W.

    1998-06-16

    A method for producing an ion beam having an increased proportion of analyte ions compared to carrier gas ions is disclosed. Specifically, the method has the step of addition of a charge transfer gas to the carrier analyte combination that accepts charge from the carrier gas ions yet minimally accepts charge from the analyte ions thereby selectively neutralizing the carrier gas ions. Also disclosed is the method as employed in various analytical instruments including an inductively coupled plasma mass spectrometer. 7 figs.

  2. High Resolution Ion Mobility Spectrometry with Increased Ion Transmission: Exploring the Analytical Utility of Periodic-Focusing DC Ion Guide Drift Cells 

    E-Print Network [OSTI]

    Blase, Ryan Christopher

    2012-02-14

    Drift tube ion mobility spectrometry (IMS) is a powerful, post-ionization separation that yields structural information of ions through an ion-neutral collision cross section. The ion-neutral collision cross section is governed by the collision...

  3. Pseudo ribbon metal ion beam source

    SciTech Connect (OSTI)

    Stepanov, Igor B. Ryabchikov, Alexander I.; Sivin, Denis O.; Verigin, Dan A.

    2014-02-15

    The paper describes high broad metal ion source based on dc macroparticle filtered vacuum arc plasma generation with the dc ion-beam extraction. The possibility of formation of pseudo ribbon beam of metal ions with the parameters: ion beam length 0.6 m, ion current up to 0.2 A, accelerating voltage 40 kV, and ion energy up to 160 kV has been demonstrated. The pseudo ribbon ion beam is formed from dc vacuum arc plasma. The results of investigation of the vacuum arc evaporator ion-emission properties are presented. The influence of magnetic field strength near the cathode surface on the arc spot movement and ion-emission properties of vacuum-arc discharge for different cathode materials are determined. It was shown that vacuum-arc discharge stability can be reached when the magnetic field strength ranges from 40 to 70 G on the cathode surface.

  4. Photoionization of FE3+ Ions

    SciTech Connect (OSTI)

    Ovchinnikov, O.; Schlachter, F.

    2003-01-01

    Photoionization of Fe3+ ions was studied for the first time using synchrotron radiation from the Advanced Light Source (ALS) and the merged-beams technique. Fe3+ ions were successfully produced using ferrocene in an electron cyclotron resonance ion source (ECR). The measured yield of Fe4+ photoions as a function of photon energy revealed the presence of resonances that correspond to excitation of autoionizing states. These resonances are superimposed upon the photoion yield produced by direct photoionization, which is a smooth, slowly decreasing function of energy. The spectra for the photoionization of Fe3+ will be analyzed and compared with theory. The data collected will also serve to test models for the propagation of light through ionized matter.

  5. Microscale ion trap mass spectrometer

    DOE Patents [OSTI]

    Ramsey, J. Michael (Knoxville, TN); Witten, William B. (Lancing, TN); Kornienko, Oleg (Lansdale, PA)

    2002-01-01

    An ion trap for mass spectrometric chemical analysis of ions is delineated. The ion trap includes a central electrode having an aperture; a pair of insulators, each having an aperture; a pair of end cap electrodes, each having an aperture; a first electronic signal source coupled to the central electrode; a second electronic signal source coupled to the end cap electrodes. The central electrode, insulators, and end cap electrodes are united in a sandwich construction where their respective apertures are coaxially aligned and symmetric about an axis to form a partially enclosed cavity having an effective radius r.sub.0 and an effective length 2z.sub.0, wherein r.sub.0 and/or z.sub.0 are less than 1.0 mm, and a ratio z.sub.0 /r.sub.0 is greater than 0.83.

  6. Heat transport through ion crystals

    E-Print Network [OSTI]

    Nahuel Freitas; Esteban Martinez; Juan Pablo Paz

    2014-12-09

    We study the thermodynamical properties of crystals of trapped ions which are laser cooled to two different temperatures in two separate regions. We show that these properties strongly depend on the structure of the ion crystal. Such structure can be changed by varying the trap parameters and undergoes a series of phase transitions from linear to zig-zag or helicoidal configurations. Thus, we show that these systems are ideal candidates to observe and control the transition from anomalous to normal heat transport. All structures behave as `heat superconductors', with a thermal conductivity increasing linearly with system size and a vanishing thermal gradient inside the system. However, zig-zag and helicoidal crystals turn out to be hyper sensitive to disorder having a linear temperature profile and a length independent conductivity. Interestingly, disordered 2D ion crystals are heat insulators. Sensitivity to disorder is much smaller in the 1D case.

  7. Trapped-ion Lissajous trajectories

    E-Print Network [OSTI]

    R. F. Rossetti; G. D. de Moraes Neto; J. Carlos Egues; M. H. Y. Moussa

    2015-02-25

    Here we present a protocol for generating Lissajous curves with a trapped ion by engineering Rashba- and the Dresselhaus-type spin-orbit interactions in a Paul trap. The unique anisotropic Rashba $\\alpha_{x}$, $\\alpha_{y}$ and Dresselhaus $\\beta_{x}$, $\\beta_{y}$ couplings afforded by our setup also enables us to obtain an "unusual" Zitterbewegung, i.e., the semiconductor analog of the relativistic trembling motion of electrons, with cycloidal trajectories in the absence of magnetic fields. We have also introduced bounded SO interactions, confined to an upper-bound vibrational subspace of the Fock states, as an additional mechanism to manipulate the Lissajous motion of the trapped ion. Finally, we accounted for dissipative effects on the vibrational degrees of freedom of the ion and find that the Lissajous trajectories are still robust and well defined for realistic parameters.

  8. Ion Sources for High Energy Ion Implantation at BNL | U.S. DOE...

    Office of Science (SC) Website

    Ion Sources for High Energy Ion Implantation at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science...

  9. A double-plasma source of continuous bipolar ion-ion beam

    SciTech Connect (OSTI)

    Dudin, S. V.; Scientific Center of Physical Technologies, Svobody sq. 6, 61022 Kharkiv ; Rafalskyi, D. V.

    2013-01-21

    A double-plasma source capable of the generation of a continuous bipolar ion-ion beam is described. The quasi-neutral ion-ion flow to an extraction electrode is formed in the system containing primary inductively coupled plasma separated from a secondary plasma by an electrostatic grid-type filter. The total current of each ion species to the 250 mm diameter extraction electrode is about 80 mA; the electron current does not exceed 30% of the ion current. Method of positive/negative ion current ratio control is proposed, allowing the ion currents ratio variation in wide range.

  10. Relating to monitoring ion sources

    DOE Patents [OSTI]

    Orr, Christopher Henry (Calderbridge, GB); Luff, Craig Janson (Calderbridge, GB); Dockray, Thomas (Calderbridge, GB); Macarthur, Duncan Whittemore (Los Alamos, NM); Bounds, John Alan (Los Alamos, NM)

    2002-01-01

    The apparatus and method provide techniques for monitoring the position on alpha contamination in or on items or locations. The technique is particularly applicable to pipes, conduits and other locations to which access is difficult. The technique uses indirect monitoring of alpha emissions by detecting ions generated by the alpha emissions. The medium containing the ions is moved in a controlled manner frog in proximity with the item or location to the detecting unit and the signals achieved over time are used to generate alpha source position information.

  11. Ion exchange purification of scandium

    DOE Patents [OSTI]

    Herchenroeder, Laurie A. (Noblesville, IN); Burkholder, Harvey R. (Ames, IA)

    1990-10-23

    An improvement in purification of scandium through ion exchange chromatography is disclosed in which the oxidation potential of the eluting solution is altered by the addition of potassium chlorate or ammonium chloride so that removal of contaminants is encouraged. The temperature, pH and concentration of the eluent HEDTA are controlled in order to maintain the scandium in the column while minimizing dilution of the scandium band. Recovery of scandium is improved by pumping dilute scandium over the column prior to stripping the scandium and precipitation. This eliminates the HEDTA ion and other monovalent cations contaminating the scandium band. This method maximizes recovery of scandium while maintaining purity.

  12. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01

    Alloy design for lithium-ion battery anodes. J. Electrochem.advances in lithium ion battery materials. Electrochim. Actamaterials for lithium ion battery. Journal of Nanoparticle

  13. Molecular Structure and Ion Transport near Electrode-Electrolyte...

    Office of Scientific and Technical Information (OSTI)

    Structure and Ion Transport near Electrode-Electrolyte Interfaces in Lithium-Ion Batteries Citation Details In-Document Search Title: Molecular Structure and Ion Transport...

  14. Coated Silicon Nanowires as Anodes in Lithium Ion Batteries

    E-Print Network [OSTI]

    Watts, David James

    2014-01-01

    materials for advanced lithium-ion batteries. J. Powersilicon nanowires for lithium ion battery anode with longal. High-performance lithium-ion anodes using a hierarchical

  15. The positive ion temperature effect in magnetized electronegative plasma sheath with two species of positive ions

    SciTech Connect (OSTI)

    Shaw, A. K. [Centre of Plasma Physics, Institute for Plasma Research, Sonapur-782 402, Guwahati, Assam (India); Institute for Plasma Research, Bhat, Gandhinagar-382 428, Gujarat (India); Kar, S. [Institute for Plasma Research, Bhat, Gandhinagar-382 428, Gujarat (India); Goswami, K. S. [Centre of Plasma Physics, Institute for Plasma Research, Sonapur-782 402, Guwahati, Assam (India)

    2012-10-15

    The properties of a magnetized multi-component (two species of positive ions, negative ions and electrons) plasma sheath with finite positive ion temperature are studied. By using three fluid hydrodynamic model and some dimensionless variables, the ion (both lighter and heavier positive ions, and negative ions) densities, the ion (only for positive ions) velocities, and electric potential inside the sheath are investigated. In addition, the absence and presence of magnetic field and the orientation of magnetic field are considered. It is noticed that, with increase of positive ion temperature, the lighter positive ion density peaks increase only at the sheath edge and shift towards the sheath edge for both absence and presence of magnetic field. For heavier positive ions, in the absence of magnetic field, the density peaks increase at the sheath edge. But in the presence of magnetic field, the density fluctuations increase at the sheath edge. For both the cases, the density peaks shift towards the sheath edge.

  16. Summary of Heavy Ion Theory

    E-Print Network [OSTI]

    Sean Gavin

    1994-09-20

    Can we study hot QCD using nuclear collisions? Can we learn about metallic hydrogen from the impact of comet Shoemaker-Levy 9 on Jupiter? The answer to both questions may surprise you! I summarize progress in relativistic heavy ion theory reported at DPF `94 in the parallel sessions.

  17. Ion-induced nuclear radiotherapy

    DOE Patents [OSTI]

    Horn, Kevin M. (Albuquerque, NM); Doyle, Barney L. (Albuquerque, NM)

    1996-01-01

    Ion-induced Nuclear Radiotherapy (INRT) is a technique for conducting radiosurgery and radiotherapy with a very high degree of control over the spatial extent of the irradiated volume and the delivered dose. Based upon the concept that low energy, ion induced atomic and nuclear reactions can be used to produce highly energetic reaction products at the site of a tumor, the INRT technique is implemented through the use of a conduit-needle or tube which conducts a low energy ion beam to a position above or within the intended treatment area. At the end of the conduit-needle or tube is a specially fabricated target which, only when struck by the ion beam, acts as a source of energetic radiation products. The inherent limitations in the energy, and therefore range, of the resulting reaction products limits the spatial extent of irradiation to a pre-defined volume about the point of reaction. Furthermore, since no damage is done to tissue outside this irradiated volume, the delivered dose may be made arbitrarily large. INRT may be used both as a point-source of radiation at the site of a small tumor, or as a topical bath of radiation to broad areas of diseased tissue.

  18. The Electron-Ion Collider

    E-Print Network [OSTI]

    V. Guzey

    2009-07-23

    The future Electron-Ion Collider (EIC) is a proposed new facility to collide high-energy electrons with beams of polarized protons/light nuclei and unpolarized nuclei. We overview the goals of the project and key measurements at the EIC. We also briefly comment on recent developments of the project.

  19. Ion-induced nuclear radiotherapy

    DOE Patents [OSTI]

    Horn, K.M.; Doyle, B.L.

    1996-08-20

    Ion-induced Nuclear Radiotherapy (INRT) is a technique for conducting radiosurgery and radiotherapy with a very high degree of control over the spatial extent of the irradiated volume and the delivered dose. Based upon the concept that low energy, ion induced atomic and nuclear reactions can be used to produce highly energetic reaction products at the site of a tumor, the INRT technique is implemented through the use of a conduit-needle or tube which conducts a low energy ion beam to a position above or within the intended treatment area. At the end of the conduit-needle or tube is a specially fabricated target which, only when struck by the ion beam, acts as a source of energetic radiation products. The inherent limitations in the energy, and therefore range, of the resulting reaction products limits the spatial extent of irradiation to a pre-defined volume about the point of reaction. Furthermore, since no damage is done to tissue outside this irradiated volume, the delivered dose may be made arbitrarily large. INRT may be used both as a point-source of radiation at the site of a small tumor, or as a topical bath of radiation to broad areas of diseased tissue. 25 figs.

  20. Advances in lithium-ion batteries

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01

    Advances in Lithium-Ion Batteries Edited by Walter A. vantolerance of these batteries this is a curious omission andmysteries of lithium ion batteries. The book begins with an

  1. Laser ion source with solenoid field

    SciTech Connect (OSTI)

    Kanesue, Takeshi Okamura, Masahiro; Fuwa, Yasuhiro; Kondo, Kotaro

    2014-11-10

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90?mT, 1?m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2??s which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2?×?10{sup 11}, which was provided by a single 1?J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.

  2. Laser ion source with solenoid field

    SciTech Connect (OSTI)

    Kanesue, Takeshi; Fuwa, Yasuhiro; Kondo, Kotaro; Okamura, Masahiro

    2014-11-10

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 ?s which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 1011, which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.

  3. Laser ion source with solenoid field

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kanesue, Takeshi; Fuwa, Yasuhiro; Kondo, Kotaro; Okamura, Masahiro

    2014-11-12

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. In this study, the laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 ?s which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 1011, whichmore »was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.« less

  4. Title Quantum Optics and Heavy Ion Physics

    E-Print Network [OSTI]

    Roy J. Glauber

    2006-04-10

    I shall try to say a few words about two particular ways in which my own work has a certain relation to your work with heavy ions. My title is therefore "Quantum Optics and Heavy Ion Physics".

  5. The Electron Beam Ion Source (EBIS)

    ScienceCinema (OSTI)

    Brookhaven Lab

    2010-01-08

    Brookhaven National Lab has successfully developed a new pre-injector system, called the Electron Beam Ion Source, for the Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory science programs. The first of several planned improvemen

  6. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields

    E-Print Network [OSTI]

    Kwan, J.W.

    2008-01-01

    and beam diagnostics to an argon beam would then allow an experimental determination of how ion-ion sheaths differ from electron-electrons. Thus, somewhat serendipitously, measuring the parameters of the extracted beams provides a novel diagnostic

  7. Nonlinear ion concentration polarization : fundamentals and applications

    E-Print Network [OSTI]

    Kwak, Rhokyun

    2013-01-01

    Ion exchange membrane (IEM) is a functional material that has a permselectivity of ions. Two types of IEMs - anion exchange membrane (AEM) and cation exchange membrane (CEM) - are used in a variety of electrochemical ...

  8. The Pulse Line Ion Accelerator Concept

    E-Print Network [OSTI]

    Briggs, Richard J.

    2006-01-01

    field model of the pulse- line accelerator; relationship to3, 2006 LBNL-59492 The pulse line ion accelerator conceptCalifornia, 94507 The Pulse Line Ion Accelerator concept was

  9. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01

    Model for the Graphite Anode in Li-Ion Batteries. Journal ofgraphite Chapters 2-3 have developed a method using ferrocene to characterize the SEI in lithium- ion batteries.

  10. Laser ion source with solenoid field

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kanesue, Takeshi [Brookhaven National Laboratory (BNL), Upton, NY (United States); Fuwa, Yasuhiro [Kyoto Univ., Kyoto (Japan); RIKEN, Saitama (Japan); Kondo, Kotaro [Tokyo Institute of Technology, Tokyo (Japan). Research Lab. for Nuclear Reactors; Okamura, Masahiro [Brookhaven National Laboratory (BNL), Upton, NY (United States)

    2014-11-10

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 ?s which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 1011, which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.

  11. Quantum logic with molecular ions

    E-Print Network [OSTI]

    Fabian Wolf; Yong Wan; Jan C. Heip; Florian Gebert; Chunyan Shi; Piet O. Schmidt

    2015-07-27

    Laser spectroscopy of cold and trapped molecular ions is a powerful tool for fundamental physics, including the determination of fundamental constants, the laboratory test for their possible variation, and the search for a possible electric dipole moment of the electron. Optical clocks based on molecular ions sensitive to some of these effects are expected to achieve uncertainties approaching the $10^{-18}$ level. While the complexity of molecular structure facilitates these applications, the absence of cycling transitions poses a challenge for direct laser cooling, quantum state control, and detection. Previously employed state detection techniques based on photo-dissociation or chemical reactions are destructive and therefore inefficient. Here we experimentally demonstrate non-destructive state detection of a single trapped molecular ion through its strong Coulomb coupling to a well-controlled co-trapped atomic ion. An algorithm based on a state-dependent optical dipole force(ODF) changes the internal state of the atom conditioned on the internal state of the molecule. We show that individual states in the molecule can be distinguished by their coupling strength to the ODF and observe black-body radiation-induced quantum jumps between rotational states. Using the detuning dependence of the state detection signal, we implement a variant of quantum logic spectroscopy and improve upon a previous measurement of the $\\mathrm{X}^1\\Sigma^+(J=1)\\rightarrow\\mathrm{A}^1\\Sigma^+(J=0)$ transition in MgH, finding a frequency of 1067.74752(53)THz. We estimate that non-destructive state detection with near 100% efficiency could take less than 10 ms. The technique we demonstrate is applicable to a wide range of molecular ions, enabling further applications in state-controlled quantum chemistry and spectroscopic investigations of molecules serving as probes for interstellar clouds.

  12. Nanocomposite Materials for Lithium Ion Batteries

    SciTech Connect (OSTI)

    2011-05-31

    Fact sheet describing development and application of processing and process control for nanocomposite materials for lithium ion batteries

  13. Ion Storage Ring Measurements of Dielectronic Recombination for Astrophysically Relevant Feq+ Ions

    E-Print Network [OSTI]

    Savin, Daniel Wolf

    Ion Storage Ring Measurements of Dielectronic Recombination for Astrophysically Relevant Feq+ Ions. Using the heavy- ion storage ring at the Max-Planck-Institute for Nuclear Physics in Heidelberg, Germany. Measurements are underway for other charge states of iron. INTRODUCTION Heavy-ion storage rings, coupled

  14. Nanoscale In Situ Characterization of Li-ion Battery Electrochemistry Via Scanning Ion Conductance Microscopy

    SciTech Connect (OSTI)

    Lipson, Albert L. [Northwestern Univ., Evanston, IL (United States). Department of Materials Science and Engineering, Dept. of Chemistry; Ginder, Ryan S. [Northwestern Univ., Evanston, IL (United States). Department of Materials Science and Engineering, Dept. of Chemistry; Hersam, Mark C. [Northwestern Univ., Evanston, IL (United States). Department of Materials Science and Engineering, Dept. of Chemistry

    2011-12-15

    Scanning ion conductance microscopy imaging of battery electrodes, using the geometry shown in the figure, is a tool for in situ nanoscale mapping of surface topography and local ion current. Images of silicon and tin electrodes show that the combination of topography and ion current provides insight into the local electrochemical phenomena that govern the operation of lithium ion batteries.

  15. Performance of an inverted ion source

    SciTech Connect (OSTI)

    Salvadori, M. C.; Teixeira, F. S.; Sgubin, L. G.; Araujo, W. W. R.; Spirin, R. E.; Oks, E. M.; Brown, I. G.

    2013-02-15

    Whereas energetic ion beams are conventionally produced by extracting ions (say, positive ions) from a plasma that is held at high (positive) potential, with ion energy determined by the potential drop through which the ions fall in the beam formation electrode system, in the device described here the plasma and its electronics are held at ground potential and the ion beam is formed and injected energetically into a space maintained at high (negative) potential. We refer to this configuration as an 'inverted ion source.' This approach allows considerable savings both technologically and economically, rendering feasible some ion beam applications, in particular small-scale ion implantation, that might otherwise not be possible for many researchers and laboratories. We have developed a device of this kind utilizing a metal vapor vacuum arc plasma source, and explored its operation and beam characteristics over a range of parameter variation. The downstream beam current has been measured as a function of extraction voltage (5-35 kV), arc current (50-230 A), metal ion species (Ti, Nb, Au), and extractor grid spacing and beamlet aperture size (3, 4, and 5 mm). The downstream ion beam current as measured by a magnetically-suppressed Faraday cup was up to as high as 600 mA, and with parametric variation quite similar to that found for the more conventional metal vapor vacuum arc ion source.

  16. Interaction of trapped ions with trapped atoms

    E-Print Network [OSTI]

    Grier, Andrew T. (Andrew Todd)

    2011-01-01

    In this thesis, I present results from two Paul-trap based ion traps carried out in the Vuleti? laboratory: the Atom-Ion trap for collision studies between cold atoms and cold ions, and the Cavity-Array trap for studying ...

  17. METAL IONS: Physiological function and Pathological rle

    E-Print Network [OSTI]

    Morante, Silvia

    METAL IONS: Physiological function and Pathological rôle #12;METAL IONS ARE ESSENTIAL CELL COMPONENTS At least one-third of all proteins encoded in the human genome contain metal ions They can easily of biological processes Their ionization state influences how easily metal can get into cells (e.g.: Fe++ cross

  18. Radiation Studies with Argentine Ion Exchange Material

    SciTech Connect (OSTI)

    Crawford, C.L.

    2002-06-28

    A recent technology exchange between Argentina Nuclear Energy Commission (CNEA) and the US Department of Energy involved vitrification studies of ion exchange resins. Details of the spent ion exchange resins currently stored at two Argentine nuclear power plants, Atucha I and Embalse, have been presented in earlier reports. The present study examines irradiation of simulant samples of ion exchange resins.

  19. Separation Report No. 100 Ion Exchange

    E-Print Network [OSTI]

    Lebendiker, Mario

    ). Historically, the challenge for chromatographic resin manufactures has been to introduce a relatively thick ion-exchangeSeparation Report No. 100 TSK-GEL BioAssist® Series Ion Exchange Columns Table of Contents 1. Introduction 2 2. Basic Properties 2 2-1 Ion-Exchange Capacity and Pore Characteristics 2 2-2 Separation

  20. Distribution of ion current density on a rotating spherical cap substrate during ion-assisted deposition

    SciTech Connect (OSTI)

    Marushka, Viktor; Zabeida, Oleg Martinu, Ludvik

    2014-11-01

    The uniformity of ion density is critical for applications relying on the ion assisted deposition technique for the fabrication of the high quality thin films. The authors propose and describe here a method allowing one to calculate the ion density distribution on spherical substrate holders under stationary and rotating conditions for different positions of the ion source. The ion beam shape was approximated by a cos{sup n} function, and the ion current density was represented by a function inversely proportional to the distance from the ion source in accordance with our experimental results. As an example, a calculation of the current density distribution on the spherical cap substrate was performed for a broad beam ion source operated with an anode current of 3?A. The authors propose an approach for process optimization with respect to the ion source position and its inclination, in terms of uniformity and absolute value of the ion current density.

  1. Thermoacoustic imaging using heavy ion beams

    SciTech Connect (OSTI)

    Claytor, T.N.; Tesmer, J.R.; Deemer, B.C.; Murphy, J.C.

