National Library of Energy BETA

Sample records for ion dete rm

  1. RM Eolica | Open Energy Information

    Open Energy Info (EERE)

    RM Eolica Jump to: navigation, search Name: RM Eolica Place: Cabo de Santo Agostinho, Pernambuco, Brazil Sector: Wind energy Product: Pernambuco-based wind tower manufacturer...

  2. High Performance Sustainable Building Design RM | Department...

    Office of Environmental Management (EM)

    High Performance Sustainable Building Design RM High Performance Sustainable Building Design RM The High Performance Sustainable Building Design (HPSBD) Review Module (RM) is a ...

  3. Safety Design Strategy RM | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety Design Strategy RM Safety Design Strategy RM The SDS Review Module (RM) is a tool that assists DOE federal project review teams in evaluating the adequacy of the conceptual ...

  4. Final Design RM | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Design RM Final Design RM The Final Design (FD) Review Module (RM) is a tool that assists Department of Energy (DOE) federal project review teams in evaluating the technical ...

  5. Conceptual Safety Design RM | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety Design RM Conceptual Safety Design RM The Conceptual Safety Design (CSD) Review Module (RM) is a tool that assists DOE federal project review teams in evaluating the adequacy of the Conceptual Safety Design work, processes and documentation prior to approval of CD-1. Conceptual Safety Design RM (2.3 MB) More Documents & Publications Conceptual Safety Design RM CD-1, Approve Alternative Selection and Cost Range Preliminary Safety Design RM Safety Design Strategy

  6. Preliminary Safety Design RM | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety Design RM Preliminary Safety Design RM The Preliminary Safety Design (PSD) Review Module (RM) is a tool that assists DOE federal project review teams in evaluating the adequacy of the Preliminary Safety Design work, processes and documentation prior to approval of CD-2. Preliminary Safety Design RM (2.29 MB) More Documents & Publications Conceptual Safety Design RM Preliminary Safety Design RM CD-1, Approve Alternative Selection and Cost Range Seismic Design Expectations Report

  7. Project Execution Plan Review Module (RM) | Department of Energy

    Office of Environmental Management (EM)

    Review Module (RM) Project Execution Plan Review Module (RM) The Project Execution Plan (PEP) Review Module (RM) is a tool that assists DOE federal project review teams in...

  8. Preliminary Design RM | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design RM Preliminary Design RM The PD Review Module (RM) is a tool that assists DOE federal project review teams in evaluating the technical sufficiency of the PD prior to CD-2 approval. This PD RM can be applied anytime during the design prior to CD-2 approval. However, in practice, the design is typically review at the 30% design stage, which is corresponding to the end of the PD before initiation of final design. Preliminary Design RM (2.39 MB) More Documents & Publications Final Design

  9. Conceptual Design RM | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design RM Conceptual Design RM This Review Module is a tool that assists Department of Energy (DOE) federal project review teams in evaluating the adequacy of the conceptual design package prior to CD-1 approval. It focuses on the conceptual design package key elements including requirements analysis, safety design basis, alternatives analysis, systems engineering, value management, risk analysis, and acquisition strategy. Conceptual Design RM (2.32 MB) More Documents & Publications

  10. Project Execution Plan Review Module (RM) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Execution Plan Review Module (RM) Project Execution Plan Review Module (RM) The Project Execution Plan (PEP) Review Module (RM) is a tool that assists DOE federal project review teams in evaluating the adequacy of the PEP development and maintenance for projects of any size and complexity. Project Execution Plan RM (2.32 MB) More Documents & Publications Integrated Project Team RM Risk Management RM Decommissioning Plan RM

  11. Safeguards and Security and Cyber Security RM

    Broader source: Energy.gov [DOE]

    The SSCS RM is a tool that assists the DOE federal project review teams in evaluating the technical sufficiency of the project SSCS activities at CD-0 through CD-4.

  12. Quality Assurance for Critical Decision Reviews RM

    Broader source: Energy.gov [DOE]

    The purpose of this Quality Assurance for Capital Project Critical Decision Review Module (QA RM) is to identify, integrate, and clarify the QA performance objectives, criteria, and guidance needed...

  13. Construction Readiness RM | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Readiness RM Construction Readiness RM The authorization to proceed with construction of a new facility is given at the CD-3 phase of the project management cycle, after completion of the final design. Between CD-3 and CD-4 stages of the project, procurement and construction and/or assembly of facility structures, systems and equipment is conducted. These activities can present significant hazards to workers and involve a complex set of events that must be carefully planned and sequenced.

  14. Risk Management RM | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Risk Management RM Risk Management RM This tool is the process of continuous and iterative identification and control of project risks and opportunities. Risks can be technical, financial, or programmatic. The goal for the risk management system is to either avoid the risk's threat by taking preemptive action or to minimize the risks negative impacts on project performance. Project opportunities identified through the project risk management process can be handled in a similar manner with the

  15. Integrated Project Team RM | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Project Team RM Integrated Project Team RM The Integrated Project Team (IPT) is an essential element of the Department's acquisition process and will be utilized during all phases of a project life cycle. The IPT is a team of professionals representing diverse disciplines with the specific knowledge, skills, and abilities necessary to support the successful execution of projects. The Federal Project Directors (FPDs), contracting offices, safety and quality, legal, and engineering and

  16. Checkout, Testing, and Commissioning Plan RM | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Checkout, Testing, and Commissioning Plan RM Checkout, Testing, and Commissioning Plan RM The CP RM Module is a tool that assists DOE federal project review teams in evaluating the sufficiency of the Commissioning Plan and its implementation. The CP RM can be used by the DOE federal project teams both to evaluate the adequacy of the Commissioning Plan documentation/programs and the execution of programs by the contractor. Commissioning Plan RM (2.88 MB) More Documents & Publications

  17. Construction Project Safety and Health Plan RM | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Safety and Health Plan RM Construction Project Safety and Health Plan RM The Construction Project Safety and Health Plan (CPSHP) Review Module is a tool that assists DOE federal project review teams in evaluating the technical sufficiency of the project readiness in ensuring worker safety during construction after Critical Decision-3 approval. Construction Project Safety and Health Plan RM (2.33 MB) More Documents & Publications Facility Disposition Safety Strategy RM Standard Review

  18. National Environmental Policy Act RM | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Environmental Policy Act RM National Environmental Policy Act RM This NEPA Review Module (RM) is a tool to assist the Office of Environmental Management's (EM) projects review teams, and managers in complying with the provisions of The Department of Energy's (DOE) NEPA program, as implemented at 10 CFR Part 1021, National Environmental Policy Act Implementing Procedures. National Environmental Policy Act RM (2.33 MB) More Documents & Publications Standard Review Plan - Overview

  19. Preparation for Facility Operations RM | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Preparation for Facility Operations RM Preparation for Facility Operations RM The objective of this Standard Review Plan (SRP) on Preparation for Facility Operations is to provide consistency guidance to evaluate the effectiveness of the final project closure of major construction projects for transition from Critical Decision-4 (CD-4) to facility operations. Preparation for Facility Operations RM (356.48 KB) More Documents & Publications Code of Record Standard Review Plan (SRP) Standard

  20. United States Department of the Interior - RM-53 - Reference...

    Open Energy Info (EERE)

    OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: United States Department of the Interior - RM-53 - Reference Manual - Special Park...

  1. Whistler turbulence heating of electrons and ions: Three-dimensional particle-in-cell simuations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gary, S. Peter; Hughes, R. Scott; Wang, Joseph

    2016-01-14

    In this study, the decay of whistler turbulence in a collisionless, homogeneous, magnetized plasma is studied using three-dimensional particle-in-cell simulations. The simulations are initialized with a narrowband, relatively isotropic distribution of long wavelength whistler modes. A first ensemble of simulations at electron betamore » $${\\beta }_{{\\rm{e}}}$$ = 0.25 and ion-to-electron mass ratio $${m}_{{\\rm{i}}}$$/$${m}_{{\\rm{e}}}$$ = 400 is carried out on a domain cube of dimension $$L{\\omega }_{\\mathrm{pi}}$$/c = 5.12 where $${\\omega }_{\\mathrm{pi}}$$ is the ion plasma frequency. The simulations begin with a range of dimensionless fluctuating field energy densities, $${\\epsilon }_{{\\rm{o}}}$$, and follow the fluctuations as they cascade to broadband, anisotropic turbulence which dissipates at shorter wavelengths, heating both electrons and ions. The electron heating is stronger and preferentially parallel/antiparallel to the background magnetic field $${{\\boldsymbol{B}}}_{{\\rm{o}}};$$ the ion energy gain is weaker and is preferentially in directions perpendicular to $${{\\boldsymbol{B}}}_{{\\rm{o}}}$$. The important new results here are that, over 0.01 < $${\\epsilon }_{{\\rm{o}}}$$ < 0.25, the maximum rate of electron heating scales approximately as $${\\epsilon }_{{\\rm{o}}}$$, and the maximum rate of ion heating scales approximately as $${\\epsilon }_{{\\rm{o}}}^{1.5}$$. A second ensemble of simulations at $${\\epsilon }_{{\\rm{o}}}$$ = 0.10 and $${\\beta }_{{\\rm{e}}}$$ = 0.25 shows that, over 25 < $${m}_{{\\rm{i}}}$$/$${m}_{{\\rm{e}}}\\;$$< 1836, the ratio of the maximum ion heating rate to the maximum electron heating rate scales approximately as $${m}_{{\\rm{e}}}$$/$${m}_{{\\rm{i}}}$$.« less

  2. Reference Inflow Characterization for River Resource Reference Model (RM2)

    SciTech Connect (OSTI)

    Neary, Vincent S

    2011-12-01

    Sandia National Laboratory (SNL) is leading an effort to develop reference models for marine and hydrokinetic technologies and wave and current energy resources. This effort will allow the refinement of technology design tools, accurate estimates of a baseline levelized cost of energy (LCoE), and the identification of the main cost drivers that need to be addressed to achieve a competitive LCoE. As part of this effort, Oak Ridge National Laboratory was charged with examining and reporting reference river inflow characteristics for reference model 2 (RM2). Published turbulent flow data from large rivers, a water supply canal and laboratory flumes, are reviewed to determine the range of velocities, turbulence intensities and turbulent stresses acting on hydrokinetic technologies, and also to evaluate the validity of classical models that describe the depth variation of the time-mean velocity and turbulent normal Reynolds stresses. The classical models are found to generally perform well in describing river inflow characteristics. A potential challenge in river inflow characterization, however, is the high variability of depth and flow over the design life of a hydrokinetic device. This variation can have significant effects on the inflow mean velocity and turbulence intensity experienced by stationary and bottom mounted hydrokinetic energy conversion devices, which requires further investigation, but are expected to have minimal effects on surface mounted devices like the vertical axis turbine device designed for RM2. A simple methodology for obtaining an approximate inflow characterization for surface deployed devices is developed using the relation umax=(7/6)V where V is the bulk velocity and umax is assumed to be the near-surface velocity. The application of this expression is recommended for deriving the local inflow velocity acting on the energy extraction planes of the RM2 vertical axis rotors, where V=Q/A can be calculated given a USGS gage flow time

  3. Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter Y.-H. Yu, D.S. Jenne, and R. Thresher National Renewable Energy Laboratory A. Copping, S. Geerlofs, and L.A. Hanna Pacific Northwest National Laboratory Technical Report NREL/TP-5000-62861 January 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable

  4. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Ed Kvartek

    Office of Energy Efficiency and Renewable Energy (EERE)

    Commenter: Ed Kvartek 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  5. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Reginald Gaylord

    Broader source: Energy.gov [DOE]

    Commenter: Reginald Gaylord 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  6. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Cameron Anderson

    Broader source: Energy.gov [DOE]

    Commenter: Cameron Anderson 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  7. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Cheryl Floreen

    Broader source: Energy.gov [DOE]

    Commenter: Cheryl Floreen 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  8. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Steven Jahn

    Broader source: Energy.gov [DOE]

    Commenter: Steven Jahn 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  9. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Mark Fisher

    Broader source: Energy.gov [DOE]

    Commenter: Mark Fisher 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  10. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Bret Moscon

    Broader source: Energy.gov [DOE]

    Commenter: Bret Moscon 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  11. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Marc Kolanz

    Broader source: Energy.gov [DOE]

    Commenter: Marc Kolanz 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  12. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Jim Withers

    Broader source: Energy.gov [DOE]

    Commenter: Jim Withers 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  13. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- William R. Kleem

    Broader source: Energy.gov [DOE]

    Commenter: William R. Kleem 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  14. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- J. Chris Cantwell

    Broader source: Energy.gov [DOE]

    Commenter: J. Chris Cantwell 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  15. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Mario Moreno

    Broader source: Energy.gov [DOE]

    Commenter: Mario Moreno 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  16. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Susan Leckband

    Broader source: Energy.gov [DOE]

    Commenter: Susan Leckband 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  17. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Pete Stafford

    Broader source: Energy.gov [DOE]

    Commenter: Pete Stafford 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  18. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Faye Vleger

    Broader source: Energy.gov [DOE]

    Commenter: Faye Vleger 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  19. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Scott Stafford

    Broader source: Energy.gov [DOE]

    Commenter: Scott Stafford 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  20. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Anoop Agrawal

    Broader source: Energy.gov [DOE]

    Commenter: Anoop Agrawal 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  1. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Thomas W. Morris

    Broader source: Energy.gov [DOE]

    Commenter: Thomas W. Morris 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  2. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Jamie Stalker

    Broader source: Energy.gov [DOE]

    Commenter: Jamie Stalker 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  3. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Curtis Valle

    Broader source: Energy.gov [DOE]

    Commenter: Curtis Valle 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  4. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Roby Enge

    Broader source: Energy.gov [DOE]

    Commenter: Roby Enge 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  5. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Richard L. Dickson

    Broader source: Energy.gov [DOE]

    Commenter: Richard L. Dickson 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  6. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Timothy Bolden

    Broader source: Energy.gov [DOE]

    Commenter: Timothy Bolden 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  7. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Scott Yundt

    Broader source: Energy.gov [DOE]

    Commenter: Scott Yundt 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  8. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Thomas Peterson

    Broader source: Energy.gov [DOE]

    Commenter: Thomas Peterson 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  9. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Terry Vaughn

    Broader source: Energy.gov [DOE]

    Commenter: Terry Vaughn 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  10. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Paul A. Schulte

    Broader source: Energy.gov [DOE]

    Commenter: Paul A. Schulte 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  11. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Joseph Herndon

    Broader source: Energy.gov [DOE]

    Commenter: Joseph Herndon 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  12. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Michael Brisson

    Office of Energy Efficiency and Renewable Energy (EERE)

    Commenter: Michael Brisson 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  13. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Kenneth Meyer

    Broader source: Energy.gov [DOE]

    Commenter: Kenneth Meyer 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  14. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- John Walter

    Broader source: Energy.gov [DOE]

    Commenter: John Walter 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  15. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Mark Strauch

    Broader source: Energy.gov [DOE]

    Commenter: Mark Strauch 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  16. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Troy Bodily

    Broader source: Energy.gov [DOE]

    Commenter: Troy Bodily 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  17. Reference Model 6 (RM6): Oscillating Wave Energy Converter.

    SciTech Connect (OSTI)

    Bull, Diana L; Smith, Chris; Jenne, Dale Scott; Jacob, Paul; Copping, Andrea; Willits, Steve; Fontaine, Arnold; Brefort, Dorian; Gordon, Margaret Ellen; Copeland, Robert; Jepsen, Richard A.

