National Library of Energy BETA

Sample records for ion beam facility

  1. University of Wisconsin Ion Beam Laboratory: A facility for irradiated materials and ion beam analysis

    SciTech Connect (OSTI)

    Field, K. G.; Wetteland, C. J.; Cao, G.; Maier, B. R.; Gerczak, T. J.; Kriewaldt, K.; Sridharan, K.; Allen, T. R.; Dickerson, C.; Field, C. R.

    2013-04-19

    The University of Wisconsin Ion Beam Laboratory (UW-IBL) has recently undergone significant infrastructure upgrades to facilitate graduate level research in irradiated materials phenomena and ion beam analysis. A National Electrostatics Corp. (NEC) Torodial Volume Ion Source (TORVIS), the keystone upgrade for the facility, can produce currents of hydrogen ions and helium ions up to {approx}200 {mu}A and {approx}5 {mu}A, respectively. Recent upgrades also include RBS analysis packages, end station developments for irradiation of relevant material systems, and the development of an in-house touch screen based graphical user interface for ion beam monitoring. Key research facilitated by these upgrades includes irradiation of nuclear fuels, studies of interfacial phenomena under irradiation, and clustering dynamics of irradiated oxide dispersion strengthened steels. The UW-IBL has also partnered with the Advanced Test Reactor National Scientific User Facility (ATR-NSUF) to provide access to the irradiation facilities housed at the UW-IBL as well as access to post irradiation facilities housed at the UW Characterization Laboratory for Irradiated Materials (CLIM) and other ATR-NSUF partner facilities. Partnering allows for rapid turnaround from proposed research to finalized results through the ATR-NSUF rapid turnaround proposal system. An overview of the UW-IBL including CLIM and relevant research is summarized.

  2. Advanced ion beam calorimetry for the test facility ELISE

    SciTech Connect (OSTI)

    Nocentini, R. Fantz, U.; Franzen, P.; Fröschle, M.; Heinemann, B.; Riedl, R.; Ruf, B.; Wünderlich, D.; Bonomo, F.; Pimazzoni, A.; Pasqualotto, R.

    2015-04-08

    The negative ion source test facility ELISE (Extraction from a Large Ion Source Experiment) is in operation since beginning of 2013 at the Max-Planck-Institut für Plasmaphysik (IPP) in Garching bei München. The large radio frequency driven ion source of ELISE is about 1×1 m{sup 2} in size (1/2 the ITER source) and can produce a plasma for up to 1 h. Negative ions can be extracted and accelerated by an ITER-like extraction system made of 3 grids with an area of 0.1 m{sup 2}, for 10 s every 3 minutes. A total accelerating voltage of up to 60 kV is available, i.e. a maximum ion beam power of about 1.2 MW can be produced. ELISE is equipped with several beam diagnostic tools for the evaluation of the beam characteristics. In order to evaluate the beam properties with a high level of detail, a sophisticated diagnostic calorimeter has been installed in the test facility at the end of 2013, starting operation in January 2014. The diagnostic calorimeter is split into 4 copper plates with separate water calorimetry for each of the plates. Each calorimeter plate is made of 15×15 copper blocks, which act as many separate inertial calorimeters and are attached to a copper plate with an embedded cooling circuit. The block geometry and the connection with the cooling plate are optimized to accurately measure the time-averaged power of the 10 s ion beam. The surface of the blocks is covered with a black coating that allows infrared (IR) thermography which provides a 2D profile of the beam power density. In order to calibrate the IR thermography, 48 thermocouples are installed in as many blocks, arranged in two vertical and two horizontal rows. The paper describes the beam calorimetry in ELISE, including the methods used for the IR thermography, the water calorimetry and the analytical methods for beam profile evaluation. It is shown how the maximum beam inhomogeneity amounts to 13% in average. The beam divergence derived by IR thermography ranges between 1° and 4° and

  3. Measurements - Ion Beams - Radiation Effects Facility / Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    / Texas A&M University Ion Beams Available Beams / Beam Change Times / Measurements / Useful Graphs Measurements The beam uniformity and flux are determined using an array of five detectors. Each detector is made up with a plastic scintillator coupled to photo-multiplier tubes. Four of the detectors are fixed in position and set up to measure beam particle counting rates continuously at four characteristic points 1.64 inches (4.71 mm) away from the beam axis. The fifth scintillator can

  4. Beam Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Test Facility Beam Test Facility Print Tuesday, 20 October 2009 09:36 Coming Soon

  5. Useful Graphs and Charts - Ion Beams - Radiation Effects Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Times 15 MeVu LET vs Range Graph 25 MeVu LET vs Range Graph 40 Mevu LET vs Range Graph Radiation Effects Facility Cyclotron Institute Texas A&M University MS 3366 ...

  6. The Holifield Radioactive Ion Beam Facility at the Oak Ridge National Laboratory: Present status and future plans

    SciTech Connect (OSTI)

    Alton, G.D.; Beene, J.R.

    1998-03-01

    The Holifield Radioactive Ion Beam Facility (HRIBF) is a first generation national user facility for nuclear physics and nuclear astrophysics research with radioactive ion beams (RIBS). The reconfiguration, construction, and equipment-commissioning phases have been completed and the beam development program is in progress. In this article, descriptions of the facility and newly implemented experimental equipment for use in the nuclear and astrophysics programs will be given and an outline of the initial experimental program will be presented. Special target/ion source related problems, endemic to the production of specific short-lived RIBs will be discussed. In addition, plans, which involve either a 200-MeV or a 1-GeV proton-linac driver for a second-generation ISOL facility, will be presented.

  7. The Holifield Radioactive Ion Beam Facility at the Oak Ridge National Laboratory: Present status and future plans

    SciTech Connect (OSTI)

    Alton, G.D.; Beene, J.R.

    1998-01-01

    The Holifield Radioactive Ion Beam Facility (HRIBF) is a first generation national user facility for nuclear physics and nuclear astrophysics research with radioactive ion beams (RIBs). The reconfiguration, construction, and equipment commissioning phases have been completed and the beam development program is in progress. In this article, descriptions of the facility and newly implemented experimental equipment for use in the nuclear and astrophysics programs will be given and an outline of the initial experimental program will be presented. Special target ion source related problems, endemic to the production of specific short lived RIBs will be discussed. In addition, plans, which involve either a 200 MeV or a 1 GeV proton linac driver for a second generation ISOL facility, will be presented.

  8. Ongoing characterization of the forced electron beam induced arc discharge ion source for the selective production of exotic species facility

    SciTech Connect (OSTI)

    Manzolaro, M. Andrighetto, A.; Monetti, A.; Scarpa, D.; Rossignoli, M.; Vasquez, J.; Corradetti, S.; Calderolla, M.; Prete, G.; Meneghetti, G.

    2014-02-15

    An intense research and development activity to finalize the design of the target ion source system for the selective production of exotic species (SPES) facility (operating according to the isotope separation on line technique) is at present ongoing at Legnaro National Laboratories. In particular, the characterization of ion sources in terms of ionization efficiency and transversal emittance is currently in progress, and a preliminary set of data is already available. In this work, the off-line ionization efficiency and emittance measurements for the SPES forced electron beam induced arc discharge ion source in the case of a stable Ar beam are presented in detail.

  9. Ion Beam Materials Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ion Beam Materials Lab Ion Beam Materials Lab A new research frontier awaits! Our door is open and we thrive on mutually beneficial partnerships, collaborations that drive innovations and new technologies. April 12, 2012 Ion Beam Danfysik Implanter High Voltage Terminal. Contact Yongqiang Wang (505) 665-1596 Email Devoted to the characterization and modification of surfaces through the use of ion beams The Ion Beam Materials Laboratory (IBML) is a Los Alamos National Laboratory resource devoted

  10. Enforcement Letter - Evaluation of Deficiencies Operational Emergency at Building 6000, Holifield Radioactive Ion Beam Facility, Oak Ridge National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    13,2009 Dr. Thom Mason President and CEO UT-Battelle Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge, Tennessee 37831-6255 Dear Dr. Mason: The Department of Energy's Office of Enforcement within the Office of Health, Safety and Security has conducted an evaluation of the deficiencies described in Noncompliance Tracking System (NTS) report NTS-ORO--0RNL-XlOPHYSICS-2008-0001, Operational Emergency at Building 6000, Holzfield Radioactive Ion Beam Facility. Our evaluation included a review of

  11. Broad beam ion implanter

    DOE Patents [OSTI]

    Leung, K.N.

    1996-10-08

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes. 6 figs.

  12. Broad beam ion implanter

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    1996-01-01

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes.

  13. Pulsed ion beam source

    DOE Patents [OSTI]

    Greenly, John B.

    1996-01-01

    An improved magnetically-confined anode plasma pulsed ion beam source. Beam rotation effects and power efficiency are improved by a magnetic design which places the separatrix between the fast field flux structure and the slow field structure near the anode of the ion beam source, by a gas port design which localizes the gas delivery into the gap between the fast coil and the anode, by a pre-ionizer ringing circuit connected to the fast coil, and by a bias field means which optimally adjusts the plasma formation position in the ion beam source.

  14. Focused ion beam system

    DOE Patents [OSTI]

    Leung, K.; Gough, R.A.; Ji, Q.; Lee, Y.Y.

    1999-08-31

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 {mu}m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 m or less. 13 figs.

  15. Focused ion beam system

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Gough, Richard A.; Ji, Qing; Lee, Yung-Hee Yvette

    1999-01-01

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 .mu.m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 .mu.m or less.

  16. Ion-beam technologies

    SciTech Connect (OSTI)

    Fenske, G.R.

    1993-01-01

    This compilation of figures and diagrams reviews processes for depositing diamond/diamond-like carbon films. Processes addressed are chemical vapor deposition (HFCVD, PACVD, etc.), plasma vapor deposition (plasma sputtering, ion beam sputtering, evaporation, etc.), low-energy ion implantation, and hybrid processes (biased sputtering, IBAD, biased HFCVD, etc.). The tribological performance of coatings produced by different means is discussed.

  17. Ion beam generating apparatus

    DOE Patents [OSTI]

    Brown, Ian G.; Galvin, James

    1987-01-01

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam.

  18. Ion beam generating apparatus

    DOE Patents [OSTI]

    Brown, I.G.; Galvin, J.

    1987-12-22

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam. 10 figs.

  19. Ion Beam Simulator

    Energy Science and Technology Software Center (OSTI)

    2005-11-08

    IBSimu(Ion Beam Simulator) is a computer program for making two and three dimensional ion optical simulations. The program can solve electrostatic field in a rectangular mesh using Poisson equation using Finite Difference method (FDM). The mesh can consist of a coarse and a fine part so that the calculation accuracy can be increased in critical areas of the geometry, while most of the calculation is done quickly using the coarse mesh. IBSimu can launch ionmore » beam trajectories into the simulation from an injection surface or fomo plasma. Ion beam space charge of time independent simulations can be taken in account using Viasov iteration. Plasma is calculated by compensating space charge with electrons having Boltzmann energy distribution. The simulation software can also be used to calculate time dependent cases if the space charge is not calculated. Software includes diagnostic tools for plotting the geometry, electric field, space charge map, ion beam trajectories, emittance data and beam profiles.« less

  20. Ion beam lithography system

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2005-08-02

    A maskless plasma-formed ion beam lithography tool provides for patterning of sub-50 nm features on large area flat or curved substrate surfaces. The system is very compact and does not require an accelerator column and electrostatic beam scanning components. The patterns are formed by switching beamlets on or off from a two electrode blanking system with the substrate being scanned mechanically in one dimension. This arrangement can provide a maskless nano-beam lithography tool for economic and high throughput processing.

  1. Pulsed ion beam source

    DOE Patents [OSTI]

    Greenly, J.B.

    1997-08-12

    An improved pulsed ion beam source is disclosed having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center. 12 figs.

  2. Ion optics of RHIC electron beam ion source

    SciTech Connect (OSTI)

    Pikin, A.; Alessi, J.; Beebe, E.; Kponou, A.; Okamura, M.; Raparia, D.; Ritter, J.; Tan, Y.; Kuznetsov, G.

    2012-02-15

    RHIC electron beam ion source has been commissioned to operate as a versatile ion source on RHIC injection facility supplying ion species from He to Au for Booster. Except for light gaseous elements RHIC EBIS employs ion injection from several external primary ion sources. With electrostatic optics fast switching from one ion species to another can be done on a pulse to pulse mode. The design of an ion optical structure and the results of simulations for different ion species are presented. In the choice of optical elements special attention was paid to spherical aberrations for high-current space charge dominated ion beams. The combination of a gridded lens and a magnet lens in LEBT provides flexibility of optical control for a wide range of ion species to satisfy acceptance parameters of RFQ. The results of ion transmission measurements are presented.

  3. Beam Physics in X-Ray Radiography Facilities

    SciTech Connect (OSTI)

    Chen, Y J; Caporaso, G J; Chambers, F W; Falabella, S; Goldin, F J; Guethlein, G; Lauer, E L; McCarrick, J F; Neurath, R; Richardson, R A; Sampayan, S; Weir, J T

    2002-12-02

    Performance of x-ray radiography facilities requires focusing the electron beams to sub-millimeter spots on the x-ray converters. Ions extracted from a converter by impact of a high intensity beam can partially neutralize the beam space charge and change the final focusing system. We will discuss these ion effects and mitigation.

  4. Concerning the Facility for Rare Isotope Beams

    ScienceCinema (OSTI)

    Symons, James

    2013-05-29

    James Symons, Nuclear Science Division Director at Lawrence Berkeley Lab, and Daniela Leitner, head of operations at Berkeley Lab's 88-Inch Cyclotron, discuss major contributions to the new Facility for Rare Isotope Beams (FRIB) at Michigan State University, including ion source, which will based on the VENUS source built for the 88-Inch Cyclotron, and the GRETA gamma-ray detector now under construction there.

  5. Electron beam ion source and electron beam ion trap (invited)

    SciTech Connect (OSTI)

    Becker, Reinard [Scientific Software Service, Kapellenweg 2a, D-63571 Gelnhausen (Germany); Kester, Oliver [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States)

    2010-02-15

    The electron beam ion source (EBIS) and its trap variant [electron beam ion trap (EBIT)] celebrated their 40th and 20th anniversary, respectively, at the EBIS/T Symposium 2007 in Heidelberg. These technologically challenging sources of highly charged ions have seen a broad development in many countries over the last decades. In contrast to most other ion sources the recipe of improvement was not ''sorcery'' but a clear understanding of the physical laws and obeying the technological constraints. This review will report important achievements of the past as well as promising developments in the future.

  6. Beam Characterizations at Femtosecond Electron Beam Facility

    SciTech Connect (OSTI)

    Rimjaem, S.; Jinamoon, V.; Kangrang, M.; Kusoljariyakul, K.; Saisut, J.; Thongbai, C.; Vilaithong, T.; Rhodes, M.W.; Wichaisirimongkol, P.; Wiedemann, H.; /SLAC

    2006-03-17

    The SURIYA project at the Fast Neutron Research Facility (FNRF) has been established and is being commissioning to generate femtosecond (fs) electron bunches. Theses short bunches are produced by a system consisting of an S-band thermionic cathode RF-gun, an alpha magnet (a-magnet) serving as a magnetic bunch compressor, and a SLAC-type linear accelerator (linac). The characteristics of its major components and the beam characterizations as well as the preliminary experimental results will be presented and discussed in this paper.

  7. ION BEAM COLLIMATOR

    DOE Patents [OSTI]

    Langsdorf, A.S. Jr.

    1957-11-26

    A device is described for defining a beam of high energy particles wherein the means for defining the beam in the horizontal and vertical dimension are separately adjustable and the defining members are internally cooled. In general, the device comprises a mounting block having a central opening through which the beam is projected, means for rotatably supporting two pairs of beam- forming members, passages in each member for the flow of coolant; the beam- forming members being insulated from each other and the block, and each having an end projecting into the opening. The beam-forming members are adjustable and may be cooperatively positioned to define the beam passing between the end of the members. To assist in projecting and defining the beam, the member ends have individual means connected thereto for indicating the amount of charge collected thereon due to beam interception.

  8. Gated beam imager for heavy ion beams

    SciTech Connect (OSTI)

    Ahle, Larry; Hopkins, Harvey S.

    1998-12-10

    As part of the work building a small heavy-ion induction accelerator ring, or recirculator, at Lawrence Livermore National Laboratory, a diagnostic device measuring the four-dimensional transverse phase space of the beam in just a single pulse has been developed. This device, the Gated Beam Imager (GBI), consists of a thin plate filled with an array of 100-micron diameter holes and uses a Micro Channel Plate (MCP), a phosphor screen, and a CCD camera to image the beam particles that pass through the holes after they have drifted for a short distance. By time gating the MCP, the time evolution of the beam can also be measured, with each time step requiring a new pulse.

  9. Gated beam imager for heavy ion beams

    SciTech Connect (OSTI)

    Ahle, L.; Hopkins, H.S.

    1998-12-01

    As part of the work building a small heavy-ion induction accelerator ring, or recirculator, at Lawrence Livermore National Laboratory, a diagnostic device measuring the four-dimensional transverse phase space of the beam in just a single pulse has been developed. This device, the Gated Beam Imager (GBI), consists of a thin plate filled with an array of 100-micron diameter holes and uses a Micro Channel Plate (MCP), a phosphor screen, and a CCD camera to image the beam particles that pass through the holes after they have drifted for a short distance. By time gating the MCP, the time evolution of the beam can also be measured, with each time step requiring a new pulse. {copyright} {ital 1998 American Institute of Physics.}

  10. Continuous Electron Beam Accelerator Facility (CEBAF) | U.S. DOE Office of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science (SC) Continuous Electron Beam Accelerator Facility (CEBAF) Nuclear Physics (NP) NP Home About Research Facilities User Facilities Argonne Tandem Linac Accelerator System (ATLAS) Continuous Electron Beam Accelerator Facility (CEBAF) Relativistic Heavy Ion Collider (RHIC) Project Development Isotope Program Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department

  11. Maskless, resistless ion beam lithography

    SciTech Connect (OSTI)

    Ji, Qing

    2003-03-10

    As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements, such as O{sub 2}{sup +}, BF{sub 2}{sup +}, P{sup +} etc., for surface modification and doping applications. With optimized source condition, around 85% of BF{sub 2}{sup +}, over 90% of O{sub 2}{sup +} and P{sup +} have been achieved. The brightness of the multicusp-plasma ion source is a key issue for its application to maskless ion beam lithography. It can be substantially improved by optimizing the source configuration and extractor geometry. Measured brightness of 2 keV He{sup +} beam is as high as 440 A/cm{sup 2} {center_dot} Sr, which represents a 30x improvement over prior work. Direct patterning of Si thin film using a focused O{sub 2}{sup +} ion beam has been investigated. A thin surface oxide film can be selectively formed using 3 keV O{sub 2}{sup +} ions with the dose of 10{sup 15} cm{sup -2}. The oxide can then serve as a hard mask for patterning of the Si film. The process flow and the experimental results for directly patterned poly-Si features

  12. A new luminescence beam profile monitor for intense proton and heavy ion beams

    SciTech Connect (OSTI)

    Tsang,T.; Bellavia, S.; Connolly, R.; Gassner, D.; Makdisi, Y.; Russo, T.; Thieberger, P.; Trbojevic, D.; Zelenski, A.

    2008-10-01

    A new luminescence beam profile monitor is realized in the polarized hydrogen gas jet target at the Relativistic Heavy Ion Collider (RHIC) facility. In addition to the spin polarization of the proton beam being routinely measured by the hydrogen gas jet, the luminescence produced by beam-hydrogen excitation leads to a strong Balmer series lines emission. A selected hydrogen Balmer line is spectrally filtered and imaged to produce the transverse RHIC proton beam shape with unprecedented details on the RHIC beam profile. Alternatively, when the passage of the high energy RHIC gold ion beam excited only the residual gas molecules in the beam path, sufficient ion beam induced luminescence is produced and the transverse gold ion beam profile is obtained. The measured transverse beam sizes and the calculated emittances provide an independent confirmation of the RHIC beam characteristics and to verify the emittance conservation along the RHIC accelerator. This optical beam diagnostic technique by making use of the beam induced fluorescence from injected or residual gas offers a truly noninvasive particle beam characterization, and provides a visual observation of proton and heavy ion beams. Combined with a longitudinal bunch measurement system, a 3-dimensional spatial particle beam profile can be reconstructed tomographically.