    1995-10-01

    Ion beams have been used for surface modification, semiconductor device fabrication and for material analysis, which makes ion-material interactions of significant importance. Ion implantation will produce new compositions near the surface by ion mixing or directly by implanting desired ions. Ions exchange their energy to the host material as they travel into the material by several different processes. High energy ions ionize the host atoms before atomic collisions transfer the remaining momentum and stop the incident ion. As they penetrate the surface, the low energy ions ionize the host atoms, but also have a significantly large momentum transfer mechanism near the surface of the material. This leads to atoms, groups of atoms and electrons being ejected from the surface, which is the momentum transfer process of sputtering. This talk addresses the acoustic waves generated during ion implantation using modulated heavy ion beams. The mechanisms for elastic wave generation during ion implantation, in the regimes where sputtering is significant and where implantation is dominant and sputtering is negligible, has been studied. The role of momentum transfer and thermal energy production during ion implantation was compared to laser generated elastic waves in an opaque solid as a reference, since laser generated ultrasound has been extensively studied and is fairly well understood. The thermoelastic response dominated in both high and low ion energy regimes since, apparently, more energy is lost to thermal heat producing mechanisms than momentum transfer processes. The signal magnitude was found to vary almost linearly with incident energy as in the laser thermoelastic regime. The time delays for longitudinal and shear waves-were characteristic of those expected for a purely thermal heating source. The ion beams are intrinsically less sensitive to the albedo of the surface.

  2. Ion crystal transducer for strong coupling between single ions and single photons

    E-Print Network [OSTI]

    L. Lamata; D. R. Leibrandt; I. L. Chuang; J. I. Cirac; M. D. Lukin; V. Vuletic; S. F. Yelin

    2011-07-11

    A new approach for realization of a quantum interface between single photons and single ions in an ion crystal is proposed and analyzed. In our approach the coupling between a single photon and a single ion is enhanced via the collective degrees of freedom of the ion crystal. Applications including single-photon generation, a memory for a quantum repeater, and a deterministic photon-photon, photon-phonon, or photon-ion entangler are discussed.

  3. Liquid metal ion source and alloy

    SciTech Connect (OSTI)

    Clark, Jr., William M. (Thousand Oaks, CA); Utlaut, Mark W. (Saugus, CA); Behrens, Robert G. (Los Alamos, NM); Szklarz, Eugene G. (Los Alamos, NM); Storms, Edmund K. (Los Alamos, NM); Santandrea, Robert P. (Santa Fe, NM); Swanson, Lynwood W. (McMinnville, OR)

    1988-10-04

    A liquid metal ion source and alloy, wherein the species to be emitted from the ion source is contained in a congruently vaporizing alloy. In one embodiment, the liquid metal ion source acts as a source of arsenic, and in a source alloy the arsenic is combined with palladium, preferably in a liquid alloy having a range of compositions from about 24 to about 33 atomic percent arsenic. Such an alloy may be readily prepared by a combustion synthesis technique. Liquid metal ion sources thus prepared produce arsenic ions for implantation, have long lifetimes, and are highly stable in operation.

  4. Oxygen ion-beam microlithography

    DOE Patents [OSTI]

    Tsuo, Y.S.

    1991-08-20

    A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used. 5 figures.

  5. Rechargeable Aluminum-Ion Batteries

    SciTech Connect (OSTI)

    Paranthaman, Mariappan Parans [ORNL; Liu, Hansan [ORNL; Sun, Xiao-Guang [ORNL; Dai, Sheng [ORNL; Brown, Gilbert M [ORNL

    2015-01-01

    This chapter reports on the development of rechargeable aluminum-ion batteries. A possible concept of rechargeable aluminum/aluminum-ion battery based on low-cost, earth-abundant Al anode, ionic liquid EMImCl:AlCl3 (1-ethyl-3-methyl imidazolium chloroaluminate) electrolytes and MnO2 cathode has been proposed. Al anode has been reported to show good reversibility in acid melts. However, due to the problems in demonstrating the reversibility in cathodes, alternate battery cathodes and battery concepts have also been presented. New ionic liquid electrolytes for reversible Al dissolution and deposition are needed in the future for replacing corrosive EMImCl:AlCl3 electrolytes.

  6. Focused electron and ion beam systems

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Reijonen, Jani; Persaud, Arun; Ji, Qing; Jiang, Ximan

    2004-07-27

    An electron beam system is based on a plasma generator in a plasma ion source with an accelerator column. The electrons are extracted from a plasma cathode in a plasma ion source, e.g. a multicusp plasma ion source. The beam can be scanned in both the x and y directions, and the system can be operated with multiple beamlets. A compact focused ion or electron beam system has a plasma ion source and an all-electrostatic beam acceleration and focusing column. The ion source is a small chamber with the plasma produced by radio-frequency (RF) induction discharge. The RF antenna is wound outside the chamber and connected to an RF supply. Ions or electrons can be extracted from the source. A multi-beam system has several sources of different species and an electron beam source.

  7. The ion pairs and superconducting bosons

    E-Print Network [OSTI]

    V. N. Minasyan

    2009-02-11

    First, it is shown that the creation of the spinless ion pairs in the lattice, which are hold by the binding with neighbor ion pairs together regarded as covalent. These ion pairs are created by the repulsive potential interaction of two ions which is bound as linear oscillator. The repulsive S-wave scattering between ion pairs and electrons is transformed to the attractive effective interaction between electrons which leads to a creation of electron pairs by a binding energy depending on the condensate fraction of ion pairs $\\frac{N_0}{N}$. In this respect, the absence of ion pairs in the condensate destroys a binding energy of electron pairs and in turn so-called superconductimg phase. As new result presented theory is that the number of the superconducting bosons is not changed in the superconducting phase.

  8. Electrolytes for lithium ion batteries

    DOE Patents [OSTI]

    Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

    2014-08-05

    A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

  9. Existence domains of slow and fast ion-acoustic solitons in two-ion space plasmas

    SciTech Connect (OSTI)

    Maharaj, S. K.; Bharuthram, R.; Singh, S. V. Lakhina, G. S.

    2015-03-15

    A study of large amplitude ion-acoustic solitons is conducted for a model composed of cool and hot ions and cool and hot electrons. Using the Sagdeev pseudo-potential formalism, the scope of earlier studies is extended to consider why upper Mach number limitations arise for slow and fast ion-acoustic solitons. Treating all plasma constituents as adiabatic fluids, slow ion-acoustic solitons are limited in the order of increasing cool ion concentrations by the number densities of the cool, and then the hot ions becoming complex valued, followed by positive and then negative potential double layer regions. Only positive potentials are found for fast ion-acoustic solitons which are limited only by the hot ion number density having to remain real valued. The effect of neglecting as opposed to including inertial effects of the hot electrons is found to induce only minor quantitative changes in the existence regions of slow and fast ion-acoustic solitons.

  10. CategorIcal ExclusIon DeterminatIon Fornl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B LReportsDeterminatIon Fornl Project Title: Portal 8 Inspection

  11. Categorical ExclusIon DetermInatIon Fornl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B LReportsDeterminatIon Fornl Project Title:Fornl Project Title:

  12. Trapped ion scaling with pulsed fast gates

    E-Print Network [OSTI]

    C. D. B. Bentley; A. R. R. Carvalho; J. J. Hope

    2015-07-10

    Fast entangling gates for trapped ions offer vastly improved gate operation times relative to implemented gates, as well as approaches to trap scaling. Gates on neighbouring ions only involve local ions when performed sufficiently fast, and we find that even a fast gate between distant ions with few degrees of freedom restores all the motional modes given more stringent gate speed conditions. We compare pulsed fast gate schemes, defined by a timescale faster than the trap period, and find that our proposed scheme has less stringent requirements on laser repetition rate for achieving arbitrary gate time targets and infidelities well below $10^{-4}$. By extending gate schemes to ion crystals, we explore the effect of ion number on gate fidelity for coupling neighbouring pairs of ions in large crystals. Inter-ion distance determines the gate time, and a factor of five increase in repetition rate, or correspondingly the laser power, reduces the infidelity by almost two orders of magnitude. We also apply our fast gate scheme to entangle the first and last ions in a crystal. As the number of ions in the crystal increases, significant increases in the laser power are required to provide the short gate times corresponding to fidelity above 0.99.

  13. Robust Collimation Control of Laser-Generated Ion Beam

    E-Print Network [OSTI]

    Kawata, S; Kamiyama, D; Nagashima, T; Barada, D; Gu, Y J; Li, X; Yu, Q; Kong, Q; Wang, P X

    2015-01-01

    The robustness of a structured collimation device is discussed for an intense-laser-produced ion beam. In this paper the ion beam collimation is realized by the solid structured collimation device, which produces the transverse electric field; the electric field contributes to reduce the ion beam transverse velocity and collimate the ion beam. Our 2.5 dimensional particle-in cell simulations demonstrate that the collimation device is rather robust against the changes in the laser parameters and the collimation target sizes. The intense short-pulse lasers are now available, and are used to generate an ion beam. The issues in the laser ion acceleration include an ion beam collimation, ion energy spectrum control, ion production efficiency, ion energy control, ion beam bunching, etc. The laser-produced ion beam tends to expand in the transverse and longitudinal directions during the ion beam propagation. The ion beam collimation is focused in this paper.

  14. Ion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATIONIntroducing the RichardBudget and Contractsheating during

  15. Ion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATIONIntroducing the RichardBudget and Contractsheating

  16. Sympathetic cooling in a large ion crystal

    E-Print Network [OSTI]

    Guin-Dar Lin; L. -M. Duan

    2015-11-08

    We analyze the dynamics and steady state of a linear ion array when some of the ions are continuously laser cooled. We calculate the ions' local temperature measured by its position fluctuation under various trapping and cooling configurations, taking into account background heating due to the noisy environment. For a large system, we demonstrate that by arranging the cooling ions evenly in the array, one can suppress the overall heating considerably. We also investigate the effect of different cooling rates and find that the optimal cooling efficiency is achieved by an intermediate cooling rate. We discuss the relaxation time for the ions to approach the steady state, and show that with periodic arrangement of the cooling ions, the cooling efficiency does not scale down with the system size.

  17. Sample inlet tube for ion source

    DOE Patents [OSTI]

    Prior, David [Hermiston, OR; Price, John [Richland, WA; Bruce, Jim [Oceanside, CA

    2002-09-24

    An improved inlet tube is positioned within an aperture through the device to allow the passage of ions from the ion source, through the improved inlet tube, and into the interior of the device. The inlet tube is designed with a larger end and a smaller end wherein the larger end has a larger interior diameter than the interior diameter of the smaller end. The inlet tube is positioned within the aperture such that the larger end is pointed towards the ion source, to receive ions therefrom, and the smaller end is directed towards the interior of the device, to deliver the ions thereto. Preferably, the ion source utilized in the operation of the present invention is a standard electrospray ionization source. Similarly, the present invention finds particular utility in conjunction with analytical devices such as mass spectrometers.

  18. ION Engineering | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on Openei | Open Energy2010) |OutlookINDEX Jump to:ION

  19. Ion Sources - 88-Inch Cyclotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeat Pumps Heat PumpsfacilityviaGasforVendors »Ion

  20. Heavy-Ion Physics with CMS

    E-Print Network [OSTI]

    Aneta Iordanova

    2008-06-06

    This article presents a brief overview of the CMS experiment capabilities to study the hot and dense matter created in relativistic heavy-ion collisions. The CERN Large Hadron Collider will provide collisions of Pb nuclei at 5.5 TeV per nucleon. The CMS heavy ion group has developed a plethora of physics analyses addressing many important aspects of heavy-ion physics in preparation for a competitive and successful program.

  1. Controlled ion implant damage profile for etching

    DOE Patents [OSTI]

    Arnold, Jr., George W. (Tijeras, NM); Ashby, Carol I. H. (Edgewood, NM); Brannon, Paul J. (Albuquerque, NM)

    1990-01-01

    A process for etching a material such as LiNbO.sub.3 by implanting ions having a plurality of different kinetic energies in an area to be etched, and then contacting the ion implanted area with an etchant. The various energies of the ions are selected to produce implant damage substantially uniformly throughout the entire depth of the zone to be etched, thus tailoring the vertical profile of the damaged zone.

  2. Cathode Ion Bombardment in RF Photoguns

    SciTech Connect (OSTI)

    Pozdeyev,E.; Kayran, D.; Litvinenko, V.

    2008-09-01

    In this paper, we use the method of rapid oscillating field to solve the equation of ion motion in an RF gun. We apply the method to the BNL 1/2-cell SRF photogun and demonstrate that a significant portion of ions produced in the gun can reach the cathode if no special precautions are taken. Also, the paper proposes a simple mitigation recipe that can reduce the rate of ion bombardment.

  3. Reversible photodeposition and dissolution of metal ions

    DOE Patents [OSTI]

    Foster, Nancy S. (Boulder, CO); Koval, Carl A. (Golden, CO); Noble, Richard D. (Boulder, CO)

    1994-01-01

    A cyclic photocatalytic process for treating waste water containing metal and organic contaminants. In one embodiment of the method, metal ions are photoreduced onto the photocatalyst and the metal concentrated by resolubilization in a smaller volume. In another embodiment of the method, contaminant organics are first oxidized, then metal ions removed by photoreductive deposition. The present invention allows the photocatalyst to be recycled until nearly complete removal of metal ions and organic contaminants is achieved.

  4. Development of a polarized Helium-3 ion source for RHIC using the electron beam ion source

    E-Print Network [OSTI]

    Epstein, Charles Samuel

    2013-01-01

    This thesis presents my work on the design and development of a source of polarized Helium-3 ions for the Relativistic Heavy Ion Collider at Brookhaven National Lab, Upton, NY. The 3He atoms will be polarized using the ...

  5. Characterization of ionic liquid ion sources for focused ion beam applications

    E-Print Network [OSTI]

    Perez Martinez, Carla S. (Carla Sofia)

    2013-01-01

    In the Focused Ion Beam (FIB) technique, a beam of ions is reduced to nanometer dimensions using dedicated optics and directed to a substrate for patterning. This technique is widely used in micro- and nanofabrication for ...

  6. Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques

    E-Print Network [OSTI]

    Doeff, Marca M.

    2013-01-01

    Charge Distribution in a Lithium Battery Electrode. J. Phys.Aluminum is used for lithium ion battery cathodes and alland copper is used for lithium ion battery anodes. After the

  7. An ion guide laser ion source for isobar-suppressed rare isotope beams

    SciTech Connect (OSTI)

    Raeder, Sebastian Ames, Friedhelm; Bishop, Daryl; Bricault, Pierre; Kunz, Peter; Mjøs, Anders; Heggen, Henning; Institute of Applied Physics, TU Darmstadt, Schlossgartenstr. 7, 64289 Darmstadt ; Lassen, Jens Teigelhöfer, Andrea; Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2

    2014-03-15

    Modern experiments at isotope separator on-line (ISOL) facilities like ISAC at TRIUMF often depend critically on the purity of the delivered rare isotope beams. Therefore, highly selective ion sources are essential. This article presents the development and successful on-line operation of an ion guide laser ion source (IG-LIS) for the production of ion beams free of isobaric contamination. Thermionic ions from the hot ISOL target are suppressed by an electrostatic potential barrier, while neutral radio nuclides effusing out are resonantly ionized by laser radiation within a quadrupole ion guide behind this barrier. The IG-LIS was developed through detailed thermal and ion optics simulation studies and off-line tests with stable isotopes. In a first on-line run with a SiC target a suppression of surface-ionized Na contaminants in the ion beam of up to six orders of magnitude was demonstrated.

  8. Ion flotation of zinc using ethylhexadecyldimethylammonium bromide

    SciTech Connect (OSTI)

    McDonald, C.W.; Ogunkeye, O.A.

    1981-01-01

    Zinc ions react with the surfactant ethylhexadecyldimethylammonium bromide (EHDABr) to form a surface active sublate which can be removed from aqueous chloride solutions by ion flotation. A typical ion flotation procedure involves passing air through a 235-ml solution containing 5 ppM Zn/sup 2 +/, 2.0 M HCl, and 2.5 x 10/sup -3/ M EHDABr at a flow rate of 40 ml/min for 150 min. The procedure is simple and rapid. Cadmium, copper, lead, and nickel ions cause reductions of zinc flotation efficiencies of less than 2.5% under the experimental conditions. 5 tables.

  9. Low Energy Ion Implantationin Semiconductor Manufacturing | U...

    Office of Science (SC) Website

    Low Energy Ion Implantation in Semiconductor Manufacturing Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science...

  10. Aluminum ion batteries: electrolytes and cathodes

    E-Print Network [OSTI]

    Reed, Luke

    2015-01-01

    Activators of Aluminum Electrochemistry in Organic Media. J.I. ; Neff, V. D. Electrochemistry of Polynuclear Transitionaluminum ion based electrochemistry. Closer investigation

  11. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01

    J. Y. & Farrington, G. C. Electrochemistry of Highly OrderedAurbach, D. Nonaqueous Electrochemistry (Marcel Dekker, Newlithium-ion cells–Electrochemistry of harvested electrodes.

  12. Pair creation in heavy ion channeling

    E-Print Network [OSTI]

    Nikolay A. Belov; Zoltán Harman

    2014-11-20

    Heavy ions channeling through crystals with multi-GeV kinetic energies can create electron-positron pairs. In the framework of the ion, the energy of virtual photons arising from the periodic crystal potential may exceed the threshold $2mc^2$. The repeated periodic collisions with the crystal ions yield high pair production rates. When the virtual photon frequency matches a nuclear transition in the ion, the production rate can be resonantly increased. In this two-step excitation-pair conversion scheme, the excitation rates are coherently enhanced, and they scale approximately quadratically with the number of crystal sites along the channel.

  13. Ion Acceleration by Short Chirped Laser Pulses

    E-Print Network [OSTI]

    Li, Jian-Xing; Keitel, Christoph H; Harman, Zoltán

    2015-01-01

    Direct laser acceleration of ions by short frequency-chirped laser pulses is investigated theoretically. We demonstrate that intense beams of ions with a kinetic energy broadening of about 1 % can be generated. The chirping of the laser pulse allows the particles to gain kinetic energies of hundreds of MeVs, which is required for hadron cancer therapy, from pulses of energies of the order of 100 J. It is shown that few-cycle chirped pulses can accelerate ions more efficiently than long ones, i.e. higher ion kinetic energies are reached with the same amount of total electromagnetic pulse energy.

  14. RECENT PROGRESS IN HEAVY ION SOURCES

    E-Print Network [OSTI]

    Clark, D.J.

    2010-01-01

    of hydrogen into thermonuclear fusion reactors. A summary ofFusion Plasma Sources Other sources of high charge state ions include the dense plasma in magnetic confinement thermonuclear

  15. Acid Ions are More Than Spectators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    across the concentration range, the team demonstrates that the contact ion pair is ubiquitous with very few free protons in solution at the highest concentrations. The study...

  16. Ion acoustic solitons/double layers in two-ion plasma revisited

    SciTech Connect (OSTI)

    Lakhina, G. S. Singh, S. V. Kakad, A. P.

    2014-06-15

    Ion acoustic solitons and double layers are studied in a collisionless plasma consisting of cold heavier ion species, a warm lighter ion species, and hot electrons having Boltzmann distributions by Sagdeev pseudo-potential technique. In contrast to the previous results, no double layers and super-solitons are found when both the heavy and lighter ion species are treated as cold. Only the positive potential solitons are found in this case. When the thermal effects of the lighter ion species are included, in addition to the usual ion-acoustic solitons occurring at M?>?1 (where the Mach number, M, is defined as the ratio of the speed of the solitary wave and the ion-acoustic speed considering temperature of hot electrons and mass of the heavier ion species), slow ion-acoustic solitons/double layers are found to occur at low Mach number (M?ion-acoustic mode is actually a new ion-ion hybrid acoustic mode which disappears when the normalized number density of lighter ion species tends to 1 (i.e., no heavier species). An interesting property of the new slow ion-acoustic mode is that at low number density of the lighter ion species, only negative potential solitons/double layers are found whereas for increasing densities there is a transition first to positive solitons/double layers, and then only positive solitons. The model can be easily applicable to the dusty plasmas having positively charged dust grains by replacing the heavier ion species by the dust mass and doing a simple normalization to take account of the dust charge.

  17. Ion dip spectroscopy of cold molecules and ions. Progress report and renewal proposal

    SciTech Connect (OSTI)

    Wessel, J.

    1987-08-13

    A research program is underway with the objective of developing techniques of high resolution multiphoton spectroscopy for selective, ultrasensitive molecular detection. Methods under study include various forms of ion dip spectroscopy and new methods of ion fragmentation spectroscopy. The studies are providing a new understanding of the fundamental spectroscopy and photophysics of large molecular ions. Dimer and cluster ions of polynuclear aromatics and related species are also being investigated, with potential detection applications.

  18. The Heavy Ion Fusion Virtual National Laboratory The Heavy Ion Path to Fusion Energy

    E-Print Network [OSTI]

    -consistent power plant design for a multi- beam induction linac, final focus and chamber propagationThe Heavy Ion Fusion Virtual National Laboratory The Heavy Ion Path to Fusion Energy Grant Logan Director Heavy-Ion Fusion Virtual National Laboratory Presented to FESAC Workshop on Development Paths

  19. Perchlorate Degradation Using Partially Oxidized Titanium Ions and Ion Exchange Membrane Hybrid System 

    E-Print Network [OSTI]

    Park, Sung Hyuk

    2011-08-08

    + and Ti3+) in solutions and as part of an ion exchange membrane reactor system. Aqueous titanium ions (Ti2+ and Ti3+) were applied to remove perchlorate ions and its destructive mechanism, reaction kinetics, and the effect of environmental factors were...

  20. The uses of electron beam ion traps in the study of highly charged ions

    SciTech Connect (OSTI)

    Knapp, D.

    1994-11-02

    The Electron Beam Ion Trap (EBIT) is a relatively new tool for the study of highly charged ions. Its development has led to a variety of new experimental opportunities; measurements have been performed with EBITs using techniques impossible with conventional ion sources or storage rings. In this paper, I will highlight the various experimental techniques we have developed and the results we have obtained using the EBIT and higher-energy Super-EBIT built at the Lawrence Livermore National Laboratory. The EBIT employs a high-current-density electron beam to trap, ionize, and excite a population of ions. The ions can be studied in situ or extracted from the trap for external experiments. The trapped ions form an ionization-state equilibrium determined by the relative ionization and recombination rates. Ions of several different elements may simultaneously be present in the trap. The ions are nearly at rest, and, for most systems, all in their ground-state configurations. The electron-ion interaction energy has a narrow distribution and can be varied over a wide range. We have used the EBIT devices for the measurement of electron-ion interactions, ion structure, ion-surface interactions, and the behavior of low-density plasmas.

  1. Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics

    E-Print Network [OSTI]

    Kang, Jin Sung

    2012-01-01

    Lithium-Ion Polymer Battery ..Performance of Lithium-Ion Polymer Battery Introduction Assolid state lithium-ion (Li-ion) battery were adhesively

  2. Heavy Ion Fusion Science Virtual National Laboratory

    E-Print Network [OSTI]

    Slide 1 Heavy Ion Fusion Science Virtual National Laboratory B. Grant Logan Director, U.S. Heavy Ion Fusion Science Virtual National Laboratory, (HIFS-VNL) - collaboration of LBNL, LLNL, and PPPL by the Lawrence Berkeley and Lawrence Livermore National Laboratories under Contract Numbers DE-AC02-05CH1123

  3. Beam current controller for laser ion source

    DOE Patents [OSTI]

    Okamura, Masahiro

    2014-10-28

    The present invention relates to the design and use of an ion source with a rapid beam current controller for experimental and medicinal purposes. More particularly, the present invention relates to the design and use of a laser ion source with a magnetic field applied to confine a plasma flux caused by laser ablation.

  4. Searching for Jets in Heavy Ion Collisions

    E-Print Network [OSTI]

    Sevil Salur

    2008-09-09

    Jet quenching measurements using leading particles and their correlations suffer from known biases, which can be removed via direct reconstruction of jets in central heavy ion collisions. In this talk, we discuss several modern jet reconstruction algorithms and background subtraction techniques that are appropriate to heavy ion collisions.