    2014-10-01

    This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter reference model design in a complementary manner to Reference Models 1-4 contained in the above report. In this report, a conceptual design for an Oscillating Water Column Wave Energy Converter (WEC) device appropriate for the modeled reference resource site was identified, and a detailed backward bent duct buoy (BBDB) device design was developed using a combination of numerical modeling tools and scaled physical models. Our team used the methodology in SAND2013-9040 for the economic analysis that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays, up to 100 devices. The methodology was applied to identify key cost drivers and to estimate levelized cost of energy (LCOE) for this RM6 Oscillating Water Column device in dollars per kilowatt-hour (%24/kWh). Although many costs were difficult to estimate at this time due to the lack of operational experience, the main contribution of this work was to disseminate a detailed set of methodologies and models that allow for an initial cost analysis of this emerging technology. This project is sponsored by the U.S. Department of Energy's (DOE) Wind and Water Power Technologies Program Office (WWPTO), within the Office of Energy Efficiency & Renewable Energy (EERE). Sandia National Laboratories, the lead in this effort, collaborated with partners from National Laboratories, industry, and universities to design and test this reference model.

  18. U.S. Department of Energy Reference Model Program RM2: Experimental...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    As part of this program, MHK turbine models were tested in a large open channel facility ... RM2 is a river turbine designed for a site modeled after a reach in the lower Mississippi ...

  19. Facility Software Quality Assurance (SQA) for Captal Project Critical Decisions RM

    Broader source: Energy.gov [DOE]

    The purpose of this Software Quality Assurance for Capital Project Critical Decision Review Module (SQA RM) is to identify, integrate, and clarify, in one EM document, the SQA performance...

  20. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Alliance for Water Efficiency (AWE)

    Broader source: Energy.gov [DOE]

    Commenter: Alliance for Water Efficiency (AWE) 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  1. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Christopher R. McKean

    Broader source: Energy.gov [DOE]

    Commenter: Christopher R. McKean 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  2. RM12-2703 Advanced Rooftop Unit Control Retrofit Kit Field Demonstration: Hawaii and Guam Energy Improvement Technology Demonstration Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8GO28308 National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.nrel.gov RM12-2703 Advanced Rooftop Unit Control Retrofit Kit Field Demonstration Hawaii and Guam Energy Improvement Technology Demonstration Project I. Doebber, J. Dean, J. Dominick, and G. Holland Produced under direction of Naval Facilities Engineering Command (NAVFAC) by the National Renewable Energy Laboratory (NREL) under Interagency Agreement 11-01829 Technical Report

  3. Ion source

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Ehlers, Kenneth W.

    1984-01-01

    A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species.

  4. ION SOURCE

    DOE Patents [OSTI]

    Martina, E.F.

    1958-04-22

    An improved ion source particularly adapted to provide an intense beam of ions with minimum neutral molecule egress from the source is described. The ion source structure includes means for establishing an oscillating electron discharge, including an apertured cathode at one end of the discharge. The egress of ions from the source is in a pencil like beam. This desirable form of withdrawal of the ions from the plasma created by the discharge is achieved by shaping the field at the aperture of the cathode. A tubular insulator is extended into the plasma from the aperture and in cooperation with the electric fields at the cathode end of the discharge focuses the ions from the source,

  5. Sampling and analyses report for December 1991 semiannual postburn sampling at the RM1 UCG site, Hanna, Wyoming

    SciTech Connect (OSTI)

    Lindblom, S.R.

    1992-01-01

    The Rocky Mountain 1 (RM1) underground coal gasification (UCG) test was conducted from November 16, 1987, through February 26, 1988 at a site approximately one mile south of Hanna, Wyoming. The test consisted of a dual-module operation to evaluate the controlled retracting injection point (CRIP) technology, the elongated linked well (ELW) technology, and the interaction of closely spaced modules operating simultaneously. The test caused two cavities to form in the Hanna No. 1 coal seam and associated overburden. The Hanna No. 1 coal seam was approximately 30 ft thick and lay at depths between 350 and 365 ft below the surface in the test area. The coal seam was overlain by sandstones, siltstones, and claystones deposited by various fluvial environments. The groundwater monitoring was designed to satisfy the requirements of the Wyoming Department of Environmental Quality (WDEQ) in addition to providing research data toward the development of UCG technology that minimizes environmental impacts. Further background material and the sampling and analytical procedures associated with the sampling task are described in the Rocky Mountain 1 Postburn Groundwater Monitoring Quality Assurance Plan (Mason and Johnson 1988).

  6. Sampling and analyses report for June 1992 semiannual postburn sampling at the RM1 UCG site, Hanna, Wyoming

    SciTech Connect (OSTI)

    Lindblom, S.R.

    1992-08-01

    The Rocky Mountain 1 (RMl) underground coal gasification (UCG) test was conducted from November 16, 1987 through February 26, 1988 (United Engineers and Constructors 1989) at a site approximately one mile south of Hanna, Wyoming. The test consisted of dual module operation to evaluate the controlled retracting injection point (CRIP) technology, the elongated linked well (ELW) technology, and the interaction of closely spaced modules operating simultaneously. The test caused two cavities to be formed in the Hanna No. 1 coal seam and associated overburden. The Hanna No. 1 coal seam is approximately 30 ft thick and lays at depths between 350 ft and 365 ft below the surface in the test area. The coal seam is overlain by sandstones, siltstones and claystones deposited by various fluvial environments. The groundwater monitoring was designed to satisfy the requirements of the Wyoming Department of Environmental Quality (WDEQ) in addition to providing research data toward the development of UCG technology that minimizes environmental impacts. The June 1992 semiannual groundwater.sampling took place from June 10 through June 13, 1992. This event occurred nearly 34 months after the second groundwater restoration at the RM1 site and was the fifteenth sampling event since UCG operations ceased. Samples were collected for analyses of a limited suite set of parameters as listed in Table 1. With a few exceptions, the groundwater is near baseline conditions. Data from the field measurements and analysis of samples are presented. Benzene concentrations in the groundwater were below analytical detection limits.

  7. Readiness Review RM

    Broader source: Energy.gov [DOE]

    This module assists DOE Federal line management in their efforts to bring a project or facility into a condition where it is sufficiently prepared to start or resume operations prior to CD-4...

  8. Commissioning Plan RM

    Office of Environmental Management (EM)

    ... of a CP review will be used by the DOE Federal Project Director and ultimately the ... (ST-5.3) ST-6 Has the project acquired the services of a qualified commissioning agent? ...

  9. Commercial Grade Dedication RM

    Broader source: Energy.gov [DOE]

    The objective of this Standard Review Plan (SRP) on Commercial Grade Dedication (CGD) is to provide guidance for a uniform review of the CGD activities for office of Environmental Management...

  10. Preliminary Safety Design RM

    Office of Environmental Management (EM)

    Preliminary Safety Design Review Module March 2010 CD-0 O 0 OFFICE OF Pr C CD-1 F ENVIRO ... (CD) Ap CD March 2010 L MANAGE n (SRP) y Design e pplicability D-3 EMENT CD-4 Post Ope ...

  11. Conceptual Design RM

    Office of Environmental Management (EM)

    ... Design Report DOE Department of Energy EIR External Independent Review EM Office of ... form) of an External Independent Review (EIR) or Independent Project Review (IPR) report ...

  12. Construction Readiness RM

    Office of Environmental Management (EM)

    ... It is also verified that the contractor has completed a project safety and health plan as required by 10 CFR 851. Project Controls This review area focuses on the adequacy and ...

  13. Decommissioning Plan RM

    Broader source: Energy.gov [DOE]

    The Decommissioning Plan Review (DPR) Module is a tool that assists DOE federal project review teams in evaluating the adequacy of the decommissioning plan prior to approval of the associated CD.

  14. Conceptual Safety Design RM

    Office of Environmental Management (EM)

    ... Structures, Systems, and Components (SSCs)? (SD-3.6) Has a ... Preliminary one-line diagrams for ventilation, electrical power and distribution, special mechanical ...

  15. Integrated Project Team RM

    Office of Environmental Management (EM)

    ... conducts interviews, document reviews, walk downs, and observations as necessary. ... 2003 * Letter April 18, 2007, Dae Chung to Jim Rispoli, Integrated Project Team Capability ...

  16. Readiness Review RM

    Office of Environmental Management (EM)

    March 2010 CD-0 O 0 OFFICE OF C CD-1 F ENVIRO Standard R Readin Rev Critical Decis CD-2 M ... D-3 EMENT CD-4 Post Ope eration Standard Review Plan, 2 nd Edition, March 2010 i ...

  17. Decommissioning Plan RM

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... In a decommissioning project the disposition of waste can be a significant portion of the project costs and both the cost and logistics of waste management must be adequately ...

  18. Final Design RM

    Office of Environmental Management (EM)

    ... and appropriate controls consistent with DOE O 420.1B, DOE-STD-1066-99, National Fire Protection Association (NFPA) standards, and other applicable regulatory requirements. ...

  19. Prelminary Design RM

    Office of Environmental Management (EM)

    ... and appropriate controls consistent with DOE O 420.1B, DOE-STD-1066-99, and National Fire Protection Association (NFPA) standards and other applicable regulatory requirements. ...

  20. Risk Management RM

    Office of Environmental Management (EM)

    Modules that address key functional areas of project management, engineering and design, safety, environment, security, and quality assurance, grouped by each specific CD phase. ...

  1. Project Execution Plan RM

    Office of Environmental Management (EM)

    Modules that address key functional areas of project management, engineering and design, safety, environment, security, and quality assurance, grouped by each specific CD phase. ...

  2. Acquisition Strategy RM

    Office of Environmental Management (EM)

    Modules that address key functional areas of project management, engineering and design, safety, environment, security, and quality assurance, grouped by each specific CD phase. ...

  3. ION SWITCH

    DOE Patents [OSTI]

    Cook, B.

    1959-02-10

    An ion switch capable of transferring large magnitudes of power is described. An ion switch constructed in accordance with the invention includes a pair of spaced control electrodes disposed in a highly evacuated region for connection in a conventional circuit to control the passing of power therethrough. A controllable ionic conduction path is provided directiy between the control electrodes by a source unit to close the ion switch. Conventional power supply means are provided to trigger the source unit and control the magnitude, durations and pulse repetition rate of the aforementioned ionic conduction path.

  4. ION SOURCE

    DOE Patents [OSTI]

    Leland, W.T.

    1960-01-01

    The ion source described essentially eliminater the problem of deposits of nonconducting materials forming on parts of the ion source by certain corrosive gases. This problem is met by removing both filament and trap from the ion chamber, spacing them apart and outside the chamber end walls, placing a focusing cylinder about the filament tip to form a thin collimated electron stream, aligning the cylinder, slits in the walls, and trap so that the electron stream does not bombard any part in the source, and heating the trap, which is bombarded by electrons, to a temperature hotter than that in the ion chamber, so that the tendency to build up a deposit caused by electron bombardment is offset by the extra heating supplied only to the trap.

  5. Ion focusing

    DOE Patents [OSTI]

    Cooks, Robert Graham; Baird, Zane; Peng, Wen-Ping

    2015-11-10

    The invention generally relates to apparatuses for focusing ions at or above ambient pressure and methods of use thereof. In certain embodiments, the invention provides an apparatus for focusing ions that includes an electrode having a cavity, at least one inlet within the electrode configured to operatively couple with an ionization source, such that discharge generated by the ionization source is injected into the cavity of the electrode, and an outlet. The cavity in the electrode is shaped such that upon application of voltage to the electrode, ions within the cavity are focused and directed to the outlet, which is positioned such that a proximal end of the outlet receives the focused ions and a distal end of the outlet is open to ambient pressure.

  6. ION SOURCE

    DOE Patents [OSTI]

    Bell, W.A. Jr.; Love, L.O.; Prater, W.K.

    1958-01-28

    An ion source is presented capable of producing ions of elements which vaporize only at exceedingly high temperatures, i.e.,--1500 degrees to 3000 deg C. The ion source utilizes beams of electrons focused into a first chamber housing the material to be ionized to heat the material and thereby cause it to vaporize. An adjacent second chamber receives the vaporized material through an interconnecting passage, and ionization of the vaporized material occurs in this chamber. The ionization action is produced by an arc discharge sustained between a second clectron emitting filament and the walls of the chamber which are at different potentials. The resultant ionized material egresses from a passageway in the second chamber. Using this device, materials which in the past could not be processed in mass spectometers may be satisfactorily ionized for such applications.

  7. ION PUMP

    DOE Patents [OSTI]

    Milleron, N.

    1961-01-01

    An ion pump and pumping method are given for low vacuum pressures in which gases introduced into a pumping cavity are ionized and thereafter directed and accelerated into a quantity of liquid gettering metal where they are absorbed. In the preferred embodiment the metal is disposed as a liquid pool upon one electrode of a Phillips ion gauge type pump. Means are provided for continuously and remotely withdrawing and degassing the gettering metal. The liquid gettering metal may be heated if desired, although various combinations of gallium, indium, tin, bismuth, and lead, the preferred metals, have very low melting points. A background pressure of evaporated gettering metal may be provided by means of a resistance heated refractory metal wick protruding from the surface of the pcol of gettering metal.

  8. Highly charged ion secondary ion mass spectroscopy

    DOE Patents [OSTI]

    Hamza, Alex V.; Schenkel, Thomas; Barnes, Alan V.; Schneider, Dieter H.

    2001-01-01

    A secondary ion mass spectrometer using slow, highly charged ions produced in an electron beam ion trap permits ultra-sensitive surface analysis and high spatial resolution simultaneously. The spectrometer comprises an ion source producing a primary ion beam of highly charged ions that are directed at a target surface, a mass analyzer, and a microchannel plate detector of secondary ions that are sputtered from the target surface after interaction with the primary beam. The unusually high secondary ion yield permits the use of coincidence counting, in which the secondary ion stops are detected in coincidence with a particular secondary ion. The association of specific molecular species can be correlated. The unique multiple secondary nature of the highly charged ion interaction enables this new analytical technique.

  9. Ion Stancu

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Search for Neutrino Oscillations with MiniBooNE Ion Stancu University of Alabama Frontiers in Neutrino Physics APC, Paris, October 6th, 2011 06.10.2011
FNP
 2
 Ion
Stancu
-
University
of
Alabama
 Introduction Review of the MiniBooNE oscillation results: * Motivation for MiniBooNE: testing the LSND signal * MiniBooNE design strategy and assumptions * Neutrino oscillation results: PRL 98, 231801 (2007) & PRL 102, 101802 (2009) * Antineutrino oscillation results: PRL 103,

  10. Improved ion source

    DOE Patents [OSTI]

    Leung, K.N.; Ehlers, K.W.

    1982-05-04

    A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species,

  11. ION GUN

    DOE Patents [OSTI]

    Dandl, R.A.

    1961-10-24

    An ion gun is described for the production of an electrically neutral ionized plasma. The ion gun comprises an anode and a cathode mounted in concentric relationship with a narrow annulus between. The facing surfaces of the rear portions of the anode and cathode are recessed to form an annular manifold. Positioned within this manifold is an annular intermediate electrode aligned with the an nulus between the anode and cathode. Gas is fed to the manifold and an arc discharge is established between the anode and cathode. The gas is then withdrawn from the manifold through the annulus between the anode and cathode by a pressure differential. The gas is then ionized by the arc discharge across the annulus. The ionized gas is withdrawn from the annulus by the combined effects of the pressure differential and a collimating magnetic field. In a 3000 gauss magnetic field, an arc voltage of 1800 volts, and an arc current of 0.2 amp, a plasma of about 3 x 10/sup 11/ particles/cc is obtained. (AEC)

  12. Ion mobility sensor

    DOE Patents [OSTI]

    Koo, Jackson C.; Yu, Conrad M.

    2005-08-23

    An ion mobility sensor which can detect both ion and molecules simultaneously. Thus, one can measure the relative arrival times between various ions and molecules. Different ions have different mobility in air, and the ion sensor enables measurement of ion mobility, from which one can identify the various ions and molecules. The ion mobility sensor which utilizes a pair of glow discharge devices may be designed for coupling with an existing gas chromatograph, where various gas molecules are already separated, but numbers of each kind of molecules are relatively small, and in such cases a conventional ion mobility sensor cannot be utilized.

  13. Ion Monitoring

    DOE Patents [OSTI]

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2003-11-18

    The apparatus and method provide a technique for significantly reducing capacitance effects in detector electrodes arising due to movement of the instrument relative to the item/location being monitored in ion detection based techniques. The capacitance variations are rendered less significant by placing an electrically conducting element between the detector electrodes and the monitored location/item. Improved sensitivity and reduced noise signals arise as a result. The technique also provides apparatus and method suitable for monitoring elongate items which are unsuited to complete enclosure in one go within a chamber. The items are monitored part by part as the pass through the instrument, so increasing the range of items or locations which can be successfully monitored.

