National Library of Energy BETA

Sample records for ion exchange technology

  1. Small Column Ion Exchange at Savannah River Site Technology Readiness...

    Broader source: Energy.gov (indexed) [DOE]

    Small Column Ion Exchange at Savannah River Site Technology Readiness Assessment Report More Documents & Publications Small Column Ion Exchange Technology at Savannah River Site ...

  2. Small Column Ion Exchange at Savannah River Site Technology Readiness Assessment Report

    Energy Savers [EERE]

    Small Column Ion Exchange Technology at Savannah River Site U.S. Department of Energy Office of Environmental Management Office of Technology Innovation and Development Technology Readiness Assessment Report November 2011 U.S. DOE-EM Office of Technology Innovation and Development November 11, 2011 Small Column Ion Exchange Program Technology Readiness Assessment Page 2 of 112 This page intentionally left blank November 11, 2011 U.S. DOE-EM Office of Technology Innovation and Development Small

  3. Vitrification of ion exchange materials. Innovative technology summary report

    SciTech Connect (OSTI)

    Not Available

    1999-07-01

    Ion exchange is a process that safely and efficiently removes radionuclides from tank waste. Cesium and strontium account for a large portion of the radioactivity in waste streams from US Department of Energy (DOE) weapons production. Crystalline silicotitanate (CST) is an inorganic sorbent that strongly binds cesium, strontium, and several other radionuclides. Developed jointly by Sandia National Laboratory and Texas A and M University, CST was commercialized through a cooperative research and development agreement with an industrial partner. Both an engineered (mesh pellets) and powdered forms are commercially available. Cesium removal is a baseline in HLW treatment processing. CST is very effective at removing cesium from HLW streams and is being considered for adoption at several sites. However, CST is nonregenerable, and it presents a significant secondary waste problem. Treatment options include vitrification of the CST, vitrification of the CST coupled with HLW, direct disposal, and low-temperature processes such as grouting. The work presented in this report demonstrates that it is effective to immobilize CST using a baseline technology such as vitrification. Vitrification produces a durable waste form. CST vitrification was not demonstrated before 1996. In FY97, acceptable glass formulations were developed using cesium-loaded CST obtained from treating supernatants from Oak Ridge Reservation (ORR) tanks, and the CST was vitrified in a research melter at the Savannah River Technology Center (SRTC). In FY98, SRS decided to reevaluate the use of in-tank precipitation using tetraphenylborate to remove cesium from tank supernatant and to consider other options for cesium removal, including CST. Hanford and Idaho National Engineering and Environmental Laboratory also require radionuclide removal in their baseline flowsheets.

  4. LITERATURE REVIEWS TO SUPPORT ION EXCHANGE TECHNOLOGY SELECTION FOR MODULAR SALT PROCESSING

    SciTech Connect (OSTI)

    King, W

    2007-11-30

    This report summarizes the results of literature reviews conducted to support the selection of a cesium removal technology for application in a small column ion exchange (SCIX) unit supported within a high level waste tank. SCIX is being considered as a technology for the treatment of radioactive salt solutions in order to accelerate closure of waste tanks at the Savannah River Site (SRS) as part of the Modular Salt Processing (MSP) technology development program. Two ion exchange materials, spherical Resorcinol-Formaldehyde (RF) and engineered Crystalline Silicotitanate (CST), are being considered for use within the SCIX unit. Both ion exchange materials have been studied extensively and are known to have high affinities for cesium ions in caustic tank waste supernates. RF is an elutable organic resin and CST is a non-elutable inorganic material. Waste treatment processes developed for the two technologies will differ with regard to solutions processed, secondary waste streams generated, optimum column size, and waste throughput. Pertinent references, anticipated processing sequences for utilization in waste treatment, gaps in the available data, and technical comparisons will be provided for the two ion exchange materials to assist in technology selection for SCIX. The engineered, granular form of CST (UOP IE-911) was the baseline ion exchange material used for the initial development and design of the SRS SCIX process (McCabe, 2005). To date, in-tank SCIX has not been implemented for treatment of radioactive waste solutions at SRS. Since initial development and consideration of SCIX for SRS waste treatment an alternative technology has been developed as part of the River Protection Project Waste Treatment Plant (RPP-WTP) Research and Technology program (Thorson, 2006). Spherical RF resin is the baseline media for cesium removal in the RPP-WTP, which was designed for the treatment of radioactive waste supernates and is currently under construction in Hanford, WA. Application of RF for cesium removal in the Hanford WTP does not involve in-riser columns but does utilize the resin in large scale column configurations in a waste treatment facility. The basic conceptual design for SCIX involves the dissolution of saltcake in SRS Tanks 1-3 to give approximately 6 M sodium solutions and the treatment of these solutions for cesium removal using one or two columns supported within a high level waste tank. Prior to ion exchange treatment, the solutions will be filtered for removal of entrained solids. In addition to Tanks 1-3, solutions in two other tanks (37 and 41) will require treatment for cesium removal in the SCIX unit. The previous SCIX design (McCabe, 2005) utilized CST for cesium removal with downflow supernate processing and included a CST grinder following cesium loading. Grinding of CST was necessary to make the cesium-loaded material suitable for vitrification in the SRS Defense Waste Processing Facility (DWPF). Because RF resin is elutable (and reusable) and processing requires conversion between sodium and hydrogen forms using caustic and acidic solutions more liquid processing steps are involved. The WTP baseline process involves a series of caustic and acidic solutions (downflow processing) with water washes between pH transitions across neutral. In addition, due to resin swelling during conversion from hydrogen to sodium form an upflow caustic regeneration step is required. Presumably, one of these basic processes (or some variation) will be utilized for MSP for the appropriate ion exchange technology selected. CST processing involves two primary waste products: loaded CST and decontaminated salt solution (DSS). RF processing involves three primary waste products: spent RF resin, DSS, and acidic cesium eluate, although the resin is reusable and typically does not require replacement until completion of multiple treatment cycles. CST processing requires grinding of the ion exchange media, handling of solids with high cesium loading, and handling of liquid wash and conditioning solutions. RF processing requires h

  5. Vehicle Technologies Office Merit Review 2015: Ion-Exchanged Derived Cathodes (IE-LL_NCM) for High Energy Density LIBs

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ion-exchanged...

  6. External Technical Review Report for Small Column Ion Exchange...

    Energy Savers [EERE]

    Report for Small Column Ion Exchange Technology at Savannah River Site External Technical Review Report for Small Column Ion Exchange Technology at Savannah River Site Full ...

  7. Electrically Switched Cesium Ion Exchange

    SciTech Connect (OSTI)

    JPH Sukamto; ML Lilga; RK Orth

    1998-10-23

    This report discusses the results of work to develop Electrically Switched Ion Exchange (ESIX) for separations of ions from waste streams relevant to DOE site clean-up. ESIX combines ion exchange and electrochemistry to provide a selective, reversible method for radionuclide separation that lowers costs and minimizes secondary waste generation typically associated with conventional ion exchange. In the ESIX process, an electroactive ion exchange film is deposited onto. a high surface area electrode, and ion uptake and elution are controlled directly by modulating the potential of the film. As a result, the production of secondary waste is minimized, since the large volumes of solution associated with elution, wash, and regeneration cycles typical of standard ion exchange are not needed for the ESIX process. The document is presented in two parts: Part I, the Summary Report, discusses the objectives of the project, describes the ESIX concept and the approach taken, and summarizes the major results; Part II, the Technology Description, provides a technical description of the experimental procedures and in-depth discussions on modeling, case studies, and cost comparisons between ESIX and currently used technologies.

  8. Charge exchange molecular ion source

    DOE Patents [OSTI]

    Vella, Michael C.

    2003-06-03

    Ions, particularly molecular ions with multiple dopant nucleons per ion, are produced by charge exchange. An ion source contains a minimum of two regions separated by a physical barrier and utilizes charge exchange to enhance production of a desired ion species. The essential elements are a plasma chamber for production of ions of a first species, a physical separator, and a charge transfer chamber where ions of the first species from the plasma chamber undergo charge exchange or transfer with the reactant atom or molecules to produce ions of a second species. Molecular ions may be produced which are useful for ion implantation.

  9. Summary - Small Column Ion Exchange (SCIX)Technology at the SRS

    Office of Environmental Management (EM)

    ETR R Un Baseline The Sm being The SC operat which Sr, and waste critical the SC deploy Specif exchan [CST]) CST, a (mono and so (RMF) maturi readin design moving The pu techni projec Site: S roject: S E Report Date: F ited States Sma Why DOE e SCIX System Pr mall Column Io developed at S CIX system is tions (ion excha function to rem d actinides) fro and prepare th l technology ele CIX system tha yment and thes fically the critica nge on a selec ) housed in an actinide and Sr osodium titanat

  10. Acidic Ion Exchange Membrane - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Hydrogen and Fuel Cell Energy Storage Energy Storage Find More Like This Return to Search Acidic Ion Exchange Membrane Colorado School of Mines Contact CSM About This Technology Technology Marketing SummaryIn this invention we report the synthesis of a copolymer of vinyl phosphonic acid (VPA) and vinyl zirconium phosphorous (VZP) acid has been achieved for the production of ion exchange membranes. DescriptionCharacterization of the membrane has been accomplished using a

  11. Technology Performance Exchange

    SciTech Connect (OSTI)

    2015-09-01

    To address the need for accessible, high-quality data, the Department of Energy has developed the Technology Performance Exchange (TPEx). TPEx enables technology suppliers, third-party testing laboratories, and other entities to share product performance data. These data are automatically transformed into a format that technology evaluators can easily use in their energy modeling assessments to inform procurement decisions.

  12. External Technical Review Report for Small Column Ion Exchange Technology at Savannah River Site

    Office of Environmental Management (EM)

    Ambitious Technology Aboard | Department of Energy Experimental Endeavour on a Pillar of Flame: Space Shuttle Rises with Ambitious Technology Aboard Experimental Endeavour on a Pillar of Flame: Space Shuttle Rises with Ambitious Technology Aboard May 17, 2011 - 5:15pm Addthis Smoke cloud from Endeavour's Final Launge | Photo: NASA, Troy Cryder Smoke cloud from Endeavour's Final Launge | Photo: NASA, Troy Cryder Charles Rousseaux Charles Rousseaux Senior Communications Specialist (detailee)

  13. Vitrification of ion exchange resins

    DOE Patents [OSTI]

    Cicero-Herman, Connie A.; Workman, Rhonda Jackson

    2001-01-01

    The present invention relates to vitrification of ion exchange resins that have become loaded with hazardous or radioactive wastes, in a way that produces a homogenous and durable waste form and reduces the disposal volume of the resin. The methods of the present invention involve directly adding borosilicate glass formers and an oxidizer to the ion exchange resin and heating the mixture at sufficient temperature to produce homogeneous glass.

  14. Small Column Ion Exchange Technology at Savannah River Site | Department of

    Energy Savers [EERE]

    Small Businesses Key in Hydropower Tech Advancement Small Businesses Key in Hydropower Tech Advancement September 6, 2011 - 2:59pm Addthis Earlier today, the Department of Energy and the Department of Interior announced nearly $17 million in funding over the next three years to advance hydropower technology. The funding announced today will go to sixteen innovative projects around the country, including sustainable small hydro projects, like the ones from Hydro Green Energy, a small business

  15. DOE Technology Performance Exchange

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Studer, Daniel.Studer@nrel.gov National Renewable Energy Laboratory NREL - DOE Technology Performance Exchange 2015 Building Technologies Office Peer Review 2 Project Summary Timeline: Start date: January 27, 2012 Planned end date: November 20, 2015 Key Milestones 1. Calibrated Energy Model; 5/22/15 2. BPA Sector Simulation; 10/16/15 Budget: BTO $ to date: $769,000 FEMP $ to date: $565,000 Other $ to date: $323,759 Total future DOE $: TBD Key Partners: Project Goal: Provides a pipeline for

  16. Phosphonic acid based ion exchange resins

    DOE Patents [OSTI]

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1994-01-25

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 9 figures.

  17. Phosphonic acid based ion exchange resins

    DOE Patents [OSTI]

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1996-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  18. Phosphonic acid based ion exchange resins

    DOE Patents [OSTI]

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1994-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene disphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  19. Phosphonic acid based ion exchange resins

    DOE Patents [OSTI]

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1996-07-23

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.

  20. Grafted methylenediphosphonate ion exchange resins

    DOE Patents [OSTI]

    Trochimcznk, Andrzej W.; Gatrone, Ralph C.; Alexandratos, Spiro; Horwitz, E. Philip

    1998-01-27

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorous. The pendent groups have the formula ##STR1## wherein R is hydrogen, a cation or mixtures thereof; and R.sup.1 is hydrogen or an C.sub.1 -C.sub.2 alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange-resin are also disclosed.

  1. Grafted methylenediphosphonate ion exchange resins

    DOE Patents [OSTI]

    Trochimcznk, Andrzej W.; Gatrone, Ralph C.; Alexandratos, Spiro; Horwitz, E. Philip

    1997-01-01

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorous. The pendent groups have the formula ##STR1## wherein R is hydrogen, a cation or mixtures thereof; and R.sup.1 is hydrogen or an C.sub.1 -C.sub.2 alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange resin are also disclosed.

  2. Grafted methylenediphosphonate ion exchange resins

    DOE Patents [OSTI]

    Trochimcznk, A.W.; Gatrone, R.C.; Alexandratos, S.; Horwitz, E.P.

    1997-04-08

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorus. The pendent groups have the formula as shown in the patent wherein R is hydrogen, a cation or mixtures thereof; and R{sup 1} is hydrogen or an C{sub 1}-C{sub 2} alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange resin are also disclosed.

  3. Disposal of bead ion exchange resin wastes

    SciTech Connect (OSTI)

    Gay, R.L.; Granthan, L.F.

    1985-12-17

    Bead ion exchange resin wastes are disposed of by a process which involves spray-drying a bead ion exchange resin waste in order to remove substantially all of the water present in such waste, including the water on the surface of the ion exchange resin beads and the water inside the ion exchange resin beads. The resulting dried ion exchange resin beads can then be solidified in a suitable solid matrix-forming material, such as a polymer, which solidifies to contain the dried ion exchange resin beads in a solid monolith suitable for disposal by burial or other conventional means.

  4. Technology Performance Exchange (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-10-01

    This fact sheet, 'The Technology Performance Exchange' will be presented at the ET Summit, held at the Pasadena Convention Center on October 15-17, 2012. The Technology Performance Exchange will be a centralized, Web-based portal for finding and sharing energy performance data for commercial building technologies.

  5. Ion exchange purification of scandium

    DOE Patents [OSTI]

    Herchenroeder, L.A.; Burkholder, H.R.

    1990-10-23

    An improvement in purification of scandium through ion exchange chromatography is disclosed in which the oxidation potential of the eluting solution is altered by the addition of potassium chlorate or ammonium chloride so that removal of contaminants is encouraged. The temperature, pH and concentration of the eluent HEDTA are controlled in order to maintain the scandium in the column while minimizing dilution of the scandium band. Recovery of scandium is improved by pumping dilute scandium over the column prior to stripping the scandium and precipitation. This eliminates the HEDTA ion and other monovalent cations contaminating the scandium band. This method maximizes recovery of scandium while maintaining purity. 2 figs.

  6. Ion exchange purification of scandium

    DOE Patents [OSTI]

    Herchenroeder, Laurie A.; Burkholder, Harvey R.

    1990-10-23

    An improvement in purification of scandium through ion exchange chromatography is disclosed in which the oxidation potential of the eluting solution is altered by the addition of potassium chlorate or ammonium chloride so that removal of contaminants is encouraged. The temperature, pH and concentration of the eluent HEDTA are controlled in order to maintain the scandium in the column while minimizing dilution of the scandium band. Recovery of scandium is improved by pumping dilute scandium over the column prior to stripping the scandium and precipitation. This eliminates the HEDTA ion and other monovalent cations contaminating the scandium band. This method maximizes recovery of scandium while maintaining purity.

  7. NREL - DOE Technology Performance Exchange

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NREL - DOE Technology Performance Exchange 2014 Building Technologies Office Peer Review William Livingood, William.Livingood@nrel.gov National Renewable Energy Laboratory Project Summary Timeline: Start date: January 27, 2012 Planned end date: September 30, 2014 Key Milestones 1. Launch TPEx with 15 technology product categories; 9/30/2014 2. Recruit three utilities to commit up to $100,000 and use TPEx data; 9/30/2014 Budget: BTO $ to date: $614,000 FEMP $ to date: $565,000 Other $ to date:

  8. Non-aqueous liquid compositions comprising ion exchange polymers...

    Office of Scientific and Technical Information (OSTI)

    Non-aqueous liquid compositions comprising ion exchange polymers Title: Non-aqueous liquid compositions comprising ion exchange polymers Compositions, and methods of making ...

  9. Technology Performance Exchange | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Buildings » Analysis Tools » Technology Performance Exchange Technology Performance Exchange The Technology Performance Exchange(tm) (TPEx(tm)) is a Web-based portal that allows technology manufacturers, evaluators, utilities, consumers, modelers, and researchers to share building-related product energy performance data. The TPEx uses documents termed data entry forms to preemptively define the minimum product-specific energy performance characteristics necessary to evaluate a

  10. Modeling of Crystalline Silicotitanate Ion Exchange Columns

    SciTech Connect (OSTI)

    Walker, D.D.

    1999-03-09

    Non-elutable ion exchange is being considered as a potential replacement for the In-Tank Precipitation process for removing cesium from Savannah River Site (SRS) radioactive waste. Crystalline silicotitanate (CST) particles are the reference ion exchange medium for the process. A major factor in the construction cost of this process is the size of the ion exchange column required to meet product specifications for decontaminated waste. To validate SRS column sizing calculations, SRS subcontracted two reknowned experts in this field to perform similar calculations: Professor R. G. Anthony, Department of Chemical Engineering, Texas A&038;M University, and Professor S. W. Wang, Department of Chemical Engineering, Purdue University. The appendices of this document contain reports from the two subcontractors. Definition of the design problem came through several meetings and conference calls between the participants and SRS personnel over the past few months. This document summarizes the problem definition and results from the two reports.

  11. Cesium-specific phenolic ion exchange resin

    DOE Patents [OSTI]

    Bibler, J.P.; Wallace, R.M.

    1995-08-15

    A phenolic, cesium-specific, cation exchange resin is prepared by neutralizing resorcinol with potassium hydroxide, condensing/polymerizing the resulting intermediate with formaldehyde, heat-curing the resulting polymer to effect cross-linking and grinding it to desired particle size for use. This resin will selectively and efficiently adsorb cesium ions in the presence of a high concentration of sodium ions with a low carbon to cesium ratio. 2 figs.

  12. Cesium-specific phenolic ion exchange resin

    DOE Patents [OSTI]

    Bibler, Jane P.; Wallace, Richard M.

    1995-01-01

    A phenolic, cesium-specific, cation exchange resin is prepared by neutralizing resorcinol with potassium hydroxide, condensing/polymerizing the resulting intermediate with formaldehyde, heat-curing the resulting polymer to effect cross-linking and grinding it to desired particle size for use. This resin will selectively and efficiently adsorb cesium ions in the presence of a high concentration of sodium ions with a low carbon to cesium ratio.

  13. ION EXCHANGE ADSORPTION PROCESS FOR PLUTONIUM SEPARATION

    DOE Patents [OSTI]

    Boyd, G.E.; Russell, E.R.; Taylor, M.D.

    1961-07-11

    Ion exchange processes for the separation of plutonium from fission products are described. In accordance with these processes an aqueous solution containing plutonium and fission products is contacted with a cation exchange resin under conditions favoring adsorption of plutonium and fission products on the resin. A portion of the fission product is then eluted with a solution containing 0.05 to 1% by weight of a carboxylic acid. Plutonium is next eluted with a solution containing 2 to 8 per cent by weight of the same carboxylic acid, and the remaining fission products on the resin are eluted with an aqueous solution containing over 10 per cent by weight of sodium bisulfate.

  14. Porous solid ion exchange wafer for immobilizing biomolecules

    DOE Patents [OSTI]

    Arora, Michelle B.; Hestekin, Jamie A.; Lin, YuPo J.; St. Martin, Edward J.; Snyder, Seth W.

    2007-12-11

    A porous solid ion exchange wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within said wafer. Also disclosed is a porous solid ion exchange wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within said wafer containing a biomolecule with a tag. A separate bioreactor is also disclosed incorporating the wafer described above.

  15. Ion exchange materials, method of forming ion exchange materials, and methods of treating liquids

    DOE Patents [OSTI]

    Wertsching, Alan K. (Idaho Falls, ID); Peterson, Eric S. (Idaho Falls, ID); Wey, John E. (Idaho Falls, ID)

    2007-12-25

    The invention includes an ion affinity material having an organic component which is sulfonated and which is chemically bonded to an inorganic substrate component. The invention includes a method of forming a metal binding material. A solid support material comprising surface oxide groups is provided and an organic component having at least one alkyl halide is covalently linked to at least some of the surface oxide groups to form a modified support material. The at least one alkyl halide is subsequently converted into an alkyl sulfonate. The invention further includes a method and system for extracting ions from a liquid. An ion exchange material having a sulfonated alkyl silane component covalently bonded to a metal oxide support material is provided and a liquid is exposed to the ion exchange material.

  16. Biodegradation of ion-exchange media

    SciTech Connect (OSTI)

    Bowerman, B.S.; Clinton, J.H.; Cowdery, S.R.

    1988-01-01

    The purpose of this study was to investigate further the potential for ion-exchange media (resin beads or powdered filter media) to support biological growth. A mixed microbial culture was grown from resin wastes obtained from the BNL HFBR by mixing the resin with a nutrient salt solution containing peptone and yeast extract. Bacterial and fungal growths appeared in the solution and on the resins after 7 to 10 days incubation at 337)degree)C. The mixed microbial cultures were used to inoculate several resin types, both irradiated and unirradiated. 12 refs., 5 tabs.

  17. Liquid Salt Heat Exchanger Technology for VHTR Based Applications...

    Office of Scientific and Technical Information (OSTI)

    Liquid Salt Heat Exchanger Technology for VHTR Based Applications Citation Details In-Document Search Title: Liquid Salt Heat Exchanger Technology for VHTR Based Applications The ...

  18. Fixation of radioactive ions in porous media with ion exchange gels

    DOE Patents [OSTI]

    Mercer, Jr., Basil W.; Godfrey, Wesley L.

    1979-01-01

    A method is provided for fixing radioactive ions in porous media by injecting into the porous media water-soluble organic monomers which are polymerizable to gel structures with ion exchange sites and polymerizing the monomers to form ion exchange gels. The ions and the particles of the porous media are thereby physically fixed in place by the gel structure and, in addition, the ions are chemically fixed by the ion exchange properties of the resulting gel.

  19. Anisotropic microporous supports impregnated with polymeric ion-exchange materials

    DOE Patents [OSTI]

    Friesen, D.; Babcock, W.C.; Tuttle, M.

    1985-05-07

    Novel ion-exchange media are disclosed, the media comprising polymeric anisotropic microporous supports containing polymeric ion-exchange or ion-complexing materials. The supports are anisotropic, having small exterior pores and larger interior pores, and are preferably in the form of beads, fibers and sheets. 5 figs.

  20. Multicomponent liquid ion exchange with chabazite zeolites

    SciTech Connect (OSTI)

    Robinson, S.M.; Arnold, W.D. Jr.; Byers, C.W.

    1993-10-01

    In spite of the increasing commercial use of zeolites for binary and multicomponent sorption, the understanding of the basic mass-transfer processes associated with multicomponent zeolite ion-exchange systems is quite limited. This study was undertaken to evaluate Na-Ca-Mg-Cs-Sr ion exchange from an aqueous solution using a chabazite zeolite. Mass-transfer coefficients and equilibrium equations were determined from experimental batch-reactor data for single and multicomponent systems. The Langmuir isotherm was used to represent the equilibrium relationship for binary systems, and a modified Dubinin-Polyani model was used for the multicomponent systems. The experimental data indicate that diffusion through the microporous zeolite crystals is the primary diffusional resistance. Macropore diffusion also significantly contributes to the mass-transfer resistance. Various mass-transfer models were compared to the experimental data to determine mass-transfer coefficients. Effective diffusivities were obtained which accurately predicted experimental data using a variety of models. Only the model which accounts for micropore and macropore diffusion occurring in series accurately predicted multicomponent data using single-component diffusivities. Liquid and surface diffusion both contribute to macropore diffusion. Surface and micropore diffusivities were determined to be concentration dependent.

  1. Effects of ionizing radiation on modern ion exchange materials

    SciTech Connect (OSTI)

    Marsh, S.F.; Pillay, K.K.S.

    1993-10-01

    We review published studies of the effects of ionizing radiation on ion exchange materials, emphasizing those published in recent years. A brief overview is followed by a more detailed examination of recent developments. Our review includes styrene/divinylbenzene copolymers with cation-exchange or anion-exchange functional groups, polyvinylpyridine anion exchangers, chelating resins, multifunctional resins, and inorganic exchangers. In general, strong-acid cation exchange resins are more resistant to radiation than are strong-base anion exchange resins, and polyvinylpyridine resins are more resistant than polystyrene resins. Cross-linkage, salt form, moisture content, and the surrounding medium all affect the radiation stability of a specific exchanger. Inorganic exchangers usually, but not always, exhibit high radiation resistance. Liquid ion exchangers, which have been used so extensively in nuclear processing applications, also are included.

  2. TECHNICAL COMPARISON OF CANDIDATE ION EXCHANGE MEDIA FOR SMALL COLUMN ION EXCHANGE (SCIX) APPLICATIONS IN SUPPORT OF SUPPLEMENTAL LAW PRETREATMENT

    SciTech Connect (OSTI)

    RAMSEY AA; THORSON MR

    2010-12-28

    At-tank supplemental pretreatment including both filtration and small column ion exchange is currently under evaluation to facilitate salt waste retrieval and processing in the Hanford tank farms. Spherical resorcinol formaldehyde (sRF) resin is the baseline ion exchange resin for use in the Waste Treatment and Immobilization Plant (WTP). This document provides background and technical rationale to assist in determining whether spherical resorcinol formaldehyde (sRF) is also the appropriate ion exchange resin for supplemental LAW pretreatment processes and compares sRF with crystalline silicotitanate (CST) as potential supplemental pretreatment ion exchange media.

  3. Enhanced capacity and stability for the separation of cesium in electrically switched ion exchange

    SciTech Connect (OSTI)

    Tawfic, A.F.; Dickson, S.E.; Kim, Y.; Mekky, W.

    2015-03-15

    Electrically switched ion exchange (ESIX) can be used to separate ionic contaminants from industrial wastewater, including that generated by the nuclear industry. The ESIX method involves sequential application of reduction and oxidation potentials to an ion exchange film to induce the respective loading and unloading of cesium. This technology is superior to conventional methods (e.g electrodialysis reversal or reverse osmosis) as it requires very little energy for ionic separation. In previous studies, ESIX films have demonstrated relatively low ion exchange capacities and limited film stabilities over repeated potential applications. In this study, the methodology for the deposition of electro-active films (nickel hexacyanoferrate) on nickel electrodes was modified to improve the ion exchange capacity for cesium removal using ESIX. Cyclic voltammetry was used to investigate the ion exchange capacity and stability. Scanning electron microscopy (SEM) was used to characterize the modified film surfaces. Additionally, the films were examined for the separation of cesium ions. This modified film preparation technique enhanced the ion exchange capacity and improves the film stability compared to previous methods for the deposition of ESIX films. (authors)

  4. Tc-99 Ion Exchange Resin Testing

    SciTech Connect (OSTI)

    Valenta, Michelle M.; Parker, Kent E.; Pierce, Eric M.

    2010-08-01

    Pacific Northwest National Laboratory was contracted by CHPRC to evaluate the release of 99Tc from spent resin used to treat water from well 299-W15-765 and stored for several years. The key questions to be answered are: 1) does 99Tc readily release from the spent ion exchange resin after being in storage for several years; 2) if hot water stripping is used to remove the co-contaminant carbon tetrachloride, will 99Tc that has been sequestered by the resin be released; and 3) can spent resin be encapsulated into a cementitious waste form; if so, how much 99Tc would be released from the weathering of the monolith waste form? The results from the long term stability leach test results confirm that the resin is not releasing a significant amount of the sequestered 99Tc, evident by the less than 0.02% of the total 99Tc loaded being identified in the solution. Furthermore, it is possible that the measured 99Tc concentration is the result of 99Tc contained in the pore spaces of the resin. In addition to these results, analyses conducted to examine the impact of hot water on the release of 99Tc suggest that only a small percentage of the total is being released. This suggest that hot water stripping to remove carbon tetrachloride will not have a significant affect on the resins ability to hold-on to sequestered 99Tc. Finally, encapsulation of spent resin in a cementitious material may be a viable disposal option, but additional tests are needed to examine the extent of physical degradation caused by moisture loss and the effect this degradation process can have on the release of 99Tc.

  5. Interpenetrating polymer network ion exchange membranes and method for preparing same

    DOE Patents [OSTI]

    Alexandratos, Spiro D.; Danesi, Pier R.; Horwitz, E. Philip

    1989-01-01

    Interpenetrating polymer network ion exchange membranes include a microporous polymeric support film interpenetrated by an ion exchange polymer and are produced by absorbing and polymerizing monomers within the support film. The ion exchange polymer provides ion exchange ligands at the surface of and throughout the support film which have sufficient ligand mobility to extract and transport ions across the membrane.

  6. International Technology Exchange Division: 1993 Annual report

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    The Office of Technology Development (OTD) was established to ensure that reliable and acceptable technologies are available for implementation at DOE sites and that a technically trained work force is available to complete the EM mission by 2019. OTD established the International Technology Exchange Staff (ITES) to identify, evaluate, and acquire international technologies which can accelerate US DOE cleanup operations. ITES`s goal is to pursue international collaboration among government organizations, educational institutions, and private industry to identify world-wide needs and available technologies that will meet US environmental needs in general, and EM cleanup needs in particular; and establish mechanisms by which US government ER/WM technologies will be transferred to the US private sector for commercialization and export to international markets. ITES has developed the following strategic objectives to implement its international goals: develop and implement EM`s policy for international programs in accordance with DOE and US Government policies and regulations; establish efficient and predictable international technology transfer mechanisms; assist the US private sector in the commercialization and deployment of federally funded EM technologies and related knowledge in international markets; leverage US and non-US resources to accelerate international development and regulatory acceptance of EM technologies; contribute to the improvement of EM`s training of US students, scientists, and managers on international environmental issues. A summary and descriptions of program activities and accomplishments are given for 17 programs which comprise the four main areas of the ITES program: Activities with the Former Soviet Union, International Technology Transfer, International Cooperation, and Information Systems and Publications. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  7. NREL: DOE Technology Performance Exchange - 2015 Peer Review | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy NREL: DOE Technology Performance Exchange - 2015 Peer Review NREL: DOE Technology Performance Exchange - 2015 Peer Review Presenter: Daniel Studer, NREL View the Presentation PDF icon NREL: DOE Technology Performance Exchange More Documents & Publications What is OpenStudio? OpenStudio OpenStudio Core Development and Deployment Support - 2014 BTO Peer Review OpenStudio - 2013 Peer Review

  8. Non-aqueous liquid compositions comprising ion exchange polymers (Patent) |

    Office of Scientific and Technical Information (OSTI)

    DOEPatents Data Explorer Search Results Non-aqueous liquid compositions comprising ion exchange polymers Title: Non-aqueous liquid compositions comprising ion exchange polymers Compositions, and methods of making thereof, comprising from about 1% to about 5% of a perfluorinated sulfonic acid ionomer or a hydrocarbon-based ionomer; and from about 95% to about 99% of a solvent, said solvent consisting essentially of a polyol; wherein said composition is substantially free of water and wherein

  9. Application of ion exchange and extraction chromatography to the separation

    Office of Scientific and Technical Information (OSTI)

    of actinium from proton-irradiated thorium metal for analytical purposes (Journal Article) | DOE PAGES Publisher's Accepted Manuscript: Application of ion exchange and extraction chromatography to the separation of actinium from proton-irradiated thorium metal for analytical purposes This content will become publicly available on March 17, 2017 Title: Application of ion exchange and extraction chromatography to the separation of actinium from proton-irradiated thorium metal for analytical

  10. Assessment of commercially available ion exchange materials for cesium removal from highly alkaline wastes

    SciTech Connect (OSTI)

    Brooks, K.P.; Kim, A.Y.; Kurath, D.E.

    1996-04-01

    Approximately 61 million gallons of nuclear waste generated in plutonium production, radionuclide removal campaigns, and research and development activities is stored on the Department of Energy`s Hanford Site, near Richland, Washington. Although the pretreatment process and disposal requirements are still being defined, most pretreatment scenarios include removal of cesium from the aqueous streams. In many cases, after cesium is removed, the dissolved salt cakes and supernates can be disposed of as LLW. Ion exchange has been a leading candidate for this separation. Ion exchange systems have the advantage of simplicity of equipment and operation and provide many theoretical stages in a small space. The organic ion exchange material Duolite{trademark} CS-100 has been selected as the baseline exchanger for conceptual design of the Initial Pretreatment Module (IPM). Use of CS-100 was chosen because it is considered a conservative, technologically feasible approach. During FY 96, final resin down-selection will occur for IPM Title 1 design. Alternate ion exchange materials for cesium exchange will be considered at that time. The purpose of this report is to conduct a search for commercially available ion exchange materials which could potentially replace CS-100. This report will provide where possible a comparison of these resin in their ability to remove low concentrations of cesium from highly alkaline solutions. Materials which show promise can be studied further, while less encouraging resins can be eliminated from consideration.

  11. Information systems to enhance technology exchange

    SciTech Connect (OSTI)

    Hunter, T.; Harrington, M.; Harlan, C.; Drozhko, E.

    1994-03-01

    A fundamental part of international technology exchange is the compilation and dissemination of information. Worldwide environmental problems and technology development activities form the basis for important opportunities across the world and especially for those in the former Soviet Union. Recently, important agreements have been reached among Russian institutes engaged in environmental work and the US Department of Energy (DOE) and its national laboratories. These agreements will allow a systematic compilation of information on environmental contamination problems in Russia that can be included in DOE`s environmental information systems. A computer hardware and software system has been loaned to Russian scientists by the DOE for the sharing of environmental software and data, while establishing standards for future information networks.

  12. Ion sources for ion implantation technology (invited)

    SciTech Connect (OSTI)

    Sakai, Shigeki Hamamoto, Nariaki; Inouchi, Yutaka; Umisedo, Sei; Miyamoto, Naoki

    2014-02-15

    Ion sources for ion implantation are introduced. The technique is applied not only to large scale integration (LSI) devices but also to flat panel display. For LSI fabrication, ion source scheduled maintenance cycle is most important. For CMOS image sensor devices, metal contamination at implanted wafer is most important. On the other hand, to fabricate miniaturized devices, cluster ion implantation has been proposed to make shallow PN junction. While for power devices such as silicon carbide, aluminum ion is required. For doping processes of LCD fabrication, a large ion source is required. The extraction area is about 150 cm 10 cm, and the beam uniformity is important as well as the total target beam current.

  13. Quantitative ion-exchange separation of plutonium from impurities

    SciTech Connect (OSTI)

    Pietri, C.E.; Freeman, B.P.; Weiss, J.R.

    1981-09-01

    The methods used at the New Brunswick Laboratory for the quantitative ion exchange separation of plutonium from impurities prior to plutonium assay are described. Other ion exchange separation procedures for impurity determination and for isotopic abundance measurements are given. The primary technique used consists of sorption of plutonium(IV) in 8N HNO/sub 3/ on Dowex-1 anion exchange resin and elution of the purified plutonium with 0.3N HCl-0.01N HF. Other methods consist of the anion exchange separation of plutonium(IV) in 12N HCl and the cation exchange separation of plutonium(III) in 0.2 N HNO/sub 3/. The application of these procedures to the subsequent assay of plutonium, isotopic analysis, and impurity determination is described.

  14. ION EXCHANGE PERFORMANCE OF TITANOSILICATES, GERMANATES AND CARBON NANOTUBES

    SciTech Connect (OSTI)

    Alsobrook, A.; Hobbs, D.

    2013-04-24

    This report presents a summary of testing the affinity of titanosilicates (TSP), germanium-substituted titanosilicates (Ge-TSP) and multiwall carbon nanotubes (MWCNT) for lanthanide ions in dilute nitric acid solution. The K-TSP ion exchanger exhibited the highest affinity for lanthanides in dilute nitric acid solutions. The Ge-TSP ion exchanger shows promise as a material with high affinity, but additional tests are needed to confirm the preliminary results. The MWCNT exhibited much lower affinities than the K-TSP in dilute nitric acid solutions. However, the MWCNT are much more chemically stable to concentrated nitric acid solutions and, therefore, may candidates for ion exchange in more concentrated nitric acid solutions. This technical report serves as the deliverable documenting completion of the FY13 research milestone, M4FT-13SR0303061 measure actinide and lanthanide distribution values in nitric acid solutions with sodium and potassium titanosilicate materials.

  15. Ion exchange polymers for anion separations

    DOE Patents [OSTI]

    Jarvinen, Gordon D.; Marsh, S. Fredric; Bartsch, Richard A.

    1997-01-01

    Anion exchange resins including at least two positively charged sites and a ell-defined spacing between the positive sites are provided together with a process of removing anions or anionic metal complexes from aqueous solutions by use of such resins. The resins can be substituted poly(vinylpyridine) and substituted polystyrene.

  16. Ion exchange polymers for anion separations

    DOE Patents [OSTI]

    Jarvinen, G.D.; Marsh, S.F.; Bartsch, R.A.

    1997-09-23

    Anion exchange resins including at least two positively charged sites and a well-defined spacing between the positive sites are provided together with a process of removing anions or anionic metal complexes from aqueous solutions by use of such resins. The resins can be substituted poly(vinylpyridine) and substituted polystyrene.

  17. Hydrous oxide ion-exchange compound catalysts

    DOE Patents [OSTI]

    Dosch, Robert G. (Albuquerque, NM); Stephens, Howard P. (Albuquerque, NM)

    1990-01-01

    A catalytic material of improved activity which comprises a hydrous, alkali metal or alkaline earth metal or quaternary ammonium titanate, zirconate, niobate, or tantalate, in which the metal or ammonium cations have been exchange with a catalytically effective quantity of a catalyst metal, and which has been subsequently treated with a solution of a Bronsted acid.

  18. Cementation of residue ion exchange resins at Rocky Flats

    SciTech Connect (OSTI)

    Dustin, D.F.; Beckman, T.D.; Madore, C.M.

    1998-03-03

    Ion exchange resins have been used to purify nitric acid solutions of plutonium at Rocky Flats since the 1950s. Spent ion exchange resins were retained for eventual recovery of residual plutonium, typically by incineration followed by the aqueous extraction of plutonium from the resultant ash. The elimination of incineration as a recovery process in the late 1980s and the absence of a suitable alternative process for plutonium recovery from resins led to a situation where spent ion exchange resins were simply placed into temporary storage. This report describes the method that Rocky Flats is currently using to stabilize residue ion exchange resins. The objective of the resin stabilization program is: (1) to ensure their safety during interim storage at the site, and (2) to prepare them for ultimate shipment to the Waste Isolation Pilot Plant (WIPP) in New Mexico. Included in the discussion is a description of the safety concerns associated with ion exchange resins, alternatives considered for their stabilization, the selection of the preferred treatment method, the means of implementing the preferred option, and the progress to date.

  19. Ion extraction and charge exchange in laser isotope separation

    SciTech Connect (OSTI)

    Hostein, D.; Doneddu, F.

    1996-02-01

    In the atomic vapor laser isotope separation (AVLIS) process, a vapor is ionized by pulsed laser beams, and the ions are extracted by negatively biased collectors. The authors compute the unsteady dynamics of the photoplasma using a two-dimensional (2-D) particle-in-cell (PIC) code. Collisions between ions and neutral species are simulated by a Monte Carlo technique. The plasma dynamics is visualized by snapshots of particle positions showing the directions of their velocities. The three kinds of particles (electrons, photo-ions, and ions created by charge exchange) are marked by different colors. The graphic outputs illustrate the motion of the electrons toward the anodes, the vertical drift of the plasma, its erosion by the transient ion sheath, and nonselective ionization by charge exchange.

  20. RESORCINOL-FORMALDEHYDE ION EXCHANGE RESIN CHEMISTRY FOR HIGH LEVEL WASTE TREATMENT

    SciTech Connect (OSTI)

    Nash, C.; Duignan, M.

    2010-01-14

    A principal goal at the Savannah River Site is to safely dispose of the large volume of liquid nuclear waste held in many storage tanks. In-tank ion exchange technology is being considered for cesium removal using a polymer resin made of resorcinol formaldehyde that has been engineered into microspheres. The waste under study is generally lower in potassium and organic components than Hanford waste; therefore, the resin performance was evaluated with actual dissolved salt waste. The ion exchange performance and resin chemistry results are discussed.

  1. Summary of Testing of SuperLig 639 at the TFL Ion Exchange Facility

    SciTech Connect (OSTI)

    Steimke, J.L.

    2000-12-19

    A pilot scale facility was designed and built in the Thermal Fluids Laboratory at the Savannah River Technology Center to test ion exchange resins for removing technetium and cesium from simulated Hanford Low Activity Waste (LAW). The facility supports the design of the Hanford River Protection Project for BNFL, Inc. The pilot scale system mimics the full-length of the columns and the operational scenario of the planned ion exchange system. Purposes of the testing include confirmation of the design, evaluation of methods for process optimization and developing methods for waste volume minimization. This report documents the performance of the technetium removal resin.

  2. Catalysis using hydrous metal oxide ion exchangers

    DOE Patents [OSTI]

    Dosch, R.G.; Stephens, H.P.; Stohl, F.V.

    1983-07-21

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  3. Catalysis using hydrous metal oxide ion exchanges

    DOE Patents [OSTI]

    Dosch, Robert G.; Stephens, Howard P.; Stohl, Frances V.

    1985-01-01

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  4. Rupture loop annex ion exchange RLAIX vault deactivation

    SciTech Connect (OSTI)

    Ham, J.E.; Harris, D.L., Westinghouse Hanford

    1996-08-01

    This engineering report documents the deactivation, stabilization and final conditions of the Rupture Loop Annex Ion Exchange (RLAIX) Vault located northwest of the 309 Building`s Plutonium Recycle Test Reactor (PRTR). Twelve ion exchange columns, piping debris, and column liquid were removed from the vault, packaged and shipped for disposal. The vault walls and floor were decontaminated, and portions of the vault were painted to fix loose contamination. Process piping and drains were plugged, and the cover blocks and rain cover were installed. Upon closure,the vault was empty, stabilized, isolated.

  5. Advanced Heat/Mass Exchanger Technology for Geothermal and solar...

    Broader source: Energy.gov (indexed) [DOE]

    HeatMass Exchanger Technology for Geothermal and solar Renewable Energy Systems presentation at the April 2013 peer review meeting held in Denver, Colorado. PDF icon ...

  6. Thermal Analysis for Ion-Exchange Column System

    SciTech Connect (OSTI)

    Lee, Si Y.; King, William D.