  13. ION BEAM FOCUSING MEANS FOR CALUTRON

    DOE Patents [OSTI]

    Backus, J.G.

    1959-06-01

    An ion beam focusing arrangement for calutrons is described. It provides a virtual focus of origin for the ion beam so that the ions may be withdrawn from an arc plasma of considerable width providing greater beam current and accuracy. (T.R.H.)

  14. Oxygen ion-beam microlithography

    DOE Patents [OSTI]

    Tsuo, Y. Simon

    1991-01-01

    A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used.

  15. Oxygen ion-beam microlithography

    DOE Patents [OSTI]

    Tsuo, Y.S.

    1991-08-20

    A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used. 5 figures.

  16. Ion beam inertial confinement target

    DOE Patents [OSTI]

    Bangerter, Roger O.; Meeker, Donald J.

    1985-01-01

    A target for implosion by ion beams composed of a spherical shell of frozen DT surrounded by a low-density, low-Z pusher shell seeded with high-Z material, and a high-density tamper shell. The target has various applications in the inertial confinement technology. For certain applications, if desired, a low-density absorber shell may be positioned intermediate the pusher and tamper shells.

  17. Focused electron and ion beam systems

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Reijonen, Jani; Persaud, Arun; Ji, Qing; Jiang, Ximan

    2004-07-27

    An electron beam system is based on a plasma generator in a plasma ion source with an accelerator column. The electrons are extracted from a plasma cathode in a plasma ion source, e.g. a multicusp plasma ion source. The beam can be scanned in both the x and y directions, and the system can be operated with multiple beamlets. A compact focused ion or electron beam system has a plasma ion source and an all-electrostatic beam acceleration and focusing column. The ion source is a small chamber with the plasma produced by radio-frequency (RF) induction discharge. The RF antenna is wound outside the chamber and connected to an RF supply. Ions or electrons can be extracted from the source. A multi-beam system has several sources of different species and an electron beam source.

  18. Sandia Energy - National Solar Thermal Testing Facility Beam...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Testing Facility Beam Profiling Home Renewable Energy News Concentrating Solar Power Solar National Solar Thermal Testing Facility Beam Profiling Previous...

  19. SLAC National Accelerator Laboratory FACET & TEST BEAM FACILITIES...

    Office of Scientific and Technical Information (OSTI)

    Laboratory FACET & TEST BEAM FACILITIES PROPOSAL Citation Details In-Document Search Title: SLAC National Accelerator Laboratory FACET & TEST BEAM FACILITIES PROPOSAL ...

  20. An ion guide laser ion source for isobar-suppressed rare isotope beams

    SciTech Connect (OSTI)

    Raeder, Sebastian Ames, Friedhelm; Bishop, Daryl; Bricault, Pierre; Kunz, Peter; Mjs, Anders; Heggen, Henning; Institute of Applied Physics, TU Darmstadt, Schlossgartenstr. 7, 64289 Darmstadt ; Lassen, Jens Teigelhfer, Andrea; Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2

    2014-03-15

    Modern experiments at isotope separator on-line (ISOL) facilities like ISAC at TRIUMF often depend critically on the purity of the delivered rare isotope beams. Therefore, highly selective ion sources are essential. This article presents the development and successful on-line operation of an ion guide laser ion source (IG-LIS) for the production of ion beams free of isobaric contamination. Thermionic ions from the hot ISOL target are suppressed by an electrostatic potential barrier, while neutral radio nuclides effusing out are resonantly ionized by laser radiation within a quadrupole ion guide behind this barrier. The IG-LIS was developed through detailed thermal and ion optics simulation studies and off-line tests with stable isotopes. In a first on-line run with a SiC target a suppression of surface-ionized Na contaminants in the ion beam of up to six orders of magnitude was demonstrated.

  1. Pseudo ribbon metal ion beam source

    SciTech Connect (OSTI)

    Stepanov, Igor B. Ryabchikov, Alexander I.; Sivin, Denis O.; Verigin, Dan A.

    2014-02-15

    The paper describes high broad metal ion source based on dc macroparticle filtered vacuum arc plasma generation with the dc ion-beam extraction. The possibility of formation of pseudo ribbon beam of metal ions with the parameters: ion beam length 0.6 m, ion current up to 0.2 A, accelerating voltage 40 kV, and ion energy up to 160 kV has been demonstrated. The pseudo ribbon ion beam is formed from dc vacuum arc plasma. The results of investigation of the vacuum arc evaporator ion-emission properties are presented. The influence of magnetic field strength near the cathode surface on the arc spot movement and ion-emission properties of vacuum-arc discharge for different cathode materials are determined. It was shown that vacuum-arc discharge stability can be reached when the magnetic field strength ranges from 40 to 70 G on the cathode surface.

  2. Plasma formed ion beam projection lithography system

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Lee, Yung-Hee Yvette; Ngo, Vinh; Zahir, Nastaran

    2002-01-01

    A plasma-formed ion-beam projection lithography (IPL) system eliminates the acceleration stage between the ion source and stencil mask of a conventional IPL system. Instead a much thicker mask is used as a beam forming or extraction electrode, positioned next to the plasma in the ion source. Thus the entire beam forming electrode or mask is illuminated uniformly with the source plasma. The extracted beam passes through an acceleration and reduction stage onto the resist coated wafer. Low energy ions, about 30 eV, pass through the mask, minimizing heating, scattering, and sputtering.

  3. Beam Dynamics Design and Simulation in Ion Linear Accelerators (

    Energy Science and Technology Software Center (OSTI)

    2006-08-01

    Orginally, the ray tracing code TRACK has been developed to fulfill the many special requirements for the Rare Isotope Accelerator Facility known as RIA. Since no available beam-dynamics code met all the necessary requirements, modifications to the code TRACK were introduced to allow end-to-end (from the ion souce to the production target) simulations of the RIA machine, TRACK is a general beam-dynamics code and can be applied for the design, commissioning and operation of modernmore » ion linear accelerators and beam transport systems.« less

  4. The Electron Beam Ion Source (EBIS)

    ScienceCinema (OSTI)

    Brookhaven Lab

    2010-01-08

    Brookhaven National Lab has successfully developed a new pre-injector system, called the Electron Beam Ion Source, for the Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory science programs. The first of several planned improvemen

  5. Focused ion beam source method and apparatus

    DOE Patents [OSTI]

    Pellin, Michael J.; Lykke, Keith R.; Lill, Thorsten B.

    2000-01-01

    A focused ion beam having a cross section of submicron diameter, a high ion current, and a narrow energy range is generated from a target comprised of particle source material by laser ablation. The method involves directing a laser beam having a cross section of critical diameter onto the target, producing a cloud of laser ablated particles having unique characteristics, and extracting and focusing a charged particle beam from the laser ablated cloud. The method is especially suited for producing focused ion beams for semiconductor device analysis and modification.

  6. INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION BEAMS

    SciTech Connect (OSTI)

    Sharp, W. M.; Friedman, A.; Grote, D. P.; Barnard, J. J.; Cohen, R. H.; Dorf, M. A.; Lund, S. M.; Perkins, L. J.; Terry, M. R.; Logan, B. G.; Bieniosek, F. M.; Faltens, A.; Henestroza, E.; Jung, J. Y.; Kwan, J. W.; Lee, E. P.; Lidia, S. M.; Ni, P. A.; Reginato, L. L.; Roy, P. K.; Seidl, P. A.; Takakuwa, J. H.; Vay, J.-L.; Waldron, W. L.; Davidson, R. C.; Gilson, E. P.; Kaganovich, I. D.; Qin, H.; Startsev, E.; Haber, I.; Kishek, R. A.; Koniges, A. E.

    2011-03-31

    Intense heavy-ion beams have long been considered a promising driver option for inertial-fusion energy production. This paper briefly compares inertial confinement fusion (ICF) to the more-familiar magnetic-confinement approach and presents some advantages of using beams of heavy ions to drive ICF instead of lasers. Key design choices in heavy-ion fusion (HIF) facilities are discussed, particularly the type of accelerator. We then review experiments carried out at Lawrence Berkeley National Laboratory (LBNL) over the past thirty years to understand various aspects of HIF driver physics. A brief review follows of present HIF research in the US and abroad, focusing on a new facility, NDCX-II, being built at LBNL to study the physics of warm dense matter heated by ions, as well as aspects of HIF target physics. Future research directions are briefly summarized.

  7. The New Uppsala Neutron Beam Facility

    SciTech Connect (OSTI)

    Pomp, S.; Blomgren, J.; Hildebrand, A.; Johansson, C.; Mermod, P.; Oesterlund, M.; Prokofiev, A.V.; Bystroem, O.; Ekstroem, C.; Haag, N.; Jonsson, O.; Reistad, D.; Renberg, P.-U.; Wessman, D.; Ziemann, V.; Nilsson, L.; Olsson, N.; Tippawan, U.

    2005-05-24

    A new quasi-monoenergetic neutron beam facility has been constructed at the The Svedberg Laboratory (TSL) in Uppsala, Sweden. Key features include an energy range of 20 to 175 MeV, high fluxes, and the possibility of large-area fields. Besides cross-section measurements, the new facility has been designed specifically to provide optimal conditions for testing of single-event effects in electronics and for dosimetry development. First results of the beam characterization measurements performed in early 2004 are reported.

  8. Beam-beam observations in the Relativistic Heavy Ion Collider

    SciTech Connect (OSTI)

    Luo, Y.; Fischer, W.; White, S.

    2015-06-24

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been operating since 2000. Over the past decade, thanks to the continuously increased bunch intensity and reduced β*s at the interaction points, the maximum peak luminosity in the polarized proton operation has been increased by more than two orders of magnitude. In this article, we first present the beam-beam observations in the previous RHIC polarized proton runs. Then we analyze the mechanisms for the beam loss and emittance growth in the presence of beam-beam interaction. The operational challenges and limitations imposed by beam-beam interaction and their remedies are also presented. In the end, we briefly introduce head-on beam-beam compensation with electron lenses in RHIC.

  9. ELECTRON BEAM ION SOURCE PREINJECTOR PROJECT (EBIS) CONCEPTUAL DESIGN REPORT.

    SciTech Connect (OSTI)

    ALESSI, J.; BARTON, D.; BEEBE, E.; GASSNER, D.; ET AL.

    2005-02-28

    This report describes a new heavy ion pre-injector for the Relativistic Heavy Ion Collider (RHIC) based on a high charge state Electron Beam Ion Source (EBIS), a Radio Frequency Quadrupole (RFQ) accelerator, and a short Linac. The highly successful development of an EBIS at BNL now makes it possible to replace the present pre-injector that is based on an electrostatic Tandem with a reliable, low maintenance Linac-based pre-injector. Linac-based pre-injectors are presently used at most accelerator and collider facilities with the exception of RHIC, where the required gold beam intensities could only be met with a Tandem until the recent EBIS development. EBIS produces high charge state ions directly, eliminating the need for the two stripping foils presently used with the Tandem. Unstable stripping efficiencies of these foils are a significant source of luminosity degradation in RHIC. The high reliability and flexibility of the new Linac-based pre-injector will lead to increased integrated luminosity at RHIC and is an essential component for the long-term success of the RHIC facility. This new pre-injector, based on an EBIS, also has the potential for significant future intensity increases and can produce heavy ion beams of all species including uranium beams and, as part of a future upgrade, might also be used to produce polarized {sup 3}He beams. These capabilities will be critical to the future luminosity upgrades and electron-ion collisions in RHIC. The new RFQ and Linac that are used to accelerate beams from the EBIS to an energy sufficient for injection into the Booster are both very similar to existing devices already in operation at other facilities. Injection into the Booster will occur at the same location as the existing injection from the Tandem.

  10. Beam imaging diagnostics for heavy ion beam fusion experiments

    SciTech Connect (OSTI)

    Bieniosek, F.M.; Prost, L.; Ghiorso, W.

    2003-05-01

    We are developing techniques for imaging beams in heavy-ion beam fusion experiments in the HIF-VNL in 2 to 4 transverse dimensions. The beams in current experiments range in energy from 50 keV to 2 MeV, with beam current densities from <10 to 200 mA/cm{sup 2}, and pulse lengths of 4 to 20 {micro}s. The beam energy will range up to 10 MeV in near-future beam experiments. The imaging techniques, based on kapton films and optical scintillators, complement and, in some cases, may replace mechanical slit scanners. The kapton film images represent a time-integrated image on the film exposed to the beam. The optical scintillator utilizes glass and ceramic scintillator material imaged by a fast, image-intensified CCD-based camera. We will discuss the techniques, results, and plans for implementation of the diagnostics on the beam experiments.

  11. Medical applications of nuclear physics and heavy-ion beams ...

    Office of Scientific and Technical Information (OSTI)

    Conference: Medical applications of nuclear physics and heavy-ion beams Citation Details In-Document Search Title: Medical applications of nuclear physics and heavy-ion beams ...

  12. Effects of Ion Beam on Nanoindentation Characteristics of Glassy...

    Office of Scientific and Technical Information (OSTI)

    Effects of Ion Beam on Nanoindentation Characteristics of Glassy Polymeric Carbon Surface Citation Details In-Document Search Title: Effects of Ion Beam on Nanoindentation ...

  13. Confined ion beam sputtering device and method

    DOE Patents [OSTI]

    Sharp, D.J.

    1986-03-25

    A hollow cylindrical target, lined internally with a sputter deposit material and open at both ends, surrounds a substrate on which sputtered deposition is to be obtained. An ion beam received through either one or both ends of the open cylindrical target is forced by a negative bias applied to the target to diverge so that ions impinge at acute angles at different points of the cylindrical target surface. The ion impingement results in a radially inward and downstream directed flux of sputter deposit particles that are received by the substrate. A positive bias applied to the substrate enhances divergence of the approaching ion beams to generate a higher sputtered deposition flux rate. Alternatively, a negative bias applied to the substrate induces the core portion of the ion beams to reach the substrate and provide ion polishing of the sputtered deposit thereon.

  14. Confined ion beam sputtering device and method

    DOE Patents [OSTI]

    Sharp, Donald J.

    1988-01-01

    A hollow cylindrical target, lined internally with a sputter deposit material and open at both ends, surrounds a substrate on which sputtered deposition is to be obtained. An ion beam received through either one or both ends of the open cylindrical target is forced by a negative bias applied to the target to diverge so that ions impinge at acute angles at different points of the cylindrical target surface. The ion impingement results in a radially inward and downstream directed flux of sputter deposit particles that are received by the substrate. A positive bias applied to the substrate enhances divergence of the approaching ion beams to generate a higher sputtered deposition flux rate. Alternatively, a negative bias applied to the substrate induces the core portion of the ion beams to reach the substrate and provide ion polishing of the sputtered deposit thereon.

  15. SLAC National Accelerator Laboratory FACET & TEST BEAM FACILITIES...

    Office of Scientific and Technical Information (OSTI)

    SLAC National Accelerator Laboratory FACET & TEST BEAM FACILITIES PROPOSAL Citation Details In-Document Search Title: SLAC National Accelerator Laboratory FACET & TEST BEAM ...

  16. Flow-through ion beam source

    DOE Patents [OSTI]

    Springer, R.W.

    1997-02-11

    A method and an apparatus for forming a charge neutral ion beam which is useful in producing thin films of material on electrically conductive or non-conductive substrates are provided. 4 figs.

  17. Flow-through ion beam source

    DOE Patents [OSTI]

    Springer, Robert W.

    1997-01-01

    A method and an apparatus for forming a charge neutral ion beam which is useful in producing thin films of material on electrically conductive or non-conductive substrates are provided.

  18. Ion beam processing of advanced electronic materials

    SciTech Connect (OSTI)

    Cheung, N.W.; Marwick, A.D.; Roberto, J.B. (eds.) (California Univ., Berkeley, CA (USA); International Business Machines Corp., Yorktown Heights, NY (USA). Thomas J. Watson Research Center; Oak Ridge National Lab., TN (USA))

    1989-01-01

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases. (CBS)

  19. ELECTRON BEAM ION SOURCE PREINJECTOR PROJECT (EBIS) CONCEPTUAL DESIGN REPORT.

    SciTech Connect (OSTI)

    ALESSI, J.; BARTON, D.; BEEBE, E.; GASSNER, D.; GRANDINETTI, R.; HSEUH, H.; JAVIDFAR, A.; KPONOU, A.; LAMBIASE, R.; LESSARD, E.; LOCKEY, R.; LODESTRO, V.; MAPES, M.; MIRABELLA, D.; NEHRING, T.; OERTER, B.; PENDZICK, A.; PIKIN, A.; RAPARIA, D.; RITTER, J.; ROSER, T.; RUSSO, T.; SNYDSTRUP, L.; WILINSKI, M.; ZALTSMAN, A.; ZHANG, S.

    2005-09-01

    This report describes a new heavy ion pre-injector for the Relativistic Heavy Ion Collider (RHIC) based on a high charge state Electron Beam Ion Source (EBIS), a Radio Frequency Quadrupole (RFQ) accelerator, and a short Linear accelerator (Linac). The highly successful development of an EBIS at Brookhaven National Laboratory (BNL) now makes it possible to replace the present pre-injector that is based on an electrostatic Tandem with a reliable, low maintenance Linac-based pre-injector. Linac-based preinjectors are presently used at most accelerator and collider facilities with the exception of RHIC, where the required gold beam intensities could only be met with a Tandem until the recent EBIS development. EBIS produces high charge state ions directly, eliminating the need for the two stripping foils presently used with the Tandem. Unstable stripping efficiencies of these foils are a significant source of luminosity degradation in RHIC. The high reliability and flexibility of the new Linac-based pre-injector will lead to increased integrated luminosity at RHIC and is an essential component for the long-term success of the RHIC facility. This new pre-injector, based on an EBIS, also has the potential for significant future intensity increases and can produce heavy ion beams of all species including uranium beams and, as part of a future upgrade, might also be used to produce polarized {sup 3}He beams. These capabilities will be critical to the future luminosity upgrades and electron-ion collisions in RHIC. The proposed pre-injector system would also provide for a major enhancement in capability for the NASA Space Radiation Laboratory (NSRL), which utilizes heavy-ion beams from the RHIC complex. EBIS would allow for the acceleration of all important ion species for the NASA radiobiology program, such as, helium, argon, and neon which are unavailable with the present Tandem injector. In addition, the new system would allow for very rapid switching of ion species for

  20. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    SciTech Connect (OSTI)

    Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2010-03-16

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  1. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    SciTech Connect (OSTI)

    Bieniosek, F.M.; Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2008-08-01

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  2. Thermoacoustic imaging using heavy ion beams

    SciTech Connect (OSTI)

    Claytor, T.N.; Tesmer, J.R.; Deemer, B.C.; Murphy, J.C.

    1995-10-01

    Ion beams have been used for surface modification, semiconductor device fabrication and for material analysis, which makes ion-material interactions of significant importance. Ion implantation will produce new compositions near the surface by ion mixing or directly by implanting desired ions. Ions exchange their energy to the host material as they travel into the material by several different processes. High energy ions ionize the host atoms before atomic collisions transfer the remaining momentum and stop the incident ion. As they penetrate the surface, the low energy ions ionize the host atoms, but also have a significantly large momentum transfer mechanism near the surface of the material. This leads to atoms, groups of atoms and electrons being ejected from the surface, which is the momentum transfer process of sputtering. This talk addresses the acoustic waves generated during ion implantation using modulated heavy ion beams. The mechanisms for elastic wave generation during ion implantation, in the regimes where sputtering is significant and where implantation is dominant and sputtering is negligible, has been studied. The role of momentum transfer and thermal energy production during ion implantation was compared to laser generated elastic waves in an opaque solid as a reference, since laser generated ultrasound has been extensively studied and is fairly well understood. The thermoelastic response dominated in both high and low ion energy regimes since, apparently, more energy is lost to thermal heat producing mechanisms than momentum transfer processes. The signal magnitude was found to vary almost linearly with incident energy as in the laser thermoelastic regime. The time delays for longitudinal and shear waves-were characteristic of those expected for a purely thermal heating source. The ion beams are intrinsically less sensitive to the albedo of the surface.