  14. ION SOURCE

    DOE Patents [OSTI]

    Brobeck, W.M.

    1959-04-14

    This patent deals with calutrons and more particularly to an arrangement therein whereby charged bottles in a calutron source unit may be replaced without admitting atmospheric air to the calutron vacuum chamber. As described, an ion unit is disposed within a vacuum tank and has a reservoir open toward a wall of the tank. A spike projects from thc source into the reservoir. When a charge bottle is placed in the reservoir, the spike breaks a frangible seal on the bottle. After the contents of the bottle are expended the bottle may be withdrawn and replaced with another charge bottle by a varuum lock arrangement in conjunction with an arm for manipulating the bottle.

  15. Ion funnel ion trap and process

    DOE Patents [OSTI]

    Belov, Mikhail E [Richland, WA; Ibrahim, Yehia M [Richland, WA; Clowers, Biran H [West Richland, WA; Prior, David C [Hermiston, OR; Smith, Richard D [Richland, WA

    2011-02-15

    An ion funnel trap is described that includes a inlet portion, a trapping portion, and a outlet portion that couples, in normal operation, with an ion funnel. The ion trap operates efficiently at a pressure of .about.1 Torr and provides for: 1) removal of low mass-to-charge (m/z) ion species, 2) ion accumulation efficiency of up to 80%, 3) charge capacity of .about.10,000,000 elementary charges, 4) ion ejection time of 40 to 200 .mu.s, and 5) optimized variable ion accumulation times. Ion accumulation with low concentration peptide mixtures has shown an increase in analyte signal-to-noise ratios (SNR) of a factor of 30, and a greater than 10-fold improvement in SNR for multiply charged analytes.

  16. A search for an excited muon decaying to a muon and two jets in pp collisions at $$\\sqrt{s}\\;=\\;8\\;{\\rm{TeV}}$$ with the ATLAS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; et al

    2016-07-11

    In this study, a new search signature for excited leptons is explored. Excited muons are sought in the channelmore » $${pp}\\to \\mu {\\mu }^{* }\\to \\mu \\mu \\ {\\rm{jet}}\\;{\\rm{jet}}$$, assuming both the production and decay occur via a contact interaction. The analysis is based on 20.3 fb–1 of pp collision data at a centre-of-mass energy of $$\\sqrt{s}\\;=\\;8\\;{\\rm{TeV}}$$ taken with the ATLAS detector at the large hadron collider. No evidence of excited muons is found, and limits are set at the 95% confidence level on the cross section times branching ratio as a function of the excited-muon mass $${m}_{{\\mu }^{* }}$$. For $${m}_{{\\mu }^{* }}$$ between 1.3 and 3.0 TeV, the upper limit on $$\\sigma B({\\mu }^{* }\\to \\mu q\\bar{q}$$) is between 0.6 and 1 fb. Limits on $$\\sigma B$$ are converted to lower bounds on the compositeness scale Λ. In the limiting case $${\\rm{\\Lambda }}={m}_{{\\mu }^{* }}$$, excited muons with a mass below 2.8 TeV are excluded. With the same model assumptions, these limits at larger $${\\mu }^{* }$$ masses improve upon previous limits from traditional searches based on the gauge-mediated decay $${\\mu }^{* }\\to \\mu \\gamma $$.« less

  17. Microfabricated ion frequency standard

    DOE Patents [OSTI]

    Schwindt, Peter; Biedermann, Grant; Blain, Matthew G.; Stick, Daniel L.; Serkland, Darwin K.; Olsson, III, Roy H.

    2010-12-28

    A microfabricated ion frequency standard (i.e. an ion clock) is disclosed with a permanently-sealed vacuum package containing a source of ytterbium (Yb) ions and an octupole ion trap. The source of Yb ions is a micro-hotplate which generates Yb atoms which are then ionized by a ultraviolet light-emitting diode or a field-emission electron source. The octupole ion trap, which confines the Yb ions, is formed from suspended electrodes on a number of stacked-up substrates. A microwave source excites a ground-state transition frequency of the Yb ions, with a frequency-doubled vertical-external-cavity laser (VECSEL) then exciting the Yb ions up to an excited state to produce fluorescent light which is used to tune the microwave source to the ground-state transition frequency, with the microwave source providing a precise frequency output for the ion clock.

  18. Ion Beam Materials Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ion Beam Materials Lab Ion Beam Materials Lab A new research frontier awaits! Our door is open and we thrive on mutually beneficial partnerships, collaborations that drive innovations and new technologies. April 12, 2012 Ion Beam Danfysik Implanter High Voltage Terminal. Contact Yongqiang Wang (505) 665-1596 Email Devoted to the characterization and modification of surfaces through the use of ion beams The Ion Beam Materials Laboratory (IBML) is a Los Alamos National Laboratory resource devoted

  19. Sampling and analyses report for December 1991 semiannual postburn sampling at the RM1 UCG site, Hanna, Wyoming. [Quarterly report, January--March 1992

    SciTech Connect (OSTI)

    Lindblom, S.R.

    1992-01-01

    The Rocky Mountain 1 (RM1) underground coal gasification (UCG) test was conducted from November 16, 1987, through February 26, 1988 at a site approximately one mile south of Hanna, Wyoming. The test consisted of a dual-module operation to evaluate the controlled retracting injection point (CRIP) technology, the elongated linked well (ELW) technology, and the interaction of closely spaced modules operating simultaneously. The test caused two cavities to form in the Hanna No. 1 coal seam and associated overburden. The Hanna No. 1 coal seam was approximately 30 ft thick and lay at depths between 350 and 365 ft below the surface in the test area. The coal seam was overlain by sandstones, siltstones, and claystones deposited by various fluvial environments. The groundwater monitoring was designed to satisfy the requirements of the Wyoming Department of Environmental Quality (WDEQ) in addition to providing research data toward the development of UCG technology that minimizes environmental impacts. Further background material and the sampling and analytical procedures associated with the sampling task are described in the Rocky Mountain 1 Postburn Groundwater Monitoring Quality Assurance Plan (Mason and Johnson 1988).

  20. Ion sources for ion implantation technology (invited)

    SciTech Connect (OSTI)

    Sakai, Shigeki Hamamoto, Nariaki; Inouchi, Yutaka; Umisedo, Sei; Miyamoto, Naoki

    2014-02-15

    Ion sources for ion implantation are introduced. The technique is applied not only to large scale integration (LSI) devices but also to flat panel display. For LSI fabrication, ion source scheduled maintenance cycle is most important. For CMOS image sensor devices, metal contamination at implanted wafer is most important. On the other hand, to fabricate miniaturized devices, cluster ion implantation has been proposed to make shallow PN junction. While for power devices such as silicon carbide, aluminum ion is required. For doping processes of LCD fabrication, a large ion source is required. The extraction area is about 150 cm 10 cm, and the beam uniformity is important as well as the total target beam current.

  1. Cocktails and Ions - 88-Inch Cyclotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cocktails and Ions BASE Ion List Download as a .pdf

  2. PULSED ION SOURCE

    DOE Patents [OSTI]

    Anderson, C.E.; Ehlers, K.W.

    1958-06-17

    An ion source is described for producing very short high density pulses of ions without bcam scattering. The ions are created by an oscillating electron discharge within a magnetic field. After the ions are drawn from the ionization chamber by an accelerating electrode the ion beam is under the influence of the magnetic field for separation of the ions according to mass and, at the same time, passes between two neutralizing plntes maintained nt equal negative potentials. As the plates are formed of a material having a high ratio of secondary electrons to impinging ions, the ion bombardment of the plntes emits electrons which neutralize the frirge space-charge of the beam and tend to prevent widening of the beam cross section due to the mutual repulsion of the ions.

  3. Broad beam ion implanter

    DOE Patents [OSTI]

    Leung, K.N.

    1996-10-08

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes. 6 figs.

  4. Broad beam ion implanter

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    1996-01-01

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes.

  5. MJJ RM Handbook-new

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Examples are tax returns, medical records, and some personnel investigative files. (2) National security. These files bear classification markings such as "top secret," "secret," ...

  6. Facility Disposition Safety Strategy RM

    Broader source: Energy.gov [DOE]

    The Facility Disposition Safety Strategy (FDSS) Review Module is a tool that assists DOE federal project review teams in evaluating the adequacy of the facility documentation, preparations or...

  7. National Environmental Policy Act RM

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Environmental Policy Act Review Module March 2010 CD- N -0 OFFICE O National E C CD-1 OF ENVIRO Standa Environm Rev Critical Deci CD-2 M ONMENTA ard Review mental P view Modul ision (CD) A C March 2010 AL MANAG Plan olicy Act le Applicability D-3 GEMENT t (NEPA) CD-4 ) Post Ope eration Standard Review Plan, 2 nd Edition, March 2010 i FOREWORD The Standard Review Plan (SRP) 1 provides a consistent, predictable corporate review framework to ensure that issues and risks that could

  8. Facility Disposition Safety Strategy RM

    Office of Environmental Management (EM)

    ... facility and nuclear safety requirements defined in 10 CFR 830, Nuclear Safety Management, and worker safety requirements defined in 10 CFR 851, Worker Safety and Health Program. ...

  9. Earned Value Management System RM

    Office of Environmental Management (EM)

    ... variances from the plan and forecasting the impacts Providing data to ... The review topics include: Direct costs determination Indirect costs determination ...

  10. Earned Value Management System RM

    Broader source: Energy.gov [DOE]

    In recent years Department of Energy (DOE) has developed a number of orders, and guidance documents aimed to improve the overall performance of project management and the acquisition of capital...

  11. ION Engineering | Open Energy Information

    Open Energy Info (EERE)

    ION Engineering Jump to: navigation, search Name: ION Engineering Place: Boulder, Colorado Zip: 80301 Sector: Carbon Product: ION is the first clean-tech company to successfully...

  12. Applications of decelerated ions

    SciTech Connect (OSTI)

    Johnson, B.M.

    1985-03-01

    Many facilities whose sole purpose had been to accelerate ion beams are now becoming decelerators as well. The development and current status of accel-decel operations is reviewed here. Applications of decelerated ions in atomic physics experiments are discussed.

  13. Single Ion Implantation

    ScienceCinema (OSTI)

    Thomas Schenkel

    2010-01-08

    On the equipment needed to implant ions in silicon and other materials. More information: http://newscenter.lbl.gov/f...

  14. Negative ion generator

    DOE Patents [OSTI]

    Stinnett, Regan W. (Albuquerque, NM)

    1984-01-01

    A negative ion generator is formed from a magnetically insulated transmission line having a coating of graphite on the cathode for producing negative ions and a plurality of apertures on the opposed anode for the release of negative ions. Magnetic insulation keeps electrons from flowing from the cathode to the anode. A transverse magnetic field removes electrons which do escape through the apertures from the trajectory of the negative ions.

  15. Negative ion generator

    DOE Patents [OSTI]

    Stinnett, R.W.

    1984-05-08

    A negative ion generator is formed from a magnetically insulated transmission line having a coating of graphite on the cathode for producing negative ions and a plurality of apertures on the opposed anode for the release of negative ions. Magnetic insulation keeps electrons from flowing from the cathode to the anode. A transverse magnetic field removes electrons which do escape through the apertures from the trajectory of the negative ions. 8 figs.

  16. CALUTRON ION SOURCE

    DOE Patents [OSTI]

    Oppenheimer, F.F.

    1959-06-01

    A shielding arrangement for eliminating oscillating electrons in the ion source region of calutrons is offered. Metal plates are attached to the ion generator so as to intercept the magnetic field between ion generator and accelerating electrode. The oscillating electrons are discharged on the plates. (T.R.H.)

  17. Ion cyclotron resonance cell

    DOE Patents [OSTI]

    Weller, Robert R. (Aiken, SC)

    1995-01-01

    An ion cyclotron resonance cell having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions.

  18. Ion cyclotron resonance cell

    DOE Patents [OSTI]

    Weller, R.R.

    1995-02-14

    An ion cyclotron resonance cell is disclosed having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions. 5 figs.

  19. Microfabricated ion trap array

    DOE Patents [OSTI]

    Blain, Matthew G.; Fleming, James G.

    2006-12-26

    A microfabricated ion trap array, comprising a plurality of ion traps having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale ion traps to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The reduced electrode voltage enables integration of the microfabricated ion trap array with on-chip circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of the microfabricated ion trap array can be realized in truly field portable, handheld microanalysis systems.

  20. Imaging Heterogeneous Ion Transfer: Lithium Ion Quantification...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantitative micro- and nano- probes were used for the in situ imaging of alkaline ion ... Implementation of technique onto a 120 nm nano-Hg electrode shows promising for battery ...

  1. Charge exchange molecular ion source

    DOE Patents [OSTI]

    Vella, Michael C.

    2003-06-03

    Ions, particularly molecular ions with multiple dopant nucleons per ion, are produced by charge exchange. An ion source contains a minimum of two regions separated by a physical barrier and utilizes charge exchange to enhance production of a desired ion species. The essential elements are a plasma chamber for production of ions of a first species, a physical separator, and a charge transfer chamber where ions of the first species from the plasma chamber undergo charge exchange or transfer with the reactant atom or molecules to produce ions of a second species. Molecular ions may be produced which are useful for ion implantation.

  2. HEAVY ION LINEAR ACCELERATOR

    DOE Patents [OSTI]

    Van Atta, C.M.; Beringer, R.; Smith, L.

    1959-01-01

    A linear accelerator of heavy ions is described. The basic contributions of the invention consist of a method and apparatus for obtaining high energy particles of an element with an increased charge-to-mass ratio. The method comprises the steps of ionizing the atoms of an element, accelerating the resultant ions to an energy substantially equal to one Mev per nucleon, stripping orbital electrons from the accelerated ions by passing the ions through a curtain of elemental vapor disposed transversely of the path of the ions to provide a second charge-to-mass ratio, and finally accelerating the resultant stripped ions to a final energy of at least ten Mev per nucleon.

  3. Ion photon emission microscope

    DOE Patents [OSTI]

    Doyle, Barney L.

    2003-04-22

    An ion beam analysis system that creates microscopic multidimensional image maps of the effects of high energy ions from an unfocussed source upon a sample by correlating the exact entry point of an ion into a sample by projection imaging of the ion-induced photons emitted at that point with a signal from a detector that measures the interaction of that ion within the sample. The emitted photons are collected in the lens system of a conventional optical microscope, and projected on the image plane of a high resolution single photon position sensitive detector. Position signals from this photon detector are then correlated in time with electrical effects, including the malfunction of digital circuits, detected within the sample that were caused by the individual ion that created these photons initially.

  4. Collection of ions

    DOE Patents [OSTI]

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan; Koster, James E.

    2001-01-01

    The apparatus and method provide an improved technique for detecting ions as the area from which ions are attracted to a detector is increased, consequently increasing the number of ions detected. This is achieved by providing the outer electrodes of the detector connected to the electrical potential, together with alternate intermediate electrodes. The other intermediate electrodes and preferably the housing are grounded. The technique renders such detection techniques more sensitive and gives them a lower threshold at which they can function.

  5. APPARATUS FOR HEATING IONS

    DOE Patents [OSTI]

    Chambers, E.S.; Garren, A.A.; Kippenhan, D.O.; Lamb, W.A.S.; Riddell, R.J. Jr.

    1960-01-01

    The heating of ions in a magnetically confined plasma is accomplished by the application of an azimuthal radiofrequency electric field to the plasma at ion cyclotron resonance. The principal novelty resides in the provision of an output tank coil of a radiofrequency driver to induce the radiofrequency field in the plasma and of electron current bridge means at the ends of the plasma for suppressing radial polarization whereby the radiofrequency energy is transferred to the ions with high efficiency.