    2012-12-20

    Models have been developed to simulate the thermal characteristics of crystalline silicotitanate ion exchange media fully loaded with radioactive cesium either in a column configuration or distributed within a waste storage tank. This work was conducted to support the design and operation of a waste treatment process focused on treating dissolved, high-sodium salt waste solutions for the removal of specific radionuclides. The ion exchange column will be installed inside a high level waste storage tank at the Savannah River Site. After cesium loading, the ion exchange media may be transferred to the waste tank floor for interim storage. Models were used to predict temperature profiles in these areas of the system where the cesium-loaded media is expected to lead to localized regions of elevated temperature due to radiolytic decay. Normal operating conditions and accident scenarios (including loss of solution flow, inadvertent drainage, and loss of active cooling) were evaluated for the ion exchange column using bounding conditions to establish the design safety basis. The modeling results demonstrate that the baseline design using one central and four outer cooling tubes provides a highly efficient cooling mechanism for reducing the maximum column temperature. In-tank modeling results revealed that an idealized hemispherical mound shape leads to the highest tank floor temperatures. In contrast, even large volumes of CST distributed in a flat layer with a cylindrical shape do not result in significant floor heating.

  7. Method and solvent composition for regenerating an ion exchange resin

    DOE Patents [OSTI]

    Even, William R.; Irvin, David J.; Irvin, Jennifer A.; Tarver, Edward E.; Brown, Gilbert M.; Wang, James C. F.

    2002-01-01

    A method and composition for removing perchlorate from a highly selective ion exchange resin is disclosed. The disclosed approach comprises treating the resin in a solution of super critical or liquid carbon dioxide and one or more quaternary ammonium chloride surfactant compounds.

  8. Technology Performance Exchange - 2014 BTO Peer Review | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Technology Performance Exchange - 2014 BTO Peer Review Technology Performance Exchange - 2014 BTO Peer Review Project Objective This project's overall goal is to ensure that necessary energy performance data is easily accessible for a broad array of technologies to reduce investment risk and drive uptake of cost-effective efficiency measures. The objectives of this project include defining the characteristics necessary to credibly predict energy performance, and creating the

  9. ION EXCHANGE PROCESS FOR THE RECOVERY AND PURIFICATION OF MATERIALS

    DOE Patents [OSTI]

    Long, R.S.; Bailes, R.H.

    1958-04-15

    A process for the recovery of certain metallic ions from aqueous solutions by ion exchange techniques is described. It is applicable to elements such as vanadium, chromium, nnanganese, and the like, which are capable of forming lower valent cations soluble in aqueous solutions and which also form ldgher valent anions soluble in aqueous acidic solutions. For example, small amounts of vanadium occurring in phosphoric acid prepared from phosphate rock may be recovered by reducing the vanadium to a trivalent cation adsorbing; the vanadium in a cationic exchange resin, then treating the resin with a suitable oxidizing agent to convert the adsorbed vanadium to a higher valent state, and finally eluting; the vanadium as an anion from the resin by means of an aqueous acidic solution.

  10. Closed cycle ion exchange method for regenerating acids, bases and salts

    DOE Patents [OSTI]

    Dreyfuss, Robert M.

    1976-01-01

    A method for conducting a chemical reaction in acidic, basic, or neutral solution as required and then regenerating the acid, base, or salt by means of ion exchange in a closed cycle reaction sequence which comprises contacting the spent acid, base, or salt with an ion exchanger, preferably a synthetic organic ion-exchange resin, so selected that the counter ions thereof are ions also produced as a by-product in the closed reaction cycle, and then regenerating the spent ion exchanger by contact with the by-product counter ions. The method is particularly applicable to closed cycle processes for the thermochemical production of hydrogen.

  11. The quantitative ion exchange separation of uranium from impurities

    SciTech Connect (OSTI)

    Narayanan, U.I.; Mason, P.B.; Zebrowski, J.P.; Rocca, M.; Frank, I.W.; Smith, M.M.; Johnson, K.D.; Orlowicz, G.J.; Dallmann, E.

    1995-03-01

    Two methods were tested for the quantitative separation of uranium from elemental impurities using commercially available resins. The sorption and elution behavior of uranium and the separation of it from a variety of other elements was studied. The first method utilized an anion exchange resin while the second method employed an extraction resin. The first method, the anion exchange of uranium (VI) in an acid chloride medium, was optimized and statistically tested for quantitative recovery of uranium. This procedure involved adsorption of uranium onto Blo-Rad AG 1-X8 or MP-1 ion exchange resins in 8 M HCl, separation of uncompleted or weakly complexed matrix ions with an 8 M HCI wash, and subsequent elution of uranium with 1 M HCl. Matrix ions more strongly adsorbed than uranium were left on the resin. Uranium recoveries with this procedure averaged greater than 99.9% with a standard deviation of 0.1%. In the second method, recovery of uranium on the extraction resin did not meet the criteria of this study and further examination was terminated.

  12. Liquid Salt Heat Exchanger Technology for VHTR Based Applications

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Liquid Salt Heat Exchanger Technology for VHTR Based Applications Citation Details In-Document Search Title: Liquid Salt Heat Exchanger Technology for VHTR Based Applications The objective of this research is to evaluate performance of liquid salt fluids for use as a heat carrier for transferring high-temperature process heat from the very high-temperature reactor (VHTR) to chemical process plants. Currently, helium is being considered as the heat

  13. Technology Performance Exchange - 2013 BTO Peer Review | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Performance Exchange - 2013 BTO Peer Review Technology Performance Exchange - 2013 BTO Peer Review Commercial Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review PDF icon commlbldgs01_livingood_040213.pdf More Documents & Publications Building Energy Modeling Library - 2013 BTO Peer Review Whole Building Performance-Based Procurement Training Small- and Medium-Size Building Automation and Control System Needs: Scoping Study

  14. HEAT TRANSFER ANALYSIS FOR ION-EXCHANGE COLUMN SYSTEM

    SciTech Connect (OSTI)

    Lee, S.; King, W.

    2011-05-23

    Models have been developed to simulate the thermal characteristics of Crystalline Silicotitanate (CST) ion exchange media fully loaded with radioactive cesium in a column configuration and distributed within a waste storage tank. This work was conducted to support the Small Column Ion Exchange (SCIX) program which is focused on processing dissolved, high-sodium salt waste for the removal of specific radionuclides (including Cs-137, Sr-90, and actinides) within a High Level Waste (HLW) storage tank at the Savannah River Site. The SCIX design includes CST columns inserted and supported in the tank top risers for cesium removal. Temperature distributions and maximum temperatures across the column were calculated with a focus on process upset conditions. A two-dimensional computational modeling approach for the in-column ion-exchange domain was taken to include conservative, bounding estimates for key parameters such that the results would provide the maximum centerline temperatures achievable under the design configurations using a feed composition known to promote high cesium loading on CST. The current full-scale design for the CST column includes one central cooling pipe and four outer cooling tubes. Most calculations assumed that the fluid within the column was stagnant (i.e. no buoyancy-induced flow) for a conservative estimate. A primary objective of these calculations was to estimate temperature distributions across packed CST beds immersed in waste supernate or filled with dry air under various accident scenarios. Accident scenarios evaluated included loss of salt solution flow through the bed, inadvertent column drainage, and loss of active cooling in the column. The modeling results demonstrate that the baseline design using one central and four outer cooling tubes provides a highly efficient cooling mechanism for reducing the maximum column temperature.

  15. Ion Exchange Testing with SRF Resin FY2012

    SciTech Connect (OSTI)

    Russell, Renee L.; Rinehart, Donald E.; Peterson, Reid A.

    2013-06-11

    Ion exchange using spherical resorcinol-formaldehyde (SRF) resin has been selected by the U.S. Department of Energy’s Office of River Protection (DOE-ORP) for use in the Pretreatment Facility (PTF) of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and for potential application in at-tank deployment. Numerous studies have shown SRF resin to be effective for removing 137Cs from a wide variety of actual and simulated tank waste supernatants (Adamson et al. 2006; Blanchard et al. 2008; Burgeson et al. 2004; Duignan and Nash 2009; Fiskum et al. 2006a; Fiskum et al. 2006b; Fiskum et al. 2006c; Fiskum et al. 2007; Hassan and Adu-Wusu 2003; King et al. 2004; Nash et al. 2006). Prior work at the Pacific Northwest National Laboratory (PNNL) has focused primarily on the loading behavior for 4 to 6 M Na solutions at 25 to 45°C. Recent proposed changes to the WTP ion exchange process baseline indicate that loading may include a broader range of sodium molarities (0.1 to 8 M) and higher temperatures (50°C) to alleviate post-filtration precipitation issues. This report discusses ion exchange loading kinetics testing activities performed in accordance with Test Plan TP-WTPSP-002, Rev. 3.0 , which was prepared and approved in response to the Test Specification 24590 PTF-TSP-RT-09-002, Rev. 0 (Lehrman 2010) and Test Exception 24590 PTF TEF RT-11-00003, Rev. 0 (Meehan 2011). This testing focused on column tests evaluating the impact of elevated temperature on resin degradation over an extended period of time and batch contacts evaluating the impact on Cs loading over a broad range of sodium concentrations (0.1 to 5 M). These changes may be required to alleviate post-filtration precipitation issues and broaden the data range of SRF resin loading under the conditions expected with the new equipment and process changes.

  16. ION EXCHANGE SUBSTANCES BY SAPONIFICATION OF ALLYL PHOSPHATE POLYMERS

    DOE Patents [OSTI]

    Kennedy, J.

    1959-04-14

    An ion exchange resin having a relatively high adsorption capacity tor uranyl ion as compared with many common cations is reported. The resin comprises an alphyl-allyl hydrogen phosphate polymer, the alphyl group being either allyl or a lower alkyl group having up to 5 carbon atoins. The resin is prepared by polymerizing compounds such as alkyl-diallyl phosphate and triallyl phosphate in the presence of a free radical generating substance and then partially hydrolyzing the resulting polymer to cause partial replacement of organic radicals by cations. A preferred free radical gencrating agent is dibenzoyl peroxide. The partial hydrolysis is brought about by refluxing the polymer with concentrated aqueous NaOH for three or four hours.

  17. An investigation of the radiolytic stability of a resorcinol-formaldehyde ion exchange resin

    SciTech Connect (OSTI)

    Crawford, C.L.; Bibler, N.E.

    1994-01-31

    Developing and demonstrating waste separations technologies are the principal objectives of the Underground Storage Tank -Integrated Demonstration (UST-ID) Program carried out by Pacific Northwest Laboratories (PNL) at the DOE Hanford site. One planned separation technique utilizes ion exchange for removal of cesium and strontium from high-level liquid supernates. A resorcinol-formaldehyde resin, which is a polycondensation-type cation exchange resin for cesium removal, has been developed at the Savannah River Technology Center (SRTC) and has demonstrated superlative performance in testing at SRS, Oak Ridge and PNL. Advantages of this resin relative to other media for cesium removal are its high capacity for cesium and its compatibility with the high pH and aluminum and sodium concentrations of both Hanford and SRS high-level liquid wastes.

  18. Data quality objectives for Ion Exchange Module (IXM) disposition

    SciTech Connect (OSTI)

    Choi, I.

    1995-01-31

    This Data Quality Objective (DQO) document presents the data needs and accuracy requirements for sampling ion exchange modules at the K Basins, 100 K Area, to determine if there is a hydrogen gas buildup within the modules. This document was produced by PNL, with the assistance of Neptune and Associates, and was partly funded (for facilitator) by DOE-HQ as a demonstration DQO for EM activities. PNL involved a number of PNL, WHC and support contract staff (including external technical consultants) in meetings to define the data needed, along with the necessary accuracy, to resolve issues associated with hydrogen accumulation in Ion Exchange Modules (IXMS) that were generated prior to July 1994 and only have one nuc-fil vent. IXMs generated after July 1994 have multiple nuc-fil vents and do not require sampling. PNL transmitted this DQO to WHC on January 31, 1995. This Supporting Document is to assure that the document is captured into the document retrieval system. WHC review focused on the acceptability of the technical conclusions such that the data collected will meet minimum operational, safety and environmental needs.

  19. Engineering study for the treatment of spent ion exchange resin resulting from nuclear process applications

    SciTech Connect (OSTI)

    Place, B.G.

    1990-09-01

    This document is an engineering study of spent ion exchange resin treatment processes with the purpose of identifying one or more suitable treatment technologies. Classifications of waste considered include all classes of low-level waste (LLW), mixed LLW, transuranic (TRU) waste, and mixed TRU waste. A total of 29 process alternatives have been evaluated. Evaluation parameters have included economic parameters (both total life-cycle costs and capital costs), demonstrated operability, environmental permitting, operational availability, waste volume reduction, programmatic consistency, and multiple utilization. The results of this study suggest that there are a number of alternative process configurations that are suitable for the treatment of spent ion exchange resin. The determinative evaluation parameters were economic variables (total life-cycle cost or capital cost) and waste volume reduction. Immobilization processes are generally poor in volume reduction. Thermal volume reduction processes tend to have high capital costs. There are immobilization processes and thermal volume reduction processes that can treat all classifications of spent ion exchange resin likely to be encountered. 40 refs., 19 figs., 17 tabs.

  20. Process for loading weak-acid ion exchange resin with uranium

    DOE Patents [OSTI]

    Notz, Karl J.

    1976-01-01

    A method for loading ion exchange resins is described. The process comprises contacting a weak acid cation exchange resin in the ammonium form with a uranyl fluoride salt solution.

  1. Ion Exchange Testing with SRF Resin FY 2012

    SciTech Connect (OSTI)

    Russell, Renee L.; Rinehart, Donald E.; Peterson, Reid A.

    2014-07-02

    Ion exchange using spherical resorcinol-formaldehyde (SRF) resin has been selected by the U.S. Department of Energy’s Office of River Protection (DOE-ORP) for use in the Pretreatment Facility (PTF) of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and for potential application in at-tank deployment. Numerous studies have shown SRF resin to be effective for removing 137Cs from a wide variety of actual and simulated tank waste supernatants (Adamson et al. 2006; Blanchard et al. 2008; Burgeson et al. 2004; Duignan and Nash 2009; Fiskum et al. 2006a; Fiskum et al. 2006b; Fiskum et al. 2006c; Fiskum et al. 2007; Hassan and Adu-Wusu 2003; King et al. 2004; Nash et al. 2006). Prior work at the Pacific Northwest National Laboratory (PNNL) has focused primarily on the loading behavior for 4 to 6 M Na solutions at 25 to 45°C. Recent proposed changes to the WTP ion exchange process baseline indicate that loading may include a broader range of sodium molarities (0.1 to 8 M) and higher temperatures (50°C) to alleviate post-filtration precipitation issues. This report discusses ion exchange loading kinetics testing activities performed in accordance with Test Plan TP-WTPSP-002, Rev. 3.01, which was prepared and approved in response to the Test Specification 24590-PTF-TSP-RT-09-002, Rev. 0 (Lehrman 2010) and Test Exception 24590-PTF-TEF-RT-11-00003, Rev. 0 (Meehan 2011). This testing focused on column tests evaluating the impact of elevated temperature on resin degradation over an extended period of time and batch contacts evaluating the impact on Cs loading over a broad range of sodium concentrations (0.1 to 5 M). These changes may be required to alleviate post-filtration precipitation issues and broaden the data range of SRF resin loading under the conditions expected with the new equipment and process changes.

  2. Recent advances in lithium ion technology

    SciTech Connect (OSTI)

    Levy, S.C.

    1995-01-01

    Lithium ion technology is based on the use of lithium intercalating electrodes. Carbon is the most commonly used anode material, while the cathode materials of choice have been layered lithium metal chalcogenides (LiMX{sub 2}) and lithium spinel-type compounds. Electrolytes may be either organic liquids or polymers. Although the first practical use of graphite intercalation compounds as battery anodes was reported in 1981 for molten salt cells (1) and in 1983 for ambient temperature systems (2) it was not until Sony Energytech announced a new lithium ion rechargeable cell containing a lithium ion intercalating carbon anode in 1990, that interest peaked. The reason for this heightened interest is that these cells have the high energy density, high voltage and fight weight of metallic lithium systems plus a very long cycle life, but without the disadvantages of dendrite formation on charge and the safety considerations associated with metallic lithium.

  3. Determination of Method Detection Limits for Trace 232-Thorium and 238-Uranium in Copper using Ion Exchange and ICPMS

    SciTech Connect (OSTI)

    Hoppe, Eric W.; LaFerriere, Brian D.; Maiti, Tapas C.; Soin, Aleksandr

    2014-04-15

    Determination of Method Detection Limits for Trace 232-Thorium and 238-Uranium in Copper using Ion Exchange and ICPMS

  4. Enabling Detailed Energy Analyses via the Technology Performance Exchange: Preprint

    SciTech Connect (OSTI)

    Studer, D.; Fleming, K.; Lee, E.; Livingood, W.

    2014-08-01

    One of the key tenets to increasing adoption of energy efficiency solutions in the built environment is improving confidence in energy performance. Current industry practices make extensive use of predictive modeling, often via the use of sophisticated hourly or sub-hourly energy simulation programs, to account for site-specific parameters (e.g., climate zone, hours of operation, and space type) and arrive at a performance estimate. While such methods are highly precise, they invariably provide less than ideal accuracy due to a lack of high-quality, foundational energy performance input data. The Technology Performance Exchange was constructed to allow the transparent sharing of foundational, product-specific energy performance data, and leverages significant, external engineering efforts and a modular architecture to efficiently identify and codify the minimum information necessary to accurately predict product energy performance. This strongly-typed database resource represents a novel solution to a difficult and established problem. One of the most exciting benefits is the way in which the Technology Performance Exchange's application programming interface has been leveraged to integrate contributed foundational data into the Building Component Library. Via a series of scripts, data is automatically translated and parsed into the Building Component Library in a format that is immediately usable to the energy modeling community. This paper (1) presents a high-level overview of the project drivers and the structure of the Technology Performance Exchange; (2) offers a detailed examination of how technologies are incorporated and translated into powerful energy modeling code snippets; and (3) examines several benefits of this robust workflow.

  5. Salt Processing Through Ion Exchange at the Savannah River Site Selection of Exchange Media and Column Configuration - 9198

    SciTech Connect (OSTI)

    Spires, Renee; Punch, Timothy; McCabe, Daniel

    2009-02-11

    The Department of Energy (DOE) has developed, modeled, and tested several different ion exchange media and column designs for cesium removal. One elutable resin and one non-elutable resin were considered for this salt processing application. Deployment of non-elutable Crystalline Silicotitanate and elutable Resorcinol Formaldehyde in several different column configurations were assessed in a formal Systems Engineering Evaluation (SEE). Salt solutions were selected that would allow a grouping of non-compliant tanks to be closed. Tests were run with the elutable resin to determine compatibility with the resin configuration required for an in-tank ion exchange system. Models were run to estimate the ion exchange cycles required with the two resins in several column configurations. Material balance calculations were performed to estimate the impact on the High Level Waste (HLW) system at the Savannah River Site (SRS). Conceptual process diagrams were used to support the hazard analysis. Data from the hazard analysis was used to determine the relative impact on safety. This report will discuss the technical inputs, SEE methods, results and path forward to complete the technical maturation of ion exchange.

  6. Method of detecting defects in ion exchange membranes of electrochemical cells by chemochromic sensors

    DOE Patents [OSTI]

    Brooker, Robert Paul; Mohajeri, Nahid

    2016-01-05

    A method of detecting defects in membranes such as ion exchange membranes of electrochemical cells. The electrochemical cell includes an assembly having an anode side and a cathode side with the ion exchange membrane in between. In a configuration step a chemochromic sensor is placed above the cathode and flow isolation hardware lateral to the ion exchange membrane which prevents a flow of hydrogen (H.sub.2) between the cathode and anode side. The anode side is exposed to a first reactant fluid including hydrogen. The chemochromic sensor is examined after the exposing for a color change. A color change evidences the ion exchange membrane has at least one defect that permits H.sub.2 transmission therethrough.

  7. New PerfSONAR Updates Showcased at 2015 Technology Exchange

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New PerfSONAR Updates Showcased at 2015 Technology Exchange News & Publications ESnet News Media & Press Publications and Presentations Galleries ESnet Awards and Honors Contact Us Media Jon Bashor, jbashor@lbl.gov, +1 510 486 5849 or Media@es.net Technical Assistance: 1 800-33-ESnet (Inside the US) 1 800-333-7638 (Inside the US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net New PerfSONAR Updates

  8. Pressurized fluidized-bed combustion technology exchange workshop

    SciTech Connect (OSTI)

    ,

    1980-04-01

    The pressurized fluidized-bed combustion technology exchange workshop was held June 5 and 6, 1979, at The Meadowlands Hilton Hotel, Secaucus, New Jersey. Eleven papers have been entered individually into EDB and ERA. The papers include reviews of the US DOE and EPRI programs in this area and papers by Swedish, West German, British and American organizations. The British papers concern the joint program of the USA, UK and FRG at Leatherhead. The key factor in several papers is the use of fluidized bed combustors, gas turbines, and steam turbines in combined-cycle power plants. One paper examines several combined-cycle alternatives. (LTN)

  9. Experimental Ion Exchange Column With SuperLig 639 And Simulant Formulation

    SciTech Connect (OSTI)

    Morse, Megan; Nash, C.

    2013-08-26

    SuperLig639 ion exchange resin was tested as a retrieval mechanism for pertechnetate, through decontamination of a perrhenate spiked 5M Simple Average Na{sup +} Mass Based Simulant. Testing included batch contacts and a three-column ion exchange campaign. A decontamination of perrhenate exceeding 99% from the liquid feed was demonstrated. Analysis of the first formulation of a SBS/WESP simulant found unexpectedly low concentrations of soluble aluminum. Follow-on work will complete the formulation.

  10. Synthesis and Evaluation of Cu-SAPO-34 Catalysts for Ammonia Selective Catalytic Reduction. 1. Aqueous Solution Ion Exchange

    SciTech Connect (OSTI)

    Gao, Feng; Walter, Eric D.; Washton, Nancy M.; Szanyi, Janos; Peden, Charles HF

    2013-09-06

    SAPO-34 molecular sieves are synthesized using various structure directing agents (SDAs). Cu-SAPO-34 catalysts are prepared via aqueous solution ion exchange. Catalysts are characterized with surface area/pore volume measurements, temperature programmed reduction (TPR), electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopies. Catalytic properties are examined using standard ammonia selective catalytic reduction (NH3-SCR) and ammonia oxidation reactions. During solution ion exchange, different SAPO-34 samples undergo different extent of structural damage via irreversible hydrolysis. Si content within the samples (i.e., Al-O-Si bond density) and framework stress are key factors that affect irreversible hydrolysis. Even using very dilute Cu acetate solutions, it is not possible to generate Cu-SAPO-34 samples with only isolated Cu2+ ions. Small amounts of CuOx species always coexist with isolated Cu2+ ions. Highly active and selective Cu-SAPO-34 catalysts for NH3-SCR are readily generated using this synthesis protocol, even for SAPO-34 samples that degrade substantially during solution ion exchange. High-temperature aging is found to improve the catalytic performance. This is likely due to reduction of intracrystalline mass-transfer limitations via formation of additional porosity in the highly defective SAPO-34 particles formed after ion exchange. The authors gratefully acknowledge the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Office of Vehicle Technologies for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOEs Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle Memorial Institute under contract number DE-AC05-76RL01830.

  11. Ion-exchange material and method of storing radioactive wastes

    DOE Patents [OSTI]

    Komarneni, S.; Roy, D.M.

    1983-10-31

    A new cation exchanger is a modified tobermorite containing aluminum isomorphously substituted for silicon and containing sodium or potassium. The exchanger is selective for lead, rubidium, cobalt, and cadmium and is selective for cesium over calcium or sodium. The tobermorites are compatible with cement and are useful for the long-term fixation and storage of radioactive nuclear wastes.

  12. High Level Waste System Impacts from Small Column Ion Exchange Implementation

    SciTech Connect (OSTI)

    McCabe, D. J.; Hamm, L. L.; Aleman, S. E.; Peeler, D. K.; Herman, C. C.; Edwards, T. B.

    2005-08-18

    The objective of this task is to identify potential waste streams that could be treated with the Small Column Ion Exchange (SCIX) and perform an initial assessment of the impact of doing so on the High-Level Waste (HLW) system. Design of the SCIX system has been performed as a backup technology for decontamination of High-Level Waste (HLW) at the Savannah River Site (SRS). The SCIX consists of three modules which can be placed in risers inside underground HLW storage tanks. The pump and filter module and the ion exchange module are used to filter and decontaminate the aqueous tank wastes for disposition in Saltstone. The ion exchange module contains Crystalline Silicotitanate (CST in its engineered granular form is referred to as IONSIV{reg_sign} IE-911), and is selective for removal of cesium ions. After the IE-911 is loaded with Cs-137, it is removed and the column is refilled with a fresh batch. The grinder module is used to size-reduce the cesium-loaded IE-911 to make it compatible with the sludge vitrification system in the Defense Waste Processing Facility (DWPF). If installed at the SRS, this SCIX would need to operate within the current constraints of the larger HLW storage, retrieval, treatment, and disposal system. Although the equipment has been physically designed to comply with system requirements, there is also a need to identify which waste streams could be treated, how it could be implemented in the tank farms, and when this system could be incorporated into the HLW flowsheet and planning. This document summarizes a preliminary examination of the tentative HLW retrieval plans, facility schedules, decontamination factor targets, and vitrified waste form compatibility, with recommendations for a more detailed study later. The examination was based upon four batches of salt solution from the currently planned disposition pathway to treatment in the SCIX. Because of differences in capabilities between the SRS baseline and SCIX, these four batches were combined into three batches for a total of about 3.2 million gallons of liquid waste. The chemical and radiological composition of these batches was estimated from the SpaceMan Plus{trademark} model using the same data set and assumptions as the baseline plans.

  13. ROTARY FILTER FINES TESTING FOR SMALL COLUMN ION EXCHANGE

    SciTech Connect (OSTI)

    Herman, D.

    2011-08-03

    SRNL was requested to quantify the amount of 'fines passage' through the 0.5 micron membranes currently used for the rotary microfilter (RMF). Testing was also completed to determine if there is any additional benefit to utilizing a 0.1 micron filter to reduce the amount of fines that could pass through the filter. Quantifying of the amount of fines that passed through the two sets of membranes that were tested was accomplished by analyzing the filtrate by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) for titanium. Even with preparations to isolate the titanium, all samples returned results of less than the instrument's detection limit of 0.184 mg/L. Test results show that the 0.5 micron filters produced a significantly higher flux while showing a negligible difference in filtrate clarity measured by turbidity. The first targeted deployment of the RMF is with the Small Column Ion Exchange (SCIX) at the Savannah River Site (SRS). SCIX uses crystalline silicotitanate (CST) to sorb cesium to decontaminate a clarified salt solution. The passage of fine particles through the filter membranes in sufficient quantities has the potential to impact the downstream facilities. To determine the amount of fines passage, a contract was established with SpinTek Filtration to operate a 3-disk pilot scale unit with prototypic filter disk and various feeds and two different filter disk membranes. SpinTek evaluated a set of the baseline 0.5 micron filter disks as well as a set of 0.1 micron filter disks to determine the amount of fine particles that would pass the membrane and to determine the flux each set produced. The membrane on both disk sets is manufactured by the Pall Corporation (PMM 050). Each set of disks was run with three feed combinations: prototypically ground CST, CST plus monosodium titanate (MST), and CST, MST, plus Sludge Batch 6 (SB6) simulant. Throughout the testing, samples of the filtrate were collected, measured for turbidity, and sent back to SRNL for analysis to quantify the amount of fines that passed through the membrane. It should be noted that even though ground CST was tested, it will be transferred to the Defense Waste Processing Facility (DWPF) feed tank and is not expected to require filtration.

  14. Liquid Salt Heat Exchanger Technology for VHTR Based Applications

    SciTech Connect (OSTI)

    Anderson, Mark; Sridhara, Kumar; Allen, Todd; Peterson, Per

    2012-10-11

    The objective of this research is to evaluate performance of liquid salt fluids for use as a heat carrier for transferring high-temperature process heat from the very high-temperature reactor (VHTR) to chemical process plants. Currently, helium is being considered as the heat transfer fluid; however, the tube size requirements and the power associated with pumping helium may not be economical. Recent work on liquid salts has shown tremendous potential to transport high-temperature heat efficiently at low pressures over long distances. This project has two broad objectives: To investigate the compatibility of Incoloy 617 and coated and uncoated SiC ceramic composite with MgCl2-KCl molten salt to determine component lifetimes and aid in the design of heat exchangers and piping; and, To conduct the necessary research on the development of metallic and ceramic heat exchangers, which are needed for both the helium-to-salt side and salt-to-process side, with the goal of making these heat exchangers technologically viable. The research will consist of three separate tasks. The first task deals with material compatibility issues with liquid salt and the development of techniques for on-line measurement of corrosion products, which can be used to measure material loss in heat exchangers. Researchers will examine static corrosion of candidate materials in specific high-temperature heat transfer salt systems and develop an in situ electrochemical probe to measure metallic species concentrations dissolved in the liquid salt. The second task deals with the design of both the intermediate and process side heat exchanger systems. Researchers will optimize heat exchanger design and study issues related to corrosion, fabrication, and thermal stresses using commercial and in-house codes. The third task focuses integral testing of flowing liquid salts in a heat transfer/materials loop to determine potential issues of using the salts and to capture realistic behavior of the salts in a small scale prototype system. This includes investigations of plugging issues, heat transfer, pressure drop, and the corrosion and erosion of materials in the flowing system.

  15. Decontamination of water using nitrate selective ion exchange resin

    DOE Patents [OSTI]

    Lockridge, J.E.; Fritz, J.S.

    1990-07-31

    A method for nitrate decontamination of water which involves passing the water through a bed of alkyl phosphonium anion exchange resin which has pendant alkyl groups of C[sub 3] or larger.

  16. Decontamination of water using nitrate selective ion exchange resin

    DOE Patents [OSTI]

    Lockridge, James E. (Ames, IA); Fritz, James S. (Ames, IA)

    1990-07-31

    A method for nitrate decontamination of water which involves passing the water through a bed of alkyl phosphonium anion exchange resin which has pendant alkyl groups of C.sub.3 or larger.

  17. Metal-air cell with ion exchange material

    SciTech Connect (OSTI)

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2015-08-25

    Embodiments of the invention are related to anion exchange membranes used in electrochemical metal-air cells in which the membranes function as the electrolyte material, or are used in conjunction with electrolytes such as ionic liquid electrolytes.

  18. Cement waste-form development for ion-exchange resins at the Rocky Flats Plant

    SciTech Connect (OSTI)

    Veazey, G.W.; Ames, R.L.

    1997-03-01

    This report describes the development of a cement waste form to stabilize ion-exchange resins at Rocky Flats Environmental Technology Site (RFETS). These resins have an elevated potential for ignition due to inadequate wetness and contact with nitrates. The work focused on the preparation and performance evaluation of several Portland cement/resin formulations. The performance standards were chosen to address Waste Isolation Pilot Plant and Environmental Protection Agency Resource Conservation and Recovery Act requirements, compatibility with Rocky Flats equipment, and throughput efficiency. The work was performed with surrogate gel-type Dowex cation- and anion-exchange resins chosen to be representative of the resin inventory at RFETS. Work was initiated with nonactinide resins to establish formulation ranges that would meet performance standards. Results were then verified and refined with actinide-containing resins. The final recommended formulation that passed all performance standards was determined to be a cement/water/resin (C/W/R) wt % ratio of 63/27/10 at a pH of 9 to 12. The recommendations include the acceptable compositional ranges for each component of the C/W/R ratio. Also included in this report are a recommended procedure, an equipment list, and observations/suggestions for implementation at RFETS. In addition, information is included that explains why denitration of the resin is unnecessary for stabilizing its ignitability potential.

  19. Ion-exchange sorption and preparative chromatography of biologically active materials

    SciTech Connect (OSTI)

    Samsonov, G.V.

    1986-01-01

    This book presents information on the following topics: the problems of fine physico-chemical biotechnology; types of highly permeable network polyelectrolytes; methods for studying the permeability and porosity of network polyelectrolytes; the conformation state and flexibility of the structural elements of network polyelectrolytes; ion-exchange processes without the sorption of physiologically active substances; ion exchange, hydration, and swelling; nucleosides, nucleotides, alkaloids, sulfonamides, and miscellaneous physiologically active subtances; sharp front formation for the exchange of ions with the same valences; standard quasi-equilibrium frontal chromatography on ionites; sorption kinetics in ionites with structural heterogeneity; experimental investigations of the diffusivities of organic and physiologically active ions in ionite beads; and increasing the efficiency of low-pressure chromatography by using surface-layer and bidispersed ionites.

  20. INTERNATIONAL ENVIRONMENTAL TECHNOLOGY IDENTIFICATION, DEVELOPMENT, DEMONSTRATION, DEPLOYMENT AND EXCHANGE

    SciTech Connect (OSTI)

    Roy C. Herndon

    2001-02-28

    Cooperative Agreement (DE-FC21-95EW55101) between the U.S. Department of Energy (DOE) and the Florida State University's Institute for International Cooperative Environmental Research (IICER) was designed to facilitate a number of joint programmatic goals of both the DOE and the IICER related to international technology identification, development, demonstration and deployment using a variety of mechanisms to accomplish these goals. These mechanisms included: laboratory and field research; technology demonstrations; international training and technical exchanges; data collection, synthesis and evaluation; the conduct of conferences, symposia and high-level meetings; and other appropriate and effective approaches. The DOE utilized the expertise and facilities of the IICER at Florida State University to accomplish its goals related to this cooperative agreement. The IICER has unique and demonstrated capabilities that have been utilized to conduct the tasks for this cooperative agreement. The IICER conducted activities related to technology identification, development, evaluation, demonstration and deployment through its joint centers which link the capabilities at Florida State University with collaborating academic and leading research institutions in the major countries of Central and Eastern Europe (e.g., Czech Republic, Hungary, Poland) and Russia. The activities and accomplishments for this five-year cooperative agreement are summarized in this Final Technical Report.

  1. International cooperation and technology transfer, a success U.S. and german environmental technology exchange

    SciTech Connect (OSTI)

    Schlessman, D.C.

    1995-12-01

    The U.S. - German Annual Environmental Technology Data Exchange (Jahrestagung Umwelttechnologie Datenaustauschabkommen) is coming up on its tenth year, and is a real success story. The 1994 program is the source of this case study, which identifies the lessons learned from nine years of running this international forum to exchange ideas, research, and technology needs. This data exchange is a component of the {open_quotes}Mutual Weapons Development Master Data Exchange Agreement US//GE.{close_quotes} This component focuses on the environmental technology that the two countries military research and development (R&D) communities are working on. Five focus areas of interest for this group are: hazardous material substitutes, air emissions reductions, soil and groundwater contamination characterization and restoration, and demilitarization and disposal of conventional munitions. Under the U.S. - German agreement, scientist and R&D organizations use this agreement to share research results and develop a forum for collaboration on similar work. This study will highlight the scope of the research presented at the 1994 exchange. In addition, the study will capture many lessons learned from administering a successful program that bridged the challenges of distance, culture, language, patient right, and government bureaucracy. A side benefit that is just now being explored is using the forum to have U.S. developed technologies introduced and accepted within the German environmental regulatory community. In these austere days in the two governments, the ultimate success of a program like this is the payback received by customers of the R&D community. The U.S. Army, Europe is one of those fortunate customers.

  2. Improved hydrous oxide ion-exchange compound catalysts

    DOE Patents [OSTI]

    Dosch, R.G.; Stephens, H.P.

    1986-04-09

    Disclosed is a catalytic material of improved activity which comprises a hydrous, alkali metal or alkaline earth metal or quaternary ammonium titanate, zirconate, niobate, or tantalate, in which the metal or ammonium cations have been exchanged with a catalytically effective quantity of a catalyst metal, and which has been subsequently treated with a solution of a Bronsted acid.

  3. Preparation of catalysts via ion-exchangeable coatings on supports

    DOE Patents [OSTI]

    Dosch, R.G.; Stephens, H.P.

    1986-04-09

    Disclosed are: new catalytic compositions which comprise an inert support coated with a hydrous alkali metal, alkaline earth metal, or quaternary ammonium titanate, niobate, zirconate, or tantalate, in which the alkali or alkaline earth metal or quaternary ammonium cations have been exchanged for a catalytically effective quantity of a catalytically effective metal.

  4. Tabulation and evaluation of ion exchange data on smectites, certain zeolites and basalt

    SciTech Connect (OSTI)

    Benson, L.V.

    1980-05-01

    An extensive search of the literature has been made for ion exchange data on smectites, certain zeolites and basalt. The data are in the form of thermodynamic equilibrium constants, corrected selectivity coefficients, and distribution coefficients. Room temperature alkali and alkaline earth metal cation ion exchange data for smectites are extensive. Correlation between the exchange free energies of alkali metal cations on Camp Berteau montmorillonite values with their Debeye-Hueckel parameter was found. Significant differences in values of exchange constants for the same reaction on different smectites were noted. While this in part may be attributable to differences in experimental procedures, much of the variance is probably due to differences in charge densities and the effective field strengths of the smectites. Differences in field strength are related to the type and amount of substitution on intercrystalline octahedral and tetrahedral sites. Data on smectites suggest that cation exchange selectivities are very strong functions of temperature. Experiments on the exchange properties of clinoptilolite and mordenite have been generally confined to alkali and alkaline earth cations although data for certain transition metal ions are also available for synthetic mordenite. The temperature dependences of zeolite exchange selectivities remain largely unknown. Distribution coefficients for groundwater-basalt systems have been measured for a variety of elements at temperatures up to 150/sup 0/C. Steady state concentrations are often never achieved either from the sorption or the desorption side. Classical models of ion exchange have been applied successfully to zeolite and smectite exchange reactions. The sorption behavior of a basalt is better treated with models of the interface which take surface ionization and complexation into account.

  5. Advanced Lithium Ion Battery Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Energy Storage Energy Storage Find More Like This Return to Search Advanced Lithium Ion Battery Technologies Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryScientists at Berkeley Lab have invented highly conductive polymer binder materials that significantly improve the viability of using silicon as an electrode material in lithium ion batteries. They have also combined lithium metal with the Berkeley Lab

  6. Advanced Heat/Mass Exchanger Technology for Geothermal and solar Renewable Energy Systems

    Broader source: Energy.gov [DOE]

    Advanced Heat/Mass Exchanger Technology for Geothermal and solar Renewable Energy Systems presentation at the April 2013 peer review meeting held in Denver, Colorado.

  7. METHOD OF SEPARATING RARE EARTHS BY ION EXCHANGE

    DOE Patents [OSTI]

    Spedding, F.H.; Powell, J.E.

    1960-10-18

    A process is given for separating yttrium and rare earth values having atomic numbers of from 57 through 60 and 68 through 71 from an aqueous solution whose pH value can range from 1 to 9. All rare earths and yttrium are first adsorbed on a cation exchange resin, and they are then eluted with a solution of N-hydroxyethylethylenediaminetriacetic acid (HEDTA) in the order of decreasing atomic number, yttrium behaving like element 61; the effluents are collected in fractions. The HEDTA is recovered by elution with ammonia solution and the resin is regenerated with sulfuric acid. Rare earths are precipitated from the various effluents with oxalic acid, and each supernatant is passed over cation exchange resin for adsorption of HEDTA and nonprecipitated rare earths: the oxalic acid is not retained by the resin.

  8. Water exchange dynamics around H?O? and OH? ions

    SciTech Connect (OSTI)

    Roy, Santanu; Dang, Liem X.

    2015-05-01

    Proton transfer in water and other solvents is a complicated process and an active research area. Conformational changes of water hydrating a proton can have a significant influence on proton dynamics. A hydrated proton leads to H?O? that forms three hydrogen bonds with neighboring water molecules. In this letter, we report the first computer simulation of the dynamics of water exchanging between the first and second solvation shells of H?O?. Employing different rate theories for chemical reactions such as the transition state theory, the Grote-Hynes theory, the reactive flux method, and the Impey-Madden-McDonald method, we calculate the solvent exchange rates from molecular dynamics simulations that account for explicit polarization effects. In addition, we also study water exchanges around OH? and find that the corresponding time scale (~50 picoseconds [ps]) is much smaller than that for H?O? (~100 ps). Results from all the rate theories are computed and compared. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.

  9. Denitration of Rocky Flats Ion-Exchange Resins: Recommendation of Denitration Processes, October 19, 1995

    SciTech Connect (OSTI)

    Jacob Espinoza; Mary Barr; Wayne Smith

    1998-12-01

    Resin denitration via anion-exchange is an implementable process that can effectively mitigate the hazards associated with stored resins in which the bulk of the nitrate consists of an "exchangeable nitrate" ionically bound to the cationic sites of the anion-exchange resins. Salicylate has been selected as the exchange anion of choice because of its superior selectivity for the Rocky Flats resins and its unique potential for comprehensive recovery and recycle. This report outlines a single recommended resin denigration procedure that is reasonably independent of the resin composition and the current stored form. This procedure is not optimized but rather seeks to `over-treat' the resins so that a single procedure works for the variety of stored resins. The recommended treatment with sodium salicylate reduces resins by 95-99+% the measured exothermic behavior of the ion-exchange.

  10. New PerfSONAR Updates Showcased at 2015 Technology Exchange

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exchange Updates include support for accelerating node deployment; reduction of NOC costs October 5, 2015 To propel the automation and deployment of large scale...

  11. Technology Solutions Case Study: Foundation Heat Exchanger, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    2014-03-01

    The foundation heat exchanger, developed by Oak Ridge National Laboratory, is a new concept for a cost-effective horizontal ground heat exchanger that can be connected to water-to-water or water-to-air heat pump systems for space conditioning as well as domestic water heating.

  12. Staff exchange with Spokane Intercollegiate Research and Technology Institute (SIRTI), final project report

    SciTech Connect (OSTI)

    Alexander, G.M.

    1994-12-01

    Staff exchanges, such as the one described in this report, are intended to facilitate communication and collaboration among scientists and engineers at Department of Energy (DOE) laboratories, in U.S. industry, and academia. Funding support for these exchanges is provided by the DOE, Office of Energy Research, Laboratory Technology Transfer Program. Funding levels for each exchange typically range from $20,000 to $40,000. The exchanges offer the opportunity for the laboratories to transfer technology and expertise to industry, gain a perspective on industry`s problems, and develop the basis for further cooperative efforts through Cooperative Research and Development Agreements (CRADAS) or other mechanisms.

  13. BTO Awards Small Business Grants for Lighting, Building-Integrated Heat and Moisture Exchange Technology

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Office of Science has awarded four Small Business Innovation Research (SBIR) grants targeting advances in solid-state lighting (SSL) and building-integrated heat and moisture exchange technology.

  14. Safety Evaluation for Packaging for onsite Transfer of plutonium recycle test reactor ion exchange columns

    SciTech Connect (OSTI)

    Smith, R.J.