  3. Beam current controller for laser ion source

    DOE Patents [OSTI]

    Okamura, Masahiro

    2014-10-28

    The present invention relates to the design and use of an ion source with a rapid beam current controller for experimental and medicinal purposes. More particularly, the present invention relates to the design and use of a laser ion source with a magnetic field applied to confine a plasma flux caused by laser ablation.

  4. Graphene engineering by neon ion beams

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Iberi, Vighter; Ievlev, Anton V.; Vlassiouk, Ivan; Jesse, Stephen; Kalinin, Sergei V.; Joy, David C.; Rondinone, Adam J.; Belianinov, Alex; Ovchinnikova, Olga S.

    2016-02-18

    Achieving the ultimate limits of materials and device performance necessitates the engineering of matter with atomic, molecular, and mesoscale fidelity. While common for organic and macromolecular chemistry, these capabilities are virtually absent for 2D materials. In contrast to the undesired effect of ion implantation from focused ion beam (FIB) lithography with gallium ions, and proximity effects in standard e-beam lithography techniques, the shorter mean free path and interaction volumes of helium and neon ions offer a new route for clean, resist free nanofabrication. Furthermore, with the advent of scanning helium ion microscopy, maskless He+ and Ne+ beam lithography of graphenemore » based nanoelectronics is coming to the forefront. Here, we will discuss the use of energetic Ne ions in engineering graphene devices and explore the mechanical, electromechanical and chemical properties of the ion-milled devices using scanning probe microscopy (SPM). By using SPM-based techniques such as band excitation (BE) force modulation microscopy, Kelvin probe force microscopy (KPFM) and Raman spectroscopy, we demonstrate that the mechanical, electrical and optical properties of the exact same devices can be quantitatively extracted. Additionally, the effect of defects inherent in ion beam direct-write lithography, on the overall performance of the fabricated devices is elucidated.« less

  5. Test bench to commission a third ion source beam line and a newly designed extraction system

    SciTech Connect (OSTI)

    Winkelmann, T.; Cee, R.; Haberer, T.; Naas, B.; Peters, A.

    2012-02-15

    The HIT (Heidelberg Ion Beam Therapy Center) is the first hospital-based treatment facility in Europe where patients can be irradiated with protons and carbon ions. Since the commissioning starting in 2006 two 14.5 GHz electron cyclotron resonance ion sources are routinely used to produce a variety of ion beams from protons up to oxygen. In the future a helium beam for regular patient treatment is requested, therefore a third ion source (Supernanogan source from PANTECHNIK S.A.) will be integrated. This third ECR source with a newly designed extraction system and a spectrometer line is installed at a test bench at HIT to commission and validate this section. Measurements with different extraction system setups will be presented to show the improvement of beam quality for helium, proton, and carbon beams. An outlook to the possible integration scheme of the new ion source into the production facility will be discussed.

  6. Mass spectrometer and methods of increasing dispersion between ion beams

    DOE Patents [OSTI]

    Appelhans, Anthony D.; Olson, John E.; Delmore, James E.

    2006-01-10

    A mass spectrometer includes a magnetic sector configured to separate a plurality of ion beams, and an electrostatic sector configured to receive the plurality of ion beams from the magnetic sector and increase separation between the ion beams, the electrostatic sector being used as a dispersive element following magnetic separation of the plurality of ion beams. Other apparatus and methods are provided.

  7. The role of space charge compensation for ion beam extraction and ion beam transport (invited)

    SciTech Connect (OSTI)

    Spädtke, Peter

    2014-02-15

    Depending on the specific type of ion source, the ion beam is extracted either from an electrode surface or from a plasma. There is always an interface between the (almost) space charge compensated ion source plasma, and the extraction region in which the full space charge is influencing the ion beam itself. After extraction, the ion beam is to be transported towards an accelerating structure in most cases. For lower intensities, this transport can be done without space charge compensation. However, if space charge is not negligible, the positive charge of the ion beam will attract electrons, which will compensate the space charge, at least partially. The final degree of Space Charge Compensation (SCC) will depend on different properties, like the ratio of generation rate of secondary particles and their loss rate, or the fact whether the ion beam is pulsed or continuous. In sections of the beam line, where the ion beam is drifting, a pure electrostatic plasma will develop, whereas in magnetic elements, these space charge compensating electrons become magnetized. The transport section will provide a series of different plasma conditions with different properties. Different measurement tools to investigate the degree of space charge compensation will be described, as well as computational methods for the simulation of ion beams with partial space charge compensation.

  8. Multiple Electron Stripping of Heavy Ion Beams

    SciTech Connect (OSTI)

    D. Mueller; L. Grisham; I. Kaganovich; R. L. Watson; V. Horvat; K. E. Zaharakis; Y. Peng

    2002-06-25

    One approach being explored as a route to practical fusion energy uses heavy ion beams focused on an indirect drive target. Such beams will lose electrons while passing through background gas in the target chamber, and therefore it is necessary to assess the rate at which the charge state of the incident beam evolves on the way to the target. Accelerators designed primarily for nuclear physics or high energy physics experiments utilize ion sources that generate highly stripped ions in order to achieve high energies economically. As a result, accelerators capable of producing heavy ion beams of 10 to 40 Mev/amu with charge state 1 currently do not exist. Hence, the stripping cross-sections used to model the performance of heavy ion fusion driver beams have, up to now, been based upon theoretical calculations. We have investigated experimentally the stripping of 3.4 Mev/amu Kr 7+ and Xe +11 in N2; 10.2 MeV/amu Ar +6 in He, N2, Ar and Xe; 19 MeV/amu Ar +8 in He, N2, Ar and Xe; 30 MeV He 1 + in He, N2, Ar and Xe; and 38 MeV/amu N +6 in He, N2, Ar and Xe. The results of these measurements are compared with the theoretical calculations to assess their applicability over a wide range of parameters.

  9. First test of BNL electron beam ion source with high current density electron beam

    SciTech Connect (OSTI)

    Pikin, Alexander Alessi, James G. Beebe, Edward N.; Shornikov, Andrey; Mertzig, Robert; Wenander, Fredrik; Scrivens, Richard

    2015-01-09

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm{sup 2} and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio < 4.5 are requested by many heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, the EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given.

  10. Ion beam assisted deposition of thermal barrier coatings

    DOE Patents [OSTI]

    Youchison, Dennis L.; McDonald, Jimmie M.; Lutz, Thomas J.; Gallis, Michail A.

    2010-11-23

    Methods and apparatus for depositing thermal barrier coatings on gas turbine blades and vanes using Electron Beam Physical Vapor Deposition (EBPVD) combined with Ion Beam Assisted Deposition (IBAD).

  11. Physics with fast molecular-ion beams

    SciTech Connect (OSTI)

    Kanter, E.P.

    1980-01-01

    Fast (MeV) molecular-ion beams provide a unique source of energetic projectile nuclei which are correlated in space and time. The recognition of this property has prompted several recent investigations of various aspects of the interactions of these ions with matter. High-resolution measurements on the fragments resulting from these interactions have already yielded a wealth of new information on such diverse topics as plasma oscillations in solids and stereochemical structures of molecular ions as well as a variety of atomic collision phenomena. The general features of several such experiments will be discussed and recent results will be presented.

  12. Focused ion beam micromilling and articles therefrom

    DOE Patents [OSTI]

    Lamartine, Bruce C. (Los Alamos, NM); Stutz, Roger A. (Los Alamos, NM)

    1998-01-01

    An ultrahigh vacuum focused ion beam micromilling apparatus and process are isclosed. Additionally, a durable data storage medium using the micromilling process is disclosed, the durable data storage medium capable of storing, e.g., digital or alphanumeric characters as well as graphical shapes or characters.

  13. Focused ion beam micromilling and articles therefrom

    DOE Patents [OSTI]

    Lamartine, B.C.; Stutz, R.A.

    1998-06-30

    An ultrahigh vacuum focused ion beam micromilling apparatus and process are disclosed. Additionally, a durable data storage medium using the micromilling process is disclosed, the durable data storage medium capable of storing, e.g., digital or alphanumeric characters as well as graphical shapes or characters. 6 figs.

  14. Ion beam analysis techniques in interdisciplinary applications

    SciTech Connect (OSTI)

    Respaldiza, Miguel A.; Ager, Francisco J.

    1999-11-16

    The ion beam analysis techniques emerge in the last years as one of the main applications of electrostatic accelerators. A short summary of the most used IBA techniques will be given as well as some examples of applications in interdisciplinary sciences.

  15. MULTIPLE ELECTRON BEAM ION PUMP AND SOURCE

    DOE Patents [OSTI]

    Ellis, R.E.

    1962-02-27

    A vacuum pump is designed which operates by ionizing incoming air and by withdrawing the ions from the system by means of electrical fields. The apparatus comprises a cylindrical housing communicable with the vessel to be evacuated and having a thin wall section in one end. Suitable coils provide a longitudinal magnetic field within the cylinder. A broad cathode and an anode structure is provided to establish a plurality of adjacent electron beams which are parallel to the cylinder axis. Electron reflector means are provided so that each of the beams constitutes a PIG or reflex discharge. Such structure provides a large region in which incoming gas molecules may be ionized by electron bombardment. A charged electrode assembly accelerates the ions through the thin window, thereby removing the gas from the system. The invention may also be utilized as a highly efficient ion source. (AEC)

  16. COLLOQUIUM: Facility for Rare Isotope Beams - Scientific Opportunities and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Challenges | Princeton Plasma Physics Lab February 4, 2015, 4:00pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: Facility for Rare Isotope Beams - Scientific Opportunities and Technical Challenges Dr. Georg Bollen Michigan State University - The Facility for Rare Isotope Beams Wednesday Colloquium, February 4, 2015, "Facility for Rare Isotope Beams - Scientific Opportunities and Technial Chanllenges", Dr. Georg Bollen Colloquium Committee: The Princeton Plasma Physics

  17. Silicon ion irradiation effects on the magnetic properties of ion beam synthesized CoPt phase

    SciTech Connect (OSTI)

    Balaji, S.; Amirthapandian, S.; Panigrahi, B. K.; Mangamma, G.; Kalavathi, S.; Gupta, Ajay; Nair, K. G. M.

    2012-06-05

    Ion beam mixing of Pt/Co bilayers using self ion (Pt{sup +}) beam results in formation of CoPt phase. Upon ion beam annealing the ion mixed samples using 4 MeV Si{sup +} ions at 300 deg. C, diffusion of Co towards the Pt/Co interface is observed. The Si{sup +} ion beam rotates the magnetization of the CoPt phase from in plane to out of plane of the film.

  18. High sensitivity charge amplifier for ion beam uniformity monitor

    DOE Patents [OSTI]

    Johnson, Gary W.

    2001-01-01

    An ion beam uniformity monitor for very low beam currents using a high-sensitivity charge amplifier with bias compensation. The ion beam monitor is used to assess the uniformity of a raster-scanned ion beam, such as used in an ion implanter, and utilizes four Faraday cups placed in the geometric corners of the target area. Current from each cup is integrated with respect to time, thus measuring accumulated dose, or charge, in Coulombs. By comparing the dose at each corner, a qualitative assessment of ion beam uniformity is made possible. With knowledge of the relative area of the Faraday cups, the ion flux and areal dose can also be obtained.

  19. Non-traditional ion beam analyses

    SciTech Connect (OSTI)

    Doyle, B.L.; Knapp, J.A.; Banks, J.C.; Barbour, J.C.; Walsh, D.S.

    1993-02-01

    Rutherford backscattering spectrometry (RBS), elastic recoil detection (ERD), proton induced x-ray emission (PIXE) and nuclear reaction analysis (NRA) are among the most commonly used, or traditional, ion beam analysis (IBA) techniques. In this review, several adaptations of these IBA techniques are described where either the approach used in the analysis or the application area is clearly non-traditional or unusual. These analyses and/or applications are summarized in this paper.

  20. Holifield Heavy Ion Research Facility: Users handbook

    SciTech Connect (OSTI)

    Auble, R.L.

    1987-01-01

    The primary objective of this handbook is to provide information for those who plan to carry out research programs at the Holifield Heavy Ion Research Facility (HHIRF) at Oak Ridge National Laboratory. The accelerator systems and experimental apparatus available are described. The mechanism for obtaining accelerator time and the responsibilities of those users who are granted accelerator time are described. The names and phone numbers of ORNL personnel to call for information about specific areas are given. (LEW)

  1. TRANSITION CROSSING FOR THE BNL SUPER NEUTRINO BEAM FACILITY.

    SciTech Connect (OSTI)

    WEI,J.TSOUPAS,N.

    2004-07-05

    The super neutrino beam facility proposed at the Brookhaven National Laboratory requires proton beams to cross the transition energy in the AGS to reach 1 MW beam power at top energy. High intensity beams are accelerated at a fast repetition rate. Upon transition crossing, such high intensity bunches of large momentum spreads suffer from strong nonlinear chromatic effects and self-field effects. Using theoretical and experimental methods, we determine the impact of these effects and the effectiveness of transition-jump compensation schemes, and determine the optimum crossing scenario for the super neutrino beam facility.

  2. High-energy accelerator for beams of heavy ions

    DOE Patents [OSTI]

    Martin, Ronald L.; Arnold, Richard C.

    1978-01-01

    An apparatus for accelerating heavy ions to high energies and directing the accelerated ions at a target comprises a source of singly ionized heavy ions of an element or compound of greater than 100 atomic mass units, means for accelerating the heavy ions, a storage ring for accumulating the accelerated heavy ions and switching means for switching the heavy ions from the storage ring to strike a target substantially simultaneously from a plurality of directions. In a particular embodiment the heavy ion that is accelerated is singly ionized hydrogen iodide. After acceleration, if the beam is of molecular ions, the ions are dissociated to leave an accelerated singly ionized atomic ion in a beam. Extraction of the beam may be accomplished by stripping all the electrons from the atomic ion to switch the beam from the storage ring by bending it in magnetic field of the storage ring.

  3. Characterizing and Controlling Beam Losses at the LANSCE Facility

    SciTech Connect (OSTI)

    Rybarcyk, Lawrence J.

    2012-09-12

    The Los Alamos Neutron Science Center (LANSCE) currently provides 100-MeV H{sup +} and 800-MeV H{sup -} beams to several user facilities that have distinct beam requirements, e.g. intensity, micropulse pattern, duty factor, etc. Minimizing beam loss is critical to achieving good performance and reliable operation, but can be challenging in the context of simultaneous multi-beam delivery. This presentation will discuss various aspects related to the observation, characterization and minimization of beam loss associated with normal production beam operations in the linac.

  4. Development of a focused ion beam micromachining system

    SciTech Connect (OSTI)

    Pellerin, J.G.; Griffis, D.; Russell, P.E.

    1988-12-01

    Focused ion beams are currently being investigated for many submicron fabrication and analytical purposes. An FIB micromachining system consisting of a UHV vacuum system, a liquid metal ion gun, and a control and data acquisition computer has been constructed. This system is being used to develop nanofabrication and nanomachining techniques involving focused ion beams and scanning tunneling microscopes.

  5. Positive and negative ion beam merging system for neutral beam production

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Reijonen, Jani

    2005-12-13

    The positive and negative ion beam merging system extracts positive and negative ions of the same species and of the same energy from two separate ion sources. The positive and negative ions from both sources pass through a bending magnetic field region between the pole faces of an electromagnet. Since the positive and negative ions come from mirror image positions on opposite sides of a beam axis, and the positive and negative ions are identical, the trajectories will be symmetrical and the positive and negative ion beams will merge into a single neutral beam as they leave the pole face of the electromagnet. The ion sources are preferably multicusp plasma ion sources. The ion sources may include a multi-aperture extraction system for increasing ion current from the sources.

  6. Ion beam requirements for fast ignition of inertial fusion targets

    SciTech Connect (OSTI)

    Honrubia, J. J.; Murakami, M.

    2015-01-15

    Ion beam requirements for fast ignition are investigated by numerical simulation taking into account new effects, such as ion beam divergence, not included before. We assume that ions are generated by the TNSA scheme in a curved foil placed inside a re-entrant cone and focused on the cone apex or beyond. From the focusing point to the compressed core, ions propagate with a given divergence angle. Ignition energies are obtained for two compressed fuel configurations heated by proton and carbon ion beams. The dependence of the ignition energies on the beam divergence angle and on the position of the ion beam focusing point has been analyzed. Comparison between TNSA and quasi-monoenergetic ions is also shown.

  7. Methods and apparatus for altering material using ion beams

    DOE Patents [OSTI]

    Bloomquist, Douglas D.; Buchheit, Rudy; Greenly, John B.; McIntyre, Dale C.; Neau, Eugene L.; Stinnett, Regan W.

    1996-01-01

    A method and apparatus for treating material surfaces using a repetitively pulsed ion beam. In particular, a method of treating magnetic material surfaces in order to reduce surface defects, and produce amorphous fine grained magnetic material with properties that can be tailored by adjusting treatment parameters of a pulsed ion beam. In addition to a method of surface treating materials for wear and corrosion resistance using pulsed particle ion beams.

  8. Ion Beam Neutralization by a Tenuous Background Plasma ---- Inventors Igor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kaganovich and William Berdanier | Princeton Plasma Physics Lab Ion Beam Neutralization by a Tenuous Background Plasma ---- Inventors Igor Kaganovich and William Berdanier The neutralization and focusing of intense charged particle beam pulses by electrons form the basis for a wide range of applications for accelerators, heavy ion fusion, and astrophysics. This invention shows that for intense ion beam pulses, a background plasma with a low relative density can be used to effectively

  9. Inhomogeneity smoothing using density valley formed by ion beam...

    Office of Scientific and Technical Information (OSTI)

    in an ion-beam inertial confinement fusion pellets by numerical simulation. The simulation results show that the radiation energy is confined in the density valley, and the ...

  10. DMSE Electron Beam Instruments Facility | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DMSE Electron Beam Instruments Facility The DMSE E-beam facility is open to all Ames Laboratory staff, associates, ISU community and outside entities on a fee-for-service basis. Researchers can either work directly with staff to perform analysis on an as-needed basis or can be trained to use some of the general use equipment. Extensive sample preparation equipment necessary for scanning and transmission electron microscopy is available to all trained users. Authorized personnel can schedule

  11. Fluctuation of an ion beam extracted from an AC filament driven Bernas-type ion source

    SciTech Connect (OSTI)

    Miyamoto, N. Okajima, Y.; Wada, M.

    2014-02-15

    Argon ion beam fluctuation from an AC filament driven Bernas-type ion source is observed. The ion beam was measured by an 8 measurement elements beam profile monitor. The amplitude of the beam current fluctuation stayed in the same level from 100 Hz to 1 kHz of the filament heating frequency. The beam current fluctuation frequency measured by the beam profile monitor was equal to the frequency of the AC filament operation. The fluctuation amplitudes of the beam current by AC operation were less than 7% and were in the same level of the DC operation.

  12. The beam optics of the Argonne Positive-Ion Injector

    SciTech Connect (OSTI)

    Pardo, R.C.; Shepard, K.W.; Karls, M.

    1987-01-01

    The beam optics for Phase I of the Argonne Positive-Ion Injector linac system have been studied for a representative set of beams. The results of this study indicate that high charge state beams from an ECR source can be accelerated without significantly increasing the transverse or longitudinal emittance of the initial beam. It is expected that the beam quality from the PII-ATLAS system will be at least as good as presently achieved with the tandem-ATLAS system.

  13. Long pulse acceleration of MeV class high power density negative H{sup −} ion beam for ITER

    SciTech Connect (OSTI)

    Umeda, N. Kojima, A.; Kashiwagi, M.; Tobari, H.; Hiratsuka, J.; Watanabe, K.; Dairaku, M.; Yamanaka, H.; Hanada, M.