  6. Ion beam generating apparatus

    DOE Patents [OSTI]

    Brown, Ian G.; Galvin, James

    1987-01-01

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam.

  7. Ion beam generating apparatus

    DOE Patents [OSTI]

    Brown, I.G.; Galvin, J.

    1987-12-22

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam. 10 figs.

  8. BERNAS ION SOURCE DISCHARGE SIMULATION

    SciTech Connect (OSTI)

    RUDSKOY,I.; KULEVOY, T.V.; PETRENKO, S.V.; KUIBEDA, R.P.; SELEZNEV, D.N.; PERSHIN, V.I.; HERSHCOVITCH, A.; JOHNSON, B.M.; GUSHENETS, V.I.; OKS, E.M.; POOLE, H.J.

    2007-08-26

    The joint research and development program is continued to develop steady-state ion source of decaborane beam for ion implantation industry. Bemas ion source is the wide used ion source for ion implantation industry. The new simulation code was developed for the Bemas ion source discharge simulation. We present first results of the simulation for several materials interested in semiconductors. As well the comparison of results obtained with experimental data obtained at the ITEP ion source test-bench is presented.

  9. Correlation ion mobility spectroscopy

    DOE Patents [OSTI]

    Pfeifer, Kent B.; Rohde, Steven B.

    2008-08-26

    Correlation ion mobility spectrometry (CIMS) uses gating modulation and correlation signal processing to improve IMS instrument performance. Closely spaced ion peaks can be resolved by adding discriminating codes to the gate and matched filtering for the received ion current signal, thereby improving sensitivity and resolution of an ion mobility spectrometer. CIMS can be used to improve the signal-to-noise ratio even for transient chemical samples. CIMS is especially advantageous for small geometry IMS drift tubes that can otherwise have poor resolution due to their small size.

  10. Ion-beam technologies

    SciTech Connect (OSTI)

    Fenske, G.R.

    1993-01-01

    This compilation of figures and diagrams reviews processes for depositing diamond/diamond-like carbon films. Processes addressed are chemical vapor deposition (HFCVD, PACVD, etc.), plasma vapor deposition (plasma sputtering, ion beam sputtering, evaporation, etc.), low-energy ion implantation, and hybrid processes (biased sputtering, IBAD, biased HFCVD, etc.). The tribological performance of coatings produced by different means is discussed.

  11. Microfabricated cylindrical ion trap

    DOE Patents [OSTI]

    Blain, Matthew G.

    2005-03-22

    A microscale cylindrical ion trap, having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale cylindrical ion trap to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The microscale CIT has a reduced ion mean free path, allowing operation at higher pressures with less expensive and less bulky vacuum pumping system, and with lower battery power than conventional- and miniature-sized ion traps. The reduced electrode voltage enables integration of the microscale cylindrical ion trap with on-chip integrated circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of microscale cylindrical ion traps can be realized in truly field portable, handheld microanalysis systems.

  12. Selective ion source

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    1996-01-01

    A ion source is described wherein selected ions maybe extracted to the exclusion of unwanted ion species of higher ionization potential. Also described is a method of producing selected ions from a compound, such as P.sup.+ from PH.sub.3. The invention comprises a plasma chamber, an electron source, a means for introducing a gas to be ionized by electrons from the electron source, means for limiting electron energy from the electron source to a value between the ionization energy of the selected ion species and the greater ionization energy of an unwanted ion specie, and means for extracting the target ion specie from the plasma chamber. In one embodiment, the electrons are generated in a plasma cathode chamber immediately adjacent to the plasma chamber. A small extractor draws the electrons from the plasma cathode chamber into the relatively positive plasma chamber. The energy of the electrons extracted in this manner is easily controlled. The invention is particularly useful for doping silicon with P.sup.+, AS.sup.+, and B.sup.+ without the problematic presence of hydrogen, helium, water, or carbon oxide ions. Doped silicon is important for manufacture of semiconductors and semiconductor devices.

  13. Selective ion source

    DOE Patents [OSTI]

    Leung, K.N.

    1996-05-14

    A ion source is described wherein selected ions maybe extracted to the exclusion of unwanted ion species of higher ionization potential. Also described is a method of producing selected ions from a compound, such as P{sup +} from PH{sub 3}. The invention comprises a plasma chamber, an electron source, a means for introducing a gas to be ionized by electrons from the electron source, means for limiting electron energy from the electron source to a value between the ionization energy of the selected ion species and the greater ionization energy of an unwanted ion specie, and means for extracting the target ion specie from the plasma chamber. In one embodiment, the electrons are generated in a plasma cathode chamber immediately adjacent to the plasma chamber. A small extractor draws the electrons from the plasma cathode chamber into the relatively positive plasma chamber. The energy of the electrons extracted in this manner is easily controlled. The invention is particularly useful for doping silicon with P{sup +}, As{sup +}, and B{sup +} without the problematic presence of hydrogen, helium, water, or carbon oxide ions. Doped silicon is important for manufacture of semiconductors and semiconductor devices. 6 figs.

  14. Development of ion sources for ion projection lithography

    SciTech Connect (OSTI)

    Lee, Y.; Gough, R.A.; Kunkel, W.B.; Leung, K.N.; Perkins, L.T.

    1996-05-01

    Multicusp ion sources are capable of generating ion beams with low axial energy spread as required by the Ion Projection Lithography (IPL). Longitudinal ion energy spread has been studied in two different types of plasma discharge: the filament discharge ion source characterized by its low axial energy spread, and the RF-driven ion source characterized by its long source lifetime. For He{sup +} ions, longitudinal ion energy spreads of 1-2 eV were measured for a filament discharge multicusp ion source which is within the IPL device requirements. Ion beams with larger axial energy spread were observed in the RF-driven source. A double-chamber ion source has been designed which combines the advantages of low axial energy spread of the filament discharge ion source with the long lifetime of the RF-driven source. The energy spread of the double chamber source is lower than that of the RF-driven source.

  15. Ion mobility sensor system

    DOE Patents [OSTI]

    Xu, Jun; Watson, David B.; Whitten, William B.

    2013-01-22

    An ion mobility sensor system including an ion mobility spectrometer and a differential mobility spectrometer coupled to the ion mobility spectrometer. The ion mobility spectrometer has a first chamber having first end and a second end extending along a first direction, and a first electrode system that generates a constant electric field parallel to the first direction. The differential mobility spectrometer includes a second chamber having a third end and a fourth end configured such that a fluid may flow in a second direction from the third end to the fourth end, and a second electrode system that generates an asymmetric electric field within an interior of the second chamber. Additionally, the ion mobility spectrometer and the differential mobility spectrometer form an interface region. Also, the first end and the third end are positioned facing one another so that the constant electric field enters the third end and overlaps the fluid flowing in the second direction.

  16. ION PULSE GENERATION

    DOE Patents [OSTI]

    King, R.F.; Moak, C.D.; Parker, V.E.

    1960-10-11

    A device for generating ions in an ion source, forming the ions into a stream, deflecting the stream rapidly away from and back to its normal path along the axis of a cylindrical housing, and continually focusing the stream by suitable means into a sharp, intermittent beam along the axis is described. The beam exists through an axial aperture into a lens which focuses it into an accelerator tube. The ions in each burst are there accelerated to very high energies and are directed against a target placed in the high-energy end of the tube. Radiations from the target can then be analyzed in the interval between incidence of the bursts of ions on the target.

  17. Laser-cooled atomic ions as probes of molecular ions

    SciTech Connect (OSTI)

    Brown, Kenneth R.; Viteri, C. Ricardo; Clark, Craig R.; Goeders, James E.; Khanyile, Ncamiso B.; Vittorini, Grahame D.

    2015-01-22

    Trapped laser-cooled atomic ions are a new tool for understanding cold molecular ions. The atomic ions not only sympathetically cool the molecular ions to millikelvin temperatures, but the bright atomic ion fluorescence can also serve as a detector of both molecular reactions and molecular spectra. We are working towards the detection of single molecular ion spectra by sympathetic heating spectroscopy. Sympathetic heating spectroscopy uses the coupled motion of two trapped ions to measure the spectra of one ion by observing changes in the fluorescence of the other ion. Sympathetic heating spectroscopy is a generalization of quantum logic spectroscopy, but does not require ions in the motional ground state or coherent control of the ion internal states. We have recently demonstrated this technique using two isotopes of Ca{sup +} [Phys. Rev. A, 81, 043428 (2010)]. Limits of the method and potential applications for molecular spectroscopy are discussed.

  18. Ion optics of RHIC electron beam ion source

    SciTech Connect (OSTI)

    Pikin, A.; Alessi, J.; Beebe, E.; Kponou, A.; Okamura, M.; Raparia, D.; Ritter, J.; Tan, Y.; Kuznetsov, G.

    2012-02-15

    RHIC electron beam ion source has been commissioned to operate as a versatile ion source on RHIC injection facility supplying ion species from He to Au for Booster. Except for light gaseous elements RHIC EBIS employs ion injection from several external primary ion sources. With electrostatic optics fast switching from one ion species to another can be done on a pulse to pulse mode. The design of an ion optical structure and the results of simulations for different ion species are presented. In the choice of optical elements special attention was paid to spherical aberrations for high-current space charge dominated ion beams. The combination of a gridded lens and a magnet lens in LEBT provides flexibility of optical control for a wide range of ion species to satisfy acceptance parameters of RFQ. The results of ion transmission measurements are presented.

  19. Pulsed ion beam source

    DOE Patents [OSTI]

    Greenly, John B.

    1996-01-01

    An improved magnetically-confined anode plasma pulsed ion beam source. Beam rotation effects and power efficiency are improved by a magnetic design which places the separatrix between the fast field flux structure and the slow field structure near the anode of the ion beam source, by a gas port design which localizes the gas delivery into the gap between the fast coil and the anode, by a pre-ionizer ringing circuit connected to the fast coil, and by a bias field means which optimally adjusts the plasma formation position in the ion beam source.

  20. Relating to ion detection

    DOE Patents [OSTI]

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2001-01-01

    The apparatus and method provide a technique for improving detection of alpha and/or beta emitting sources on items or in locations using indirect means. The emission forms generate ions in a medium surrounding the item or location and the medium is then moved to a detecting location where the ions are discharged to give a measure of the emission levels. To increase the level of ions generated and render the system particularly applicable for narrow pipes and other forms of conduits, the medium pressure is increased above atmospheric pressure. STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

  1. Ion exchange phenomena

    SciTech Connect (OSTI)

    Bourg, I.C.; Sposito, G.

    2011-05-01

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).

  2. Ion sensing method

    DOE Patents [OSTI]

    Smith, Richard Harding; Martin, Glenn Brian

    2004-05-18

    The present invention allows the determination of trace levels of ionic substances in a sample solution (ions, metal ions, and other electrically charged molecules) by coupling a separation method, such as liquid chromatography, with ion selective electrodes (ISE) prepared so as to allow detection at activities below 10.sup.-6 M. The separation method distributes constituent molecules into fractions due to unique chemical and physical properties, such as charge, hydrophobicity, specific binding interactions, or movement in an electrical field. The separated fractions are detected by means of the ISE(s). These ISEs can be used singly or in an array. Accordingly, modifications in the ISEs are used to permit detection of low activities, specifically, below 10.sup.-6 M, by using low activities of the primary analyte (the molecular species which is specifically detected) in the inner filling solution of the ISE. Arrays constructed in various ways allow flow-through sensing for multiple ions.

  3. Ion manipulation device

    DOE Patents [OSTI]

    Anderson, Gordon A; Smith, Richard D; Ibrahim, Yehia M; Baker, Erin M

    2014-09-16

    An ion manipulation method and device is disclosed. The device includes a pair of substantially parallel surfaces. An array of inner electrodes is contained within, and extends substantially along the length of, each parallel surface. The device includes a first outer array of electrodes and a second outer array of electrodes. Each outer array of electrodes is positioned on either side of the inner electrodes, and is contained within and extends substantially along the length of each parallel surface. A DC voltage is applied to the first and second outer array of electrodes. A RF voltage, with a superimposed electric field, is applied to the inner electrodes by applying the DC voltages to each electrode. Ions either move between the parallel surfaces within an ion confinement area or along paths in the direction of the electric field, or can be trapped in the ion confinement area.

  4. COASTING ARC ION SOURCE

    DOE Patents [OSTI]

    Foster, J.S. Jr.

    1957-09-10

    An improved ion source is described and in particular a source in which the ions are efficiently removed. The plasma is generated in a tubular amode structure by the oscillation of electrons in an axial magnetic field, as in the Phillips Ion Gage. The novel aspect of the source is the expansion of the plasma as it leaves the anode structure, so as to reduce the ion density at the axis of the anode and present a uniform area of plasma to an extraction grid. The structure utilized in the present patent to expand the plasma comprises flange members of high permeability at the exitgrid end of the amode to diverge the magnetic field adjacent the exit.

  5. Focused ion beam system

    DOE Patents [OSTI]

    Leung, K.; Gough, R.A.; Ji, Q.; Lee, Y.Y.

    1999-08-31

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 {mu}m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 m or less. 13 figs.

  6. Focused ion beam system

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Gough, Richard A.; Ji, Qing; Lee, Yung-Hee Yvette

    1999-01-01

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 .mu.m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 .mu.m or less.

  7. High current ion source

    DOE Patents [OSTI]

    Brown, Ian G.; MacGill, Robert A.; Galvin, James E.

    1990-01-01

    An ion source utilizing a cathode and anode for producing an electric arc therebetween. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma leaves the generation region and expands through another regon. The density profile of the plasma may be flattened using a magnetic field formed within a vacuum chamber. Ions are extracted from the plasma to produce a high current broad on beam.

  8. Ion electric propulsion unit

    DOE Patents [OSTI]

    Light, Max E; Colestock, Patrick L

    2014-01-28

    An electron cyclotron resonance (ECR) thruster is disclosed having a plasma chamber which is electrically biased with a positive voltage. The chamber bias serves to efficiently accelerate and expel the positive ions from the chamber. Electrons follow the exiting ions, serving to provide an electrically neutral exhaust plume. In a further embodiment, a downstream shaping magnetic field serves to further accelerate and/or shape the exhaust plume.

  9. Ion replacement electrorefining

    SciTech Connect (OSTI)

    Willit, J.L.; Tomczuk, Z.; Miller, W.E.; Laidler, J.J.

    1994-04-01

    We are developing a two-step electrochemical process for purifying and separating metals called ion replacement electrorefining. In each step, metal cations formed by oxidation at an electrode replace other metal cations that are reduced at another elecmae. Using this approach, we have separated or purified uranium, dysprosium, and lanthanum on a laboratory scale. This paper explains the ion replacement concept and presents results of these demonstration experiments.

  10. HIGH VOLTAGE ION SOURCE

    DOE Patents [OSTI]

    Luce, J.S.

    1960-04-19

    A device is described for providing a source of molecular ions having a large output current and with an accelerated energy of the order of 600 kv. Ions are produced in an ion source which is provided with a water-cooled source grid of metal to effect maximum recombination of atomic ions to molecular ions. A very high accelerating voltage is applied to withdraw and accelerate the molecular ions from the source, and means are provided for dumping the excess electrons at the lowest possible potentials. An accelerating grid is placed adjacent to the source grid and a slotted, grounded accelerating electrode is placed adjacent to the accelerating grid. A potential of about 35 kv is maintained between the source grid and accelerating grid, and a potential of about 600 kv is maintained between the accelerating grid and accelerating electrode. In order to keep at a minimum the large number of oscillating electrons which are created when such high voltages are employed in the vicinity of a strong magnetic field, a plurality of high voltage cascaded shields are employed with a conventional electron dumping system being employed between each shield so as to dump the electrons at the lowest possible potential rather than at 600 kv.

  11. Secondary ion collection and transport system for ion microprobe

    DOE Patents [OSTI]

    Ward, James W.; Schlanger, Herbert; McNulty, Jr., Hugh; Parker, Norman W.