  5. Magnetic piston model for higher ion charge and different electron and ion plasma temperatures

    SciTech Connect (OSTI)

    Bogatu, I. N. [FAR-TECH, Inc., 10350 Science Center Drive, Bldg.14, Suite 150, San Diego, California 92121 (United States)] [FAR-TECH, Inc., 10350 Science Center Drive, Bldg.14, Suite 150, San Diego, California 92121 (United States)

    2013-05-15

    A new formula for the magnetic piston model, which explicitly describes how the momentum imparted to the ions by the magnetic pressure depends not only on the ion mass but also on the ion charge, as well as, on the plasma electron and ion temperatures, is derived following Rosenbluth's classical particle-field self-consistent plane approximation analytic calculation. The formula presented in this paper has implications in explaining the experimentally observed separation of the ions of different species and charges by the magnetic field penetrating the plasma and specularly reflecting them.

  6. Rechargeable lithium-ion cell

    DOE Patents [OSTI]

    Bechtold, Dieter (Bad Vilbel, DE); Bartke, Dietrich (Kelkheim, DE); Kramer, Peter (Konigstein, DE); Kretzschmar, Reiner (Kelkheim, DE); Vollbert, Jurgen (Hattersheim, DE)

    1999-01-01

    The invention relates to a rechargeable lithium-ion cell, a method for its manufacture, and its application. The cell is distinguished by the fact that it has a metallic housing (21) which is electrically insulated internally by two half shells (15), which cover electrode plates (8) and main output tabs (7) and are composed of a non-conductive material, where the metallic housing is electrically insulated externally by means of an insulation coating. The cell also has a bursting membrane (4) which, in its normal position, is located above the electrolyte level of the cell (1). In addition, the cell has a twisting protection (6) which extends over the entire surface of the cover (2) and provides centering and assembly functions for the electrode package, which comprises the electrode plates (8).

  7. Progress in Heavy Ion Fusion

    SciTech Connect (OSTI)

    Herrmannsfeldt, W.B.

    1988-09-01

    The progress of the field of Heavy Ion Fusion has been documented in the proceedings of the series of International Symposia that, in recent years, have occurred every second year. The latest of these conferences was hosted by Gesellshaft fuer Schwerionenforshung (GSI) in Darmstadt, West Germany, June 28-30, 1988. For this report, a few highlights from the conference are selected, stressing experimental progress and prospects for future advances. A little extra time is devoted to report on the developments at the Lawrence Berkeley Laboratory (LBL) which is the center for most of the HIFAR program. The Director of the HIFAR program at LBL is Denis Keefe, who presented the HIF report at the last two of the meetings in this series, and in whose place the author is appearing now. 4 refs., 1 fig.

  8. Formation of helical ion chains

    E-Print Network [OSTI]

    Ramil Nigmatullin; Adolfo del Campo; Gabriele De Chiara; Giovanna Morigi; Martin B. Plenio; Alex Retzker

    2015-08-25

    We study the nonequilibrium dynamics of the linear to zigzag structural phase transition exhibited by an ion chain confined in a trap with periodic boundary conditions. The transition is driven by reducing the transverse confinement at a finite quench rate, which can be accurately controlled. This results in the formation of zigzag domains oriented along different transverse planes. The twists between different domains can be stabilized by the topology of the trap and under laser cooling the system has a chance to relax to a helical chain with nonzero winding number. Molecular dynamics simulations are used to obtain a large sample of possible trajectories for different quench rates. The scaling of the average winding number with different quench rates is compared to the prediction of the Kibble-Zurek theory, and a good quantitative agreement is found.

  9. Method and apparatuses for ion cyclotron spectrometry

    DOE Patents [OSTI]

    Dahl, David A. (Idaho Falls, ID); Scott, Jill R. (Idaho Falls, ID); McJunkin, Timothy R. (Idaho Falls, ID)

    2012-03-06

    An ion cyclotron spectrometer may include a vacuum chamber that extends at least along a z-axis and means for producing a magnetic field within the vacuum chamber so that a magnetic field vector is generally parallel to the z-axis. The ion cyclotron spectrometer may also include means for producing a trapping electric field within the vacuum chamber. The trapping electric field may comprise a field potential that, when taken in cross-section along the z-axis, includes at least one section that is concave down and at least one section that is concave up so that ions traversing the field potential experience a net magnetron effect on a cyclotron frequency of the ions that is substantially equal to zero. Other apparatuses and a method for performing ion cyclotron spectrometry are also disclosed herein.

  10. Method and apparatus for ion cyclotron spectrometry

    DOE Patents [OSTI]

    Dahl, David A. (Idaho Falls, ID) [Idaho Falls, ID; Scott, Jill R. (Idaho Falls, ID) [Idaho Falls, ID; McJunkin, Timothy R. (Idaho Falls, ID) [Idaho Falls, ID

    2010-08-17

    An ion cyclotron spectrometer may include a vacuum chamber that extends at least along a z-axis and means for producing a magnetic field within the vacuum chamber so that a magnetic field vector is generally parallel to the z-axis. The ion cyclotron spectrometer may also include means for producing a trapping electric field within the vacuum chamber that includes at least a first section that induces a first magnetron effect that increases a cyclotron frequency of an ion and at least a second section that induces a second magnetron effect that decreases the cyclotron frequency of an ion. The cyclotron frequency changes induced by the first and second magnetron effects substantially cancel one another so that an ion traversing the at least first and second sections will experience no net change in cyclotron frequency.

  11. ECR ion source with electron gun

    DOE Patents [OSTI]

    Xie, Z.Q.; Lyneis, C.M.

    1993-10-26

    An Advanced Electron Cyclotron Resonance ion source having an electron gun for introducing electrons into the plasma chamber of the ion source is described. The ion source has a injection enclosure and a plasma chamber tank. The plasma chamber is defined by a plurality of longitudinal magnets. The electron gun injects electrons axially into the plasma chamber such that ionization within the plasma chamber occurs in the presence of the additional electrons produced by the electron gun. The electron gun has a cathode for emitting electrons therefrom which is heated by current supplied from an AC power supply while bias potential is provided by a bias power supply. A concentric inner conductor and outer conductor carry heating current to a carbon chuck and carbon pusher which hold the cathode in place and also heat the cathode. In the Advanced Electron Cyclotron Resonance ion source, the electron gun replaces the conventional first stage used in prior electron cyclotron resonance ion generators. 5 figures.

  12. Magnetic island evolution in hot ion plasmas

    SciTech Connect (OSTI)

    Ishizawa, A.; Nakajima, N.; Waelbroeck, F. L.; Fitzpatrick, R.; Horton, W.

    2012-07-15

    Effects of finite ion temperature on magnetic island evolution are studied by means of numerical simulations of a reduced set of two-fluid equations which include ion as well as electron diamagnetism in slab geometry. The polarization current is found to be almost an order of magnitude larger in hot than in cold ion plasmas, due to the strong shear of ion velocity around the separatrix of the magnetic islands. As a function of the island width, the propagation speed decreases from the electron drift velocity (for islands thinner than the Larmor radius) to values close to the guiding-center velocity (for islands of order 10 times the Larmor radius). In the latter regime, the polarization current is destabilizing (i.e., it drives magnetic island growth). This is in contrast to cold ion plasmas, where the polarization current is generally found to have a healing effect on freely propagating magnetic island.

  13. Ion-induced electron emission microscopy

    DOE Patents [OSTI]

    Doyle, Barney L. (Albuquerque, NM); Vizkelethy, Gyorgy (Albuquerque, NM); Weller, Robert A. (Brentwood, TN)

    2001-01-01

    An ion beam analysis system that creates multidimensional maps of the effects of high energy ions from an unfocussed source upon a sample by correlating the exact entry point of an ion into a sample by projection imaging of the secondary electrons emitted at that point with a signal from a detector that measures the interaction of that ion within the sample. The emitted secondary electrons are collected in a strong electric field perpendicular to the sample surface and (optionally) projected and refocused by the electron lenses found in a photon emission electron microscope, amplified by microchannel plates and then their exact position is sensed by a very sensitive X Y position detector. Position signals from this secondary electron detector are then correlated in time with nuclear, atomic or electrical effects, including the malfunction of digital circuits, detected within the sample that were caused by the individual ion that created these secondary electrons in the fit place.

  14. Model Reformulation and Design of Lithium-ion Batteries

    E-Print Network [OSTI]

    Subramanian, Venkat

    987 94 Model Reformulation and Design of Lithium-ion Batteries V.R. Subramanian1,*, V. Boovaragavan Prediction......................................997 Optimal Design of Lithium-ion Batteries Lithium-ion batteries, product design, Bayesian estimation, Markov Chain Monte Carlo simulation

  15. Coated Silicon Nanowires as Anodes in Lithium Ion Batteries

    E-Print Network [OSTI]

    Watts, David James

    2014-01-01

    silicon nanowires for lithium ion battery anode with longfor high-performance lithium-ion battery anodes. Appl. Phys.as the anode for a lithium-ion battery with high coulombic

  16. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries A Better Anode Design to Improve Lithium-Ion Batteries Print Friday, 23 March 2012 13:53 Lithium-ion batteries are in smart...

  17. MOBILITIES OF CESIUM AMD RUBIDIUM IONS IN THEIR PARENT VAPORS

    E-Print Network [OSTI]

    Lee, Yuan-tseh; Mahan, Bruce H.

    1965-01-01

    Laboratory MOBILITIES OF CESIUM AND RUBIDIUM IONS IN THEIRen o:-48 t MOBILITIES OF CESIUM AND RUBIDIUM IONS INvTHEIRH. Mahan Mobilities of Cesium and Rubidium Ions in Their

  18. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01

    1/3 O 2 for advanced lithium-ion batteries. J. Power Sourcesof LiFePO4 based lithium ion batteries. Mater. Lett. 2007,negative electrode in lithium-ion batteries: AFM study in an

  19. Coated Silicon Nanowires as Anodes in Lithium Ion Batteries

    E-Print Network [OSTI]

    Watts, David James

    2014-01-01

    for advanced lithium-ion batteries. J. Power Sources 174,composite anodes for lithium-ion batteries. J. Mater. Chem.cathode materials for lithium-ion batteries. J. Mater. Chem.

  20. ULTRA-LOW-ENERGY HIGH-CURRENT ION SOURCE

    E-Print Network [OSTI]

    Anders, Andre

    2010-01-01

    a high current ion source for ultra-low energy ions has beenthe Department of Energy ULTRA-LOW-ENERGY HIGH-CURRENT IONedited by A. Anders. ULTRA-LOW-ENERGY HIGH-CURRENT ION

  1. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01

    Alloy design for lithium-ion battery anodes. J. Electrochem.advances in lithium ion battery materials. Electrochim. ActaO 2 cathode material for lithium ion battery: Dependence of

  2. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01

    negative electrode in lithium-ion batteries: AFM study in anJ. R. , Alloy design for lithium-ion battery anodes. J.Carbon materials for lithium-ion rechargeable batteries.

  3. Development and testing of a lithium ion source and injector

    E-Print Network [OSTI]

    Seidl, P. A.

    2014-01-01

    Development and testing of a lithium ion source and injectortesting of an intense lithium ion source and injector for anFIG. 4. The modeled and measured lithium ion source surface

  4. Microfabrication of surface electrode ion traps for quantum manipulation

    E-Print Network [OSTI]

    Ge, Yufei, S.M. Massachusetts Institute of Technology

    2015-01-01

    Trapped ions are a promising approach to quantum computation. This approach uses a qubit state which is the atomic state and quantum motional state of a trapped ion to encode information, and uses laser-ion interactions ...

  5. Collisional effects on nonlinear ion drag force for small grains

    E-Print Network [OSTI]

    Hutchinson, Ian H.

    The ion drag force arising from plasma flow past an embedded spherical grain is calculated self-consistently and non-linearly using particle in cell codes, accounting for ion-neutral collisions. Using ion velocity distribution ...

  6. Solid lithium ion conducting electrolytes and methods of preparation

    DOE Patents [OSTI]

    Narula, Chaitanya K; Daniel, Claus

    2013-05-28

    A composition comprised of nanoparticles of lithium ion conducting solid oxide material, wherein the solid oxide material is comprised of lithium ions, and at least one type of metal ion selected from pentavalent metal ions and trivalent lanthanide metal ions. Solution methods useful for synthesizing these solid oxide materials, as well as precursor solutions and components thereof, are also described. The solid oxide materials are incorporated as electrolytes into lithium ion batteries.

  7. Ion acceleration from thin foil and extended plasma targets by slow electromagnetic wave and related ion-ion beam instability

    SciTech Connect (OSTI)

    Bulanov, S. V. [QuBS, Japan Atomic Energy Agency, Kizugawa, Kyoto, 619-0215 (Japan); A. M. Prokhorov Institute of General Physics RAS, Moscow, 119991 (Russian Federation); Esirkepov, T. Zh.; Kando, M. [QuBS, Japan Atomic Energy Agency, Kizugawa, Kyoto, 619-0215 (Japan); Pegoraro, F. [Physical Department, University of Pisa, Pisa 56127 (Italy); Bulanov, S. S. [University of California, Berkeley, California 94720 (United States); Geddes, C. G. R.; Schroeder, C. B.; Esarey, E. [Lawrence Berkeley National Laboratory, Berkeley, California, 94720 (United States); Leemans, W. P. [University of California, Berkeley, California 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, California, 94720 (United States)

    2012-10-15

    When ions are accelerated by the radiation pressure of a laser pulse, their velocity cannot exceed the pulse group velocity which can be considerably smaller than the speed of light in vacuum. This is demonstrated in two cases corresponding to a thin foil target irradiated by high intensity laser light and to the hole boring produced in an extended plasma by the laser pulse. It is found that the beams of accelerated ions are unstable against Buneman-like and Weibel-like instabilities which results in the broadening of the ion energy spectrum.

  8. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01

    electrode in lithium-ion batteries: AFM study in an ethylenelithium-ion rechargeable batteries. Carbon 1999, 37, 165-batteries. J. Electrochem. Soc. 2001,

  9. Sodium Titanates as Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2014-01-01

    Anodes  for  Sodium  Ion  Batteries   Marca  M.  Doeff,  dual   intercalation   batteries   based   on   sodium  future   of   sodium  ion  batteries  will  be  discussed  

  10. Ion temperature gradient driven turbulence with strong trapped...

    Office of Scientific and Technical Information (OSTI)

    depends on ion free energy and electron dissipation, which implies that non-adiabatic electrons are essential to recover non-trivial dynamics of trapped ion granulations. Relevant...

  11. Designing Silicon Nanostructures for High Energy Lithium Ion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Designing Silicon Nanostructures for High Energy Lithium Ion Battery Anodes Designing Silicon Nanostructures for High Energy Lithium Ion Battery Anodes 2012 DOE Hydrogen and Fuel...

  12. Celgard US Manufacturing Facilities Initiative for Lithium-ion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery Separator Celgard US Manufacturing Facilities Initiative for Lithium-ion...

  13. Preparation of lithium-ion battery anodes using lignin (Journal...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Preparation of lithium-ion battery anodes using lignin Citation Details In-Document Search Title: Preparation of lithium-ion battery anodes using lignin Authors:...

  14. EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Beyond Lithium Ion Breakout Session Report EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout Session Report Breakout session presentation for the EV Everywhere Grand...

  15. Nanocomposite Materials for Lithium-Ion Batteries | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanocomposite Materials for Lithium-Ion Batteries Nanocomposite Materials for Lithium-Ion Batteries nanocompositematerialsliion.pdf More Documents & Publications Progress of DOE...

  16. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) DOE's Energy Storage...

  17. Nanoscale In Situ Characterization of Li-ion Battery Electrochemistry...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hersam, Northwestern University and CEES EFRC To enhance the performance and lifetime of lithium-ion (Li-ion) batteries, researchers require an improved understanding of the...

  18. ION ACCELERATORS AS DRIVERS FOR INERTIAL CONFINEMENT FUSION

    E-Print Network [OSTI]

    Faltens, A.

    2010-01-01

    and Controlled Nuclear Fusion Research, Brussels, Belgium,of the Heavy Ion Fusion Workshop held at Brookhaven NationalReport, Hearthfire Heavy Ion Fusion, October 1, 1979 - March

  19. Enabling Future Li-Ion Battery Recycling | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Future Li-Ion Battery Recycling Title Enabling Future Li-Ion Battery Recycling Publication Type Presentation Year of Publication 2014 Authors Gaines, LL Abstract Presentation made...

  20. Sensitivity of the interpretation of the experimental ion thermal...

    Office of Scientific and Technical Information (OSTI)

    thermal diffusivity to the determination of the ion conductive heat flux A moments equation formalism for the interpretation of the experimental ion thermal diffusivity from...

  1. Novel Electrolytes for Lithium Ion Batteries Lucht, Brett L 25...

    Office of Scientific and Technical Information (OSTI)

    Electrolytes for Lithium Ion Batteries Lucht, Brett L 25 ENERGY STORAGE We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have...

  2. Metal Ion-Assisted Transformations of 2-Pyridinealdoxime and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal Ion-Assisted Transformations of 2-Pyridinealdoxime and Hexafluorophosphate Metal Ion-Assisted Transformations of 2-Pyridinealdoxime and Hexafluorophosphate Print Monday, 05...

  3. Characterization of Li-ion Batteries using Neutron Diffraction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques Characterization of Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques 2011 DOE...

  4. Intercalation Kinetics and Ion Mobility in Electrode Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Intercalation Kinetics and Ion Mobility in Electrode Materials for Advanced Lithium Ion Batteries 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program...

  5. Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production...

    Office of Environmental Management (EM)

    Celebrates Expansion of Lithium-Ion Battery Production in North Carolina Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production in North Carolina July 26, 2011 -...

  6. Closing the Lithium-ion Battery Life Cycle: Poster handout |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Closing the Lithium-ion Battery Life Cycle: Poster handout Title Closing the Lithium-ion Battery Life Cycle: Poster handout Publication Type Miscellaneous Year of Publication 2014...

  7. Generalized microscopic theory of ion selectivity in voltage-gated ion channels

    E-Print Network [OSTI]

    Andrew Das Arulsamy

    2012-09-12

    Ion channels are specific proteins present in the membranes of living cells. They control the flow of specific ions through a cell, initiated by an ion channel's electrochemical gradient. In doing so, they control important physiological processes such as muscle contraction and neuronal connectivity, which cannot be properly activated if these channels go haywire, leading to life-threatening diseases and psychological disorders. Here, we will develop a generalized microscopic theory of ion selectivity applicable to KcsA, Na$_{\\rm v}$Rh and Ca$_{\\rm v}$ (L-type) ion channels. We unambiguously expose why and how a given ion-channel can be highly selective, and yet has a conductance of the order of one million ions per second, or higher. We will identify and prove the correct physico-biochemical mechanisms that are responsible for the high selectivity of a particular ion in a given ion channel. The above mechanisms consist of five conditions, which can be directly associated to these parameters - (i) dehydration energy, (ii) concentration of the "correct" ions (iii) Coulomb-van-der-Waals attraction, (iv) pore and ionic sizes, and indirectly to (v) the thermodynamic stability and (vi) the "knock-on" assisted permeation.

  8. Production of N[sup +] ions from a multicusp ion beam apparatus

    DOE Patents [OSTI]

    Kango Leung; Kunkel, W.B.; Walther, S.R.

    1993-03-30

    A method of generating a high purity (at least 98%) N[sup +] ion beam using a multicusp ion source having a chamber formed by a cylindrical chamber wall surrounded by a plurality of magnets, a filament centrally disposed in said chamber, a plasma electrode having an extraction orifice at one end of the chamber, a magnetic filter having two parallel magnets spaced from said plasma electrode and dividing the chamber into arc discharge and extraction regions. The method includes ionizing nitrogen gas in the arc discharge region of the chamber, maintaining the chamber wall at a positive voltage relative to the filament and at a magnitude for an optimum percentage of N[sup +] ions in the extracted ion beams, disposing a hot liner within the chamber and near the chamber wall to limit recombination of N[sup +] ions into the N[sub 2][sup +] ions, spacing the magnets of the magnetic filter from each other for optimum percentage of N[sup 3] ions in the extracted ion beams, and maintaining a relatively low pressure downstream of the extraction orifice and of a magnitude (preferably within the range of 3-8[times]10[sup [minus]4] torr) for an optimum percentage of N[sup +] ions in the extracted ion beam.

  9. Production of N.sup.+ ions from a multicusp ion beam apparatus

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA); Kunkel, Wulf B. (Berkeley, CA); Walther, Steven R. (Salem, MA)

    1993-01-01

    A method of generating a high purity (at least 98%) N.sup.+ ion beam using a multicusp ion source (10) having a chamber (11) formed by a cylindrical chamber wall (12) surrounded by a plurality of magnets (13), a filament (57) centrally disposed in said chamber, a plasma electrode (36) having an extraction orifice (41) at one end of the chamber, a magnetic filter having two parallel magnets (21, 22) spaced from said plasma electrode (36) and dividing the chamber (11) into arc discharge and extraction regions. The method includes ionizing nitrogen gas in the arc discharge region of the chamber (11), maintaining the chamber wall (12) at a positive voltage relative to the filament (57) and at a magnitude for an optimum percentage of N.sup.+ ions in the extracted ion beams, disposing a hot liner (45) within the chamber and near the chamber wall (12) to limit recombination of N.sup.+ ions into the N.sub.2.sup.+ ions, spacing the magnets (21, 22) of the magnetic filter from each other for optimum percentage of N.sup.3 ions in the extracted ion beams, and maintaining a relatively low pressure downstream of the extraction orifice and of a magnitude (preferably within the range of 3-8.times.10.sup.-4 torr) for an optimum percentage of N.sup.+ ions in the extracted ion beam.

  10. Ion detection device and method with compressing ion-beam shutter

    DOE Patents [OSTI]

    Sperline, Roger P [Tucson, AZ; Roger P. (Tucson, AZ)

    2009-05-26

    An ion detection device, method and computer readable medium storing instructions for applying voltages to shutter elements of the detection device to compress ions in a volume defined by the shutter elements and to output the compressed ions to a collector. The ion detection device has a chamber having an inlet and receives ions through the inlet, a shutter provided in the chamber opposite the inlet and configured to allow or prevent the ions to pass the shutter, the shutter having first and second shutter elements, a collector provided in the chamber opposite the shutter and configured to collect ions passed through the shutter, and a processing unit electrically connected to the first and second shutter elements. The processing unit applies, during a first predetermined time interval, a first voltage to the first shutter element and a second voltage to the second shutter element, the second voltage being lower than the first voltage such that ions from the inlet enter a volume defined by the first and second shutter elements, and during a second predetermined time interval, a third voltage to the first shutter element, higher than the first voltage, and a fourth voltage to the second shutter element, the third voltage being higher than the fourth voltage such that ions that entered the volume are compressed as the ions exit the volume and new ions coming from the inlet are prevented from entering the volume. The processing unit is electrically connected to the collector and configured to detect the compressed ions based at least on a current received from the collector and produced by the ions collected by the collector.

  11. Physics with fast molecular-ion beams

    SciTech Connect (OSTI)

    Kanter, E.P.

    1980-01-01

    Fast (MeV) molecular-ion beams provide a unique source of energetic projectile nuclei which are correlated in space and time. The recognition of this property has prompted several recent investigations of various aspects of the interactions of these ions with matter. High-resolution measurements on the fragments resulting from these interactions have already yielded a wealth of new information on such diverse topics as plasma oscillations in solids and stereochemical structures of molecular ions as well as a variety of atomic collision phenomena. The general features of several such experiments will be discussed and recent results will be presented.