    2015-04-08

    R and D of high power density negative ion beam acceleration has been carried out at MeV test facility in JAEA to realize ITER neutral beam accelerator. The main target is H{sup −} ion beam acceleration up to 1 MeV with 200 A/m{sup 2} for 60 s whose pulse length is the present facility limit. For long pulse acceleration at high power density, new extraction grid (EXG) has been developed with high cooling capability, which electron suppression magnet is placed under cooling channel similar to ITER. In addition, aperture size of electron suppression grid (ESG) is enlarged from 14 mm to 16 mm to reduce direct interception on the ESG and emission of secondary electron which leads to high heat load on the upstream acceleration grid. By enlarging ESG aperture, beam current increased 10 % at high current beam and total acceleration grid heat load reduced from 13 % to 10 % of input power at long pulse beam. In addition, heat load by back stream positive ion into the EXG is measured for the first time and is estimated as 0.3 % of beam power, while heat load by back stream ion into the source chamber is estimated as 3.5 ~ 4.0 % of beam power. Beam acceleration up to 60 s which is the facility limit, has achieved at 683 keV, 100 A/m{sup 2} of negative ion beam, whose energy density increases two orders of magnitude since 2011.

  14. Optics of ion beams for the neutral beam injection system on HL-2A Tokamak

    SciTech Connect (OSTI)

    Zou, G. Q.; Lei, G. J.; Cao, J. Y.; Duan, X. R.

    2012-07-15

    The ion beam optics for the neutral beam injection system on HL-2A Tokomak is studied by two- dimensional numerical simulation program firstly, where the emitting surface is taken at 100 Debye lengths from the plasma electrode. The mathematical formulation, computation techniques are described. Typical ion orbits, equipotential contours, and emittance diagram are shown. For a fixed geometry electrode, the effect of plasma density, plasma potential and plasma electron temperature on ion beam optics is examined, and the calculation reliability is confirmed by experimental results. In order to improve ion beam optics, the application of a small pre-acceleration voltage ({approx}100 V) between the plasma electrode and the arc discharge anode is reasonable, and a lower plasma electron temperature is desired. The results allow optimization of the ion beam optics in the neutral beam injection system on HL-2A Tokomak and provide guidelines for designing future neutral beam injection system on HL-2M Tokomak.

  15. Beam Characterization at the Neutron Radiography Facility

    SciTech Connect (OSTI)

    Sarah Morgan; Jeffrey King

    2013-01-01

    The quality of a neutron imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beam’s effective length-to-diameter ratio, neutron flux profile, energy spectrum, image quality, and beam divergence, is vital for producing quality radiographic images. This project characterized the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beam’s effective length-to-diameter ratio and image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured the beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. Improvement of the existing NRAD MCNP beamline model includes validation of the model’s energy spectrum and the development of enhanced image simulation methods. The image simulation methods predict the radiographic image of an object based on the foil reaction rate data obtained by placing a model of the object in front of the image plane in an MCNP beamline model.

  16. Target fabrication for ion-beam driven hohlraum experiments

    SciTech Connect (OSTI)

    Aubert, J.H.; Sawyer, P.S.; Smith, M.L.

    1997-05-01

    Ion-beam driven hohlraum targets were designed to absorb the energy of PBFAII lithium ion beams within a foam, which converted the ion beam energy into x-rays. The foam was held within a gold hohlraum. X-ray radiation was observed from the top of the target through a circular diagnostic aperture. On the bottom of the target was a gold-coated aluminum witness plate, which was a component of an active, shock-breakout diagnostic. Surrounding the outside of the hohlraum were five titanium pins which produced ion-induced inner-shell x-rays (4.5 keV) to diagnose the lithium beam. Several different manufacturing processes and characterization techniques were utilized to prepare these targets. Extensive documentation provided quality control on their preparation. This report summarizes the preparation, characterization, and documentation of targets for ion-beam driven hohlraum experiments.

  17. Direct plasma injection scheme with various ion beams

    SciTech Connect (OSTI)

    Okamura, M.

    2010-09-15

    The laser ion source is one of the most powerful heavy ion sources. However, it is difficult to obtain good stability and to control its intense current. To overcome these difficulties, we proposed a new beam injection scheme called 'direct plasma injection scheme'. Following this it was established to provide various species with desired charge state as an intense accelerated beam. Carbon, aluminum and iron beams have been tested.

  18. Facility for Rare Isotope Beams: The Journey Has Begun on DOE's latest Scientific User Facility

    Broader source: Energy.gov [DOE]

    After many years of planning, ground was officially broken on the Facility for Rare Isotope Beams (FRIB) in a ceremony held at the construction site on Michigan State University’s campus.

  19. Future directions in intermediate energy heavy ion physics. A proposed expansion of the Holifield Facility

    SciTech Connect (OSTI)

    Not Available

    1986-02-01

    A proposal is presented for a major accelerator addition to the Holifield Heavy Ion Research Facility. The expanded facility will provide ion beams of mass 1 to 238 amu with a combination of energy, intensity, momentum resolution, and beam quality not currently available at any other facility in North America. The physics motivation for such an addition is discussed, and involves physics dominated by meson-exchange forces, Coulomb-force dominated physics, and possibly a regime where the quark and gluon degrees of freedom are significant. The physics research would include topics in atomic and interdisciplinary areas as well as nuclear physics. Some remarks are made on the merits of Oak Ridge as a site for this facility, placing the proposal in some historical perspective. The accelerator system is then described, giving the required beam properties, and the parameters of the synchrotron ring components, injection, ring magnets, RF systems, vacuum system, and electron cooling system and stochastic cooling system requirements. Also described are such facilities as buildings, beam transport and shielding, and experimental facilities, including target areas. (LEW)

  20. Heavy-ion Fusion Reactions with Neutron-rich Radioactive Ion Beams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heavy-ion Fusion Reactions with Neutron-rich Radioactive Ion Beams A. Wakhle National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA The predicted shell closures forming the 'island of stability' [1-2] are beyond the reach of stable beams [3]. This dictates that future efforts towards the synthesis of super-heavy elements (SHEs) [4] must utilize neutron-rich radioactive ion beams (RIBs). The low intensities of RIBs puts this goal beyond the

  1. RF-Plasma Source Commissioning in Indian Negative Ion Facility

    SciTech Connect (OSTI)

    Singh, M. J.; Bandyopadhyay, M.; Yadava, Ratnakar; Chakraborty, A. K.; Bansal, G.; Gahlaut, A.; Soni, J.; Kumar, Sunil; Pandya, K.; Parmar, K. G.; Sonara, J.; Kraus, W.; Heinemann, B.; Riedl, R.; Obermayer, S.; Martens, C.; Franzen, P.; Fantz, U.

    2011-09-26

    The Indian program of the RF based negative ion source has started off with the commissioning of ROBIN, the inductively coupled RF based negative ion source facility under establishment at Institute for Plasma research (IPR), India. The facility is being developed under a technology transfer agreement with IPP Garching. It consists of a single RF driver based beam source (BATMAN replica) coupled to a 100 kW, 1 MHz RF generator with a self excited oscillator, through a matching network, for plasma production and ion extraction and acceleration. The delivery of the RF generator and the RF plasma source without the accelerator, has enabled initiation of plasma production experiments. The recent experimental campaign has established the matching circuit parameters that result in plasma production with density in the range of 0.5-1x10{sup 18}/m{sup 3}, at operational gas pressures ranging between 0.4-1 Pa. Various configurations of the matching network have been experimented upon to obtain a stable operation of the set up for RF powers ranging between 25-85 kW and pulse lengths ranging between 4-20 s. It has been observed that the range of the parameters of the matching circuit, over which the frequency of the power supply is stable, is narrow and further experiments with increased number of turns in the coil are in the pipeline to see if the range can be widened. In this paper, the description of the experimental system and the commissioning data related to the optimisation of the various parameters of the matching network, to obtain stable plasma of required density, are presented and discussed.

  2. Method and apparatus for efficient photodetachment and purification of negative ion beams

    DOE Patents [OSTI]

    Beene, James R.; Liu, Yuan; Havener, Charles C.

    2008-02-26

    Methods and apparatus are described for efficient photodetachment and purification of negative ion beams. A method of purifying an ion beam includes: inputting the ion beam into a gas-filled multipole ion guide, the ion beam including a plurality of ions; increasing a laser-ion interaction time by collisional cooling the plurality of ions using the gas-filled multipole ion guide, the plurality of ions including at least one contaminant; and suppressing the at least one contaminant by selectively removing the at least one contaminant from the ion beam by electron photodetaching at least a portion of the at least one contaminant using a laser beam.

  3. Ion beam collimating grid to reduce added defects

    DOE Patents [OSTI]

    Lindquist, Walter B. (Oakland, CA); Kearney, Patrick A. (Livermore, CA)

    2003-01-01

    A collimating grid for an ion source located after the exit grid. The collimating grid collimates the ion beamlets and disallows beam spread and limits the beam divergence during transients and steady state operation. The additional exit or collimating grid prevents beam divergence during turn-on and turn-off and prevents ions from hitting the periphery of the target where there is re-deposited material or from missing the target and hitting the wall of the vessel where there is deposited material, thereby preventing defects from being deposited on a substrate to be coated. Thus, the addition of a collimating grid to an ion source ensures that the ion beam will hit and be confined to a specific target area.

  4. DIAGNOSTICS FOR ION BEAM DRIVEN HIGH ENERGY DENSITY PHYSICS EXPERIMENTS

    SciTech Connect (OSTI)

    Bieniosek, F.M.; Henestroza, E.; Lidia, S.; Ni, P.A.

    2010-01-04

    Intense beams of heavy ions are capable of heating volumetric samples of matter to high energy density. Experiments are performed on the resulting warm dense matter (WDM) at the NDCX-I ion beam accelerator. The 0.3 MeV, 30-mA K{sup +} beam from NDCX-I heats foil targets by combined longitudinal and transverse neutralized drift compression of the ion beam. Both the compressed and uncompressed parts of the NDCX-I beam heat targets. The exotic state of matter (WDM) in these experiments requires specialized diagnostic techniques. We have developed a target chamber and fielded target diagnostics including a fast multi-channel optical pyrometer, optical streak camera, laser Doppler-shift interferometer (VISAR), beam transmission diagnostics, and high-speed gated cameras. We also present plans and opportunities for diagnostic development and a new target chamber for NDCX-II.

  5. Preliminary result of rapid solenoid for controlling heavy-ion beam parameters of laser ion source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Okamura, M.; Sekine, M.; Ikeda, S.; Kanesue, T.; Kumaki, M.; Fuwa, Y.

    2015-03-13

    To realize a heavy ion inertial fusion driver, we have studied a possibility of laser ion source (LIS). A LIS can provide high current high brightness heavy ion beams, however it was difficult to manipulate the beam parameters. To overcome the issue, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The rapid ramping magnetic field could enhance limited time slice of the current and simultaneously the beam emittance changed accordingly. This approach may also useful to realize an ion source for HIF power plant.

  6. Sandia National Laboratories: Ion Beam Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high energy ion microscopes to determine the radiation hardness and softness of microelectronics; identifying potential weaknesses. In situ Ion Irradiation Microscopy (I3M) Real...

  7. Draft Project Execution Plan for the Ion Beam Laboratory at Sandia...

    Office of Environmental Management (EM)

    Draft Project Execution Plan for the Ion Beam Laboratory at Sandia National Laboratories Draft Project Execution Plan for the Ion Beam Laboratory at Sandia National Laboratories ...

  8. Note: High density pulsed molecular beam for cold ion chemistry

    SciTech Connect (OSTI)

    Kokish, M. G.; Rajagopal, V.; Marler, J. P.; Odom, B. C.

    2014-08-15

    A recent expansion of cold and ultracold molecule applications has led to renewed focus on molecular species preparation under ultrahigh vacuum conditions. Meanwhile, molecular beams have been used to study gas phase chemical reactions for decades. In this paper, we describe an apparatus that uses pulsed molecular beam technology to achieve high local gas densities, leading to faster reaction rates with cold trapped ions. We characterize the beam's spatial profile using the trapped ions themselves. This apparatus could be used for preparation of molecular species by reactions requiring excitation of trapped ion precursors to states with short lifetimes or for obtaining a high reaction rate with minimal increase of background chamber pressure.

  9. Polarization Studies in Fast-Ion Beam Spectroscopy

    SciTech Connect (OSTI)

    Trabert, E

    2001-12-20

    In a historical review, the observations and the insight gained from polarization studies of fast ions interacting with solid targets are presented. These began with J. Macek's recognition of zero-field quantum beats in beam-foil spectroscopy as indicating alignment, and D.G. Ellis' density operator analysis that suggested the observability of orientation when using tilted foils. Lastly H. Winter's studies of the ion-beam surface interaction at grazing incidence yielded the means to produce a high degree of nuclear orientation in ion beams.

  10. Intense beams from gases generated by a permanent magnet ECR ion source at PKU

    SciTech Connect (OSTI)

    Ren, H. T.; Chen, J. E.; Peng, S. X.; Lu, P. N.; Yan, S.; Zhou, Q. F.; Zhao, J.; Yuan, Z. X.; Guo, Z. Y.

    2012-02-15

    An electron cyclotron resonance (ECR) ion source is designed for the production of high-current ion beams of various gaseous elements. At the Peking University (PKU), the primary study is focused on developing suitable permanent magnet ECR ion sources (PMECRs) for separated function radio frequency quadrupole (SFRFQ) accelerator and for Peking University Neutron Imaging Facility. Recently, other kinds of high-intensity ion beams are required for new acceleration structure demonstration, simulation of fusion reactor material irradiation, aviation bearing modification, and other applications. So we expanded the ion beam category from O{sup +}, H{sup +}, and D{sup +} to N{sup +}, Ar{sup +}, and He{sup +}. Up to now, about 120 mA of H{sup +}, 83 mA of D{sup +}, 50 mA of O{sup +}, 63 mA of N{sup +}, 70 mA of Ar{sup +}, and 65 mA of He{sup +} extracted at 50 kV through a {phi} 6 mm aperture were produced by the PMECRs at PKU. Their rms emittances are less than 0.2 {pi} mm mrad. Tungsten samples were irradiated by H{sup +} or He{sup +} beam extracted from this ion source and H/He holes and bubbles have been observed on the samples. A method to produce a high intensity H/He mixed beam to study synergistic effect is developed for nuclear material irradiation. To design a He{sup +} beam injector for coupled radio frequency quadruple and SFRFQ cavity, He{sup +} beam transmission experiments were carried out on PKU low energy beam transport test bench and the transmission was less than 50%. It indicated that some electrode modifications must be done to decrease the divergence of He{sup +} beam.

  11. Method for reduction of selected ion intensities in confined ion beams

    DOE Patents [OSTI]

    Eiden, G.C.; Barinaga, C.J.; Koppenaal, D.W.

    1998-06-16

    A method for producing an ion beam having an increased proportion of analyte ions compared to carrier gas ions is disclosed. Specifically, the method has the step of addition of a charge transfer gas to the carrier analyte combination that accepts charge from the carrier gas ions yet minimally accepts charge from the analyte ions thereby selectively neutralizing the carrier gas ions. Also disclosed is the method as employed in various analytical instruments including an inductively coupled plasma mass spectrometer. 7 figs.

  12. Apparatus for reduction of selected ion intensities in confined ion beams

    DOE Patents [OSTI]

    Eiden, Gregory C. (Richland, WA); Barinaga, Charles J. (Richland, WA); Koppenaal, David W. (Richland, WA)

    2001-01-01

    An apparatus for producing an ion beam having an increased proportion of analyte ions compared to carrier gas ions is disclosed. Specifically, the apparatus has an ion trap or a collision cell containing a reagent gas wherein the reagent gas accepts charge from the analyte ions thereby selectively neutralizing the carrier gas ions. Also disclosed is the collision cell as employed in various locations within analytical instruments including an inductively coupled plasma mass spectrometer.

  13. Method for reduction of selected ion intensities in confined ion beams

    DOE Patents [OSTI]

    Eiden, Gregory C. (Richland, WA); Barinaga, Charles J. (Richland, WA); Koppenaal, David W. (Richland, WA)

    1998-01-01

    A method for producing an ion beam having an increased proportion of analyte ions compared to carrier gas ions is disclosed. Specifically, the method has the step of addition of a charge transfer gas to the carrier analyte combination that accepts charge from the carrier gas ions yet minimally accepts charge from the analyte ions thereby selectively neutralizing the carrier gas ions. Also disclosed is the method as employed in various analytical instruments including an inductively coupled plasma mass spectrometer.

  14. Fermilab Test Beam Facility Annual Report. FY 2014

    SciTech Connect (OSTI)

    Brandt, A.

    2015-01-01

    Fermilab Test Beam Facility (FTBF) operations are summarized for FY 2014. It is one of a series of publications intended to gather information in one place. In this case, the information concerns the individual experiments that ran at FTBF. Each experiment section was prepared by the relevant authors, and was edited for inclusion in this summary.

  15. Transverse coupling property of beam from ECR ion sources

    SciTech Connect (OSTI)

    Yang, Y.; Yuan, Y. J.; Sun, L. T.; Feng, Y. C.; Fang, X.; Cao, Y.; Lu, W.; Zhang, X. Z.; Zhao, H. W.

    2014-11-15

    Experimental evidence of the property of transverse coupling of beam from Electron Cyclotron Resonance (ECR) ion source is presented. It is especially of interest for an ECR ion source, where the cross section of extracted beam is not round along transport path due to the magnetic confinement configuration. When the ions are extracted and accelerated through the descending axial magnetic field at the extraction region, the horizontal and vertical phase space strongly coupled. In this study, the coupling configuration between the transverse phase spaces of the beam from ECR ion source is achieved by beam back-tracking simulation based on the measurements. The reasonability of this coupling configuration has been proven by a series of subsequent simulations.

  16. Profile of single-pulsed ion beams in acceleration gap

    SciTech Connect (OSTI)

    Xiang, W.; Tang, P.Y.

    2006-03-15

    In an attempt to understand the characteristics of single-pulsed ion beams extracted from a miniature occluded-gas sources with electrodes of metallic hydride, a two-dimensional (2D) projected image of ion beams extracted from the single-pulsed occluded-gas source was captured using a digital charge-coupled device camera on a test bench. Based on image processing and the inverse Abel transform, the 2D integrally projected image with cylindrical symmetry was used to determine the profile of ion beams in the acceleration gap. The result shows that the radial beam profile in acceleration gap has a Gaussian-like shape, and the maximum beam intensity behind the plasma electrode is about 40% higher than that in front of the extraction electrode.

  17. Dual ion beam assisted deposition of biaxially textured template layers

    DOE Patents [OSTI]

    Groves, James R.; Arendt, Paul N.; Hammond, Robert H.

    2005-05-31

    The present invention is directed towards a process and apparatus for epitaxial deposition of a material, e.g., a layer of MgO, onto a substrate such as a flexible metal substrate, using dual ion beams for the ion beam assisted deposition whereby thick layers can be deposited without degradation of the desired properties by the material. The ability to deposit thicker layers without loss of properties provides a significantly broader deposition window for the process.

  18. Maskless micro-ion-beam reduction lithography system

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Barletta, William A.; Patterson, David O.; Gough, Richard A.

    2005-05-03

    A maskless micro-ion-beam reduction lithography system is a system for projecting patterns onto a resist layer on a wafer with feature size down to below 100 nm. The MMRL system operates without a stencil mask. The patterns are generated by switching beamlets on and off from a two electrode blanking system or pattern generator. The pattern generator controllably extracts the beamlet pattern from an ion source and is followed by a beam reduction and acceleration column.

  19. Rapid Coarsening of Ion Beam Ripple Patterns by Defect Annihilation

    SciTech Connect (OSTI)

    Hansen, Henri; Messlinger, Sebastian; Stoian, Georgiana [I. Physikalisches Institut, RWTH Aachen, 52056 Aachen (Germany); Redinger, Alex [I. Physikalisches Institut, RWTH Aachen, 52056 Aachen (Germany); II. Physikalisches Institut, Universitaet zu Koeln, 50937 Koeln, Zuelpicher Strasse 77 (Germany); Krug, Joachim [Institut fuer Theoretische Physik, Universitaet zu Koeln, 50937 Koeln, Zuelpicher Strasse 77 (Germany); Michely, Thomas [II. Physikalisches Institut, Universitaet zu Koeln, 50937 Koeln, Zuelpicher Strasse 77 (Germany)

    2009-04-10

    Ripple patterns formed on Pt(111) through grazing incidence ion beam erosion coarsen rapidly. At and below 450 K coarsening of the patterns is athermal and kinetic, unrelated to diffusion and surface free energy. Similar to the situation for sand dunes, coarsening takes place through annihilation reactions of mobile defects in the pattern. The defect velocity derived on the basis of a simple model agrees quantitatively with the velocity of monatomic steps illuminated by the ion beam.