    1985-01-01

    A secondary ion collection and transport system, for use with an ion microprobe, which is very compact and occupies only a small working distance, thereby enabling the primary ion beam to have a short focal length and high resolution. Ions sputtered from the target surface by the primary beam's impact are collected between two arcuate members having radii of curvature and applied voltages that cause only ions within a specified energy band to be collected. The collected ions are accelerated and focused in a transport section consisting of a plurality of spaced conductive members which are coaxial with and distributed along the desired ion path. Relatively high voltages are applied to alternate transport sections to produce accelerating electric fields sufficient to transport the ions through the section to an ion mass analyzer, while lower voltages are applied to the other transport sections to focus the ions and bring their velocity to a level compatible with the analyzing apparatus.

  12. Ion optics of RHIC EBIS

    SciTech Connect (OSTI)

    Pikin, A.; Alessi, J.; Beebe, E.; Kponou, A.; Okamura, M.; Raparia, D.; Ritter, J.; Tan, Y.; Kuznetsov, G.

    2011-09-10

    RHIC EBIS has been commissioned to operate as a versatile ion source on RHIC injection facility supplying ion species from He to Au for Booster. Except for light gaseous elements RHIC EBIS employs ion injection from several external primary ion sources. With electrostatic optics fast switching from one ion species to another can be done on a pulse to pulse mode. The design of an ion optical structure and the results of simulations for different ion species are presented. In the choice of optical elements special attention was paid to spherical aberrations for high-current space charge dominated ion beams. The combination of a gridded lens and a magnet lens in LEBT provides flexibility of optical control for a wide range of ion species to satisfy acceptance parameters of RFQ. The results of ion transmission measurements are presented.

  13. Negative ion source

    DOE Patents [OSTI]

    Leung, K.N.; Ehlers, K.W.

    1982-08-06

    An ionization vessel is divided into an ionizing zone and an extraction zone by a magnetic filter. The magnetic filter prevents high-energy electrons from crossing from the ionizing zone to the extraction zone. A small positive voltage impressed on a plasma grid, located adjacent an extraction grid, positively biases the plasma in the extraction zone to thereby prevent positive ions from migrating from the ionizing zone to the extraction zone. Low-energy electrons, which would ordinarily be dragged by the positive ions into the extraction zone, are thereby prevented from being present in the extraction zone and being extracted along with negative ions by the extraction grid. Additional electrons are suppressed from the output flux using ExB drift provided by permanent magnets and the extractor grid electrical field.

  14. Radioactive ion detector

    DOE Patents [OSTI]

    Bower, K.E.; Weeks, D.R.

    1997-08-12

    Apparatus for detecting the presence, in aqueous media, of substances which emit alpha and/or beta radiation and determining the oxidation state of these radioactive substances, that is, whether they are in cationic or anionic form. In one embodiment, a sensor assembly has two elements, one comprised of an ion-exchange material which binds cations and the other comprised of an ion-exchange material which binds anions. Each ion-exchange element is further comprised of a scintillation plastic and a photocurrent generator. When a radioactive substance to which the sensor is exposed binds to either element and emits alpha or beta particles, photons produced in the scintillation plastic illuminate the photocurrent generator of that element. Sensing apparatus senses generator output and thereby indicates whether cationic species or anionic species or both are present and also provides an indication of species quantity. 2 figs.

  15. Radioactive ion detector

    DOE Patents [OSTI]

    Bower, Kenneth E. (Los Alamos, NM); Weeks, Donald R. (Saratoga, CA)

    1997-01-01

    Apparatus for detecting the presence, in aqueous media, of substances which emit alpha and/or beta radiation and determining the oxidation state of these radioactive substances, that is, whether they are in cationic or anionic form. In one embodiment, a sensor assembly has two elements, one comprised of an ion-exchange material which binds cations and the other comprised of an ion-exchange material which binds anions. Each ion-exchange element is further comprised of a scintillation plastic and a photocurrent generator. When a radioactive substance to which the sensor is exposed binds to either element and emits alpha or beta particles, photons produced in the scintillation plastic illuminate the photocurrent generator of that element. Sensing apparatus senses generator output and thereby indicates whether cationic species or anionic species or both are present and also provides an indication of species quantity.

  16. Actinide-ion sensor

    SciTech Connect (OSTI)

    Li, Shelly X; Jue, Jan-fong; Herbst, Ronald Scott; Herrmann, Steven Douglas

    2015-01-13

    An apparatus for the real-time, in-situ monitoring of actinide-ion concentrations. A working electrolyte is positioned within the interior of a container. The working electrolyte is separated from a reference electrolyte by a separator. A working electrode is at least partially in contact with the working electrolyte. A reference electrode is at least partially in contact with the reference electrolyte. A voltmeter is electrically connected to the working electrode and the reference electrode. The working electrolyte comprises an actinide-ion of interest. The separator is ionically conductive to the actinide-ion of interest. The separator comprises an actinide, Zr, and Nb. Preferably, the actinide of the separator is Am or Np, more preferably Pu. In one embodiment, the actinide of the separator is the actinide of interest. In another embodiment, the separator further comprises P and O.

  17. Microwave ion source

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Reijonen, Jani; Thomae, Rainer W.

    2005-07-26

    A compact microwave ion source has a permanent magnet dipole field, a microwave launcher, and an extractor parallel to the source axis. The dipole field is in the form of a ring. The microwaves are launched from the middle of the dipole ring using a coaxial waveguide. Electrons are heated using ECR in the magnetic field. The ions are extracted from the side of the source from the middle of the dipole perpendicular to the source axis. The plasma density can be increased by boosting the microwave ion source by the addition of an RF antenna. Higher charge states can be achieved by increasing the microwave frequency. A xenon source with a magnetic pinch can be used to produce intense EUV radiation.

  18. Negative ion source

    DOE Patents [OSTI]

    Leung, K.N.; Ehlers, K.W.

    1984-12-04

    An ionization vessel is divided into an ionizing zone and an extraction zone by a magnetic filter. The magnetic filter prevents high-energy electrons from crossing from the ionizing zone to the extraction zone. A small positive voltage impressed on a plasma grid, located adjacent an extraction grid, positively biases the plasma in the extraction zone to thereby prevent positive ions from migrating from the ionizing zone to the extraction zone. Low-energy electrons, which would ordinarily be dragged by the positive ions into the extraction zone, are thereby prevented from being present in the extraction zone and being extracted along with negative ions by the extraction grid. Additional electrons are suppressed from the output flux using ExB drift provided by permanent magnets and the extractor grid electrical field. 14 figs.

  19. Negative ion source

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Ehlers, Kenneth W.

    1984-01-01

    An ionization vessel is divided into an ionizing zone and an extraction zone by a magnetic filter. The magnetic filter prevents high-energy electrons from crossing from the ionizing zone to the extraction zone. A small positive voltage impressed on a plasma grid, located adjacent an extraction grid, positively biases the plasma in the extraction zone to thereby prevent positive ions from migrating from the ionizing zone to the extraction zone. Low-energy electrons, which would ordinarily be dragged by the positive ions into the extraction zone, are thereby prevented from being present in the extraction zone and being extracted along with negative ions by the extraction grid. Additional electrons are suppressed from the output flux using ExB drift provided by permanent magnets and the extractor grid electrical field.

  20. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Carter, J. David; Wang, Xiaoping; Vaughey, John; Krumpelt, Michael

    2004-11-23

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  1. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David

    2005-07-12

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  2. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David

    2003-01-01

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  3. Hydrogen ion microlithography

    DOE Patents [OSTI]

    Tsuo, Y.S.; Deb, S.K.

    1990-10-02

    Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing. 6 figs.

  4. Hydrogen ion microlithography

    DOE Patents [OSTI]

    Tsuo, Y. Simon (Lakewood, CO); Deb, Satyen K. (Boulder, CO)

    1990-01-01

    Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing.

  5. Asymmetric ion trap

    DOE Patents [OSTI]

    Barlow, S.E.; Alexander, M.L.; Follansbee, J.C.

    1997-12-02

    An ion trap having two end cap electrodes disposed asymmetrically about a center of a ring electrode is disclosed. The inner surface of the end cap electrodes are conformed to an asymmetric pair of equipotential lines of the harmonic formed by the application of voltages to the electrodes. The asymmetry of the end cap electrodes allows ejection of charged species through the closer of the two electrodes which in turn allows for simultaneously detecting anions and cations expelled from the ion trap through the use of two detectors charged with opposite polarity. 4 figs.

  6. Asymmetric ion trap

    DOE Patents [OSTI]

    Barlow, Stephan E.; Alexander, Michael L.; Follansbee, James C.

    1997-01-01

    An ion trap having two end cap electrodes disposed asymmetrically about a center of a ring electrode. The inner surface of the end cap electrodes are conformed to an asymmetric pair of equipotential lines of the harmonic formed by the application of voltages to the electrodes. The asymmetry of the end cap electrodes allows ejection of charged species through the closer of the two electrodes which in turn allows for simultaneously detecting anions and cations expelled from the ion trap through the use of two detectors charged with opposite polarity.

  7. CALUTRON ION SOURCE

    DOE Patents [OSTI]

    Lofgren, E.J.

    1959-02-17

    An improvement is described in ion source mechanisms whereby the source structure is better adapted to withstanid the ravages of heat, erosion, and deterioration concomitant with operation of an ion source of the calutron type. A pair of molybdenum plates define the exit opening of the arc chamber and are in thermal contact with the walls of the chamber. These plates are maintained at a reduced temperature by a pair of copper blocks in thermal conducting contact therewith to form subsequent diverging margins for the exit opening.

  8. Ion Sources - 88-Inch Cyclotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sources The 88-Inch Cyclotron is fed by three Electron Cyclotron Resonance (ECR) high-charge-state ion sources, the ECR, the AECR, and VENUS, currently the most powerful ECR ion source in the world. Built to answer the demand for intense heavy ion beams, these high performance ion sources enable the 88-Inch Cyclotron to accelerate beams of ions from hydrogen to uranium. The ECR ion sources allow the efficient use of rare isotopes of stable elements, either from natural or enriched sources. A

  9. Ion-ion dynamic structure factor of warm dense mixtures

    SciTech Connect (OSTI)

    Gill, N. M.; Heinonen, R. A.; Starrett, C. E.; Saumon, D.

    2015-06-25

    In this study, the ion-ion dynamic structure factor of warm dense matter is determined using the recently developed pseudoatom molecular dynamics method [Starrett et al., Phys. Rev. E 91, 013104 (2015)]. The method uses density functional theory to determine ion-ion pair interaction potentials that have no free parameters. These potentials are used in classical molecular dynamics simulations. This constitutes a computationally efficient and realistic model of dense plasmas. Comparison with recently published simulations of the ion-ion dynamic structure factor and sound speed of warm dense aluminum finds good to reasonable agreement. Using this method, we make predictions of the ion-ion dynamical structure factor and sound speed of a warm dense mixture—equimolar carbon-hydrogen. This material is commonly used as an ablator in inertial confinement fusion capsules, and our results are amenable to direct experimental measurement.

  10. Photo ion spectrometer

    DOE Patents [OSTI]

    Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.

    1989-01-01

    A method and apparatus for extracting for quantitative analysis ions of selected atomic components of a sample. A lens system is configured to provide a slowly diminishing field region for a volume containing the selected atomic components, enabling accurate energy analysis of ions generated in the slowly diminishing field region. The lens system also enables focusing on a sample of a charged particle beam, such as an ion beam, along a path length perpendicular to the sample and extraction of the charged particles along a path length also perpendicular to the sample. Improvement of signal to noise ratio is achieved by laser excitation of ions to selected autoionization states before carrying out quantitative analysis. Accurate energy analysis of energetic charged particles is assured by using a preselected resistive thick film configuration disposed on an insulator substrate for generating predetermined electric field boundary conditions to achieve for analysis the required electric field potential. The spectrometer also is applicable in the fields of SIMS, ISS and electron spectroscopy.

  11. Photo ion spectrometer

    DOE Patents [OSTI]

    Gruen, D.M.; Young, C.E.; Pellin, M.J.

    1989-08-08

    A method and apparatus are described for extracting for quantitative analysis ions of selected atomic components of a sample. A lens system is configured to provide a slowly diminishing field region for a volume containing the selected atomic components, enabling accurate energy analysis of ions generated in the slowly diminishing field region. The lens system also enables focusing on a sample of a charged particle beam, such as an ion beam, along a path length perpendicular to the sample and extraction of the charged particles along a path length also perpendicular to the sample. Improvement of signal to noise ratio is achieved by laser excitation of ions to selected auto-ionization states before carrying out quantitative analysis. Accurate energy analysis of energetic charged particles is assured by using a preselected resistive thick film configuration disposed on an insulator substrate for generating predetermined electric field boundary conditions to achieve for analysis the required electric field potential. The spectrometer also is applicable in the fields of SIMS, ISS and electron spectroscopy. 8 figs.

  12. Laser driven ion accelerator

    DOE Patents [OSTI]

    Tajima, Toshiki

    2006-04-18

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  13. Ion Beam Simulator

    Energy Science and Technology Software Center (OSTI)

    2005-11-08

    IBSimu(Ion Beam Simulator) is a computer program for making two and three dimensional ion optical simulations. The program can solve electrostatic field in a rectangular mesh using Poisson equation using Finite Difference method (FDM). The mesh can consist of a coarse and a fine part so that the calculation accuracy can be increased in critical areas of the geometry, while most of the calculation is done quickly using the coarse mesh. IBSimu can launch ionmore » beam trajectories into the simulation from an injection surface or fomo plasma. Ion beam space charge of time independent simulations can be taken in account using Viasov iteration. Plasma is calculated by compensating space charge with electrons having Boltzmann energy distribution. The simulation software can also be used to calculate time dependent cases if the space charge is not calculated. Software includes diagnostic tools for plotting the geometry, electric field, space charge map, ion beam trajectories, emittance data and beam profiles.« less

  14. Lithium ion conducting electrolytes

    DOE Patents [OSTI]

    Angell, Charles Austen; Liu, Changle; Xu, Kang; Skotheim, Terje A.

    1999-01-01

    The present invention relates generally to highly conductive alkali-metal ion non-crystalline electrolyte systems, and more particularly to novel and unique molten (liquid), rubbery, and solid electrolyte systems which are especially well suited for use with high current density electrolytic cells such as primary and secondary batteries.

  15. Pulsed ion beam source

    DOE Patents [OSTI]

    Greenly, J.B.

    1997-08-12

    An improved pulsed ion beam source is disclosed having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center. 12 figs.

  16. Laser driven ion accelerator

    DOE Patents [OSTI]

    Tajima, Toshiki

    2005-06-14

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  17. Ion polarization in the MEIC figure-8 ion collider ring

    SciTech Connect (OSTI)

    V.S. Morozov, Ya.S. Derbenev, Y. Zhang, P. Chevtsov, A.M. Kondratenko, M.A. Kondratenko, Yu.N. Filatov

    2012-07-01

    The nuclear physics program envisaged at the Medium-energy Electron-Ion Collider (MEIC) currently being developed at the Jefferson Lab calls for collisions of 3-11 GeV/c longitudinally polarized electrons and 20-100 GeV/c, in equivalent proton momentum, longitudinally/ transversely polarized protons/ deuterons/ light ions. We present a scheme that provides the required ion polarization arrangement in the MEIC's ion collider ring.

  18. Fundamental Electroweak Studies using Trapped Ions & Atoms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    collaboration performs fundamental electroweak studies on trapped ions & atoms. We use neutral atom and ion trapping techniques at radioactive ion beam facilities here and...

  19. SECTION II: HEAVY ION REACTIONS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    II: HEAVY ION REACTIONS Experimental Determination of the Symmetry Energy of a Low Density Nuclear Gas ......II-1 S. ...