  12. Short wavelength ion temperature gradient turbulence

    SciTech Connect (OSTI)

    Chowdhury, J.; Ganesh, R. [Institute for Plasma Research, Bhat, Gandhinagar (India); Brunner, S.; Lapillonne, X.; Villard, L. [CRPP, Association EURATOM-Confederation Suisse, EPFL, 1015 Lausanne (Switzerland); Jenko, F. [Max-Planck-Institut fuer Plasmaphysik Boltzmannstr. 2, D-85748 Garching (Germany)

    2012-10-15

    The ion temperature gradient (ITG) mode in the high wavenumber regime (k{sub y}{rho}{sub s}>1), referred to as short wavelength ion temperature gradient mode (SWITG) is studied using the nonlinear gyrokinetic electromagnetic code GENE. It is shown that, although the SWITG mode may be linearly more unstable than the standard long wavelength (k{sub y}{rho}{sub s}<1) ITG mode, nonlinearly its contribution to the total thermal ion heat transport is found to be low. We interpret this as resulting from an increased zonal flow shearing effect on the SWITG mode suppression.

  13. Separation of metal ions from aqueous solutions

    DOE Patents [OSTI]

    Almon, Amy C. (Augusta, GA)

    1994-01-01

    A process and apparatus for quantitatively and selectively separating metal ions from mixtures thereof in aqueous solution. The apparatus includes, in combination, a horizontal electrochemical flow cell containing flow bulk electrolyte solution and an aqueous, metal ion-containing solution, the cell containing a metal mesh working electrode, a counter electrode positioned downstream from the working electrode, an independent variable power supply/potentiostat positioned outside of the flow cell and connected to the electrodes, and optionally a detector such as a chromatographic detector, positioned outside the flow cell. This apparatus and its operation has significant application where trace amounts of metal ions are to be separated.

  14. Focused ion beam source method and apparatus

    DOE Patents [OSTI]

    Pellin, Michael J. (Naperville, IL); Lykke, Keith R. (Gaithersburg, MD); Lill, Thorsten B. (Sunnyvale, CA)

    2000-01-01

    A focused ion beam having a cross section of submicron diameter, a high ion current, and a narrow energy range is generated from a target comprised of particle source material by laser ablation. The method involves directing a laser beam having a cross section of critical diameter onto the target, producing a cloud of laser ablated particles having unique characteristics, and extracting and focusing a charged particle beam from the laser ablated cloud. The method is especially suited for producing focused ion beams for semiconductor device analysis and modification.

  15. High-energy accelerator for beams of heavy ions

    DOE Patents [OSTI]

    Martin, Ronald L. (La Grange, IL); Arnold, Richard C. (Chicago, IL)

    1978-01-01

    An apparatus for accelerating heavy ions to high energies and directing the accelerated ions at a target comprises a source of singly ionized heavy ions of an element or compound of greater than 100 atomic mass units, means for accelerating the heavy ions, a storage ring for accumulating the accelerated heavy ions and switching means for switching the heavy ions from the storage ring to strike a target substantially simultaneously from a plurality of directions. In a particular embodiment the heavy ion that is accelerated is singly ionized hydrogen iodide. After acceleration, if the beam is of molecular ions, the ions are dissociated to leave an accelerated singly ionized atomic ion in a beam. Extraction of the beam may be accomplished by stripping all the electrons from the atomic ion to switch the beam from the storage ring by bending it in magnetic field of the storage ring.

  16. Nonlinear Spectroscopy of Trapped Ions

    E-Print Network [OSTI]

    Frank Schlawin; Manuel Gessner; Shaul Mukamel; Andreas Buchleitner

    2014-10-07

    Nonlinear spectroscopy employs a series of laser pulses to interrogate dynamics in large interacting many-body systems, and has become a highly successful method for experiments in chemical physics. Current quantum optical experiments approach system sizes and levels of complexity which require the development of efficient techniques to assess spectral and dynamical features with scalable experimental overhead. However, established methods from optical spectroscopy of macroscopic ensembles cannot be applied straightforwardly to few-atom systems. Based on the ideas proposed in [M. Gessner et al. New J. Phys. 16 092001 (2014)], we develop a diagrammatic approach to construct nonlinear measurement protocols for controlled quantum systems and discuss experimental implementations with trapped ion technology in detail. These methods in combination with distinct features of ultra-cold matter systems allow us to monitor and analyze excitation dynamics in both the electronic and vibrational degrees of freedom. They are independent of system size, and can therefore reliably probe systems where, e.g., quantum state tomography becomes prohibitively expensive. We propose signals that can probe steady state currents, detect the influence of anharmonicities on phonon transport, and identify signatures of chaotic dynamics near a quantum phase transition in an Ising-type spin chain.

  17. STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES

    E-Print Network [OSTI]

    Wilcox, James D.

    2010-01-01

    Capacity, High Rate Lithium-Ion Battery Electrodes Utilizingas cathode materials for lithium ion battery. Electrochimica

  18. Liquid metal ion source and alloy for ion emission of multiple ionic species

    DOE Patents [OSTI]

    Clark, Jr., William M. (Thousand Oaks, CA); Utlaut, Mark W. (Saugus, CA); Wysocki, Joseph A. (Oxnard, CA); Storms, Edmund K. (Los Alamos, NM); Szklarz, Eugene G. (Los Alamos, NM); Behrens, Robert G. (Los Alamos, NM); Swanson, Lynwood W. (McMinnville, OR); Bell, Anthony E. (McMinnville, OR)

    1987-06-02

    A liquid metal ion source and alloy for the simultaneous ion evaporation of arsenic and boron, arsenic and phosphorus, or arsenic, boron and phosphorus. The ionic species to be evaporated are contained in palladium-arsenic-boron and palladium-arsenic-boron-phosphorus alloys. The ion source, including an emitter means such as a needle emitter and a source means such as U-shaped heater element, is preferably constructed of rhenium and tungsten, both of which are readily fabricated. The ion sources emit continuous beams of ions having sufficiently high currents of the desired species to be useful in ion implantation of semiconductor wafers for preparing integrated circuit devices. The sources are stable in operation, experience little corrosion during operation, and have long operating lifetimes.

  19. Optimal electrode geometries for 2-dimensional ion arrays with bi-layer ion traps

    E-Print Network [OSTI]

    F. N. Krauth; J. Alonso; J. P. Home

    2014-11-04

    We investigate electrode geometries required to produce periodic 2-dimensional ion-trap arrays with the ions placed between two planes of electrodes. We present a generalization of previous methods for traps containing a single electrode plane to this new geometry, and show that for a given ion-electrode distance and applied voltages, the inter-ion distance can be reduced by a factor of up to 3 relative to single-plane traps. This represents an increase by a factor of 9 in the trap density and a factor of 27 in the exchange coupling between the oscillatory motion of neighboring ions. The resulting traps are also considerably deeper for bi-layer structures than for single-plane traps. These results could offer a useful path towards 2-dimensional ion arrays for quantum simulation. We also discuss issues with the fabrication of such traps.

  20. Ion traps fabricated in a CMOS foundry

    E-Print Network [OSTI]

    Mehta, Karan Kartik

    We demonstrate trapping in a surface-electrode ion trap fabricated in a 90-nm CMOS (complementary metal-oxide-semiconductor) foundry process utilizing the top metal layer of the process for the trap electrodes. The process ...

  1. Flow-through ion beam source

    DOE Patents [OSTI]

    Springer, R.W.

    1997-02-11

    A method and an apparatus for forming a charge neutral ion beam which is useful in producing thin films of material on electrically conductive or non-conductive substrates are provided. 4 figs.

  2. Ion source with external RF antenna

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Ji, Qing; Wilde, Stephen

    2005-12-13

    A radio frequency (RF) driven plasma ion source has an external RF antenna, i.e. the RF antenna is positioned outside the plasma generating chamber rather than inside. The RF antenna is typically formed of a small diameter metal tube coated with an insulator. An external RF antenna assembly is used to mount the external RF antenna to the ion source. The RF antenna tubing is wound around the external RF antenna assembly to form a coil. The external RF antenna assembly is formed of a material, e.g. quartz, which is essentially transparent to the RF waves. The external RF antenna assembly is attached to and forms a part of the plasma source chamber so that the RF waves emitted by the RF antenna enter into the inside of the plasma chamber and ionize a gas contained therein. The plasma ion source is typically a multi-cusp ion source.

  3. Courses of Instruction InstruCtIon

    E-Print Network [OSTI]

    Stuart, Steven J.

    practice rather than research. Course ABBreVIAtIons Accounting.............................................................BUS Business Administration................................M B A Calhoun Honors Seminar Development............C R D Computer Science......................................... CP SC Construction

  4. Electrospray ion source with reduced analyte electrochemistry

    DOE Patents [OSTI]

    Kertesz, Vilmos [Knoxville, TN; Van Berkel, Gary [Clinton, TN

    2011-08-23

    An electrospray ion (ESI) source and method capable of ionizing an analyte molecule without oxidizing or reducing the analyte of interest. The ESI source can include an emitter having a liquid conduit, a working electrode having a liquid contacting surface, a spray tip, a secondary working electrode, and a charge storage coating covering partially or fully the liquid contacting surface of the working electrode. The liquid conduit, the working electrode and the secondary working electrode can be in liquid communication. The electrospray ion source can also include a counter electrode proximate to, but separated from, said spray tip. The electrospray ion source can also include a power system for applying a voltage difference between the working electrodes and a counter-electrode. The power system can deliver pulsed voltage changes to the working electrodes during operation of said electrospray ion source to minimize the surface potential of the charge storage coating.

  5. Ion processing element with composite media

    DOE Patents [OSTI]

    Mann, Nick R. (Blackfoot, ID); Tranter, Troy J. (Idaho Falls, ID); Todd, Terry A. (Aberdeen, ID); Sebesta, Ferdinand (Prague, CZ)

    2009-03-24

    An ion processing element employing composite media disposed in a porous substrate, for facilitating removal of selected chemical species from a fluid stream. The ion processing element includes a porous fibrous glass substrate impregnated by composite media having one or more active components supported by a matrix material of polyacrylonitrile. The active components are effective in removing, by various mechanisms, one or more constituents from a fluid stream passing through the ion processing element. Due to the porosity and large surface area of both the composite medium and the substrate in which it is disposed, a high degree of contact is achieved between the active component and the fluid stream being processed. Further, the porosity of the matrix material and the substrate facilitates use of the ion processing element in high volume applications where it is desired to effectively process a high volume flows.

  6. Partonic coalescence in relativistic heavy ion collisions 

    E-Print Network [OSTI]

    Greco, V.; Ko, Che Ming; Levai, P.

    2003-01-01

    Using a covariant coalescence model, we study hadron production in relativistic heavy ion collisions from both soft partons in the quark-gluon plasma and hard partons in minijets. Including transverse flow of soft partons and independent...

  7. Towards the development of calcium ion batteries

    E-Print Network [OSTI]

    Rogosic, John

    2014-01-01

    A novel system for the study of calcium-ion electroactive materials has been developed, characterized, and utilized to screen a number of candidate calcium intercalation compounds. The system is comprised of a dried, ...

  8. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01

    simulate those in a lithium battery. Chapter 3 TransientModel for Aging of Lithium-Ion Battery Cells. Journal of TheRole in Nonaqueous Lithium-Oxygen Battery Electrochemistry.

  9. Enhancing the performances of ECR Ion Sources

    SciTech Connect (OSTI)

    Alton, G.D.; Liu, Y.

    1999-03-29

    The performances of ECR ion sources can be enhanced in the spatial domain by tailoring the central magnetic field so that it is uniformly distributed over a large plasma volume and is of magnitude so as to be in resonance with single frequency microwave radiation. Analogously, the performances of conventional minimum-B ECR ion sources can be enhanced in the frequency domain by injecting multiple discrete frequency or broadband microwave radiation into their plasma volumes. In this report, examples of both the spatial-and frequency-domain techniques will be given. For example, the design aspects of an all permanent-magnet ''volume-type'' (spatial-domain) ECR ion source will be described and the effects of injecting multiple frequencies (frequency-domain) on the charge-state-distributions extracted from a conventional minimum-B ECR ion source will be presented.

  10. High energy heavy ions: techniques and applications

    SciTech Connect (OSTI)

    Alonso, J.R.

    1985-04-01

    Pioneering work at the Bevalac has given significant insight into the field of relativistic heavy ions, both in the development of techniques for acceleration and delivery of these beams as well as in many novel areas of applications. This paper will outline our experiences at the Bevalac; ion sources, low velocity acceleration, matching to the synchrotron booster, and beam delivery. Applications discussed will include the observation of new effects in central nuclear collisions, production of beams of exotic short-lived (down to 1 ..mu..sec) isotopes through peripheral nuclear collisions, atomic physics with hydrogen-like uranium ions, effects of heavy ''cosmic rays'' on satellite equipment, and an ongoing cancer radiotherapy program with heavy ions. 39 refs., 6 figs., 1 tab.

  11. Electron-impact excitation of ions

    SciTech Connect (OSTI)

    Crandall, D.H.

    1981-01-01

    A review of electron-ion beam experiments is given. Techniques, difficulties, and present trends in this area are discussed. Measured cross sections are compared with theoretical results and the current level of agreement is assessed. 74 references. (WHK)

  12. Intercalation dynamics in lithium-ion batteries

    E-Print Network [OSTI]

    Burch, Damian

    2009-01-01

    A new continuum model has been proposed by Singh, Ceder, and Bazant for the ion intercalation dynamics in a single crystal of rechargeable-battery electrode materials. It is based on the Cahn-Hilliard equation coupled to ...

  13. Controlling fast transport of cold trapped ions

    E-Print Network [OSTI]

    Andreas Walther; Frank Ziesel; Thomas Ruster; Sam T. Dawkins; Konstantin Ott; Max Hettrich; Kilian Singer; Ferdinand Schmidt-Kaler; Ulrich Poschinger

    2012-06-02

    We realize fast transport of ions in a segmented micro-structured Paul trap. The ion is shuttled over a distance of more than 10^4 times its groundstate wavefunction size during only 5 motional cycles of the trap (280 micro meter in 3.6 micro seconds). Starting from a ground-state-cooled ion, we find an optimized transport such that the energy increase is as low as 0.10 $\\pm$ 0.01 motional quanta. In addition, we demonstrate that quantum information stored in a spin-motion entangled state is preserved throughout the transport. Shuttling operations are concatenated, as a proof-of-principle for the shuttling-based architecture to scalable ion trap quantum computing.

  14. Electrospray ion source with reduced analyte electrochemistry

    DOE Patents [OSTI]

    Kertesz, Vilmos; Van Berkel, Gary J

    2013-07-30

    An electrospray ion (ESI) source and method capable of ionizing an analyte molecule without oxidizing or reducing the analyte of interest. The ESI source can include an emitter having a liquid conduit, a working electrode having a liquid contacting surface, a spray tip, a secondary working electrode, and a charge storage coating covering partially or fully the liquid contacting surface of the working electrode. The liquid conduit, the working electrode and the secondary working electrode can be in liquid communication. The electrospray ion source can also include a counter electrode proximate to, but separated from, said spray tip. The electrospray ion source can also include a power system for applying a voltage difference between the working electrodes and a counter-electrode. The power system can deliver pulsed voltage changes to the working electrodes during operation of said electrospray ion source to minimize the surface potential of the charge storage coating.

  15. Hadron Production in Heavy Ion Collisions

    E-Print Network [OSTI]

    Helmut Oeschler; Hans Georg Ritter; Nu Xu

    2009-08-12

    We review hadron production in heavy ion collisions with emphasis on pion and kaon production at energies below 2 AGeV and on partonic collectivity at RHIC energies.

  16. A quantum information processor with trapped ions

    E-Print Network [OSTI]

    Schindler, Philipp

    Quantum computers hold the promise to solve certain problems exponentially faster than their classical counterparts. Trapped atomic ions are among the physical systems in which building such a computing device seems viable. ...

  17. Ion current detector for high pressure ion sources for monitoring separations

    DOE Patents [OSTI]

    Smith, R.D.; Wahl, J.H.; Hofstadler, S.A.

    1996-08-13

    The present invention relates generally to any application involving the monitoring of signal arising from ions produced by electrospray or other high pressure (>100 torr) ion sources. The present invention relates specifically to an apparatus and method for the detection of ions emitted from a capillary electrophoresis (CE) system, liquid chromatography, or other small-scale separation methods. And further, the invention provides a very simple diagnostic as to the quality of the separation and the operation of an electrospray source. 7 figs.

  18. Cesium-specific phenolic ion exchange resin

    DOE Patents [OSTI]

    Bibler, Jane P. (Aiken, SC); Wallace, Richard M. (Aiken, SC)

    1995-01-01

    A phenolic, cesium-specific, cation exchange resin is prepared by neutralizing resorcinol with potassium hydroxide, condensing/polymerizing the resulting intermediate with formaldehyde, heat-curing the resulting polymer to effect cross-linking and grinding it to desired particle size for use. This resin will selectively and efficiently adsorb cesium ions in the presence of a high concentration of sodium ions with a low carbon to cesium ratio.

  19. COMMISSIONING OF THE RELATIVISTIC HEAVY ION COLLIDER.

    SciTech Connect (OSTI)

    TRBOJEVIC,D.; AHRENS,L.; BLASKIEWICZ,M.; BRENNAN,M.; BAI,M.; CAMERON,P.; CARDONA,J.; CONNOLLY,R.; ET AL; TSOUPAS,N.; VAN ZEIJTS,J.

    2001-06-18

    This report describes in detail steps performed in bringing the Relativistic Heavy Ion Collider (RHIC) from the commissioning into the operational stage when collisions between 60 bunches of fully striped gold ions, were routinely provided. Corrections of the few power supplies connections by the beam measurements are described. Beam lifetime improvements at injection, along the acceleration are shown. The beam diagnostic results; like Schottky detector, beam profile monitor, beam position monitors, tune meter and others, are shown [1].

  20. Ion beam processing of advanced electronic materials

    SciTech Connect (OSTI)

    Cheung, N.W.; Marwick, A.D.; Roberto, J.B. (eds.) (California Univ., Berkeley, CA (USA); International Business Machines Corp., Yorktown Heights, NY (USA). Thomas J. Watson Research Center; Oak Ridge National Lab., TN (USA))

    1989-01-01

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases. (CBS)

  1. Pulsed source ion implantation apparatus and method

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA)

    1996-01-01

    A new pulsed plasma-immersion ion-implantation apparatus that implants ions in large irregularly shaped objects to controllable depth without overheating the target, minimizing voltage breakdown, and using a constant electrical bias applied to the target. Instead of pulsing the voltage applied to the target, the plasma source, for example a tungsten filament or a RF antenna, is pulsed. Both electrically conducting and insulating targets can be implanted.

  2. Pulsed source ion implantation apparatus and method

    DOE Patents [OSTI]

    Leung, K.N.

    1996-09-24

    A new pulsed plasma-immersion ion-implantation apparatus that implants ions in large irregularly shaped objects to controllable depth without overheating the target, minimizing voltage breakdown, and using a constant electrical bias applied to the target. Instead of pulsing the voltage applied to the target, the plasma source, for example a tungsten filament or a RF antenna, is pulsed. Both electrically conducting and insulating targets can be implanted. 16 figs.

  3. Cesium-specific phenolic ion exchange resin

    DOE Patents [OSTI]

    Bibler, J.P.; Wallace, R.M.

    1995-08-15

    A phenolic, cesium-specific, cation exchange resin is prepared by neutralizing resorcinol with potassium hydroxide, condensing/polymerizing the resulting intermediate with formaldehyde, heat-curing the resulting polymer to effect cross-linking and grinding it to desired particle size for use. This resin will selectively and efficiently adsorb cesium ions in the presence of a high concentration of sodium ions with a low carbon to cesium ratio. 2 figs.

  4. Jets in relativistic heavy ion collisions

    SciTech Connect (OSTI)

    Wang, Xin-Nian; Gyulassy, M.

    1990-09-01

    Several aspects of hard and semihard QCD jets in relativistic heavy ion collisions are discussed, including multiproduction of minijets and the interaction of a jet with dense nuclear matter. The reduction of jet quenching effect in deconfined phase of nuclear matter is speculated to provide a signature of the formation of quark gluon plasma. HIJING Monte Carlo program which can simulate events of jets production and quenching in heavy ion collisions is briefly described. 35 refs., 13 figs.

  5. Composition and process for separating cesium ions from an acidic aqueous solution also containing other ions

    DOE Patents [OSTI]

    Dietz, M.L.; Horwitz, E.P.; Bartsch, R.A.; Barrans, R.E. Jr.; Rausch, D.

    1999-03-30

    A crown ether cesium ion extractant is disclosed as is its synthesis. The crown ether cesium ion extractant is useful for the selective purification of cesium ions from aqueous acidic media, and more particularly useful for the isolation of radioactive cesium-137 from nuclear waste streams. Processes for isolating cesium ions from aqueous acidic media using the crown ether cesium extractant are disclosed as are processes for recycling the crown ether cesium extractant and processes for recovering cesium from a crown ether cesium extractant solution. 4 figs.

  6. Composition and process for separating cesium ions from an acidic aqueous solution also containing other ions

    DOE Patents [OSTI]

    Dietz, Mark L. (Elmhurst, IL); Horwitz, E. Philip (Naperville, IL); Bartsch, Richard A. (Lubbock, TX); Barrans, Jr., Richard E. (Downers Grove, IL); Rausch, David (Naperville, IL)

    1999-01-01

    A crown ether cesium ion extractant is disclosed as is its synthesis. The crown ether cesium ion extractant is useful for the selective purification of cesium ions from aqueous acidic media, and more particularly useful for the isolation of radioactive cesium-137 from nuclear waste streams. Processes for isolating cesium ions from aqueous acidic media using the crown ether cesium extractant are disclosed as are processes for recycling the crown ether cesium extractant and processes for recovering cesium from a crown ether cesium extractant solution.

  7. Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques

    E-Print Network [OSTI]

    Doeff, Marca M.

    2013-01-01

    Graphite and LiCoO 2 are the most commonly employed negative and positive electrodes, respectively, for lithium ion batteries.

  8. Preliminary result of rapid solenoid for controlling heavy-ion beam parameters of laser ion source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Okamura, M.; Sekine, M.; Ikeda, S.; Kanesue, T.; Kumaki, M.; Fuwa, Y.

    2015-03-13

    To realize a heavy ion inertial fusion driver, we have studied a possibility of laser ion source (LIS). A LIS can provide high current high brightness heavy ion beams, however it was difficult to manipulate the beam parameters. To overcome the issue, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The rapid ramping magnetic field could enhance limited time slice of the current and simultaneously the beam emittance changed accordingly. This approach may also useful to realize an ion source for HIF power plant.

  9. Double-layer ion acceleration triggered by ion magnetization in expanding radiofrequency plasma sources

    SciTech Connect (OSTI)

    Takahashi, Kazunori [Department of Electrical and Electronic Engineering, Iwate University, Morioka 020-8551 (Japan); Space Plasma, Power and Propulsion Group, Research School of Physics and Engineering, Australian National University, Canberra 0200 (Australia); Charles, Christine; Boswell, Rod W. [Space Plasma, Power and Propulsion Group, Research School of Physics and Engineering, Australian National University, Canberra 0200 (Australia); Fujiwara, Tamiya [Department of Electrical and Electronic Engineering, Iwate University, Morioka 020-8551 (Japan)

    2010-10-04

    Ion energy distribution functions downstream of the source exit in magnetically expanding low-pressure plasmas are experimentally investigated for four source tube diameters ranging from about 5 to 15 cm. The magnetic-field threshold corresponding to a transition from a simple expanding plasma to a double layer-containing plasma is observed to increase with a decrease in the source tube diameter. The results demonstrate that for the four geometries, the double layer and the accelerated ion beam form when the ion Larmour radius in the source becomes smaller than the source tube radius, i.e., when the ions become magnetized in the source tube.

  10. Negative ion source with external RF antenna

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Hahto, Sami K.; Hahto, Sari T.