  20. A double-plasma source of continuous bipolar ion-ion beam

    SciTech Connect (OSTI)

    Dudin, S. V.; Scientific Center of Physical Technologies, Svobody sq. 6, 61022 Kharkiv ; Rafalskyi, D. V.

    2013-01-21

    A double-plasma source capable of the generation of a continuous bipolar ion-ion beam is described. The quasi-neutral ion-ion flow to an extraction electrode is formed in the system containing primary inductively coupled plasma separated from a secondary plasma by an electrostatic grid-type filter. The total current of each ion species to the 250 mm diameter extraction electrode is about 80 mA; the electron current does not exceed 30% of the ion current. Method of positive/negative ion current ratio control is proposed, allowing the ion currents ratio variation in wide range.

  1. Neutron measurements from beam-target reactions at the ELISE neutral beam test facility

    SciTech Connect (OSTI)

    Xufei, X. Fan, T.; Nocente, M.; Gorini, G.; Bonomo, F.; Franzen, P.; Fröschle, M.; Grosso, G.; Tardocchi, M.; Grünauer, F.; Pasqualotto, R.

    2014-11-15

    Measurements of 2.5 MeV neutron emission from beam-target reactions performed at the ELISE neutral beam test facility are presented in this paper. The measurements are used to study the penetration of a deuterium beam in a copper dump, based on the observation of the time evolution of the neutron counting rate from beam-target reactions with a liquid scintillation detector. A calculation based on a local mixing model of deuterium deposition in the target up to a concentration of 20% at saturation is used to evaluate the expected neutron yield for comparison with data. The results are of relevance to understand neutron emission associated to beam penetration in a solid target, with applications to diagnostic systems for the SPIDER and MITICA Neutral Beam Injection prototypes.

  2. Uniform heating of materials into the warm dense matter regime with laser-driven quasimonoenergetic ion beams

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bang, W.; Albright, B. J.; Bradley, P. A.; Vold, E. L.; Boettger, J. C.; Fernández, J. C.

    2015-12-01

    In a recent experiment at the Trident laser facility, a laser-driven beam of quasimonoenergetic aluminum ions was used to heat solid gold and diamond foils isochorically to 5.5 and 1.7 eV, respectively. Here theoretical calculations are presented that suggest the gold and diamond were heated uniformly by these laser-driven ion beams. According to calculations and SESAME equation-of-state tables, laser-driven aluminum ion beams achievable at Trident, with a finite energy spread of ΔE/E~20%, are expected to heat the targets more uniformly than a beam of 140-MeV aluminum ions with zero energy spread. As a result, the robustness of the expected heatingmore » uniformity relative to the changes in the incident ion energy spectra is evaluated, and expected plasma temperatures of various target materials achievable with the current experimental platform are presented.« less

  3. Uniform heating of materials into the warm dense matter regime with laser-driven quasimonoenergetic ion beams

    SciTech Connect (OSTI)

    Bang, W.; Albright, B. J.; Bradley, P. A.; Vold, E. L.; Boettger, J. C.; Fernández, J. C.

    2015-12-01

    In a recent experiment at the Trident laser facility, a laser-driven beam of quasimonoenergetic aluminum ions was used to heat solid gold and diamond foils isochorically to 5.5 and 1.7 eV, respectively. Here theoretical calculations are presented that suggest the gold and diamond were heated uniformly by these laser-driven ion beams. According to calculations and SESAME equation-of-state tables, laser-driven aluminum ion beams achievable at Trident, with a finite energy spread of ΔE/E~20%, are expected to heat the targets more uniformly than a beam of 140-MeV aluminum ions with zero energy spread. As a result, the robustness of the expected heating uniformity relative to the changes in the incident ion energy spectra is evaluated, and expected plasma temperatures of various target materials achievable with the current experimental platform are presented.

  4. Evaluation of Negative-Ion-Beam Driver Concepts for Heavy Ion Fusion

    SciTech Connect (OSTI)

    Grisham, Larry R.

    2003-03-15

    The feasibility of producing and using atomically neutral heavy ion beams produced from negative ions as drivers for an inertial confinement fusion reactor is evaluated. Bromine and iodine appear to be the most attractive elements for the driver beams. Fluorine and chlorine appear to be the most appropriate feedstocks for initial tests of extractable negative-ion current densities. With regard to ion sources, photodetachment neutralizers, and vacuum requirements for accelerators and beam transport, this approach appears feasible within existing technology, and the vacuum requirements are essentially identical to those for positive-ion drivers except in the target chamber. The principal constraint is that this approach requires harder vacuums in the target chamber than do space-charge-neutralized positive-ion drivers. With realistic (but perhaps pessimistic) estimates of the total ionization cross section, limiting the ionization of a neutral beam to <5% while traversing a 3-m path would require a chamber pressure of no more than 1.3 x 10{sup -5} torr. However, it appears that substantial improvements in the beam spot size on target might be achieved at pressures a factor of 10 or more higher than this. Alternatively, even at still higher chamber pressures that would strongly ionize atomically neutral beams, the negative-ion approach may still have significant appeal, since it precludes the possibly challenging problem of electron contamination of a positive-ion beam during acceleration, drift compression, and focusing.

  5. Simulation and optimization of a 10 A electron gun with electrostatic compression for the electron beam ion source

    SciTech Connect (OSTI)

    Pikin, A.; Beebe, E. N.; Raparia, D.

    2013-03-15

    Increasing the current density of the electron beam in the ion trap of the Electron Beam Ion Source (EBIS) in BNL's Relativistic Heavy Ion Collider facility would confer several essential benefits. They include increasing the ions' charge states, and therefore, the ions' energy out of the Booster for NASA applications, reducing the influx of residual ions in the ion trap, lowering the average power load on the electron collector, and possibly also reducing the emittance of the extracted ion beam. Here, we discuss our findings from a computer simulation of an electron gun with electrostatic compression for electron current up to 10 A that can deliver a high-current-density electron beam for EBIS. The magnetic field in the cathode-anode gap is formed with a magnetic shield surrounding the gun electrodes and the residual magnetic field on the cathode is (5 Division-Sign 6) Gs. It was demonstrated that for optimized gun geometry within the electron beam current range of (0.5 Division-Sign 10) A the amplitude of radial beam oscillations can be maintained close to 4% of the beam radius by adjusting the injection magnetic field generated by a separate magnetic coil. Simulating the performance of the gun by varying geometrical parameters indicated that the original gun model is close to optimum and the requirements to the precision of positioning the gun elements can be easily met with conventional technology.

  6. Arc-based smoothing of ion beam intensity on targets

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Friedman, Alex

    2012-06-20

    Manipulating a set of ion beams upstream of a target, makes it possible to arrange a smoother deposition pattern, so as to achieve more uniform illumination of the target. A uniform energy deposition pattern is important for applications including ion-beam-driven high energy density physics and heavy-ion beam-driven inertial fusion energy (“heavy-ion fusion”). Here, we consider an approach to such smoothing that is based on rapidly “wobbling” each of the beams back and forth along a short arc-shaped path, via oscillating fields applied upstream of the final pulse compression. In this technique, uniformity is achieved in the time-averaged sense; this ismore » sufficient provided the beam oscillation timescale is short relative to the hydrodynamic timescale of the target implosion. This work builds on two earlier concepts: elliptical beams applied to a distributed-radiator target [D. A. Callahan and M. Tabak, Phys. Plasmas 7, 2083 (2000)] and beams that are wobbled so as to trace a number of full rotations around a circular or elliptical path [R. C. Arnold et al., Nucl. Instrum. Methods 199, 557 (1982)]. Here, we describe the arc-based smoothing approach and compare it to results obtainable using an elliptical-beam prescription. In particular, we assess the potential of these approaches for minimization of azimuthal asymmetry, for the case of a ring of beams arranged on a cone. We also found that, for small numbers of beams on the ring, the arc-based smoothing approach offers superior uniformity. In contrast with the full-rotation approach, arc-based smoothing remains usable when the geometry precludes wobbling the beams around a full circle, e.g., for the X-target [E. Henestroza, B. G. Logan, and L. J. Perkins, Phys. Plasmas 18, 032702 (2011)] and some classes of distributed-radiator targets.« less

  7. Electrostatic ion beam trap for electron collision studies

    SciTech Connect (OSTI)

    Heber, O.; Witte, P.D.; Diner, A.; Bhushan, K.G.; Strasser, D.; Toker, Y.; Rappaport, M.L.; Ben-Itzhak, I.; Altstein, N.; Schwalm, D.; Wolf, A.; Zajfman, D.

    2005-01-01

    We describe a system combining an ion beam trap and a low energy electron target in which the interaction between electrons and vibrationally cold molecular ions and clusters can be studied. The entire system uses only electrostatic fields for both trapping and focusing, thus being able to store particles without a mass limit. Preliminary results for the electron impact neutralization of C{sub 2}{sup -} ions and aluminum clusters are presented.

  8. Shunting arc plasma source for pure carbon ion beam

    SciTech Connect (OSTI)

    Koguchi, H.; Sakakita, H.; Kiyama, S.; Shimada, T.; Sato, Y.; Hirano, Y.

    2012-02-15

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA/mm{sup 2} at the peak of the pulse.

  9. The APEX Project: Ion beam pulse-shaping experiments on Sandia Laboratories' Particle Beam Fusion Accelerator PBFA II

    SciTech Connect (OSTI)

    Crow, J.T.

    1987-01-01

    This paper discusses the development of ion beam pulse shaping, efficient extraction ion diodes, and efficient plasma channel transport for the particle beam fusion accelerator PBFA II. 10 refs. (LSP)

  10. Linac4 low energy beam measurements with negative hydrogen ions

    SciTech Connect (OSTI)

    Scrivens, R. Bellodi, G.; Crettiez, O.; Dimov, V.; Gerard, D.; Granemann Souza, E.; Guida, R.; Hansen, J.; Lallement, J.-B.; Lettry, J.; Lombardi, A.; Midttun, Ø.; Pasquino, C.; Raich, U.; Riffaud, B.; Roncarolo, F.; Valerio-Lizarraga, C. A.; Wallner, J.; Yarmohammadi Satri, M.; Zickler, T.

    2014-02-15

    Linac4, a 160 MeV normal-conducting H{sup −} linear accelerator, is the first step in the upgrade of the beam intensity available from the LHC proton injectors at CERN. The Linac4 Low Energy Beam Transport (LEBT) line from the pulsed 2 MHz RF driven ion source, to the 352 MHz RFQ (Radiofrequency Quadrupole) has been built and installed at a test stand, and has been used to transport and match to the RFQ a pulsed 14 mA H{sup −} beam at 45 keV. A temporary slit-and-grid emittance measurement system has been put in place to characterize the beam delivered to the RFQ. In this paper a description of the LEBT and its beam diagnostics is given, and the results of beam emittance measurements and beam transmission measurements through the RFQ are compared with the expectation from simulations.

  11. Fundamental Electroweak Studies using Trapped Ions & Atoms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    collaboration performs fundamental electroweak studies on trapped ions & atoms. We use neutral atom and ion trapping techniques at radioactive ion beam facilities here and...

  12. Status and Planned Experiments of the Hiradmat Pulsed Beam Material Test Facility at CERN SPS

    SciTech Connect (OSTI)

    Charitonidis, Nikolaos; Efthymiopoulos, Ilias; Fabich, Adrian; Meddahi, Malika; Gianfelice-Wendt, Eliana

    2015-06-01

    HiRadMat (High Irradiation to Materials) is a facility at CERN designed to provide high-intensity pulsed beams to an irradiation area where material samples as well as accelerator component assemblies (e.g. vacuum windows, shock tests on high power targets, collimators) can be tested. The beam parameters (SPS 440 GeV protons with a pulse energy of up to 3.4 MJ, or alternatively lead/argon ions at the proton equivalent energy) can be tuned to match the needs of each experiment. It is a test area designed to perform single pulse experiments to evaluate the effect of high-intensity pulsed beams on materials in a dedicated environment, excluding long-time irradiation studies. The facility is designed for a maximum number of 1016 protons per year, in order to limit the activation of the irradiated samples to acceptable levels for human intervention. This paper will demonstrate the possibilities for research using this facility and go through examples of upcoming experiments scheduled in the beam period 2015/2016.

  13. Evaluation of Negative-Ion-Beam Driver Concepts for Heavy Ion Fusion

    SciTech Connect (OSTI)

    Larry R. Grisham

    2002-01-14

    We evaluate the feasibility of producing and using atomically neutral heavy ion beams produced from negative ions as drivers for an inertial confinement fusion reactor. Bromine and iodine appear to be the most attractive elements for the driver beams. Fluorine and chlorine appear to be the most appropriate feedstocks for initial tests of extractable negative ion current densities. With regards to ion sources, photodetachment neutralizers, and vacuum requirements for accelerators and beam transport, this approach appears feasible within existing technology, and the vacuum requirements are essentially identical to those for positive ion drivers except in the target chamber. The principal constraint is that this approach requires harder vacuums in the target chamber than do space-charge-neutralized positive ion drivers. With realistic (but perhaps pessimistic) estimates of the total ionization cross section, limiting the ionization of a neutral beam to less than 5% while traversing a four -meter path would require a chamber pressure of no more than 5 x 10{sup -5} torr. Alternatively, even at chamber pressures that are too high to allow propagation of atomically neutral beams, the negative ion approach may still have appeal, since it precludes the possibly serious problem of electron contamination of a positive ion beam during acceleration, drift compression, and focusing.

  14. Intense Ion Beam for Warm Dense Matter Physics

    SciTech Connect (OSTI)

    Coleman, Joshua Eugene

    2008-05-23

    The Neutralized Drift Compression Experiment (NDCX) at Lawrence Berkeley National Laboratory is exploring the physical limits of compression and focusing of ion beams for heating material to warm dense matter (WDM) and fusion ignition conditions. The NDCX is a beam transport experiment with several components at a scale comparable to an inertial fusion energy driver. The NDCX is an accelerator which consists of a low-emittance ion source, high-current injector, solenoid matching section, induction bunching module, beam neutralization section, and final focusing system. The principal objectives of the experiment are to control the beam envelope, demonstrate effective neutralization of the beam space-charge, control the velocity tilt on the beam, and understand defocusing effects, field imperfections, and limitations on peak intensity such as emittance and aberrations. Target heating experiments with space-charge dominated ion beams require simultaneous longitudinal bunching and transverse focusing. A four-solenoid lattice is used to tune the beam envelope to the necessary focusing conditions before entering the induction bunching module. The induction bunching module provides a head-to-tail velocity ramp necessary to achieve peak axial compression at the desired focal plane. Downstream of the induction gap a plasma column neutralizes the beam space charge so only emittance limits the focused beam intensity. We present results of beam transport through a solenoid matching section and simultaneous focusing of a singly charged K{sup +} ion bunch at an ion energy of 0.3 MeV. The results include a qualitative comparison of experimental and calculated results after the solenoid matching section, which include time resolved current density, transverse distributions, and phase-space of the beam at different diagnostic planes. Electron cloud and gas measurements in the solenoid lattice and in the vicinity of intercepting diagnostics are also presented. Finally, comparisons

  15. Negative-ion-based neutral beams for fusion

    SciTech Connect (OSTI)

    Cooper, W.S.; Anderson, O.A.; Chan, C.F.; Jackson, L.T.; Kunkel, W.B.; Kwan, J.W.; Leung, K.N.; Lietzke, A.F.; Purgalis, P.; Soroka, L.

    1987-10-01

    To maximize the usefulness of an engineering test reactor (e.g., ITER, TIBER), it is highly desirable that it operate under steady-state conditions. The most attractive option for maintaining the circulating current needed in the center of the plasma is the injection of powerful beams of neutral deuterium atoms. The beam simultaneously heats the plasma. At the energies required, in excess of 500 keV, such beams can be made by accelerating D/sup -/ ions and then removing the electron. Sources are being developed that generate the D/sup -/ ions in the volume of a specially constructed plasma discharge, without the addition of cesium. These sources must operate with minimum gas flow, to avoid stripping the D/sup -/ beam, and with minimum electron output. We are designing at LBL highly efficient electrostatic accelerators that combine electric strong-focusing with dc acceleration and offer the possibility of varying the beam energy at constant current while minimizing breakdown. Some form of rf acceleration may also be required. To minimize irradiation of the ion sources and accelerators, the D/sup -/ beam can be transported through a maze in the neutron shielding. The D/sup -/ ions can be converted to neutrals in a gas or plasma target, but advances in laser and mirror technology may make possible very efficient photodetachment systems by the time an ETR becomes operational. 9 refs., 4 figs.

  16. Temperature measurements during high flux ion beam irradiations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Crespillo, Miguel L.; Graham, Joseph T.; Zhang, Yanwen; Weber, William J.

    2016-02-16

    A systematic study of the ion beam heating effect was performed in a temperature range of –170 to 900 °C using a 10 MeV Au3+ ion beam and a Yttria stabilized Zirconia (YSZ) sample at a flux of 5.5 × 1012 cm–2 s–1. Different geometric configurations of beam, sample, thermocouple positioning, and sample holder were compared to understand the heat/charge transport mechanisms responsible for the observed temperature increase. The beam heating exhibited a strong dependence on the background (initial) sample temperature with the largest temperature increases occurring at cryogenic temperatures and decreasing with increasing temperature. Comparison with numerical calculations suggestsmore » that the observed heating effect is, in reality, a predominantly electronic effect and the true temperature rise is small. Furthermore, a simple model was developed to explain this electronic effect in terms of an electrostatic potential that forms during ion irradiation. Such an artificial beam heating effect is potentially problematic in thermostated ion irradiation and ion beamanalysis apparatus, as the operation of temperature feedback systems can be significantly distorted by this effect.« less

  17. Ion beam modification of topological insulator bismuth selenide

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sharma, Peter Anand; Sharma, A. L. Lima; Hekmaty, Michelle A.; Hattar, Khalid Mikhiel; Stavila, Vitalie; Goeke, Ronald S.; Erickson, K.; Medlin, Douglas L.; Brahlek, M.; Oh, S.; et al

    2014-12-17

    In this study, we demonstrate chemical doping of a topological insulator Bi2Se3 using ion implantation. Ion beam-induced structural damage was characterized using grazing incidence X-ray diffraction and transmission electron microscopy. Ion damage was reversed using a simple thermal annealing step. Carrier-type conversion was achieved using ion implantation followed by an activation anneal in Bi2Se3 thin films. These two sets of experiments establish the feasibility of ion implantation for chemical modification of Bi2Se3, a prototypical topological insulator. Ion implantation can, in principle, be used for any topological insulator. The direct implantation of dopants should allow better control over carrier concentrations formore » the purposes of achieving low bulk conductivity. Ion implantation also enables the fabrication of inhomogeneously doped structures, which in turn should make possible new types of device designs.« less

  18. Determination of the ReA Electron Beam Ion Trap electron beam radius and current density with an X-ray pinhole camera

    SciTech Connect (OSTI)

    Baumann, Thomas M. Lapierre, Alain Kittimanapun, Kritsada; Schwarz, Stefan; Leitner, Daniela; Bollen, Georg

    2014-07-15

    The Electron Beam Ion Trap (EBIT) of the National Superconducting Cyclotron Laboratory at Michigan State University is used as a charge booster and injector for the currently commissioned rare isotope re-accelerator facility ReA. This EBIT charge breeder is equipped with a unique superconducting magnet configuration, a combination of a solenoid and a pair of Helmholtz coils, allowing for a direct observation of the ion cloud while maintaining the advantages of a long ion trapping region. The current density of its electron beam is a key factor for efficient capture and fast charge breeding of continuously injected, short-lived isotope beams. It depends on the radius of the magnetically compressed electron beam. This radius is measured by imaging the highly charged ion cloud trapped within the electron beam with a pinhole camera, which is sensitive to X-rays emitted by the ions with photon energies between 2 keV and 10 keV. The 80%-radius of a cylindrical 800 mA electron beam with an energy of 15 keV is determined to be r{sub 80%}=(212±19)μm in a 4 T magnetic field. From this, a current density of j = (454 ± 83)A/cm{sup 2} is derived. These results are in good agreement with electron beam trajectory simulations performed with TriComp and serve as a test for future electron gun design developments.