  20. Ion Removal - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Advanced Materials Find More Like This Return to Search Ion Removal Idaho National Laboratory Contact INL About This Technology Technology Marketing Summary INL's ion removal technology leverages the ability of phosphazene polymers discriminate between water and metal ions, which allows water to pass through the membrane while retaining the ions. Description The inherent chemical and thermal stability of the phosphazene polymers are an added strengths for separating and

  1. Characterization of an RF plasma ion source for ion implantation

    SciTech Connect (OSTI)

    Kopalidis, Peter M.; Wan Zhimin

    2012-11-06

    A novel inductively coupled RF plasma ion source has been developed for use in a beamline ion implanter. Ion density data have been taken with an array of four Langmuir probes spaced equally at the source extraction arc slit. These provide ion density uniformity information as a function of source pressure, RF power and gas mixture composition. In addition, total extracted ion beam current data are presented for the same conditions. The comparative advantages of the RF source in terms of higher beam current, reduced maintenance and overall productivity improvement compared to a hot cathode source are discussed.

  2. Laser driven compact ion accelerator

    DOE Patents [OSTI]

    Tajima, Toshiki

    2005-03-15

    A laser driven compact ion source including a light source that produces an energy pulse, a light source guide that guides the energy pulse to a target and produces an ion beam. The ion beam is transported to a desired destination.

  3. Ion-ion dynamic structure factor of warm dense mixtures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gill, N. M.; Heinonen, R. A.; Starrett, C. E.; Saumon, D.

    2015-06-25

    In this study, the ion-ion dynamic structure factor of warm dense matter is determined using the recently developed pseudoatom molecular dynamics method [Starrett et al., Phys. Rev. E 91, 013104 (2015)]. The method uses density functional theory to determine ion-ion pair interaction potentials that have no free parameters. These potentials are used in classical molecular dynamics simulations. This constitutes a computationally efficient and realistic model of dense plasmas. Comparison with recently published simulations of the ion-ion dynamic structure factor and sound speed of warm dense aluminum finds good to reasonable agreement. Using this method, we make predictions of the ion-ionmore » dynamical structure factor and sound speed of a warm dense mixture—equimolar carbon-hydrogen. This material is commonly used as an ablator in inertial confinement fusion capsules, and our results are amenable to direct experimental measurement.« less

  4. CALUTRON ION SOURCE

    DOE Patents [OSTI]

    Brobeck, W.M.

    1959-02-24

    An ion source is described wherein a portion of the filament serving as a cathode for the arc is protected from the effects of non-ionized particles escaping from the ionizing mechanism. In the described ion source, the source block has a gas chamber and a gas passage extending from said gas chamber to two adjacent faces of the source block. A plate overlies the passage and abuts one of the aforementioned block faces, while extending beyond the other face. In addition, the plate is apertured in line with the block passage. The filament overlies the aperture to effectively shield the portion of the filament not directiy aligned with the passage where the arc is produced.

  5. ION PRODUCING MECHANISM

    DOE Patents [OSTI]

    MacKenzie, K.R.

    1958-09-01

    An ion source is described for use in a calutron and more particularly deals with an improved filament arrangement for a calutron. According to the invention, the ion source block has a gas ionizing passage open along two adjoining sides of the block. A filament is disposed in overlying relation to one of the passage openings and has a greater width than the passage width, so that both the filament and opening lengths are parallel and extend in a transverse relation to the magnetic field. The other passage opening is parallel to the length of the magnetic field. This arrangement is effective in assisting in the production of a stable, long-lived arc for the general improvement of calutron operation.

  6. Negative ion source

    DOE Patents [OSTI]

    Delmore, James E.

    1987-01-01

    A method and apparatus for providing a negative ion source accelerates electrons away from a hot filament electron emitter into a region of crossed electric and magnetic fields arranged in a magnetron configuration. During a portion of the resulting cycloidal path, the electron velocity is reduced below its initial value. The electron accelerates as it leaves the surface at a rate of only slightly less than if there were no magnetic field, thereby preventing a charge buildup at the surface of the emitter. As the electron traverses the cycloid, it is decelerated during the second, third, and fourth quadrants, then reeccelerated as it approaches the end of the fourth quadrant to regain its original velocity. The minimum velocity occurs during the fourth quadrant, and corresponds to an electron temperature of 200.degree. to 500.degree. for the electric and magnetic fields commonly encountered in the ion sources of magnetic sector mass spectrometers. An ion source using the above-described thermalized electrons is also disclosed.

  7. Improved negative ion source

    DOE Patents [OSTI]

    Delmore, J.E.

    1984-05-01

    A method and apparatus for providing a negative ion source accelerates electrons away from a hot filament electron emitter into a region of crossed electric and magnetic fields arranged in a magnetron configuration. During a portion of the resulting cycloidal path, the electron velocity is reduced below its initial value. The electron accelerates as it leaves the surface at a rate of only slightly less than if there were no magnetic field, thereby preventing a charge buildup at the surface of the emitter. As the electron traverses the cycloid, it is decelerated during the second, third, and fourth quadrants, then reaccelerated as it approaches the end of the fourth quadrant to regain its original velocity. The minimum velocity occurs during the fourth quadrant, and corresponds to an electron temperature of 200 to 500/sup 0/C for the electric and magnetic fields commonly encountered in the ion sources of magnetic sector mass spectrometers. An ion source using the above-described thermalized electrons is also disclosed.

  8. Primary ion sources for EBIS

    SciTech Connect (OSTI)

    Keller, R.

    2001-03-21

    This paper gives an introduction into the topic of primary ion sources that can be used to feed ions of normally solid elements into EBIS devices. Starting with a set of typical requirements for primary ion sources, some major types of ion generators are discussed first, with emphasis on their working principles rather than trying to give a fully representative listing of used and proposed generators. Beam-transport issues between primary ion source and EBIS are then examined, and generic characteristics of suitable beam-formation and transport systems are explained.

  9. Ion aggregation in high salt solutions: Ion network versus ion cluster

    SciTech Connect (OSTI)

    Kim, Seongheun; Kim, Heejae; Choi, Jun-Ho; Cho, Minhaeng

    2014-09-28

    The critical aggregation phenomena are ubiquitous in many self-assembling systems. Ions in high salt solutions could also spontaneously form larger ion aggregates, but their effects on hydrogen-bond structures in water have long been controversial. Here, carrying out molecular dynamics (MD) simulation studies of high salt solutions and comparing the MD simulation results with infrared absorption and pump-probe spectroscopy of OD stretch mode of HDO in highly concentrated salt solutions and {sup 13}C-NMR chemical shift of S{sup 13}CN{sup ?} in KSCN solutions, we find evidence on the onset of ion aggregate and large-scale ion-ion network formation that concomitantly breaks water hydrogen-bond structure in certain salt solutions. Despite that these experimental results cannot provide direct evidence on the three-dimensional morphological structures of ion aggregates, they serve as reference data for verifying MD simulation methods. The MD results suggest that disrupted water hydrogen-bond network is intricately intertwined with ion-ion network. This further shows morphological variation of ion aggregate structures from ion cluster to ion network in high salt solutions that are interrelated to the onset of macroscopic aggregate formation and the water hydrogen-bond structure making and breaking processes induced by Hofmeister ions.

  10. Ion/Surface Reactions and Ion Soft-Landing

    SciTech Connect (OSTI)

    Gologan, Bogdan; Green, Jason R.; Alvarez, Jormarie; Laskin, Julia; Cooks, Robert G.

    2005-02-08

    Ion/surface collision phenomena in the hyperthermal collision energy regime (1-100 eV) are reviewed, with emphasis on chemical processes associated with the impact of small organic and biological ions at functionalized self-assembled monolayer surfaces. Inelastic collisions can lead to excitation the projectile ion and can result in fragmentation, a process known as surface-induced dissociation which is useful in chemical analysis using tandem mass spectrometry.. Changes in charge can accompany ion/surface collisions and those associated with a change in polarity (positive to negative ions or vice-versa) are an attractive method for ion structural characterization and isomer differentiation. The energetics, thermochemistry and dynamics of surface-induced charge inversion of nitrobenzene and other substituted aromatics is discussed. Reactive collisions also occur between gaseous ions and surfaces and the reactions depend on the chemical nature of the collision partners. These reactions can be used for selected chemical modifications of surfaces as well as for surface analysis. Particular emphasis is given here to one ion/surface interaction, ion soft-landing, a process in which the projectile ion is landed intact at the surface, either as the corresponding neutral molecule or, interestingly but less commonly, in the form of the ion itself. The ion soft-landing experiment allows preparative mass spectrometry, for example the preparation of pure biological compounds by using the mass spectrometer as a separation device. After separation, the mass-selected ions are collected by soft-landing, at different spatial points in an array. If the experiment is done using a suitable liquid medium, at least some proteins retain their biological activity.

  11. Imaging Heterogeneous Ion Transfer: Lithium Ion Quantification using

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mercury Amalgams as In Situ Electrochemical Probes in Nonaqueous Media - Joint Center for Energy Storage Research October 24, 2014, Research Highlights Imaging Heterogeneous Ion Transfer: Lithium Ion Quantification using Mercury Amalgams as In Situ Electrochemical Probes in Nonaqueous Media Quantitative micro- and nano- probes were used for the in situ imaging of alkaline ion transfer processes at an electroactive surface. Detection of Li+, Na+ and K+ is possible. Scientific Achievement

  12. Ion beam lithography system

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2005-08-02

    A maskless plasma-formed ion beam lithography tool provides for patterning of sub-50 nm features on large area flat or curved substrate surfaces. The system is very compact and does not require an accelerator column and electrostatic beam scanning components. The patterns are formed by switching beamlets on or off from a two electrode blanking system with the substrate being scanned mechanically in one dimension. This arrangement can provide a maskless nano-beam lithography tool for economic and high throughput processing.

  13. Improved ion detector

    DOE Patents [OSTI]

    Tullis, A.M.

    1986-01-30

    An improved ion detector device of the ionization detection device chamber type comprises an ionization chamber having a central electrode therein surrounded by a cylindrical electrode member within the chamber with a collar frictionally fitted around at least one of the electrodes. The collar has electrical contact means carried in an annular groove in an inner bore of the collar to contact the outer surface of the electrode to provide electrical contact between an external terminal and the electrode without the need to solder leads to the electrode.

  14. Digital field ion microscopy

    SciTech Connect (OSTI)

    Sijbrandij, S.J.; Russell, K.F.; Miller, M.K.; Thomson, R.C.

    1998-01-01

    Due to environmental concerns, there is a trend to avoid the use of chemicals needed to develop negatives and to process photographic paper, and to use digital technologies instead. Digital technology also offers the advantages that it is convenient, as it enables quick access to the end result, allows image storage and processing on computer, allows rapid hard copy output, and simplifies electronic publishing. Recently significant improvements have been made to the performance and cost of camera-sensors and printers. In this paper, field ion images recorded with two digital cameras of different resolution are compared to images recorded on standard 35 mm negative film. It should be noted that field ion images exhibit low light intensity and high contrast. Field ion images were recorded from a standard microchannel plate and a phosphor screen and had acceptance angles of {approximately} 60{degree}. Digital recordings were made with a Digital Vision Technologies (DVT) MICAM VHR1000 camera with a resolution of 752 x 582 pixels, and a Kodak DCS 460 digital camera with a resolution of 3,060 x 2,036 pixels. Film based recordings were made with Kodak T-MAX film rated at 400 ASA. The resolving power of T-MAX film, as specified by Kodak, is between 50 and 125 lines per mm, which corresponds to between 1,778 x 1,181 and 4,445 x 2,953 pixels, i.e. similar to that from the DCS 460 camera. The intensities of the images were sufficient to be recorded with standard fl:1.2 lenses with exposure times of less than 2 s. Many digital cameras were excluded from these experiments due to their lack of sensitivity or the inability to record a full frame image due to the fixed working distance defined by the vacuum system. The digital images were output on a Kodak Digital Science 8650 PS dye sublimation color printer (300 dpi). All field ion micrographs presented were obtained from a Ni-Al-Be specimen.

  15. Compact ion accelerator source

    DOE Patents [OSTI]

    Schenkel, Thomas; Persaud, Arun; Kapadia, Rehan; Javey, Ali

    2014-04-29

    An ion source includes a conductive substrate, the substrate including a plurality of conductive nanostructures with free-standing tips formed on the substrate. A conductive catalytic coating is formed on the nanostructures and substrate for dissociation of a molecular species into an atomic species, the molecular species being brought in contact with the catalytic coating. A target electrode placed apart from the substrate, the target electrode being biased relative to the substrate with a first bias voltage to ionize the atomic species in proximity to the free-standing tips and attract the ionized atomic species from the substrate in the direction of the target electrode.

  16. Characterizing Heavy Ion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heavy Ion Reactions in the 1980's Is there Treasure at the end of the Rainbow? & What happens and how do different modes compete? John Schiffer One of the three research areas for ATLAS, as stated in a 1984 document to Congress: Are there some new marvelous symmetries, hidden in resonances in heavier nuclei, beyond 12 C+ 12 C and its immediate vicinity? (s.c. linac work, pre-ATLAS) Other attempts to chase the rainbow 180 o elastic scattering of 12 C on 40 Ca shows structure Fusion of 16 O on

  17. A novel planar ion funnel design for miniature ion optics

    SciTech Connect (OSTI)

    Chaudhary, A.; Amerom, Friso H. W. van; Short, R. T.

    2014-10-01

    The novel planar ion funnel (PIF) design presented in this article emphasizes simple fabrication, assembly, and operation, making it amenable to extreme miniaturization. Simulations performed in SIMION 8.0 indicate that ion focusing can be achieved by using a gradient of electrostatic potentials on concentric metal rings in a plane. A prototype was fabricated on a 35 35 mm custom-designed printed circuit board (PCB) with a center hole for ions to pass through and a series of concentric circular metal rings of increasing diameter on the front side of the PCB. Metal vias on the PCB electrically connected each metal ring to a resistive potential divider that was soldered on the back of the PCB. The PIF was tested at 5.5 10?? Torr in a vacuum test setup that was equipped with a broad-beam ion source on the front and a micro channel plate (MCP) ion detector on the back of the PIF. The ion current recorded on the MCP anode during testing indicated a 23 increase in the ion transmission through the PIF when electric potentials were applied to the rings. These preliminary results demonstrate the functionality of a 2D ion funnel design with a much smaller footprint and simpler driving electronics than conventional 3D ion funnels. Future directions to improve the design and a possible micromachining approach to fabrication are discussed in the conclusions.

  18. Electron beam ion source and electron beam ion trap (invited)

    SciTech Connect (OSTI)

    Becker, Reinard [Scientific Software Service, Kapellenweg 2a, D-63571 Gelnhausen (Germany); Kester, Oliver [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States)

    2010-02-15

    The electron beam ion source (EBIS) and its trap variant [electron beam ion trap (EBIT)] celebrated their 40th and 20th anniversary, respectively, at the EBIS/T Symposium 2007 in Heidelberg. These technologically challenging sources of highly charged ions have seen a broad development in many countries over the last decades. In contrast to most other ion sources the recipe of improvement was not ''sorcery'' but a clear understanding of the physical laws and obeying the technological constraints. This review will report important achievements of the past as well as promising developments in the future.

  19. Mini ion trap mass spectrometer

    DOE Patents [OSTI]

    Dietrich, Daniel D.; Keville, Robert F.

    1995-01-01

    An ion trap which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10.sup.9 and commercial mass spectrometers requiring 10.sup.4 ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products.

  20. Mini ion trap mass spectrometer

    DOE Patents [OSTI]

    Dietrich, D.D.; Keville, R.F.

    1995-09-19

    An ion trap is described which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10{sup 9} and commercial mass spectrometers requiring 10{sup 4} ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products. 10 figs.

  1. Negative hydrogen ion production mechanisms

    SciTech Connect (OSTI)

    Bacal, M.; Wada, M.

    2015-06-15

    Negative hydrogen/deuterium ions can be formed by processes occurring in the plasma volume and on surfaces facing the plasma. The principal mechanisms leading to the formation of these negative ions are dissociative electron attachment to ro-vibrationally excited hydrogen/deuterium molecules when the reaction takes place in the plasma volume, and the direct electron transfer from the low work function metal surface to the hydrogen/deuterium atoms when formation occurs on the surface. The existing theoretical models and reported experimental results on these two mechanisms are summarized. Performance of the negative hydrogen/deuterium ion sources that emerged from studies of these mechanisms is reviewed. Contemporary negative ion sources do not have negative ion production electrodes of original surface type sources but are operated with caesium with their structures nearly identical to volume production type sources. Reasons for enhanced negative ion current due to caesium addition to these sources are discussed.