    2007-02-13

    A radio frequency (RF) driven plasma ion source has an external RF antenna, i.e. the RF antenna is positioned outside the plasma generating chamber rather than inside. The RF antenna is typically formed of a small diameter metal tube coated with an insulator. An external RF antenna assembly is used to mount the external RF antenna to the ion source. The RF antenna tubing is wound around the external RF antenna assembly to form a coil. The external RF antenna assembly is formed of a material, e.g. quartz, which is essentially transparent to the RF waves. The external RF antenna assembly is attached to and forms a part of the plasma source chamber so that the RF waves emitted by the RF antenna enter into the inside of the plasma chamber and ionize a gas contained therein. The plasma ion source is typically a multi-cusp ion source. A converter can be included in the ion source to produce negative ions.

  11. Diffusive Acceleration of Ions at Interplanetary Shocks

    E-Print Network [OSTI]

    Matthew G. Baring; Errol J. Summerlin

    2005-06-08

    Heliospheric shocks are excellent systems for testing theories of particle acceleration in their environs. These generally fall into two classes: (1) interplanetary shocks that are linear in their ion acceleration characteristics, with the non-thermal ions serving as test particles, and (2) non-linear systems such as the Earth's bow shock and the solar wind termination shock, where the accelerated ions strongly influence the magnetohydrodynamic structure of the shock. This paper explores the modelling of diffusive acceleration at a particular interplanetary shock, with an emphasis on explaining in situ measurements of ion distribution functions. The observational data for this event was acquired on day 292 of 1991 by the Ulysses mission. The modeling is performed using a well-known kinetic Monte Carlo simulation, which has yielded good agreement with observations at several heliospheric shocks, as have other theoretical techniques, namely hybrid plasma simulations, and numerical solution of the diffusion-convection equation. In this theory/data comparison, it is demonstrated that diffusive acceleration theory can, to first order, successfully account for both the proton distribution data near the shock, and the observation of energetic protons farther upstream of this interplanetary shock than lower energy pick-up protons, using a single turbulence parameter. The principal conclusion is that diffusive acceleration of inflowing upstream ions can model this pick-up ion-rich event without the invoking any seed pre-acceleration mechanism, though this investigation does not rule out the action of such pre-acceleration.

  12. Secondary ion mass spectrometry (SIMS)! Seminar 4 (UN)!

    E-Print Network [OSTI]

    ?umer, Slobodan

    .1 Primary particle source! 7! 3.2 Primary ion column! 7! 3.3 Mass analyser! 8! 3.4 Detectors! 9! 4 of primary ions, secondary particles are emitted. Few of them are charged ions (secondary ions), which sensitivity it gives us information complementary to other spectroscopic techniques. This seminar reviews

  13. Mechanical Properties of Lithium-Ion Battery Separator Materials

    E-Print Network [OSTI]

    Petta, Jason

    Mechanical Properties of Lithium-Ion Battery Separator Materials Patrick Sinko B.S. Materials and motivation ­ Why study lithium-ion batteries? ­ Lithium-ion battery fundamentals ­ Why study the mechanical behaviors in lithium-ion batteries? · Current work ­ Mechanical behaviors the separator ­ How do we test

  14. THE PHYSICS AND CHEMISTRY OF SPUTTERING BY ENERGETIC PLASMA IONS

    E-Print Network [OSTI]

    Johnson, Robert E.

    of a number of solar system bodies. These energetic incident ions deposit energy in the gas or solid. This can is a process by which an energetic ion deposits its energy in a material initiating a cascade of events which the solar wind, local pick-up ions or magnetospheric plasma ions impact the atmospheres and surfaces

  15. Workshop on transport for a common ion driver

    SciTech Connect (OSTI)

    Olson, C.C. [Sandia National Labs., Albuquerque, NM (United States); Lee, E. [Lawrence Berkeley Lab., CA (United States); Langdon, B. [Lawrence Livermore National Lab., CA (United States)

    1994-12-31

    This report contains research in the following areas related to beam transport for a common ion driver: multi-gap acceleration; neutralization with electrons; gas neutralization; self-pinched transport; HIF and LIF transport, and relevance to common ion driver; LIF and HIF reactor concepts and relevance to common ion driver; atomic physics for common ion driver; code capabilities and needed improvement.

  16. Fast-ion D measurements of the fast-ion distribution ,,invited...a... W. W. Heidbrinkb

    E-Print Network [OSTI]

    Heidbrink, William W.

    Fast-ion D measurements of the fast-ion distribution ,,invited...a... W. W. Heidbrinkb University; published online 25 October 2010 The fast-ion D FIDA diagnostic is an application of charge-exchange recombination spectroscopy. Fast ions that neutralize in an injected neutral beam emit Balmer- light

  17. Metal-ion rescue revisited: Biochemical detection of site-bound metal ions important for RNA folding

    E-Print Network [OSTI]

    Das, Rhiju

    Metal-ion rescue revisited: Biochemical detection of site-bound metal ions important for RNA-dimensional architectures of RNA molecules, divalent metal ions populate specific locations, shedding their water molecules make essential contributions to function. Defining the locations of these site-bound metal ions remains

  18. Time-of-flight direct recoil ion scattering spectrometer

    DOE Patents [OSTI]

    Krauss, A.R.; Gruen, D.M.; Lamich, G.J.

    1994-09-13

    A time-of-flight direct recoil and ion scattering spectrometer beam line is disclosed. The beam line includes an ion source which injects ions into pulse deflection regions and separated by a drift space. A final optics stage includes an ion lens and deflection plate assembly. The ion pulse length and pulse interval are determined by computerized adjustment of the timing between the voltage pulses applied to the pulsed deflection regions. 23 figs.

  19. The Heavy Ion Fusion Science Virtual National Laboratory Overview of Heavy Ion Fusion / High Energy

    E-Print Network [OSTI]

    with GSI, Germany, to develop HEDP diagnostics. · Unique diagnostic measurements of electron cloud effects program · Compressed intense heavy ion beams in neutralizing background plasma in NDCX-I: 150 ns down to 2 on intense heavy-ion beam transport in both quadrupole and solenoid magnets. · Computer simulation models

  20. The ion-ion hybrid Alfvén resonator in a fusion environment

    SciTech Connect (OSTI)

    Farmer, W. A. [Univ. of California, Los Angeles, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Morales, G. J. [Univ. of California, Los Angeles, CA (United States)

    2014-06-01

    An investigation is made of a shear Alfvén wave resonator for burning plasma conditions expected in the ITER device. For small perpendicular scale-lengths the shear mode, which propagates predominantly along the magnetic field direction, experiences a parallel reflection where the wave frequency matches the local ion-ion hybrid frequency. In a tokamak device operating with a deuterium–tritium fuel, this effect can form a natural resonator because of the variation in local field strength along a field line. The relevant kinetic dispersion relation is examined to determine the relative importance of Landau and cyclotron damping over the possible resonator parameter space. A WKB model based on the kinetic dispersion relation is used to determine the eigenfrequencies and the quality factors of modes trapped in the resonator. The lowest frequency found has a value slightly larger than the ion-ion hybrid frequency at the outboard side of a given flux surface. The possibility that the resonator modes can be driven unstable by energetic alpha particles is considered. It is found that within a bandwidth of roughly 600 kHz above the ion-ion hybrid frequency on the outboard side of the flux surface, the shear modes can experience significant spatial amplification. An assessment is made of the form of an approximate global eigenmode that possesses the features of a resonator. It is identified that magnetic field shear combined with large ion temperature can cause coupling to an ion-Bernstein wave, which can limit the instability.

  1. Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques

    SciTech Connect (OSTI)

    Mehta, Apurva; Stanford Synchrotron Radiation Lightsource; Doeff, Marca M.; Chen, Guoying; Cabana, Jordi; Richardson, Thomas J.; Mehta, Apurva; Shirpour, Mona; Duncan, Hugues; Kim, Chunjoong; Kam, Kinson C.; Conry, Thomas

    2013-04-30

    We describe the use of synchrotron X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) techniques to probe details of intercalation/deintercalation processes in electrode materials for Li ion and Na ion batteries. Both in situ and ex situ experiments are used to understand structural behavior relevant to the operation of devices.

  2. Ion Crystals Produced by Laser and Sympathetic Cooling in a Linear RF Ion Trap 

    E-Print Network [OSTI]

    Zhu, Feng

    2012-02-14

    A detailed investigation of ion crystals produced by laser and sympathetic cooling in a linear RF trap has been conducted. The laser cooling methods were examined and applied to the trapped ^24Mg^(positive) ions. The crystals produced by the laser...

  3. Development and Application of an Electrospray Ionization Ion Mobility-mass Spectrometer Using an RF Ion Funnel and Periodic-focusing Ion Guide 

    E-Print Network [OSTI]

    Jeon, Junho

    2013-10-16

    A novel ion mobility-mass spectrometer was designed and built in order to achieve high transmission and high resolution for observing desolvated ion conformations of chemical and biological molecules in the gas phase. The instrument incorporates a...

  4. Numerical simulation of ion charge breeding in electron beam ion source

    SciTech Connect (OSTI)

    Zhao, L., E-mail: zhao@far-tech.com; Kim, Jin-Soo [FAR-TECH, Inc., San Diego, California 92122 (United States)] [FAR-TECH, Inc., San Diego, California 92122 (United States)

    2014-02-15

    The Electron Beam Ion Source particle-in-cell code (EBIS-PIC) tracks ions in an EBIS electron beam while updating electric potential self-consistently and atomic processes by the Monte Carlo method. Recent improvements to the code are reported in this paper. The ionization module has been improved by using experimental ionization energies and shell effects. The acceptance of injected ions and the emittance of extracted ion beam are calculated by extending EBIS-PIC to the beam line transport region. An EBIS-PIC simulation is performed for a Cs charge-breeding experiment at BNL. The charge state distribution agrees well with experiments, and additional simulation results of radial profiles and velocity space distributions of the trapped ions are presented.

  5. A double-layer based model of ion confinement in electron cyclotron resonance ion source

    SciTech Connect (OSTI)

    Mascali, D. Neri, L.; Celona, L.; Castro, G.; Gammino, S.; Ciavola, G.; Torrisi, G.; Università Mediterranea di Reggio Calabria, Dipartimento di Ingegneria dell’Informazione, delle Infrastrutture e dell’Energia Sostenibile, Via Graziella, I-89100 Reggio Calabria ; Sorbello, G.; Università degli Studi di Catania, Dipartimento di Ingegneria Elettrica Elettronica ed Informatica, Viale Andrea Doria 6, 95125 Catania

    2014-02-15

    The paper proposes a new model of ion confinement in ECRIS, which can be easily generalized to any magnetic configuration characterized by closed magnetic surfaces. Traditionally, ion confinement in B-min configurations is ascribed to a negative potential dip due to superhot electrons, adiabatically confined by the magneto-static field. However, kinetic simulations including RF heating affected by cavity modes structures indicate that high energy electrons populate just a thin slab overlapping the ECR layer, while their density drops down of more than one order of magnitude outside. Ions, instead, diffuse across the electron layer due to their high collisionality. This is the proper physical condition to establish a double-layer (DL) configuration which self-consistently originates a potential barrier; this “barrier” confines the ions inside the plasma core surrounded by the ECR surface. The paper will describe a simplified ion confinement model based on plasma density non-homogeneity and DL formation.

  6. A Single-Ion Trap with Minimized Ion-Environment Interactions

    E-Print Network [OSTI]

    Nisbet-Jones, P B R; Jones, J M; Godun, R M; Baynham, C F A; Bongs, K; Doležal, M; Balling, P; Gill, P

    2015-01-01

    We present a new single-ion endcap trap for high precision spectroscopy that has been designed to minimize ion-environment interactions. We describe the design in detail and then characterize the working trap using a single trapped 171 Yb ion. Excess micromotion has been eliminated to the resolution of the detection method and the trap exhibits an anomalous phonon heating rate of d /dt = 24 +30/-24 per second. The thermal properties of the trap structure have also been measured with an effective temperature rise at the ion's position of 0.14 +/- 0.14 K. The small perturbations to the ion caused by this trap make it suitable to be used for an optical frequency standard with fractional uncertainties below the 10^-18 level.

  7. Beyond Conventional Cathode Materials for Li-ion Batteries and Na-ion Batteries Nickel fluoride conversion materials and P2 type Na-ion intercalation cathodes /

    E-Print Network [OSTI]

    Lee, Dae Hoe

    2013-01-01

    graphite negative electrode for lithium-ion batteries.batteries. The Na anode materials must not be overlooked since graphite-

  8. Transport quantum logic gates for trapped ions

    E-Print Network [OSTI]

    D. Leibfried; E. Knill; C. Ospelkaus; D. J. Wineland

    2007-08-28

    Many efforts are currently underway to build a device capable of large scale quantum information processing (QIP). Whereas QIP has been demonstrated for a few qubits in several systems, many technical difficulties must be overcome in order to construct a large-scale device. In one proposal for large-scale QIP, trapped ions are manipulated by precisely controlled light pulses and moved through and stored in multizone trap arrays. The technical overhead necessary to precisely control both the ion geometrical configurations and the laser interactions is demanding. Here we propose methods that significantly reduce the overhead on laser beam control for performing single and multiple qubit operations on trapped ions. We show how a universal set of operations can be implemented by controlled transport of ions through stationary laser beams. At the same time, each laser beam can be used to perform many operations in parallel, potentially reducing the total laser power necessary to carry out QIP tasks. The overall setup necessary for implementing transport gates is simpler than for gates executed on stationary ions. We also suggest a transport-based two-qubit gate scheme utilizing microfabricated permanent magnets that can be executed without laser light.

  9. ECR ion source with electron gun

    DOE Patents [OSTI]

    Xie, Zu Q. (El Cerrito, CA); Lyneis, Claude M. (Berkeley, CA)

    1993-01-01

    An Advanced Electron Cyclotron Resonance ion source (10) having an electron gun (52) for introducing electrons into the plasma chamber (18) of the ion source (10). The ion source (10) has a injection enclosure (12) and a plasma chamber tank (14). The plasma chamber (18) is defined by a plurality of longitudinal magnets (16). The electron gun (52) injects electrons axially into the plasma chamber (18) such that ionization within the plasma chamber (18) occurs in the presence of the additional electrons produced by the electron gun (52). The electron gun (52) has a cathode (116) for emitting electrons therefrom which is heated by current supplied from an AC power supply (96) while bias potential is provided by a bias power supply (118). A concentric inner conductor (60) and Outer conductor (62) carry heating current to a carbon chuck (104) and carbon pusher (114) Which hold the cathode (116) in place and also heat the cathode (16). In the Advanced Electron Cyclotron Resonance ion source (10), the electron gun (52) replaces the conventional first stage used in prior art electron cyclotron resonance ion generators.

  10. Vacuum chamber for ion manipulation device

    DOE Patents [OSTI]

    Chen, Tsung-Chi; Tang, Keqi; Ibrahim, Yehia M; Smith, Richard D; Anderson, Gordon A; Baker, Erin M

    2014-12-09

    An ion manipulation method and device is disclosed. The device includes a pair of substantially parallel surfaces. An array of inner electrodes is contained within, and extends substantially along the length of, each parallel surface. The device includes a first outer array of electrodes and a second outer array of electrodes. Each outer array of electrodes is positioned on either side of the inner electrodes, and is contained within and extends substantially along the length of each parallel surface. A DC voltage is applied to the first and second outer array of electrodes. A RF voltage, with a superimposed electric field, is applied to the inner electrodes by applying the DC voltages to each electrode. Ions either move between the parallel surfaces within an ion confinement area or along paths in the direction of the electric field, or can be trapped in the ion confinement area. A predetermined number of pairs of surfaces are disposed in one or more chambers, forming a multiple-layer ion mobility cyclotron device.

  11. Hydration of ions in two dimensional water

    E-Print Network [OSTI]

    S. Dutta; Yongjin Lee; Y. S. Jho

    2015-11-11

    We present a 2D lattice model of water to study the effects of ion hydration on the properties of water. We map the water molecules as lattice particles consisting of a single Oxygen at the center of a site and two Hydrogen atoms on each side. The internal state of the system, such as the dipole moment at a site, is defined with respect to the location of the Hydrogen atoms at the site depending on their role in Hydrogen bonds (H-bonds) being a donor or an acceptor. We study the influence of the charge and the radius of the ion on the insertion energy and on the H-bonds in the first and second hydration layers around the ion and in the bulk. In particular we analyze how the competing interactions of the short-ranged H-bonds and the long-ranged electrostatics influence the hydration properties. The role of the ion both as a source of the electrostatic interactions as well as a defect is also discussed. Our model also shows the well known fact that the polarizability of the water molecules destroys the hydrogen bond network and increases the dipole moment of the molecules near the ion.

  12. Optimised multi-ion cavity coupling

    E-Print Network [OSTI]

    Stephen Begley; Markus Vogt; Gurpreet Kaur Gulati; Hiroki Takahashi; Matthias Keller

    2015-12-31

    Recent technological advances in cavity quantum electrodynamics (CQED) are paving the way to utilise multiple quantum emitters confined in a single optical cavity. In such systems it is crucially important to control the quantum mechanical coupling of individual emitters to the cavity mode. In this regard, combining ion trap technologies with CQED provides a particularly promising approach due to the well-established motional control over trapped ions. Here we experimentally demonstrate coupling of up to five trapped ions in a string to a high-finesse optical cavity. By changing the axial position and spacing of the ions in a fully deterministic manner, we systematically characterise their coupling to the cavity mode through visibility measurements of the cavity emission. In good agreement with the theoretical model, the results demonstrate that the geometrical configuration of multiple trapped ions can be manipulated to obtain optimal cavity coupling. Our system presents a new ground to explore CQED with multiple quantum emitters, enabled by the highly controllable collective light-matter interaction.

  13. Ultra-short ion and neutron pulse production

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Barletta, William A.; Kwan, Joe W.

    2006-01-10

    An ion source has an extraction system configured to produce ultra-short ion pulses, i.e. pulses with pulse width of about 1 .mu.s or less, and a neutron source based on the ion source produces correspondingly ultra-short neutron pulses. To form a neutron source, a neutron generating target is positioned to receive an accelerated extracted ion beam from the ion source. To produce the ultra-short ion or neutron pulses, the apertures in the extraction system of the ion source are suitably sized to prevent ion leakage, the electrodes are suitably spaced, and the extraction voltage is controlled. The ion beam current leaving the source is regulated by applying ultra-short voltage pulses of a suitable voltage on the extraction electrode.

  14. Method for improving the durability of ion insertion materials

    DOE Patents [OSTI]

    Lee, Se-Hee (Lakewood, CO); Tracy, C. Edwin (Golden, CO); Cheong, Hyeonsik M. (Seoul, KR)

    2002-01-01

    The invention provides a method of protecting an ion insertion material from the degradative effects of a liquid or gel-type electrolyte material by disposing a protective, solid ion conducting, electrically insulating, layer between the ion insertion layer and the liquid or gel-type electrolyte material. The invention further provides liquid or gel-type electrochemical cells having improved durability having a pair of electrodes, a pair of ion insertion layers sandwiched between the pair of electrodes, a pair of solid ion conducting layers sandwiched between the ion insertion layers, and a liquid or gel-type electrolyte material disposed between the solid ion conducting layers, where the solid ion conducting layer minimizes or prevents degradation of the faces of the ion insertion materials facing the liquid or gel-type electrolyte material. Electrochemical cells of this invention having increased durability include secondary lithium batteries and electrochromic devices.

  15. Salinity tolerance in plants: attempts to manipulate ion transport

    E-Print Network [OSTI]

    Vadim Volkov

    2014-11-06

    Ion transport is the major determining factor of salinity tolerance in plants. A simple scheme of a plant cell with ion fluxes provides basic understanding of ion transport and the corresponding changes of ion concentrations under salinity. The review describes in detail basic principles of ion transport for a plant cell, introduces set of transporters essential for sodium and potassium uptake and efflux, analyses driving forces of ion transport and compares ion fluxes measured by several techniques. Study of differences in ion transport between salt tolerant halophytes and salt-sensitive plants with an emphasis on transport of potassium and sodium via plasma membranes offers knowledge for increasing salinity tolerance. Effects of salt stress on ion transport properties of membranes show huge opportunities for manipulating ion transport. Several attempts to overexpress or knockout ion transporters for changing salinity tolerance are described. Future perspectives are questioned with more attention given to potential candidate ion channels and transporters for altered expression. The potential direction of increasing salinity tolerance by modifying ion channels and transporters is discussed and questioned. An alternative approach from synthetic biology is to modify the existing membrane transport proteins or create new ones with desired properties for transforming agricultural crops. The approach had not been widely used earlier and leads also to theoretical and pure scientific aspects of protein chemistry, structure-function relations of membrane proteins, systems biology and physiology of stress and ion homeostasis.

  16. REAP Renewable Energy Fair

    Broader source: Energy.gov [DOE]

    The Renewable Energy Alaska Project (REAP) is hosting their annual Renewable Energy Fair at Fairview Elementary School.

  17. Energy Transport in Trapped Ion Chains

    E-Print Network [OSTI]

    Michael Ramm; Thaned Pruttivarasin; Hartmut Häffner

    2013-12-20

    We experimentally study energy transport in chains of trapped ions. We use a pulsed excitation scheme to rapidly add energy to the local motional mode of one of the ions in the chain. Subsequent energy readout allows us to determine how the excitation has propagated throughout the chain. We observe energy revivals that persist for many cycles. We study the behavior with an increasing number of ions of up to 37 in the chain, including a zig-zag configuration. The experimental results agree well with the theory of normal mode evolution. The described system provides an experimental toolbox for the study of thermodynamics of closed systems and energy transport in both classical and quantum regimes.

  18. Ion traps fabricated in a CMOS foundry

    E-Print Network [OSTI]

    Mehta, K K; Bruzewicz, C D; Chuang, I L; Ram, R J; Sage, J M; Chiaverini, J

    2014-01-01

    We demonstrate trapping in a surface-electrode ion trap fabricated in a 90-nm CMOS (complementary metal-oxide-semiconductor) foundry process utilizing the top metal layer of the process for the trap electrodes. The process includes doped active regions and metal interconnect layers, allowing for co-fabrication of standard CMOS circuitry as well as devices for optical control and measurement. With one of the interconnect layers defining a ground plane between the trap electrode layer and the p-type doped silicon substrate, ion loading is robust and trapping is stable. We measure a motional heating rate comparable to those seen in surface-electrode traps of similar size. This is the first demonstration of scalable quantum computing hardware, in any modality, utilizing a commercial CMOS process, and it opens the door to integration and co-fabrication of electronics and photonics for large-scale quantum processing in trapped-ion arrays.

  19. Ion traps fabricated in a CMOS foundry

    E-Print Network [OSTI]

    K. K. Mehta; A. M. Eltony; C. D. Bruzewicz; I. L. Chuang; R. J. Ram; J. M. Sage; J. Chiaverini

    2014-06-13

    We demonstrate trapping in a surface-electrode ion trap fabricated in a 90-nm CMOS (complementary metal-oxide-semiconductor) foundry process utilizing the top metal layer of the process for the trap electrodes. The process includes doped active regions and metal interconnect layers, allowing for co-fabrication of standard CMOS circuitry as well as devices for optical control and measurement. With one of the interconnect layers defining a ground plane between the trap electrode layer and the p-type doped silicon substrate, ion loading is robust and trapping is stable. We measure a motional heating rate comparable to those seen in surface-electrode traps of similar size. This is the first demonstration of scalable quantum computing hardware, in any modality, utilizing a commercial CMOS process, and it opens the door to integration and co-fabrication of electronics and photonics for large-scale quantum processing in trapped-ion arrays.