  19. Production of N[sup +] ions from a multicusp ion beam apparatus

    DOE Patents [OSTI]

    Kango Leung; Kunkel, W.B.; Walther, S.R.

    1993-03-30

    A method of generating a high purity (at least 98%) N[sup +] ion beam using a multicusp ion source having a chamber formed by a cylindrical chamber wall surrounded by a plurality of magnets, a filament centrally disposed in said chamber, a plasma electrode having an extraction orifice at one end of the chamber, a magnetic filter having two parallel magnets spaced from said plasma electrode and dividing the chamber into arc discharge and extraction regions. The method includes ionizing nitrogen gas in the arc discharge region of the chamber, maintaining the chamber wall at a positive voltage relative to the filament and at a magnitude for an optimum percentage of N[sup +] ions in the extracted ion beams, disposing a hot liner within the chamber and near the chamber wall to limit recombination of N[sup +] ions into the N[sub 2][sup +] ions, spacing the magnets of the magnetic filter from each other for optimum percentage of N[sup 3] ions in the extracted ion beams, and maintaining a relatively low pressure downstream of the extraction orifice and of a magnitude (preferably within the range of 3-8[times]10[sup [minus]4] torr) for an optimum percentage of N[sup +] ions in the extracted ion beam.

  20. Production of N.sup.+ ions from a multicusp ion beam apparatus

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Kunkel, Wulf B.; Walther, Steven R.

    1993-01-01

    A method of generating a high purity (at least 98%) N.sup.+ ion beam using a multicusp ion source (10) having a chamber (11) formed by a cylindrical chamber wall (12) surrounded by a plurality of magnets (13), a filament (57) centrally disposed in said chamber, a plasma electrode (36) having an extraction orifice (41) at one end of the chamber, a magnetic filter having two parallel magnets (21, 22) spaced from said plasma electrode (36) and dividing the chamber (11) into arc discharge and extraction regions. The method includes ionizing nitrogen gas in the arc discharge region of the chamber (11), maintaining the chamber wall (12) at a positive voltage relative to the filament (57) and at a magnitude for an optimum percentage of N.sup.+ ions in the extracted ion beams, disposing a hot liner (45) within the chamber and near the chamber wall (12) to limit recombination of N.sup.+ ions into the N.sub.2.sup.+ ions, spacing the magnets (21, 22) of the magnetic filter from each other for optimum percentage of N.sup.3 ions in the extracted ion beams, and maintaining a relatively low pressure downstream of the extraction orifice and of a magnitude (preferably within the range of 3-8.times.10.sup.-4 torr) for an optimum percentage of N.sup.+ ions in the extracted ion beam.

  1. Polarized Ion Beams in Figure-8 Rings of JLab's MEIC

    SciTech Connect (OSTI)

    Derbenev, Yaroslav; Lin, Fanglei; Morozov, Vasiliy; Zhang, Yuhong; Kondratenko, Anatoliy; Kondratenko, M.A.; Filatov, Yury

    2014-07-01

    The Medium-energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab is designed to provide high polarization of both colliding beams. One of the unique features of JLab's MEIC is figure-8 shape of its rings. It allows preservation and control of polarization of all ion species including small-anomalous-magnetic-moment deuterons during their acceleration and storage. The figure-8 design conceptually expands the capability of obtaining polarized high-energy beams in comparison to conventional designs because of its property of having no preferred periodic spin direction. This allows one to control effectively the beam polarization by means of magnetic insertions with small field integrals. We present a complete scheme for preserving the ion polarization during all stages of acceleration and its control in the collider's experimental straights.

  2. Characterization and focusing of light ion beams generated by ultra-intensely irradiated thin foils at the kilojoule scale

    SciTech Connect (OSTI)

    Offermann, D. T.; Flippo, K. A.; Cobble, J.; Schmitt, M. J.; Gaillard, S. A.; Bartal, T.; Rose, D. V.; Welch, D. R.; Geissel, M.; Schollmeier, M.

    2011-05-15

    We present the first observations of focused multi-MeV carbon ion beams generated using ultra-intense shortpulse laser interactions with thin hemispherical (400{mu}m radius) targets. The experiments were performed at the Trident laser facility (80 J, 0.6 ps, 2x10{sup 20}W/cm{sup 2}) at Los Alamos National Laboratory and at the Omega EP (extended performance) facility (1 kJ, 10 ps, 5x10{sup 18}W/cm{sup 2}) at the Laboratory for Laser Energetics. The targets were chemical vapor deposition diamond, hemi-shells and were heated to remove contaminants. The ion beam focusing was characterized by tracing the projection of a witness mesh in the ion beam on a lithium fluoride nuclear activation detector. From the data, we infer that the divergence of the beam changes as a function of time. We present a 2-D isothermal model to explain the dynamics. We also present discrepancies in the peak proton and carbon ion energies from the two facilities. The implication of which is a fundamental difference in the temporal evolution of the beams from the two facilities. Simulations using the hybrid particle in cell code, Lsp were performed and compared with the experiments.

  3. Plasma and Ion Beam Injection into an FRC

    SciTech Connect (OSTI)

    Anderson, M.; Bystritskii, V.; Garate, E.; Rostoker, N.; Song, Y.; Drie, A. van; Binderbauer, M.; Isakov, I.

    2005-10-15

    Experiments on the transverse injection of intense (5-20 A/cm{sup 2}), wide cross-section (10-cm), neutralized, {approx}100-eV H{sup +} plasma and 100-keV H{sup +} ion beams into a preformed B-field reversed configuration (FRC) are described. The FRC background plasma temperature was {approx}5 eV with densities of {approx}10{sup 13} cm{sup -3}. In contrast to earlier experiments, the background plasma was generated by separate plasma gun arrays. For the startup of the FRC, a betatron-type 'slow' coaxial source was used. Injection of the plasma beam into the preformed FRC resulted in a 30-40% increase of the FRC lifetime and the amplitude of the reversed magnetic field. As for the ion beam injection experiment into the preformed FRC, there was evidence of beam capture within the configuration.

  4. Electrostatic lens to focus an ion beam to uniform density

    DOE Patents [OSTI]

    Johnson, Cleland H.

    1977-01-11

    A focusing lens for an ion beam having a gaussian or similar density profile is provided. The lens is constructed to provide an inner zero electrostatic field, and an outer electrostatic field such that ions entering this outer field are deflected by an amount that is a function of their distance from the edge of the inner field. The result is a beam that focuses to a uniform density in a manner analogous to that of an optical ring lens. In one embodiment, a conically-shaped network of fine wires is enclosed within a cylindrical anode. The wire net together with the anode produces a voltage field that re-directs the outer particles of the beam while the axial particles pass undeflected through a zero field inside the wire net. The result is a focused beam having a uniform intensity over a given target area and at a given distance from the lens.

  5. Means for obtaining a metal ion beam from a heavy-ion cyclotron source

    DOE Patents [OSTI]

    Hudson, E.D.; Mallory, M.L.

    1975-08-01

    A description is given of a modification to a cyclotron ion source used in producing a high intensity metal ion beam. A small amount of an inert support gas maintains the usual plasma arc, except that it is necessary for the support gas to have a heavy mass, e.g., xenon or krypton as opposed to neon. A plate, fabricated from the metal (or anything that can be sputtered) to be ionized, is mounted on the back wall of the ion source arc chamber and is bombarded by returning energetic low-charged gas ions that fail to cross the initial accelerating gap between the ion source and the accelerating electrode. Some of the atoms that are dislodged from the plate by the returning gas ions become ionized and are extracted as a useful beam of heavy ions. (auth)

  6. The heavy ion beam diagnostic for the tokamak ISTTOK

    SciTech Connect (OSTI)

    Cabral, J.A.C.; Malaquias, A.; Praxedes, A.; Toledo, W. van; Varandas, C.A.F. )

    1994-08-01

    In this paper the authors describe the heavy ion beam diagnostic for the tokamak ISTTOK, which has been designed to determine the temporal evolution of the plasma density, poloidal magnetic field and plasma potential profiles. This diagnostic makes use of a new type of high density caesium plasma source, a multiple cell detector and a fast data acquisition system. The authors describe the numerical code for trajectory and beam attenuation simulations, a method for the experimental determination of the poloidal field profile, the ion gun and the detection, control and data acquisition systems. Calibration tests and the first experimental results are presented.

  7. Computational study of ion beam extraction phenomena through multiple apertures

    SciTech Connect (OSTI)

    Hu, Wanpeng; Sang, Chaofeng; Tang, Tengfei; Wang, Dezhen, E-mail: wangdez@dlut.edu.cn [Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)] [Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Li, Ming; Jin, Dazhi; Tan, Xiaohua [Institute of Electronic Engineering, Mianyang, 621900 (China)] [Institute of Electronic Engineering, Mianyang, 621900 (China)

    2014-03-15

    The process of ion extraction through multiple apertures is investigated using a two-dimensional particle-in-cell code. We consider apertures with a fixed diameter with a hydrogen plasma background, and the trajectories of electrons, H{sup +} and H{sub 2}{sup +} ions in the self-consistently calculated electric field are traced. The focus of this work is the fundamental physics of the ion extraction, and not particular to a specific device. The computed convergence and divergence of the extracted ion beam are analyzed. We find that the extracted ion flux reaching the extraction electrode is non-uniform, and the peak flux positions change according to operational parameters, and do not necessarily match the positions of the apertures in the y-direction. The profile of the ion flux reaching the electrode is mainly affected by the bias voltage and the distance between grid wall and extraction electrode.

  8. Slit disk for modified faraday cup diagnostic for determining power density of electron and ion beams

    DOE Patents [OSTI]

    Teruya, Alan T.; Elmer; John W.; Palmer, Todd A.

    2011-03-08

    A diagnostic system for characterization of an electron beam or an ion beam includes an electrical conducting disk of refractory material having a circumference, a center, and a Faraday cup assembly positioned to receive the electron beam or ion beam. At least one slit in the disk provides diagnostic characterization of the electron beam or ion beam. The at least one slit is located between the circumference and the center of the disk and includes a radial portion that is in radial alignment with the center and a portion that deviates from radial alignment with the center. The electron beam or ion beam is directed onto the disk and translated to the at least one slit wherein the electron beam or ion beam enters the at least one slit for providing diagnostic characterization of the electron beam or ion beam.

  9. A nuclear physics program at the Rare Isotope Beams Accelerator Facility in Korea

    SciTech Connect (OSTI)

    Moon, Chang-Bum

    2014-04-15

    This paper outlines the new physics possibilities that fall within the field of nuclear structure and astrophysics based on experiments with radioactive ion beams at the future Rare Isotope Beams Accelerator facility in Korea. This ambitious multi-beam facility has both an Isotope Separation On Line (ISOL) and fragmentation capability to produce rare isotopes beams (RIBs) and will be capable of producing and accelerating beams of wide range mass of nuclides with energies of a few to hundreds MeV per nucleon. The large dynamic range of reaccelerated RIBs will allow the optimization in each nuclear reaction case with respect to cross section and channel opening. The low energy RIBs around Coulomb barrier offer nuclear reactions such as elastic resonance scatterings, one or two particle transfers, Coulomb multiple-excitations, fusion-evaporations, and direct capture reactions for the study of the very neutron-rich and proton-rich nuclides. In contrast, the high energy RIBs produced by in-flight fragmentation with reaccelerated ions from the ISOL enable to explore the study of neutron drip lines in intermediate mass regions. The proposed studies aim at investigating the exotic nuclei near and beyond the nucleon drip lines, and to explore how nuclear many-body systems change in such extreme regions by addressing the following topics: the evolution of shell structure in areas of extreme proton to neutron imbalance; the study of the weak interaction in exotic decay schemes such as beta-delayed two-neutron or two-proton emission; the change of isospin symmetry in isobaric mirror nuclei at the drip lines; two protons or two neutrons radioactivity beyond the drip lines; the role of the continuum states including resonant states above the particle-decay threshold in exotic nuclei; and the effects of nuclear reaction rates triggered by the unbound proton-rich nuclei on nuclear astrophysical processes.

  10. A high-performance electron beam ion source

    SciTech Connect (OSTI)

    Alessi,J.; Beebe, E.; Bellavia, S.; Gould, O.; Kponou, A.; Lambiase, R.; Lockey, R.; McCafferty, D.; Okamura, M.; Pikin, A. I.; Raparia, D.; Ritter, J.; Syndstrup, L.

    2009-06-08

    At Brookhaven National Laboratory, a high current Electron Beam Ion Source (EBIS) has been developed as part of a new preinjector that is under construction to replace the Tandem Van de Graaffs as the heavy ion preinjector for the RHIC and NASA experimental programs. This preinjector will produce milliampere-level currents of essentially any ion species, with q/A {ge} 1/6, in short pulses, for injection into the Booster synchrotron. In order to produce the required intensities, this EBIS uses a 10A electron gun, and an electron collector designed to handle 300 kW of pulsed electron beam power. The EBIS trap region is 1.5 m long, inside a 5T, 2m long, 8-inch bore superconducting solenoid. The source is designed to switch ion species on a pulse-to-pulse basis, at a 5 Hz repetition rate. Singly-charged ions of the appropriate species, produced external to the EBIS, are injected into the trap and confined until the desired charge state is reached via stepwise ionization by the electron beam. Ions are then extracted and matched into an RFQ, followed by a short IH Linac, for acceleration to 2 MeV/A, prior to injection into the Booster synchrotron. An overview of the preinjector is presented, along with experimental results from the prototype EBIS, where all essential requirements have already been demonstrated. Design features and status of construction of the final high intensity EBIS is also be presented.

  11. The pixel tracking telescope at the Fermilab Test Beam Facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kwan, Simon; Lei, CM; Menasce, Dario; Moroni, Luigi; Ngadiuba, Jennifer; Prosser, Alan; Rivera, Ryan; Terzo, Stefano; Turqueti, Marcos; Uplegger, Lorenzo; et al

    2016-03-01

    An all silicon pixel telescope has been assembled and used at the Fermilab Test Beam Facility (FTBF) since 2009 to provide precise tracking information for different test beam experiments with a wide range of Detectors Under Test (DUTs) requiring high resolution measurement of the track impact point. The telescope is based on CMS pixel modules left over from the CMS forward pixel production. Eight planes are arranged to achieve a resolution of less than 8 μm on the 120 GeV proton beam transverse coordinate at the DUT position. In order to achieve such resolution with 100 × 150 μm2 pixelmore » cells, the planes were tilted to 25 degrees to maximize charge sharing between pixels. Crucial for obtaining this performance is the alignment software, called Monicelli, specifically designed and optimized for this system. This paper will describe the telescope hardware, the data acquisition system and the alignment software constituting this particle tracking system for test beam users.« less

  12. Beam Homogeneity Dependence on the Magnetic Filter Field at the IPP Test Facility MANITU

    SciTech Connect (OSTI)

    Franzen, P.; Fantz, U.

    2011-09-26

    The homogeneity of the extracted current density from the large RF driven negative hydrogen ion sources of the ITER neutral beam system is a critical issue for the transmission of the negative ion beam through the accelerator and the beamline components. As a first test, the beam homogeneity at the IPP long pulse test facility MANITU is measured by means of the divergence and the stripping profiles obtained with a spatially resolved Doppler-shift spectroscopy system. Since MANITU is typically operating below the optimum perveance, an increase in the divergence corresponds to a lower local extracted negative ion current density if the extraction voltage is constant. The beam H{sub {alpha}} Doppler-shift spectroscopy is a rather simple tool, as no absolute calibration - both for the wavelength and the emission - is necessary. Even no relative calibration of the different used lines of sight is necessary for divergence and stripping profiles as these quantities can be obtained by the line broadening of the Doppler-shifted peak and the ratio of the integral of the stripping peak to the integral of the Doppler-shifted peak, respectively. The paper describes the H{sub {alpha}} MANITU Doppler-shift spectroscopy system which is now operating routinely and the evaluation methods of the divergence and the stripping profiles. Beam homogeneity measurements are presented for different extraction areas and magnetic filter field configurations both for Hydrogen and Deuterium operation; the results are compared with homogeneity measurements of the source plasma. The stripping loss measurements are compared with model calculations.

  13. Design of a beam emission spectroscopy diagnostic for negative ions radio frequency source SPIDER

    SciTech Connect (OSTI)

    Zaniol, B.; Pasqualotto, R.; Barbisan, M.

    2012-04-15

    A facility will be built in Padova (Italy) to develop, commission, and optimize the neutral beam injection system for ITER. The full scale prototype negative ion radio frequency source SPIDER, featuring up to 100 kV acceleration voltage, includes a full set of diagnostics, required for safe operation and to measure and optimize the beam performance. Among them, beam emission spectroscopy (BES) will be used to measure the line integrated beam uniformity, divergence, and neutralization losses inside the accelerator (stripping losses). In the absence of the neutralization stage, SPIDER beam is mainly composed by H{sup -} or D{sup -} particles, according to the source filling gas. The capability of a spectroscopic diagnostic of an H{sup -} (D{sup -}) beam relies on the interaction of the beam particles with the background gas particles. The BES diagnostic will be able to acquire the H{sub {alpha}} (D{sub {alpha}}) spectrum from up to 40 lines of sight. The system is capable to resolve stripping losses down to 2 keV and to measure beam divergence with an accuracy of about 10%. The design of this diagnostic is reported, with discussion of the layout and its components, together with simulations of the expected performance.

  14. The uses of electron beam ion traps in the study of highly charged ions

    SciTech Connect (OSTI)

    Knapp, D.

    1994-11-02

    The Electron Beam Ion Trap (EBIT) is a relatively new tool for the study of highly charged ions. Its development has led to a variety of new experimental opportunities; measurements have been performed with EBITs using techniques impossible with conventional ion sources or storage rings. In this paper, I will highlight the various experimental techniques we have developed and the results we have obtained using the EBIT and higher-energy Super-EBIT built at the Lawrence Livermore National Laboratory. The EBIT employs a high-current-density electron beam to trap, ionize, and excite a population of ions. The ions can be studied in situ or extracted from the trap for external experiments. The trapped ions form an ionization-state equilibrium determined by the relative ionization and recombination rates. Ions of several different elements may simultaneously be present in the trap. The ions are nearly at rest, and, for most systems, all in their ground-state configurations. The electron-ion interaction energy has a narrow distribution and can be varied over a wide range. We have used the EBIT devices for the measurement of electron-ion interactions, ion structure, ion-surface interactions, and the behavior of low-density plasmas.

  15. Cryogenic distribution for the Facility for Rare Isotope Beams

    SciTech Connect (OSTI)

    S. Jones, Dana Arenius, Adam Fila, P. Geutschow, Helmut Laumer, Matt Johnson, Cory S. Waltz, J. G. Weisend II

    2012-06-01

    The Facility for Rare Isotope Beams (FRIB) is a new National User Facility for nuclear science funded by the Department of Energy Office of Science and operated by Michigan State University. The FRIB accelerator linac consists of superconducting radio-frequency (SCRF) cavities operating at 2 K and SC magnets operating at 4.5 K all cooled by a large scale cryogenic refrigeration system. A major subsystem of the cryogenic system will be the distribution system whose primary components will include a distribution box, the transfer lines and the interconnect valve boxes at each cryogenic device. An overview of the conceptual design of the distribution system including engineering details, capabilities and schedule is described.

  16. Recent U.S. advances in ion-beam-driven high energy densityphysics and heavy ion fusion

    SciTech Connect (OSTI)

    Logan, B.G.; Bieniosek, F.M.; Celata, C.M.; Coleman, J.; Greenway, W.; Henestroza, E.; Kwan, J.W.; Lee, E.P.; Leitner, M.; Roy,P.K.; Seidl, P.A.; Vay, J-L.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Cohen, R.H.; Friedman, A.; Grote, D.P.; Kireeff Covo, M.; Molvik, A.W.; Lund, S.M.; Meier, W.R.; Sharp, W.; Davidson, R.C.; Efthimion, P.C.; Gilson, E.P.; Grisham, L.; Kaganovich, Qin H.; Sefkow, A.B.; Startsev,E.A.; Welch, D.; Olson, C.