    1995-09-11

    The purpose of this Safety Evaluation for Packaging (SEP) is to authorize the use of three U.S. Department of Transportation (DOT) 7A, Type A metal boxes (Capital Industries Part No. S 0600-0600-1080- 0104) to package 12 Plutonium Recycle Test Reactor (PRTR) ion exchange columns as low-level waste (LLW). The packages will be transferred from the 309 Building in the 300 Area to low level waste burial in the 200 West Area. Revision 1 of WHC-SD-TP-SEP-035 (per ECN No. 621467) documents that the boxes containing ion exchange columns and grout will maintain the payload under normal conditions of transport if transferred without the box lids

  15. Hydrogen production in the K-Basin ion exchange columns, modules and cartridge filters

    SciTech Connect (OSTI)

    Not Available

    1994-12-21

    K-Basin uses ion exchange modules and ion exchange (IX) columns for removing radionuclides from the basin water. When the columns and modules are loaded, they are removed from service, drained and stored. After a few IX columns accumulate in storage, they are moved to a burial box. One of the burial box contains 33 columns and the other, six. The radionuclides act on the liquid left within and adhering to the beads to produce hydrogen. This report describes the generation rate, accumulation rate and significance of that accumulation. This summary also highlights those major areas of concern to the external (to Westinghouse Hanford Company [WHC]) reviewers. Appendix H presents the comments made by the external reviewers and, on a separate sheet, the responses to those comments. The concerns regarding the details of the analytical approach, are addressed in Appendix H and in the appropriate section.

  16. Membrane permeation process for dehydration of organic liquid mixtures using sulfonated ion-exchange polyalkene membranes

    DOE Patents [OSTI]

    Cabasso, Israel; Korngold, Emmanuel

    1988-01-01

    A membrane permeation process for dehydrating a mixture of organic liquids, such as alcohols or close boiling, heat sensitive mixtures. The process comprises causing a component of the mixture to selectively sorb into one side of sulfonated ion-exchange polyalkene (e.g., polyethylene) membranes and selectively diffuse or flow therethrough, and then desorbing the component into a gas or liquid phase on the other side of the membranes.

  17. Vehicle Technologies Office Merit Review 2015: Daikin Advanced Lithium Ion Battery Technology - High Voltage Electrolyte

    Broader source: Energy.gov [DOE]

    Presentation given by Daikin America at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Daikin advanced lithium ion...

  18. Vehicle Technologies Office Merit Review 2014: Daikin Advanced Lithium Ion Battery Technology – High Voltage Electrolyte

    Broader source: Energy.gov [DOE]

    Presentation given by Daikin America at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Daikin advanced lithium ion...

  19. IEA Energy Technology Data Exchange | Open Energy Information

    Open Energy Info (EERE)

    member countries with access to the widest range of information on energy research, science and technology and to increase dissemination of this information to developing...

  20. Nuclear quantum effects in water exchange around lithium and fluoride ions

    SciTech Connect (OSTI)

    Wilkins, David M.; Manolopoulos, David E.; Dang, Liem X.

    2015-02-14

    We employ classical and ring polymer molecular dynamics simulations to study the effect of nuclear quantum fluctuations on the structure and the water exchange dynamics of aqueous solutions of lithium and fluoride ions. While we obtain reasonably good agreement with experimental data for solutions of lithium by augmenting the Coulombic interactions between the ion and the water molecules with a standard Lennard-Jones ion-oxygen potential, the same is not true for solutions of fluoride, for which we find that a potential with a softer repulsive wall gives much better agreement. A small degree of destabilization of the first hydration shell is found in quantum simulations of both ions when compared with classical simulations, with the shell becoming less sharply defined and the mean residence time of the water molecules in the shell decreasing. In line with these modest differences, we find that the mechanisms of the exchange processes are unaffected by quantization, so a classical description of these reactions gives qualitatively correct and quantitatively reasonable results. We also find that the quantum effects in solutions of lithium are larger than in solutions of fluoride. This is partly due to the stronger interaction of lithium with water molecules, partly due to the lighter mass of lithium and partly due to competing quantum effects in the hydration of fluoride, which are absent in the hydration of lithium.

  1. Nuclear quantum effects in water exchange around lithium and fluoride ions

    SciTech Connect (OSTI)

    Wilkins, David M.; Manolopoulos, David; Dang, Liem X.

    2015-02-14

    We employ classical and ring polymer molecular dynamics simulations to study the effect of nuclear quantum fluctuations on the structure and the water exchange dynamics of aqueous solutions of lithium and fluoride ions. While we obtain reasonably good agreement with experimental data for solutions of lithium by augmenting the Coulombic interactions between the ion and the water molecules with a standard Lennard-Jones ion-oxygen potential, the same is not true for solutions of fluoride, for which we find that a potential with a softer repulsive wall gives much better agreement. A small degree of destabilization of the first hydration shell is found in quantum simulations of both ions when compared with classical simulations, with the shell becoming less sharply defined and the mean residence time of the water molecules in the shell decreasing. In line with these modest differences, we find that the mechanisms of the water exchange reactions are unaffected by quantization, so a classical description of these reactions gives qualitatively correct and quantitatively reasonable results. We also find that the quantum effects in solutions of lithium are larger than in solutions of fluoride. This is partly due to the stronger interaction of lithium with water molecules, partly due to the lighter mass of lithium, and partly due to competing quantum effects in the hydration of fluoride, which are absent in the hydration of lithium. LXD was supported by US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences.

  2. Selective extraction of metal ions with polymeric extractants by ion exchange/redox

    DOE Patents [OSTI]

    Alexandratos, Spiro D.

    1987-01-01

    The specification discloses a method for the extraction of metal ions having a reduction potential of above about +0.3 from an aqueous solution. The method includes contacting the aqueous solution with a polymeric extractant having primary phosphinic acid groups, secondary phosphine oxide groups, or both phosphinic acid and phosphine oxide groups.

  3. NEI Corporation Technology Promotes Efficiency in Heat Exchangers | U.S.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Office of Science (SC) NEI Corporation Technology Promotes Efficiency in Heat Exchangers Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) SBIR/STTR Home About Funding Opportunity Announcements (FOAs) Applicant and Awardee Resources Commercialization Assistance Other Resources Awards SBIR/STTR Highlights Reporting Fraud Contact Information Small Business Innovation Research and Small Business Technology Transfer U.S. Department of Energy

  4. Exchange bias in polycrystalline magnetite films made by ion-beam assisted deposition

    SciTech Connect (OSTI)

    Kaur, Maninder; Qiang, You [Department of Physics, University of Idaho, Moscow, Idaho 83844 (United States); Jiang, Weilin [Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Burks, Edward C.; Liu, Kai [Department of Physics, University of California, Davis, California 95616 (United States); Namavar, Fereydoon [University of Nebraska Medical Center, Omaha, Nebraska 68198 (United States); McCloy, John S. [Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 98163 (United States)

    2014-11-07

    Iron oxide films were produced using ion-beam-assisted deposition, and Raman spectroscopy and x-ray diffraction indicate single-phase magnetite. However, incorporation of significant fractions of argon in the films from ion bombardment is evident from chemical analysis, and Fe/O ratios are lower than expected from pure magnetite, suggesting greater than normal disorder. Low temperature magnetometry and first-order reversal curve measurements show strong exchange bias, which likely arises from defects at grain boundaries, possibly amorphous, creating frustrated spins. Since these samples contain grains ?6?nm, a large fraction of the material consists of grain boundaries, where spins are highly disordered and reverse independently with external field.

  5. Tennessee, Pennsylvania: Porous Power Technologies Improves Lithium Ion Battery, Wins R&D 100 Award

    Office of Energy Efficiency and Renewable Energy (EERE)

    Porous Power Technologies, partnered with Oak Ridge National Laboratory (ORNL), developed SYMMETRIX HPX-F, a nanocomposite separator for improved lithium-ion battery technology.

  6. Modeling Ion-Exchange Processing With Spherical Resins For Cesium Removal

    SciTech Connect (OSTI)

    Hang, T.; Nash, C. A.; Aleman, S. E.

    2012-09-19

    The spherical Resorcinol-Formaldehyde and hypothetical spherical SuperLig(r) 644 ion-exchange resins are evaluated for cesium removal from radioactive waste solutions. Modeling results show that spherical SuperLig(r) 644 reduces column cycling by 50% for high-potassium solutions. Spherical Resorcinol Formaldehyde performs equally well for the lowest-potassium wastes. Less cycling reduces nitric acid usage during resin elution and sodium addition during resin regeneration, therefore, significantly decreasing life-cycle operational costs. A model assessment of the mechanism behind ''cesium bleed'' is also conducted. When a resin bed is eluted, a relatively small amount of cesium remains within resin particles. Cesium can bleed into otherwise decontaminated product in the next loading cycle. The bleed mechanism is shown to be fully isotherm-controlled vs. mass transfer controlled. Knowledge of residual post-elution cesium level and resin isotherm can be utilized to predict rate of cesium bleed in a mostly non-loaded column. Overall, this work demonstrates the versatility of the ion-exchange modeling to study the effects of resin characteristics on processing cycles, rates, and cold chemical consumption. This evaluation justifies further development of a spherical form of the SL644 resin.

  7. Literature Review of Spherical Resorcinol-Formaldehyde for Cesium Ion Exchange

    SciTech Connect (OSTI)

    Brown, Garrett N.

    2014-09-30

    The current report summarizes work performed throughout the scientific community and DOE complex as reported in the open literature and DOE-sponsored reports to evaluate the Cs+ ion exchange (CIX) characteristics of SRF resin. King (2007) completed a similar literature review in support of material selection for the Small Column Ion Exchange (SCIX) project. Josephson et al. (2010) and Sams et al. (2009) provided a similar brief review of SRF CIX for the near-tank Cs+ removal (NTCR) project. Thorson (2008a) documented the basis for recommending SRF over SuperLigTM 644 as the primary CIX resin in the WTP. The current review expands on previous work, summarizes additional work completed to date, and provides a broad view of the literature without focusing on a specific column system. Although the focus of the current review is the SRF resin, many cited references include multiple materials such as the non-spherical GGRF and SuperLigTM 644 organic resins and crystalline silicotitanate (CST) IONSIVTM IE-911, a non-elutable inorganic material. This report summarizes relevant information provided in the literature.

  8. MODELING CST ION EXCHANGE FOR CESIUM REMOVAL FROM SCIX BATCHES 1 - 4

    SciTech Connect (OSTI)

    Smith, F.

    2011-04-25

    The objective of this work is, through modeling, to predict the performance of Crystalline Silicotitinate (CST) for the removal of cesium from Small Column Ion Exchange (SCIX) Batches 1-4 (as proposed in Revision 16 of the Liquid Waste System Plan). The scope of this task is specified in Technical Task Request (TTR) 'SCIX Feed Modeling', HLE-TTR-2011-003, which specified using the Zheng, Anthony, Miller (ZAM) code to predict CST isotherms for six given SCIX feed compositions and the VErsatile Reaction and SEparation simulator for Liquid Chromatography (VERSE-LC) code to predict ion-exchange column behavior. The six SCIX feed compositions provided in the TTR represent SCIX Batches 1-4 and Batches 1 and 2 without caustic addition. The study also investigated the sensitivity in column performance to: (1) Flow rates of 5, 10, and 20 gpm with 10 gpm as the nominal flow; and (2) Temperatures of 25, 35, and 45 C with 35 C as the nominal temperature. The isotherms and column predictions presented in this report reflect the expected performance of engineered CST IE-911. This form of CST was used in experiments conducted at the Savannah River National Laboratory (SRNL) that formed the basis for estimating model parameters (Hamm et al., 2002). As has been done previously, the engineered resin capacity is estimated to be 68% of the capacity of particulate CST without binder.

  9. Experimental findings on actinide recovery utilizing oxidation by peroxydisulfate followed by ion exchange: Fuel cycle research & development

    SciTech Connect (OSTI)

    Hobbs, D. T.; Shehee, T. C.

    2015-08-31

    Our research seeks to determine if inorganic ion-exchange materials can be exploited to provide effective minor actinide (Am, Cm) separation from lanthanides. Previous work has established that a number of inorganic and UMOF ion-exchange materials exhibit varying affinities for actinides and lanthanides, which may be exploited for effective separations. During FY15, experimental work focused on investigating methods to oxidize americium in dilute nitric and perchloric acid with subsequent ion-exchange performance measurements of ion exchangers with the oxidized americium in dilute nitric acid. Ion-exchange materials tested included a variety of alkali titanates. Americium oxidation testing sought to determine the influence that other redox active components may have on the oxidation of AmIII. Experimental findings indicated that CeIII, NpV, and RuII are oxidized by peroxydisulfate, but there are no indications that the presence of CeIII, NpV, and RuII affected the rate or extent of americium oxidation at the concentrations of peroxydisulfate being used.

  10. Experimental findings on actinide recovery utilizing oxidation by peroxydisulfate followed by ion exchange: Fuel cycle research & development

    SciTech Connect (OSTI)

    Hobbs, D. T.; Shehee, T. C.

    2015-08-31

    Our research seeks to determine if inorganic ion-exchange materials can be exploited to provide effective minor actinide (Am, Cm) separation from lanthanides. Previous work has established that a number of inorganic and UMOF ion-exchange materials exhibit varying affinities for actinides and lanthanides, which may be exploited for effective separations. During FY15, experimental work focused on investigating methods to oxidize americium in dilute nitric and perchloric acid with subsequent ion-exchange performance measurements of ion exchangers with the oxidized americium in dilute nitric acid. Ion-exchange materials tested included a variety of alkali titanates. Americium oxidation testing sought to determine the influence that other redox active components may have on the oxidation of AmIII. Experimental findings indicated that CeIII, NpV, and RuII are oxidized by peroxydisulfate, but there are no indications that the presence of CeIII, NpV, and RuII affected the rate or extent of americium oxidation at the concentrations of peroxydisulfate being used.

  11. THREE-DIMENSIONAL THERMAL MODELING ANALYSIS OF CST MEDIA FOR THE SMALL ION EXCHANGE PROJECT

    SciTech Connect (OSTI)

    Lee, S.; King, W.

    2011-09-12

    The Small Column Ion Exchange (SCIX) project is designed to accelerate closure of High Level Waste (HLW) tanks at the Savannah River Site (SRS). The SRS tanks store HLW in three forms: sludge, saltcake, and supernate. An in-tank ion exchange process is being designed to treat supernate and dissolved saltcake waste. Through this process, radioactive cesium from the salt solution is adsorbed into Crystalline Silicotitanate (CST) ion exchange media packed within a flow-through column. A packed column loaded with radioactive cesium generates significant heat from radiolytic decay. The waste supernate solution within the ion exchange bed will boil around 120 C. Solution superheating above the boiling point within the column could lead to violent hazardous energy releases. System heating from loaded CST is also of concern in other process modules, such as the waste tank. Due to tank structural integrity concerns, the wall temperature limit for the SRS waste tanks is 100 C. The transfer of cesium-loaded CST to the tank could result in localized hot spots on the tank floor and walls which may exceed this limit. As a result, thermal modeling calculations have been conducted to predict the maximum temperatures achievable both in the column and in the waste tank. As specified in the associated Technical Task Plan, one objective of the present work was to compute temperature distributions within the ion exchange column module under accident scenarios including loss of salt solution flow through the bed and loss of coolant system flow. The column modeling domain and the scope of the calculations in this case were broadened relative to previous two-dimensional calculations to include vertical temperature distributions within the packed bed of ion exchange media as well as the upper column plenum region containing only fluid. The baseline design conditions and in-column modeling domain for the ion-exchange column module are shown in Figure 1. These evaluations assumed the maximum bounding cesium loading considered possible based on current knowledge regarding CST media and the anticipated feed compositions. Since this cesium loading was considerably higher than the nominal loading conditions in SRS waste, cases with lower loading were also evaluated. Modeling parameters were the same as those used previously unless otherwise indicated. The current model does not capture multi-phase cooling mechanisms operative when solution boiling occurs. This feature is conservative in the sense that it does not account for the large cooling effects associated with phase transfer. However, the potential transfer of heat to the plenum region associated with vertical bubble ascension through the column during boiling is also neglected. Thermal modeling calculations were also performed for the entire waste storage tank for the case where loaded and ground CST was transferred to the tank. The modeling domain used for the in-tank calculations is provided in Figure 2. The in-tank domain is based on SRS Tank 41, which is a Type-IIIA tank. Temperature distributions were evaluated for cylindrical, ground CST mounds located on the tank floor. Media grinding is required prior to vitrification processing of the CST in the SRS Defense Waste Processing Facility (DWPF). The location of the heat source region on the tank floor due to the accumulation of CST material was assumed to be just under the grinder. The shape of the CST mound was assumed to be cylindrical. This shape is believed to be most representative of the actual mound shape formed in the tank, given that submersible mixing pumps will be available for media dispersion. Alternative configurations involving other geometrical shapes for the CST mound were evaluated in the previous work. Sensitivity analysis for the in-tank region was performed for different amounts of CST media. As was the case for the in-column model, the in-tank model does not include multi-phase cooling mechanisms operative when solution boiling occurs. The in-column and the in-tank evaluations incorporated recently updated maximum cesium loading levels calculated using the current SCIX feed compositions, which resulted in significantly higher cesium loading than previously calculated. The calculations were conducted to ensure conservative predictions for the maximum temperatures achievable using the current baseline design. The degree of conservatism was reduced for in-column calculations relative to the previous work by using a three-dimensional modeling approach and selecting parameters which were nearer to expected conditions. The degree of conservatism for the in-tank calculations was also reduced by lowering the soil penetration depth below the tank from 150 to 20 feet. The primary goals of the extended thermal modeling effort were to determine whether fluid boiling or superheating are possible within the column module and to determine the maximum floor temperatures within the tank loaded with spent CST.

  12. The effect of ion-exchange purification on the determination of plutonium at the New Brunswick Laboratory

    SciTech Connect (OSTI)

    Mitchell, W.G.; Spaletto, M.I.; Lewis, K.; Soriano, M.D.; Smith, M.W.

    1990-07-01

    The method of plutonium (Pu) determination at the Brunswick Laboratory (NBL) consists of a combination of ion-exchange purification followed by controlled-potential coulometric analysis (IE/CPC). The present report's purpose is to quantify any detectable Pu loss occurring in the ion-exchange (IE) purification step which would cause a negative bias in the NBL method for Pu analysis. The magnitude of any such loss would be contained within the reproducibility (0.05%) of the IE/CPC method which utilizes a state-of-the-art autocoulometer developed at NBL. When the NBL IE/CPC method is used for Pu analysis, any loss in ion-exchange purification (<0.05%) is confounded with the repeatability of the ion-exchange and the precision of the CPC analysis technique (<0.05%). Consequently, to detect a bias in the IE/CPC method due to the IE alone using the IE/CPC method itself requires that many randomized analyses on a single material be performed over time and that statistical analysis of the data be performed. The initial approach described in this report to quantify any IE loss was an independent method, Isotope Dilution Mass Spectrometry; however, the number of analyses performed was insufficient to assign a statistically significant value to the IE loss (<0.02% of 10 mg samples of Pu). The second method used for quantifying any IE loss of Pu was multiple ion exchanges of the same Pu aliquant; the small number of analyses possible per individual IE together with the column-to-column variability over multiple ion exchanges prevented statistical detection of any loss of <0.05%. 12 refs.

  13. REMOVAL OF CESIUM FROM SAVANNAH RIVER SITE WASTE WITH SPHERICAL RESORCINOL FORMALDEHYDE ION EXCHANGE RESIN EXPERIMENTAL TESTS

    SciTech Connect (OSTI)

    Duignan, M.; Nash, C.

    2010-03-31

    A principal goal at the Savannah River Site (SRS) is to safely dispose of the large volume of liquid nuclear waste held in many storage tanks. In-tank ion exchange (IX) columns are being considered for cesium removal. The spherical form of resorcinol formaldehyde ion exchange resin (sRF) is being evaluated for decontamination of dissolved saltcake waste at SRS, which is generally lower in potassium and organic components than Hanford waste. The sRF performance with SRS waste was evaluated in two phases: resin batch contacts and IX column testing with both simulated and actual dissolved salt waste. The tests, equipment, and results are discussed.

  14. Preliminary flowsheet: Ion exchange for separation of cesium from Hanford tank waste using resorcinol-formaldehyde resin

    SciTech Connect (OSTI)

    Penwell, D.L.

    1994-12-28

    This preliminary flowsheet document describes an ion exchange process which uses resorcinol-formaldehyde (R-F) resin to remove cesium from Hanford tank waste. The flowsheet describes one possible equipment configuration, and contains mass balances based on that configuration with feeds of Neutralized Current Acid Waste, and Double Shell Slurry Feed. The flowsheet also discusses process alternatives, unresolved issues, and development needs associated with the ion exchange process. It is expected that this flowsheet will evolve as open issues are resolved and progress is made on development needs. This is part of the Tank Waste Remediation Program at Hanford. 26 refs, 6 figs, 25 tabs.

  15. THERMAL MODELING ANALYSIS OF CST MEDIA IN THE SMALL COLUMN ION EXCHANGE PROJECT

    SciTech Connect (OSTI)

    Lee, S.

    2010-11-01

    Models have been developed to simulate the thermal characteristics of Crystalline Silicotitanate (CST) ion exchange media fully loaded with radioactive cesium in a column configuration and distributed within a waste storage tank. This work was conducted to support the Small Column Ion Exchange (SCIX) program which is focused on processing dissolved, high-sodium salt waste for the removal of specific radionuclides (including Cs-137, Sr-90, and actinides) within a High Level Waste (HLW) storage tank at the Savannah River Site. The SCIX design includes CST columns inserted and supported in the tank top risers for cesium removal. Temperature distributions and maximum temperatures across the column were calculated with a focus on process upset conditions. A two-dimensional computational modeling approach for the in-column ion-exchange domain was taken to include conservative, bounding estimates for key parameters such that the results would provide the maximum centerline temperatures achievable under the design configurations using a feed composition known to promote high cesium loading on CST. One salt processing scenario includes the transport of the loaded (and possibly ground) CST media to the treatment tank floor. Therefore, additional thermal modeling calculations were conducted using a three-dimensional approach to evaluate temperature distributions for the entire in-tank domain including distribution of the spent CST media either as a mound or a flat layer on the tank floor. These calculations included mixtures of CST with HLW sludge or loaded Monosodium Titanate (MST) media used for strontium/actinide sorption. The current full-scale design for the CST column includes one central cooling pipe and four outer cooling tubes. Most calculations assumed that the fluid within the column was stagnant (i.e. no buoyancy-induced flow) for a conservative estimate. A primary objective of these calculations was to estimate temperature distributions across packed CST beds immersed in waste supernate or filled with dry air under various accident scenarios. Accident scenarios evaluated included loss of salt solution flow through the bed (a primary heat transfer mechanism), inadvertent column drainage, and loss of active cooling in the column. The calculation results showed that for a wet CST column with active cooling through one central and four outer tubes and 35 C ambient external air, the peak temperature for the fully-loaded column is about 63 C under the loss of fluid flow accident, which is well below the supernate boiling point. The peak temperature for the naturally-cooled (no active, engineered cooling) wet column is 156 C under fully-loaded conditions, exceeding the 130 C boiling point. Under these conditions, supernate boiling would maintain the column temperature near 130 C until all supernate was vaporized. Without active engineered cooling and assuming a dry column suspended in unventilated air at 35 C, the fully-loaded column is expected to rise to a maximum of about 258 C due to the combined loss-of coolant and column drainage accidents. The modeling results demonstrate that the baseline design using one central and four outer cooling tubes provides a highly efficient cooling mechanism for reducing the maximum column temperature. Results for the in-tank modeling calculations clearly indicate that when realistic heat transfer boundary conditions are imposed on the bottom surface of the tank wall, as much as 450 gallons of ground CST (a volume equivalent to two ion exchange processing cycles) in an ideal hemispherical shape (the most conservative geometry) can be placed in the tank without exceeding the 100 C wall temperature limit. Furthermore, in the case of an evenly-distributed flat layer, the tank wall reaches the temperature limit after the ground CST material reaches a height of approximately 8 inches.

  16. Bifunctional phenyl monophosphonic/sulfonic acid ion exchange resin and process for using the same

    DOE Patents [OSTI]

    Alexandratos, Spiro; Shelley, Christopher A.; Horwitz, E. Philip; Chiarizia, Renato

    2001-01-01

    A cross-linked water-insoluble ion exchange resin comprised of polymerized monomers having a phenyl ring is disclosed. A contemplated resin contains (i) polymerized phenyl ring-containing monomers having a phosphonic acid ligand linked to the phenyl ring, (ii) about 2 to about 5 millimoles per gram (mmol/g) of phosphorus as phosphonic acid ligands, and (iii) a sufficient amount of a sulfonic acid ligand such that the ratio of mmol/g of phosphonic acid to mmol/g sulfonic acid is up to 3:1. A process for removing polyvalent metal cations from aqueous solution, and a process for removing iron(III) cations from acidic copper(II) cation-containing solutions that utilize the contemplated resin or other resins are disclosed.

  17. Bifunctional phenyl monophosphonic/sulfonic acid ion exchange resin and process for using the same

    DOE Patents [OSTI]

    Alexandratos, Spiro; Shelley, Christopher A.; Horwitz, E. Philip; Chiarizia, Renato; Gula, Michael J.; Xue, Sui; Harvey, James T.

    2002-01-01

    A cross-linked water-insoluble ion exchange resin comprised of polymerized monomers having a phenyl ring is disclosed. A contemplated resin contains (i) polymerized phenyl ring-containing monomers having a phosphonic acid ligand linked to the phenyl ring, (ii) about 2 to about 5 millimoles per gram (mmol/g) of phosphorus as phosphonic acid ligands, and (iii) a sufficient amount of a sulfonic acid ligand such that the ratio of mmol/g of phosphonic acid to mmol/g sulfonic acid is up to 3:1. A process for removing polyvalent metal cations from aqueous solution, and a process for removing iron(III) cations from acidic copper(II) cation-containing solutions that utilize the contemplated resin or other resins are disclosed.

  18. Using Process Knowledge to Manage Disposal Classification of Ion-Exchange Resin - 13566

    SciTech Connect (OSTI)

    Bohnsack, Jonathan N.; James, David W.

    2013-07-01

    It has been previously shown by EPRI [1] that Class B and C resins represent a small portion by volume of the overall generation of radioactively contaminated resins. In fact, if all of the resins were taken together the overall classification would meet Class A disposal requirements. Lowering the classification of the ion exchange resins as they are presented for disposal provides a path for minimizing the amount of waste stored. Currently there are commercial options for blending wastes from various generators for Class A disposal in development. The NRC may have by this time introduced changes and clarifications to the Branch Technical Position (BTP) on Concentration Averaging and Encapsulation [2] that may ultimately add more flexibility to what can be done at the plant level. The BTP has always maintained that mixtures of resins that are combined for ALARA purposes or operational efficiency can be classified on the basis of the mixture. This is a point often misinterpreted and misapplied. This paper will address options that can be exercised by the generator that can limit B and C waste generation by more rigorous tracking of generation and taking advantage of the normal mix of wastes. This can be achieved through the monitoring of reactor coolant chemistry data and coupled with our knowledge of radionuclide production mechanisms. This knowledge can be used to determine the overall accumulation of activity in ion-exchange resins and provides a 'real-time' waste classification determination of the resin and thereby provide a mechanism to reduce the production of waste that exceeds class A limits. It should be noted that this alternative approach, although rarely used in a nuclear power plant setting, is acknowledged in the original BTP on classification [3] as a viable option for determining radionuclide inventories for classification of waste. Also included is a discussion of an examination performed at the Byron plant to estimate radionuclide content in the final waste stream from upstream sampling of reactor coolant and fuel pool water. (authors)

  19. DATA QUALITY OBJECTIVE SUMMARY REPORT FOR THE 105 K EAST ION EXCHANGE COLUMN MONOLITH

    SciTech Connect (OSTI)

    JOCHEN, R.M.

    2007-08-02

    The 105-K East (KE) Basin Ion Exchange Column (IXC) cells, lead caves, and the surrounding vault are to be removed as necessary components in implementing ''Hanford Federal Facility Agreement and Consent Order'' (Ecology et al. 2003) milestone M-034-32 (Complete Removal of the K East Basin Structure). The IXCs consist of six units located in the KE Basin, three in operating positions in cells and three stored in a lead cave. Methods to remove the IXCs from the KE Basin were evaluated in KBC-28343, ''Disposal of K East Basin Ion Exchange Column Evaluation''. The method selected for removal was grouting the six IXCs into a single monolith for disposal at the Environmental Restoration Disposal Facility (ERDF). Grout will be added to the IXC cells, IXC lead caves containing spent IXCs, and in the spaces between the lead cave walls and metal skin, to immobilize the contaminants, provide self-shielding, minimize void space, and provide a structurally stable waste form. The waste to be offered for disposal is the encapsulated monolith defined by the exterior surfaces of the vault and the lower surface of the underlying slab. This document presents summary of the data quality objective (DQO) process establishing the decisions and data required to support decision-making activities for the disposition of the IXC monolith. The DQO process is completed in accordance with the seven-step planning process described in EPA QA/G-4, ''Guidance for the Data Quality Objectives Process'', which is used to clarify and study objectives; define the appropriate type, quantity, and quality of data; and support defensible decision-making. The DQO process involves the following steps: (1) state the problem; (2) identify the decision; (3) identify the inputs to the decision; (4) define the boundaries of the study; (5) develop a decision rule (DR); (6) specify tolerable limits on decision errors; and (7) optimize the design for obtaining data.

  20. Small-Column Cesium Ion Exchange Elution Testing of Spherical Resorcinol-Formaldehyde

    SciTech Connect (OSTI)

    Brown, Garrett N.; Russell, Renee L.; Peterson, Reid A.

    2011-10-21

    This report summarizes the work performed to evaluate multiple, cesium loading, and elution cycles for small columns containing SRF resin using a simple, high-level waste (HLW) simulant. Cesium ion exchange loading and elution curves were generated for a nominal 5 M Na, 2.4E-05 M Cs, 0.115 M Al loading solution traced with 134Cs followed by elution with variable HNO3 (0.02, 0.07, 0.15, 0.23, and 0.28 M) containing variable CsNO3 (5.0E-09, 5.0E-08, and 5.0E-07 M) and traced with 137Cs. The ion exchange system consisted of a pump, tubing, process solutions, and a single, small ({approx}15.7 mL) bed of SRF resin with a water-jacketed column for temperature-control. The columns were loaded with approximately 250 bed volumes (BVs) of feed solution at 45 C and at 1.5 to 12 BV per hour (0.15 to 1.2 cm/min). The columns were then eluted with 29+ BVs of HNO3 processed at 25 C and at 1.4 BV/h. The two independent tracers allowed analysis of the on-column cesium interaction between the loading and elution solutions. The objective of these tests was to improve the correlation between the spent resin cesium content and cesium leached out of the resin in subsequent loading cycles (cesium leakage) to help establish acid strength and purity requirements.

  1. Materials issues in lithium ion rechargeable battery technology

    SciTech Connect (OSTI)

    Doughty, D.H.

    1995-07-01

    Lithium ion rechargeable batteries are predicted to replace Ni/Cd as the workhorse consumer battery. The pace of development of this battery system is determined in large part by the availability of materials and the understanding of interfacial reactions between materials. Lithium ion technology is based on the use of two lithium intercalating electrodes. Carbon is the most commonly used anode material, while the cathode materials of choice have been layered lithium metal chalcogenides (LiMX{sub 2}) and lithium spinel-type compounds. Electrolytes may be either organic liquids or polymers. Although the first practical use of graphite intercalation compounds as battery anodes was reported in 1981 for molten salt cells and in 1983 for ambient temperature systems, it was not until Sony Energytech announced a new lithium ion intercalating carbon anode in 1990, that interest peaked. The reason for this heightened interest is that these electrochemical cells have the high energy density, high voltage and light weight of metallic lithium, but without the disadvantages of dendrite formation on charge, improving their safety and cycle life.

  2. Novel Hybrid Materials with High Stability for Electrically Switched Ion Exchange: Carbon Nanotubes/Polyaniline/Nickel Hexacyanoferrate Nanocomposites

    SciTech Connect (OSTI)

    Lin, Yuehe; Cui, Xiaoli

    2005-04-21

    A novel and stable carbon nanotubes /polyaniline /nickel hexacyanoferrates composite film has been synthesized with electrodeposition method, and the possibility for removing cesium through an electrically switched ion exchange has been evaluated in a mixture containing NaNO3 and CsNO3.

  3. Ion exchange removal of cesium from simulated and actual supernate from Hanford tanks 241-SY-101 and 241-SY-103

    SciTech Connect (OSTI)

    Brown, G.N.; Bontha, J.R.; Carlson, C.D.

    1995-09-01

    Pacific Northwest Laboratory (PNL), in conjunction with the Process Chemistry and Statistics Section of Westinghouse Hanford Company (WHC), conducted this study as part of the Supernatant Treatment Development Task for the Initial Pretreatment Module (IPM) Applied Engineering Project. The study assesses the performance of the CS-100 ion exchange material for removing cesium from simulated and actual alkaline supernate from Hanford tanks 241-SY-101 and 241-SY-103. The objective of these experiments is to compare the cesium ion exchange loading and elution profiles of actual and simulated wastes. Specific experimental objectives include (1) demonstration of decontamination factors (DF) for cesium removal, 92) verification of simulant performance, (3) investigation of waste/exchanger chemistry, and (4) determination of the radionuclide content of the regenerated CS-100 resin prior to disposal.

  4. Evolution of Ion Implantation Technology and its Contribution to Semiconductor Industry

    SciTech Connect (OSTI)

    Tsukamoto, Katsuhiro; Kuroi, Takashi; Kawasaki, Yoji

    2011-01-07

    Industrial aspects of the evolution of ion implantation technology will be reviewed, and their impact on the semiconductor industry will be discussed. The main topics will be the technology's application to the most advanced, ultra scaled CMOS, and to power devices, as well as productivity improvements in implantation technology. Technological insights into future developments in ion-related technologies for emerging industries will also be presented.

  5. Technology Development Roadmap for the Advanced High Temperature Reactor Secondary Heat Exchanger

    SciTech Connect (OSTI)

    P. Sabharwall; M. McCllar; A. Siahpush; D. Clark; M. Patterson; J. Collins

    2012-09-01

    This Technology Development Roadmap (TDRM) presents the path forward for deploying large-scale molten salt secondary heat exchangers (MS-SHX) and recognizing the benefits of using molten salt as the heat transport medium for advanced high temperature reactors (AHTR). This TDRM will aid in the development and selection of the required heat exchanger for: power production (the first anticipated process heat application), hydrogen production, steam methane reforming, methanol to gasoline production, or ammonia production. This TDRM (a) establishes the current state of molten salt SHX technology readiness, (b) defines a path forward that systematically and effectively tests this technology to overcome areas of uncertainty, (c) demonstrates the achievement of an appropriate level of maturity prior to construction and plant operation, and (d) identifies issues and prioritizes future work for maturing the state of SHX technology. This study discusses the results of a preliminary design analysis of the SHX and explains the evaluation and selection methodology. An important engineering challenge will be to prevent the molten salt from freezing during normal and off-normal operations because of its high melting temperature (390°C for KF ZrF4). The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The need for efficiency, compactness, and safety challenge the capabilities of existing heat exchanger technology. The description of potential heat exchanger configurations or designs (such as printed circuit, spiral or helical coiled, ceramic, plate and fin, and plate type) were covered in an earlier report (Sabharwall et al. 2011). Significant future work, much of which is suggested in this report, is needed before the benefits and full potential of the AHTR can be realized. The execution of this TDRM will focuses research efforts on the near-term qualification, selection, or maturation strategy as detailed in this report. Development of the integration methodology feasibility study, along with research and development (R&D) needs, are ongoing tasks that will be covered in the future reports as work progresses. Section 2 briefly presents the integration of AHTR technology with conventional chemical industrial processes., See Idaho National Laboratory (INL) TEV-1160 (2011) for further details

  6. Process for carbonaceous material conversion and recovery of alkali metal catalyst constituents held by ion exchange sites in conversion residue

    DOE Patents [OSTI]

    Sharp, David W.

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered for the particles by contacting or washing them with an aqueous solution containing calcium or magnesium ions in an alkali metal recovery zone at a low temperature, preferably below about 249.degree. F. During the washing or leaching process, the calcium or magnesium ions displace alkali metal ions held by ion exchange sites in the particles thereby liberating the ions and producing an aqueous effluent containing alkali metal constituents. The aqueous effluent from the alkali metal recovery zone is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  7. Processes for washing a spent ion exchange bed and for treating biomass-derived pyrolysis oil, and apparatuses for treating biomass-derived pyrolysis oil

    DOE Patents [OSTI]

    Baird, Lance Awender; Brandvold, Timothy A.

    2015-11-24

    Processes and apparatuses for washing a spent ion exchange bed and for treating biomass-derived pyrolysis oil are provided herein. An exemplary process for washing a spent ion exchange bed employed in purification of biomass-derived pyrolysis oil includes the step of providing a ion-depleted pyrolysis oil stream having an original oxygen content. The ion-depleted pyrolysis oil stream is partially hydrotreated to reduce the oxygen content thereof, thereby producing a partially hydrotreated pyrolysis oil stream having a residual oxygen content that is less than the original oxygen content. At least a portion of the partially hydrotreated pyrolysis oil stream is passed through the spent ion exchange bed. Water is passed through the spent ion exchange bed after passing at least the portion of the partially hydrotreated pyrolysis oil stream therethrough.

  8. International technology exchange in support of the Defense Waste Processing Facility wasteform production

    SciTech Connect (OSTI)

    Kitchen, B.G.

    1989-08-23

    The nearly completed Defense Waste Processing Facility (DWPF) is a Department of Energy (DOE) facility at the Savannah River Site that is designed to immobilize defense high level radioactive waste (HLW) by vitrification in borosilicate glass and containment in stainless steel canisters suitable for storage in the future DOE HLW repository. The DWPF is expected to start cold operation later this year (1990), and will be the first full scale vitrification facility operating in the United States, and the largest in the world. The DOE has been coordinating technology transfer and exchange on issues relating to HLW treatment and disposal through bi-lateral agreements with several nations. For the nearly fifteen years of the vitrification program at Savannah River Laboratory, over two hundred exchanges have been conducted with a dozen international agencies involving about five-hundred foreign national specialists. These international exchanges have been beneficial to the DOE`s waste management efforts through confirmation of the choice of the waste form, enhanced understanding of melter operating phenomena, support for paths forward in political/regulatory arenas, confirmation of costs for waste form compliance programs, and establishing the need for enhancements of melter facility designs. This paper will compare designs and schedules of the international vitrification programs, and will discuss technical areas where the exchanges have provided data that have confirmed and aided US research and development efforts, impacted the design of the DWPF and guided the planning for regulatory interaction and product acceptance.

  9. International technology exchange in support of the Defense Waste Processing Facility wasteform production

    SciTech Connect (OSTI)

    Kitchen, B.G.

    1989-08-23

    The nearly completed Defense Waste Processing Facility (DWPF) is a Department of Energy (DOE) facility at the Savannah River Site that is designed to immobilize defense high level radioactive waste (HLW) by vitrification in borosilicate glass and containment in stainless steel canisters suitable for storage in the future DOE HLW repository. The DWPF is expected to start cold operation later this year (1990), and will be the first full scale vitrification facility operating in the United States, and the largest in the world. The DOE has been coordinating technology transfer and exchange on issues relating to HLW treatment and disposal through bi-lateral agreements with several nations. For the nearly fifteen years of the vitrification program at Savannah River Laboratory, over two hundred exchanges have been conducted with a dozen international agencies involving about five-hundred foreign national specialists. These international exchanges have been beneficial to the DOE's waste management efforts through confirmation of the choice of the waste form, enhanced understanding of melter operating phenomena, support for paths forward in political/regulatory arenas, confirmation of costs for waste form compliance programs, and establishing the need for enhancements of melter facility designs. This paper will compare designs and schedules of the international vitrification programs, and will discuss technical areas where the exchanges have provided data that have confirmed and aided US research and development efforts, impacted the design of the DWPF and guided the planning for regulatory interaction and product acceptance.

  10. Waking the sleeping giant: Introducing new heat exchanger technology into the residential air-conditioning marketplace

    SciTech Connect (OSTI)

    Chapp, T.; Voss, M.; Stephens, C.

    1998-07-01

    The Air Conditioning Industry has made tremendous strides in improvements to the energy efficiency and reliability of its product offerings over the past 40 years. These improvement can be attributed to enhancements of components, optimization of the energy cycle, and modernized and refined manufacturing techniques. During this same period, energy consumption for space cooling has grown significantly. In January of 1992, the minimum efficiency requirement for central air conditioning equipment was raised to 10 SEER. This efficiency level is likely to increase further under the auspices of the National Appliance Energy Conservation Act (NAECA). A new type of heat exchanger was developed for air conditioning equipment by Modine Manufacturing Company in the early 1990's. Despite significant advantages in terms of energy efficiency, dehumidification, durability, and refrigerant charge there has been little interest expressed by the air conditioning industry. A cooperative effort between Modine, various utilities, and several state energy offices has been organized to test and demonstrate the viability of this heat exchanger design throughout the nation. This paper will review the fundamentals of heat exchanger design and document this simple, yet novel technology. These experiences involving equipment retrofits have been documented with respect to the performance potential of air conditioning system constructed with PF{trademark} Heat Exchangers (generically referred to as microchannel heat exchangers) from both an energy efficiency as well as a comfort perspective. The paper will also detail the current plan to introduce 16 to 24 systems into an extended field test throughout the US which commenced in the Fall of 1997.

  11. Inexpensive, Environmentally Friendly and Highly Permeable Lignin-Based Ion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exchangers - Energy Innovation Portal Industrial Technologies Industrial Technologies Find More Like This Return to Search Inexpensive, Environmentally Friendly and Highly Permeable Lignin-Based Ion Exchangers Lawrence Livermore National Laboratory Contact LLNL About This Technology Technology Marketing Summary For more than 10 years, a partnership between Kazakh and US researchers has led to the synthesis and testing of highly permeable ion-exchangers. These materials possess an increased

  12. RHEOLOGY OF SETTLED SOLIDS IN THE SMALL COLUMN ION EXCHANGE PROCESS

    SciTech Connect (OSTI)

    Ferguson, C.; Prior, M.; Koopman, D.; Edwards, T.