  20. Deionization and desalination using electrostatic ion pumping

    DOE Patents [OSTI]

    Bourcier, William L.; Aines, Roger D.; Haslam, Jeffery J.; Schaldach, Charlene M.; O'Brien, Kevin C.; Cussler, Edward

    2013-06-11

    The present invention provides a new method and apparatus/system for purifying ionic solutions, such as, for example, desalinating water, using engineered charged surfaces to sorb ions from such solutions. Surface charge is applied externally, and is synchronized with oscillatory fluid movements between substantially parallel charged plates. Ions are held in place during fluid movement in one direction (because they are held in the electrical double layer), and released for transport during fluid movement in the opposite direction by removing the applied electric field. In this way the ions, such as salt, are "ratcheted" across the charged surface from the feed side to the concentrate side. The process itself is very simple and involves only pumps, charged surfaces, and manifolds for fluid collection.

  1. Liners for ion transport membrane systems

    DOE Patents [OSTI]

    Carolan, Michael Francis (Allentown, PA); Miller, Christopher Francis (Macungie, PA)

    2010-08-10

    Ion transport membrane system comprising (a) a pressure vessel comprising an interior, an exterior, an inlet, an inlet conduit, an outlet, and an outlet conduit; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein the inlet and the outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; (c) a gas manifold having an interior surface wherein the gas manifold is in flow communication with the interior region of each of the planar ion transport membrane modules and with the exterior of the pressure vessel; and (d) a liner disposed within any of the inlet conduit, the outlet conduit, and the interior surface of the gas manifold.

  2. Deionization and desalination using electrostatic ion pumping

    DOE Patents [OSTI]

    Bourcier, William L. (Livermore, CA); Aines, Roger D. (Livermore, CA); Haslam, Jeffery J. (Livermore, CA); Schaldach, Charlene M. (Pleasanton, CA); O'Brien, Kevin C. (San Ramon, CA); Cussler, Edward (Edina, MN)

    2011-07-19

    The present invention provides a new method and apparatus/system for purifying ionic solutions, such as, for example, desalinating water, using engineered charged surfaces to sorb ions from such solutions. Surface charge is applied externally, and is synchronized with oscillatory fluid movements between substantially parallel charged plates. Ions are held in place during fluid movement in one direction (because they are held in the electrical double layer), and released for transport during fluid movement in the opposite direction by removing the applied electric field. In this way the ions, such as salt, are "ratcheted" across the charged surface from the feed side to the concentrate side. The process itself is very simple and involves only pumps, charged surfaces, and manifolds for fluid collection.

  3. Modeling of Crystalline Silicotitanate Ion Exchange Columns

    SciTech Connect (OSTI)

    Walker, D.D.

    1999-03-09

    Non-elutable ion exchange is being considered as a potential replacement for the In-Tank Precipitation process for removing cesium from Savannah River Site (SRS) radioactive waste. Crystalline silicotitanate (CST) particles are the reference ion exchange medium for the process. A major factor in the construction cost of this process is the size of the ion exchange column required to meet product specifications for decontaminated waste. To validate SRS column sizing calculations, SRS subcontracted two reknowned experts in this field to perform similar calculations: Professor R. G. Anthony, Department of Chemical Engineering, Texas A&038;M University, and Professor S. W. Wang, Department of Chemical Engineering, Purdue University. The appendices of this document contain reports from the two subcontractors. Definition of the design problem came through several meetings and conference calls between the participants and SRS personnel over the past few months. This document summarizes the problem definition and results from the two reports.

  4. Lithium ion batteries based on nanoporous silicon

    DOE Patents [OSTI]

    Tolbert, Sarah H.; Nemanick, Eric J.; Kang, Chris Byung-Hwa

    2015-09-22

    A lithium ion battery that incorporates an anode formed from a Group IV semiconductor material such as porous silicon is disclosed. The battery includes a cathode, and an anode comprising porous silicon. In some embodiments, the anode is present in the form of a nanowire, a film, or a powder, the porous silicon having a pore diameters within the range between 2 nm and 100 nm and an average wall thickness of within the range between 1 nm and 100 nm. The lithium ion battery further includes, in some embodiments, a non-aqueous lithium containing electrolyte. Lithium ion batteries incorporating a porous silicon anode demonstrate have high, stable lithium alloying capacity over many cycles.

  5. Ion transport membrane module and vessel system

    DOE Patents [OSTI]

    Stein, VanEric Edward (Allentown, PA); Carolan, Michael Francis (Allentown, PA); Chen, Christopher M. (Allentown, PA); Armstrong, Phillip Andrew (Orefield, PA); Wahle, Harold W. (North Canton, OH); Ohrn, Theodore R. (Alliance, OH); Kneidel, Kurt E. (Alliance, OH); Rackers, Keith Gerard (Louisville, OH); Blake, James Erik (Uniontown, OH); Nataraj, Shankar (Allentown, PA); van Doorn, Rene Hendrik Elias (Obersulm-Willsbach, DE); Wilson, Merrill Anderson (West Jordan, UT)

    2008-02-26

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel.The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  6. Ion transport membrane module and vessel system

    DOE Patents [OSTI]

    Stein, VanEric Edward; Carolan, Michael Francis; Chen, Christopher M.; Armstrong, Phillip Andrew; Wahle, Harold W.; Ohrn, Theodore R.; Kneidel, Kurt E.; Rackers, Keith Gerard; Blake, James Erik; Nataraj, Shankar; van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson

    2007-02-20

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  7. Ion transport membrane module and vessel system

    DOE Patents [OSTI]

    Stein, VanEric Edward (Allentown, PA); Carolan, Michael Francis (Allentown, PA); Chen, Christopher M. (Allentown, PA); Armstrong, Phillip Andrew (Orefield, PA); Wahle, Harold W. (North Canton, OH); Ohrn, Theodore R. (Alliance, OH); Kneidel, Kurt E. (Alliance, OH); Rackers, Keith Gerard (Louisville, OH); Blake, James Erik (Uniontown, OH); Nataraj, Shankar (Allentown, PA); Van Doorn, Rene Hendrik Elias (Obersulm-Willsbach, DE); Wilson, Merrill Anderson (West Jordan, UT)

    2012-02-14

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  8. Recent advances in lithium ion technology

    SciTech Connect (OSTI)

    Levy, S.C.

    1995-01-01

    Lithium ion technology is based on the use of lithium intercalating electrodes. Carbon is the most commonly used anode material, while the cathode materials of choice have been layered lithium metal chalcogenides (LiMX{sub 2}) and lithium spinel-type compounds. Electrolytes may be either organic liquids or polymers. Although the first practical use of graphite intercalation compounds as battery anodes was reported in 1981 for molten salt cells (1) and in 1983 for ambient temperature systems (2) it was not until Sony Energytech announced a new lithium ion rechargeable cell containing a lithium ion intercalating carbon anode in 1990, that interest peaked. The reason for this heightened interest is that these cells have the high energy density, high voltage and fight weight of metallic lithium systems plus a very long cycle life, but without the disadvantages of dendrite formation on charge and the safety considerations associated with metallic lithium.

  9. Filament velocity scaling laws for warm ions

    SciTech Connect (OSTI)

    Manz, P.; Max-Planck-Institut für Plasmaphysik, EURATOM Assoziation, Boltzmannstr. 2, 85748 Garching ; Carralero, D.; Birkenmeier, G.; Müller, H. W.; Scott, B. D.; Müller, S. H.; Fuchert, G.; Stroth, U.; Physik-Department E28, Technische Universität München, James-Franck-Str. 1, 85748 Garching

    2013-10-15

    The dynamics of filaments or blobs in the scrape-off layer of magnetic fusion devices are studied by magnitude estimates of a comprehensive drift-interchange-Alfvén fluid model. The standard blob models are reproduced in the cold ion case. Even though usually neglected, in the scrape-off layer, the ion temperature can exceed the electron temperature by an order of magnitude. The ion pressure affects the dynamics of filaments amongst others by adding up to the interchange drive and the polarisation current. It is shown how both effects modify the scaling laws for filament velocity in dependence of its size. Simplifications for experimentally relevant limit regimes are given. These are the sheath dissipation, collisional, and electromagnetic regime.

  10. Heavy ion irradiation of crystalline water ice

    E-Print Network [OSTI]

    Dartois, E; Boduch, P; Brunetto, R; Chabot, M; Domaracka, A; Ding, J J; Kamalou, O; Lv, X Y; Rothard, H; da Silveira, E F; Thomas, J C

    2015-01-01

    Under cosmic irradiation, the interstellar water ice mantles evolve towards a compact amorphous state. Crystalline ice amorphisation was previously monitored mainly in the keV to hundreds of keV ion energies. We experimentally investigate heavy ion irradiation amorphisation of crystalline ice, at high energies closer to true cosmic rays, and explore the water-ice sputtering yield. We irradiated thin crystalline ice films with MeV to GeV swift ion beams, produced at the GANIL accelerator. The ice infrared spectral evolution as a function of fluence is monitored with in-situ infrared spectroscopy (induced amorphisation of the initial crystalline state into a compact amorphous phase). The crystalline ice amorphisation cross-section is measured in the high electronic stopping-power range for different temperatures. At large fluence, the ice sputtering is measured on the infrared spectra, and the fitted sputtering-yield dependence, combined with previous measurements, is quadratic over three decades of electronic ...

  11. Compact microwave ion source for industrial applications

    SciTech Connect (OSTI)

    Cho, Yong-Sub; Kim, Dae-Il; Kim, Han-Sung; Seol, Kyung-Tae; Kwon, Hyeok-Jung; Hong, In-Seok [Proton Engineering Frontier Project, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of)

    2012-02-15

    A 2.45 GHz microwave ion source for ion implanters has many good properties for industrial application, such as easy maintenance and long lifetime, and it should be compact for budget and space. But, it has a dc current supply for the solenoid and a rf generator for plasma generation. Usually, they are located on high voltage platform because they are electrically connected with beam extraction power supply. Using permanent magnet solenoid and multi-layer dc break, high voltage deck and high voltage isolation transformer can be eliminated, and the dose rate on targets can be controlled by pulse duty control with semiconductor high voltage switch. Because the beam optics does not change, beam transfer components, such as focusing elements and beam shutter, can be eliminated. It has shown the good performances in budget and space for industrial applications of ion beams.

  12. Basics of Ion Scattering in Nanoscale Materials

    SciTech Connect (OSTI)

    Whitlow, Harry J.; Zhang, Yanwen

    2010-01-01

    Energetic ions interact with materials by collisions with the nuclei and electrons of the atoms that make up the material. In these collisions energy and momentum is transferred from the projectile particle which is a moving atom or ion, to the target particles (atomic nucleus or electron). Each collision leads to a slowing down of the moving projectile and also a deflection of the trajectory which gives rise to the term scattering which is often used synonymously to describe the energy transfer process. In this chapter, we introduce from an experimental viewpoint the underlying theory for interaction of ions for analysis and modification of nanometer scale materials. A more detailed theoretical overview of the topic can be found in the recent monographs by Sigmund. Detailed derivations of the formulae introduced will not be given here but can be found in standard texts that are indicated by references. The treatment here starts by considering an individual scattering event. The results are then used to consider the effects on the primary ion in the limit where a large number of collisions take place. Subsequently, the primary effects are considered in nanometer materials which approach the thin-medium limit where the primary particles encounter only limited number of scattering centers. Finally, the dissipation of the energy deposited by the primary projectiles in secondary processes such as cascades of displaced atoms and electrons will be considered in the thick and thin medium limits. This approach was chosen because it builds upon the standard concepts in ion-matter interactions that are well know and have been widely used in experimental measurements of the stopping force and applications such as Rutherford backscattering spectrometry (RBS), ion beam modification of materials etc.

  13. Numerical model of Electron Cyclotron Resonance Ion Source

    E-Print Network [OSTI]

    Mironov, V; Bondarchenko, A; Efremov, A; Loginov, V

    2015-01-01

    Important features of Electron Cyclotron Resonance Ion Source (ECRIS) operation are accurately reproduced with a numerical code. The code uses the particle-in-cell technique to model a dynamics of ions in ECRIS plasma. It is shown that gas dynamical ion confinement mechanism is sufficient to provide the ion production rates in ECRIS close to the experimentally observed values. Extracted ion currents are calculated and compared to the experiment for few sources. Changes in the extracted ion currents are obtained with varying the gas flow into the source chamber and the microwave power. Empirical scaling laws for ECRIS design are studied and the underlying physical effects are discussed.

  14. Low temperature ion source for calutrons

    DOE Patents [OSTI]

    Veach, Allen M. (Oak Ridge, TN); Bell, Jr., William A. (Oak Ridge, TN); Howell, Jr., George D. (Clinton, TN)

    1981-01-01

    A new ion source assembly for calutrons has been provided for the efficient separation of elements having high vapor pressures. The strategic location of cooling pads and improved insulation permits operation of the source at lower temperatures. A vapor valve constructed of graphite and located in a constantly increasing temperature gradient provides reliable control of the vapor flow from the charge bottle to the arc chamber. A pronounced saving in calutron operating time and equipment maintenance has been achieved with the use of the present ion source.

  15. Computational Design of Metal Ion Sequestering Agents

    SciTech Connect (OSTI)

    Hay, Benjamin P.; Rapko, Brian M.

    2005-06-15

    Organic ligands that exhibit a high degree of metal ion recognition are essential precursors for developing separation processes and sensors for metal ions. Since the beginning of the nuclear era, much research has focused on discovering ligands that target specific radionuclides. Members of the Group 1A and 2A cations (e.g., Cs, Sr, Ra) and the f-block metals (actinides and lanthanides) are of primary concern to DOE. Although there has been some success in identifying ligand architectures that exhibit a degree of metal ion recognition, the ability to control binding affinity and selectivity remains a significant challenge. The traditional approach for discovering such ligands has involved lengthy programs of organic synthesis and testing that, in the absence of reliable methods for screening compounds before synthesis, have resulted in much wasted research effort. This project seeks to enhance and strengthen the traditional approach through computer-aided design of new and improved host molecules. Accurate electronic structure calculations are coupled with experimental data to provide fundamental information about ligand structure and the nature of metal-donor group interactions (design criteria). This fundamental information then is used in a molecular mechanics model (MM) that helps us rapidly screen proposed ligand architectures and select the best members from a set of potential candidates. By using combinatorial methods, molecule building software has been developed that generates large numbers of candidate architectures for a given set of donor groups. The specific goals of this project are: • further understand the structural and energetic aspects of individual donor group- metal ion interactions and incorporate this information within the MM framework • further develop and evaluate approaches for correlating ligand structure with reactivity toward metal ions, in other words, screening capability • use molecule structure building software to generate large numbers of candidate ligand architectures for given sets of donor groups • screen candidates and identify ligand architectures that will exhibit enhanced metal ion recognition. These new capabilities are being applied to ligand systems identified under other DOEsponsored projects where studies have suggested that modifying existing architectures will lead to dramatic enhancements in metal ion binding affinity and selectivity. With this in mind, we are collaborating with Professors R. T. Paine (University of New Mexico), K. N. Raymond (University of California, Berkeley), and J. E. Hutchison (University of Oregon), and Dr. B. A. Moyer (Oak Ridge National Laboratory) to obtain experimental validation of the predicted new ligand structures. Successful completion of this study will yield molecular-level insight into the role that ligand architecture plays in controlling metal ion complexation and will provide a computational approach to ligand design.

  16. Stored-Ion Collisional Relaxation to Equilibrium 

    E-Print Network [OSTI]

    Church, David A.

    1988-01-01

    , and page proofs are sent to authors. Stored-ion collisional relaxation to equihbrium D. A. Church Physics Department, Texas AkM Uniuersity, College Station, Texas 77843A242 (Received 10 August 1987) The rate of energy transfer between the radial... and axial degrees of freedom of protons ~ith measured temperature and number stored in a radio-frequency quadrupole ion trap is quanti5ed. The results are discussed in terms of the theory of charged-particle collisional relaxation to thermal equihbrium...

  17. Categorical ExclusIon Determination Fornl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B LReportsDeterminatIon Fornl ProjectDeterminatIon FornlProcess

  18. Categorical ExclusIon Determination Fornl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B LReportsDeterminatIon Fornl ProjectDeterminatIon

  19. Numerical investigation of the ion temperature effect in magnetized plasma sheath with two species of positive ions

    SciTech Connect (OSTI)

    Shaw, A. K.; Goswami, K. S.; Saikia, B. J. [Centre of Plasma Physics-Institute for Plasma Research, Sonapur-782 402, Guwahati, Kamrup (M) (India); Kar, S. [Institute for Plasma Research, Bhat, Gandhinagar-382 428, Gujarat (India)

    2012-01-15

    The effect of ion temperature, magnitude of magnetic field and its orientation on a magnetized plasma sheath consisting of electrons and two species of positive ions are investigated. Using three-fluid hydrodynamic model and some dimensionless variables, the dimensionless equations are obtained and solved numerically. It is found that with the increase of the ion temperature and magnetic field strength there is a significant change in ion densities and energies in the sheath. It is also noticed that increase of magnetic field angle enhances the ion density near the sheath edge for a constant ion temperature. With increase in ion temperature and magnetic field angle, the lighter ion density near the sheath edge enhances and reverses for the heavier ion species.

  20. Ion-acoustic cnoidal waves in plasmas with warm ions and kappa distributed electrons and positrons

    SciTech Connect (OSTI)

    Kaladze, T.; I.Vekua Institute of Applied Mathematics, Tbilisi State University, 0186 Georgia ; Mahmood, S.

    2014-03-15

    Electrostatic ion-acoustic periodic (cnoidal) waves and solitons in unmagnetized electron-positron-ion (EPI) plasmas with warm ions and kappa distributed electrons and positrons are investigated. Using the reductive perturbation method, the Korteweg-de Vries (KdV) equation is derived with appropriate boundary conditions for periodic waves. The corresponding analytical and various numerical solutions are presented with Sagdeev potential approach. Differences between the results caused by the kappa and Maxwell distributions are emphasized. It is revealed that only hump (compressive) structures of the cnoidal waves and solitons are formed. It is shown that amplitudes of the cnoidal waves and solitons are reduced in an EPI plasma case in comparison with the ordinary electron-ion plasmas. The effects caused by the temperature variations of the warm ions are also discussed. It is obtained that the amplitude of the cnoidal waves and solitons decreases for a kappa distributed (nonthermal) electrons and positrons plasma case in comparison with the Maxwellian distributed (thermal) electrons and positrons EPI plasmas. The existence of kappa distributed particles leads to decreasing of ion-acoustic frequency up to thermal ions frequency.

  1. Temporal Development of Ion Beam Mean Charge State in PulsedVacuum Arc Ion Sources

    SciTech Connect (OSTI)

    Oks, Efim M.; Yushkov, Georgy Yu.; Anders, Andre

    2007-06-21

    Vacuum arc ion sources, commonly also known as "Mevva" ionsources, are used to generate intense pulsed metal ion beams. It is knownthat the mean charge state of the ion beam lies between 1 and 4,depending on cathode material, arc current, arc pulse duration, presenceor absence of magnetic field at the cathode, as well background gaspressure. A characteristic of the vacuum arc ion beam is a significantdecrease in ion charge state throughout the pulse. This decrease can beobserved up to a few milliseconds, until a "noisy" steady-state value isestablished. Since the extraction voltage is constant, a decrease in theion charge state has a proportional impact on the average ion beamenergy. This paper presents results of detailed investigations of theinfluence of arc parameters on the temporal development of the ion beammean charge state for a wide range of cathode materials. It is shown thatfor fixed pulse duration, the charge state decrease can be reduced bylower arc current, higher pulse repetition rate, and reduction of thedistance between cathode and extraction region. The latter effect may beassociated with charge exchange processes in the dischargeplasma.

  2. Investigation of helium ion production in constricted direct current plasma ion source with layered-glows

    SciTech Connect (OSTI)

    Lee, Yuna; Chung, Kyoung-Jae; Park, Yeong-Shin; Hwang, Y. S.; Center for Advance Research in Fusion Reactor Engineering, Seoul National University, Seoul 151-744

    2014-02-15

    Generation of helium ions is experimentally investigated with a constricted direct current (DC) plasma ion source operated at layered-glow mode, in which electrons could be accelerated through multiple potential structures so as to generate helium ions including He{sup 2+} by successive ionization collisions in front of an extraction aperture. The helium discharge is sustained with the formation of a couple of stable layers and the plasma ball with high density is created near the extraction aperture at the operational pressure down to 0.6 Torr with concave cathodes. The ion beam current extracted with an extraction voltage of 5 kV is observed to be proportional to the discharge current and inversely proportional to the operating pressure, showing high current density of 130 mA/cm{sup 2} and power density of 0.52 mA/cm{sup 2}/W. He{sup 2+} ions, which were predicted to be able to exist due to multiple-layer potential structure, are not observed. Simple calculation on production of He{sup 2+} ions inside the plasma ball reveals that reduced operating pressure and increased cathode area will help to generate He{sup 2+} ions with the layered-glow DC discharge.

  3. Six-Membered-Ring Malonatoborate-Based Lithium Salts as Electrolytes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Yang, Li

    2014-01-01

    References 1. Lithium Ion Batteries: Fundamentals andProgram for Lithium Ion Batteries, U.S. Department ofas Electrolytes for Lithium Ion Batteries Li Yang a , Hanjun

  4. STUDIES ON THE ROLE OF THE SUBSTRATE INTERFACE FOR GERMANIUM AND SILICON LITHIUM ION BATTERY ANODES

    E-Print Network [OSTI]

    Florida, University of

    AND SILICON LITHIUM ION BATTERY ANODES........................................................................................................................16 1.1 Lithium Ion Batteries...................................................................................17 1.1.2 Lithium Ion Battery Chemistry

  5. STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES

    E-Print Network [OSTI]

    Wilcox, James D.

    2010-01-01

    as cathode materials for lithium ion battery. ElectrochimicaCapacity, High Rate Lithium-Ion Battery Electrodes Utilizinghours. 1.4 Lithium Ion Batteries Lithium battery technology

  6. Self-sputtering far above the runaway threshold: an extraordinary metal ion generator

    E-Print Network [OSTI]

    Andersson, Joakim

    2009-01-01

    an extraordinary metal ion generator  Joakim Andersson andan extraordinarily prolific generator of useable metal ions.Among the most prolific generators of ions are cathodic arc

  7. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries

    E-Print Network [OSTI]

    Lin, Feng

    2014-01-01

    O 2 Cathode Material in Lithium Ion Batteries. Adv. Energydecomposition in lithium ion batteries: first-principlesMaterials for Lithium-Ion Batteries. Adv. Funct. Mater. 23,

  8. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01

    Characteristics of Lithium-ion Batteries of VariousAdvisor utilizing lithium-ion batteries of the differentin hybrids. Keywords: lithium-ion batteries, plug-in hybrid

  9. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01

    Characteristics of Lithium-ion Batteries of Variousare presented for lithium-ion cells and modules utilizingAdvisor utilizing lithium-ion batteries of the different

  10. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries

    E-Print Network [OSTI]

    Lin, Feng

    2014-01-01

    O 2 Cathode Material in Lithium Ion Batteries. Adv. Energysolvent decomposition in lithium ion batteries: first-Cathode Materials for Lithium-Ion Batteries. Adv. Funct.

  11. Fluctuation of an ion beam extracted from an AC filament driven Bernas-type ion source

    SciTech Connect (OSTI)

    Miyamoto, N. Okajima, Y.; Wada, M.

    2014-02-15

    Argon ion beam fluctuation from an AC filament driven Bernas-type ion source is observed. The ion beam was measured by an 8 measurement elements beam profile monitor. The amplitude of the beam current fluctuation stayed in the same level from 100 Hz to 1 kHz of the filament heating frequency. The beam current fluctuation frequency measured by the beam profile monitor was equal to the frequency of the AC filament operation. The fluctuation amplitudes of the beam current by AC operation were less than 7% and were in the same level of the DC operation.

  12. STAR Highlights on Heavy Ion Physics

    E-Print Network [OSTI]

    Shusu Shi

    2014-09-30

    RHIC-STAR is a mid-rapidity collider experiment for studying high energy nuclear collisions. The main physics goals of STAR experiment are 1) studying the properties of the strongly coupled Quark Gluon Plasma, 2) explore the QCD phase diagram structure. In these proceedings, we will review the recent results of heavy ion physics at STAR.