  2. Highly Stripped Ion Sources for MeV Ion Implantation

    SciTech Connect (OSTI)

    Hershcovitch, Ady

    2009-06-30

    Original technical objectives of CRADA number PVI C-03-09 between BNL and Poole Ventura, Inc. (PVI) were to develop an intense, high charge state, ion source for MeV ion implanters. Present day high-energy ion implanters utilize low charge state (usually single charge) ion sources in combination with rf accelerators. Usually, a MV LINAC is used for acceleration of a few rnA. It is desirable to have instead an intense, high charge state ion source on a relatively low energy platform (de acceleration) to generate high-energy ion beams for implantation. This de acceleration of ions will be far more efficient (in energy utilization). The resultant implanter will be smaller in size. It will generate higher quality ion beams (with lower emittance) for fabrication of superior semiconductor products. In addition to energy and cost savings, the implanter will operate at a lower level of health risks associated with ion implantation. An additional aim of the project was to producing a product that can lead to long­ term job creation in Russia and/or in the US. R&D was conducted in two Russian Centers (one in Tomsk and Seversk, the other in Moscow) under the guidance ofPVI personnel and the BNL PI. Multiple approaches were pursued, developed, and tested at various locations with the best candidate for commercialization delivered and tested at on an implanter at the PVI client Axcelis. Technical developments were exciting: record output currents of high charge state phosphorus and antimony were achieved; a Calutron-Bemas ion source with a 70% output of boron ion current (compared to 25% in present state-of-the-art). Record steady state output currents of higher charge state phosphorous and antimony and P ions: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+} Sb {sup 4 +}, Sb{sup 5+}, and Sb{sup 6+} respectively. Ultimate commercialization goals did not succeed (even though a number of the products like high

  3. Metal-Ion-Mediated Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers from Patras (Greece), Nicosia (Cyprus), Karlsruhe (Germany), Zaragoza (Spain), and the ALS at Berkeley Lab have studied metal-ion-mediated reactions of...

  4. Photo ion spectrometer

    DOE Patents [OSTI]

    Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.

    1989-01-01

    A charged particle spectrometer for performing ultrasensitive quantitative analysis of selected atomic components removed from a sample. Significant improvements in performing energy and angular refocusing spectroscopy are accomplished by means of a two dimensional structure for generating predetermined electromagnetic field boundary conditions. Both resonance and non-resonance ionization of selected neutral atomic components allow accumulation of increased chemical information. A multiplexed operation between a SIMS mode and a neutral atomic component ionization mode with EARTOF analysis enables comparison of chemical information from secondary ions and neutral atomic components removed from the sample. An electronic system is described for switching high level signals, such as SIMS signals, directly to a transient recorder and through a charge amplifier to the transient recorder for a low level signal pulse counting mode, such as for a neutral atomic component ionization mode.

  5. Photo ion spectrometer

    DOE Patents [OSTI]

    Gruen, D.M.; Young, C.E.; Pellin, M.J.

    1989-12-26

    A charged particle spectrometer is described for performing ultrasensitive quantitative analysis of selected atomic components removed from a sample. Significant improvements in performing energy and angular refocusing spectroscopy are accomplished by means of a two dimensional structure for generating predetermined electromagnetic field boundary conditions. Both resonance and non-resonance ionization of selected neutral atomic components allow accumulation of increased chemical information. A multiplexed operation between a SIMS mode and a neutral atomic component ionization mode with EARTOF analysis enables comparison of chemical information from secondary ions and neutral atomic components removed from the sample. An electronic system is described for switching high level signals, such as SIMS signals, directly to a transient recorder and through a charge amplifier to the transient recorder for a low level signal pulse counting mode, such as for a neutral atomic component ionization mode. 12 figs.

  6. Safeguards and Security and Cyber Security RM

    Office of Environmental Management (EM)

    ... non-classified portion of the review process. The Federal Project Director and appropriate DOEEM-HQ line management and security representatives must coordinate the classified ...

  7. Construction Project Safety and Health Plan RM

    Office of Environmental Management (EM)

    ... A Construction Project Safety and Health Plan (CPSHP) must be developed, approved, and implemented. The CPSHP is a requirement of 10 CFR 851, Worker Safety and Health Program and ...

  8. Acquisition Strategy RM | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Lines of Inquiry's (LOIs) identified in this Module were specifically developed to be generic in nature to ensure that they were applicable to as many DOE projects as possible. ...

  9. Microsoft Word - RM Procedures.doc

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    80 percent of the box containing classified records. 02012010 RECORDS RETRIEVAL ACCESS MEMO: 1. To gain admittance to the RHA, or request records from WNRC an email must be...

  10. High Performance Sustainable Building Design RM

    Office of Environmental Management (EM)

    High Performance Sustainable Building Design Review Module March 2010 CD-0 O High 0 This ... Director HPSBD High Performance Sustainable Building Design IESNA Illuminating ...

  11. Quality Assurance for Critical Decision Reviews RM

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quality Assurance for Critical Decision Reviews Module March 2010 CD-0 O 0 OFFICE OF Q C CD-1 F ENVIRO Standard R Quality A Rev Critical Decis CD-2 M ONMENTAL Review Plan Assuranc view Module sion (CD) Ap CD March 2010 L MANAGE n (SRP) e (QA) e pplicability D-3 EMENT CD-4 Post Ope eration Standard Review Plan, 2 nd Edition, March 2010 i FOREWORD The Standard Review Plan (SRP) 1 provides a consistent, predictable corporate review framework to ensure that issues and risks that could challenge the

  12. Metal vapor arc ion plating

    DOE Patents [OSTI]

    Bertram, L.A.; Fisher, R.W.; Mattox, D.M.; Zanner, F.J.

    1986-09-09

    A method and apparatus for ion plating are described. The apparatus uses more negative than a first electrode voltage in a vacuum arc remelt system to attract low energy ions from the anode electrode to the article to be plated. 2 figs.

  13. Solid lithium-ion electrolyte

    DOE Patents [OSTI]

    Zhang, J.G.; Benson, D.K.; Tracy, C.E.

    1998-02-10

    The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li{sub 2}O--CeO{sub 2}--SiO{sub 2} system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications. 12 figs.

  14. Energetic ions in ITER plasmas

    SciTech Connect (OSTI)

    Pinches, S. D.; Chapman, I. T.; Sharapov, S. E.; Lauber, Ph. W.; Oliver, H. J. C.; Shinohara, K.; Tani, K.

    2015-02-15

    This paper discusses the behaviour and consequences of the expected populations of energetic ions in ITER plasmas. It begins with a careful analytic and numerical consideration of the stability of Alfvén Eigenmodes in the ITER 15 MA baseline scenario. The stability threshold is determined by balancing the energetic ion drive against the dominant damping mechanisms and it is found that only in the outer half of the plasma (r/a>0.5) can the fast ions overcome the thermal ion Landau damping. This is in spite of the reduced numbers of alpha-particles and beam ions in this region but means that any Alfvén Eigenmode-induced redistribution is not expected to influence the fusion burn process. The influence of energetic ions upon the main global MHD phenomena expected in ITER's primary operating scenarios, including sawteeth, neoclassical tearing modes and Resistive Wall Modes, is also reviewed. Fast ion losses due to the non-axisymmetric fields arising from the finite number of toroidal field coils, the inclusion of ferromagnetic inserts, the presence of test blanket modules containing ferromagnetic material, and the fields created by the Edge Localised Mode (ELM) control coils in ITER are discussed. The greatest losses and associated heat loads onto the plasma facing components arise due to the use of the ELM control coils and come from neutral beam ions that are ionised in the plasma edge.

  15. Thin film ion conducting coating

    DOE Patents [OSTI]

    Goldner, Ronald B.; Haas, Terry; Wong, Kwok-Keung; Seward, George

    1989-01-01

    Durable thin film ion conducting coatings are formed on a transparent glass substrate by the controlled deposition of the mixed oxides of lithium:tantalum or lithium:niobium. The coatings provide durable ion transport sources for thin film solid state storage batteries and electrochromic energy conservation devices.

  16. Solid lithium-ion electrolyte

    DOE Patents [OSTI]

    Zhang, Ji-Guang; Benson, David K.; Tracy, C. Edwin

    1998-01-01

    The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li.sub.2 O--CeO.sub.2 --SiO.sub.2 system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications.

  17. Ion chamber based neutron detectors

    DOE Patents [OSTI]

    Derzon, Mark S; Galambos, Paul C; Renzi, Ronald F

    2014-12-16

    A neutron detector with monolithically integrated readout circuitry, including: a bonded semiconductor die; an ion chamber formed in the bonded semiconductor die; a first electrode and a second electrode formed in the ion chamber; a neutron absorbing material filling the ion chamber; and the readout circuitry which is electrically coupled to the first and second electrodes. The bonded semiconductor die includes an etched semiconductor substrate bonded to an active semiconductor substrate. The readout circuitry is formed in a portion of the active semiconductor substrate. The ion chamber has a substantially planar first surface on which the first electrode is formed and a substantially planar second surface, parallel to the first surface, on which the second electrode is formed. The distance between the first electrode and the second electrode may be equal to or less than the 50% attenuation length for neutrons in the neutron absorbing material filling the ion chamber.

  18. Solenoid and monocusp ion source

    DOE Patents [OSTI]

    Brainard, John Paul; Burns, Erskine John Thomas; Draper, Charles Hadley

    1997-01-01

    An ion source which generates hydrogen ions having high atomic purity incorporates a solenoidal permanent magnets to increase the electron path length. In a sealed envelope, electrons emitted from a cathode traverse the magnetic field lines of a solenoid and a monocusp magnet between the cathode and a reflector at the monocusp. As electrons collide with gas, the molecular gas forms a plasma. An anode grazes the outer boundary of the plasma. Molecular ions and high energy electrons remain substantially on the cathode side of the cusp, but as the ions and electrons are scattered to the aperture side of the cusp, additional collisions create atomic ions. The increased electron path length allows for smaller diameters and lower operating pressures.

  19. Solenoid and monocusp ion source

    DOE Patents [OSTI]

    Brainard, J.P.; Burns, E.J.T.; Draper, C.H.

    1997-10-07

    An ion source which generates hydrogen ions having high atomic purity incorporates a solenoidal permanent magnets to increase the electron path length. In a sealed envelope, electrons emitted from a cathode traverse the magnetic field lines of a solenoid and a monocusp magnet between the cathode and a reflector at the monocusp. As electrons collide with gas, the molecular gas forms a plasma. An anode grazes the outer boundary of the plasma. Molecular ions and high energy electrons remain substantially on the cathode side of the cusp, but as the ions and electrons are scattered to the aperture side of the cusp, additional collisions create atomic ions. The increased electron path length allows for smaller diameters and lower operating pressures. 6 figs.

  20. Apparatus and method of dissociating ions in a multipole ion guide

    DOE Patents [OSTI]

    Webb, Ian K.; Tang, Keqi; Smith, Richard D.; Ibrahim, Yehia M.; Anderson, Gordon A.

    2014-07-08

    A method of dissociating ions in a multipole ion guide is disclosed. A stream of charged ions is supplied to the ion guide. A main RF field is applied to the ion guide to confine the ions through the ion guide. An excitation RF field is applied to one pair of rods of the ion guide. The ions undergo dissociation when the applied excitation RF field is resonant with a secular frequency of the ions. The multipole ion guide is, but not limited to, a quadrupole, a hexapole, and an octopole.

  1. Ion Rings for Magnetic Fusion

    SciTech Connect (OSTI)

    Greenly, John, B.

    2005-07-31

    This Final Technical Report presents the results of the program, Ion Rings for Magnetic Fusion, which was carried out under Department of Energy funding during the period August, 1993 to January, 2005. The central objective of the program was to study the properties of field-reversed configurations formed by ion rings. In order to reach this objective, our experimental program, called the Field-reversed Ion Ring Experiment, FIREX, undertook to develop an efficient, economical technology for the production of field-reversed ion rings. A field-reversed configuration (FRC) in which the azimuthal (field-reversing) current is carried by ions with gyro-radius comparable to the magnetic separatrix radius is called a field-reversed ion ring. A background plasma is required for charge neutralization of the ring, and this plasma will be confined within the ring's closed magnetic flux. Ion rings have long been of interest as the basis of compact magnetic fusion reactors, as the basis for a high-power accelerator for an inertial fusion driver, and for other applications of high power ion beams or plasmas of high energy density. Specifically, the FIREX program was intended to address the longstanding question of the contribution of large-orbit ions to the observed stability of experimental FRCs to the MHD tilt mode. Typical experimental FRCs with s {approx} 2-4, where s is the ratio of separatrix radius to ion gyro-radius, have been stable to tilting, but desired values for a fusion reactor, s > 20, should be unstable. The FIREX ring would consist of a plasma with large s for the background ions, but with s {approx} 1 for the ring ions. By varying the proportions of these two populations, the minimum proportion of large-orbit ions necessary for stability could be determined. The incorporation of large-orbit ions, perhaps by neutral-beam injection, into an FRC has been advanced for the purpose of stabilizing, heating, controlling angular momentum, and aiding the formation of a

  2. Phosphonic acid based ion exchange resins

    DOE Patents [OSTI]

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1994-01-25

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 9 figures.

  3. Phosphonic acid based ion exchange resins

    DOE Patents [OSTI]

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1996-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  4. Phosphonic acid based ion exchange resins

    DOE Patents [OSTI]

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1994-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene disphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  5. Phosphonic acid based ion exchange resins

    DOE Patents [OSTI]

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1996-07-23

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.

  6. Ion-ion interaction and energy transfer of 4+ transuranium ions in cerium tetrafluoride

    SciTech Connect (OSTI)

    Liu, G.K.; Beitz, J.V.

    1990-01-01

    Dynamics of excited 5f electron states of the transuranium ions Cm{sup 4+} and Bk{sup 4+} in CeF{sub 4} are compared. Based on time- and wavelength-resolved laser-induced fluorescence, excitation energy transfer processes have been probed. Depending on concentration and electronic energy level structure of the studied 4+ transuranium ion, the dominant energy transfer mechanisms were identified as cross relaxation, exciton-exciton annihilation, and trapping. Energy transfer rates derived from the fitting of the observed fluorescence decays to theoretical models, based on electric multipolar ion-ion interactions, are contrasted with prior studies of 4f states of 3+ lanthanide and 3d states of transition metal ions. 16 refs., 1 tab.

  7. Method and apparatus for compressing ions

    SciTech Connect (OSTI)

    Garimella, Sandilya V. B.; Ibrahim, Yehia M.; Anderson, Gordon A.; Smith, Richard D.

    2015-06-23

    A method and apparatus for compressing ions inside an ion mobility device is disclosed. Ions are introduced into the mobility device. The ions are subjected to a non-constant electric field to form a potential gradient along a portion of the device so that ions with similar mobilities bunch together into sharper peaks while maintaining separation between other ions. The potential gradient progressively increases or decreases along the length of the device.

  8. Multi-source ion funnel

    DOE Patents [OSTI]

    Tang, Keqi; Belov, Mikhail B.; Tolmachev, Aleksey V.; Udseth, Harold R.; Smith, Richard D.

    2005-12-27

    A method for introducing ions generated in a region of relatively high pressure into a region of relatively low pressure by providing at least two electrospray ion sources, providing at least two capillary inlets configured to direct ions generated by the electrospray sources into and through each of the capillary inlets, providing at least two sets of primary elements having apertures, each set of elements having a receiving end and an emitting end, the primary sets of elements configured to receive a ions from the capillary inlets at the receiving ends, and providing a secondary set of elements having apertures having a receiving end and an emitting end, the secondary set of elements configured to receive said ions from the emitting end of the primary sets of elements and emit said ions from said emitting end of the secondary set of elements. The method may further include the step of providing at least one jet disturber positioned within at least one of the sets of primary elements, providing a voltage, such as a dc voltage, in the jet disturber, thereby adjusting the transmission of ions through at least one of the sets of primary elements.