    2011-06-20

    The Small Column Ion Exchange (SCIX) process is being developed to remove cesium, strontium, and actinides from Savannah River Site (SRS) Liquid Waste using an existing waste tank as process housing. This method includes the addition of monosodium titanate (MST) to a waste tank containing salt solution and entrained sludge solids, followed by tank mixing and filtration. The filtrate is then processed through in-tank ion exchange columns containing crystalline silicotitanate (CST) media. While the process is operating, it is known that solid particles begin to settle in the tank and temperatures may reach beyond 45 C. Previous testing has shown that sludge-MST slurries that sit for extended periods at elevated temperatures can develop large shear strengths, making them difficult to resuspend and remove from the tank. The authors conducted rheological testing of mixtures containing various concentrations of sludge simulant, MST, and CST (three preparations) that were aged at different times (i.e., 0 to 13 weeks) and isothermally maintained to 30, 45, or 60 C. Two types of grinding methodologies were employed to prepare CST for this testing, herein called Savannah River National Laboratory (SRNL) and Vitreous State Laboratory (VSL) ground materials. Unground CST particles were also tested. A small number of samples were irradiated prior to 4 week settling and 60 C temperature treatment, with exposures ranging from 0 to 100 MRad. Additional tests are also being conducted that will allow the solid particles to settle at 45 C for 6, 12, and 24 months. The objectives of this task are to determine the impact of feed composition, settling time, and temperature on the shear strength, yield stress, and consistency of the slurries and to determine the impact of radiation on slurry rheology. The testing will determine the relative impact of these parameters rather than predict the shear strength, yield stress, and consistency as a function of feed and operating conditions. This document describes the rheology of slurries containing MST, CST, and simulated sludge that sat at indicated temperatures for up to 13 weeks. A previous SRNL report described preliminary rheology data of slurries containing MST and sludge. Preliminary results of the irradiation tests are also presented in this report, though additional data are still being collected. Rheology of the long term settling samples (6, 12, and 24 months) and additional irradiation test results will be reported at a later date. Conclusions from this analysis are as follows: (1) Slurries containing MST and unground CST have the largest shear strength. Due to the high shear strengths measured in slurries containing unground CST, evaluations of specific tank contents and mixing capability should be performed prior to any addition of this material into a waste tank. Experimentally determined shear strengths indicate mixing could be problematic in mixtures containing unground CST. (2) Increasing the ground CST fraction in the slurry increases the slurry shear strength, yield stress, and consistency. (3) Increasing the sludge fraction in the slurry decreases the slurry shear strength, yield stress, and consistency. (4) Slurries containing VSL ground CST have larger shear strength, yield stress, and consistency than slurries containing SRNL ground CST. (5) The effects of settling time and temperature on slurry shear strength are slurry dependent. (6) No effects of settling time and temperature on slurry yield stress or consistency were observed. (7) Radiation up to 100 MRad does not appear to affect properties of shear strength, yield stress, or consistency of process feeds.

  13. REAL WASTE TESTING OF SPHERICAL RESORCINOL-FORMALDEHYDE ION EXCHANGE RESIN

    SciTech Connect (OSTI)

    Nash, C.; Duignan, M.

    2009-10-30

    This report presents data on batch contact and column testing tasks for spherical resorcinol-formaldehyde (sRF) resin. The testing used a non-radioactive simulant of SRS Tank 2F dissolved salt, as well as an actual radioactive waste sample of similar composition, which are both notably high in sodium (6 M). The resin was Microbeads batch 5E-370/641 which had been made on the hundred gallon scale. Equilibrium batch contact work focused on cesium at a temperature of 25 C due to the lack of such data to better benchmark existing isotherm models. Two campaigns were performed with small-scale ion exchange columns, first with Tank 2F simulant, then with actual dissolved salt in the Shielded Cells. An extrapolation of the batch contact results with radioactive waste over-predicted the cesium loaded onto the IX sRF resin bed by approximately 11%. This difference is not unexpected considering uncertainties from measurement and extrapolation and because the ion exchange that occurs when waste flows through a resin bed probably cannot reach the same level of equilibrium as when waste and resin are joined in a long term batch contact. Resin was also characterized to better understand basic chemistry issues such as holdup of trace transition metals present in the waste feed streams. The column tests involved using two beds of sRF resin in series, with the first bed referred to as the Lead column and the second bed as the Lag column. The test matrix included two complete IX cycles for both the simulant and actual waste phases. A cycle involves cesium adsorption, until the resin in the Lead column reaches saturation, and then regenerating the sRF resin, which includes eluting the cesium. Both the simulated and the actual wastes were treated with two cycles of operation, and the resin beds that were used in the Lead and Lag columns of simulant test phase were regenerated and reused in the actual waste test phase. This task is the first to demonstrate the treatment of SRS waste with sRF resin and the tests clearly demonstrated cesium decontamination for actual waste. The results of the column tests were similar for both the simulated and the actual waste and demonstrated Cs removal with sRF from both wastes. For a flowrate of 1.4 bed volumes (BV)/hour at 25 C those results with sRF resin were: (1) Simulant and actual waste results are equivalent; (2) Cs breakthrough began between 200 and 250 BV; (3) Cs breakthrough reached 100% at around 400 BV; (4) Cs breakthrough curve from 5% to 100% is approximately linear; (5) Cs elution with 0.5 M HNO3 starts at 2 BV and ends at 6BV; (6) Most, if not all, of Cs adsorbed during treatment is released during elution; (7) At 100% breakthrough of Cs the resin bed adsorbs approximately 85% of full capacity before detection in the effluent; the remaining 15% is adsorbed at saturation; (8) Approximately 90% of resin bed changes (color and volume) are complete by 6 BV; and (9) During elution the resin shrinks to about 80% of its fully working (sodium form) BV.

  14. DEVELOPMENT OF AN APPROACH TO MODELING LOADING AND ELUTION OF SPHERICAL RESORCINOL FORMALDEHYDE ION-EXCHANGE RESIN

    SciTech Connect (OSTI)

    Aleman, S.; Hamm, L.; Smith, F.

    2011-10-03

    The current strategy for removal of cesium from the Hanford waste stream is ion-exchange using spherical Resorcinol-Formaldehyde (sRF) resin. The original resin of choice was granular SuperLig 644 resin and during testing of this resin several operational issues were identified. For example, the granular material had a high angle of internal friction resulting in fragmentation of resin particles along its edges during cycling and adverse hydraulic performance. Efforts to replace SuperLig 644 were undertaken and one candidate was the granular Resorcinol-Formaldehyde (RF) resin where experience with this cation exchanger dates back to the late 1940's. To minimize hydraulic concerns a spherical version of RF was developed and several different chemically produced batches were created. The 5E-370/641 batch of sRF was selected and for the last decade numerous studies have been performed (e.g., batch contact tests, column loading and elution tests). The Waste Treatment Plant (WTP) flowsheet shows that the aqueous phase waste stream will have a wide range of ionic concentrations (e.g., during the loading step 0-3 M free OH, 5+ M Na, 0-1 M K, 0-3 M NO{sub 3}). Several steps are required in the ion-exchange process to achieve the required Cs separation factors: loading, displacement, washing, elution, and regeneration. The sRF resin will be operated over a wide range in pH (i.e., pH of 12-14 during the loading step and pH of 0.01-1 during the elution step). During some of these steps very high levels of counter-ions and co-ions will be present within the aqueous phase. Alternative process feeds are under consideration as well (e.g., sodium levels as high as 8 M and column operation up to 45 C during loading, reduced and recycled HNO{sub 3} during elution). In order to model the performance of sRF resin through an entire ion-exchange cycle, a more robust isotherm model is required. To achieve this more robust isotherm model requires knowledge of the numbers and kinds of fixed ionogenic groups that make up sRF. Recent literature reviews and scoping titration tests strongly indicate that sRF is a polyfunctional cation exchange resin with at least three dominant types of ring groups playing a role in its isotherm behavior over the wide pH range of operations. Also three types of fixed ionogenic acid groups are present: sulfonic (SO{sub 3}H{sup -}) groups; carboxylic (COOH{sup -}) groups, and resorcylic (OH{sup -}) groups. It is this premise that we are working under in the development of a robust isotherm model for sRF over its entire planned pH operating range. The application of prototypic isotherms for modeling ion-exchange column behavior is demonstrated in Section 3 of this report. This preliminary work served to focus the development effort on the use of a mass-action based isotherm. In Section 4 of this report, the foundational material required to develop a robust isotherm model for sRF is provided. The paths taken, and choices made, are given for the reader to better understand our current status with respect to this goal and to highlight our most recent understanding of sRF exchange equilibria. Our ultimate goal is to update the CERMOD code (Aleman and Hamm, 2007) with a robust isotherm model for sRF that spans the entire pH and concentration ranges of planned operations. The isotherm model will then be used in the VERSE-LC code to model an entire ion-exchange cycle.

  15. PILOT SCALE TESTING OF MONOSODIUM TITANATE MIXING FOR THE SRS SMALL COLUMN ION EXCHANGE PROCESS - 11224

    SciTech Connect (OSTI)

    Poirier, M.; Restivo, M.; Williams, M.; Herman, D.; Steeper, T.

    2011-01-25

    The Small Column Ion Exchange (SCIX) process is being developed to remove cesium, strontium, and select actinides from Savannah River Site (SRS) Liquid Waste using an existing waste tank (i.e., Tank 41H) to house the process. Savannah River National Laboratory (SRNL) is conducting pilot-scale mixing tests to determine the pump requirements for suspending monosodium titanate (MST), crystalline silicotitanate (CST), and simulated sludge. The purpose of this pilot scale testing is to determine the requirements for the pumps to suspend the MST particles so that they can contact the strontium and actinides in the liquid and be removed from the tank. The pilot-scale tank is a 1/10.85 linear scaled model of SRS Tank 41H. The tank diameter, tank liquid level, pump nozzle diameter, pump elevation, and cooling coil diameter are all 1/10.85 of their dimensions in Tank 41H. The pump locations correspond to the proposed locations in Tank 41H by the SCIX program (Risers B5 and B2 for two pump configurations and Risers B5, B3, and B1 for three pump configurations). The conclusions from this work follow: (i) Neither two standard slurry pumps nor two quad volute slurry pumps will provide sufficient power to initially suspend MST in an SRS waste tank. (ii) Two Submersible Mixer Pumps (SMPs) will provide sufficient power to initially suspend MST in an SRS waste tank. However, the testing shows the required pump discharge velocity is close to the maximum discharge velocity of the pump (within 12%). (iii) Three SMPs will provide sufficient power to initially suspend MST in an SRS waste tank. The testing shows the required pump discharge velocity is 66% of the maximum discharge velocity of the pump. (iv) Three SMPs are needed to resuspend MST that has settled in a waste tank at nominal 45 C for four weeks. The testing shows the required pump discharge velocity is 77% of the maximum discharge velocity of the pump. Two SMPs are not sufficient to resuspend MST that settled under these conditions.

  16. TRIPLICATE SODIUM IODIDE GAMMA RAY MONITORS FOR THE SMALL COLUMN ION EXCHANGE PROGRAM

    SciTech Connect (OSTI)

    Couture, A.

    2011-09-20

    This technical report contains recommendations from the Analytical Development (AD) organization of the Savannah River National Laboratory (SRNL) for a system of triplicate Sodium Iodide (NaI) detectors to be used to monitor Cesium-137 ({sup 137}Cs) content of the Decontaminated Salt Solution (DSS) output of the Small Column Ion Exchange (SCIX) process. These detectors need to be gain stabilized with respect to temperature shifts since they will be installed on top of Tank 41 at the Savannah River Site (SRS). This will be accomplished using NaI crystals doped with the alpha-emitting isotope, Americium-241({sup 241}Am). Two energy regions of the detector output will be monitored using single-channel analyzers (SCAs), the {sup 137}Cs full-energy {gamma}-ray peak and the {sup 241}Am alpha peak. The count rate in the gamma peak region will be proportional to the {sup 137}Cs content in the DSS output. The constant rate of alpha decay in the NaI crystal will be monitored and used as feedback to adjust the high voltage supply to the detector in response to temperature variation. An analysis of theoretical {sup 137}Cs breakthrough curves was used to estimate the gamma activity expected in the DSS output during a single iteration of the process. Count rates arising from the DSS and background sources were predicted using Microshield modeling software. The current plan for shielding the detectors within an enclosure with four-inch thick steel walls should allow the detectors to operate with the sensitivity required to perform these measurements. Calibration, testing, and maintenance requirements for the detector system are outlined as well. The purpose of SCIX is to remove and concentrate high-level radioisotopes from SRS salt waste resulting in two waste streams. The concentrated high-level waste containing {sup 137}Cs will be sent to the Defense Waste Processing Facility (DWPF) for vitrification and the low-level DSS will be sent to the Saltstone Production Facility (SPF) to be incorporated into grout.

  17. SUMMARY REPORT ON POTENTIAL IMPACTS OF SMALL COLUMN ION EXCHANGE ON DWPF GLASS FORMULATION

    SciTech Connect (OSTI)

    Fox, K.; Edwards, T.; Johnson, F.

    2011-04-27

    This report summarizes a large amount of experimental work completed to identify the potential impacts of material from Small Column Ion Exchange (SCIX) on glass formulation at the Defense Waste Processing Facility (DWPF). The results show no significant issues with the predicted values of chemical durability and viscosity using the current Product Composition Control System (PCCS) models when the SCIX components are added to projected DWPF glass compositions. No modifications to the viscosity and durability models appear to be necessary at this time in order to incorporate the SCIX streams at DWPF. It is recommended that the Savannah River National Laboratory (SRNL) continue to verify the durability and viscosity models as the projected compositions for DWPF processing evolve. It is also recommended that the data generated thus far be reviewed and a determination be made as to how best to extend the validation ranges of the durability and viscosity models. The liquidus temperatures for the experimental glasses are also reported and discussed in this report. The results show that the measured or estimated (based on measured data) liquidus temperature values for the glasses with SCIX components added are consistently higher than those predicted by the current model. Therefore, the PCCS liquidus temperature model will need to be modified in order to incorporate the SCIX streams at DWPF. It is recommended that SRNL carry out full measurements of the liquidus temperatures for those KT-series glasses where estimates have been made. These data should then be used to support an evaluation of whether a refitting of the liquidus temperature model coefficients will be sufficient to correctly predict the liquidus temperature of glasses containing the SCIX components (particularly higher TiO{sub 2} concentrations), or whether additional modifications to the model are required. While there are prediction issues with the current liquidus temperature model, they are not at this time expected to hamper the incorporation of SCIX streams at DWPF. The estimated liquidus temperatures, while higher than the model predicted values, remain below the current DWPF limit of 1050 C for most of the study glasses. Note that the properties and performance of the glasses in this study are highly dependent on glass composition. Therefore, should significant changes be made to the projected compositions or processing rates for SCIX or DWPF, many of the assessments and experiments may have to be revisited.

  18. Vehicle Technologies Office Merit Review 2015: Optimization of Ion Transport in High-Energy Composite Cathodes

    Broader source: Energy.gov [DOE]

    Presentation given by UC San Diego at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about optimization of ion transport in...

  19. Vehicle Technologies Office Merit Review 2015: Lithium-Ion Battery Production and Recycling Materials Issues

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about lithium-ion...

  20. UV and EB Curable Binder Technology for Lithium Ion Batteries and UltraCapacitors

    SciTech Connect (OSTI)

    Voelker, Gary

    2012-04-30

    the basic feasibility of using UV curing technology to produce Lithium ion battery electrodes at speeds over 200 feet per minute has been shown. A unique set of UV curable chemicals were discovered that were proven to be compatible with a Lithium ion battery environment with the adhesion qualities of PVDF.

  1. IMPACT OF SMALL COLUMN ION EXCHANGE STREAMS ON DWPF GLASS FORMULATION MELT RATE STUDIES

    SciTech Connect (OSTI)

    Fox, K.; Miller, D.; Koopman, D.

    2011-04-26

    This study was undertaken to evaluate the potential impacts of the Small Column Ion Exchange (SCIX) streams - particularly the addition of Monosodium Titanate (MST) and Crystalline Silicotitanate (CST) - on the melt rate of simulated feed for the Defense Waste Processing Facility (DWPF). Additional MST was added to account for contributions from the Salt Waste Processing Facility (SWPF). The Savannah River National Laboratory (SRNL) Melt Rate Furnace (MRF) was used to evaluate four melter feed compositions: two with simulated SCIX and SWPF material and two without. The Slurry-fed Melt Rate Furnace (SMRF) was then used to compare two different feeds: one with and one without bounding concentrations of simulated SCIX and SWPF material. Analyses of the melter feed materials confirmed that they met their targeted compositions. Four feeds were tested in triplicate in the MRF. The linear melt rates were determined by using X-ray computed tomography to measure the height of the glass formed along the bottom of the beakers. The addition of the SCIX and SWPF material reduced the average measured melt rate by about 10% in MRF testing, although there was significant scatter in the data. Two feeds were tested in the SMRF. It was noted that the ground CST alone (ground CST with liquid in a bucket) was extremely difficult to resuspend during preparation of the feed with material from SCIX and SWPF. This feed was also more difficult to pump than the material without MST and CST due to settling occurring in the melter feed line, although the yield stress of both feeds was high relative to the DWPF design basis. Steady state feeding conditions were maintained for about five hours for each feed. There was a reduction in the feed and pour rates of approximately 15% when CST and MST were added to the feed, although there was significant scatter in the data. Analysis of samples collected from the SMRF pour stream showed that the composition of the glass changed as expected when MST and CST were added to the feed. These reductions in melt rate are consistent with previous studies that showed a negative impact of increased TiO{sub 2} concentrations on the rate of melting. The impact of agitating the melt pool via bubbling was not studied as part of this work, but may be of interest for further testing. It is recommended that additional melt rate testing be performed should a potential reduction in melt rate of 10-15% be considered an issue of concern, or should the anticipated composition of the glass with the addition of material from salt waste processing be modified significantly from the current projections, either due to changes in sludge batch preparation or changes in the composition or volume of SCIX and SWPF material.

  2. Chemical and radiation stability of a proprietary cesium ion exchange material manufactured from WWL membrane and SuperLig{reg_sign} 644

    SciTech Connect (OSTI)

    Brown, G.N.; Carson, K.J.; DesChane, J.R.; Elovich, R.J.; Berry, P.K.

    1996-09-01

    Pretreatment of nuclear process wastes for ion exchange removal of Cs and other radionuclides is one way to minimize amount of high-level radioactive waste at Hanford. This study evaluated Cs-selective SuperLig{reg_sign}644 (IBC Advanced Technologies, American Fork UT) entrapped in a proprietary WWL web membrane (3M) for chemical/radiation stability in simulated caustic neutralized current acid waste (NCAW), 0.5M HNO{sub 3}, water, and air. After exposure up to 2.0E+09 rad, the material was evaluated for Cs uptake in 5M sodium NCAW simulants with varying Cs contents. Radiolytic stability appears to be sufficient for ion exchange pretreatment of radioactive Cs: essentially no decrease in Cs selectivity or loading (Kd) was observed during {sup 60}Cs gamma irradiation in water or 0.5M HNO{sub 3} up to 1.0E+09 rad. Cs Kd decreased by a factor of 2 after 2.0E+09 rad exposure. Cs Kd did not change during irradiation in 5M NCAW or ambient air up to 1.0E+08 rad, but decreased by more than an order of magnitude between 1.0E+08 and 2.0E+09 rad (not typical of process conditions). Chemical stability under caustic conditions is lower than in air or under neutral/acidic conditions. Results indicate that this material is less stable in caustic solution irrespective of radiation exposure. Samples of the membrane retained their physical form throughout the entire experiment and were only slightly brittle after exposure to 2.0E+09 rad. (The material evaluated was a finely ground (400 mesh) particulate engineered to form a polymeric fiber (WWL), not the macroscopic form of SuperLig{reg_sign} 644 resin (20 to 50 mesh).)

  3. Leach studies on cement-solidified ion exchange resins from decontamination processes at operating nuclear power stations

    SciTech Connect (OSTI)

    McIsaac, C.V.; Akers, D.W.; McConnell, J.W.; Morcos, N.

    1992-08-01

    The effects of varying pH and leachant compositions on the physical stability and leachability of radionuclides and chelating agents were determined for cement-solidified decontamination ion-exchange resin wastes collected from two operating commercial light water reactors. Small scale waste-form specimens were collected during waste solidifications performed at the Brunswick Steam Electric Plant Unit 1 and at the James A. FitzPatrick Nuclear Power Station. The collected specimens were leach tested, and their compressive strength was measured in accordance with the Nuclear Regulatory Commission`s ``Technical Position on Waste Form`` (Revision 1), from the Low-Level Waste Management Branch. Leachates from these studies were analyzed for radionuclides, selected transition metals, and chelating agents to assess the leachability of these waste form constituents. Leachants used for the study were deionized water, simulated seawater, and groundwater compositions similar to those found at Barnwell, South Carolina and Hanford, Washington. Results of this study indicate that initial leachant pH does not affect leachate pH or releases from cement-solidified decontamination ion-exchange resin waste forms. However, differences in leachant composition and the presence of chelating agents may affect the releases of radionuclides and chelating agents. In addition, results from this study indicate that the cumulative releases of radionuclides and chelating agents observed for forms that disintegrated were similar to those for forms that maintained their general physical integrity.

  4. Leach studies on cement-solidified ion exchange resins from decontamination processes at operating nuclear power stations

    SciTech Connect (OSTI)

    McIsaac, C.V.; Akers, D.W.; McConnell, J.W.; Morcos, N.

    1992-01-01

    The effects of varying pH and leachant compositions on the physical stability and leachability of radionuclides and chelating agents were determined for cement-solidified decontamination ion-exchange resin wastes collected from two operating commercial light water reactors. Small scale waste-form specimens were collected during waste solidifications performed at the Brunswick Steam Electric Plant Unit 1 and at the James A. FitzPatrick Nuclear Power Station. The collected specimens were leach tested, and their compressive strength was measured in accordance with the Nuclear Regulatory Commission's Technical Position on Waste Form'' (Revision 1), from the Low-Level Waste Management Branch. Leachates from these studies were analyzed for radionuclides, selected transition metals, and chelating agents to assess the leachability of these waste form constituents. Leachants used for the study were deionized water, simulated seawater, and groundwater compositions similar to those found at Barnwell, South Carolina and Hanford, Washington. Results of this study indicate that initial leachant pH does not affect leachate pH or releases from cement-solidified decontamination ion-exchange resin waste forms. However, differences in leachant composition and the presence of chelating agents may affect the releases of radionuclides and chelating agents. In addition, results from this study indicate that the cumulative releases of radionuclides and chelating agents observed for forms that disintegrated were similar to those for forms that maintained their general physical integrity.

  5. Method of uranium reclamation from aqueous systems by reactive ion exchange. [US DOE patent application; anion exchange resin of copolymerized divinyl-benzene and styrene having quarternary ammonium groups and bicarbonate ligands

    DOE Patents [OSTI]

    Maya, L.

    1981-11-05

    A reactive ion exchange method for separation and recovery of values of uranium, neptunium, plutonium, or americium from substantially neutral aqueous systems of said metals comprises contacting said system with an effective amount of a basic anion exchange resin of copolymerized divinyl-benzene and styrene having quarternary ammonium groups and bicarbonate ligands to achieve nearly 100% sorption of said actinyl ion onto said resin and an aqueous system practically free of said actinyl ions. The method is operational over an extensive range of concentrations from about 10/sup -6/ M to 1.0 M actinyl ion and a pH range of about 4 to 7. The method has particulr application to treatment of waste streams from Purex-type nuclear fuel reprocessing facilities and hydrometallurgical processes involving U, Np, P, or Am.

  6. Phosphonic acid based exchange resins

    DOE Patents [OSTI]

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1995-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  7. Phosphonic acid based exchange resins

    DOE Patents [OSTI]

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1995-09-12

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.

  8. Developments in lithium-ion battery technology in the Peoples Republic of China.

    SciTech Connect (OSTI)

    Patil, P. G.; Energy Systems

    2008-02-28

    Argonne National Laboratory prepared this report, under the sponsorship of the Office of Vehicle Technologies (OVT) of the U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy, for the Vehicles Technologies Team. The information in the report is based on the author's visit to Beijing; Tianjin; and Shanghai, China, to meet with representatives from several organizations (listed in Appendix A) developing and manufacturing lithium-ion battery technology for cell phones and electronics, electric bikes, and electric and hybrid vehicle applications. The purpose of the visit was to assess the status of lithium-ion battery technology in China and to determine if lithium-ion batteries produced in China are available for benchmarking in the United States. With benchmarking, DOE and the U.S. battery development industry would be able to understand the status of the battery technology, which would enable the industry to formulate a long-term research and development program. This report also describes the state of lithium-ion battery technology in the United States, provides information on joint ventures, and includes information on government incentives and policies in the Peoples Republic of China (PRC).

  9. Synthesis and Evaluation of Cu/SAPO-34 Catalysts for NH3-SCR 2: Solid-state Ion Exchange and One-pot Synthesis

    SciTech Connect (OSTI)

    Gao, Feng; Walter, Eric D.; Washton, Nancy M.; Szanyi, Janos; Peden, Charles HF

    2015-01-01

    Cu-SAPO-34 catalysts are synthesized using two methods: solid-state ion exchange (SSIE) and one-pot synthesis. SSIE is conducted by calcining SAPO-34/CuO mixtures at elevated temperatures. For the one-pot synthesis method, Cu-containing chemicals (CuO and CuSO4) are added during gel preparation. A high-temperature calcination step is also needed for this method. Catalysts are characterized with surface area/pore volume measurements, temperature programmed reduction (TPR), electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopies, and scanning electron microscopy (SEM). Catalytic properties are examined using standard ammonia selective catalytic reduction (NH3-SCR) and ammonia oxidation reactions. In Cu-SAPO-34 samples formed using SSIE, Cu presents both as isolated Cu2+ ions and unreacted CuO. The former is highly active and selective in NH3-SCR, while the latter catalyzes a side reaction; notably, the non-selective oxidation of NH3 above 350 ºC. Using the one-pot method followed by a high-temperature aging treatment, it is possible to form Cu SAPO-34 samples with predominately isolated Cu2+ ions at low Cu loadings. However at much higher Cu loadings, isolated Cu2+ ions that bind weakly with the CHA framework and CuO clusters also form. These Cu moieties are very active in catalyzing non-selective NH3 oxidation above 350 ºC. Low-temperature reaction kinetics indicate that Cu-SAPO-34 samples formed using SSIE have core-shell structures where Cu is enriched in the shell layers; while Cu is more evenly distributed within the one-pot samples. Reaction kinetics also suggest that at low temperatures, the local environment next to Cu2+ ion centers plays little role on the overall catalytic properties. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle under contract number DE-AC05-76RL01830. The authors also thank Shari Li (PNNL) for surface area/pore volume measurements, and Bruce W. Arey (PNNL) for SEM measurements. Discussions with Drs. A. Yezerets, K. Kamasamudram, J.H. Li, N. Currier and J.Y. Luo from Cummins, Inc. and H.Y. Chen and H. Hess from Johnson-Matthey are greatly appreciated.

  10. Method for digesting spent ion exchange resins and recovering actinides therefrom using microwave radiation

    DOE Patents [OSTI]

    Maxwell, III, Sherrod L.; Nichols, Sheldon T.

    1999-01-01

    The present invention relates to methods for digesting diphosphonic acid substituted cation exchange resins that have become loaded with actinides, rare earth metals, or heavy metals, in a way that allows for downstream chromatographic analysis of the adsorbed species without damage to or inadequate elution from the downstream chromatographic resins. The methods of the present invention involve contacting the loaded diphosphonic acid resin with concentrated oxidizing acid in a closed vessel, and irradiating this mixture with microwave radiation. This efficiently increases the temperature of the mixture to a level suitable for digestion of the resin without the use of dehydrating acids that can damage downstream analytical resins. In order to ensure more complete digestion, the irradiated mixture can be mixed with hydrogen peroxide or other oxidant, and reirradiated with microwave radiation.

  11. Technology Readiness Assessment (TRA)/Technology Maturation Plan (TMP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Guide | Department of Energy Technology Readiness Assessment (TRA)/Technology Maturation Plan (TMP) Process Guide Technology Readiness Assessment (TRA)/Technology Maturation Plan (TMP) Process Guide This document is a guide for those involved in conducting TRAs and developing TMPs for DOE-EM. PDF icon Technology Readiness Assessment (TRA)/Technology Maturation Plan (TMP) Process Guide More Documents & Publications Technology Readiness Assessment Report Small Column Ion Exchange

  12. Structure/function studies of resorcinol-formaldehyde (R-F) and phenol-formaldehyde (P-F) copolymer ion-exchange resins

    SciTech Connect (OSTI)

    Hubler, T.L.; Franz, J.A.; Shaw, W.J.; Hogan, M.O.; Hallen, R.T.; Brown, G.N.; Linehan, J.C.

    1996-09-01

    he U.S. Department of Energy`s (DOE) Hanford Site was established to produce plutonium for the U.S. defense mission. Over the course of decades, hazardous, toxic, and radioactive chemical wastes were generated and disposed of in a variety of ways including storage in underground tanks. An estimated 180 million tons of high-level radioactive wastes are stored in 177 underground storage tanks. During production of fissile plutonium, large quantities of 90Sr and 137CS were produced. The high abundance and intermediate length half- lives of these fission products are the reason that effort is directed toward selective removal of these radionuclides from the bulk waste stream before final tank waste disposal is effected. Economically, it is desirable to remove the highly radioactive fraction of the tank waste for vitrification. Ion-exchange technology is being evaluated for removing cesium from Hanford Site waste tanks. This report summarizes data and analysis performed by Pacific Northwest National Laboratory (PNNL)for both resorcinol-formaldehyde (R-F) and phenol-formaldehyde (P-F) resins and relates their observed differences in performance and chemical stability to their structure. The experimental approach used to characterize the resins was conducted using primarily two types of data: batch distribution coefficients (Kds) and solid-state 13C NMR. Comparison of these data for a particular resin allowed correlation of resin performance to resin structure. Additional characterization techniques included solid-state 19F NMR, and elemental analyses.

  13. An investigation of the radiolytic stability of a resorcinol- formaldehyde ion exchange resin

    SciTech Connect (OSTI)

    Crawford, C.L.; Bibler, N.E.; Bibler, J.P.

    1993-12-31

    Radiolytic stability of a resorcinol-formaldehyde polycondensation-type cation exchange resin was investigated for up to lE09 rads total dose. The resorcinol-formaldehyde resin is a resin that has potential cesium decontamination applications at Pacific Northwest and Savannah River. We have determined both radiation and storage effects on performance of the resin using 101-AW Hanford simulant and ASTM Type-I water. Distribution coefficient determinations, total carbon analysis, and physical observations lead us to conclude that radiation up to lE08 rads does not significantly affect the performance of the resin. The resin is more stable to radiation in water than in 101-AW Hanford simulant. Also radiation or storage does not affect the thermal stability of the resin. Gas production rates for several resin slurries increased in the order of resin/101-AW Hanford simulant, resin/ASTM water, and resin/0.5 M HNO{sub 3}. H{sub 2} is produced from radiolysis of resin in 101-AW Hanford simulant with a G value of G(H{sub 2}) of 0.11 {plus_minus} 0.02 molecules/100eV and in 0.5 M HNO{sub 3} with a G value of G(H{sub 2}) of 0.27 {plus_minus} 0.02 molecules/lOOeV.

  14. Summary - Small Column Ion Exchange (SCIX)Technology at the SRS

    Office of Environmental Management (EM)

    ETR R Un Baseline The Sm being The SC operat which Sr, and waste critical the SC deploy Specif exchan CST) CST, a (mono and so (RMF) maturi readin design moving The pu techni ...

  15. Preliminary Ion Exchange Modeling for Removal of Cesium from Hanford Waste Using SuperLig 644 Resin

    SciTech Connect (OSTI)

    Hamm, L.L.

    2000-08-23

    A proposed facility is being designed for the immobilization of Hanford high-level radioactive waste. One unit process in the facility is designed to remove radioactive cesium by ion-exchange from the strongly alkaline aqueous phase. A resin specifically designed with high selectivity of cesium under alkaline conditions is being investigated. The resin also is elutable under more acidic conditions. The proposed design of the facility consists of two sets of two packed columns placed in series (i.e., a lead column followed by a lag (guard) column configuration). During operation, upon reaching a specified cesium concentration criterion at the exit of the lag column, operation is switched to the second set of lead and lag columns. The cesium-loaded lead column is processed (i.e., washed and eluted) and switched to the lag position. the previous lag column is then placed in the lead position (without eluting) and the system is ready for use in the next cycle. For a well designed process, the loading and elution processes result in significant volume reductions in aqueous high-level waste.

  16. Potential problems associated with ion-exchange resins used in the decontamination of light-water reactor systems

    SciTech Connect (OSTI)

    Soo, P.; Adams, J.W.; Kempf, C.R.

    1987-01-01

    During a typical decontamination event, ion-exchange resin beds are used to remove corrosion products (radioactive and nonradioactive) and excess decontamination reagents from waste streams. The spent resins may be solidified in a binder, such as cement, or sealed in a high-integrity container (HIC) in order to meet waste stability requirements specified by the Nuclear Regulatory Commission. Lack of stability of low-level waste in a shallow land burial trench may lead to trench subsidence, enhanced water infiltration and waste leaching, which would result in accelerated transport of radionuclides and the complexing agents used for decontamination. The current program is directed at investigating safety problems associated with the handling, solidification and containerization of decontamination resin wastes. The three tasks currently underway include freeze-thaw cycling of cementitious and vinyl ester-styrene forms to determine if mechanical integrity is compromised, a study of the corrosion of container materials by spent decontamination waste resins, and investigations of resin degradation mechanisms.

  17. Efficiencies and Optimization of Weak Base Anion Ion-Exchange Resin for Groundwater Hexavalent Chromium Removal at Hanford

    SciTech Connect (OSTI)

    Nesham, Dean O.; Ivarson, Kristine A.; Hanson, James P.; Miller, Charles W.; Meyers, P.; Jaschke, Naomi M.

    2014-02-03

    The U.S. Department of Energy’s (DOE’s) contractor, CH2M HILL Plateau Remediation Company, has successfully converted a series of groundwater treatment facilities to use a new treatment resin that is delivering more than $3 million in annual cost savings and efficiency in treating groundwater contamination at the DOE Hanford Site in southeastern Washington State. During the production era, the nuclear reactors at the Hanford Site required a continuous supply of high-quality cooling water during operations. Cooling water consumption ranged from about 151,417 to 378,541 L/min (40,000 to 100,000 gal/min) per reactor, depending on specific operating conditions. Water from the Columbia River was filtered and treated chemically prior to use as cooling water, including the addition of sodium dichromate as a corrosion inhibitor. Hexavalent chromium was the primary component of the sodium dichromate and was introduced into the groundwater at the Hanford Site as a result of planned and unplanned discharges from the reactors starting in 1944. Groundwater contamination by hexavalent chromium and other contaminants related to nuclear reactor operations resulted in the need for groundwater remedial actions within the Hanford Site reactor areas. Beginning in 1995, groundwater treatment methods were evaluated, leading to the use of pump-and-treat facilities with ion exchange using Dowex™ 21K, a regenerable, strong-base anion exchange resin. This required regeneration of the resin, which was performed offsite. In 2008, DOE recognized that regulatory agreements would require significant expansion for the groundwater chromium treatment capacity. As a result, CH2M HILL performed testing at the Hanford Site in 2009 and 2010 to demonstrate resin performance in the specific groundwater chemistry at different waste sites. The testing demonstrated that a weak-base anion, single-use resin, specifically ResinTech SIR-700 ®, was effective at removing chromium, had a significantly higher capacity, could be disposed of efficiently onsite, and would eliminate the complexities and programmatic risks from sampling, packaging, transportation, and return of resin for regeneration.

  18. Preliminary flowsheet: Ion exchange process for the separation of cesium from Hanford tank waste using Duolite{trademark} CS-100 resin

    SciTech Connect (OSTI)

    Eager, K.M.; Penwell, D.L.; Knutson, B.J.

    1994-12-01

    This preliminary flowsheet document describes an ion exchange process which uses Duolite{trademark} CS-100 resin to remove cesium from Hanford Tank waste. The flowsheet describes one possible equipment configuration, and contains mass balances based on that configuration with feeds of Neutralized Current Acid Waste, and Double Shell Slurry Feed. Process alternatives, unresolved issues, and development needs are discussed which relate to the process.

  19. Enhancement of exchange bias and training effect in ion-beam sputtered Fe{sub 46}Mn{sub 54}/Ni{sub 81}Fe{sub 19} bilayers

    SciTech Connect (OSTI)

    Fulara, Himanshu; Chaudhary, Sujeet Kashyap, Subhash C.; Granville, Simon

    2014-01-28

    We present a remarkable enhancement by 300% of the exchange-bias field at room temperature, without affecting the coercivity value, via optimum magnetic annealing (250 °C/3 kOe) in ion-beam sputtered FeMn(30 nm)/NiFe(10 nm) bilayers. This specific behavior has been attributed to a higher degree of γ-FeMn(111) orientation that offers more interfacial FeMn moments to get pinned with the moments of the adjacent NiFe layer. Unlike the absence of training effect at room temperature, a pronounced training effect and an accompanying magnetization reversal asymmetry are evidenced upon field cooling below 50 K due to the presence of biaxial exchange induced anisotropy across the interdiffused FeMn/NiFe interface. The present findings not only have technological significance but also are of relevance to the understanding of interfacial spin disorder and frustration in these exchange-biased systems.

  20. Vehicle Technologies Office Merit Review 2014: Advanced High Energy Li-Ion Cell for PHEV and EV Applications

    Broader source: Energy.gov [DOE]

    Presentation given by 3M at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced high energy Li-ion cell for PHEV...

  1. U.S.-MEXICO TECHNOLOGY TRANSFER; BILATERAL TECHNICAL EXCHANGES FOR SUSTAINABLE ECONOMIC GROWTH IN THE BORDER REGION

    SciTech Connect (OSTI)

    Jimenez, Richard, D., Dr.

    2007-10-01

    The U.S. Department of Energy (DOE) maintains a strong commitment to transfer the results of its science and technology programs to the private sector. The intent is to apply innovative and sometimes advanced technologies to address needs while simultaneously stimulating new commercial business opportunities. Such focused technology transfer was evident in the late 1990s as the results of DOE investments in environmental management technology development led to new tools for characterizing and remediating contaminated sites as well as handling and minimizing the generation of hazardous wastes. The Departments Office of Environmental Management was attempting to reduce the cost, accelerate the schedule, and improve the efficacy of clean-up efforts in the nuclear weapons complex. It recognized that resulting technologies had broader world market applications and that their commercialization would further reduce costs and facilitate deployment of improved technology at DOE sites. DOEs Albuquerque Operations Office (now part of the National Nuclear Security Administration) began in 1995 to build the foundation for a technology exchange program with Mexico. Initial sponsorship for this work was provided by the Departments Office of Environmental Management. As part of this effort, Applied Sciences Laboratory, Inc. (ASL) was contracted by the DOE Albuquerque office to identify Mexicos priority environmental management needs, identify and evaluate DOE-sponsored technologies as potential solutions for those needs, and coordinate these opportunities with decision makers from Mexicos federal government. That work led to an improved understanding of many key environmental challenges that Mexico faces and the many opportunities to apply DOEs technologies to help resolve them. The above results constituted, in large part, the foundation for an initial DOE-funded program to apply the Departments technology base to help address some of Mexicos challenging environmental issues. The results also brought focus to the potential contributions that DOEs science and technology could make for solving the many difficult, multi-generational problems faced by hundreds of bi-national communities along the 2,000-mile shared border of the United States and Mexico. Efforts to address these U.S.-Mexico border issues were initially sponsored by the DOEs Albuquerque and Carlsbad offices. In subsequent years, the U.S. Congress directed appropriations to DOEs Carlsbad office to address public health, safety and security issues prevalent within U.S.-Mexico border communities. With ASLs assistance, DOEs Albuquerque office developed contacts and formed partnerships with interested U.S and Mexican government, academic, and commercial organizations. Border industries, industrial effluents, and public health conditions were evaluated and documented. Relevant technologies were then matched to environmental problem sets along the border. Several technologies that were identified and subsequently supported by this effort are now operational in a number of U.S.-Mexico border communities, several communities within Mexicos interior states, and in other parts of Latin America. As a result, some serious public health threats within these communities caused by exposure to toxic airborne pollutants have been reduced. During this time, DOEs Carlsbad office hosted a bilateral conference to establish a cross-border consensus on what should be done on the basis of these earlier investigative efforts. Participating border region stakeholders set an agenda for technical collaborations. This agenda was supported by several Members of Congress who provided appropriations and directed DOEs Carlsbad office to initiate technology demonstration projects. During the following two years, more than 12 private-sector and DOE-sponsored technologies were demonstrated in partnership with numerous border community stakeholders. All technologies were well received and their effectiveness at addressing health, safety and security issues w

  2. Plasma-based ion implantation and deposition: A review of physics,technology, and applications

    SciTech Connect (OSTI)

    Pelletier, Jacques; Anders, Andre

    2005-05-16

    After pioneering work in the 1980s, plasma-based ion implantation (PBII) and plasma-based ion implantation and deposition (PBIID) can now be considered mature technologies for surface modification and thin film deposition. This review starts by looking at the historical development and recalling the basic ideas of PBII. Advantages and disadvantages are compared to conventional ion beam implantation and physical vapor deposition for PBII and PBIID, respectively, followed by a summary of the physics of sheath dynamics, plasma and pulse specifications, plasma diagnostics, and process modeling. The review moves on to technology considerations for plasma sources and process reactors. PBII surface modification and PBIID coatings are applied in a wide range of situations. They include the by-now traditional tribological applications of reducing wear and corrosion through the formation of hard, tough, smooth, low-friction and chemically inert phases and coatings, e.g. for engine components. PBII has become viable for the formation of shallow junctions and other applications in microelectronics. More recently, the rapidly growing field of biomaterial synthesis makes used of PBII&D to produce surgical implants, bio- and blood-compatible surfaces and coatings, etc. With limitations, also non-conducting materials such as plastic sheets can be treated. The major interest in PBII processing originates from its flexibility in ion energy (from a few eV up to about 100 keV), and the capability to efficiently treat, or deposit on, large areas, and (within limits) to process non-flat, three-dimensional workpieces, including forming and modifying metastable phases and nanostructures. We use the acronym PBII&D when referring to both implantation and deposition, while PBIID implies that deposition is part of the process.

  3. Proton exchange membrane materials for the advancement of direct methanol fuel-cell technology

    DOE Patents [OSTI]

    Cornelius, Christopher J.

    2006-04-04

    A new class of hybrid organic-inorganic materials, and methods of synthesis, that can be used as a proton exchange membrane in a direct methanol fuel cell. In contrast with Nafion.RTM. PEM materials, which have random sulfonation, the new class of materials have ordered sulfonation achieved through self-assembly of alternating polyimide segments of different molecular weights comprising, for example, highly sulfonated hydrophilic PDA-DASA polyimide segment alternating with an unsulfonated hydrophobic 6FDA-DAS polyimide segment. An inorganic phase, e.g., 0.5 5 wt % TEOS, can be incorporated in the sulfonated polyimide copolymer to further improve its properties. The new materials exhibit reduced swelling when exposed to water, increased thermal stability, and decreased O.sub.2 and H.sub.2 gas permeability, while retaining proton conductivities similar to Nafion.RTM.. These improved properties may allow direct methanol fuel cells to operate at higher temperatures and with higher efficiencies due to reduced methanol crossover.

  4. Sabdia's Radial Flow Air Bearing Heat Exchanger

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sandia's Radial Flow ir Bearing Heat Exchanger 2014 Building Technologies Office Peer Review Sandia's TRL 5 Air Bearing Heat exchanger technology (a. k. a. The Sandia Cooler) ...