  13. Ion Source Development at the SNS

    SciTech Connect (OSTI)

    Welton, Robert F [ORNL; Desai, Nandishkumar J [ORNL; Han, Baoxi [ORNL; Kenik, Edward A [Oak Ridge National Laboratory (ORNL); Murray Jr, S N [ORNL; Pennisi, Terry R [ORNL; Potter, Kerry G [ORNL; Lang, Bonnie R [ORNL; Santana, Manuel [ORNL; Stockli, Martin P [ORNL

    2011-01-01

    The Spallation Neutron Source (SNS) now routinely operates near 1 MW of beam power on target with a highly-persistent ~38 mA peak current in the linac and an availability of ~90%. The ~1 ms-long, 60 Hz, ~50 mA H- beam pulses are extracted from a Cs-enhanced, multi-cusp, RF-driven, internal-antenna ion source. An electrostatic LEBT (Low Energy Beam Transport) focuses the 65 kV beam into the RFQ accelerator. The ion source and LEBT have normally a combined availability of ~99%. Although much progress has been made over the last years to achieve this level of availability further improvements are desirable. Failures of the internal antenna and occasionally impaired electron dump insulators require several source replacements per year. An attempt to overcome the antenna issues with an AlN external antenna source early in 2009 had to be terminated due to availability issues. This report provides a comprehensive review of the design, experimental history, status, and description of recently updated components and future plans for this ion source. The mechanical design for improved electron dump vacuum feedthroughs is also presented, which is compatible with the baseline and both external antenna ion sources.

  14. Towards a lithium-ion fiber battery

    E-Print Network [OSTI]

    Grena, Benjamin (Benjamin Jean-Baptiste)

    2013-01-01

    One of the key objectives in the realm of flexible electronics and flexible power sources is to achieve large-area, low-cost, scalable production of flexible systems. In this thesis we propose a new Li-ion battery architecture ...

  15. Transparent lithium-ion batteries , Sangmoo Jeongb

    E-Print Network [OSTI]

    Cui, Yi

    Transparent lithium-ion batteries Yuan Yanga , Sangmoo Jeongb , Liangbing Hua , Hui Wua , Seok Woo, and solar cells; however, transparent batteries, a key component in fully integrated transparent devices, have not yet been reported. As battery electrode materials are not transpar- ent and have to be thick

  16. Atomic physics with highly charged ions

    SciTech Connect (OSTI)

    Richard, P.

    1991-08-01

    This report discusses: One electron outer shell processes in fast ion-atom collisions; role of electron-electron interaction in two-electron processes; multi-electron processes at low energy; multi-electron processes at high energy; inner shell processes; molecular fragmentation studies; theory; and, JRM laboratory operations.

  17. Heavy Ion Fusion Science Virtual National Laboratory

    E-Print Network [OSTI]

    to today's large NP accelerators like GSI-FAIR, RHIC economical for 1-2 GWe baseload power plants. Heavy chambers. · Competitive economics: projected in several power plant studies and with no high levelSlide 1 Heavy Ion Fusion Science Virtual National Laboratory Briefing for the National Academy

  18. Electrothermal Analysis of Lithium Ion Batteries

    SciTech Connect (OSTI)

    Pesaran, A.; Vlahinos, A.; Bharathan, D.; Duong, T.

    2006-03-01

    This report presents the electrothermal analysis and testing of lithium ion battery performance. The objectives of this report are to: (1) develop an electrothermal process/model for predicting thermal performance of real battery cells and modules; and (2) use the electrothermal model to evaluate various designs to improve battery thermal performance.

  19. Focused ion beam micromilling and articles therefrom

    DOE Patents [OSTI]

    Lamartine, Bruce C. (Los Alamos, NM); Stutz, Roger A. (Los Alamos, NM)

    1998-01-01

    An ultrahigh vacuum focused ion beam micromilling apparatus and process are isclosed. Additionally, a durable data storage medium using the micromilling process is disclosed, the durable data storage medium capable of storing, e.g., digital or alphanumeric characters as well as graphical shapes or characters.

  20. Anode materials for lithium-ion batteries

    DOE Patents [OSTI]

    Sunkara, Mahendra Kumar; Meduri, Praveen; Sumanasekera, Gamini

    2014-12-30

    An anode material for lithium-ion batteries is provided that comprises an elongated core structure capable of forming an alloy with lithium; and a plurality of nanostructures placed on a surface of the core structure, with each nanostructure being capable of forming an alloy with lithium and spaced at a predetermined distance from adjacent nanostructures.

  1. Ion manipulation device with electrical breakdown protection

    DOE Patents [OSTI]

    Chen, Tsung-Chi; Tang, Keqi; Ibrahim, Yehia M; Smith, Richard D; Anderson, Gordon A; Baker, Erin M

    2014-12-02

    An ion manipulation method and device is disclosed. The device includes a pair of substantially parallel surfaces. An array of inner electrodes is contained within, and extends substantially along the length of, each parallel surface. The device includes a first outer array of electrodes and a second outer array of electrodes. Each outer array of electrodes is positioned on either side of the inner electrodes, and is contained within and extends substantially along the length of each parallel surface. A DC voltage is applied to the first and second outer array of electrodes. A RF voltage, with a superimposed electric field, is applied to the inner electrodes by applying the DC voltages to each electrode. Ions either move between the parallel surfaces within an ion confinement area or along paths in the direction of the electric field, or can be trapped in the ion confinement area. The surfaces are housed in a chamber, and at least one electrically insulative shield is coupled to an inner surface of the chamber for increasing a mean-free-path between two adjacent electrodes in the chamber.

  2. Focused ion beam micromilling and articles therefrom

    DOE Patents [OSTI]

    Lamartine, B.C.; Stutz, R.A.

    1998-06-30

    An ultrahigh vacuum focused ion beam micromilling apparatus and process are disclosed. Additionally, a durable data storage medium using the micromilling process is disclosed, the durable data storage medium capable of storing, e.g., digital or alphanumeric characters as well as graphical shapes or characters. 6 figs.

  3. Hydration of ions in two dimensional water

    E-Print Network [OSTI]

    Dutta, S; Jho, Y S

    2015-01-01

    We present a 2D lattice model of water to study the effects of ion hydration on the properties of water. We map the water molecules as lattice particles consisting of a single Oxygen at the center of a site and two Hydrogen atoms on each side. The internal state of the system, such as the dipole moment at a site, is defined with respect to the location of the Hydrogen atoms at the site depending on their role in Hydrogen bonds (H-bonds) being a donor or an acceptor. We study the influence of the charge and the radius of the ion on the insertion energy and on the H-bonds in the first and second hydration layers around the ion and in the bulk. In particular we analyze how the competing interactions of the short-ranged H-bonds and the long-ranged electrostatics influence the hydration properties. The role of the ion both as a source of the electrostatic interactions as well as a defect is also discussed. Our model also shows the well known fact that the polarizability of the water molecules destroys the hydrogen...

  4. Understanding Nucleic AcidIon Interactions

    E-Print Network [OSTI]

    Herschlag, Dan

    of Technology, 2628 CJ Delft, Netherlands; email: Jan.Lipfert@lmu.de 2 Department of Physics and Center for Nano Keywords ions, RNA/DNA, electrostatics, Poisson­Boltzmann, Manning condensation, Hill equation, free energy;Contents INTRODUCTION. . . . . . . . . . . . . . . . . 814 THE BASICS

  5. Persistent Ion Pairing in Aqueous Hydrochloric Acid

    SciTech Connect (OSTI)

    Baer, Marcel D.; Fulton, John L.; Balasubramanian, Mahalingam; Schenter, Gregory K.; Mundy, Christopher J.

    2014-07-03

    For strong acids, like hydrochloric acid, the complete dissociation into an excess proton and conjugated base as well as the formation of independent solvated charged fragments is assumed. The existence of a chloride-Hyronium (Cl-H3O+) contact ion pairs even in moderate concentration hydrochloric acid (2.5 m) demonstrates that the counter ions do not behave merely as spectators. Through the use of modern extended X-ray absorption fine structure (EXAFS) measurements in conjunction with state-of-the-art density functional theory (DFT) simulations, we are able to obtain an unprecedented view into the molecular structure of medium to high concentrated electrolytes. Here we report that the Cl-H3O+ contact ion pair structure persists throughout the entire concentration range studied and that these structures differ significantly from moieties studied in micro-solvated hydrochloric acid clusters. Characterizing distinct populations of these ion pairs gives rise to a novel molecular level description of how to think about the activity of the proton that impacts our picture of the pH scale. Funding for CJM, GKS, and JLF was provided by DOE Office of Science, Office of Basic Energy Science, Division of Chemical Sciences, Geosciences, and Biosciences. Funding for MDB was provided throught the Laboratory Directed Research and Development program at Pacific Northwest National Laboratory. MB was funded through Argonne National Laboratory.

  6. Coated Silicon Nanowires as Anodes in Lithium Ion Batteries

    E-Print Network [OSTI]

    Watts, David James

    2014-01-01

    for advanced lithium-ion batteries. J. Power Sources 174,for lithium rechargeable batteries. Angew. Chem. Int. Ed.anodes for lithium-ion batteries. J. Mater. Chem. A 1,

  7. Linear electronic field time-of-flight ion mass spectrometers

    DOE Patents [OSTI]

    Funsten, Herbert O. (Los Alamos, NM)

    2010-08-24

    Time-of-flight mass spectrometer comprising a first drift region and a second drift region enclosed within an evacuation chamber; a means of introducing an analyte of interest into the first drift region; a pulsed ionization source which produces molecular ions from said analyte of interest; a first foil positioned between the first drift region and the second drift region, which dissociates said molecular ions into constituent atomic ions and emits secondary electrons; an electrode which produces secondary electrons upon contact with a constituent atomic ion in second drift region; a stop detector comprising a first ion detection region and a second ion detection region; and a timing means connected to the pulsed ionization source, to the first ion detection region, and to the second ion detection region.

  8. Ion mobility spectrometer using frequency-domain separation

    DOE Patents [OSTI]

    Martin, S.J.; Butler, M.A.; Frye, G.C.; Schubert, W.K.

    1998-08-04

    An apparatus and method are provided for separating and analyzing chemical species in an ion mobility spectrometer using a frequency-domain technique wherein the ions generated from the chemical species are selectively transported through an ion flow channel having a moving electrical potential therein. The moving electrical potential allows the ions to be selected according to ion mobility, with certain of the ions being transported to an ion detector and other of the ions being effectively discriminated against. The apparatus and method have applications for sensitive chemical detection and analysis for monitoring of exhaust gases, hazardous waste sites, industrial processes, aerospace systems, non-proliferation, and treaty verification. The apparatus can be formed as a microelectromechanical device (i.e. a micromachine). 6 figs.

  9. Hybrid approaches to quantum information using ions, atoms and photons

    E-Print Network [OSTI]

    Cetina, Marko, Ph. D. Massachusetts Institute of Technology

    2011-01-01

    This thesis presents two hybrid systems for quantum information processing - one joining cold ions and cold atoms and another coupling linear chains of atomic ions with photons via an optical resonator. The first experimental ...

  10. Secondary ion emission under keV carbon cluster bombardment 

    E-Print Network [OSTI]

    Locklear, Jay Edward

    2006-10-30

    Secondary ion mass spectrometry (SIMS) is a surface analysis technique capable of providing isotopic and molecular information. SIMS uses keV projectiles to impinge upon a sample resulting in secondary ion emission from ...

  11. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good...

  12. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good...

  13. Ion mobility spectrometer using frequency-domain separation

    DOE Patents [OSTI]

    Martin, Stephen J. (Albuquerque, NM); Butler, Michael A. (Albuquerque, NM); Frye, Gregory C. (Cedar Crest, NM); Schubert, W. Kent (Albuquerque, NM)

    1998-01-01

    An apparatus and method is provided for separating and analyzing chemical species in an ion mobility spectrometer using a frequency-domain technique wherein the ions generated from the chemical species are selectively transported through an ion flow channel having a moving electrical potential therein. The moving electrical potential allows the ions to be selected according to ion mobility, with certain of the ions being transported to an ion detector and other of the ions being effectively discriminated against. The apparatus and method have applications for sensitive chemical detection and analysis for monitoring of exhaust gases, hazardous waste sites, industrial processes, aerospace systems, non-proliferation, and treaty verification. The apparatus can be formed as a microelectromechanical device (i.e. a micromachine).

  14. Novel Lithium Ion Anode Structures: Overview of New DOE BATT...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lithium Ion Anode Structures: Overview of New DOE BATT Anode Projects Novel Lithium Ion Anode Structures: Overview of New DOE BATT Anode Projects 2011 DOE Hydrogen and Fuel Cells...

  15. Neutralization principles for the Extraction and Transport of Ion Beams

    E-Print Network [OSTI]

    Riege, H

    2000-01-01

    The strict application of conventional extraction techniques of ion beams from a plasma source is characterized by a natural intensity limit determined by space charge.The extracted current may be enhanced far beyond this limit by neutralizing the space charge of the extracted ions in the first extraction gap of the source with electrons injected from the opposite side. The transverse and longitudinal emittances of a neutralized ion beam, hence its brightness, are preserved. Results of beam compensation experiments, which have been carried out with a laser ion source, are resumed for proposing a general scheme of neutralizing ion sources and their adjacent low-energy beam transport channels with electron beams. Many technical applications of high-mass ion beam neutralization technology may be identified: the enhancement of ion source output for injection into high-intensity, low-and high-energy accelerators, or ion thrusters in space technology, for the neutral beams needed for plasma heating of magnetic conf...

  16. Dispelling a Misconception About Mg-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the Molecular Foundry, ran a series of computer simulations that dispelled a long-standing misconception about Mg-ions in the electrolyte that transports the ions between a...

  17. Estimation of the ion toroidal rotation source due to momentum...

    Office of Scientific and Technical Information (OSTI)

    Estimation of the ion toroidal rotation source due to momentum transfer from Lower Hybrid waves in Alcator C-Mod Citation Details In-Document Search Title: Estimation of the ion...

  18. Magnetic ion exchange: Is there potential for international development? 

    E-Print Network [OSTI]

    Neale, Peta A.; Schäfer, Andrea

    2009-01-01

    Magnetic ion exchange (MIEX®) is an ion exchange resin developed as an additive to existing water treatment plants where additional organic matter is to be removed. The smaller size, magnetic properties and simple ...

  19. Lithium-ion batteries having conformal solid electrolyte layers

    DOE Patents [OSTI]

    Kim, Gi-Heon; Jung, Yoon Seok

    2014-05-27

    Hybrid solid-liquid electrolyte lithium-ion battery devices are disclosed. Certain devices comprise anodes and cathodes conformally coated with an electron insulating and lithium ion conductive solid electrolyte layer.

  20. European Conference on Trapped Ions 1924 September 2010

    E-Print Network [OSTI]

    Hensinger, Winfried

    European Conference on Trapped Ions 1924 September 2010 Redworth Hall Conference Handbook Sponsored by: #12;ECTI 2010 Committees and Invited Wunderlich (Universität Siegen) ECTI 2010 1 #12;Scope of the Conference Ion traps are used as a basic tool

  1. Electroluminescence in ion gel gated organic polymer semiconductor transistors

    E-Print Network [OSTI]

    Bhat, Shrivalli

    2011-07-12

    This thesis reports the light emission in ion gel gated, thin film organic semiconductor transistors and investigates the light emission mechanism behind these devices. We report that ion gel gated organic polymer semiconductor transistors emit...

  2. Stabilization of Ion Concentration Polarization Using a Heterogeneous Nanoporous Junction

    E-Print Network [OSTI]

    Kim, Pilnam

    We demonstrate a recycled ion-flux through heterogeneous nanoporous junctions, which induce stable ion concentration polarization with an electric field. The nanoporous junctions are based on integration of ionic hydrogels ...

  3. Compact mass spectrometer for plasma discharge ion analysis

    DOE Patents [OSTI]

    Tuszewski, Michel G. (Los Alamos, NM)

    1997-01-01

    A mass spectrometer and methods for mass spectrometry which are useful in characterizing a plasma. This mass spectrometer for determining type and quantity of ions present in a plasma is simple, compact, and inexpensive. It accomplishes mass analysis in a single step, rather than the usual two-step process comprised of ion extraction followed by mass filtering. Ions are captured by a measuring element placed in a plasma and accelerated by a known applied voltage. Captured ions are bent into near-circular orbits by a magnetic field such that they strike a collector, producing an electric current. Ion orbits vary with applied voltage and proton mass ratio of the ions, so that ion species may be identified. Current flow provides an indication of quantity of ions striking the collector.

  4. Compact mass spectrometer for plasma discharge ion analysis

    DOE Patents [OSTI]

    Tuszewski, M.G.

    1997-07-22

    A mass spectrometer and methods are disclosed for mass spectrometry which are useful in characterizing a plasma. This mass spectrometer for determining type and quantity of ions present in a plasma is simple, compact, and inexpensive. It accomplishes mass analysis in a single step, rather than the usual two-step process comprised of ion extraction followed by mass filtering. Ions are captured by a measuring element placed in a plasma and accelerated by a known applied voltage. Captured ions are bent into near-circular orbits by a magnetic field such that they strike a collector, producing an electric current. Ion orbits vary with applied voltage and proton mass ratio of the ions, so that ion species may be identified. Current flow provides an indication of quantity of ions striking the collector. 7 figs.

  5. Secondary ion emission from single massive gold cluster impacts 

    E-Print Network [OSTI]

    Hager, George Joseph

    2007-09-17

    Secondary ion mass spectrometry, SIMS, is one of the most versatile surface analytical techniques. The significant parameter determining the performance of SIMS is the secondary ion yield. Atomic projectiles, traditionally used in SIMS...

  6. INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION BEAMS

    E-Print Network [OSTI]

    Sharp, W. M.

    2011-01-01

    HIFAN 1830 INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION BEAMSAC02-05CH11231. INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION467 (1992). [38] R. W. Moir, Fusion Tech. 25, 5 (1994) [39

  7. Towards a cryogenic planar ion trap for Sr-88

    E-Print Network [OSTI]

    Bakr, Waseem (Waseem S.)

    2006-01-01

    This thesis describes experiments with ion traps constructed with electrodes in a single two-dimensional plane, and ion traps operated in a cryogenic environment at 77K and 4K temperatures. These two technologies address ...

  8. Development of Large Format Lithium Ion Cells with Higher Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Large Format Lithium Ion Cells with Higher Energy Density Exceeding 500WhL Development of Large Format Lithium Ion Cells with Higher Energy Density Exceeding 500WhL 2012 DOE...

  9. A simple method for characterization of the magnetic field in an ion trap using Be+ ions

    E-Print Network [OSTI]

    Jianwei Shen; Andrii Borodin; Stephan Schiller

    2014-10-06

    We demonstrate a simple method for the determination of the magnetic field in an ion trap using laser-cooled Be+ ions. The method is not based on magnetic resonance and thus does not require delivering radiofrequency (RF) radiation to the trap. Instead, stimulated Raman spectroscopy is used, and only an easily generated optical sideband of the laser cooling wave is required. The d.c. magnetic vector, averaged over the Be+ ion ensemble, is determined. Furthermore, the field strength can be minimized and an upper limit for the field gradient can be determined. The resolution of the method is 0.04 G at present. The relevance for precision rovibrational spectroscopy of molecular hydrogen ions is briefly discussed.

  10. A self-sputtering ion source: A new approach to quiescent metal ion beams

    E-Print Network [OSTI]

    Oks, Efim M.

    2010-01-01

    ion beams from vacuum arc plasmas and HIPIMS self-sputteringion source because the vacuum arc plasma is produced at non-without the need for an arc trigger plasma, although it is

  11. Temporal Development of Ion Beam Mean Charge State in Pulsed Vacuum Arc Ion Sources

    E-Print Network [OSTI]

    Oks, Efim M.; Yushkov, Georgy Yu.; Anders, Andre

    2008-01-01

    temperature in the vacuum arc plasma and thus higher ioncharged ions in the vacuum arc plasma. The physical aspectsion charge states in vacuum arc plasma were subject of our

  12. Microelectromechanical system assembled ion optics: An advance to miniaturization and assembly of electron and ion optics

    SciTech Connect (OSTI)

    Fox, J.; Verbeck, G. [University of North Texas, Denton, Texas 76203 (United States); Saini, R.; Tsui, K. [Zyvex, Richardson, Texas 75081 (United States)

    2009-09-15

    Deep-reactive ion etching of n-doped silicon-on-insulator is utilized to make ion optical components to aid in the miniaturization of mass analyzers. The microelectromechanical system components are bound to aluminum nitride substrates and employed three-dimensional assembly. The assembly methods are tested for breakdown (V{sub b}), durability, and alignment. Demonstration of ion manipulation is shown with a 1 mm Bradbury-Nielsen gate, 500 {mu}m Einzel lens, 500 {mu}m coaxial ring ion trap, and reflectron optics. Data are presented showing the resolution, attenuation, and performance of each of these devices. We demonstrate advantages and disadvantages of this technology and its applications to mass analysis.

  13. Medium energy heavy ion operations at RHIC

    SciTech Connect (OSTI)

    Drees, K.A.; Ahrens, L.; Bai, M.; Beebe-Wang, J.; Blackler, I.M.C.; Blaskiewicz, M.; Brown, K.A.; Brennan, M.; Bruno, D.; Butler, J.; Carlson, C.; Connolly, R.; D'Ottavio, T.; Fischer, W.; Fu, W.; Gassner, D.; Harvey, M.; Hayes, T.; Huang, H.; Hulsart, R.; Ingrassia, P.; Kling, N.; Lafky, M.; Laster, J.; Lee, R.C.; Litvinenko, V.; Luo, Y.; MacKay, W.W.; Marr, G.; Mapes. M.; Marusic, A.; Mernick, K.; Michnoff, R.; Minty, M.; Montag, C.; Morris, J.; Naylor, C.; Nemesure, S.; Pilat, F.; Ptitsyn, V.; Robert-Demolaize, G.; Roser, T.; Sampson, P.; Satogata, T.; Schoefer, V.; Schultheiss, C.; Severino, F.; Shrey, T.; Smith, K.S.; Tepikian, S.; Thieberger, P.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; van Kuik, B.; Wilinski, M.; Zaltsman, A.; Zeno, K.; Zhang, S.Y.

    2011-03-28

    As part of the search for a phase transition or critical point on the QCD phase diagram, an energy scan including 5 different energy settings was performed during the 2010 RHIC heavy ion run. While the top beam energy for heavy ions is at 100 GeV/n and the lowest achieved energy setpoint was significantly below RHICs injection energy of approximately 10 GeV/n, we also provided beams for data taking in a medium energy range above injection energy and below top beam energy. This paper reviews RHIC experience and challenges for RHIC medium energy operations that produced full experimental data sets at beam energies of 31.2 GeV/n and 19.5 GeV/n. The medium energy AuAu run covered two beam energies, both above the RHIC injection energy of 9.8 GeV but well below the standard store energy of 100 GeV (see table 1). The low energy and full energy runs with heavy ions in FY10 are summarized in [1] and [2]. Stochastic Cooling ([3]) was only used for 100 GeV beams and not used in the medium energy run. The efficiency of the transition from 100 GeV operation to 31.2 GeV and then to 19.5 GeV was remarkable. Setup took 32 h and 19 h respectively for the two energy settings. The time in store, defined to be the percentage of time RHIC provides beams in physics conditions versus calendar time, was approximately 52% for the entire FY10 heavy ion run. In both medium energy runs it was well above this average, 68% for 31.5 GeV and 82% for 19.5 GeV. For both energies RHIC was filled with 111 bunches with 1.2 10{sup 9} and 1.3 10{sup 9} ions per bunch respectively.

  14. EV Everywhere Batteries Workshop - Next Generation Lithium Ion...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout Session Report EV Everywhere Batteries Workshop - Materials...