    2006-07-05

    During the past two years, significant experimental and theoretical progress has been made in the US heavy ion fusion science program in longitudinal beam compression, ion-beam-driven warm dense matter, beam acceleration, high brightness beam transport; and advanced theory and numerical simulations. Innovations in longitudinal compression of intense ion beams by > 50 X propagating through background plasma enable initial beam target experiments in warm dense matter to begin within the next two years. They are assessing how these new techniques might apply to heavy ion fusion drivers for inertial fusion energy.

  17. Ultrahigh vacuum focused ion beam micromill and articles therefrom

    DOE Patents [OSTI]

    Lamartine, B.C.; Stutz, R.A.

    1998-02-24

    An ultrahigh vacuum focused ion beam micromilling apparatus and process are disclosed. Additionally, a durable data storage medium using the micromilling process is disclosed, the durable data storage medium capable of storing, e.g., digital or alphanumeric characters as well as graphical shapes or characters. 6 figs.

  18. Spin Observables in Reactions with Radioactive Ion Beams

    SciTech Connect (OSTI)

    Galindo-Uribarri, Alfredo {nmn}; Urrego Blanco, Juan Pablo

    2007-01-01

    Polarization observables in nuclear reactions with exotic nuclei will provide important information concerning structural properties of nuclei and reaction mechanisms. We are currently engaged in exploring the use of polarization observables with radioactive ion beams and in the development of a polarized cryogenic target.

  19. Ultrahigh vacuum focused ion beam micromill and articles therefrom

    DOE Patents [OSTI]

    Lamartine, Bruce C. (Los Alamos, NM); Stutz, Roger A. (Los Alamos, NM)

    1998-01-01

    An ultrahigh vacuum focused ion beam micromilling apparatus and process are isclosed. Additionally, a durable data storage medium using the micromilling process is disclosed, the durable data storage medium capable of storing, e.g., digital or alphanumeric characters as well as graphical shapes or characters.

  20. 21st International Conference on Ion Beam Analysis

    SciTech Connect (OSTI)

    Thevuthasan, Suntharampillai; Shutthanandan, V.; Wang, Yongqiang; Vizkelethy, Gyorgy; Rout, Bibhudutta

    2014-08-01

    This special issue of Nuclear Instruments and Methods in Physics Research B contains the proceedings of the 21st International Conference on Ion Beam Analysis (IBA 2013). This conference was held in Marriott Waterfront in Seattle, Washington, USA during June 2328, 2013.

  1. Dense Metal Plasma in a Solenoid for Ion Beam Neutralization

    SciTech Connect (OSTI)

    Anders, Andre; Kauffeldt, Marina; Oks, Efim M.; Roy, Prabir K.

    2010-10-30

    Space-charge neutralization is required to compress and focus a pulsed, high-current ion beam on a target for warm dense matter physics or heavy ion fusion experiments. We described approaches to produce dense plasma in and near the final focusing solenoid through which the ion beam travels, thereby providing an opportunity for the beam to acquire the necessary space-charge compensating electrons. Among the options are plasma injection from pulsed vacuum arc sources located outside the solenoid, and using a high current (> 4 kA) pulsed vacuum arc plasma from a ring cathode near the edge of the solenoid. The plasma distribution is characterized by photographic means, by an array of movable Langmuir probes, by a small single probe, and by evaluating Stark broadening of the Balmer H beta spectral line. In the main approach described here, the plasma is produced at several cathode spots distributed azimuthally on the ring cathode. It is shown that the plasma is essentially hollow, as determined by the structure of the magnetic field, though the plasma density exceeds 1014 cm-3 in practically all zones of the solenoid volume if the ring electrode is placed a few centimeters off the center of the solenoid. The plasma is non-uniform and fluctuating, however, since its density exceeds the ion beam density it is believed that this approach could provide a practical solution to the space charge neutralization challenge.

  2. Ion Beam Analysis of Targets Used in Controlatron Neutron Generators

    SciTech Connect (OSTI)

    Banks, James C.; Doyle, Barney L.; Walla, Lisa A.; Walsh, David S.

    2009-03-10

    Controlatron neutron generators are used for testing neutron detection systems at Sandia National Laboratories. To provide for increased tube lifetimes for the moderate neutron flux output of these generators, metal hydride (ZrT{sub 2}) target fabrication processes have been developed. To provide for manufacturing quality control of these targets, ion beam analysis techniques are used to determine film composition. The load ratios (i.e. T/Zr concentration ratios) of ZrT{sub 2} Controlatron neutron generator targets have been successfully measured by simultaneously acquiring RBS and ERD data using a He{sup ++} beam energy of 10 MeV. Several targets were measured and the film thicknesses obtained from RBS measurements agreed within {+-}2% with Dektak profilometer measurements. The target fabrication process and ion beam analysis techniques will be presented.

  3. Production of intense beams of singly charged radioactive ions

    SciTech Connect (OSTI)

    Kuznetsov, G.; Batazova, M.; Gubin, K.; Logachev, P.; Martyshkin, P.

    2006-03-15

    An apparatus for the production of intense beams of singly charged radioactive ions operating in on-line regime is proposed. The radioactive atoms are produced in a uranium-graphite (UC) target bombarded with neutrons. The neutron flux is generated by a graphite neutron converter, which is bombarded with protons. The atoms of the produced isotopes are ionized in the electron beam generated with the electron gun and the ions of interest are extracted in a separator. The apparatus consists of the following parts. (1) Rotating converter dissipating a substantial power of proton beam. (2) UC target placed in a graphite container at high temperature. The atoms of radioactive isotopes can be extracted with a flow of noble gas. (3) Triode electron gun with ionization channel is placed inside the solenoid forming a focusing magnetic field. The cathode of the electron gun is a spout of the graphite container. The atoms of radioactive isotopes are carried with gas flow through the spout into the electron beam. (4) Correction coil located near the gun matches the electron beam with the ionization channel. (5) The first anode has a potential of 1-4 kV with respect to the cathode, and the second anode has some lower potential than the first anode and it is the tube of ionization channel. (6) Electron collector dissipates the electron-beam power. (7) Uranium-graphite target, the gun, the ionization channel as well as solenoid are located on an isolated platform with potential of 30-60 kV with respect to ground. The beam of singly charged ions from the ionization channel passes the collector, goes through the extractor, acquires energy of 30-60 keV, and gets transported to the separator where the required species are selected.

  4. SU-E-T-323: The FLUKA Monte Carlo Code in Ion Beam Therapy

    SciTech Connect (OSTI)

    Rinaldi, I

    2014-06-01

    Purpose: Monte Carlo (MC) codes are increasingly used in the ion beam therapy community due to their detailed description of radiation transport and interaction with matter. The suitability of a MC code demands accurate and reliable physical models for the transport and the interaction of all components of the mixed radiation field. This contribution will address an overview of the recent developments in the FLUKA code oriented to its application in ion beam therapy. Methods: FLUKA is a general purpose MC code which allows the calculations of particle transport and interactions with matter, covering an extended range of applications. The user can manage the code through a graphic interface (FLAIR) developed using the Python programming language. Results: This contribution will present recent refinements in the description of the ionization processes and comparisons between FLUKA results and experimental data of ion beam therapy facilities. Moreover, several validations of the largely improved FLUKA nuclear models for imaging application to treatment monitoring will be shown. The complex calculation of prompt gamma ray emission compares favorably with experimental data and can be considered adequate for the intended applications. New features in the modeling of proton induced nuclear interactions also provide reliable cross section predictions for the production of radionuclides. Of great interest for the community are the developments introduced in FLAIR. The most recent efforts concern the capability of importing computed-tomography images in order to build automatically patient geometries and the implementation of different types of existing positron-emission-tomography scanner devices for imaging applications. Conclusion: The FLUA code has been already chosen as reference MC code in many ion beam therapy centers, and is being continuously improved in order to match the needs of ion beam therapy applications. Parts of this work have been supported by the European

  5. Electrostatic dispersion lenses and ion beam dispersion methods

    DOE Patents [OSTI]

    Dahl, David A. [Idaho Falls, ID; Appelhans, Anthony D. [Idaho Falls, ID

    2010-12-28

    An EDL includes a case surface and at least one electrode surface. The EDL is configured to receive through the EDL a plurality of ion beams, to generate an electrostatic field between the one electrode surface and either the case surface or another electrode surface, and to increase the separation between the beams using the field. Other than an optional mid-plane intended to contain trajectories of the beams, the electrode surface or surfaces do not exhibit a plane of symmetry through which any beam received through the EDL must pass. In addition or in the alternative, the one electrode surface and either the case surface or the other electrode surface have geometries configured to shape the field to exhibit a less abrupt entrance and/or exit field transition in comparison to another electrostatic field shaped by two nested, one-quarter section, right cylindrical electrode surfaces with a constant gap width.

  6. Lithium-Ion Battery Recycling Facilities | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    12 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt020_es_coy_2012_p.pdf (1.72 MB) More Documents & Publications Lithium-Ion Battery Recycling Facilities Recycling Hybrid and Elecectric Vehicle Batteries EA-1722: Final Environmental Assessment

  7. Dow Kokam Lithium Ion Battery Production Facilities | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt006_es_pham_2011_p.pdf (566.72 KB) More Documents & Publications Dow/Kokam Cell/Battery Production Facilities Dow Kokam Lithium Ion Battery

  8. Negative hydrogen ion beam extraction from an AC heated cathode driven Bernas-type ion source

    SciTech Connect (OSTI)

    Okano, Y.; Miyamoto, N.; Kasuya, T.; Wada, M.

    2015-04-08

    A plasma grid structure was installed to a Bernas-type ion source used for ion implantation equipment. A negative hydrogen (H{sup −}) ion beam was extracted by an AC driven ion source by adjusting the bias to the plasma grid. The extracted electron current was reduced by positively biasing the plasma grid, while an optimum plasma grid bias voltage for negative ion beam extraction was found to be positive 3 V with respect to the arc chamber. Source operations with AC cathode heating show extraction characteristics almost identical to that with DC cathode heating, except a minute increase in H{sup −} current at higher frequency of cathode heating current.

  9. Method for measuring and controlling beam current in ion beam processing

    DOE Patents [OSTI]

    Kearney, Patrick A.; Burkhart, Scott C.

    2003-04-29

    A method for producing film thickness control of ion beam sputter deposition films. Great improvements in film thickness control is accomplished by keeping the total current supplied to both the beam and suppressor grids of a radio frequency (RF) in beam source constant, rather than just the current supplied to the beam grid. By controlling both currents, using this method, deposition rates are more stable, and this allows the deposition of layers with extremely well controlled thicknesses to about 0.1%. The method is carried out by calculating deposition rates based on the total of the suppressor and beam currents and maintaining the total current constant by adjusting RF power which gives more consistent values.

  10. Carbon ion beam focusing using laser irradiated heated diamond hemispherical shells

    SciTech Connect (OSTI)

    Offermann, Dustin T; Flippo, Kirk A; Gaillard, Sandrine A

    2009-01-01

    Experiments preformed at the Los Alamos National Laboratory's Trident Laser Facility were conducted to observe the acceleration and focusing of carbon ions via the TNSA mechanism using hemispherical diamond targets. Trident is a 200TW class laser system with 80J of 1 {micro}m, short-pulse light delivered in 0.5ps, with a peak intensity of 5 x 10{sup 20} W/cm{sup 2}. Targets where Chemical Vapor Deposition (CVD) diamonds formed into hemispheres with a radius of curvature of 400{micro}m and a thickness of 5{micro}m. The accelerated ions from the hemisphere were diagnosed by imaging the shadow of a witness copper mesh grid located 2mm behind the target onto a film pack located 5cm behind the target. Ray tracing was used to determine the location of the ion focal spot. The TNSA mechanism favorably accelerates hydrogen found in and on the targets. To make the carbon beam detectable, targets were first heated to several hundred degrees Celsius using a CW, 532nm, 8W laser. Imaging of the carbon beam was accomplished via an auto-radiograph of a nuclear activated lithium fluoride window in the first layer of the film pack. The focus of the carbon ion beam was determined to be located 630 {+-} 110 {micro}m from the vertex of the hemisphere.

  11. Microchip and wedge ion funnels and planar ion beam analyzers using same

    DOE Patents [OSTI]

    Shvartsburg, Alexandre A; Anderson, Gordon A; Smith, Richard D

    2012-10-30

    Electrodynamic ion funnels confine, guide, or focus ions in gases using the Dehmelt potential of oscillatory electric field. New funnel designs operating at or close to atmospheric gas pressure are described. Effective ion focusing at such pressures is enabled by fields of extreme amplitude and frequency, allowed in microscopic gaps that have much higher electrical breakdown thresholds in any gas than the macroscopic gaps of present funnels. The new microscopic-gap funnels are useful for interfacing atmospheric-pressure ionization sources to mass spectrometry (MS) and ion mobility separation (IMS) stages including differential IMS or FAIMS, as well as IMS and MS stages in various configurations. In particular, "wedge" funnels comprising two planar surfaces positioned at an angle and wedge funnel traps derived therefrom can compress ion beams in one dimension, producing narrow belt-shaped beams and laterally elongated cuboid packets. This beam profile reduces the ion density and thus space-charge effects, mitigating the adverse impact thereof on the resolving power, measurement accuracy, and dynamic range of MS and IMS analyzers, while a greater overlap with coplanar light or particle beams can benefit spectroscopic methods.

  12. Use of radial self-field geometry for intense pulsed ion beam generation above 6 MeV on Hermes III.

    SciTech Connect (OSTI)

    Renk, Timothy Jerome; Harper-Slaboszewicz, Victor Jozef; Ginn, William Craig; Mikkelson, Kenneth A.; Schall, Michael; Cooper, Gary Wayne

    2012-12-01

    We investigate the generation and propagation of intense pulsed ion beams at the 6 MeV level and above using the Hermes III facility at Sandia National Laboratories. While high-power ion beams have previously been produced using Hermes III, we have conducted systematic studies of several ion diode geometries for the purpose of maximizing focused ion energy for a number of applications. A self-field axial-gap diode of the pinch reflex type and operated in positive polarity yielded beam power below predicted levels. This is ascribed both to power flow losses of unknown origin upstream of the diode load in Hermes positive polarity operation, and to anomalies in beam focusing in this configuration. A change to a radial self-field geometry and negative polarity operation resulted in greatly increased beam voltage (> 6 MeV) and estimated ion current. A comprehensive diagnostic set was developed to characterize beam performance, including both time-dependent and time-integrated measurements of local and total beam power. A substantial high-energy ion population was identified propagating in reverse direction, i.e. from the back side of the anode in the electron beam dump. While significant progress was made in increasing beam power, further improvements in assessing the beam focusing envelope will be required before ultimate ion generation efficiency with this geometry can be completely determined.

  13. Advanced techniques for characterization of ion beam modified materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Yanwen; Debelle, Aurélien; Boulle, Alexandre; Kluth, Patrick; Tuomisto, Filip

    2014-10-30

    Understanding the mechanisms of damage formation in materials irradiated with energetic ions is essential for the field of ion-beam materials modification and engineering. Utilizing incident ions, electrons, photons, and positrons, various analysis techniques, including Rutherford backscattering spectrometry (RBS), electron RBS, Raman spectroscopy, high-resolution X-ray diffraction, small-angle X-ray scattering, and positron annihilation spectroscopy, are routinely used or gaining increasing attention in characterizing ion beam modified materials. The distinctive information, recent developments, and some perspectives in these techniques are reviewed in this paper. Applications of these techniques are discussed to demonstrate their unique ability for studying ion-solid interactions and the corresponding radiationmore » effects in modified depths ranging from a few nm to a few tens of μm, and to provide information on electronic and atomic structure of the materials, defect configuration and concentration, as well as phase stability, amorphization and recrystallization processes. Finally, such knowledge contributes to our fundamental understanding over a wide range of extreme conditions essential for enhancing material performance and also for design and synthesis of new materials to address a broad variety of future energy applications.« less

  14. Temporal Development of Ion Beam Mean Charge State in PulsedVacuum Arc Ion Sources

    SciTech Connect (OSTI)

    Oks, Efim M.; Yushkov, Georgy Yu.; Anders, Andre

    2007-06-21

    Vacuum arc ion sources, commonly also known as "Mevva" ionsources, are used to generate intense pulsed metal ion beams. It is knownthat the mean charge state of the ion beam lies between 1 and 4,depending on cathode material, arc current, arc pulse duration, presenceor absence of magnetic field at the cathode, as well background gaspressure. A characteristic of the vacuum arc ion beam is a significantdecrease in ion charge state throughout the pulse. This decrease can beobserved up to a few milliseconds, until a "noisy" steady-state value isestablished. Since the extraction voltage is constant, a decrease in theion charge state has a proportional impact on the average ion beamenergy. This paper presents results of detailed investigations of theinfluence of arc parameters on the temporal development of the ion beammean charge state for a wide range of cathode materials. It is shown thatfor fixed pulse duration, the charge state decrease can be reduced bylower arc current, higher pulse repetition rate, and reduction of thedistance between cathode and extraction region. The latter effect may beassociated with charge exchange processes in the dischargeplasma.

  15. Sub-micron resolution of localized ion beam induced charge reduction in silicon detectors damaged by heavy ions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Auden, Elizabeth C.; Pacheco, Jose L.; Bielejec, Edward; Vizkelethy, Gyorgy; Abraham, John B. S.; Doyle, Barney L.

    2015-12-01

    In this study, displacement damage reduces ion beam induced charge (IBIC) through Shockley-Read-Hall recombination. Closely spaced pulses of 200 keV Si++ ions focused in a 40 nm beam spot are used to create damage cascades within 0.25 μm2 areas. Damaged areas are detected through contrast in IBIC signals generated with focused ion beams of 200 keV Si++ ions and 60 keV Li+ ions. IBIC signal reduction can be resolved over sub-micron regions of a silicon detector damaged by as few as 1000 heavy ions.

  16. Sub-micron resolution of localized ion beam induced charge reduction in silicon detectors damaged by heavy ions

    SciTech Connect (OSTI)

    Auden, Elizabeth C.; Pacheco, Jose L.; Bielejec, Edward; Vizkelethy, Gyorgy; Abraham, John B. S.; Doyle, Barney L.

    2015-12-01

    In this study, displacement damage reduces ion beam induced charge (IBIC) through Shockley-Read-Hall recombination. Closely spaced pulses of 200 keV Si++ ions focused in a 40 nm beam spot are used to create damage cascades within 0.25 μm2 areas. Damaged areas are detected through contrast in IBIC signals generated with focused ion beams of 200 keV Si++ ions and 60 keV Li+ ions. IBIC signal reduction can be resolved over sub-micron regions of a silicon detector damaged by as few as 1000 heavy ions.

  17. Measurement of ion beam from laser ion source for RHIC EBIS.

    SciTech Connect (OSTI)

    Kanesue,T.; Tamura, J.; Okamura, M.

    2008-06-23

    Laser ion source (LIS) is a candidate of the primary ion source for the RHIC EBIS. LIS will provide intense charge state 1+ ions to the EBIS for further ionization. We measured plasma properties of a variety of atomic species from C to Au using the second harmonics of Nd:YAG laser (532 nm wave length, up to 0.5 J/6 ns). Since properties of laser produced plasma is different from different species, laser power density for singly charged ion production should be verified experimentally for each atomic species. After plasma analysis experiments, Au ions was extracted from plasma and emittance of the ion beam was measured using a pepper pot type emittance monitor.

  18. Dose response of alanine detectors irradiated with carbon ion beams

    SciTech Connect (OSTI)

    Herrmann, Rochus; Jaekel, Oliver; Palmans, Hugo; Sharpe, Peter; Bassler, Niels

    2011-04-15

    Purpose: The dose response of the alanine detector shows a dependence on particle energy and type when irradiated with ion beams. The purpose of this study is to investigate the response behavior of the alanine detector in clinical carbon ion beams and compare the results to model predictions. Methods: Alanine detectors have been irradiated with carbon ions with an energy range of 89-400 MeV/u. The relative effectiveness of alanine has been measured in this regime. Pristine and spread out Bragg peak depth-dose curves have been measured with alanine dosimeters. The track structure based alanine response model developed by Hansen and Olsen has been implemented in the Monte Carlo code FLUKA and calculations were compared to experimental results. Results: Calculations of the relative effectiveness deviate less than 5% from the measured values for monoenergetic beams. Measured depth-dose curves deviate from predictions in the peak region, most pronounced at the distal edge of the peak. Conclusions: The used model and its implementation show a good overall agreement for quasimonoenergetic measurements. Deviations in depth-dose measurements are mainly attributed to uncertainties of the detector geometry implemented in the Monte Carlo simulations.