  5. Effect of pH on the release of radionuclides and chelating agents from cement-solidified decontamination ion-exchange resins collected from operating nuclear power stations

    SciTech Connect (OSTI)

    McIsaac, C.V.; Akers, D.W.; McConnell, J.W. )

    1991-06-01

    Data are presented on the physical stability and leachability of radionuclides and chelating agents from cement-solidified decontamination ion-exchange resin wastes collected from two operating commercial light water reactors. Small-scale waste--form specimens collected during solidifications performed at the Brunswick Steam Electric Plant Unit 1 and at the James A. FitzPatrick Nuclear Power Station were leach-tested and subjected to compressive strength testing in accordance with the Nuclear Regulatory Commission's Technical Position on Waste Form'' (Revision 1). Samples of untreated resin waste collected from each solidification vessel before the solidification process were analyzed for concentrations of radionuclides, selected transition metals, and chelating agents to determine the quantities of these chemicals in the waste-form specimens. The chelating agents included oxalic, citric, and picolinic acids. In order to determine the effect of leachant chemical composition and pH on the stability and leachability of the waste forms, waste-form specimens were leached in various leachants. Results of this study indicate that differences in pH do not affect releases from cement-solidified decontamination ion-exchange resin waste forms, but that differences in leachant chemistry and the presence of chelating agents may affect the releases of radionuclides and chelating agents. Also, this study indicates that the cumulative releases of radionuclides and chelating agents are similar for waste- form specimens that decomposed and those that retained their general physical form. 36 refs., 60 figs., 28 tabs.

  6. CdS and CdS/CdSe sensitized ZnO nanorod array solar cells prepared by a solution ions exchange process

    SciTech Connect (OSTI)

    Chen, Ling; Gong, Haibo; Zheng, Xiaopeng; Zhu, Min; Zhang, Jun; Yang, Shikuan; Cao, Bingqiang

    2013-10-15

    Graphical abstract: - Highlights: CdS and CdS/CdSe quantum dots are assembled on ZnO nanorods by ion exchange process. The CdS/CdSe sensitization of ZnO effectively extends the absorption spectrum. The performance of ZnO/CdS/CdSe cell is improved by extending absorption spectrum. - Abstract: In this paper, cadmium sulfide (CdS) and cadmium sulfide/cadmium selenide (CdS/CdSe) quantum dots (QDs) are assembled onto ZnO nanorod arrays by a solution ion exchange process for QD-sensitized solar cell application. The morphology, composition and absorption properties of different photoanodes were characterized with scanning electron microscope, transmission electron microscope, energy-dispersive X-ray spectrum and Raman spectrum in detail. It is shown that conformal and uniform CdS and CdS/CdSe shells can grow on ZnO nanorod cores. Quantum dot sensitized solar cells based on ZnO/CdS and ZnO/CdS/CdSe nanocable arrays were assembled with gold counter electrode and polysulfide electrolyte solution. The CdS/CdSe sensitization of ZnO can effectively extend the absorption spectrum up to 650 nm, which has a remarkable impact on the performance of a photovoltaic device by extending the absorption spectrum. Preliminary results show one fourth improvement in solar cell efficiency.

  7. Chemical and radiation stability of SuperLig{reg_sign}644, resorcinol-formaldehyde, and CS-100 cesium ion exchange materials

    SciTech Connect (OSTI)

    Brown, G.N.; Adami, S.R.; Bray, L.A.

    1995-09-01

    At the request of the Initial Pretreatment Module Project within Westinghouse Hanford Company, Pacific Northwest Laboratory (PNL) conducted this study for the Efficient Separations and Processing Crosscutting Program (ESP) under the task ``Develop and Test Sorbents.`` The purpose of the study was to assess and compare the chemical and radiolytic stability of several cesium-selective ion exchange materials in simulated alkaline Hanford tank waste matrices. Pretreatment of nuclear process wastes to remove of cesium and other radionuclides by ion exchange was proposed previously as one method of minimizing the amount of high-level radioactive waste at Hanford. In this study, PNL evaluated three cesium-selective materials SuperLig{reg_sign}644, resorcinol-formaldehyde (R-F), and CS-100 for chemical and radiation stability in 1 M NaOH and a simulated neutralized current acid waste (NCAW). The objective of the study is to investigate the stability of the newly produced SuperLig{reg_sign}644 under a variety of conditions in an attempt to simulate and predict the degradation process. The following specific conclusions and recommendations resulted from the study.

  8. PAPER STUDY EVALUATIONS OF THE INTRODUCTION OF SMALL COLUMN ION EXCHANGE WASTE STREAMS TO THE DEFENSE WASTE PROCESSING FACILITY

    SciTech Connect (OSTI)

    Fox, K.; Edwards, T.; Stone, M.; Koopman, D.

    2010-06-29

    The objective of this paper study is to provide guidance on the impact of Monosodium Titanate (MST) and Crystalline Silicotitanate (CST) streams from the Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) flowsheet and glass waste form. A series of waste processing scenarios was evaluated, including projected compositions of Sludge Batches 8 through 17 (SB8 through SB17), MST additions, CST additions to Tank 40 or to a sludge batch preparation tank (Tank 42 or Tank 51, referred to generically as Tank 51 in this report), streams from the Salt Waste Processing Facility (SWPF), and two canister production rates. A wide array of potential glass frit compositions was used to support this assessment. The sludge and frit combinations were evaluated using the predictive models in the current DWPF Product Composition Control System (PCCS). The results were evaluated based on the number of frit compositions available for a particular sludge composition scenario. A large number of candidate frit compositions (e.g., several dozen to several hundred) is typically a good indicator of a sludge composition for which there is flexibility in forming an acceptable waste glass and meeting canister production rate commitments. The MST and CST streams will significantly increase the concentrations of certain components in glass, such as Nb{sub 2}O{sub 5}, TiO{sub 2}, and ZrO{sub 2}, to levels much higher than have been previously processed at DWPF. Therefore, several important assumptions, described in detail in the report, had to be made in performing the evaluations. The results of the paper studies, which must be applied carefully given the assumptions made concerning the impact of higher Ti, Zr, and Nb concentrations on model validity, provided several observations: (1) There was difficulty in identifying a reasonable number of candidate frits (and in some cases an inability to identify any candidate frits) when a waste loading of 40% is targeted for Sludge Batches 8, 16, and 17, regardless of the addition of SCIX or SWPF streams. This indicates that the blending strategy for these sludge batches should be reevaluated by Savannah River Remediation (SRR). (2) In general, candidate frits were available to accommodate CST additions to either Tank 40 or Tank 51. A larger number of candidate frits were typically available for the sludge batches when CST is added to Tank 51 rather than Tank 40, meaning that more compositional flexibility would be available for frit selection and DWPF operation. Note however that for SB8 and SB17, no candidate frits were available to accommodate CST going to Tank 40 with and without SWPF streams. The addition of SWPF streams generally improves the number of candidate frits available for processing of a given sludge batch. (3) The change in production rate from 40 Sludge Receipt and Adjustment Tank (SRAT) batches per year (i.e., the current production rate) to 75 SRAT batches per year, without SWPF streams included, had varied results in terms of the number of candidate frits available for processing of a given sludge batch. Therefore, this variable is not of much concern in terms of incorporating the SCIX streams. Note that the evaluation at 75 SRAT batches per year (approximately equivalent to 325 canisters per year) is more conservative in terms of the impact of SCIX streams as compared to a production rate of 400 canisters per year. Overall, the outcome of this paper study shows no major issues with the ability to identify an acceptable glass processing window when CST from the SCIX process is transferred to either Tank 40 or Tank 51. The assumptions used and the model limitations identified in this report must be addressed through further experimental studies, which are currently being performed. As changes occur to the planned additions of MST and CST, or to the sludge batch preparation strategy, additional evaluations will be performed to determine the potential impacts. As stated above, the issues with Sludge Batches 8, 16, and 17 should be further evaluated by SRR. A

  9. Technology Performance Exchange

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Office eere.energy.gov Project Integration, Collaboration & Market Impact ... Office eere.energy.gov Project Integration, Collaboration & Market Impact ...

  10. Graphene-Polypyrrole Nanocomposite as a Highly Efficient and Low Cost Electrically Switched Ion Exchanger for Removing ClO4- from Wastewater

    SciTech Connect (OSTI)

    Zhang, Sheng; Shao, Yuyan; Liu, Jun; Aksay, Iihan A.; Lin, Yuehe

    2011-10-10

    Perchlorate (ClO4-) contamination is now recognized as a widespread concern affecting many water utilities. In this report, graphene is employed as the scaffold to synthesize novel graphene-polypyrrole nanocomposite, which is demonstrated as excellent electrically switched ion exchanger for perchlorate removal. Scanning electron microscopy (SEM) and electrochemical measurements showed that the 3D nanostructured graphene/Ppy nanocomposite exhibited the significantly improved uptake capacity for ClO4- compared with Ppy film. X-ray photoelectron spectroscopy (XPS) confirmed the uptake and release process of ClO4- in graphene/Ppy nanocomposite. In addition, the presence of graphene substrate resulted in high stability of graphene/Ppy nanocomposite during potential cycling. The present work provides a promising method for large scale water treatment.

  11. Experimental data and analysis to support the design of an ion-exchange process for the treatment of Hanford tank waste supernatant liquids

    SciTech Connect (OSTI)

    Kurath, D.E.; Bray, L.A.; Brooks, K.P.; Brown, G.N.; Bryan, S.A.; Carlson, C.D.; Carson, K.J.; DesChane, J.R.; Elovich, R.J.; Kim, A.Y.

    1994-12-01

    Hanford`s 177 underground storage tanks contain a mixture of sludge, salt cake, and alkaline supernatant liquids. Disposal options for these wastes are high-level waste (HLW) glass for disposal in a repository or low-level waste (LLW) glass for onsite disposal. Systems-engineering studies show that economic and environmental considerations preclude disposal of these wastes without further treatment. Difficulties inherent in transportation and disposal of relatively large volumes of HLW make it impossible to vitrify all of the tank waste as HLW. Potential environmental impacts make direct disposal of all of the tank waste as LLW glass unacceptable. Although the pretreatment and disposal requirements are still being defined, most pretreatment scenarios include retrieval of the aqueous liquids, dissolution of the salt cakes, and washing of the sludges to remove soluble components. Most of the cesium is expected to be in the aqueous liquids, which are the focus of this report on cesium removal by ion exchange. The main objectives of the ion-exchange process are removing cesium from the bulk of the tank waste (i.e., decontamination) and concentrating the separated cesium for vitrification. Because exact requirements for removal of {sup 137}Cs have not yet been defined, a range of removal requirements will be considered. This study addresses requirements to achieve {sup 137}Cs levels in LLW glass between (1) the Nuclear Regulatory Commission (NRC) Class C (10 CFR 61) limit of 4600 Ci/m{sup 3} and (2) 1/10th of the NRC Class A limit of 1 Ci/m{sup 3} i.e., 0.1/m{sup 3}. The required degrees of separation of cesium from other waste components is a complex function involving interactions between the design of the vitrification process, waste form considerations, and other HLW stream components that are to be vitrified.

  12. Interplay between water uptake, ion interactions, and conductivity in an e-beam grafted poly(ethylene-co-tetrafluoroethylene) anion exchange membrane

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pandey, Tara P.; Maes, Ashley M.; Sarode, Himanshu N.; Peters, Bethanne D.; Lavina, Sandra; Vezzù, Keti; Yang, Yuan; Poynton, Simon D.; Varcoe, John R.; Seifert, Soenke; et al

    2014-12-23

    We demonstrate that the true hydroxide conductivity in an e-beam grafted poly(ethylene-co-tetrafluoroethylene) [ETFE] anion exchange membrane (AEM) is as high as 132 mS cm-1 at 80 °C and 95% RH, comparable to a proton exchange membrane, but with very much less water present in the film. To understand this behaviour we studied ion transport of hydroxide, carbonate, bicarbonate and chloride, as well as water uptake and distribution. Water uptake of the AEM in water vapor is an order of magnitude lower than when submerged in liquid water. In addition 19F pulse field gradient spin echo NMR indicates that there ismore » little tortuosity in the ionic pathways through the film. A complete analysis of the IR spectrum of the AEM and the analyses of water absorption using FT-IR led to conclusion that the fluorinated backbone chains do not interact with water and that two types of water domains exist within the membrane. The reduction in conductivity was measured during exposure of the OH- form of the AEM to air at 95% RH and was seen to be much slower than the reaction of CO2 with OH- as the amount of water in the film determines its ionic conductivity and at relative wet RHs its re-organization is slow.« less

  13. Interplay between water uptake, ion interactions, and conductivity in an e-beam grafted poly(ethylene-co-tetrafluoroethylene) anion exchange membrane

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pandey, Tara P.; Maes, Ashley M.; Sarode, Himanshu N.; Peters, Bethanne D.; Lavina, Sandra; Vezzu, Keti; Yang, Yuan; Poynton, Simon D.; Varcoe, John R.; Seifert, Soenke; et al

    2014-12-23

    We demonstrate that the true hydroxide conductivity in an e-beam grafted poly(ethylene-co-tetrafluoroethylene) [ETFE] anion exchange membrane (AEM) is as high as 132 mS cm-1 at 80 °C and 95% RH, comparable to a proton exchange membrane, but with very much less water present in the film. To understand this behaviour we studied ion transport of hydroxide, carbonate, bicarbonate and chloride, as well as water uptake and distribution. Water uptake of the AEM in water vapor is an order of magnitude lower than when submerged in liquid water. In addition 19F pulse field gradient spin echo NMR indicates that there ismore » little tortuosity in the ionic pathways through the film. A complete analysis of the IR spectrum of the AEM and the analyses of water absorption using FT-IR led to conclusion that the fluorinated backbone chains do not interact with water and that two types of water domains exist within the membrane. Furthermore, the reduction in conductivity was measured during exposure of the OH- form of the AEM to air at 95% RH and was seen to be much slower than the reaction of CO2 with OH- as the amount of water in the film determines its ionic conductivity and at relative wet RHs its re-organization is slow.« less

  14. Interplay between water uptake, ion interactions, and conductivity in an e-beam grafted poly(ethylene-co-tetrafluoroethylene) anion exchange membrane

    SciTech Connect (OSTI)

    Pandey, Tara P.; Maes, Ashley M.; Sarode, Himanshu N.; Peters, Bethanne D.; Lavina, Sandra; Vezz, Keti; Yang, Yuan; Poynton, Simon D.; Varcoe, John R.; Seifert, Soenke; Liberatore, Matthew W.; Di Noto, Vito; Herring, Andrew M.

    2014-12-23

    We demonstrate that the true hydroxide conductivity in an e-beam grafted poly(ethylene-co-tetrafluoroethylene) [ETFE] anion exchange membrane (AEM) is as high as 132 mS cm-1 at 80 C and 95% RH, comparable to a proton exchange membrane, but with very much less water present in the film. To understand this behaviour we studied ion transport of hydroxide, carbonate, bicarbonate and chloride, as well as water uptake and distribution. Water uptake of the AEM in water vapor is an order of magnitude lower than when submerged in liquid water. In addition 19F pulse field gradient spin echo NMR indicates that there is little tortuosity in the ionic pathways through the film. A complete analysis of the IR spectrum of the AEM and the analyses of water absorption using FT-IR led to conclusion that the fluorinated backbone chains do not interact with water and that two types of water domains exist within the membrane. The reduction in conductivity was measured during exposure of the OH- form of the AEM to air at 95% RH and was seen to be much slower than the reaction of CO2 with OH- as the amount of water in the film determines its ionic conductivity and at relative wet RHs its re-organization is slow.

  15. Calendar Life Studies of Advanced Technology Development Program Gen 1 Lithium Ion Batteries

    SciTech Connect (OSTI)

    Wright, Randy Ben; Motloch, Chester George

    2001-03-01

    This report presents the test results of a special calendar-life test conducted on 18650-size, prototype, lithium-ion battery cells developed to establish a baseline chemistry and performance for the Advanced Technology Development Program. As part of electrical performance testing, a new calendar-life test protocol was used. The test consisted of a once-per-day discharge and charge pulse designed to have minimal impact on the cell yet establish the performance of the cell over a period of time such that the calendar life of the cell could be determined. The calendar life test matrix included two states of charge (i.e., 60 and 80%) and four temperatures (40, 50, 60, and 70°C). Discharge and regen resistances were calculated from the test data. Results indicate that both discharge and regen resistance increased nonlinearly as a function of the test time. The magnitude of the discharge and regen resistance depended on the temperature and state of charge at which the test was conducted. The calculated discharge and regen resistances were then used to develop empirical models that may be useful to predict the calendar life or the cells.

  16. Cycle Life Studies of Advanced Technology Development Program Gen 1 Lithium Ion Batteries

    SciTech Connect (OSTI)

    Wright, Randy Ben; Motloch, Chester George

    2001-03-01

    This report presents the test results of a special calendar-life test conducted on 18650-size, prototype, lithium-ion battery cells developed to establish a baseline chemistry and performance for the Advanced Technology Development Program. As part of electrical performance testing, a new calendar-life test protocol was used. The test consisted of a once-per-day discharge and charge pulse designed to have minimal impact on the cell yet establish the performance of the cell over a period of time such that the calendar life of the cell could be determined. The calendar life test matrix included two states of charge (i.e., 60 and 80%) and four temperatures (40, 50, 60, and 70°C). Discharge and regen resistances were calculated from the test data. Results indicate that both discharge and regen resistance increased nonlinearly as a function of the test time. The magnitude of the discharge and regen resistance depended on the temperature and state of charge at which the test was conducted. The calculated discharge and regen resistances were then used to develop empirical models that may be useful to predict the calendar life or the cells.

  17. The development of a room temperature electron cyclotron resonance ion source (Lanzhou electron cyclotron resonance ion source No. 4) with evaporative cooling technology at Institute of Modern Physics

    SciTech Connect (OSTI)

    Lu, W. Sun, L. T.; Qian, C.; Feng, Y. C.; Ma, H. Y.; Zhang, X. Z.; Ma, B. H.; Zhao, H. W.; Guo, J. W.; Fang, X.; Yang, Y.; Xiong, B.; Guo, S. Q.; Ruan, L.

    2015-04-15

    LECR4 (Lanzhou electron cyclotron resonance ion source No. 4) has been successfully constructed at IMP and has also been connected with the Low Energy Beam Transport (LEBT) and Radio Frequency Quadrupole (RFQ) systems. These source magnet coils are cooled through evaporative cooling technology, which is the first attempt with an ECR ion source in the world. The maximum mirror field is 2.5 T (with iron plug) and the effective plasma chamber volume is 1.2 l. It was designed to be operated at 18 GHz and aimed to produce intense multiple charge state heavy ion beams for the linear injector project SSC-Linac at IMP. In February 2014, the first analyzed beam at 18 GHz was extracted. During about three months commissioning, some outstanding results have been achieved, such as 1.97 emA of O{sup 6+}, 1.7 emA of Ar{sup 8+}, 1.07 emA of Ar{sup 9+}, and 118 euA of Bi{sup 28+}. The source has also successfully delivered O{sup 5+} and Ar{sup 8+} ion beams for RFQ commissioning in April 2014. This paper will give a brief overview of the design of LECR4. Then, the latest results of this source at 18 GHz will be presented.

  18. Technology Readiness Assessments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Management » Tank Waste and Waste Processing » Technology Readiness Assessments Technology Readiness Assessments Documents Available for Download August 1, 2013 Technology Readiness Assessment (TRA)/Technology Maturation Plan (TMP) Process Guide This document is a guide for those involved in conducting TRAs and developing TMPs for DOE-EM. January 1, 2012 Compilation of TRA Summaries A compilation of all TRA Summaries November 1, 2011 Small Column Ion Exchange at Savannah River Site

  19. Potential-energy surfaces for charge exchange between singly charged ions and a LiF surface

    SciTech Connect (OSTI)

    Wirtz, Ludger; Burgdoerfer, Joachim; Dallos, Michal; Mueller, Thomas; Lischka, Hans

    2003-09-01

    We analyze the adiabatic potential-energy surfaces relevant for neutralization of singly charged ions in slow vertical incidence onto a lithium fluoride surface. The surface is represented by a cluster of varying size augmented by point charges of alternating sign in order to include the proper Madelung potential of the ionic crystal. Our calculation proceeds on the multiconfiguration self-consistent-field and multireference configuration-interaction levels. Size-consistency corrections based on the Davidson correction and multireference averaged quadratic coupled cluster methods are included as well. We emphasize the importance of a proper treatment of electron correlation signifying the polarization of the surrounding cluster environment in ab initio calculations of charge transfer at surfaces. From the topology of the surfaces, in particular the existence or absence of avoided crossings (or, more generally, conical intersections), qualitative predictions for the neutralization process can be made. The comparative analysis of potential curves for H{sup +}, C{sup +}, S{sup +}, and Ne{sup +} projectiles provides an explanation for the recently observed threshold behavior for potential sputtering.

  20. Building-Integrated Heat & Moisture Exchange

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building-Integrated Heat & Moisture Exchange 2014 Building Technologies Office Peer Review ... scales the energy benefits of large-scale, wall- integrated heat & moisture exchangers. ...

  1. Porous polymer monolithic columns with gold nanoparticles as an intermediate ligand for the separation of proteins in reverse phase-ion exchange mixed mode

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Terborg, Lydia; Masini, Jorge C.; Lin, Michelle; Lipponen, Katriina; Riekolla, Marja -Liisa; Svec, Frantisek

    2014-11-04

    A new approach has been developed for the preparation of mixed-mode stationary phases to separate proteins. The pore surface of monolithic poly(glycidyl methacrylate-co-ethylene dimethacrylate) capillary columns was functionalized with thiols and coated with gold nanoparticles. The final mixed mode surface chemistry was formed by attaching, in a single step, alkanethiols, mercaptoalkanoic acids, and their mixtures on the free surface of attached gold nanoparticles. Use of these mixtures allowed fine tuning of the hydrophobic/hydrophilic balance. The amount of attached gold nanoparticles according to thermal gravimetric analysis was 44.8 wt.%. This value together with results of frontal elution enabled calculation of surfacemore »coverage with the alkanethiol and mercaptoalkanoic acid ligands. Interestingly, alkanethiols coverage in a range of 4.46–4.51 molecules/nm2 significantly exceeded that of mercaptoalkanoic acids with 2.39–2.45 molecules/nm2. The mixed mode character of these monolithic stationary phases was for the first time demonstrated in the separations of proteins that could be achieved in the same column using gradient elution conditions typical of reverse phase (using gradient of acetonitrile in water) and ion exchange chromatographic modes (applying gradient of salt in water), respectively.« less

  2. Porous polymer monolithic columns with gold nanoparticles as an intermediate ligand for the separation of proteins in reverse phase-ion exchange mixed mode

    SciTech Connect (OSTI)

    Terborg, Lydia; Masini, Jorge C.; Lin, Michelle; Lipponen, Katriina; Riekolla, Marja -Liisa; Svec, Frantisek

    2014-11-04

    A new approach has been developed for the preparation of mixed-mode stationary phases to separate proteins. The pore surface of monolithic poly(glycidyl methacrylate-co-ethylene dimethacrylate) capillary columns was functionalized with thiols and coated with gold nanoparticles. The final mixed mode surface chemistry was formed by attaching, in a single step, alkanethiols, mercaptoalkanoic acids, and their mixtures on the free surface of attached gold nanoparticles. Use of these mixtures allowed fine tuning of the hydrophobic/hydrophilic balance. The amount of attached gold nanoparticles according to thermal gravimetric analysis was 44.8 wt.%. This value together with results of frontal elution enabled calculation of surface coverage with the alkanethiol and mercaptoalkanoic acid ligands. Interestingly, alkanethiols coverage in a range of 4.464.51 molecules/nm2 significantly exceeded that of mercaptoalkanoic acids with 2.392.45 molecules/nm2. The mixed mode character of these monolithic stationary phases was for the first time demonstrated in the separations of proteins that could be achieved in the same column using gradient elution conditions typical of reverse phase (using gradient of acetonitrile in water) and ion exchange chromatographic modes (applying gradient of salt in water), respectively.

  3. Evaluation and comparison of SuperLig{reg_sign} 644, resorcinol-formaldehyde and CS-100 ion exchange materials for the removal of cesium from simulated alkaline supernate

    SciTech Connect (OSTI)

    Brown, G.N.; Bray, L.A.; Eloviche, R.J.; Bruening, R.L.; Decker, R.M.; Kafka, T.M.; White, L.R.

    1995-03-01

    PNL evaluated three polymeric materials for Cs removal efficiency from a simulated Hanford Neutralized Current Acid Waste (NCAW) supernatant liquid using 200 mL ion exchange columns. Cs loadings (mmole Cs/g resin) were 0.20, 0.18, and 0.039 for Super Lig 644, R-F, and CS-100 (0.045, 0.070, 0.011 mmole Cs/mL resin). Elution of each resin material with 0.5 M HNO{sub 3} required 3.5, 7.0, and 3.2 cv to reach 0.1 C/C{sub 0} for the respective materials, resulting in volume compressions of 27, 20, and 6.9. Peak Cs concentrations during elution was 185, 38.5, and 27.8 C/C{sub 0}. SuperLig 644 had the highest Cs loading per gram in NCAW and the greatest volume compression on aci elution. Because of high density and poor elution, R-F had the highest Cs loading per unit volume and lower volume compression. CS-100, the baseline material for Cs removal at Hanford, was inferior to both SuperLig 644 and R-F in terms of Cs loading and selectivity over sodium.

  4. Stabilized Lithium Metal Powder, Enabling Material and Revolutionary Technology for High Energy Li-ion Batteries

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  5. Vehicle Technologies Office Merit Review 2015: High Energy Density Li-ion Cells for EV’s Based on Novel, High Voltage Cathode Material Systems

    Broader source: Energy.gov [DOE]

    Presentation given by Farasis at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy density Li-ion cells for...

  6. Vehicle Technologies Office Merit Review 2014: Optimization of Ion Transport in High Energy Composite Cathodes

    Broader source: Energy.gov [DOE]

    Presentation given by University of California San Diego at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  7. Vehicle Technologies Office Merit Review 2015: Fluorinated Electrolyte for 5-V Li-Ion Chemistry

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about fluorinated...

  8. Vehicle Technologies Office Merit Review 2014: Fluorinated Electrolyte for 5-V Li-Ion Chemistry

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about fluorinated...

  9. Stabilized Lithium Metal Powder, Enabling Material and Revolutionary Technology for High Energy Li-ion Batteries

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  10. SELECTIVE REMOVAL OF STRONTIUM AND CESIUM FROM SIMULATED WASTE SOLUTION WITH TITANATE ION-EXCHANGERS IN A FILTER CARTRIDGE CONFIGURATIONS-12092

    SciTech Connect (OSTI)

    Oji, L.; Martin, K.; Hobbs, D.

    2012-01-03

    Experimental results for the selective removal of strontium and cesium from simulated waste solutions with monosodium titanate and crystalline silicotitanate laden filter cartridges are presented. In these proof-of-principle tests, effective uptake of both strontium-85 and cesium-137 were observed using ion-exchangers in this filter cartridge configuration. At low salt simulant conditions, the instantaneous decontamination factor for strontium-85 with monosodium titanate impregnated filter membrane cartridges measured 26, representing 96% strontium-85 removal efficiency. On the other hand, the strontium-85 instantaneous decontamination factor with co-sintered active monosodium titanate cartridges measured 40 or 98% Sr-85 removal efficiency. Strontium-85 removal with the monosodium titanate impregnated membrane cartridges and crystalline silicotitanate impregnated membrane cartridges, placed in series arrangement, produced an instantaneous decontamination factor of 41 compared to an instantaneous decontamination factor of 368 for strontium-85 with co-sintered active monosodium titanate cartridges and co-sintered active crystalline silicotitanate cartridges placed in series. Overall, polyethylene co-sintered active titanates cartridges performed as well as titanate impregnated filter membrane cartridges in the uptake of strontium. At low ionic strength conditions, there was a significant uptake of cesium-137 with co-sintered crystalline silicotitanate cartridges. Tests results with crystalline silicotitanate impregnated membrane cartridges for cesium-137 decontamination are currently being re-evaluated. Based on these preliminary findings we conclude that incorporating monosodium titanate and crystalline silicotitanate sorbents into membranes represent a promising method for the semicontinuous removal of radioisotopes of strontium and cesium from nuclear waste solutions.

  11. SELECTIVE REMOVAL OF STRONTIUM AND CESIUM FROM SIMULATED WASTE SOLUTION WITH TITANATE ION-EXCHANGERS IN A FILTER CARTRIDGE CONFIGURATIONS-12092

    SciTech Connect (OSTI)

    Oji, L.; Martin, K.; Hobbs, D.

    2011-11-10

    Experimental results for the selective removal of strontium and cesium from simulated waste solutions with monosodium titanate (MST) and crystalline silicotitanate (CST) laden filter cartridges are presented. In these proof-of-principle tests, effective uptake of both Sr-85 and Cs-137 were observed using ion-exchangers in this filter cartridge configuration. At low salt simulant conditions, the instantaneous decontamination factor (D{sub F}) for Sr-85 with MST impregnated filter membrane cartridges measured 26, representing 96% Sr-85 removal efficiency. On the other hand, the Sr-85 instantaneous D{sub F} with co-sintered active MST cartridges measured 40 or 98% Sr-85 removal efficiency. Strontium-85 removal with the MST impregnated membrane cartridges and CST impregnated membrane cartridges, placed in series arrangement, produced an instantaneous decontamination factor of 41 compared to an instantaneous decontamination factor of 368 for strontium-85 with co-sintered active MST cartridges and co-sintered active CST cartridges placed in series. Overall, polyethylene co-sintered active titanates cartridges performed as well as titanate impregnated filter membrane cartridges in the uptake of strontium. At low ionic strength conditions, there was a significant uptake of Cs-137 with co-sintered CST cartridges. Tests results with CST impregnated membrane cartridges for Cs-137 decontamination are currently being re-evaluated. Based on these preliminary findings we conclude that incorporating MST and CST sorbents into membranes represent a promising method for the semi-continuous removal of radioisotopes of strontium and cesium from nuclear waste solutions.

  12. Anion exchange membrane

    DOE Patents [OSTI]

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  13. Vehicle Technologies Office Merit Review 2014: Metal-Based High Capacity Li-Ion Anodes

    Broader source: Energy.gov [DOE]

    Presentation given by Binghamton University-SUNY at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about metal-based high...

  14. Vehicle Technologies Office Merit Review 2015: High Energy Anode Material Development for Li-ion Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by Sinode Systems at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy anode material...

  15. Vehicle Technologies Office Merit Review 2014: Development of Electrolytes for Lithium-ion Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by University of Rhode Island at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the development of...

  16. International fuel cycle and waste management technology exchange activities sponsored by the United States Department of Energy: FY 1982 evaluation report

    SciTech Connect (OSTI)

    Lakey, L.T.; Harmon, K.M.

    1983-02-01

    In FY 1982, DOE and DOE contractor personnel attended 40 international symposia and conferences on fuel reprocessing and waste management subjects. The treatment of high-level waste was the topic most often covered in the visits, with geologic disposal and general waste management also being covered in numerous visits. Topics discussed less frequently inlcude TRU/LLW treatment, airborne waste treatment, D and D, spent fuel handling, and transportation. The benefits accuring to the US from technology exchange activities with other countries are both tangible, e.g., design of equipment, and intangible, e.g., improved foreign relations. New concepts initiated in other countries, particularly those with sizable nuclear programs, are beginning to appear in US efforts in growing numbers. The spent fuel dry storage concept originating in the FRG is being considered at numerous sites. Similarly, the German handling and draining concepts for the joule-heated ceramic melter used to vitrify wastes are being incorporated in US designs. Other foreigh technologies applicable in the US include the slagging incinerator (Belgium), the SYNROC waste form (Australia), the decontamination experience gained in decommissioning the Eurochemic reprocessing plant (Belgium), the engineered surface storage of low- and intermediate-level waste (Belgium, FRG, France), the air-cooled storage of vitrified high-level waste (France, UK), waste packaging (Canada, FRG, Sweden), disposal in salt (FRG), disposal in granite (Canada, Sweden), and sea dumping (UK, Belgium, The Netherlands, Switzerland). These technologies did not necessarily originated or have been tried in the US but for various reasons are now being applied and extended in other countries. This growing nuclear technological base in other countires reduces the number of technology avenues the US need follow to develop a solid nuclear power program.

  17. Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies Technologies Scientists and engineers at Los Alamos have developed a variety of advanced technologies that anticipate-affect, detect, and neutralize & mitigate all types of explosive threats. v Technologies Since its inception in 1943, Los Alamos National Laboratory has been a driving force in explosives science. Scientists and engineers at Los Alamos have developed a variety of advanced technologies that anticipate, detect, and mitigate all types of explosive threats. ANDE:

  18. PROJECT W-551 INTERIM PRETREATMENT SYSTEM TECHNOLOGY SELECTION SUMMARY DECISION REPORT AND RECOMMENDATION

    SciTech Connect (OSTI)

    CONRAD EA

    2008-08-12

    This report provides the conclusions of the tank farm interim pretreatment technology decision process. It documents the methodology, data, and results of the selection of cross-flow filtration and ion exchange technologies for implementation in project W-551, Interim Pretreatment System. This selection resulted from the evaluation of specific scope criteria using quantitative and qualitative analyses, group workshops, and technical expert personnel.

  19. REMOVAL OF TECHNETIUM 99 FROM THE EFFLUENT TREATMENT FACILITY (ETF) BASIN 44 USING PUROLITE A-530E & REILLEX HPQ & SYBRON IONAC SR-7 ION EXCHANGE RESINS

    SciTech Connect (OSTI)

    DUNCAN JB

    2004-10-29

    This report documents the laboratory testing and analyses as directed under the test plan, RPP-20407. The overall goal of this task was to evaluate and compare candidate anion exchange resins for their capacity to remove Technetium-99 from Basin 44 Reverse Osmosis reject stream. The candidate resins evaluated were Purolite A-530E, Reillex HPQ, and Sybron IONAC SR-7.

  20. Technolog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from

  1. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology /newsroom/_assets/images/s-icon.png Technology Delivering science to the marketplace through commercialization, spinoffs and industry partnerships. Health Space Computing Energy Earth Materials Science Technology The Lab All Glen Wurden in the stellarator's vacuum vessel during camera installation in 2014. Innovative imaging systems on the Wendelstein 7-X bring steady-state fusion energy closer to reality Innovative new imaging systems designed at Los Alamos are helping physicists

  2. Technolog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow ... Basic research that challenges scientific assumptions ...

  3. ESTABLISHING SUSTAINABLE US HEV/PHEV MANUFACTURING BASE: STABILIZED LITHIUM METAL POWDER, ENABLING MATERIAL AND REVOLUTIONARY TECHNOLOGY FOR HIGH ENERGY LI-ION BATTERIES

    SciTech Connect (OSTI)

    Yakovleva, Marina

    2012-12-31

    FMC Lithium Division has successfully completed the project Establishing Sustainable US PHEV/EV Manufacturing Base: Stabilized Lithium Metal Powder, Enabling Material and Revolutionary Technology for High Energy Li-ion Batteries. The project included design, acquisition and process development for the production scale units to 1) produce stabilized lithium dispersions in oil medium, 2) to produce dry stabilized lithium metal powders, 3) to evaluate, design and acquire pilot-scale unit for alternative production technology to further decrease the cost, and 4) to demonstrate concepts for integrating SLMP technology into the Li- ion batteries to increase energy density. It is very difficult to satisfy safety, cost and performance requirements for the PHEV and EV applications. As the initial step in SLMP Technology introduction, industry can use commercially available LiMn2O4 or LiFePO4, for example, that are the only proven safer and cheaper lithium providing cathodes available on the market. Unfortunately, these cathodes alone are inferior to the energy density of the conventional LiCoO2 cathode and, even when paired with the advanced anode materials, such as silicon composite material, the resulting cell will still not meet the energy density requirements. We have demonstrated, however, if SLMP Technology is used to compensate for the irreversible capacity in the anode, the efficiency of the cathode utilization will be improved and the cost of the cell, based on the materials, will decrease.

  4. Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Matter and Technologies R&D activities towards a future cw LINAC at GSI Winfried Barth Matter and Technologies Super Heavy Nuclei International Symposium, Texas A & M University, College Station TX, USA, March 31 - April 02, 2015 W. Barth, R&D activities towards a future cw LINAC at GSI 2 R&D activities towards a future cw LINAC at GSI 1. Introduction 2. Status of the Unilac High Current Performance 3. Cavity Development 4. General linac layout 5. R&D approach 6. Status of

  5. HEAT EXCHANGER

    DOE Patents [OSTI]

    Fox, T.H. III; Richey, T. Jr.; Winders, G.R.

    1962-10-23

    A heat exchanger is designed for use in the transfer of heat between a radioactive fiuid and a non-radioactive fiuid. The exchanger employs a removable section containing the non-hazardous fluid extending into the section designed to contain the radioactive fluid. The removable section is provided with a construction to cancel out thermal stresses. The stationary section is pressurized to prevent leakage of the radioactive fiuid and to maintain a safe, desirable level for this fiuid. (AEC)

  6. Vehicle Technologies Office Merit Review 2015: Significant Cost Improvement of Li-Ion Cells Through Non-NMP Electrode Coating, Direct Separator Coating, and Fast Formation Technologies

    Broader source: Energy.gov [DOE]

    Presentation given by Johnson Controls at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about significant cost improvement...

  7. Vehicle Technologies Office Merit Review 2014: Significant Cost Improvement of Li-ion Cells Through Non-NMP Electrode Coating, Direct Separator Coating, and Fast Formation Technologies

    Broader source: Energy.gov [DOE]

    Presentation given by Johnson Controls at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about significant cost improvement...

  8. Vehicle Technologies Office Merit Review 2015: Giga Life Cycle: Manufacture of Cells from Recycled EV Li-ion Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by OnTo Technology at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Giga Life Cycle: manufacture...

  9. Vehicle Technologies Office Merit Review 2015: Utilization of UV or EB Curing Technology to Significantly Reduce Costs and VOCs in the Manufacture of Lithium-Ion Battery Electrodes

    Broader source: Energy.gov [DOE]

    Presentation given by Miltec UV International at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about utilization of UV or...

  10. Vehicle Technologies Office Merit Review 2014: Utilization of UV or EB Curing Technology to Significantly Reduce Costs and VOCs in the Manufacture of Lithium-Ion Battery Electrodes

    Broader source: Energy.gov [DOE]

    Presentation given by Miltec UV International at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the utilization of UV...

  11. Heat exchanger

    DOE Patents [OSTI]

    Wolowodiuk, Walter

    1976-01-06

    A heat exchanger of the straight tube type in which different rates of thermal expansion between the straight tubes and the supply pipes furnishing fluid to those tubes do not result in tube failures. The supply pipes each contain a section which is of helical configuration.

  12. Vehicle Technologies Office Merit Review 2014: Nanoscale Heterostructures and Thermoplastic Resin Binders: Novel Li-ion Anode Systems

    Broader source: Energy.gov [DOE]

    Presentation given by University of Pittsburgh at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about nanoscale...

  13. Vehicle Technologies Office Merit Review 2014: Characterization of Voltage Fade in Lithium-ion Cells with Layered Oxides

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about characterization...

  14. Vehicle Technologies Office Merit Review 2014: Manufacturability Study and Scale-Up for Large Format Lithium Ion Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  15. Vehicle Technologies Office Merit Review 2014: Wiring Up Silicon Nanostructures for High Energy Lithium-Ion Battery Anodes

    Broader source: Energy.gov [DOE]

    Presentation given by Stanford University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about wiring up silicon...

  16. Vehicle Technologies Office Merit Review 2014: Innovative Manufacturing and Materials for Low-Cost Lithium-Ion Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by Optodot Corporation at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about innovative manufacturing...

  17. Vehicle Technologies Office Merit Review 2014: Overcoming Processing Cost Barriers of High-Performance Lithium-Ion Battery Electrodes

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about overcoming...

  18. Vehicle Technologies Office Merit Review 2015: Innovative Manufacturing and Materials for Low-Cost Lithium-Ion Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by Optodot Corporation at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about innovative manufacturing...

  19. Pu Anion Exchange Process Intensification

    SciTech Connect (OSTI)

    Taylor-Pashow, K.

    2015-10-08

    This project seeks to improve the efficiency of the plutonium anion-exchange process for purifying Pu through the development of alternate ion-exchange media. The objective of the project in FY15 was to develop and test a porous foam monolith material that could serve as a replacement for the current anion-exchange resin, Reillex® HPQ, used at the Savannah River Site (SRS) for purifying Pu. The new material provides advantages in efficiency over the current resin by the elimination of diffusive mass transport through large granular resin beads. By replacing the large resin beads with a porous foam there is much more efficient contact between the Pu solution and the anion-exchange sites present on the material. Several samples of a polystyrene based foam grafted with poly(4-vinylpyridine) were prepared and the Pu sorption was tested in batch contact tests.

  20. FERRIC ION-SPECIFIC SEQUESTERING AGENTS. 7. SYNTHESIS, IRON EXCHANGE KINETICS, AND STABILITY CONSTANTS OF N-SUBSTITUTED, SULFONATED CATECHOYLAMIDE ANALOGUES OF ENTEROBACTIN.

    SciTech Connect (OSTI)

    Pecoraro, Vincent L.; Weitl, Frederick L.; Raymond, Kenneth N.