  15. Improved Positive Electrode Materials for Li-ion Batteries

    E-Print Network [OSTI]

    Conry, Thomas Edward

    2012-01-01

    commercial Li-ion batteries today use graphite or a mixturein certain primary batteries). Graphite has a potential of

  16. EV Everywhere Batteries Workshop - Next Generation Lithium Ion...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout Session Report EV Everywhere Batteries Workshop - Materials Processing...

  17. Experimental study of ion heating and acceleration during magnetic reconnection

    E-Print Network [OSTI]

    #ects in tokamak plasmas. Recent research on the Magnetic Reconnection Experiment 3 (MRX) has focused on ion

  18. Celgard US Manufacturing Facilities Initiative for Lithium-ion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery Separator Celgard US Manufacturing Facilities Initiative for...

  19. Confined Thermal Multicharged Ions Produced by Synchrotron Radiation 

    E-Print Network [OSTI]

    Church, David A.; Kravis, S. D.; Sellin, I. A.; Levin, J. C.; Short, R. T.; Meron, M.; Johnson, B. M.; Jones, K. W.

    1987-01-01

    Brookhaven National Laboratory, Upton, New York 11973 (Received 2 April 1987) Synchrotron x rays have been used to produce a confined multicharged ion gas near room tem- perature. Comparison of charge-state-number observations characteristic of ion... formation and of ion storage, together with measurements of Ar-to-Ar~+ electron-transfer rate coefficients, provide information to estimate time constants for relaxation to thermal equilibrium and other stored-ion properties important to further...

  20. Ion source for high-precision mass spectrometry

    DOE Patents [OSTI]

    Todd, P.J.; McKown, H.S.; Smith, D.H.

    1982-04-26

    The invention is directed to a method for increasing the precision of positive-ion relative abundance measurements conducted in a sector mass spectrometer having an ion source for directing a beam of positive ions onto a collimating slit. The method comprises incorporating in the source an electrostatic lens assembly for providing a positive-ion beam of circular cross section for collimation by the slit. 2 figures, 3 tables.

  1. Pick-up ion energization at the termination shock

    SciTech Connect (OSTI)

    Gary, S Peter [Los Alamos National Laboratory; Winske, Dan [Los Alamos National Laboratory; Wu, Pin [BOSTON UNIV.; Schwadron, N A [BOSTON UNIV.

    2009-01-01

    One-dimensional hybrid simulations are used to investigate how pickup ions are energized at the perpendicular termination shock. Contrary to previous models based on pickup ion energy gain by repeated crossings of the shock front (shock surfing) or due to a reforming shock front, the present simulations show that pickup ion energy gain involves a gyro-phasedependent interaction with the inhomogeneous motional electric field at the shock. The process operates at all relative concentrations of pickup ion density.

  2. Negative ion source with hollow cathode discharge plasma

    DOE Patents [OSTI]

    Hershcovitch, A.; Prelec, K.

    1980-12-12

    A negative ion source of the type where negative ions are formed by bombarding a low-work-function surface with positive ions and neutral particles from a plasma, wherein a highly ionized plasma is injected into an anode space containing the low-work-function surface is described. The plasma is formed by hollow cathode discharge and injected into the anode space along the magnetic field lines. Preferably, the negative ion source is of the magnetron type.

  3. An Inventor's GuIde to InnovAtIons

    E-Print Network [OSTI]

    An Inventor's GuIde to InnovAtIons CommerCIAlIzAtIon At old domInIon unIversIty #12;ContACt us odu.edu/facultystaff/ research/innovations- commercialization 757-683-4027 the Inventor's GuIde to InnovAtIons Commer of Michigan Tech Transfer's "An Inventor's Guide to Technology Transfer." We would like to thank

  4. Reactant ion chemistry for detection of TNT, RDX, and PETN using an ion mobility spectrometer

    SciTech Connect (OSTI)

    Klassen, S.E.; Rodacy, P.; Silva, R.

    1997-09-01

    This report describes the responses of three energetic materials (TNT, RDX, and PETN) to varying reactant ion chemistries and IMS cell temperatures. The following reactant ion chemistries were evaluated; air-dry; air-wet; methylene chloride-dry; methylene chloride-wet; methylene bromide-dry; nitrogen dioxide-wet; sulfur dioxide-wet. The temperature was varied between 160 - 220{degrees}C.

  5. New insights into the decay of ion waves to turbulence, ion heating, and soliton generation

    SciTech Connect (OSTI)

    Chapman, T. Banks, J. W.; Berger, R. L.; Cohen, B. I.; Williams, E. A.; Brunner, S.

    2014-04-15

    The decay of a single-frequency, propagating ion acoustic wave (IAW) via two-ion wave decay to a continuum of IAW modes is found to result in a highly turbulent plasma, ion soliton production, and rapid ion heating. Instability growth rates, thresholds, and sensitivities to plasma conditions are studied via fully kinetic Vlasov simulations. The decay rate of IAWs is found to scale linearly with the fundamental IAW potential amplitude ?{sub 1} for ZT{sub e}/T{sub i}?20, beyond which the instability is shown to scale with a higher power of ?{sub 1}, where Z is the ion charge number and T{sub e} (T{sub i}) is the electron (ion) thermal temperature. The threshold for instability is found to be smaller by an order of magnitude than linear theory estimates. Achieving a better understanding of the saturation of stimulated Brillouin scatter levels observed in laser-plasma interaction experiments is part of the motivation for this study.

  6. Microchip and wedge ion funnels and planar ion beam analyzers using same

    DOE Patents [OSTI]

    Shvartsburg, Alexandre A; Anderson, Gordon A; Smith, Richard D

    2012-10-30

    Electrodynamic ion funnels confine, guide, or focus ions in gases using the Dehmelt potential of oscillatory electric field. New funnel designs operating at or close to atmospheric gas pressure are described. Effective ion focusing at such pressures is enabled by fields of extreme amplitude and frequency, allowed in microscopic gaps that have much higher electrical breakdown thresholds in any gas than the macroscopic gaps of present funnels. The new microscopic-gap funnels are useful for interfacing atmospheric-pressure ionization sources to mass spectrometry (MS) and ion mobility separation (IMS) stages including differential IMS or FAIMS, as well as IMS and MS stages in various configurations. In particular, "wedge" funnels comprising two planar surfaces positioned at an angle and wedge funnel traps derived therefrom can compress ion beams in one dimension, producing narrow belt-shaped beams and laterally elongated cuboid packets. This beam profile reduces the ion density and thus space-charge effects, mitigating the adverse impact thereof on the resolving power, measurement accuracy, and dynamic range of MS and IMS analyzers, while a greater overlap with coplanar light or particle beams can benefit spectroscopic methods.

  7. Microstructural Modeling and Design of Rechargeable Lithium-Ion Batteries

    E-Print Network [OSTI]

    García, R. Edwin

    Microstructural Modeling and Design of Rechargeable Lithium-Ion Batteries R. Edwin Garci´a,a, *,z microstructure. Experi- mental measurements are reproduced. Early models for lithium-ion batteries were developed Institute of Technology, Cambridge, Massachusetts 01239-4307, USA The properties of rechargeable lithium-ion

  8. LITHIUM-ION BATTERY CHARGING REPORT G. MICHAEL BARRAMEDA

    E-Print Network [OSTI]

    Ruina, Andy L.

    LITHIUM-ION BATTERY CHARGING REPORT G. MICHAEL BARRAMEDA 1. Abstract This report introduces how. Battery Pack 1 · Cycle 1 : 2334 mAh · Cycle 2: 2312 mAh #12;LITHIUM-ION BATTERY CHARGING REPORT 3 · Cycle to handle the Powerizer Li-Ion rechargeable Battery Packs. It will bring reveal battery specifications

  9. Ultraviolet emissions from Gd3 + ions excited by energy transfer

    E-Print Network [OSTI]

    Cao, Wenwu

    Ultraviolet emissions from Gd3 + ions excited by energy transfer from Ho3 + ions Ying Yu October 2010 Accepted 28 October 2010 Available online 4 November 2010 Keywords: Ultraviolet emission Upconversion Energy transfer a b s t r a c t Ultraviolet (UV) upconversion (UC) emissions of Gd3+ ion were

  10. The Lithium-Ion Cell: Model, State Of Charge Estimation

    E-Print Network [OSTI]

    Schenato, Luca

    The Lithium-Ion Cell: Model, State Of Charge Estimation and Battery Management System Tutor and Y. Fuentes. Computer simulations of a lithium-ion polymer battery and implications for higher. Di Domenico, A. Stefanopoulou, and G. Fiengo., Reduced Order Lithium-ion Battery Electrochemical

  11. Development of a focused ion beam micromachining system

    SciTech Connect (OSTI)

    Pellerin, J.G.; Griffis, D.; Russell, P.E.

    1988-12-01

    Focused ion beams are currently being investigated for many submicron fabrication and analytical purposes. An FIB micromachining system consisting of a UHV vacuum system, a liquid metal ion gun, and a control and data acquisition computer has been constructed. This system is being used to develop nanofabrication and nanomachining techniques involving focused ion beams and scanning tunneling microscopes.

  12. REVIEW ARTICLE Tailored ion energy distributions on plasma electrodes

    E-Print Network [OSTI]

    Economou, Demetre J.

    REVIEW ARTICLE Tailored ion energy distributions on plasma electrodes Demetre J. Economoua) Plasma or loss of selectivity. In many cases, a nearly monoenergetic ion energy distribution (IED) is desired of development of the ion energy distribution in the sheath and (2) methods to control the IED on plasma

  13. Ion-Induced Nucleation of Dibutyl Phthalate Vapors on Spherical and Nonspherical Singly and Multiply Charged Polyethylene Glycol Ions

    E-Print Network [OSTI]

    and Multiply Charged Polyethylene Glycol Ions Albert G. Nasibulin,*, Juan Fernandez de la Mora, and Esko I by positive polyethylene glycol (PEG) ions with controlled sizes and charges was experimentally studied

  14. Ion Dynamics in a Single and Dual Radio Frequency Sheath Measured by Laser-Induced Fluorescence

    E-Print Network [OSTI]

    Moore, Nathaniel Breckenridge

    2015-01-01

    and phase resolved ion energy and ion angular distributions27 FIGURE 2.6. Ion energy distribution functions in a dual52 FIGURE 5.2. Example vertical ion energy distribution

  15. Method and apparatus for efficient photodetachment and purification of negative ion beams

    DOE Patents [OSTI]

    Beene, James R. (Oak Ridge, TN); Liu, Yuan (Knoxville, TN); Havener, Charles C. (Knoxville, TN)

    2008-02-26

    Methods and apparatus are described for efficient photodetachment and purification of negative ion beams. A method of purifying an ion beam includes: inputting the ion beam into a gas-filled multipole ion guide, the ion beam including a plurality of ions; increasing a laser-ion interaction time by collisional cooling the plurality of ions using the gas-filled multipole ion guide, the plurality of ions including at least one contaminant; and suppressing the at least one contaminant by selectively removing the at least one contaminant from the ion beam by electron photodetaching at least a portion of the at least one contaminant using a laser beam.

  16. Analysis Of Microseismic Location Accuracy For Hydraulic Fracturing At The DWTI Site, Jasper, Texas

    E-Print Network [OSTI]

    Rieven, Shirley

    1995-01-01

    This report presents the results of a feasibility study designed to assess whether microseismic location techniques can provide enough accuracy and precision to enable a

  17. Honorary Doctor of Laws The Hon Jasper TSANG Yok-sing

    E-Print Network [OSTI]

    Po, Lai-Man

    through all the ups and downs of his political career, which he has weathered calmly and imperturbably. Mr Tsang was born in Guangzhou and came to live in Hong Kong with his parents when he was two years old the unparalleled value of education came fully home to him. He also came to realise, through his work as head

  18. An Archaeological Survey of the Tiger Creek Compartment 3 Jasper County, Texas 

    E-Print Network [OSTI]

    Moore, William

    2015-06-23

    was very good. The surv ey crew walked the shoreline and surface on the ridge top in an effort to locate surface indi cations of a prehistoric or historic site. Two flakes made from opal were collected fr om the eroded lakeshore (Locality 3...

  19. LLNL Conducts First Plutonium Shot Using the JASPER Gas Gun | National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResource and JobLCLS Operating3ledp/ The4,

  20. Studies of Local Degradation Phenomena in Composite Cathodes for Lithium-Ion Batteries

    E-Print Network [OSTI]

    Kerlau, M.; Marcinek, M.; Srinivasan, V.; Kostecki, R.M.

    2008-01-01

    Composite Cathodes for Li-ion Batteries Marie Kerlau, Marekfrom commercial Li-ion batteries and mode cells which

  1. Finding Room for Improvement in Transition Metal Oxides Cathodes for Lithium-ion Batteries

    E-Print Network [OSTI]

    Kam, Kinson

    2012-01-01

    Cathodes for Lithium-ion Batteries Kinson C. Kam and Marcarechargeable lithium-ion batteries has become an integral

  2. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries

    E-Print Network [OSTI]

    Lin, Feng

    2014-01-01

    Layered, “Li-Excess” Lithium-Ion Battery Electrode Materialthe surfaces of lithium-ion battery (LIB) electrodes evolve

  3. Passivation of Aluminum in Lithium-ion Battery Electrolytes with LiBOB

    E-Print Network [OSTI]

    Zhang, Xueyuan; Devine, Thomas M.

    2008-01-01

    of Aluminum in Lithium-ion Battery Electrolytes with LiBOBin commercially available lithium-ion battery electrolytes,

  4. ECOS-LINCE: A HIGH INTENSITY MULTI-ION SUPERCONDUCTING LINAC FOR NUCLEAR STRUCTURE AND REACTIONS

    E-Print Network [OSTI]

    Boyer, Edmond

    - Nuclear astrophysics - Ion-ion collisions in plasma Applied research should be also foreseen in the fields

  5. RADIATION CHEMISTRY OF HIGH ENERGY CARBON, NEON AND ARGON IONS: INTEGRAL YIELDS FROM FERROUS SULFATE SOLUTIONS

    E-Print Network [OSTI]

    Christman, E.A.

    2010-01-01

    NEON AND ARGON IONS: INTEGRAL YIELDS FROM FERROUS SULFATENEON AND ARGON IONS: INTEGRAL YIELDS FROM FERROUS SULFATE

  6. Finding Room for Improvement in Transition Metal Oxides Cathodes for Lithium-ion Batteries

    E-Print Network [OSTI]

    Kam, Kinson

    2012-01-01

    Oxides Cathodes for Lithium-ion Batteries Kinson C. Kam andusing rechargeable lithium-ion batteries has become an

  7. Aalborg Universitet Datasheet-based modeling of Li-Ion batteries

    E-Print Network [OSTI]

    Andreasen, Søren Juhl

    SLPB 120216216 53Ah Li-Ion cell. Keywords: battery model, Lithium Ion battery, equivalent circuit model

  8. Workshop on Accelerators for Heavy Ion Fusion Summary Report of the Workshop

    E-Print Network [OSTI]

    Seidl, P.A.

    2013-01-01

    ion inertial fusion," Nuclear Fusion, Vol. 33, No. 4 (1993)ion inertial fusion energy,” Nuclear Fusion 45 (2005) S291–

  9. Finding Room for Improvement in Transition Metal Oxides Cathodes for Lithium-ion Batteries

    E-Print Network [OSTI]

    Kam, Kinson

    2012-01-01

    Metal Oxides Cathodes for Lithium-ion Batteries Kinson C.storage using rechargeable lithium-ion batteries has become

  10. The Heavy Ion Fusion Virtual National Laboratory Status and new physics directions for heavy-ion-driven

    E-Print Network [OSTI]

    for compact driver-scale injectors. Two LLNL injector test stands #12;The Heavy Ion Fusion Virtual NationalThe Heavy Ion Fusion Virtual National Laboratory Status and new physics directions for heavy-ion-driven high energy density physics and fusion* G. Logan, F. Bieniosek, C. Celata, E. Henestroza, J. Kwan, E. P

  11. Dark state cooling of a trapped ion using microwave coupling

    E-Print Network [OSTI]

    Yong Lu; Jian-Qi Zhang; Jin-Ming Cui; Dong-Yang Cao; Shuo Zhang; Yun-Feng Huang; Chuan-Feng Li; Guang-Can Guo

    2015-07-09

    We propose a new dark-state cooling method of trapped ion systems in the Lamb-Dicke limit. With application of microwave dressing the ion, we can obtain two electromagnetically induced transparency structures. The heating effects caused by the carrier and the blue sideband transition vanish due to the EIT effects and the final mean phonon numbers can be much less than the recoil limit. Our scheme is robust to fluctuations of microwave power and laser intensities which provides a broad cooling bandwidth to cool motional modes of a linear ion chain. Moreover, it is more suitable to cool four-level ions on a large-scale ion chip.

  12. Fundamental and experimental studies of ion-drag pumping 

    E-Print Network [OSTI]

    Castaneda, Javier Augusto

    1992-01-01

    investigated the pumping of transformer oil by an ion-drag pump. They achieved velocities close to 14 cm/s using screen type electrodes. General Electric Company (1983) used Sharbaugh and Walker's ion-drag pump design and built it into a 167-kVA distribufion... experimentally the ion-drag pumping of Refrigerant 11, to develop a general one-dimensional theoretical model for ion-drag pumping, and to investigate the ionization and emission modes of ion-drag pumping using dodecylbenzene as a working fluid. Experimentally...

  13. Observation of elastic collisions between lithium atoms and calcium ions

    E-Print Network [OSTI]

    Haze, Shinsuke; Fujinaga, Munekazu; Mukaiyama, Takashi

    2013-01-01

    We observed elastic collisions between laser-cooled fermionic lithium atoms and calcium ions at the energy range from 100 mK to 3 K. Lithium atoms in an optical-dipole trap were transported to the center of the ion trap using an optical tweezer technique, and a spatial overlap of the atoms and ions was realized in order to observe the atom-ion interactions. The elastic scattering rate was determined from the decay of atoms due to elastic collisions with ions. The collision-energy dependence of the elastic scattering cross-section was consistent with semi-classical collision theory.

  14. Ion Density Deviations in Semipermeable Ionic Microcapsules

    E-Print Network [OSTI]

    Qiyun Tang; Alan R. Denton

    2015-07-07

    By implementing the nonlinear Poisson-Boltzmann theory in a cell model, we theoretically investigate the influence of polyelectrolye gel permeability on ion densities and pH deviations inside the cavities of ionic microcapsules. Our calculations show that variations in permeability of a charged capsule shell cause a redistribution of ion densities within the capsule, which ultimately affects the pH deviation and Donnan potential induced by the electric field of the shell. We find that semipermeable capsules can induce larger pH deviations inside their cavities that can permeable capsules. Furthermore, with increasing capsule charge, the influence of permeability on pH deviations progressively increases. Our theory, while providing a self-consistent method for modeling the influence of permeability on fundamental properties of ionic microgels, makes predictions of practical significance for the design of microcapsules loaded with fluorescent dyes, which can serve as biosensors for diagnostic purposes.

  15. Low energy ion-molecule reactions

    SciTech Connect (OSTI)

    Farrar, J.M. [Univ. of Rochester, NY (United States)

    1993-12-01

    This project is concerned with elucidating the dynamics of elementary ion-molecule reactions at collision energies near and below 1 eV. From measurements of the angular and energy distributions of the reaction products, one can infer intimathe details about the nature of collisions leading to chemical reaction, the geometries and lifetimes of intermediate complexes that govern the reaction dynamics, and the collision energy dependence of these dynamical features. The author employs crossed-beam low energy mass spectrometry technology developed over the last several years, with the focus of current research on proton transfer and hydrogen atom transfer reactions of te O{sup {minus}} ion with species such as HF, H{sub 2}O, and NH{sub 3}.

  16. Induction linacs for heavy ion fusion research

    SciTech Connect (OSTI)

    Fessenden, T.J.

    1984-05-01

    The new features of employing an induction linac as a driver for inertial fusion involve (1) transport of high-current low-emittance heavy ion beams, (2) multiple independently-focussed beams threading the same accelerator structure, and (3) synthesis of voltage waveforms to accomplish beam current amplification. A research program is underway at LBL to develop accelerators that test all these features with the final goal of producing an ion beam capable of heating matter to approx. 70 eV. This paper presents a discussion of some properties of induction linacs and how they may be used for HIF research. Physics designs of the High Temperature Experiment (HTE) and the Multiple Beam Experiment (MBE) accelerators are presented along with initial concepts of the MBE induction units.

  17. 2011 GASEOUS IONS GORDON RESEARCH CONFERENCE

    SciTech Connect (OSTI)

    Scott Anderson

    2011-03-04

    The Gaseous Ions: Structures, Energetics and Reactions Gordon Research Conference will focus on ions and their interactions with molecules, surfaces, electrons, and light. The conference will cover theory and experiments, and systems ranging from molecular to biological to clusters to materials. The meeting goal continues to be bringing together scientists interested in fundamentals, with those applying fundamental phenomena to a wide range of practical problems. Each of the ten conference sessions will focus on a topic within this spectrum, and there will also be poster sessions for contributed papers, with sufficient space and time to allow all participants to present their latest results. To encourage active participation by young investigators, about ten of the poster abstracts will be selected for 15 minute 'hot topic' talks during the conference sessions. Hot topic selection will be done about a month before the meeting. Funds should be available to offset the participation cost for young investigators.

  18. Hadronic physics in peripheral heavy ion collisions

    E-Print Network [OSTI]

    A. A. Natale

    2002-01-22

    We discuss the production of hadronic resonances in very peripheral heavy ion collisions, where the ions collide with impact parameter larger than twice the nuclear radius and remain intact after the collision. We compare the resonance production through two-photon and double Pomeron exchange, showing that when we impose the condition for a peripheral interaction the $\\gamma \\gamma$ process dominates over the Pomeron interaction, due to the short range propagation of this last one. We also discuss the observation of light resonances through the subprocess $\\gamma \\gamma \\to R \\to \\gamma \\gamma $, which is a clean signal for glueball candidates as well as one way to check the existence of a possible scalar $\\sigma$ meson.

  19. In situ secondary ion mass spectrometry analysis

    SciTech Connect (OSTI)

    Groenewold, G.S.; Applehans, A.D.; Ingram, J.C.; Delmore, J.E.; Dahl, D.A.

    1993-01-01

    The direct detection of tributyl phosphate (TBP) on rocks using molecular beam surface analysis [MBSA or in situ secondary ion mass spectrometry (SIMS)] is demonstrated. Quantities as low as 250 ng were detected on basalt and sandstone with little or no sample preparation. Detection of TBP on soil has proven to be more problematic and requires further study. Ethylenediaminetetraacetic acid (EDTA) is more difficult to detect because it is very reactive with surfaces of interest. Nevertheless, it is possible to detect EDTA if the acidity of the surface is controlled. The detection of EDTA-metal complexes is currently an open question, but evidence is presented for the detection of ions arising from a EDTA-lead complex. Carboxylic acids (i.e., citric, ascorbic, malic, succinic, malonic, and oxalic) give characteristic SIM spectra, but their detection on sample surfaces awaits evaluation.

  20. Theory of Electron-Ion Collisions

    SciTech Connect (OSTI)

    Donald C. Griffin

    2009-10-02

    Collisions of electrons with atoms and ions play a crucial role in the modeling and diagnostics of fusion plasmas. In the edge and divertor regions of magnetically confined plasmas, data for the collisions of electrons with neutral atoms and low charge-state ions are of particular importance, while in the inner region, data on highly ionized species are needed. Since experimental measurements for these collisional processes remain very limited, data for such processes depend primarily on the results of theoretical calculations. Over the period of the present grant (January 2006 â?? August 2009), we have made additional improvements in our parallel scattering programs, generated data of direct fusion interest and made these data available on The Controlled Fusion Atomic Data Center Web site at Oak Ridge National Laboratory. In addition, we have employed these data to do collsional-radiative modeling studies in support of a variety of experiments with magnetically confined fusion plasmas.