  9. Electrically Switched Cesium Ion Exchange

    SciTech Connect (OSTI)

    JPH Sukamto; ML Lilga; RK Orth

    1998-10-23

    This report discusses the results of work to develop Electrically Switched Ion Exchange (ESIX) for separations of ions from waste streams relevant to DOE site clean-up. ESIX combines ion exchange and electrochemistry to provide a selective, reversible method for radionuclide separation that lowers costs and minimizes secondary waste generation typically associated with conventional ion exchange. In the ESIX process, an electroactive ion exchange film is deposited onto. a high surface area electrode, and ion uptake and elution are controlled directly by modulating the potential of the film. As a result, the production of secondary waste is minimized, since the large volumes of solution associated with elution, wash, and regeneration cycles typical of standard ion exchange are not needed for the ESIX process. The document is presented in two parts: Part I, the Summary Report, discusses the objectives of the project, describes the ESIX concept and the approach taken, and summarizes the major results; Part II, the Technology Description, provides a technical description of the experimental procedures and in-depth discussions on modeling, case studies, and cost comparisons between ESIX and currently used technologies.

  10. Radio frequency sustained ion energy

    DOE Patents [OSTI]

    Jassby, Daniel L.; Hooke, William M.

    1977-01-01

    Electromagnetic (E.M.) energy injection method and apparatus for producing and sustaining suprathermal ordered ions in a neutral, two-ion-species, toroidal, bulk equilibrium plasma. More particularly, the ions are produced and sustained in an ordered suprathermal state of existence above the average energy and velocity of the bulk equilibrium plasma by resonant rf energy injection in resonance with the natural frequency of one of the ion species. In one embodiment, the electromagnetic energy is injected to clamp the energy and velocity of one of the ion species so that the ion energy is increased, sustained, prolonged and continued in a suprathermal ordered state of existence containing appreciable stored energy that counteracts the slowing down effects of the bulk equilibrium plasma drag. Thus, selective deuteron absorption may be used for ion-tail creation by radio-frequency excitation alone. Also, the rf can be used to increase the fusion output of a two-component neutral injected plasma by selective heating of the injected deuterons.

  11. Universal collisional activation ion trap mass spectrometry

    DOE Patents [OSTI]

    McLuckey, Scott A.; Goeringer, Douglas E.; Glish, Gary L.

    1993-01-01

    A universal collisional activation ion trap comprises an ion trapping means containing a bath gas and having connected thereto a noise signal generator. A method of operating a universal collisional activation ion trap comprises the steps of: providing an ion trapping means; introducing into the ion trapping means a bath gas; and, generating a noise signal within the ion trapping means; introducing into the ion trapping means a substance that, when acted upon by the noise signal, undergoes collisional activation to form product ions.

  12. Universal collisional activation ion trap mass spectrometry

    DOE Patents [OSTI]

    McLuckey, S.A.; Goeringer, D.E.; Glish, G.L.

    1993-04-27

    A universal collisional activation ion trap comprises an ion trapping means containing a bath gas and having connected thereto a noise signal generator. A method of operating a universal collisional activation ion trap comprises the steps of: providing an ion trapping means; introducing into the ion trapping means a bath gas; and, generating a noise signal within the ion trapping means; introducing into the ion trapping means a substance that, when acted upon by the noise signal, undergoes collisional activation to form product ions.

  13. characterizing lithium-ion electrode microstructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    characterizing lithium-ion electrode microstructures - Sandia Energy Energy Search Icon ... SunShot Grand Challenge: Regional Test Centers characterizing lithium-ion electrode ...

  14. Sandia National Laboratories: Ion Beam Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high energy ion microscopes to determine the radiation hardness and softness of microelectronics; identifying potential weaknesses. In situ Ion Irradiation Microscopy (I3M) Real...

  15. Three chamber negative ion source

    DOE Patents [OSTI]

    Leung, K.N.; Ehlers, K.W.; Hiskes, J.R.

    1983-11-10

    It is an object of this invention provide a negative ion source which efficiently provides a large flux of negatively ionized particles. This invention provides a volume source of negative ions which has a current density sufficient for magnetic fusion applications and has electrons suppressed from the output. It is still another object of this invention to provide a volume source of negative ions which can be electrostatically accelerated to high energies and subsequently neutralized to form a high energy neutral beam for use with a magnetically confined plasma.

  16. Ion manipulation device to prevent loss of ions

    DOE Patents [OSTI]

    Tolmachev, Aleksey; Smith, Richard D; Ibrahim, Yehia M; Anderson, Gordon A; Baker, Erin M

    2015-03-03

    An ion manipulation method and device to prevent loss of ions is disclosed. The device includes a pair of surfaces. An inner array of electrodes is coupled to the surfaces. A RF voltage and a DC voltage are alternately applied to the inner array of electrodes. The applied RF voltage is alternately positive and negative so that immediately adjacent or nearest neighbor RF applied electrodes are supplied with RF signals that are approximately 180 degrees out of phase.

  17. Ion bombardment in RF photoguns

    SciTech Connect (OSTI)

    Pozdeyev,E.; Kayran, D.; Litvinenko, V. N.

    2009-05-04

    A linac-ring eRHIC design requires a high-intensity CW source of polarized electrons. An SRF gun is viable option that can deliver the required beam. Numerical simulations presented elsewhere have shown that ion bombardment can occur in an RF gun, possibly limiting lifetime of a NEA GaAs cathode. In this paper, we analytically solve the equations of motion of ions in an RF gun using the ponderomotive potential of the Rf field. We apply the method to the BNL 1/2-cell SRF photogun and demonstrate that a significant portion of ions produced in the gun can reach the cathode if no special precautions are taken. Also, the paper discusses possible mitigation techniques that can reduce the rate of ion bombardment.

  18. Vitrification of ion exchange resins

    DOE Patents [OSTI]

    Cicero-Herman, Connie A.; Workman, Rhonda Jackson

    2001-01-01

    The present invention relates to vitrification of ion exchange resins that have become loaded with hazardous or radioactive wastes, in a way that produces a homogenous and durable waste form and reduces the disposal volume of the resin. The methods of the present invention involve directly adding borosilicate glass formers and an oxidizer to the ion exchange resin and heating the mixture at sufficient temperature to produce homogeneous glass.

  19. Orthogonal ion injection apparatus and process

    DOE Patents [OSTI]

    Kurulugama, Ruwan T; Belov, Mikhail E

    2014-04-15

    An orthogonal ion injection apparatus and process are described in which ions are directly injected into an ion guide orthogonal to the ion guide axis through an inlet opening located on a side of the ion guide. The end of the heated capillary is placed inside the ion guide such that the ions are directly injected into DC and RF fields inside the ion guide, which efficiently confines ions inside the ion guide. Liquid droplets created by the ionization source that are carried through the capillary into the ion guide are removed from the ion guide by a strong directional gas flow through an inlet opening on the opposite side of the ion guide. Strong DC and RF fields divert ions into the ion guide. In-guide orthogonal injection yields a noise level that is a factor of 1.5 to 2 lower than conventional inline injection known in the art. Signal intensities for low m/z ions are greater compared to convention inline injection under the same processing conditions.

  20. Lens system for a photo ion spectrometer

    DOE Patents [OSTI]

    Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.

    1990-01-01

    A lens system in a photo ion spectrometer for manipulating a primary ion beam and ionized atomic component. The atomic components are removed from a sample by a primary ion beam using the lens system, and the ions are extracted for analysis. The lens system further includes ionization resistant coatings for protecting the lens system.

  1. Lens system for a photo ion spectrometer

    DOE Patents [OSTI]

    Gruen, D.M.; Young, C.E.; Pellin, M.J.

    1990-11-27

    A lens system in a photo ion spectrometer for manipulating a primary ion beam and ionized atomic component is disclosed. The atomic components are removed from a sample by a primary ion beam using the lens system, and the ions are extracted for analysis. The lens system further includes ionization resistant coatings for protecting the lens system. 8 figs.

  2. Dual mode ion mobility spectrometer and method for ion mobility spectrometry

    DOE Patents [OSTI]

    Scott, Jill R [Idaho Falls, ID; Dahl, David A [Idaho Falls, ID; Miller, Carla J [Idaho Falls, ID; Tremblay, Paul L [Idaho Falls, ID; McJunkin, Timothy R [Idaho Falls, ID

    2007-08-21

    Ion mobility spectrometer apparatus may include an ion interface that is operable to hold positive and negative ions and to simultaneously release positive and negative ions through respective positive and negative ion ports. A first drift chamber is operatively associated with the positive ion port of the ion interface and encloses an electric field therein. A first ion detector operatively associated with the first drift chamber detects positive ions from the first drift chamber. A second drift chamber is operatively associated with the negative ion port of the ion interface and encloses an electric field therein. A second ion detector operatively associated with the second drift chamber detects negative ions from said second drift chamber.

  3. Ion dynamics and mixed mobile ion effect in fluoride glasses

    SciTech Connect (OSTI)

    Ghosh, S.; Ghosh, A.

    2005-06-15

    We report the ionic relaxation and mixed mobile ion effect in 50ZrF{sub 4}-10BaF{sub 2}-10YF{sub 3}-(30-x)LiF-xNaF fluoride glass series, where fluorine anions participate in the diffusion process in addition to alkali cations, unlike mixed alkali oxide glasses and crystals. By analyzing the ion dynamics in the framework of a power-law model as well as modulus formalism we have observed mixed mobile ion effect in the dc conductivity and its activation energy, the crossover frequency and its activation energy, the conductivity relaxation frequency and its activation energy, and also in the decoupling index. We have correlated these phenomena with the fractal dimension of the conduction pathways in the mixed alkali fluoride glasses compared to the single alkali glasses. We have shown that the relaxation dynamics in mixed alkali fluoride glasses is independent of temperature but dependent on glass composition.

  4. Maskless, resistless ion beam lithography

    SciTech Connect (OSTI)

    Ji, Qing

    2003-03-10

    As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements, such as O{sub 2}{sup +}, BF{sub 2}{sup +}, P{sup +} etc., for surface modification and doping applications. With optimized source condition, around 85% of BF{sub 2}{sup +}, over 90% of O{sub 2}{sup +} and P{sup +} have been achieved. The brightness of the multicusp-plasma ion source is a key issue for its application to maskless ion beam lithography. It can be substantially improved by optimizing the source configuration and extractor geometry. Measured brightness of 2 keV He{sup +} beam is as high as 440 A/cm{sup 2} {center_dot} Sr, which represents a 30x improvement over prior work. Direct patterning of Si thin film using a focused O{sub 2}{sup +} ion beam has been investigated. A thin surface oxide film can be selectively formed using 3 keV O{sub 2}{sup +} ions with the dose of 10{sup 15} cm{sup -2}. The oxide can then serve as a hard mask for patterning of the Si film. The process flow and the experimental results for directly patterned poly-Si features

  5. Heavy ion fusion--Using heavy ions to make electricity

    SciTech Connect (OSTI)

    Celata, C.M.

    2004-03-15

    The idea of using nuclear fusion as a source of commercial electrical power has been pursued worldwide since the 1950s. Two approaches, using magnetic and inertial confinement of the reactants, are under study. This paper describes the difference between the two approaches, and discusses in more detail the heavy-ion-driven inertial fusion concept. A multibeam induction linear accelerator would be used to bring {approx}100 heavy ion beams to a few GeV. The beams would then heat and compress a target of solid D-T. This approach is unique among fusion concepts in its ability to protect the reaction chamber wall from neutrons and debris.

  6. Three chamber negative ion source

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Ehlers, Kenneth W.; Hiskes, John R.

    1985-01-01

    A negative ion vessel is divided into an excitation chamber, a negative ionization chamber and an extraction chamber by two magnetic filters. Input means introduces neutral molecules into a first chamber where a first electron discharge means vibrationally excites the molecules which migrate to a second chamber. In the second chamber a second electron discharge means ionizes the molecules, producing negative ions which are extracted into or by a third chamber. A first magnetic filter prevents high energy electrons from entering the negative ionization chamber from the excitation chamber. A second magnetic filter prevents high energy electrons from entering the extraction chamber from the negative ionizing chamber. An extraction grid at the end of the negative ion vessel attracts negative ions into the third chamber and accelerates them. Another grid, located adjacent to the extraction grid, carries a small positive voltage in order to inhibit positive ions from migrating into the extraction chamber and contour the plasma potential. Additional electrons can be suppressed from the output flux using ExB forces provided by magnetic field means and the extractor grid electric potential.

  7. Modeling the ion density distribution in collisional cooling RF multipole ion guides

    SciTech Connect (OSTI)

    Tolmachev, Aleksey V.; Udseth, Harold R.; Smith, Richard D.

    2003-01-01

    Collisional cooling radio frequency (RF) multipoles are widely used in mass spectrometry, as ion guides and two-dimensional (2D) ion traps. Understanding the behavior of ions in these devices is important in choosing a multipole configuration. We have developed a computer model based on ion trajectory calculations in the RF multipole electric field, taking into account ion-ion and ion-neutral interactions. The two-dimensional model for idealized infinite RF multipoles gives accurate description of the ion density distribution. We consider first a basic case of a single m/z ion cloud in the 2D RF quadrupole after equilibrium is reached. Approximate theoretical relationships for the ion cloud configuration in the 2D ion trap are tested based on simulations results. Next we proceed with a case of an ion cloud consisting of several different m/z ion species. The ion relaxation dynamics and the process of establishing the stratified ion density distribution are followed. Simulations reveal a different relaxation dynamics for the axial and radial ion kinetic energy components. The kinetic energy relaxation rate is dependent on ion population and bath gas pressure. The equilibrium distribution agrees well with the ion stratification theory, as demonstrated by simulations for RF quadrupole and octupole 2D ion traps.

  8. Photoionization of FE3+ Ions

    SciTech Connect (OSTI)

    Ovchinnikov, O.; Schlachter, F.

    2003-01-01

    Photoionization of Fe3+ ions was studied for the first time using synchrotron radiation from the Advanced Light Source (ALS) and the merged-beams technique. Fe3+ ions were successfully produced using ferrocene in an electron cyclotron resonance ion source (ECR). The measured yield of Fe4+ photoions as a function of photon energy revealed the presence of resonances that correspond to excitation of autoionizing states. These resonances are superimposed upon the photoion yield produced by direct photoionization, which is a smooth, slowly decreasing function of energy. The spectra for the photoionization of Fe3+ will be analyzed and compared with theory. The data collected will also serve to test models for the propagation of light through ionized matter.

  9. Microscale ion trap mass spectrometer

    DOE Patents [OSTI]

    Ramsey, J. Michael; Witten, William B.; Kornienko, Oleg

    2002-01-01

    An ion trap for mass spectrometric chemical analysis of ions is delineated. The ion trap includes a central electrode having an aperture; a pair of insulators, each having an aperture; a pair of end cap electrodes, each having an aperture; a first electronic signal source coupled to the central electrode; a second electronic signal source coupled to the end cap electrodes. The central electrode, insulators, and end cap electrodes are united in a sandwich construction where their respective apertures are coaxially aligned and symmetric about an axis to form a partially enclosed cavity having an effective radius r.sub.0 and an effective length 2z.sub.0, wherein r.sub.0 and/or z.sub.0 are less than 1.0 mm, and a ratio z.sub.0 /r.sub.0 is greater than 0.83.

  10. Study of Ion Cooling and Ejection from Two Stage Linear Quadrupole Ion Trap consisted of RFQ ion guides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ion Cooling and Ejection from Two Stage Linear Quadrupole Ion Trap consisted of RFQ ion guides Kozlovskiy V.I., Filatov V. V., Shchepunov (UNIRIB, O.R.A.U. Oak Ridge, TN, USA) V. A., Brusov V. S., Pikhtelev A. R., Zelenov V. V. Introduction The primary objective of this work concerns linear quadrupole ion traps, which are commonly used to interface a continuous ion beam from an external source with a mass analyzer, requiring bunched or pulsed beams. We assume that the ions prepared for mass