    1980-10-01

    For treatment of chronic iron overload (as occurs in Cooley's anemia), ferric ion sequestering agents with specific properties are necessary. Two analogues of enterobactin [a microbial chelating agent with the greatest stability constant known for an Fe(III) complex] are reported which exhibit: i) hydrolytic stability; ii) water solubility; iii) N-substitution to block peptidase hydrolysis. The first compound, N,N',N"- trimethyl-N,N',N"-tris(2,3-dihydroxysulfobenzoyl)1,3,5-triaminomethyl- benzene, [Me{sub 3}MECAMS, 6] was prepared from the amide of trimesloyl chloride (1) and MeNH{sub 2}. The resulting amide was reduced to the triamine (3) and converted in three steps to the final product 6 in 6% overall yield. The proton-dependent formation constant (log K*) for the reaction: Fe{sup 3+} + H{sub 3}L{sup 6-} = FeL{sup 6-} + 3H{sup +} is 4.87, which gives an equilibrium concentration of [Fe{sup 3+}] at pH 7.4 of 2 x 10{sup -27} M for 10{sup -5} M L (6) and 10{sup -6} M total Fe{sup 3+}. The estimated formation constant (log {beta}{sub 110}) is 40. At low pH the FeL{sup 6-} complex undergoes a series of three, one-proton reactions which probably gives a tris-salicylate complex formed by the carbonyl and ortho-catechol oxygen of the 2,3~dihydroxybenzoyl units (the same reaction that occurs with ferric enterobactin). After six hours in the presence of 6 mM ascorbate, Me{sub 3}MECAMS (6.0 mM) removed 3.7% of the ferric ion initially sequestered by the iron storage protein, ferritin. The human iron transport protein transferrin goves up iron to Me{sub 3}MECAMS with a pseudo first-order rate constant of 1.9 x 10{sup -3}min{sup -1} (ligand concentration 2 X 10{sup -4} M). This rate is comparable to that of enterobactin and other catechoyl amide sequestering agents. and greatly exceeds that of desferrioxamine B (Desferal{reg-sign}). the current drug of choice in treating iron overload. Two related compounds have been prepared in which the catechol ring is attached to the amide nitrogen through a methylene group, with amide formation with an acetyl group. In N,N',N"-triacetyl-N,N' ,N"-tris(2,3- dihydroxysulfobenzoyl) -N,N',N"-triaminomethylbenzene [NAcMECAMS, 111... and its unsulfonated precursor, the amide linkage of the catechoyl amides such as Me{sub 3}MECAMS (6) has been shifted from an endo position relative to the benzene and catechol rings to an exo position in which the amide carbonyl is not conjugated with the catechol ring and cannot form a stable chelate ring in conjunction with a catechol oxygen. The preparation of 11 and 10 proceeded from the previously described precursor of TRIMCAM, 7. borane reduction to the tri.amine 8, and amide formation with acetyl chloride to 9, followed by deprotection of the catechol oxygens with BBr{sub 3}/CH{sub 2}Cl{sub 2} to give 10. Sulfonation of 10 to NAcMECAMS, 11, is carried out in fuming sulfuric acid. In comparison with Me{sub 3}MECAMS, the protonation of NAcMECAMS (11) proceeds by an initial two-proton step in contrast to the one-proton reactions typical of the catechoyl amides, which can form a salicylate mode of coordination involving the amide carbonyl group. Also as a result of the removal of the carbonyl group from conjugation with the catechol ring, the acidity of NAcMECAMS (11) is less than Me{sub 3}MECAMS (6). While the estimated log {beta{sub 110} is approximately the same as for Me{sub 3}MECAMS (40). the effective formation constant (log K*) and pM.(- log [Fe{sub aq}{sup 3+}] ) values are lower (4.0 and 25.0, respectively).

  1. Vehicle Technologies Office Merit Review 2015: Real-time Metrology for Li-ion Battery R&D and Manufacturing

    Broader source: Energy.gov [DOE]

    Presentation given by Applied Spectra at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about real-time metrology for Li...

  2. Vehicle Technologies Office Merit Review 2015: Studies on High Capacity Cathodes for Advanced Lithium-ion Systems

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about studies on high...

  3. Vehicle Technologies Office Merit Review 2014: Studies on High Capacity Cathodes for Advanced Lithium-ion Systems

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about studies on high...

  4. Vehicle Technologies Office Merit Review 2015: High Energy, Long Cycle Life Lithium-ion Batteries for EV Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Penn State at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy, long cycle life...

  5. Vehicle Technologies Office Merit Review 2015: Low-cost, High Energy Si/Graphene Anodes for Li-ion Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by XG Sciences at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about low-cost, high energy Si/graphene...

  6. Vehicle Technologies Office Merit Review 2015: Low‐Cost, High‐Capacity Lithium Ion Batteries through Modified Surface and Microstructure

    Broader source: Energy.gov [DOE]

    Presentation given by Navitas Systems at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about low‐cost, high‐capacity...

  7. Vehicle Technologies Office Merit Review 2015: Thick Low-Cost, High-Power Lithium-Ion Electrodes via Aqueous Processing

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about thick low-cost,...

  8. Vehicle Technologies Office Merit Review 2015: Efficient Safety and Degradation Modeling of Automotive Li-ion Cells and Pack

    Broader source: Energy.gov [DOE]

    Presentation given by EC-Power at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about efficient safety and degradation...

  9. Vehicle Technologies Office Merit Review 2014: Efficient Safety and Degradation Modeling of Automotive Li-ion Cells and Pack

    Broader source: Energy.gov [DOE]

    Presentation given by EC Power at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about efficient safety and degradation...

  10. Vehicle Technologies Office Merit Review 2014: Real-time Metrology for Li-ion Battery R&D and Manufacturing

    Broader source: Energy.gov [DOE]

    Presentation given by Applied Spectra, Inc at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about real-time metrology for...

  11. Vehicle Technologies Office Merit Review 2014: High Energy, Long Cycle Life Lithium-ion Batteries for EV Applications

    Broader source: Energy.gov [DOE]

    Presentation given by The Pennsylvania State University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy...

  12. Vehicle Technologies Office Merit Review 2014: Development of Large Format Lithium Ion Cells with Higher Energy Density

    Broader source: Energy.gov [DOE]

    Presentation given by XALT Energy LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of large format...

  13. Vehicle Technologies Office Merit Review 2014: Post-Test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about post-test...

  14. Vehicle Technologies Office Merit Review 2015: Post-Test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about post-test...

  15. Information technology equipment cooling system

    DOE Patents [OSTI]

    Schultz, Mark D.

    2014-06-10

    According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools warm air generated by the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat from the rack of information technology equipment.

  16. Vehicle Technologies Office Merit Review 2015: Daikin Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Daikin Advanced Lithium Ion Battery Technology High Voltage Electrolyte Vehicle Technologies Office Merit Review 2015: Daikin Advanced Lithium IonBattery Technology High ...

  17. Heat exchanger

    DOE Patents [OSTI]

    Brackenbury, P.J.

    1983-12-08

    A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

  18. Heat exchanger

    DOE Patents [OSTI]

    Brackenbury, Phillip J.

    1986-01-01

    A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

  19. Ion Removal - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Advanced Materials Find More Like This Return to Search Ion Removal Idaho National Laboratory Contact INL About This Technology Technology Marketing Summary INL's ion removal technology leverages the ability of phosphazene polymers discriminate between water and metal ions, which allows water to pass through the membrane while retaining the ions. Description The inherent chemical and thermal stability of the phosphazene polymers are an added strengths for separating and

  20. Nanotube composite anode materials improve lithium-ion battery...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    improve lithium-ion battery performance (ANL-09-034) Argonne National Laboratory Contact ANL About This Technology Technology Marketing Summary Rechargeable lithium-ion ...

  1. Evaluation of hydrogen isotope exchange methodology on adsorbents for tritium removal

    SciTech Connect (OSTI)

    Morgan, G.A.; Xin Xiao, S.

    2015-03-15

    The Savannah River National Laboratory has demonstrated a potential process that can be used to remove tritium from tritiated water using Pt-catalyzed molecular sieves. The process is an elemental isotope exchange process in which H{sub 2} (when flowed through the molecular sieves) will exchange with the adsorbed water, D{sub 2}O, leaving H{sub 2}O adsorbed on the molecular sieves. Various formulations of catalyzed molecular sieve material were prepared using two different techniques, Pt-implantation and Pt-ion exchange. This technology has been demonstrated for a protium (H) and deuterium (D) system, but can also be used for the removal of tritium from contaminated water (T{sub 2}O, HTO, and DTO) using D{sub 2} (or H{sub 2}). (authors)

  2. Evaluation of Hydrogen Isotope Exchange Methodology on Adsorbents for Tritium Removal

    SciTech Connect (OSTI)

    Morgan, Gregg A.; Xiao, S. Xin

    2015-03-06

    The Savannah River National Laboratory has demonstrated a potential process that can be used to remove tritium from tritiated water using Pt-catalyzed molecular sieves. The process is an elemental isotope exchange process in which H2 (when flowed through the molecular sieves) will exchange with the adsorbed water, D2O, leaving H2O adsorbed on the molecular sieves. Various formulations of catalyzed molecular sieve material were prepared using two different techniques, Pt-implantation and Pt-ion exchange. This technology has been demonstrated for a protium (H) and deuterium (D) system, but can also be used for the removal of tritium from contaminated water (T2O, HTO, and DTO) using D2 (or H2)

  3. Evaluation of Hydrogen Isotope Exchange Methodology on Adsorbents for Tritium Removal

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Morgan, Gregg A.; Xiao, S. Xin

    2015-03-06

    The Savannah River National Laboratory has demonstrated a potential process that can be used to remove tritium from tritiated water using Pt-catalyzed molecular sieves. The process is an elemental isotope exchange process in which H2 (when flowed through the molecular sieves) will exchange with the adsorbed water, D2O, leaving H2O adsorbed on the molecular sieves. Various formulations of catalyzed molecular sieve material were prepared using two different techniques, Pt-implantation and Pt-ion exchange. This technology has been demonstrated for a protium (H) and deuterium (D) system, but can also be used for the removal of tritium from contaminated water (T2O, HTO,more » and DTO) using D2 (or H2)« less

  4. Radioactive ion detector

    DOE Patents [OSTI]

    Bower, K.E.; Weeks, D.R.

    1997-08-12

    Apparatus for detecting the presence, in aqueous media, of substances which emit alpha and/or beta radiation and determining the oxidation state of these radioactive substances, that is, whether they are in cationic or anionic form. In one embodiment, a sensor assembly has two elements, one comprised of an ion-exchange material which binds cations and the other comprised of an ion-exchange material which binds anions. Each ion-exchange element is further comprised of a scintillation plastic and a photocurrent generator. When a radioactive substance to which the sensor is exposed binds to either element and emits alpha or beta particles, photons produced in the scintillation plastic illuminate the photocurrent generator of that element. Sensing apparatus senses generator output and thereby indicates whether cationic species or anionic species or both are present and also provides an indication of species quantity. 2 figs.

  5. Radioactive ion detector

    DOE Patents [OSTI]

    Bower, Kenneth E. (Los Alamos, NM); Weeks, Donald R. (Saratoga, CA)

    1997-01-01

    Apparatus for detecting the presence, in aqueous media, of substances which emit alpha and/or beta radiation and determining the oxidation state of these radioactive substances, that is, whether they are in cationic or anionic form. In one embodiment, a sensor assembly has two elements, one comprised of an ion-exchange material which binds cations and the other comprised of an ion-exchange material which binds anions. Each ion-exchange element is further comprised of a scintillation plastic and a photocurrent generator. When a radioactive substance to which the sensor is exposed binds to either element and emits alpha or beta particles, photons produced in the scintillation plastic illuminate the photocurrent generator of that element. Sensing apparatus senses generator output and thereby indicates whether cationic species or anionic species or both are present and also provides an indication of species quantity.

  6. Exploration Best Practices and the OpenEI Knowledge Exchange...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exploration Best p Practices & The OpenEI Knowledge Exchange Knowledge Exchange G th l T h l i P W bi Geothermal Technologies Program Webinar Katherine R. Young Timothy Reber ...

  7. Segmented heat exchanger

    DOE Patents [OSTI]

    Baldwin, Darryl Dean; Willi, Martin Leo; Fiveland, Scott Byron; Timmons, Kristine Ann

    2010-12-14

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  8. Ion Exchange Kinetics Testing with SRF Resin

    SciTech Connect (OSTI)

    Russell, Renee L.; Rinehart, Donald E.; Brown, Garrett N.; Schonewill, Philip P.; Peterson, Reid A.

    2012-04-01

    The U.S. Department of Energy (DOE) Hanford Site contains more than 53 million gallons of legacy waste generated as a byproduct of plutonium production and reprocessing operations. The wastes are a complex mixture composed mostly of NaNO3, NaNO2, NaOH, NaAlO2, Na3PO4, and Na2SO4, with a number of minor and trace metals, organics, and radionuclides stored in underground waste tanks. The DOE Office of River Protection (ORP) has contracted Bechtel National Incorporated (BNI) to build a pretreatment facility, the River Protection Project-Waste Treatment Plant (RPP-WTP), that will separate long-lived transuranics (TRU) and highly radioactive components (specifically 137Cs and, in selected cases, 90Sr) from the bulk (non-radioactive) constituents and immobilize the wastes by vitrification. The plant is designed to produce two waste streams: a high-volume low-activity waste (LAW) and a low-volume high-activity waste (HLW).

  9. Corrosive resistant heat exchanger

    DOE Patents [OSTI]

    Richlen, Scott L.

    1989-01-01

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  10. Liquid Metal Heat Exchanger for Geologic Deposits - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liquid Metal Heat Exchanger for Geologic Deposits Oak Ridge National Laboratory Contact ... The apparatus provides more efficient heat transfer than existing technologies for ...

  11. Growth of oxide exchange bias layers

    DOE Patents [OSTI]

    Chaiken, A.; Michel, R.P.

    1998-07-21

    An oxide (NiO, CoO, NiCoO) antiferromagnetic exchange bias layer produced by ion beam sputtering of an oxide target in pure argon (Ar) sputtering gas, with no oxygen gas introduced into the system. Antiferromagnetic oxide layers are used, for example, in magnetoresistive readback heads to shift the hysteresis loops of ferromagnetic films away from the zero field axis. For example, NiO exchange bias layers have been fabricated using ion beam sputtering of an NiO target using Ar ions, with the substrate temperature at 200 C, the ion beam voltage at 1000V and the beam current at 20 mA, with a deposition rate of about 0.2 {angstrom}/sec. The resulting NiO film was amorphous. 4 figs.

  12. Growth of oxide exchange bias layers

    DOE Patents [OSTI]

    Chaiken, Alison; Michel, Richard P.

    1998-01-01

    An oxide (NiO, CoO, NiCoO) antiferromagnetic exchange bias layer produced by ion beam sputtering of an oxide target in pure argon (Ar) sputtering gas, with no oxygen gas introduced into the system. Antiferromagnetic oxide layers are used, for example, in magnetoresistive readback heads to shift the hysteresis loops of ferromagnetic films away from the zero field axis. For example, NiO exchange bia layers have been fabricated using ion beam sputtering of an NiO target using Ar ions, with the substrate temperature at 200.degree. C., the ion beam voltage at 1000V and the beam current at 20 mA, with a deposition rate of about 0.2 .ANG./sec. The resulting NiO film was amorphous.

  13. Woven heat exchanger

    DOE Patents [OSTI]

    Piscitella, Roger R.

    1987-01-01

    In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  14. Woven heat exchanger

    DOE Patents [OSTI]

    Piscitella, R.R.

    1984-07-16

    This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  15. FinalReport for completed IPP-0110 and 0110A Projects:"High Energy Ion Technology of Interfacial Thin Film Coatings for Electronic, Optical and Industrial Applications"

    SciTech Connect (OSTI)

    Brown, Ian

    2009-09-01

    The DOE-supported IPP (Initiatives for Proliferation Prevention) Project, IPP-0110, and its accompanying 'add-on project' IPP-0110A, entitled 'High Energy Ion Technology of Interfacial Thin Film Coatings for Electronic, Optical and Industrial Applications' was a collaborative project involving the Lawrence Berkeley National Laboratory (LBNL) as the U.S. DOE lab; the US surface modification company, Phygen, Inc., as the US private company involved; and the High Current Electronics Institute (HCEI) of the Russian Academy of Sciences, Tomsk, Siberia, Russia, as the NIS Institute involved. Regular scientific research progress meetings were held to which personnel came from all participating partners. The meetings were held mostly at the Phygen facilities in Minneapolis, Minnesota (with Phygen as host) with meetings also held at Tomsk, Russia (HCEI as host), and at Berkeley, California (LBNL as host) In this way, good exposure of all researchers to the various different laboratories involved was attained. This report contains the Final Reports (final deliverables) from the Russian Institute, HCEI. The first part is that for IPP-0110A (the 'main part' of the overall project) and the second part is that for the add-on project IPP-0110A. These reports are detailed, and contain all aspects of all the research carried out. The project was successful in that all deliverables as specified in the proposals were successfully developed, tested, and delivered to Phygen. All of the plasma hardware was designed, made and tested at HCEI, and the performance was excellent. Some of the machine and performance parameters were certainly of 'world class'. The goals and requirements of the IPP Project were well satisfied. I would like to express my gratitude to the DOE IPP program for support of this project throughout its entire duration, and for the unparalleled opportunity thereby provided for all of the diverse participants in the project to join in this collaborative research. The benefits are superb, as measured in quite a number of different ways.

  16. Information technology equipment cooling method

    DOE Patents [OSTI]

    Schultz, Mark D.

    2015-10-20

    According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools air utilized by the rack of information technology equipment to cool the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat generated by the rack of information technology equipment.

  17. Scientific Exchange Program | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Exchange Program Scientific Exchange Program Applications due February

  18. Energy Technology Data Exchange | Open Energy Information

    Open Energy Info (EERE)

    Finding approaches to energy use, including policy and economic factors, alternative and renewable energy sources, and conservation aspects Finding a historical perspective on...

  19. Microsoft Word - DVZ Technologies Public Information Exchange...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... of Tank Farm sub-surface work with this work is important. Consider steam injectionreforming for carbon tetrachloride. Foams, polymers, etc. should be looked ...

  20. NREL: Technology Transfer - African Delegation Exchanges Knowledge...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experts May 18, 2015 Tapping into 14,000 megawatts of geothermal potential in eastern Africa is the focus one new collaboration at NREL. Six visitors from Djibouti, Ethiopia, and...

  1. Energy Exchange News

    Broader source: Energy.gov [DOE]

    Please join FEMP Director Tim Unruh and Julia Kelley with Oak Ridge National Laboratory (ORNL) for a presentation on the Energy Exchange. The Energy Exchange is a new 2 1/2 day training opportunity...

  2. Anion exchange polymer electrolytes

    DOE Patents [OSTI]

    Kim, Yu Seung; Kim, Dae Sik

    2013-09-10

    Solid anion exchange polymer electrolytes include chemical compounds comprising a polymer backbone with side chains that include guanidinium cations.

  3. Ion source

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Ehlers, Kenneth W.

    1984-01-01

    A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species.

  4. Innovative Manufacturing and Materials for Low-Cost Lithium-Ion...

    Broader source: Energy.gov (indexed) [DOE]

    for Low-Cost Lithium-Ion Batteries Vehicle Technologies Office Merit Review 2014: Innovative Manufacturing and Materials for Low-Cost Lithium-Ion Batteries Vehicle Technologies ...

  5. Charge exchange system

    DOE Patents [OSTI]

    Anderson, Oscar A.

    1978-01-01

    An improved charge exchange system for substantially reducing pumping requirements of excess gas in a controlled thermonuclear reactor high energy neutral beam injector. The charge exchange system utilizes a jet-type blanket which acts simultaneously as the charge exchange medium and as a shield for reflecting excess gas.

  6. Novel Redox Shuttles for Overcharge Protection of Lithium-Ion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protection of Lithium-Ion Batteries Technology available for licensing: Electrolytes containing novel redox shuttles (electron transporters) for lithium-ion batteries ...

  7. Line spectrum and ion temperature measurements from tungsten...

    Office of Scientific and Technical Information (OSTI)

    Doppler broadening of a tungsten candidate line was successfully measured and the ion ... TO NUCLEAR SCIENCE AND TECHNOLOGY; DOPPLER BROADENING; ION TEMPERATURE; IONIZATION; ...

  8. Composite Electrodes for Rechargeable Lithium-Ion Batteries ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Composite Electrodes for Rechargeable Lithium-Ion Batteries Technology available for ... of lithium layers by transition metal ions. PDF icon compositeelectrodesforlibatteries

  9. Longer Life Lithium Ion Batteries with Silicon Anodes - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Longer Life Lithium Ion Batteries with Silicon Anodes Lawrence Berkeley National ... Researchers have developed a new technology to advance the life of lithium-ion batteries. ...

  10. Utilization of UV or EB Curing Technology to Significantly Reduce Costs and VOCs in the Manufacture of Lithium-Ion Battery Electrodes

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. Utilization of UV or EB Curing Technology to Significantly Reduce Costs and VOCs in the Manufacture of Lithium-Ion Battery Electrodes

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  12. Significant Cost Improvement of Li-Ion Cells Through Non-NMP Electrode Coating, Direct Separator Coating, and Fast Formation Technologies

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  13. Electron beam ion source and electron beam ion trap (invited)

    SciTech Connect (OSTI)

    Becker, Reinard [Scientific Software Service, Kapellenweg 2a, D-63571 Gelnhausen (Germany); Kester, Oliver [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States)

    2010-02-15

    The electron beam ion source (EBIS) and its trap variant [electron beam ion trap (EBIT)] celebrated their 40th and 20th anniversary, respectively, at the EBIS/T Symposium 2007 in Heidelberg. These technologically challenging sources of highly charged ions have seen a broad development in many countries over the last decades. In contrast to most other ion sources the recipe of improvement was not ''sorcery'' but a clear understanding of the physical laws and obeying the technological constraints. This review will report important achievements of the past as well as promising developments in the future.

  14. Leading Edge Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    Edge Technologies Inc Place: Lakeland, Florida Product: Profitable manufacturer of lithium ion batteries for consumer electronics makers that merged with Skylab Technologies...

  15. Information Exchange development forums

    Energy Science and Technology Software Center (OSTI)

    2012-08-01

    GitHub repositories for creating and managing information exchanges (content models) for use in the NGDS and larger USGIN systems.

  16. Energy Exchange Presentations

    Broader source: Energy.gov [DOE]

    Presentations from Energy Exchange, a two-and-a-half day training scheduled for August 11-13, 2015, at the Phoenix Convention Center in Phoenix, Arizona.

  17. Residential Exchange Program Settlement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contract No. 09PB-12132: deleting in their entirety and replacing with new language Sections 7, 11, and 12; and adding new Section 22, CALCULATION OF EXCHANGE PERIOD...

  18. Nercenergy Microsoft Exchange Servers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pillars of Web Application Monitoring http:www.nercenergy.comthe-four-pillars-of-microsoft-exchange-server-monitoring http:www.nercenergy.comthe-four-pillars-of-microsoft-...

  19. Information Exchange management site

    Energy Science and Technology Software Center (OSTI)

    2012-08-01

    Django site used to manage the approved information exchanges (content models) after creation and public comment at https://github.com/usgin-models.

  20. Energy Exchange Speaker Biographies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Speaker Biographies U.S. Department of Energy Energy Exchange, August 2015 Chris Abbuehl (Constellation Energy) Christopher Abbuehl is responsible for leading the development of...

  1. Vehicle Technologies Office Merit Review 2015: Electrode Coating Defect Analysis and Processing NDE for High-Energy Lithium-Ion Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electrode...

  2. Vehicle Technologies Office Merit Review 2014: Modular Process Equipment for Low Cost Manufacturing of High Capacity Prismatic Li-Ion Cell Alloy Anodes

    Broader source: Energy.gov [DOE]

    Presentation given by Applied Materials at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about modular process equipment...

  3. Vehicle Technologies Office Merit Review 2015: Enabling High-Energy/Voltage Lithium-Ion Cells for Transportation Applications: Part 2 Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about enabling high...

  4. Vehicle Technologies Office Merit Review 2015: Enabling High-Energy/Voltage Lithium-Ion Cells for Transportation Applications: Part 3 Electrochemistry

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about enabling high...

  5. Vehicle Technologies Office Merit Review 2015: Enabling High-Energy/Voltage Lithium-Ion Cells for Transportation Applications: Part 1 Baseline Protocols and Analysis

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about enabling high...

  6. Direct fired heat exchanger

    DOE Patents [OSTI]

    Reimann, Robert C. (Lafayette, NY); Root, Richard A. (Spokane, WA)

    1986-01-01

    A gas-to-liquid heat exchanger system which transfers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine, to a liquid, generally an absorbent solution. The heat exchanger system is in a counterflow fluid arrangement which creates a more efficient heat transfer.

  7. Uniform insulation applied-B ion diode

    DOE Patents [OSTI]

    Seidel, David B.; Slutz, Stephen A.

    1988-01-01

    An applied-B field extraction ion diode has uniform insulation over an anode surface for increased efficiency. When the uniform insulation is accomplished with anode coils, and a charge-exchange foil is properly placed, the ions may be focused at a point on the z axis.

  8. Vehicle Technologies Office Merit Review 2015: Dramatically Improve the Safety Performance of Li Ion Battery Separators and Reduce the Manufacturing Cost using Ultraviolet Curing and High Precision Coating Technologies

    Broader source: Energy.gov [DOE]

    Presentation given by Miltec UV International at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about dramatically improve...

  9. Solid Lithium Ion Conducting Electrolytes Suitable for Manufacturing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium Ion Conducting Electrolytes Suitable for Manufacturing Processes Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryThe lithium ...

  10. Better Buildings Neighborhood Program Multi-Family Peer Exchange...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Neighborhood Program Multi- Family Peer Exchange Call: Shared Space vs. In- unit Upgrades ... focusing on shared space and technology in multi-family buildings vs. in-unit upgrades? ...

  11. Lithium-Ion Batteries - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Lithium-Ion Batteries Predictive computer models for ... Technology Marketing SummaryDesign. Build. Test. Break. Repeat. Developing batteries is an ...

  12. Nanoheterostructure Cation Exchange: Anionic Framework Conservation

    SciTech Connect (OSTI)

    Jain, Prashant K.; Amirav, Lilac; Aloni, Shaul; Alivisatos, A. Paul

    2010-05-11

    In ionic nanocrystals the cationic sub-lattice can be replaced with a different metal ion via a fast, simple, and reversible place-exchange, allowing post-synthetic modification of the composition of the nanocrystal, while preserving its size and shape. Here, we demonstrate for the first time that during such an exchange, the anionic framework of the crystal is preserved. When applied to nanoheterostructures, this phenomenon ensures that compositional interfaces within the heterostructure are conserved throughout the transformation. For instance, a morphology composed of a CdSe nanocrystal embedded in a CdS rod (CdSe/CdS) was exchanged to a PbSe/PbS nanorod via a Cu2Se/Cu2S structure. During every exchange cycle, the seed size and position within the nanorod were preserved, as evident by excitonic features, Z-contrast imaging, and elemental line-scans. Anionic framework conservation extends the domain of cation exchange to the design of more complex and unique nanostructures.

  13. Vehicle Technologies Office Merit Review 2015: IR Thermography as a Non-Destructive Evaluation (NDE) Tool for Lithium-Ion Battery Manufacturing

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about IR thermography...

  14. Vehicle Technologies Office Merit Review 2014: Development of Cell/Pack Level Models for Automotive Li-Ion Batteries with Experimental Validation

    Broader source: Energy.gov [DOE]

    Presentation given by EC Power at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about evelopment of cell/pack level models...

  15. Vehicle Technologies Office Merit Review 2014: High Energy Density Li-ion Cells for EV’s Based on Novel, High Voltage Cathode Material Systems

    Broader source: Energy.gov [DOE]

    Presentation given by Farasis Energy, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy density Li...

  16. Wound tube heat exchanger

    DOE Patents [OSTI]

    Ecker, Amir L.

    1983-01-01

    What is disclosed is a wound tube heat exchanger in which a plurality of tubes having flattened areas are held contiguous adjacent flattened areas of tubes by a plurality of windings to give a double walled heat exchanger. The plurality of windings serve as a plurality of effective force vectors holding the conduits contiguous heat conducting walls of another conduit and result in highly efficient heat transfer. The resulting heat exchange bundle is economical and can be coiled into the desired shape. Also disclosed are specific embodiments such as the one in which the tubes are expanded against their windings after being coiled to insure highly efficient heat transfer.

  17. Heat and mass exchanger

    DOE Patents [OSTI]

    Lowenstein, Andrew (Princeton, NJ); Sibilia, Marc J. (Princeton, NJ); Miller, Jeffrey A. (Hopewell, NJ); Tonon, Thomas (Princeton, NJ)

    2007-09-18

    A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

  18. Heat and mass exchanger

    DOE Patents [OSTI]

    Lowenstein, Andrew; Sibilia, Marc J.; Miller, Jeffrey A.; Tonon, Thomas

    2011-06-28

    A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

  19. Low-Cost Microchannel Heat Exchanger

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ALTEX TECHNOLOGIES CORPORATION Low-Cost Microchannel Heat Exchanger DOE Grant DE-EE0004541 2013-2014 Dr. John T. Kelly Altex Technologies Corporation 244 Sobrante Way Sunnyvale, CA 94086 Phone: 408-328-8302 E-mail: john@altextech.com U.S. DOE Advanced Manufacturing Office PEER Review Meeting Washington, D.C. May 6-7, 2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information. ALTEX TECHNOLOGIES CORPORATION Project Objectives  Define and test low

  20. Building Efficiency Technologies by Tomorrow's Engineers and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lead Performer: Georgia Institute of Technology - Atlanta, GA Partners: - Alphabet Energy - Hayward, CA - Alabama Heat Exchangers, AL - Advanced Renewable Energy - Emrgy Hydro - ...

  1. Anion exchange polymer electrolytes

    DOE Patents [OSTI]

    Kim, Yu Seung; Kim, Dae Sik

    2015-06-02

    Anion exchange polymer electrolytes that include guanidinium functionalized polymers may be used as membranes and binders for electrocatalysts in preparation of anodes for electrochemical cells such as solid alkaline fuel cells.

  2. Active microchannel heat exchanger

    DOE Patents [OSTI]

    Tonkovich, Anna Lee Y. [Pasco, WA; Roberts, Gary L. [West Richland, WA; Call, Charles J. [Pasco, WA; Wegeng, Robert S. [Richland, WA; Wang, Yong [Richland, WA

    2001-01-01

    The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

  3. Energy Exchange Schedule

    Broader source: Energy.gov [DOE]

    The schedule for Energy Exchange is now available. Attendees will have the option of attending a variety of training sessions offered within 10 tracks during the times listed below. Session details...

  4. Miniaturized Air-to-Refrigerant Heat Exchangers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Miniaturized Air-to-Refrigerant Heat Exchangers 2014 Building Technologies Office Peer Review Prof. Reinhard Radermacher, raderm@umd.edu University of Maryland College Park Project Summary Timeline: Start date: 03/01/2013 Planned end date: 02/29/2016 Key Milestones 1. Heat exchanger designs/process: 6/30/14 2. Fabrication/testing of 1 kW: 9/30/14 3. Fabrication/testing of 10 kW: 9/30/2015 Budget: Total DOE $ to date: $561K Total future DOE $: $489K Target Market/Audience: Residential and

  5. Microsoft Exchange Servers Archives - Nercenergy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exchange Servers What Certificates Should My Microsoft Exchange Server Have? Much like any other network application, in order to secure the functionality and safety of Microsoft...

  6. Green Exchange | Open Energy Information

    Open Energy Info (EERE)

    Exchange Jump to: navigation, search Name: Green Exchange Place: New York, New York Zip: NY 10282 Product: String representation "The Green Excha ... es marketplace." is too long....

  7. Utilization of UV or EB Curing Technology to Significantly Reduce...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Lithium-Ion Battery Electrodes Utilization of UV or EB Curing Technology to Significantly Reduce Costs and VOCs in the Manufacture of Lithium-Ion Battery Electrodes ...

  8. Radial flow heat exchanger

    DOE Patents [OSTI]

    Valenzuela, Javier

    2001-01-01

    A radial flow heat exchanger (20) having a plurality of first passages (24) for transporting a first fluid (25) and a plurality of second passages (26) for transporting a second fluid (27). The first and second passages are arranged in stacked, alternating relationship, are separated from one another by relatively thin plates (30) and (32), and surround a central axis (22). The thickness of the first and second passages are selected so that the first and second fluids, respectively, are transported with laminar flow through the passages. To enhance thermal energy transfer between first and second passages, the latter are arranged so each first passage is in thermal communication with an associated second passage along substantially its entire length, and vice versa with respect to the second passages. The heat exchangers may be stacked to achieve a modular heat exchange assembly (300). Certain heat exchangers in the assembly may be designed slightly differently than other heat exchangers to address changes in fluid properties during transport through the heat exchanger, so as to enhance overall thermal effectiveness of the assembly.

  9. Heat exchanger restart evaluation

    SciTech Connect (OSTI)

    Morrison, J.M.; Hirst, C.W.; Lentz, T.F.

    1992-02-28

    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4kA was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summarized herein.

  10. Heat exchanger restart evaluation

    SciTech Connect (OSTI)

    Morrison, J.M.; Hirst, C.W.; Lentz, T.F.

    1992-03-18

    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4A was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the identified tube. The leaking tube was removed and examined metallurgically to determine the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summary herein.

  11. Heat exchanger restart evaluation

    SciTech Connect (OSTI)

    Morrison, J.M.; Hirst, C.W.; Lentz, T.F.

    1992-03-18

    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4A was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the identified tube. The leaking tube was removed and examined metallurgically to determine the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summarized.

  12. Secondary Waste Considerations for Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Technology and Engineering Center FY-2001 Status Report

    SciTech Connect (OSTI)

    Herbst, A.K.; Kirkham, R.J.; Losinski, S.J.

    2002-09-26

    The Idaho Nuclear Technology and Engineering Center (INTEC) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes from the melter off-gas clean up systems. Projected secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

  13. Modular heat exchanger

    DOE Patents [OSTI]

    Culver, Donald W.

    1978-01-01

    A heat exchanger for use in nuclear reactors includes a heat exchange tube bundle formed from similar modules each having a hexagonal shroud containing a large number of thermally conductive tubes which are connected with inlet and outlet headers at opposite ends of each module, the respective headers being adapted for interconnection with suitable inlet and outlet manifold means. In order to adapt the heat exchanger for operation in a high temperature and high pressure environment and to provide access to all tube ports at opposite ends of the tube bundle, a spherical tube sheet is arranged in sealed relation across the chamber with an elongated duct extending outwardly therefrom to provide manifold means for interconnection with the opposite end of the tube bundle.

  14. Energy Exchange | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Exchange Energy Exchange Energy Exchange Training and Trade Show: Providence, Rhode Island, August 9-11, 2016 Photo of the Providence, Rhode Island skyline. Building on the tradition of GovEnergy, the Energy Exchange is an educational and networking forum for those seeking to expand their knowledge of building operations, energy management, and sustainability in the federal sector. The Energy Exchange will be held at the Rhode Island Convention Center in Providence, Rhode Island. Training

  15. Scientific Exchange Program deadline | Photosynthetic Antenna...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Exchange Program deadline Scientific Exchange Program deadline Applications due February...

  16. (Environmental technology)

    SciTech Connect (OSTI)

    Boston, H.L.

    1990-10-12

    The traveler participated in a conference on environmental technology in Paris, sponsored by the US Embassy-Paris, US Environmental Protection Agency (EPA), the French Environmental Ministry, and others. The traveler sat on a panel for environmental aspects of energy technology and made a presentation on the potential contributions of Oak Ridge National Laboratory (ORNL) to a planned French-American Environmental Technologies Institute in Chattanooga, Tennessee, and Evry, France. This institute would provide opportunities for international cooperation on environmental issues and technology transfer related to environmental protection, monitoring, and restoration at US Department of Energy (DOE) facilities. The traveler also attended the Fourth International Conference on Environmental Contamination in Barcelona. Conference topics included environmental chemistry, land disposal of wastes, treatment of toxic wastes, micropollutants, trace organics, artificial radionuclides in the environment, and the use biomonitoring and biosystems for environmental assessment. The traveler presented a paper on The Fate of Radionuclides in Sewage Sludge Applied to Land.'' Those findings corresponded well with results from studies addressing the fate of fallout radionuclides from the Chernobyl nuclear accident. There was an exchange of new information on a number of topics of interest to DOE waste management and environmental restoration needs.

  17. Integrated Module Heat Exchanger

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  18. Cation-exchange fiber reduces iron oxide leakage

    SciTech Connect (OSTI)

    MacClure, S.L.

    1993-10-01

    This article describes how addition of new fiber in powdered-resin precoat improves demineralizer crud-retention capability and reduces disposal cost for radioactive spent resin. Various attempts have been made to reduce the concentrations of iron oxide at the outlet of filter/demineralizer (FTD) vessels. Each vessel is fitted with an array of tubular septa that are precoated with powdered ion-exchange resin. The coatings perform filtering and ion-exchange actions on incoming feedwater, removing both suspended and dissolved solids. Experience at Duane Arnold Energy Center (CAED) indicates that use of a powdered-resin precoat containing cation-exchange fibers rather than cellulose fibers can reduce iron oxide levels in FTD effluent significantly.

  19. Significant Cost Improvement of Li-Ion Cells Through Non-NMP...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Significant Cost Improvement of Li-Ion Cells Through Non-NMP Electrode Coating, Direct Separator Coating, and Fast Formation Technologies Significant Cost Improvement of Li-Ion ...

  20. Model for the Fabrication of Tailored Materials for Lithium-Ion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Model for the Fabrication of Tailored Materials for Lithium-Ion Batteries Technology available for licensing: Safe, stable and high-capacity cathodes for lithium-ion batteries ...

  1. Physics and technology in the ion-cyclotron range of frequency on Tore Supra and TITAN test facility: implication for ITER

    SciTech Connect (OSTI)

    Litaudon, X; Bernard, J. M.; Colas, L.; Dumont, R. J.; Argouarch, A.; Bottollier-Curtet, H.; Bremond, S.; Champeaux, S.; Corre, Y.; Dumortier, P.; Firdaouss, M.; Guilhem, D.; Gunn, J. P.; Gouard, Ph.; Hoang, G T; Jacquot, Jonathan; Klepper, C Christopher; Kubic, M.; Kyrytsya, V.; Lombard, G.; Milanesio, D.; Messiaen, A.; Mollard, P.; Meyer, O.; Zarzoso, D.

    2013-01-01

    To support the design of an ITER ion-cyclotron range of frequency heating (ICRH) system and to mitigate risks of operation in ITER, CEA has initiated an ambitious Research & Development program accompanied by experiments on Tore Supra or test-bed facility together with a significant modelling effort. The paper summarizes the recent results in the following areas: Comprehensive characterization (experiments and modelling) of a new Faraday screen concept tested on the Tore Supra antenna. A new model is developed for calculating the ICRH sheath rectification at the antenna vicinity. The model is applied to calculate the local heat flux on Tore Supra and ITER ICRH antennas. Full-wave modelling of ITER ICRH heating and current drive scenarios with the EVE code. With 20 MW of power, a current of 400 kA could be driven on axis in the DT scenario. Comparison between DT and DT(3He) scenario is given for heating and current drive efficiencies. First operation of CW test-bed facility, TITAN, designed for ITER ICRH components testing and could host up to a quarter of an ITER antenna. R&D of high permittivity materials to improve load of test facilities to better simulate ITER plasma antenna loading conditions.

  2. A corrosive resistant heat exchanger

    DOE Patents [OSTI]

    Richlen, S.L.

    1987-08-10

    A corrosive and erosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is pumped through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium. 3 figs., 3 tabs.

  3. Microbial Electrochemical Technology (MxCs): Challenges and Opportunit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrochemical Technology (MxCs): Challenges and ... MxC is a platform technology that integrates ... capacity of WW Limits ion transfer in MFC, resulting low ...

  4. Vehicle Technologies Office Merit Review 2014: Development of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lithium Ion Battery Technology High Voltage Electrolyte Vehicle Technologies Office Merit Review 2015: Analysis of Film Formation Chemistry on Silicon Anodes by ...

  5. The allowance exchange - ALEX

    SciTech Connect (OSTI)

    Mangis, J.K.; Miller, C.; Nicholas, J.

    1997-12-31

    The success of market approaches to pollution control in reducing the cost of compliance with environmental regulation, has insured the inclusion of emissions trading programs in current and future regulatory programs. As these environmental trading programs multiply, (SO{sub 2}, NO{sub x}, Ozone Precursors, Wetlands, CO{sub 2} and others), utility companies will need a central location to buy, sell, and trade these allowances to meet regulatory needs. In response, SAIC has designed and prototyped an electronic trading system that can provide a common forum for the location and exchange of environmental allowances, marketable permits, and other market based instruments for environmental management. SAIC intends to open and operate the Allowance Exchange (ALEX) for the trading of all environmental allowances, associated with the operation of electric utilities, as a service to the nation, the industry, and the environmental community.

  6. Energy Exchange Attendee Guide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education Units (CEUs) 1 Session Speaker Biographies & Presentations 1 Emerging Technology Pavilion 1 Plenary Speakers 2 Agenda at Glance 4 Track Overview 5 Session...

  7. Thermoelectric heat exchange element

    DOE Patents [OSTI]

    Callas, James J. (Peoria, IL); Taher, Mahmoud A. (Peoria, IL)

    2007-08-14

    A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

  8. Heat exchanger tube mounts

    DOE Patents [OSTI]

    Wolowodiuk, W.; Anelli, J.; Dawson, B.E.

    1974-01-01

    A heat exchanger in which tubes are secured to a tube sheet by internal bore welding is described. The tubes may be moved into place in preparation for welding with comparatively little trouble. A number of segmented tube support plates are provided which allow a considerable portion of each of the tubes to be moved laterally after the end thereof has been positioned in preparation for internal bore welding to the tube sheet. (auth)

  9. Heat exchange apparatus

    DOE Patents [OSTI]

    Degtiarenko, Pavel V.

    2003-08-12

    A heat exchange apparatus comprising a coolant conduit or heat sink having attached to its surface a first radial array of spaced-apart parallel plate fins or needles and a second radial array of spaced-apart parallel plate fins or needles thermally coupled to a body to be cooled and meshed with, but not contacting the first radial array of spaced-apart parallel plate fins or needles.

  10. Technical Exchange and Cooperation Agreement between the Department of

    Energy Savers [EERE]

    Energy and the European Atomic Energy Community | Department of Energy Technical Exchange and Cooperation Agreement between the Department of Energy and the European Atomic Energy Community Technical Exchange and Cooperation Agreement between the Department of Energy and the European Atomic Energy Community The objective of this technical arrangement is to establish a framework for co-operation between the Parties in the field of nuclear-related technology research and development based upon

  11. Defining a new information exchange

    Energy Science and Technology Software Center (OSTI)

    2013-08-01

    This wiki page provides the public with all specifications needed to create a new information exchange (content model package).

  12. Building America Technology Solutions for New and Existing Homes:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Foundation Heat Exchanger, Oak Ridge, Tennessee | Department of Energy Foundation Heat Exchanger, Oak Ridge, Tennessee Building America Technology Solutions for New and Existing Homes: Foundation Heat Exchanger, Oak Ridge, Tennessee The foundation heat exchanger, developed by Oak Ridge National Laboratory, is a new concept for a cost-effective horizontal ground heat exchanger that can be connected to water-to-water or water-to-air heat pump systems for space conditioning as well as domestic

  13. ION SWITCH

    DOE Patents [OSTI]

    Cook, B.

    1959-02-10

    An ion switch capable of transferring large magnitudes of power is described. An ion switch constructed in accordance with the invention includes a pair of spaced control electrodes disposed in a highly evacuated region for connection in a conventional circuit to control the passing of power therethrough. A controllable ionic conduction path is provided directiy between the control electrodes by a source unit to close the ion switch. Conventional power supply means are provided to trigger the source unit and control the magnitude, durations and pulse repetition rate of the aforementioned ionic conduction path.

  14. ION SOURCE

    DOE Patents [OSTI]

    Leland, W.T.

    1960-01-01

    The ion source described essentially eliminater the problem of deposits of nonconducting materials forming on parts of the ion source by certain corrosive gases. This problem is met by removing both filament and trap from the ion chamber, spacing them apart and outside the chamber end walls, placing a focusing cylinder about the filament tip to form a thin collimated electron stream, aligning the cylinder, slits in the walls, and trap so that the electron stream does not bombard any part in the source, and heating the trap, which is bombarded by electrons, to a temperature hotter than that in the ion chamber, so that the tendency to build up a deposit caused by electron bombardment is offset by the extra heating supplied only to the trap.

  15. Ion focusing

    DOE Patents [OSTI]

    Cooks, Robert Graham; Baird, Zane; Peng, Wen-Ping

    2015-11-10

    The invention generally relates to apparatuses for focusing ions at or above ambient pressure and methods of use thereof. In certain embodiments, the invention provides an apparatus for focusing ions that includes an electrode having a cavity, at least one inlet within the electrode configured to operatively couple with an ionization source, such that discharge generated by the ionization source is injected into the cavity of the electrode, and an outlet. The cavity in the electrode is shaped such that upon application of voltage to the electrode, ions within the cavity are focused and directed to the outlet, which is positioned such that a proximal end of the outlet receives the focused ions and a distal end of the outlet is open to ambient pressure.

  16. Amperex Technology Limited ATL | Open Energy Information

    Open Energy Info (EERE)

    Technology Limited (ATL) Place: N.T., Hong Kong Product: Designer and manufacturer of Lithium Ion Polymer (LIP) battery cells and batteries for OEM customers making cell phones,...

  17. Simplo Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Simplo Technology Co Ltd Place: Hsinchu, Taiwan Product: Manufacturer of Li-ion and lithium polymer battery packs for electric bicycles and consumer electronics applications....

  18. Dual Functional Cathode Additives for Battery Technologies -...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Marketing Summary Lithium ion batteries are currently the most widely used ... The batteries must be able to charge and discharge quickly as they react to sudden changes ...

  19. Uranium Adsorption on Ion-Exchange Resins - Batch Testing

    SciTech Connect (OSTI)

    Mattigod, Shas V.; Golovich, Elizabeth C.; Wellman, Dawn M.; Cordova, Elsa A.; Smith, Ronald M.

    2010-12-01

    The uranium adsorption performance of five resins (Dowex 1, Dowex 21K 16-30 [fresh], Dowex 21K 16-30 [regenerated], Purofine PFA600/4740, and ResinTech SIR-1200) were tested using unspiked, nitrate-spiked, and nitrate-spiked/pH adjusted source water from well 299-W19-36. These batch tests were conducted in support of a resin selection process in which the best resin to use for uranium treatment in the 200-West Area groundwater pump-and-treat system will be identified. The results from these tests are as follows: The data from the high-nitrate (1331 mg/L) tests indicated that Dowex 1, Dowex 21K 16-30 (fresh), Purofine PFA600/4740, and ResinTech SIR-1200 all adsorbed uranium similarly well with Kd values ranging from ~15,000 to 95,000 ml/g. All four resins would be considered suitable for use in the treatment system based on uranium adsorption characteristics. Lowering the pH of the high nitrate test conditions from 8.2 to 7.5 did not significantly change the uranium adsorption isotherms for the four tested resins. The Kd values for these four resins under high nitrate (1338 mg/L), lower pH (7.5) ranged from ~15,000 to 80,000 ml/g. Higher nitrate concentrations greatly reduced the uranium adsorption on all four resins. Tests conducted with unspiked (no amendments; nitrate at 337 mg/L and pH at 8.2) source water yielded Kd values for Dowex 1, Dowex 21K 16-30 (fresh), Purofine PFA600/4740, and ResinTech SIR-1200 resins ranging from ~800,000 to >3,000,000 ml/g. These values are about two orders of magnitude higher than the Kd values noted from tests conducted using amended source water. Compared to the fresh resin, the regenerated Dowex 21K 16-30 resin exhibited significantly lower uranium-adsorption performance under all test conditions. The calculated Kd values for the regenerated resin were typically an order of magnitude lower than the values calculated for the fresh resin. Additional testing using laboratory columns is recommended to better resolve differences between the adsorption abilities of the resins and to develop estimates of uranium loading on the resins. By determining the quantity of uranium that each resin can adsorb and the time required to reach various levels of loading, resin lifetime in the treatment system can be estimated.

  20. Application of ion exchange and extraction chromatography to...

    Office of Scientific and Technical Information (OSTI)

    Additional Journal Information: Journal Volume: 1380; Journal Issue: C; Journal ID: ISSN 0021-9673 Publisher: Elsevier Sponsoring Org: USDOE Office of Science (SC), Nuclear Physics ...

  1. Non-aqueous liquid compositions comprising ion exchange polymers

    DOE Patents [OSTI]

    Kim, Yu Seung; Lee, Kwan-Soo; Rockward, Tommy Q. T.

    2013-03-12

    Compositions, and methods of making thereof, comprising from about 1% to about 5% of a perfluorinated sulfonic acid ionomer or a hydrocarbon-based ionomer; and from about 95% to about 99% of a solvent, said solvent consisting essentially of a polyol; wherein said composition is substantially free of water and wherein said ionomer is uniformly dispersed in said solvent.

  2. Non-aqueous liquid compositions comprising ion exchange polymers

    DOE Patents [OSTI]

    Kim, Yu Seung; Lee, Kwan-Soo; Rockward, Tommy Q. T.

    2011-07-19

    Compositions, and methods of making thereof, comprising from about 1% to about 5% of a perfluorinated sulfonic acid ionomer or a hydrocarbon-based ionomer; and from about 95% to about 99% of a solvent, said solvent consisting essentially of a polyol; wherein said composition is substantially free of water and wherein said ionomer is uniformly dispersed in said solvent.

  3. Thermoacoustic imaging using heavy ion beams

    SciTech Connect (OSTI)

    Claytor, T.N.; Tesmer, J.R.; Deemer, B.C.; Murphy, J.C.

    1995-10-01

    Ion beams have been used for surface modification, semiconductor device fabrication and for material analysis, which makes ion-material interactions of significant importance. Ion implantation will produce new compositions near the surface by ion mixing or directly by implanting desired ions. Ions exchange their energy to the host material as they travel into the material by several different processes. High energy ions ionize the host atoms before atomic collisions transfer the remaining momentum and stop the incident ion. As they penetrate the surface, the low energy ions ionize the host atoms, but also have a significantly large momentum transfer mechanism near the surface of the material. This leads to atoms, groups of atoms and electrons being ejected from the surface, which is the momentum transfer process of sputtering. This talk addresses the acoustic waves generated during ion implantation using modulated heavy ion beams. The mechanisms for elastic wave generation during ion implantation, in the regimes where sputtering is significant and where implantation is dominant and sputtering is negligible, has been studied. The role of momentum transfer and thermal energy production during ion implantation was compared to laser generated elastic waves in an opaque solid as a reference, since laser generated ultrasound has been extensively studied and is fairly well understood. The thermoelastic response dominated in both high and low ion energy regimes since, apparently, more energy is lost to thermal heat producing mechanisms than momentum transfer processes. The signal magnitude was found to vary almost linearly with incident energy as in the laser thermoelastic regime. The time delays for longitudinal and shear waves-were characteristic of those expected for a purely thermal heating source. The ion beams are intrinsically less sensitive to the albedo of the surface.

  4. Better Buildings Neighborhood Program Workforce Peer Exchange...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Neighborhood Program Workforce Peer Exchange Call: Contractor Pricing Better Buildings Neighborhood Program Workforce Peer Exchange Call: Contractor Pricing Better Buildings ...

  5. Plasma ion sources and ion beam technology inmicrofabrications...

    Office of Scientific and Technical Information (OSTI)

    In the meanwhile, nanotechnology has also deeply involved in material science research and ... microscope (SEM) system has been developed for direct doping or surface modification. ...

  6. Heat exchanger-accumulator

    DOE Patents [OSTI]

    Ecker, Amir L.

    1980-01-01

    What is disclosed is a heat exchanger-accumulator for vaporizing a refrigerant or the like, characterized by an upright pressure vessel having a top, bottom and side walls; an inlet conduit eccentrically and sealingly penetrating through the top; a tubular overflow chamber disposed within the vessel and sealingly connected with the bottom so as to define an annular outer volumetric chamber for receiving refrigerant; a heat transfer coil disposed in the outer volumetric chamber for vaporizing the liquid refrigerant that accumulates there; the heat transfer coil defining a passageway for circulating an externally supplied heat exchange fluid; transferring heat efficiently from the fluid; and freely allowing vaporized refrigerant to escape upwardly from the liquid refrigerant; and a refrigerant discharge conduit penetrating sealingly through the top and traversing substantially the length of the pressurized vessel downwardly and upwardly such that its inlet is near the top of the pressurized vessel so as to provide a means for transporting refrigerant vapor from the vessel. The refrigerant discharge conduit has metering orifices, or passageways, penetrating laterally through its walls near the bottom, communicating respectively interiorly and exteriorly of the overflow chamber for controllably carrying small amounts of liquid refrigerant and oil to the effluent stream of refrigerant gas.

  7. Advanced Refrigerant-Based Cooling Technologies for Information...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data Center Heat Exchanger with Increased Cooling Efficiency Reduces Energy Usage Between 2005 and 2010 electricity consumption in the information and communication technology ...

  8. ION SOURCE

    DOE Patents [OSTI]

    Bell, W.A. Jr.; Love, L.O.; Prater, W.K.

    1958-01-28

    An ion source is presented capable of producing ions of elements which vaporize only at exceedingly high temperatures, i.e.,--1500 degrees to 3000 deg C. The ion source utilizes beams of electrons focused into a first chamber housing the material to be ionized to heat the material and thereby cause it to vaporize. An adjacent second chamber receives the vaporized material through an interconnecting passage, and ionization of the vaporized material occurs in this chamber. The ionization action is produced by an arc discharge sustained between a second clectron emitting filament and the walls of the chamber which are at different potentials. The resultant ionized material egresses from a passageway in the second chamber. Using this device, materials which in the past could not be processed in mass spectometers may be satisfactorily ionized for such applications.

  9. Brazed aluminum, Plate-fin heat exchangers for OTEC

    SciTech Connect (OSTI)

    Foust, H.D.

    1980-12-01

    Brazed aluminum plate-fin heat exchangers have been available for special applications for over thirty years. The performance, compactness, versatility, and low cost of these heat exchangers has been unequaled by other heat exchanger configuration. The application of brazed aluminum has been highly limited because of necessary restrictions for clean non-corrosive atmospheres. Air and gas separation have provided ideal conditions for accepting brazed aluminum and in turn have benefited by the salient features of these plate-fin heat exchangers. In fact, brazed aluminum and cryogenic gas and air separation have become nearly synonymous. Brazed aluminum in its historic form could not be considered for a seawater atmosphere. However, technology presents a new look of significant importance to OTEC in terms of compactness and cost. The significant technological variation made was to include one-piece hollow extensions for the seawater passages. Crevice corrosion sites are thereby entirely eliminated and pitting corrosion attack will be controlled by an integral and sacrificial layer of a zinc-aluminum alloy. This paper on brazed aluminum plate-fin heat exchangers for OTEC will aquaint the reader with the state-of-art and variations suggested to qualify this form of aluminum for seawater use. In order to verify the desirable cost potential for OTEC, Trane teamed with Westinghouse to perform an OTEC system analysis with this heat exchanger. These results are very promising and reported in detail elsewhere.

  10. Ion Deflection for Final Optics In Laser Inertial Fusion Power...

    Office of Scientific and Technical Information (OSTI)

    Ion Deflection for Final Optics In Laser Inertial Fusion Power Plants Citation Details ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  11. Ab Initio Calculations of Light-Ion Fusion Reactions (Conference...

    Office of Scientific and Technical Information (OSTI)

    Ab Initio Calculations of Light-Ion Fusion Reactions Citation Details In-Document Search ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  12. Highly Charged Ions in Magnetic Fusion Plasmas: Research Opportunities...

    Office of Scientific and Technical Information (OSTI)

    Highly Charged Ions in Magnetic Fusion Plasmas: Research Opportunities and Diagnostic ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  13. Advanced Cathode Material Development for PHEV Lithium Ion Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Cathode Material Development for PHEV Lithium Ion Batteries Vehicle Technologies Office: 2009 Energy Storage R&D Annual Progress...

  14. Designing Silicon Nanostructures for High Energy Lithium Ion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Wiring up Silicon Nanoparticles for High Performance Lithium-ion Battery Anodes Vehicle Technologies Office Merit Review 2014: Wiring Up Silicon ...

  15. Electrode Materials for Rechargeable Lithium-Ion Batteries: A...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Batteries: A New Synthetic Approach Technology available for licensing: New high-energy cathode materials for use in rechargeable lithium-ion cells and batteries ...

  16. CUBICON Materials that Outperform Lithium-Ion Batteries - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CUBICON Materials that Outperform Lithium-Ion Batteries Brookhaven National Laboratory ... Technology Marketing Summary The demand for batteries to meet high-power and high-energy ...

  17. Surface Modification Agents for Lithium-Ion Batteries | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surface Modification Agents for Lithium-Ion Batteries Technology available for licensing: ... and security of batteries Substantially reduces power fade and potential for explosions. ...

  18. Actinide ion sensor for pyroprocess monitoring

    DOE Patents [OSTI]

    Jue, Jan-fong; Li, Shelly X.

    2014-06-03

    An apparatus for real-time, in-situ monitoring of actinide ion concentrations which comprises a working electrode, a reference electrode, a container, a working electrolyte, a separator, a reference electrolyte, and a voltmeter. The container holds the working electrolyte. The voltmeter is electrically connected to the working electrode and the reference electrode and measures the voltage between those electrodes. The working electrode contacts the working electrolyte. The working electrolyte comprises an actinide ion of interest. The reference electrode contacts the reference electrolyte. The reference electrolyte is separated from the working electrolyte by the separator. The separator contacts both the working electrolyte and the reference electrolyte. The separator is ionically conductive to the actinide ion of interest. The reference electrolyte comprises a known concentration of the actinide ion of interest. The separator comprises a beta double prime alumina exchanged with the actinide ion of interest.

  19. Miniaturized Air-to-Refrigerant Heat Exchangers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Miniaturized Air-to-Refrigerant Heat Exchangers 2015 Building Technologies Office Peer Review Reinhard Radermacher raderm@umd.edu 20%+ Better University of Maryland College Park Project Summary Timeline: Start date: 3/1/2013 Planned end date: 2/29/2016 Key Milestones 1. Design optimization, 3/30/14 2. Fabrication/testing, 1kW prototype, 1/30/2015 3. Fabrication/testing, 10kW prototype, 9/30/2015 Budget: Total Budget: $1500K Total UMD: $1050K Total DOE $ to date for UMD: $881K Total future DOE $

  20. EERE Success Story-Tennessee, Pennsylvania: Porous Power Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improves Lithium Ion Battery, Wins R&D 100 Award | Department of Energy Tennessee, Pennsylvania: Porous Power Technologies Improves Lithium Ion Battery, Wins R&D 100 Award EERE Success Story-Tennessee, Pennsylvania: Porous Power Technologies Improves Lithium Ion Battery, Wins R&D 100 Award August 19, 2013 - 2:16pm Addthis Porous Power Technologies, partnered with Oak Ridge National Laboratory (ORNL), developed SYMMETRIX HPX-F, a nanocomposite separator for improved lithium-ion

  1. Heat exchanger bypass test report

    SciTech Connect (OSTI)

    De Vries, M.L.

    1995-01-26

    This test report documents the results that were obtained while conducting the test procedure which bypassed the heat exchangers in the HC-21C sludge stabilization process. The test was performed on November 15, 1994 using WHC-SD-CP-TC-031, ``Heat Exchanger Bypass Test Procedure.`` The primary objective of the test procedure was to determine if the heat exchangers were contributing to condensation of moisture in the off-gas line. This condensation was observed in the rotameters. Also, a secondary objective was to determine if temperatures at the rotameters would be too high and damage them or make them inaccurate without the heat exchangers in place.

  2. Energy Exchange 2015: Phoenix, Arizona

    Broader source: Energy.gov [DOE]

    Presentations from Energy Exchange, a two-and-a-half day training scheduled for August 11-13, 2015, at the Phoenix Convention Center in Phoenix, Arizona.

  3. NGNP Process Heat Utilization: Liquid Metal Phase Change Heat Exchanger

    SciTech Connect (OSTI)

    Piyush Sabharwall; Mike Patterson; Vivek Utgikar; Fred Gunnerson

    2008-09-01

    One key long-standing issue that must be overcome to fully realize the successful growth of nuclear power is to determine other benefits of nuclear energy apart from meeting the electricity demands. The Next Generation Nuclear Plant (NGNP) will most likely be producing electricity and heat for the production of hydrogen and/or oil retrieval from oil sands and oil shale to help in our national pursuit of energy independence. For nuclear process heat to be utilized, intermediate heat exchange is required to transfer heat from the NGNP to the hydrogen plant or oil recovery field in the most efficient way possible. Development of nuclear reactor - process heat technology has intensified the interest in liquid metals as heat transfer media because of their ideal transport properties. Liquid metal heat exchangers are not new in practical applications. An important rational for considering liquid metals is the potential convective heat transfer is among the highest known. Thus explains the interest in liquid metals as coolant for intermediate heat exchange from NGNP. For process heat it is desired that, intermediate heat exchangers (IHX) transfer heat from the NGNP in the most efficient way possible. The production of electric power at higher efficiency via the Brayton Cycle, and hydrogen production, requires both heat at higher temperatures and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. Compact heat exchangers maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. High temperature IHX design requirements are governed in part by the allowable temperature drop between the outlet and inlet of the NGNP. In order to improve the characteristics of heat transfer, liquid metal phase change heat exchangers may be more effective and efficient. This paper explores the overall heat transfer characteristics and pressure drop of the phase change heat exchanger with Na as the heat exchanger coolant. In order to design a very efficient and effective heat exchanger one must optimize the design such that we have a high heat transfer and a lower pressure drop, but there is always a trade-off between them. Based on NGNP operational parameters, a heat exchanger analysis with the sodium phase change will be presented to show that the heat exchanger has the potential for highly effective heat transfer, within a small volume at reasonable cost.

  4. Design issues of a thermoacoustic refrigerator and its heat exchangers

    SciTech Connect (OSTI)

    Wetzel, M.; Herman, C.

    1996-12-31

    Thermoacoustic refrigeration is a fast advancing new refrigeration technology. Performance calculations indicate remarkable values for the thermoacoustic core of a thermoacoustic refrigerator. The thermoacoustic core is responsible for pumping heat from a cold to a hot temperature reservoir. However, the systems necessary to support the thermoacoustic core, such as heat exchangers and acoustic drivers are the weak points of this refrigeration technology. Particularly, heat exchangers were designed so far without any optimization. A reason for this is the lack of knowledge of the flow structures and heat transfer phenomena at the interface between the thermoacoustic core and the heat exchangers. For the purpose of gaining better insight, the authors built a thermoacoustic refrigerator model and applied visualization techniques, such as smoke injection and holographic interferometry, to visualize the flow and temperature fields at the interface.

  5. Building Efficiency Technologies by Tomorrow's Engineers and Researchers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (BETTER) Capstone | Department of Energy Efficiency Technologies by Tomorrow's Engineers and Researchers (BETTER) Capstone Building Efficiency Technologies by Tomorrow's Engineers and Researchers (BETTER) Capstone Photo courtesy of Georgia Institute of Technology. Photo courtesy of Georgia Institute of Technology. Lead Performer: Georgia Institute of Technology - Atlanta, GA Partners: - Alphabet Energy - Hayward, CA - Alabama Heat Exchangers, AL - Advanced Renewable Energy - Emrgy Hydro -

  6. Performance of an inverted ion source

    SciTech Connect (OSTI)

    Salvadori, M. C.; Teixeira, F. S.; Sgubin, L. G.; Araujo, W. W. R.; Spirin, R. E.; Oks, E. M.; Brown, I. G.

    2013-02-15

    Whereas energetic ion beams are conventionally produced by extracting ions (say, positive ions) from a plasma that is held at high (positive) potential, with ion energy determined by the potential drop through which the ions fall in the beam formation electrode system, in the device described here the plasma and its electronics are held at ground potential and the ion beam is formed and injected energetically into a space maintained at high (negative) potential. We refer to this configuration as an 'inverted ion source.' This approach allows considerable savings both technologically and economically, rendering feasible some ion beam applications, in particular small-scale ion implantation, that might otherwise not be possible for many researchers and laboratories. We have developed a device of this kind utilizing a metal vapor vacuum arc plasma source, and explored its operation and beam characteristics over a range of parameter variation. The downstream beam current has been measured as a function of extraction voltage (5-35 kV), arc current (50-230 A), metal ion species (Ti, Nb, Au), and extractor grid spacing and beamlet aperture size (3, 4, and 5 mm). The downstream ion beam current as measured by a magnetically-suppressed Faraday cup was up to as high as 600 mA, and with parametric variation quite similar to that found for the more conventional metal vapor vacuum arc ion source.

  7. Ion Rings for Magnetic Fusion

    SciTech Connect (OSTI)

    Greenly, John, B.

    2005-07-31

    This Final Technical Report presents the results of the program, Ion Rings for Magnetic Fusion, which was carried out under Department of Energy funding during the period August, 1993 to January, 2005. The central objective of the program was to study the properties of field-reversed configurations formed by ion rings. In order to reach this objective, our experimental program, called the Field-reversed Ion Ring Experiment, FIREX, undertook to develop an efficient, economical technology for the production of field-reversed ion rings. A field-reversed configuration (FRC) in which the azimuthal (field-reversing) current is carried by ions with gyro-radius comparable to the magnetic separatrix radius is called a field-reversed ion ring. A background plasma is required for charge neutralization of the ring, and this plasma will be confined within the ring's closed magnetic flux. Ion rings have long been of interest as the basis of compact magnetic fusion reactors, as the basis for a high-power accelerator for an inertial fusion driver, and for other applications of high power ion beams or plasmas of high energy density. Specifically, the FIREX program was intended to address the longstanding question of the contribution of large-orbit ions to the observed stability of experimental FRCs to the MHD tilt mode. Typical experimental FRCs with s {approx} 2-4, where s is the ratio of separatrix radius to ion gyro-radius, have been stable to tilting, but desired values for a fusion reactor, s > 20, should be unstable. The FIREX ring would consist of a plasma with large s for the background ions, but with s {approx} 1 for the ring ions. By varying the proportions of these two populations, the minimum proportion of large-orbit ions necessary for stability could be determined. The incorporation of large-orbit ions, perhaps by neutral-beam injection, into an FRC has been advanced for the purpose of stabilizing, heating, controlling angular momentum, and aiding the formation of a reactor-scale FRC, and the FIREX program was intended to test the ideas behind this approach. We will describe in this report the technological development path and advances in physics understanding that allowed FIREX to reach a regime in which ion rings were reproducibly created with up to about half the current necessary to produce field reversal. Unfortunately, the experiments were limited to this level by a fundamental, unanticipated aspect of the physics of strong ion rings in plasma. The FIREX ring is a strongly anisotropic, current-carrying population of ions moving faster than the Alfven speed in the background plasma. The rapidly changing ring current excites very large-amplitude Alfven waves in the plasma, and these waves strongly affect the ring, causing rapid energy loss in a way that is not compatible with the success of the ring trapping scenario around which FIREX was designed. The result was that FIREX rings were always very short-lived. We will discuss the implication of these results for possible future use of large-orbit ions in FRCs. In short, it appears that a certain range of the parameters characterizing the ring Alfven mach number and distribution function must be avoided to allow the existence of a long-lived energetic ion component in an FRC. This report will explain why FIREX experimental results cannot be directly scaled to quantitatively predict this range for a particular FRC configuration. This will require accurate, three-dimensional simulations. FIREX results do constitute a very good dataset for validating such a code, and simulations already carried out during this program provide a guide to the important physics involved.

  8. High Temperature Heat Exchanger Project

    SciTech Connect (OSTI)

    Anthony E. Hechanova, Ph.D.

    2008-09-30

    The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

  9. Vehicle Technologies Office: Technologies

    Broader source: Energy.gov [DOE]

    To support DOE's goal to provide clean and secure energy, the Vehicle Technologies Office (VTO) invests in research and development that:

  10. Imaging Heterogeneous Ion Transfer: Lithium Ion Quantification...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 24, 2014, Research Highlights Imaging Heterogeneous Ion Transfer: Lithium Ion Quantification using Mercury Amalgams as In Situ Electrochemical Probes in Nonaqueous Media ...

  11. Energy-Exchange Project

    SciTech Connect (OSTI)

    Not Available

    1982-04-01

    The purpose of the study was to determine what energy savings can be achieved by coordinating the resources and requirements of two facilities, the 26th Ward Water Pollution Control Plant (WPCP) and a housing development named Starrett City with its own total energy system. It was determined that three energy exchange options were economically and technically feasible. These include: the transfer of digester gas produced at the 26th Ward to the boilers at the Starrett City's total energy plant (TEP); the transfer of hot water heated at the TEP to the 26th Ward for space and process heating; and the transfer of coal effluent waste water from the 26th Ward to the condenser cooling systems at the TEP. Technical information is presented to support the findings. The report addresses those tasks of the statement of work dedicated to data acquisition, analysis, and energy conservation strategies internal to the Starrett City TEP and the community it supplies as well as to the 26th Ward WPCP. (MCW)

  12. Modular heat exchanger

    DOE Patents [OSTI]

    Giardina, Angelo R. [Marple Township, Delaware County, PA

    1981-03-03

    A shell and tube heat exchanger having a plurality of individually removable tube bundle modules. A lattice of structural steel forming rectangular openings therein is placed at each end of a cylindrical shell. Longitudinal structural members are placed in the shell between corners of the rectangular openings situated on opposite ends of the shell. Intermediate support members interconnect the longitudinal supports so as to increase the longitudinal supports rigidity. Rectangular parallelpiped tube bundle moldules occupy the space defined by the longitudinal supports and end supports and each include a rectangular tube sheet situated on each end of a plurality of tubes extending therethrough, a plurality of rectangular tube supports located between the tube sheets, and a tube bundle module stiffening structure disposed about the bundle's periphery and being attached to the tube sheets and tube supports. The corners of each tube bundle module have longitudinal framework members which are mateable with and supported by the longitudinal support members. Intermediate support members constitute several lattice, each of which is situate d in a plane between the end support members. The intermediate support members constituting the several lattice extend horizontally and vertically between longitudinal supports of adjacent tube module voids. An alternative embodiment for intermediate support members constitute a series of structural plates situated at the corners of the module voids and having recesses therein for receiving the respective longitudinal support members adjacent thereto, protrusions separating the recesses, and a plurality of struts situated between protrusions of adjacent structural plates.

  13. Modular heat exchanger

    DOE Patents [OSTI]

    Giardina, A.R.

    1981-03-03

    A shell and tube heat exchanger is described having a plurality of individually removable tube bundle modules. A lattice of structural steel forming rectangular openings therein is placed at each end of a cylindrical shell. Longitudinal structural members are placed in the shell between corners of the rectangular openings situated on opposite ends of the shell. Intermediate support members interconnect the longitudinal supports so as to increase the longitudinal supports rigidity. Rectangular parallelepiped tube bundle modules occupy the space defined by the longitudinal supports and end supports and each include a rectangular tube sheet situated on each end of a plurality of tubes extending there through, a plurality of rectangular tube supports located between the tube sheets, and a tube bundle module stiffening structure disposed about the bundle's periphery and being attached to the tube sheets and tube supports. The corners of each tube bundle module have longitudinal framework members which are mateable with and supported by the longitudinal support members. Intermediate support members constitute several lattices, each of which is situated in a plane between the end support members. The intermediate support members constituting the several lattices extend horizontally and vertically between longitudinal supports of adjacent tube module voids. An alternative embodiment for intermediate support members constitute a series of structural plates situated at the corners of the module voids and having recesses therein for receiving the respective longitudinal support members adjacent thereto, protrusions separating the recesses, and a plurality of struts situated between protrusions of adjacent structural plates. 12 figs.

  14. ION PUMP

    DOE Patents [OSTI]

    Milleron, N.

    1961-01-01

    An ion pump and pumping method are given for low vacuum pressures in which gases introduced into a pumping cavity are ionized and thereafter directed and accelerated into a quantity of liquid gettering metal where they are absorbed. In the preferred embodiment the metal is disposed as a liquid pool upon one electrode of a Phillips ion gauge type pump. Means are provided for continuously and remotely withdrawing and degassing the gettering metal. The liquid gettering metal may be heated if desired, although various combinations of gallium, indium, tin, bismuth, and lead, the preferred metals, have very low melting points. A background pressure of evaporated gettering metal may be provided by means of a resistance heated refractory metal wick protruding from the surface of the pcol of gettering metal.

  15. Highly charged ion secondary ion mass spectroscopy

    DOE Patents [OSTI]

    Hamza, Alex V.; Schenkel, Thomas; Barnes, Alan V.; Schneider, Dieter H.

    2001-01-01

    A secondary ion mass spectrometer using slow, highly charged ions produced in an electron beam ion trap permits ultra-sensitive surface analysis and high spatial resolution simultaneously. The spectrometer comprises an ion source producing a primary ion beam of highly charged ions that are directed at a target surface, a mass analyzer, and a microchannel plate detector of secondary ions that are sputtered from the target surface after interaction with the primary beam. The unusually high secondary ion yield permits the use of coincidence counting, in which the secondary ion stops are detected in coincidence with a particular secondary ion. The association of specific molecular species can be correlated. The unique multiple secondary nature of the highly charged ion interaction enables this new analytical technique.

  16. Nanocomposite Materials for Lithium-Ion Batteries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanocomposite Materials for Lithium-Ion Batteries Nanocomposite Materials for Lithium-Ion Batteries PDF icon nanocomposite_materials_li_ion.pdf More Documents & Publications Progress of DOE Materials, Manufacturing Process R&D, and ARRA Battery Manufacturing Grants Vehicle Technologies Office: 2009 Energy Storage R&D Annual Progress Report Energy Storage R&D and ARRA

  17. Heat exchange assembly

    DOE Patents [OSTI]

    Lowenstein, Andrew; Sibilia, Marc; Miller, Jeffrey; Tonon, Thomas S.

    2004-06-08

    A heat exchange assembly comprises a plurality of plates disposed in a spaced-apart arrangement, each of the plurality of plates includes a plurality of passages extending internally from a first end to a second end for directing flow of a heat transfer fluid in a first plane, a plurality of first end-piece members equaling the number of plates and a plurality of second end-piece members also equaling the number of plates, each of the first and second end-piece members including a recessed region adapted to fluidly connect and couple with the first and second ends of the plate, respectively, and further adapted to be affixed to respective adjacent first and second end-piece members in a stacked formation, and each of the first and second end-piece members further including at least one cavity for enabling entry of the heat transfer fluid into the plate, exit of the heat transfer fluid from the plate, or 180.degree. turning of the fluid within the plate to create a serpentine-like fluid flow path between points of entry and exit of the fluid, and at least two fluid conduits extending through the stacked plurality of first and second end-piece members for providing first fluid connections between the parallel fluid entry points of adjacent plates and a fluid supply inlet, and second fluid connections between the parallel fluid exit points of adjacent plates and a fluid discharge outlet so that the heat transfer fluid travels in parallel paths through each respective plate.

  18. Hear Exchange Assembly

    DOE Patents [OSTI]

    Lowenstein, Andrew; Sibilia, Marc; Miller, Jeffrey; Tonon, Thomas S.

    2003-05-27

    A heat exchange assembly comprises a plurality of plates disposed in a spaced-apart arrangement, each of the plurality of plates includes a plurality of passages extending internally from a first end to a second end for directing flow of a heat transfer fluid in a first plane, a plurality of first end-piece members equaling the number of plates and a plurality of second end-piece members also equaling the number of plates, each of the first and second end-piece members including a recessed region adapted to fluidly connect and couple with the first and second ends of the plate, respectively, and further adapted to be affixed to respective adjacent first and second end-piece members in a stacked formation, and each of the first and second end-piece members further including at least one cavity for enabling entry of the heat transfer fluid into the plate, exit of the heat transfer fluid from the plate, or 180.degree. turning of the fluid within the plate to create a serpentine-like fluid flow path between points of entry and exit of the fluid, and at least two fluid conduits extending through the stacked plurality of first and second end-piece members for providing first fluid connections between the parallel fluid entry points of adjacent plates and a fluid supply inlet, and second fluid connections between the parallel fluid exit points of adjacent plates and a fluid discharge outlet so that the heat transfer fluid travels in parallel paths through each respective plate.

  19. Sodium-bearing Waste Treatment Technology Evaluation Report

    SciTech Connect (OSTI)

    Charles M. Barnes; Arlin L. Olson; Dean D. Taylor

    2004-05-01

    Sodium-bearing waste (SBW) disposition is one of the U.S. Department of Energy (DOE) Idaho Operation Offices (NE-ID) and State of Idahos top priorities at the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL has been working over the past several years to identify a treatment technology that meets NE-ID and regulatory treatment requirements, including consideration of stakeholder input. Many studies, including the High-Level Waste and Facilities Disposition Environmental Impact Statement (EIS), have resulted in the identification of five treatment alternatives that form a short list of perhaps the most appropriate technologies for the DOE to select from. The alternatives are (a) calcination with maximum achievable control technology (MACT) upgrade, (b) steam reforming, (c) cesium ion exchange (CsIX) with immobilization, (d) direct evaporation, and (e) vitrification. Each alternative has undergone some degree of applied technical development and preliminary process design over the past four years. This report presents a summary of the applied technology and process design activities performed through February 2004. The SBW issue and the five alternatives are described in Sections 2 and 3, respectively. Details of preliminary process design activities for three of the alternatives (steam reforming, CsIX, and direct evaporation) are presented in three appendices. A recent feasibility study provides the details for calcination. There have been no recent activities performed with regard to vitrification; that section summarizes and references previous work.

  20. CATALYTIC PROMOTION OF THE ADSORPTION OF VANADIUM ON AN ANIONIC EXCHANGE RESIN

    DOE Patents [OSTI]

    Bailes, R.H.; Ellis, D.A.

    1958-08-26

    An improvement in the process for the recovery of vanadium from acidic phosphatic solutions is presented. In this process the vanadium is first oxidized to the pentavaleat state, and is then separated by contacting such solutions with an anion exchange resin whereby adsorption of the complexed pentavalent vanadium is effected. The improvement lies in the fact that adsorp tion of the vanadium complex by the anion exchange resin is promoted and improved by providing fiuoride ions in solution to be contacted.

  1. Digital field ion microscopy

    SciTech Connect (OSTI)

    Sijbrandij, S.J.; Russell, K.F.; Miller, M.K.; Thomson, R.C.

    1998-01-01

    Due to environmental concerns, there is a trend to avoid the use of chemicals needed to develop negatives and to process photographic paper, and to use digital technologies instead. Digital technology also offers the advantages that it is convenient, as it enables quick access to the end result, allows image storage and processing on computer, allows rapid hard copy output, and simplifies electronic publishing. Recently significant improvements have been made to the performance and cost of camera-sensors and printers. In this paper, field ion images recorded with two digital cameras of different resolution are compared to images recorded on standard 35 mm negative film. It should be noted that field ion images exhibit low light intensity and high contrast. Field ion images were recorded from a standard microchannel plate and a phosphor screen and had acceptance angles of {approximately} 60{degree}. Digital recordings were made with a Digital Vision Technologies (DVT) MICAM VHR1000 camera with a resolution of 752 x 582 pixels, and a Kodak DCS 460 digital camera with a resolution of 3,060 x 2,036 pixels. Film based recordings were made with Kodak T-MAX film rated at 400 ASA. The resolving power of T-MAX film, as specified by Kodak, is between 50 and 125 lines per mm, which corresponds to between 1,778 x 1,181 and 4,445 x 2,953 pixels, i.e. similar to that from the DCS 460 camera. The intensities of the images were sufficient to be recorded with standard fl:1.2 lenses with exposure times of less than 2 s. Many digital cameras were excluded from these experiments due to their lack of sensitivity or the inability to record a full frame image due to the fixed working distance defined by the vacuum system. The digital images were output on a Kodak Digital Science 8650 PS dye sublimation color printer (300 dpi). All field ion micrographs presented were obtained from a Ni-Al-Be specimen.

  2. Heat exchanger using graphite foam

    DOE Patents [OSTI]

    Campagna, Michael Joseph; Callas, James John

    2012-09-25

    A heat exchanger is disclosed. The heat exchanger may have an inlet configured to receive a first fluid and an outlet configured to discharge the first fluid. The heat exchanger may further have at least one passageway configured to conduct the first fluid from the inlet to the outlet. The at least one passageway may be composed of a graphite foam and a layer of graphite material on the exterior of the graphite foam. The layer of graphite material may form at least a partial barrier between the first fluid and a second fluid external to the at least one passageway.

  3. Heat exchanger with ceramic elements

    DOE Patents [OSTI]

    Corey, John A.

    1986-01-01

    An annular heat exchanger assembly includes a plurality of low thermal growth ceramic heat exchange members with inlet and exit flow ports on distinct faces. A mounting member locates each ceramic member in a near-annular array and seals the flow ports on the distinct faces into the separate flow paths of the heat exchanger. The mounting member adjusts for the temperature gradient in the assembly and the different coefficients of thermal expansion of the members of the assembly during all operating temperatures.

  4. Staff exchange with Chemical Waste Management. Final project report

    SciTech Connect (OSTI)

    Harrer, B.J.; Barak, D.W.

    1993-12-01

    Original objective was transfer of PNL technology and expertise in computational chemistry and waste flow/treatment modeling to CWM. Identification and characterization of a broader portfolio of PNL`s environmental remediation technologies with high potential for rapid application became the focus of the exchange, which included E-mail exchanges. Of the 14 technologies discussed, the following were identified as being of high interest to CWM: six phase soil heating (in-situ heating), high energy electrical corona, RAAS/ReOpt{trademark} (remedial, expert system), TEES{trademark} (catalytic production of methane from biological wastes), PST (process for treating petroleum sludge). CWM`s reorganization and downsizing reduced the potential benefits to industry, but a proposal for transfer and application of PST to Wheelabrator was made.

  5. Nonlocal exchange correlation in screened-exchange densityfunctional methods

    SciTech Connect (OSTI)

    Lee, Byounghak; Wang, Lin-Wang; Spataru, Catalin D.; Louie,Steven G.

    2007-04-22

    We present a systematic study on the exchange-correlationeffects in screened-exchange local density functional method. Toinvestigate the effects of the screened-exchange potential in the bandgap correction, we have compared the exchange-correlation potential termin the sX-LDA formalism with the self-energy term in the GWapproximation. It is found that the band gap correction of the sX-LDAmethod primarily comes from the downshift of valence band states,resulting from the enhancement of bonding and the increase of ionizationenergy. The band gap correction in the GW method, on the contrary, comesin large part from the increase of theconduction band energies. We alsostudied the effects of the screened-exchange potential in the totalenergy by investigating the exchange-correlation hole in comparison withquantum Monte Carlo calculations. When the Thomas-Fermi screening isused, the sX-LDA method overestimates (underestimates) theexchange-correlation hole in short (long) range. From theexchange-correlation energy analysis we found that the LDA method yieldsbetter absolute total energy than sX-LDA method.

  6. Ion Stancu

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Search for Neutrino Oscillations with MiniBooNE Ion Stancu University of Alabama Frontiers in Neutrino Physics APC, Paris, October 6th, 2011 06.10.2011
FNP
 2
 Ion
Stancu
-
University
of
Alabama
 Introduction Review of the MiniBooNE oscillation results: * Motivation for MiniBooNE: testing the LSND signal * MiniBooNE design strategy and assumptions * Neutrino oscillation results: PRL 98, 231801 (2007) & PRL 102, 101802 (2009) * Antineutrino oscillation results: PRL 103,

  7. Improved ion source

    DOE Patents [OSTI]

    Leung, K.N.; Ehlers, K.W.

    1982-05-04

    A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species,

  8. Anion exchange polymer electrolytes

    DOE Patents [OSTI]

    Kim, Yu Seung; Kim, Dae Sik; Lee, Kwan-Soo

    2013-07-23

    Solid anion exchange polymer electrolytes and compositions comprising chemical compounds comprising a polymeric core, a spacer A, and a guanidine base, wherein said chemical compound is uniformly dispersed in a suitable solvent and has the structure: ##STR00001## wherein: i) A is a spacer having the structure O, S, SO.sub.2, --NH--, --N(CH.sub.2).sub.n, wherein n=1-10, --(CH.sub.2).sub.n--CH.sub.3--, wherein n=1-10, SO.sub.2-Ph, CO-Ph, ##STR00002## wherein R.sub.5, R.sub.6, R.sub.7 and R.sub.8 each are independently --H, --NH.sub.2, F, Cl, Br, CN, or a C.sub.1-C.sub.6 alkyl group, or any combination of thereof; ii) R.sub.9, R.sub.10, R.sub.11, R.sub.12, or R.sub.13 each independently are --H, --CH.sub.3, --NH.sub.2, --NO, --CH.sub.nCH.sub.3 where n=1-6, HC.dbd.O--, NH.sub.2C.dbd.O--, --CH.sub.nCOOH where n=1-6, --(CH.sub.2).sub.n--C(NH.sub.2)--COOH where n=1-6, --CH--(COOH)--CH.sub.2--COOH, --CH.sub.2--CH(O--CH.sub.2CH.sub.3).sub.2, --(C.dbd.S)--NH.sub.2, --(C.dbd.NH)--N--(CH.sub.2).sub.nCH.sub.3, where n=0-6, --NH--(C.dbd.S)--SH, --CH.sub.2--(C.dbd.O)--O--C(CH.sub.3).sub.3, --O--(CH.sub.2).sub.n--CH--(NH.sub.2)--COOH, where n=1-6, --(CH.sub.2).sub.n--CH.dbd.CH wherein n=1-6, --(CH.sub.2).sub.n--CH--CN wherein n=1-6, an aromatic group such as a phenyl, benzyl, phenoxy, methylbenzyl, nitrogen-substituted benzyl or phenyl groups, a halide, or halide-substituted methyl groups; and iii) wherein the composition is suitable for use in a membrane electrode assembly.

  9. 2016 Energy Exchange (Providence, RI)

    Broader source: Energy.gov [DOE]

    The 2016 Energy Exchange in Providence, Rhode Island, will provide training to energy managers and sustainability professionals who are working to improve facility performance, advance the use of renewable energy, and reduce greenhouse gas emissions at federal sites.

  10. Energy Exchange 2015 Attendee Guide

    Broader source: Energy.gov [DOE]

    Attendee guide offers an overview of the Energy Exchange 2015, a two-and-a-half day training event that took place from August 11-13, 2015, at the Phoenix Convention Center in Phoenix, Arizona.

  11. Energy Exchange 2015 Speaker Biographies

    Broader source: Energy.gov [DOE]

    Document offers an overview of each person speaking at the Energy Exchange, a two-and-a-half day training scheduled for August 11-13, 2015, at the Phoenix Convention Center in Phoenix, Arizona.

  12. Heat pipe array heat exchanger

    DOE Patents [OSTI]

    Reimann, Robert C.

    1987-08-25

    A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

  13. Environmental Banc Exchange | Open Energy Information

    Open Energy Info (EERE)

    Banc Exchange Jump to: navigation, search Name: Environmental Banc & Exchange Place: Owings Mills, Maryland Zip: 21117 4860 Product: Invests in environmentally friendly businesses....

  14. Energy Exchange Speaker Biographies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Speaker Biographies Energy Exchange Speaker Biographies Document offers an overview of each person speaking at the Energy Exchange, a two-and-a-half day training scheduled for ...

  15. Tianjin Climate Exchange TCX | Open Energy Information

    Open Energy Info (EERE)

    (TCX) Place: Tianjin Municipality, China Product: Exchange platform for emission and energy conservation trading products. References: Tianjin Climate Exchange (TCX)1 This...

  16. printed-circuit heat exchanger PCHE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    printed-circuit heat exchanger PCHE - Sandia Energy Energy Search Icon Sandia Home ... SunShot Grand Challenge: Regional Test Centers printed-circuit heat exchanger PCHE Home...

  17. A fundamentally new approach to air-cooled heat exchangers.

    SciTech Connect (OSTI)

    Koplow, Jeffrey P.

    2010-01-01

    We describe breakthrough results obtained in a feasibility study of a fundamentally new architecture for air-cooled heat exchangers. A longstanding but largely unrealized opportunity in energy efficiency concerns the performance of air-cooled heat exchangers used in air conditioners, heat pumps, and refrigeration equipment. In the case of residential air conditioners, for example, the typical performance of the air cooled heat exchangers used for condensers and evaporators is at best marginal from the standpoint the of achieving maximum the possible coefficient of performance (COP). If by some means it were possible to reduce the thermal resistance of these heat exchangers to a negligible level, a typical energy savings of order 30% could be immediately realized. It has long been known that a several-fold increase in heat exchanger size, in conjunction with the use of much higher volumetric flow rates, provides a straight-forward path to this goal but is not practical from the standpoint of real world applications. The tension in the market place between the need for energy efficiency and logistical considerations such as equipment size, cost and operating noise has resulted in a compromise that is far from ideal. This is the reason that a typical residential air conditioner exhibits significant sensitivity to reductions in fan speed and/or fouling of the heat exchanger surface. The prevailing wisdom is that little can be done to improve this situation; the 'fan-plus-finned-heat-sink' heat exchanger architecture used throughout the energy sector represents an extremely mature technology for which there is little opportunity for further optimization. But the fact remains that conventional fan-plus-finned-heat-sink technology simply doesn't work that well. Their primary physical limitation to performance (i.e. low thermal resistance) is the boundary layer of motionless air that adheres to and envelops all surfaces of the heat exchanger. Within this boundary layer region, diffusive transport is the dominant mechanism for heat transfer. The resulting thermal bottleneck largely determines the thermal resistance of the heat exchanger. No one has yet devised a practical solution to the boundary layer problem. Another longstanding problem is inevitable fouling of the heat exchanger surface over time by particulate matter and other airborne contaminants. This problem is especially important in residential air conditioner systems where often little or no preventative maintenance is practiced. The heat sink fouling problem also remains unsolved. The third major problem (alluded to earlier) concerns inadequate airflow to heat exchanger resulting from restrictions on fan noise. The air-cooled heat exchanger described here solves all of the above three problems simultaneously. The 'Air Bearing Heat Exchanger' provides a several-fold reduction in boundary layer thickness, intrinsic immunity to heat sink fouling, and drastic reductions in noise. It is also very practical from the standpoint of cost, complexity, ruggedness, etc. Successful development of this technology is also expected to have far reaching impact in the IT sector from the standpointpoint of solving the 'Thermal Brick Wall' problem (which currently limits CPU clocks speeds to {approx}3 GHz), and increasing concern about the the electrical power consumption of our nation's information technology infrastructure.

  18. ION GUN

    DOE Patents [OSTI]

    Dandl, R.A.

    1961-10-24

    An ion gun is described for the production of an electrically neutral ionized plasma. The ion gun comprises an anode and a cathode mounted in concentric relationship with a narrow annulus between. The facing surfaces of the rear portions of the anode and cathode are recessed to form an annular manifold. Positioned within this manifold is an annular intermediate electrode aligned with the an nulus between the anode and cathode. Gas is fed to the manifold and an arc discharge is established between the anode and cathode. The gas is then withdrawn from the manifold through the annulus between the anode and cathode by a pressure differential. The gas is then ionized by the arc discharge across the annulus. The ionized gas is withdrawn from the annulus by the combined effects of the pressure differential and a collimating magnetic field. In a 3000 gauss magnetic field, an arc voltage of 1800 volts, and an arc current of 0.2 amp, a plasma of about 3 x 10/sup 11/ particles/cc is obtained. (AEC)

  19. DVZ_Remediation_Technology_Tables_Info_Exchange.xlsx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Chemical oxidants can be delivered using soil mixing, horizontal injections wells, or vertical injection wells. Soil Vapor Extraction (SVE) Soil vapor is extracted through vertical ...

  20. Photoelectrochemical Semiconductor Surface Fortification via Ion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Implantation - Energy Innovation Portal Vehicles and Fuels Vehicles and Fuels Solar Photovoltaic Solar Photovoltaic Hydrogen and Fuel Cell Hydrogen and Fuel Cell Find More Like This Return to Search Photoelectrochemical Semiconductor Surface Fortification via Ion Implantation National Renewable Energy Laboratory National Energy Technology Laboratory Contact NREL About This Technology Technology Marketing Summary Producing hydrogen from clean sources of energy has been one of the major

  1. Ion mobility sensor

    DOE Patents [OSTI]

    Koo, Jackson C.; Yu, Conrad M.

    2005-08-23

    An ion mobility sensor which can detect both ion and molecules simultaneously. Thus, one can measure the relative arrival times between various ions and molecules. Different ions have different mobility in air, and the ion sensor enables measurement of ion mobility, from which one can identify the various ions and molecules. The ion mobility sensor which utilizes a pair of glow discharge devices may be designed for coupling with an existing gas chromatograph, where various gas molecules are already separated, but numbers of each kind of molecules are relatively small, and in such cases a conventional ion mobility sensor cannot be utilized.

  2. ION SOURCE

    DOE Patents [OSTI]

    Brobeck, W.M.

    1959-04-14

    This patent deals with calutrons and more particularly to an arrangement therein whereby charged bottles in a calutron source unit may be replaced without admitting atmospheric air to the calutron vacuum chamber. As described, an ion unit is disposed within a vacuum tank and has a reservoir open toward a wall of the tank. A spike projects from thc source into the reservoir. When a charge bottle is placed in the reservoir, the spike breaks a frangible seal on the bottle. After the contents of the bottle are expended the bottle may be withdrawn and replaced with another charge bottle by a varuum lock arrangement in conjunction with an arm for manipulating the bottle.

  3. Ion Monitoring

    DOE Patents [OSTI]

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2003-11-18

    The apparatus and method provide a technique for significantly reducing capacitance effects in detector electrodes arising due to movement of the instrument relative to the item/location being monitored in ion detection based techniques. The capacitance variations are rendered less significant by placing an electrically conducting element between the detector electrodes and the monitored location/item. Improved sensitivity and reduced noise signals arise as a result. The technique also provides apparatus and method suitable for monitoring elongate items which are unsuited to complete enclosure in one go within a chamber. The items are monitored part by part as the pass through the instrument, so increasing the range of items or locations which can be successfully monitored.

  4. Lessons Learned: Peer Exchange Calls-- No. 5

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Peer Exchange Call Series: Guide for Benchmarking Residential Program Progress with Examples.

  5. Ion beam inertial confinement target

    DOE Patents [OSTI]

    Bangerter, Roger O.; Meeker, Donald J.

    1985-01-01

    A target for implosion by ion beams composed of a spherical shell of frozen DT surrounded by a low-density, low-Z pusher shell seeded with high-Z material, and a high-density tamper shell. The target has various applications in the inertial confinement technology. For certain applications, if desired, a low-density absorber shell may be positioned intermediate the pusher and tamper shells.

  6. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Design, Evaluation and Test Technology Facility Technology Deployment Centers Technology Deployment Centers Ion Beam Lab Advanced Power Sources Laboratory Engineering Sciences Experimental Facilities (ESEF) Explosive Components Facility Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic Applied Research Facility (STAR) Weapon and Force Protection Center Design, Evaluation

  7. New Oxygen-Production Technology Proving Successful

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy's National Energy Technology Laboratory has partnered with Air Products and Chemicals Inc. of Allentown, Penn. to develop the Ion Transport Membrane (ITM) Oxygen, a revolutionary new oxygen-production technology that requires less energy and offers lower capital costs than conventional technologies.

  8. Ion funnel ion trap and process

    DOE Patents [OSTI]

    Belov, Mikhail E [Richland, WA; Ibrahim, Yehia M [Richland, WA; Clowers, Biran H [West Richland, WA; Prior, David C [Hermiston, OR; Smith, Richard D [Richland, WA

    2011-02-15

    An ion funnel trap is described that includes a inlet portion, a trapping portion, and a outlet portion that couples, in normal operation, with an ion funnel. The ion trap operates efficiently at a pressure of .about.1 Torr and provides for: 1) removal of low mass-to-charge (m/z) ion species, 2) ion accumulation efficiency of up to 80%, 3) charge capacity of .about.10,000,000 elementary charges, 4) ion ejection time of 40 to 200 .mu.s, and 5) optimized variable ion accumulation times. Ion accumulation with low concentration peptide mixtures has shown an increase in analyte signal-to-noise ratios (SNR) of a factor of 30, and a greater than 10-fold improvement in SNR for multiply charged analytes.

  9. Kunshan Jengkuo Energy Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Kunshan Jengkuo Energy Technology Co, Ltd Place: China Product: A China-based maker of Lithium Ion batteries including Lithium Iron Phosphate and Lithium Polymer, applications...

  10. Xi an Safty Energy Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Safty Energy Technology Co., Ltd. Place: China Product: China-based producer of Lithium Ion Polymer batteries for several applications including Radio Controlled toys....

  11. Zhejiang Xinghai Energy Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Technology Co, Ltd Place: Zhejiang Province, China Product: China-based maker of lithium ion batteries and e-bikes which use such batteries. References: Zhejiang Xinghai...

  12. Shenzhen Mottcell Battery Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Technology Co, Ltd Place: China Product: China-based manufacturer of cylindrical Lithium Iron Phopshate and Lithium ion batteries. References: Shenzhen Mottcell Battery...

  13. Finnish Electric Vehicle Technologies FEVT | Open Energy Information

    Open Energy Info (EERE)

    Offers large capacity electrical energy storage solutions using technology based on lithium-ion batteries and intelligent cell control systems. References: Finnish Electric...

  14. EERE Success Story-Tennessee, Pennsylvania: Porous Power Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award Project Overview Positive Impact Breakthrough technology lowers lithium ion battery costs. ...

  15. Savannah River Technology Center. Monthly report

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    This document contains information about the research programs being conducted at the Savannah River Plant. Topics of discussion include: thermal cycling absorption process, development of new alloys, ion exchange, oxalate precipitation, calcination, environmental research, remedial action, ecological risk assessments, chemical analysis of salt cakes, natural phenomena hazards assessment, and sampling of soils and groundwater.

  16. Energy and technology review

    SciTech Connect (OSTI)

    Brown, P.S.

    1983-06-01

    Research activities at Lawrence Livermore National Laboratory are described in the Energy and Technology Review. This issue includes articles on measuring chromosome changes in people exposed to cigarette smoke, sloshing-ion experiments in the tandem mirror experiment, aluminum-air battery development, and a speech by Edward Teller on national defense. Abstracts of the first three have been prepared separately for the data base. (GHT)

  17. Multi-block sulfonated poly(phenylene) copolymer proton exchange membranes

    DOE Patents [OSTI]

    Fujimoto, Cy H.; Hibbs, Michael; Ambrosini, Andrea

    2012-02-07

    Improved multi-block sulfonated poly(phenylene) copolymer compositions, methods of making the same, and their use as proton exchange membranes (PEM) in hydrogen fuel cells, direct methanol fuel cells, in electrode casting solutions and electrodes. The multi-block architecture has defined, controllable hydrophobic and hydrophilic segments. These improved membranes have better ion transport (proton conductivity) and water swelling properties.

  18. Development of models for exchange of electronic documents

    SciTech Connect (OSTI)

    Glavev, Victor

    2014-11-18

    The report presents a model for exchange of electronic documents between different government administrations. It defines electronic messages that are transmitted between them and the way that messages should be processed by software systems. The proposed approach is sufficiently general and allows use of the best applicable information technologies such as data presentation structures and communication protocols. Within the study, a simple implementation of the model is implemented and deployed in various government administrations in Republic of Bulgaria.

  19. Method and apparatus for removing ions from soil

    DOE Patents [OSTI]

    Bibler, J.P.

    1993-03-02

    A method and apparatus are presented for selectively removing species of ions from an area of soil. Permeable membranes 14 and 18 impregnated with an ion exchange resin that is specific to one or more species of chemical ions are inserted into ground 12 in close proximity to, and on opposing sides of, a soil area of interest 22. An electric potential is applied across electrodes 26 and 28 to cause the migration of ions out of soil area 22 toward the membranes 14 and 18. Preferably, the resin exchanges ions of sodium or hydrogen for ions of mercury that it captures from soil area 22. Once membranes 14 and 18 become substantially saturated with mercury ions, the potential applied across electrodes 26 and 28 is discontinued and membranes 14 and 18 are preferably removed from soil 12 for storage or recovery of the ions. The membranes are also preferably impregnated with a buffer to inhibit the effect of the hydrolysis of water by current from the electrodes.

  20. Method and apparatus for removing ions from soil

    DOE Patents [OSTI]

    Bibler, Jane P.

    1993-01-01

    A method and apparatus for selectively removing species of ions from an area of soil. Permeable membranes 14 and 18 impregnated with an ion exchange resin that is specific to one or more species of chemical ions are inserted into ground 12 in close proximity to, and on opposing sides of, a soil area of interest 22. An electric potential is applied across electrodes 26 and 28 to cause the migration of ions out of soil area 22 toward the membranes 14 and 18. Preferably, the resin exchanges ions of sodium or hydrogen for ions of mercury that it captures from soil area 22. Once membranes 14 and 18 become substantially saturated with mercury ions, the potential applied across electrodes 26 and 28 is discontinued and membranes 14 and 18 are preferably removed from soil 12 for storage or recovery of the ions. The membranes are also preferably impregnated with a buffer to inhibit the effect of the hydrolysis of water by current from the electrodes.

  1. Energy Exchange 2015 Overview Presentation

    Broader source: Energy.gov [DOE]

    Webinar presentation slides delivered by Federal Energy Management Program Director Timothy Unruh offer an overview of the Energy Exchange 2015, a federal training event that took place from August 11-13, 2015, at the Phoenix Convention Center in Phoenix, Arizona.

  2. Primer on nuclear exchange models

    SciTech Connect (OSTI)

    Hafemeister, David

    2014-05-09

    Basic physics is applied to nuclear force exchange models between two nations. Ultimately, this scenario approach can be used to try and answer the age old question of 'how much is enough?' This work is based on Chapter 2 of Physics of Societal Issues: Calculations on National Security, Environment and Energy (Springer, 2007 and 2014)

  3. Nuclear Reactors and Technology

    SciTech Connect (OSTI)

    Cason, D.L.; Hicks, S.C.

    1992-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  4. CATIONIC EXCHANGE PROCESS FOR THE SEPARATION OF RARE EARTHS

    DOE Patents [OSTI]

    Choppin, G.R.; Thompson, S.G.; Harvey, B.G.

    1960-02-16

    A process for separating mixtures of elements in the lanthanum and actinium series of the periodic table is described. The mixture of elements is dissolved in 0.05 M HCI, wherein the elements exist as tripositive ions. The resulting solution is then transferred to a column of cationic exchange resin and the column eluted with 0.1 to 0.6 M aqueous ammonium alpha hydroxy isobutyrate solution of pH 3.8 to 5.0. The use of ammonium alpha hydroxy isobutyrate as an eluting agent results in sharper and more rapid separations than previously obtainable with eluants such as citric, tartaric, glycolic, and lactic acids.

  5. Model-Experimental Studies on Next-generation Li-ion Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Experimental Studies on Next-generation Li-ion Materials Model-Experimental Studies on Next-generation Li-ion Materials 2009 DOE Hydrogen Program and Vehicle Technologies Program ...

  6. Fail-Safe Design for Large Capacity Li-Ion Battery Systems -...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PDF Document Publication Fail Safe Design for Large Capacity Lithium-ion Batteries.pdf (2,324 KB) Technology Marketing Summary Lithium-ion batteries (LIBs) are a promising ...

  7. Fuels Technologies

    Energy Savers [EERE]

    Fuels Technologies Program Mission To develop more energy efficient and environmentally friendly highway transportation technologies that enable America to use less petroleum. --EERE Strategic Plan, October 2002-- Kevin Stork, Team Leader Fuel Technologies & Technology Deployment Vehicle Technologies Program Energy Efficiency and Renewable Energy U.S. Department of Energy DEER 2008 August 6, 2008 Presentation Outline n Fuel Technologies Research Goals Fuels as enablers for advanced engine

  8. Technology Assessment

    Office of Environmental Management (EM)

    ... and components such as heat exchangers and pipelines, ... 6%-8% for conventional internal combustion 106 engines, or ... 853 reuse of in-process waste streams a high priority ...

  9. Energy Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Our Vision National User Facilities Research Areas In Focus Global Solutions Energy Technologies Area (ETA) Building Technology & Urban Systems Energy Analysis & Environmental...

  10. Buildings-to-Grid Technical Opportunities: From the Information and Communications Technology Perspective

    SciTech Connect (OSTI)

    Kuruganti, Teja; Brabmley, Michael

    2014-03-28

    Information and communications technology (ICT) has enabled the integration of computer and audio-visual networks, leading to unprecedented exchange of data between various users and entities.

  11. Microfabricated ion frequency standard

    DOE Patents [OSTI]

    Schwindt, Peter; Biedermann, Grant; Blain, Matthew G.; Stick, Daniel L.; Serkland, Darwin K.; Olsson, III, Roy H.

    2010-12-28

    A microfabricated ion frequency standard (i.e. an ion clock) is disclosed with a permanently-sealed vacuum package containing a source of ytterbium (Yb) ions and an octupole ion trap. The source of Yb ions is a micro-hotplate which generates Yb atoms which are then ionized by a ultraviolet light-emitting diode or a field-emission electron source. The octupole ion trap, which confines the Yb ions, is formed from suspended electrodes on a number of stacked-up substrates. A microwave source excites a ground-state transition frequency of the Yb ions, with a frequency-doubled vertical-external-cavity laser (VECSEL) then exciting the Yb ions up to an excited state to produce fluorescent light which is used to tune the microwave source to the ground-state transition frequency, with the microwave source providing a precise frequency output for the ion clock.

  12. Exploration Technologies - Technology Needs Assessment

    SciTech Connect (OSTI)

    Greene, Amanda I.; Thorsteinsson, Hildigunnur; Reinhardt, Tim; Solomon, Samantha; James, Mallory

    2011-06-01

    This assessment is a critical component of ongoing technology roadmapping efforts, and will be used to guide the Geothermal Technology Program's research and development.

  13. High Impact Technology Catalyst: Technology Deployment Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalyst: Technology Deployment Strategies High Impact Technology Catalyst: Technology Deployment Strategies The Energy Department released the High Impact Technology Catalyst: ...

  14. NREL: Technology Transfer - Technology Partnership Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ombuds. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Agreements for Commercializing Technology CRADAs Work for...

  15. NREL: Technology Transfer - Technologies Available for Licensing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ombuds. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Technologies Available for Licensing...

  16. Temporal Development of Ion Beam Mean Charge State in PulsedVacuum Arc Ion Sources

    SciTech Connect (OSTI)

    Oks, Efim M.; Yushkov, Georgy Yu.; Anders, Andre

    2007-06-21

    Vacuum arc ion sources, commonly also known as "Mevva" ionsources, are used to generate intense pulsed metal ion beams. It is knownthat the mean charge state of the ion beam lies between 1 and 4,depending on cathode material, arc current, arc pulse duration, presenceor absence of magnetic field at the cathode, as well background gaspressure. A characteristic of the vacuum arc ion beam is a significantdecrease in ion charge state throughout the pulse. This decrease can beobserved up to a few milliseconds, until a "noisy" steady-state value isestablished. Since the extraction voltage is constant, a decrease in theion charge state has a proportional impact on the average ion beamenergy. This paper presents results of detailed investigations of theinfluence of arc parameters on the temporal development of the ion beammean charge state for a wide range of cathode materials. It is shown thatfor fixed pulse duration, the charge state decrease can be reduced bylower arc current, higher pulse repetition rate, and reduction of thedistance between cathode and extraction region. The latter effect may beassociated with charge exchange processes in the dischargeplasma.

  17. Test results of a Stirling engine utilizing heat exchanger modules with an integral heat pipe

    SciTech Connect (OSTI)

    Skupinski, R.C.; Tower, L.K.; Madi, F.J.; Brusk, K.D.

    1993-04-01

    The Heat Pipe Stirling Engine (HP-1000), a free-piston Stirling engine incorporating three heat exchanger modules, each having a sodium filled heat pipe, has been tested at the NASA-Lewis Research Center as part of the Civil Space Technology Initiative (CSTI). The heat exchanger modules were designed to reduce the number of potential flow leak paths in the heat exchanger assembly and incorporate a heat pipe as the link between the heat source and the engine. An existing RE-1000 free-piston Stirling engine was modified to operate using the heat exchanger modules. This paper describes heat exchanger module and engine performance during baseline testing. Condenser temperature profiles, brake power, and efficiency are presented and discussed.

  18. Chicago Climate Exchange CCX | Open Energy Information

    Open Energy Info (EERE)

    Illinois Zip: 60604 Product: Chicago Climate Exchange (CCX) is aiming at reduction of CO2 emission. References: Chicago Climate Exchange (CCX)1 This article is a stub. You can...

  19. Helically coiled tube heat exchanger

    SciTech Connect (OSTI)

    Harris, A.M.

    1981-08-18

    In a heat exchanger such as a steam generator for a nuclear reactor, two or more bundles of helically coiled tubes are arranged in series with the tubes in each bundle integrally continuing through the tube bundles arranged in series therewith. Pitch values for the tubing in any pair of tube bundles, taken transverse to the path of the reactor coolant flow about the tubes, are selected as a ratio of two unequal integers to permit efficient operation of each tube bundle while maintaining the various tube bundles of the heat exchanger within a compact envelope. Preferably, the helix angle and tube pitch parallel to the path of coolant flow are constant for all tubes in a single bundle so that the tubes are of approximately the same length within each bundle.

  20. Heat exchanger and related methods

    SciTech Connect (OSTI)

    Turner, Terry D.; McKellar, Michael G.

    2015-12-22

    Heat exchangers include a housing having an inlet and an outlet and forming a portion of a transition chamber. A heating member may form another portion of the transition chamber. The heating member includes a first end having a first opening and a second end having a second opening larger than the first opening. Methods of conveying a fluid include supplying a first fluid into a transition chamber of a heat exchanger, supplying a second fluid into the transition chamber, and altering a state of a portion of the first fluid with the second fluid. Methods of sublimating solid particles include conveying a first fluid comprising a material in a solid state into a transition chamber, heating the material to a gaseous state by directing a second fluid through a heating member and mixing the first fluid and the second fluid.

  1. Cocktails and Ions - 88-Inch Cyclotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cocktails and Ions BASE Ion List Download as a .pdf

  2. SODIUM-WATER HEAT EXCHANGER

    DOE Patents [OSTI]

    Simmons, W.R.; Koch, L.J.

    1962-04-17

    A heat exchanger comprising a tank for hot liquid and a plurality of concentric, double tubes for cool liquid extending vertically through the tank is described. These tubes are bonded throughout most of their length but have an unbonded portion at both ends. The inner tubes extend between headers located above and below the tanmk and the outer tubes are welded into tube sheets forming the top and bottom of the tank at locations in the unbonded portions of the tubes. (AEC)

  3. Better Buildings Neighborhood Program Sustainability Peer Exchange...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Better Buildings Neighborhood Program Sustainability Peer Exchange Call: Revenue from ... on topics relating to program sustainability. * Call Logistics and Participants ...

  4. Scientific Exchange Program | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Exchange Program Scientific Exchange Program The Scientific Exchange Program was established as part of Washington University's Photosynthetic Antenna Research Center (PARC), an Energy Frontier Research Center (EFRC) funded by the Department of Energy in 2009. This program will permit individuals from PARC teams, with a strong emphasis on graduate students and postdocs, to make extended visits to other laboratories within PARC. In addition to exchanges of team members, funds are also

  5. Energy Exchange Update | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Exchange Update Energy Exchange Update May 5, 2016 1:30PM to 2:30PM EDT Updates about the 2016 Energy Exchange, which will be held August 9-11 in Providence, Rhode Island. This update offers the latest information about registration, learning tracks, session topics, session speakers, plenary sessions, workshops, continuing education units, and logistics

  6. Temporal evolution of ion energy distribution functions and ion charge states of Cr and Cr-Al pulsed arc plasmas

    SciTech Connect (OSTI)

    Tanaka, Koichi; Anders, André

    2015-11-15

    To study the temporal evolution of ion energy distribution functions, charge-state-resolved ion energy distribution functions of pulsed arc plasmas from Cr and Cr-Al cathodes were recorded with high time resolution by using direct data acquisition from a combined energy and mass analyzer. The authors find increases in intensities of singly charged ions, which is evidence that charge exchange reactions took place in both Cr and Cr-Al systems. In Cr-Al plasmas, the distributions of high-charge-state ions exhibit high energy tails 50 μs after discharge ignition, but no such tails were observed at 500 μs. The energy ratios of ions of different charge states at the beginning of the pulse, when less neutral atoms were in the space in front of the cathode, suggest that ions are accelerated by an electric field. The situation is not so clear after 50 μs due to particle collisions. The initial mean ion charge state of Cr was about the same in Cr and in Cr-Al plasmas, but it decreased more rapidly in Cr-Al plasmas compared to the decay in Cr plasma. The faster decay of the mean ion charge state and ion energy caused by the addition of Al into a pure Cr cathode suggests that the mean ion charge state is determined not only by ionization processes at the cathode spot but also by inelastic collision between different elements.

  7. Maskless, resistless ion beam lithography

    SciTech Connect (OSTI)

    Ji, Qing

    2003-03-10

    As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements, such as O{sub 2}{sup +}, BF{sub 2}{sup +}, P{sup +} etc., for surface modification and doping applications. With optimized source condition, around 85% of BF{sub 2}{sup +}, over 90% of O{sub 2}{sup +} and P{sup +} have been achieved. The brightness of the multicusp-plasma ion source is a key issue for its application to maskless ion beam lithography. It can be substantially improved by optimizing the source configuration and extractor geometry. Measured brightness of 2 keV He{sup +} beam is as high as 440 A/cm{sup 2} {center_dot} Sr, which represents a 30x improvement over prior work. Direct patterning of Si thin film using a focused O{sub 2}{sup +} ion beam has been investigated. A thin surface oxide film can be selectively formed using 3 keV O{sub 2}{sup +} ions with the dose of 10{sup 15} cm{sup -2}. The oxide can then serve as a hard mask for patterning of the Si film. The process flow and the experimental results for directly patterned poly-Si features are presented. The formation of shallow pn-junctions in bulk silicon wafers by scanning focused P{sup +} beam implantation at 5 keV is also presented. With implantation dose of around 10{sup 16} cm{sup -2}, the electron concentration is about 2.5 x 10{sup 18} cm{sup -3} and electron mobility is around 200 cm{sup 2}/V{center_dot}s. To demonstrate the suitability of scanning FIB lithography for the manufacture of integrated circuit devices, SOI MOSFET fabrication using the maskless, resistless ion beam lithography is demonstrated. An array of microcolumns can be built by stacking multi-aperture electrode and insulator layers. Because the multicusp plasma source can achieve uniform ion density over a large area, it can be used in conjunction with the array of microcolumns, for massively parallel FIB processing to achieve reasonable exposure throughput.

  8. EERE Success Story-3D Printing Enables New Generation of Heat Exchangers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 3D Printing Enables New Generation of Heat Exchangers EERE Success Story-3D Printing Enables New Generation of Heat Exchangers March 17, 2016 - 10:32am Addthis The University of Maryland used direct metal printing—a 3D printing technology—to manufacture a unique miniaturized air-to-refrigerant heat exchanger as a single, continuous piece. Image: University of Maryland, Center for Environmental Energy Engineering. The University of Maryland used direct metal

  9. PULSED ION SOURCE

    DOE Patents [OSTI]

    Anderson, C.E.; Ehlers, K.W.

    1958-06-17

    An ion source is described for producing very short high density pulses of ions without bcam scattering. The ions are created by an oscillating electron discharge within a magnetic field. After the ions are drawn from the ionization chamber by an accelerating electrode the ion beam is under the influence of the magnetic field for separation of the ions according to mass and, at the same time, passes between two neutralizing plntes maintained nt equal negative potentials. As the plates are formed of a material having a high ratio of secondary electrons to impinging ions, the ion bombardment of the plntes emits electrons which neutralize the frirge space-charge of the beam and tend to prevent widening of the beam cross section due to the mutual repulsion of the ions.

  10. Finance Peer Exchange Kickoff Call | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Finance Peer Exchange Kickoff Call Finance Peer Exchange Kickoff Call BetterBuildings Financing Peer Exchange Kickoff Call, Call Slides and Discussion Summary, April 28, 2011. PDF ...

  11. Peer Exchange Call on Financing and Revenue: Bond Funding | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peer Exchange Call on Financing and Revenue: Bond Funding Peer Exchange Call on Financing and Revenue: Bond Funding Better Buildings Neighborhood Program Peer Exchange Call on...

  12. Lessons Learned: Peer Exchange Calls -- No. 5 | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Lessons Learned: Peer Exchange Calls -- No. 5 Better Buildings Residential Network Lessons Learned: Peer Exchange Calls, No. 5. PDF icon Lessons Learned: Peer Exchange Calls -- ...

  13. Better Buildings Working with Utilities Peer Exchange Call: Kick...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Working with Utilities Peer Exchange Call: Kick-off Better Buildings Working with Utilities Peer Exchange Call: Kick-off Better Buildings Working with Utilities Peer Exchange Call:...

  14. EA-179 California Power Exchange Corporation | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EA-179 California Power Exchange Corporation Order authorizing Power Exchange Corporation to export electric energy to Mexico. PDF icon EA-179 California Power Exchange Corporation ...

  15. European Energy Exchange AG EEX | Open Energy Information

    Open Energy Info (EERE)

    Energy Exchange AG EEX Jump to: navigation, search Name: European Energy Exchange AG (EEX) Place: Leipzig, Germany Zip: D-04109 Product: Germany's energy exchange, which aims to...

  16. Development of Cell/Pack Level Models for Automotive Li-Ion Batteries...

    Broader source: Energy.gov (indexed) [DOE]

    Level Models for Automotive Li-Ion Batteries with Experimental Validation Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) Vehicle Technologies Office ...

  17. Broad beam ion implanter

    DOE Patents [OSTI]

    Leung, K.N.

    1996-10-08

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes. 6 figs.

  18. Broad beam ion implanter

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    1996-01-01

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes.

  19. Fluidized bed heat exchanger utilizing angularly extending heat exchange tubes

    DOE Patents [OSTI]

    Talmud, Fred M.; Garcia-Mallol, Juan-Antonio

    1980-01-01

    A fluidized bed heat exchanger in which air is passed through a bed of particulate material containing fuel disposed in a housing. A steam/water natural circulation system is provided and includes a steam drum disposed adjacent the fluidized bed and a series of tubes connected at one end to the steam drum. A portion of the tubes are connected to a water drum and in the path of the air and the gaseous products of combustion exiting from the bed. Another portion of the tubes pass through the bed and extend at an angle to the upper surface of the bed.

  20. Development of ITM oxygen technology for integration in IGCC and other advanced power generation

    SciTech Connect (OSTI)

    Armstrong, Phillip A.

    2015-03-31

    Ion Transport Membrane (ITM) technology is based on the oxygen-ion-conducting properties of certain mixed-metal oxide ceramic materials that can separate oxygen from an oxygen-containing gas, such as air, under a suitable driving force. The “ITM Oxygen” air separation system that results from the use of such ceramic membranes produces a hot, pure oxygen stream and a hot, pressurized, oxygen-depleted stream from which significant amounts of energy can be extracted. Accordingly, the technology integrates well with other high-temperature processes, including power generation. Air Products and Chemicals, Inc., the Recipient, in conjunction with a dozen subcontractors, developed ITM Oxygen technology under this five-phase Cooperative Agreement from the laboratory bench scale to implementation in a pilot plant capable of producing power and 100 tons per day (TPD) of purified oxygen. A commercial-scale membrane module manufacturing facility (the “CerFab”), sized to support a conceptual 2000 TPD ITM Oxygen Development Facility (ODF), was also established and operated under this Agreement. In the course of this work, the team developed prototype ceramic production processes and a robust planar ceramic membrane architecture based on a novel ceramic compound capable of high oxygen fluxes. The concept and feasibility of the technology was thoroughly established through laboratory pilot-scale operations testing commercial-scale membrane modules run under industrial operating conditions with compelling lifetime and reliability performance that supported further scale-up. Auxiliary systems, including contaminant mitigation, process controls, heat exchange, turbo-machinery, combustion, and membrane pressure vessels were extensively investigated and developed. The Recipient and subcontractors developed efficient process cycles that co-produce oxygen and power based on compact, low-cost ITMs. Process economics assessments show significant benefits relative to state-of-the-art cryogenic air separation technology in energy-intensive applications such as IGCC with and without carbon capture.

  1. Ion Sources for High Energy Ion Implantation at BNL | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Ion Sources for High Energy Ion Implantation at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave.,

  2. EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries

    Broader source: Energy.gov (indexed) [DOE]

    Breakout Session Report | Department of Energy next-generation_li-ion_b.pdf More Documents & Publications EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout Session Report EV Everywhere Batteries Workshop - Materials Processing and Manufacturing Breakout Session Report Overview and Progress of the Batteries for Advanced Transportation Technologies

  3. Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt015_es_wise_2011_p.pdf More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production FY 2012

  4. Secondary Heat Exchanger Design and Comparison for Advanced High Temperature Reactor

    SciTech Connect (OSTI)

    Piyush Sabharwall; Ali Siahpush; Michael McKellar; Michael Patterson; Eung Soo Kim

    2012-06-01

    The goals of next generation nuclear reactors, such as the high temperature gas-cooled reactor and advance high temperature reactor (AHTR), are to increase energy efficiency in the production of electricity and provide high temperature heat for industrial processes. The efficient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process heat transport system. The need for efficiency, compactness, and safety challenge the boundaries of existing heat exchanger technology, giving rise to the following study. Various studies have been performed in attempts to update the secondary heat exchanger that is downstream of the primary heat exchanger, mostly because its performance is strongly tied to the ability to employ more efficient conversion cycles, such as the Rankine super critical and subcritical cycles. This study considers two different types of heat exchangers—helical coiled heat exchanger and printed circuit heat exchanger—as possible options for the AHTR secondary heat exchangers with the following three different options: (1) A single heat exchanger transfers all the heat (3,400 MW(t)) from the intermediate heat transfer loop to the power conversion system or process plants; (2) Two heat exchangers share heat to transfer total heat of 3,400 MW(t) from the intermediate heat transfer loop to the power conversion system or process plants, each exchanger transfers 1,700 MW(t) with a parallel configuration; and (3) Three heat exchangers share heat to transfer total heat of 3,400 MW(t) from the intermediate heat transfer loop to the power conversion system or process plants. Each heat exchanger transfers 1,130 MW(t) with a parallel configuration. A preliminary cost comparison will be provided for all different cases along with challenges and recommendations.

  5. Polymer filtration: An emerging technology for selective metals recovery

    SciTech Connect (OSTI)

    Smith, B.F.; Robison, T.W.; Cournoyer, M.E.

    1995-12-31

    A new technology is under development to selectively recover regulated metal ions from electroplating rinse waters. The electroplating metal ions are recovered in a concentrated form with the appropriate counter ions ready for return to the original electroplating bath. The technology is based on the use of specially designed water-soluble polymers that selectively bind with the metal ions in the rinse bath. The polymers have such a large molecular weight that they can be physically separated using available ultrafiltration technology. The advantages of this technology are high metal selectivity with no sludge formation, rapid processing, low energy, low capital costs, and small size. We have tested and demonstrated the recovery of zinc and nickel (a new alloy electroplating bath designed to replace cadmium) from rinse waters. The metal-ion concentrate was returned to the original electroplating bath. Applications of this technology include waste treatment for textile, paint and dye production, chemical manufacturing, and nuclear reactor and reprocessing operations.

  6. ION Engineering | Open Energy Information

    Open Energy Info (EERE)

    ION Engineering Jump to: navigation, search Name: ION Engineering Place: Boulder, Colorado Zip: 80301 Sector: Carbon Product: ION is the first clean-tech company to successfully...

  7. Carbon Ion Pump for Carbon Dioxide Removal - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Find More Like This Return to Search Carbon Ion Pump for Carbon Dioxide Removal Lawrence Livermore National Laboratory Contact LLNL About This Technology Technology Marketing Summary The limitation to reducing greenhouse gases in the atmosphere is the expense of stripping carbon dioxide from other combustion gases. Without a cost-effective means of accomplishing this, hydrocarbon resources cannot be used freely. A few power plants currently remove

  8. Cathodes - Technological review

    SciTech Connect (OSTI)

    Cherkouk, Charaf; Nestler, Tina

    2014-06-16

    Lithium cobalt oxide (LiCoO{sub 2}) was already used in the first commercialized Li-ion battery by SONY in 1990. Still, it is the most frequently used cathode material nowadays. However, LiCoO{sub 2} is intrinsically unstable in the charged state, especially at elevated temperatures and in the overcharged state causing volume changes and transport limitation for high power batteries. In this paper, some technological aspects with large impact on cell performance from the cathode material point of view will be reviewed. At first it will be focused on the degradation processes and life-time mechanisms of the cathode material LiCoO{sub 2}. Electrochemical and structural results on commercial Li-ion batteries recorded during the cycling will be discussed. Thereafter, advanced nanomaterials for new cathode materials will be presented.

  9. Technology Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intellectual Property » Technology Opportunities Technology Opportunities We deliver innovation through an integrated portfolio of R&D work across our key national security sponsoring agencies, enhanced by the ideas developed through our strategic internal investments. Contact Business Development Team Richard P. Feynman Center for Innovation (505) 665-9090 Email Periodically, the Laboratory notifies the public of technologies and capabilities that may be of interest. These technologies may

  10. Technology Partnering

    Energy Savers [EERE]

    on Technology Transfer and Related Technology Partnering Activities at the National Laboratories and Other Facilities Fiscal Years 2009-2013 Report to Congress May 2015 United States Department of Energy Washington, DC 20585 Message from the Secretary The Report on Technology Transfer and Related Partnering Activities at the National Laboratories and Other Facilities for Fiscal Year 2009-2013 is prepared in accordance with the requirements of the Technology Transfer and Commercialization Act of

  11. Available Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    application. Search Our Technologies submit Advanced Materials Advanced Materials Biotechnology Biotechnology Chemistry Chemistry Energy Energy High Performance Computing:...

  12. Licensing Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Licensing Technology Licensing Technology The primary function of Los Alamos Licensing Program is to move Los Alamos technology to the marketplace for the benefit of the U.S. economy. Our intellectual property may be licensed for commercial use, research applications, and U.S. government use. Contact thumbnail of Marcus Lucero Head of Licensing Marcus Lucero Richard P. Feynman Center for Innovation (505) 665-6569 Email Although Los Alamos's primary mission is national security, our technologies

  13. Ion Beam Materials Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the individual researchers' needs. The core of the laboratory consists of a 3 MV NEC tandem accelerator, a 200 kV Varian ion implanter, and a 200 kV Danfysik ion implanter...

  14. Applications of decelerated ions

    SciTech Connect (OSTI)

    Johnson, B.M.

    1985-03-01

    Many facilities whose sole purpose had been to accelerate ion beams are now becoming decelerators as well. The development and current status of accel-decel operations is reviewed here. Applications of decelerated ions in atomic physics experiments are discussed.

  15. Heat Exchangers for Solar Water Heating Systems | Department...

    Energy Savers [EERE]

    Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems Image of a heat exchanger. | Photo from iStockphoto.com Image of a heat exchanger. |...

  16. Single Ion Implantation

    ScienceCinema (OSTI)

    Thomas Schenkel

    2010-01-08

    On the equipment needed to implant ions in silicon and other materials. More information: http://newscenter.lbl.gov/f...

  17. Negative ion generator

    DOE Patents [OSTI]

    Stinnett, R.W.

    1984-05-08

    A negative ion generator is formed from a magnetically insulated transmission line having a coating of graphite on the cathode for producing negative ions and a plurality of apertures on the opposed anode for the release of negative ions. Magnetic insulation keeps electrons from flowing from the cathode to the anode. A transverse magnetic field removes electrons which do escape through the apertures from the trajectory of the negative ions. 8 figs.

  18. Negative ion generator

    DOE Patents [OSTI]

    Stinnett, Regan W. (Albuquerque, NM)

    1984-01-01

    A negative ion generator is formed from a magnetically insulated transmission line having a coating of graphite on the cathode for producing negative ions and a plurality of apertures on the opposed anode for the release of negative ions. Magnetic insulation keeps electrons from flowing from the cathode to the anode. A transverse magnetic field removes electrons which do escape through the apertures from the trajectory of the negative ions.

  19. Collision Processes of Highly Charged Ions with Electrons Studied with an Electron Beam Ion Trap

    SciTech Connect (OSTI)

    Nakamura, Nobuyuki; Watanabe, Tsutomu; Ohtani, Shunsuke; Kavanagh, Anthony P.; Currell, Fred J.; Watanabe, Hirofumi; Sakaue, Hiroyuki A.; Kato, Daiji; Li Yueming; Tong Xiaoming

    2009-09-10

    The electron beam ion trap in Tokyo (Tokyo-EBIT)is suitable for studying relativistic effects in the collisions of highly charged heavy ions with electrons because it can produce and trap very highly charged heavy ions which interact with a mono-energetic and unidirectional relativistic electron beam with an energy of up to 200 keV. Recently, we have been studying resonant processes in ionization and recombination by measuring the charge abundance inside the EBIT at the equilibrium. The abundance ratio between adjacent charge states varies slowly with the electron energy when there is no resonant process. However, when the electron energy coincides with the resonant energy at which ionization or recombination is enhanced, the abundance ratio can drastically change. Thus, the resonant processes can be studied by measuring the abundance ratio between adjacent ions as a function of electron beam energy. In this talk, recent progress for heavy ions with very high charge states up to He-like Bi{sup 81+}, is presented. For such ions, relativistic effects significantly affect the resonant processes. For example, the generalized Breit interaction (GBI) effect, which treats the retardation in the exchange of single virtual photon between the free and orbital electrons, has been clearly observed in the DR resonant strength in Li-like Bi{sup 80+}. Recently we have also found that the GBI effect plays an important role in the interference between non-resonant and resonant recombinations. Experimental results are presented in comparison with theoretical calculations.

  20. Energy Exchange 2015 Speaker Biographies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Community that brings together a diverse set of expertise across DOE to help spur energy technology innovation through prizes and challenges, and she also co-leads the Wave Energy...