  19. Dynamics of ion beam charge neutralization by ferroelectric plasma sources

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stepanov, Anton D.; Gilson, Erik P.; Grisham, Larry R.; Kaganovich, Igor D.; Davidson, Ronald C.

    2016-04-27

    Ferroelectric Plasma Sources (FEPSs) can generate plasma that provides effective space-charge neutralization of intense high-perveance ion beams, as has been demonstrated on the Neutralized Drift Compression Experiment NDCX-I and NDCX-II. This article presents experimental results on charge neutralization of a high-perveance 38 keV Ar+ beam by a plasma produced in a FEPS discharge. By comparing the measured beam radius with the envelope model for space-charge expansion, it is shown that a charge neutralization fraction of 98% is attainable with sufficiently dense FEPS plasma. The transverse electrostatic potential of the ion beam is reduced from 15V before neutralization to 0.3 V,more » implying that the energy of the neutralizing electrons is below 0.3 eV. Measurements of the time-evolution of beam radius show that near-complete charge neutralization is established similar to –5 μs after the driving pulse is applied to the FEPS and can last for 35 μs. It is argued that the duration of neutralization is much longer than a reasonable lifetime of the plasma produced in the sub-mu s surface discharge. Measurements of current flow in the driving circuit of the FEPS show the existence of electron emission into vacuum, which lasts for tens of mu s after the high voltage pulse is applied. Lastly, it is argued that the beam is neutralized by the plasma produced by this process and not by a surface discharge plasma that is produced at the instant the high-voltage pulse is applied.« less

  20. Collision Processes of Highly Charged Ions with Electrons Studied with an Electron Beam Ion Trap

    SciTech Connect (OSTI)

    Nakamura, Nobuyuki; Watanabe, Tsutomu; Ohtani, Shunsuke; Kavanagh, Anthony P.; Currell, Fred J.; Watanabe, Hirofumi; Sakaue, Hiroyuki A.; Kato, Daiji; Li Yueming; Tong Xiaoming

    2009-09-10

    The electron beam ion trap in Tokyo (Tokyo-EBIT)is suitable for studying relativistic effects in the collisions of highly charged heavy ions with electrons because it can produce and trap very highly charged heavy ions which interact with a mono-energetic and unidirectional relativistic electron beam with an energy of up to 200 keV. Recently, we have been studying resonant processes in ionization and recombination by measuring the charge abundance inside the EBIT at the equilibrium. The abundance ratio between adjacent charge states varies slowly with the electron energy when there is no resonant process. However, when the electron energy coincides with the resonant energy at which ionization or recombination is enhanced, the abundance ratio can drastically change. Thus, the resonant processes can be studied by measuring the abundance ratio between adjacent ions as a function of electron beam energy. In this talk, recent progress for heavy ions with very high charge states up to He-like Bi{sup 81+}, is presented. For such ions, relativistic effects significantly affect the resonant processes. For example, the generalized Breit interaction (GBI) effect, which treats the retardation in the exchange of single virtual photon between the free and orbital electrons, has been clearly observed in the DR resonant strength in Li-like Bi{sup 80+}. Recently we have also found that the GBI effect plays an important role in the interference between non-resonant and resonant recombinations. Experimental results are presented in comparison with theoretical calculations.

  1. Reduction of Glass Surface Reflectance by Ion Beam Surface Modification

    SciTech Connect (OSTI)

    Mark Spitzer

    2011-03-11

    This is the final report for DOE contract DE-EE0000590. The purpose of this work was to determine the feasibility of the reduction of the reflection from the front of solar photovoltaic modules. Reflection accounts for a power loss of approximately 4%. A solar module having an area of one square meter with an energy conversion efficiency of 18% generates approximately 180 watts. If reflection loss can be eliminated, the power output can be increased to 187 watts. Since conventional thin-film anti-reflection coatings do not have sufficient environmental stability, we investigated the feasibility of ion beam modification of the glass surface to obtain reduction of reflectance. Our findings are generally applicable to all solar modules that use glass encapsulation, as well as commercial float glass used in windows and other applications. Ion implantation of argon, fluorine, and xenon into commercial low-iron soda lime float glass, standard float glass, and borosilicate glass was studied by implantation, annealing, and measurement of reflectance. The three ions all affected reflectance. The most significant change was obtained by argon implantation into both low-iron and standard soda-lime glass. In this way samples were formed with reflectance lower than can be obtained with a single-layer coatings of magnesium fluoride. Integrated reflectance was reduced from 4% to 1% in low-iron soda lime glass typical of the glass used in solar modules. The reduction of reflectance of borosilicate glass was not as large; however borosilicate glass is not typically used in flat plate solar modules. Unlike conventional semiconductor ion implantation doping, glass reflectance reduction was found to be tolerant to large variations in implant dose, meaning that the process does not require high dopant uniformity. Additionally, glass implantation does not require mass analysis. Simple, high current ion implantation equipment can be developed for this process; however, before the process

  2. The Brookhaven National Laboratory electron beam ion source for RHIC

    SciTech Connect (OSTI)

    Alessi, J.G.; Barton, D.; Beebe, E.; Bellavia, S.; Gould, O.; Kponou, A.; Lambiase, R.; Lockey, R.; McNerney, A.; Mapes, M.; Marneris, I.; Okamura, M.; Phillips, D.; Pikin, A.I.; Raparia, D.; Ritter, J.; Snydstrup, L.; Theisen, C.; Wilinski, M.

    2010-02-22

    As part of a new heavy ion preinjector that will supply beams for the Relativistic Heavy Ion Collider and the National Aeronautics and Space Administration Space Radiation Laboratory, construction of a new electron beam ion source (EBIS) is now being completed. This source, based on the successful prototype Brookhaven National Laboratory Test EBIS, is designed to produce milliampere level currents of all ion species, with q/m = (1/6)-(1/2). Among the major components of this source are a 5 T, 2-m-long, 204 mm diameter warm bore superconducting solenoid, an electron gun designed to operate at a nominal current of 10 A, and an electron collector designed to dissipate {approx} 300 kW of peak power. Careful attention has been paid to the design of the vacuum system, since a pressure of 10{sup -10} Torr is required in the trap region. The source includes several differential pumping stages, the trap can be baked to 400 C, and there are non-evaporable getter strips in the trap region. Power supplies include a 15 A, 15 kV electron collector power supply, and fast switchable power supplies for most of the 16 electrodes used for varying the trap potential distribution for ion injection, confinement, and extraction. The EBIS source and all EBIS power supplies sit on an isolated platform, which is pulsed up to a maximum of 100 kV during ion extraction. The EBIS is now fully assembled, and operation will be beginning following final vacuum and power supply tests. Details of the EBIS components are presented.

  3. Emulation of reactor irradiation damage using ion beams

    SciTech Connect (OSTI)

    G. S. Was; Z. Jiao; E. Beckett; A. M. Monterrosa; O. Anderoglu; B. H. Sencer; M. Hackett

    2014-10-01

    The continued operation of existing light water nuclear reactors and the development of advanced nuclear reactor depend heavily on understanding how damage by radiation to levels degrades materials that serve as the structural components in reactor cores. The first high dose ion irradiation experiments on a ferritic-martensitic steel showing that ion irradiation closely emulates the full radiation damage microstructure created in-reactor are described. Ferritic-martensitic alloy HT9 (heat 84425) in the form of a hexagonal fuel bundle duct (ACO-3) accumulated 155 dpa at an average temperature of 443C in the Fast Flux Test Facility (FFTF). Using invariance theory as a guide, irradiation of the same heat was conducted using self-ions (Fe++) at 5 MeV at a temperature of 460C and to a dose of 188 displacements per atom. The void swelling was nearly identical between the two irradiations and the size and density of precipitates and loops following ion irradiation are within a factor of two of those for neutron irradiation. The level of agreement across all of the principal microstructure changes between ion and reactor irradiations establishes the capability of tailoring ion irradiations to emulate the reactor-irradiated microstructure.

  4. Emulation of reactor irradiation damage using ion beams

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Was, G. S.; Jiao, Z.; Getto, E.; Sun, K.; Monterrosa, A. M.; Maloy, S. A.; Anderoglu, O.; Sencer, B. H.; Hackett, M.

    2014-06-14

    The continued operation of existing light water nuclear reactors and the development of advanced nuclear reactor depend heavily on understanding how damage by radiation to levels degrades materials that serve as the structural components in reactor cores. The first high dose ion irradiation experiments on a ferritic-martensitic steel showing that ion irradiation closely emulates the full radiation damage microstructure created in-reactor are described. Ferritic-martensitic alloy HT9 (heat 84425) in the form of a hexagonal fuel bundle duct (ACO-3) accumulated 155 dpa at an average temperature of 443°C in the Fast Flux Test Facility (FFTF). Using invariance theory as a guide,more » irradiation of the same heat was conducted using self-ions (Fe++) at 5 MeV at a temperature of 460°C and to a dose of 188 displacements per atom. The void swelling was nearly identical between the two irradiation and the size and density of precipitates and loops following ion irradiation are within a factor of two of those for neutron irradiation. The level of agreement across all of the principal microstructure changes between ion and reactor irradiation establishes the capability of tailoring ion irradiation to emulate the reactor-irradiated microstructure.« less

  5. Emulation of reactor irradiation damage using ion beams

    SciTech Connect (OSTI)

    Was, G. S.; Jiao, Z.; Getto, E.; Sun, K.; Monterrosa, A. M.; Maloy, S. A.; Anderoglu, O.; Sencer, B. H.; Hackett, M.

    2014-06-14

    The continued operation of existing light water nuclear reactors and the development of advanced nuclear reactor depend heavily on understanding how damage by radiation to levels degrades materials that serve as the structural components in reactor cores. The first high dose ion irradiation experiments on a ferritic-martensitic steel showing that ion irradiation closely emulates the full radiation damage microstructure created in-reactor are described. Ferritic-martensitic alloy HT9 (heat 84425) in the form of a hexagonal fuel bundle duct (ACO-3) accumulated 155 dpa at an average temperature of 443°C in the Fast Flux Test Facility (FFTF). Using invariance theory as a guide, irradiation of the same heat was conducted using self-ions (Fe++) at 5 MeV at a temperature of 460°C and to a dose of 188 displacements per atom. The void swelling was nearly identical between the two irradiation and the size and density of precipitates and loops following ion irradiation are within a factor of two of those for neutron irradiation. The level of agreement across all of the principal microstructure changes between ion and reactor irradiation establishes the capability of tailoring ion irradiation to emulate the reactor-irradiated microstructure.

  6. Negative ion beam characterisation in BATMAN by mini-STRIKE: Improved design and new measurements

    SciTech Connect (OSTI)

    Serianni, G. Brombin, M.; Cervaro, V.; Chitarin, G.; Delogu, R.; Fasolo, D.; Fonnesu, N.; Franchin, L.; Ghiraldelli, R.; Molon, F.; Pasqualotto, R.; Tollin, M.; Veltri, P.; Bonomo, F.; Cristofaro, S.; De Muri, M.; Franzen, P.; Ruf, B.; Schiesko, L.; Muraro, A.

    2015-04-08

    The ITER project requires additional heating provided by two injectors of neutral beams resulting from the neutralisation of accelerated negative ions. To study and optimise negative ion production, the SPIDER test facility (particle energy 100keV; beam current 50A) is under construction in Padova, with the aim of testing beam characteristics and to verify the source proper operation. The SPIDER beam will be characterised by the instrumented calorimeter STRIKE, whose main components are one-directional carbon fibre carbon composite tiles. Some prototype tiles have been employed in 2012 as a small-scale version (mini-STRIKE) of the entire system to investigate the features of the beam from BATMAN at IPP-Garching. As the BATMAN beamlets are superposed at the measurement position, about 1m from the grounded grid, an actively cooled copper mask is located in front of the tiles; holes in the mask create an artificial beamlet structure. Recently the mini-STRIKE has been updated, taking into account the results obtained in the first campaign. In particular the spatial resolution of the system has been improved by increasing the number of the copper mask holes. Moreover a custom measurement system has been realized for the thermocouple signals and employed in BATMAN in view of its use in SPIDER. The present contribution gives a description of the new design of the system as well as of the thermocouple measurements system and its field test. A new series of measurements has been carried out in BATMAN. The BATMAN beam characterisation in different experimental conditions is presented.

  7. Ion beam analysis in cultural heritage studies: Milestones and perspectives

    SciTech Connect (OSTI)

    Dran, Jean-Claude; Calligaro, Thomas

    2013-07-18

    For three decades, ion beam analysis (IBA) in external mode was considered as the best choice for the characterisation of cultural heritage materials, as it combines excellent analytical performance and non-invasive character. However, in recent years, other analytical techniques arose as serious competitors, such as those based on synchrotron radiation (X-ray absorption, fluorescence or diffraction) or those using portable instruments (XRF, micro-Raman). It is shown that nevertheless IBA remains unmatched thanks to two unique features, namely the analysis of light elements and the high-resolution 3D chemical imaging.

  8. Inertial Fusion Driven by Intense Heavy-Ion Beams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION BEAMS * W. M. Sharp # , A. Friedman, D. P. Grote, J. J. Barnard, R. H. Cohen, M. A. Dorf, S. M. Lund, L. J. Perkins, M. R. Terry, LLNL, Livermore, CA, USA B. G. Logan, F. M. Bieniosek, A. Faltens, E. Henestroza, J.-Y. Jung, J. W. Kwan, E. P. Lee, S. M. Lidia, P. A. Ni, L. L. Reginato, P. K. Roy, P. A. Seidl, J. H. Takakuwa, J.-L. Vay, W. L. Waldron, LBNL, Berkeley, CA, USA R. C. Davidson, E. P. Gilson, I. D. Kaganovich, H. Qin, E. Startsev, PPPL,

  9. Production of intense negative hydrogen beams with polarized nuclei by selective neutralization of cold negative ions

    DOE Patents [OSTI]

    Hershcovitch, A.

    1984-02-13

    A process for selectively neutralizing H/sup -/ ions in a magnetic field to produce an intense negative hydrogen ion beam with spin polarized protons. Characteristic features of the process include providing a multi-ampere beam of H/sup -/ ions that are

  10. A CW radiofrequency ion source for production of negative hydrogen ion beams for cyclotrons

    SciTech Connect (OSTI)

    Kalvas, T.; Tarvainen, O.; Komppula, J.; Koivisto, H.; Tuunanen, J.; Potkins, D.; Stewart, T.; Dehnel, M. P.

    2015-04-08

    A CW 13.56 MHz radiofrequency-driven ion source RADIS for production of H{sup −} and D{sup −} beams is under development for replacing the filament-driven ion source of the MCC30/15 cyclotron. The RF ion source has a 16-pole multicusp plasma chamber, an electromagnet-based magnetic filter and an external planar spiral RF antenna behind an AlN window. The extraction is a 5-electrode system with an adjustable puller electrode voltage for optimizing the beam formation, a water-cooled electron dump electrode and an accelerating einzel lens. At 2650 W of RF power, the source produces 1 mA of H{sup −} (2.6 mA/cm{sup 2}), which is the intensity needed at injection for production of 200 µA H{sup +} with the filament-driven ion source. A simple pepperpot device has been developed for characterizing the beam emittance. Plans for improving the power efficiency with the use of a new permanent magnet front plate is discussed.

  11. Accessing defect dynamics using intense, nanosecond pulsed ion beams

    SciTech Connect (OSTI)

    Persaud, A.; Barnard, J. J.; Guo, H.; Hosemann, P.; Lidia, S.; Minor, A. M.; Seidl, P. A.; Schenkel, T.

    2015-06-18

    Gaining in-situ access to relaxation dynamics of radiation induced defects will lead to a better understanding of materials and is important for the verification of theoretical models and simulations. We show preliminary results from experiments at the new Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory that will enable in-situ access to defect dynamics through pump-probe experiments. Here, the unique capabilities of the NDCX-II accelerator to generate intense, nanosecond pulsed ion beams are utilized. Preliminary data of channeling experiments using lithium and potassium ions and silicon membranes are shown. We compare these data to simulation results using Crystal Trim. Furthermore, we discuss the improvements to the accelerator to higher performance levels and the new diagnostics tools that are being incorporated.

  12. Accessing defect dynamics using intense, nanosecond pulsed ion beams

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Persaud, A.; Barnard, J. J.; Guo, H.; Hosemann, P.; Lidia, S.; Minor, A. M.; Seidl, P. A.; Schenkel, T.

    2015-06-18

    Gaining in-situ access to relaxation dynamics of radiation induced defects will lead to a better understanding of materials and is important for the verification of theoretical models and simulations. We show preliminary results from experiments at the new Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory that will enable in-situ access to defect dynamics through pump-probe experiments. Here, the unique capabilities of the NDCX-II accelerator to generate intense, nanosecond pulsed ion beams are utilized. Preliminary data of channeling experiments using lithium and potassium ions and silicon membranes are shown. We compare these data to simulation results using Crystalmore » Trim. Furthermore, we discuss the improvements to the accelerator to higher performance levels and the new diagnostics tools that are being incorporated.« less

  13. Proceedings of the workshop on the science of intense radioactive ion beams

    SciTech Connect (OSTI)

    McClelland, J.B.; Vieira, D.J.

    1990-10-01

    This report contains the proceedings of a 2-1/2 day workshop on the Science of Intense Radioactive Ion Beams which was held at the Los Alamos National Laboratory on April 10--12, 1990. The workshop was attended by 105 people, representing 30 institutions from 10 countries. The thrust of the workshop was to develop the scientific opportunities which become possible with a new generation intense Radioactive Ion Beam (RIB) facility, currently being discussed within North America. The workshop was organized around five primary topics: (1) reaction physics; (2) nuclei far from stability/nuclear structure; (3) nuclear astrophysics; (4) atomic physics, material science, and applied research; and (5) facilities. Overview talks were presented on each of these topics, followed by 1-1/2 days of intense parallel working group sessions. The final half day of the workshop was devoted to the presentation and discussion of the working group summary reports, closing remarks and a discussion of future plans for this effort.

  14. Simulation Studies of Beam-Beam Effects of a Ring-Ring Electron-Ion Collider Based on CEBAF

    SciTech Connect (OSTI)

    Yuhong Zhang,Ji Qiang

    2009-05-01

    The collective beam-beam effect can potentially cause a rapid growth of beam sizes and reduce the luminosity of a collider to an unacceptably low level. The ELIC, a proposed ultra high luminosity electron-ion collider based on CEBAF, employs high repetition rate crab crossing colliding beams with very small bunch transverse sizes and very short bunch lengths, and collides them at up to 4 interaction points with strong final focusing. All of these features can make the beam-beam effect challenging. In this paper, we present simulation studies of the beam-beam effect in ELIC using a self-consistent strong-strong beam-beam simulation code developed at Lawrence Berkeley National Laboratory. This simulation study is used for validating the ELIC design and for searching for an optimal parameter set.

  15. Method and means of directing an ion beam onto an insulating surface for ion implantation or sputtering

    DOE Patents [OSTI]

    Gruen, Dieter M.; Krauss, Alan R.; Siskind, Barry

    1981-01-01

    A beam of ions is directed under control onto an insulating surface by supplying simultaneously a stream of electrons directed at the same surface in a quantity sufficient to neutralize the overall electric charge of the ion beam and result in a net zero current flow to the insulating surface. The ion beam is adapted particularly both to the implantation of ions in a uniform areal disposition over the insulating surface and to the sputtering of atoms or molecules of the insulator onto a substrate.

  16. Production of intense negative hydrogen beams with polarized nuclei by selective neutralization of negative ions

    DOE Patents [OSTI]

    Hershcovitch, Ady

    1987-01-01

    A process for selectively neutralizing H.sup.- ions in a magnetic field to produce an intense negative hydrogen ion beam with spin polarized protons. Characteristic features of the process include providing a multi-ampere beam of H.sup.- ions that are intersected by a beam of laser light. Photodetachment is effected in a uniform magnetic field that is provided around the beam of H.sup.- ions to spin polarize the H.sup.- ions and produce first and second populations or groups of ions, having their respective proton spin aligned either with the magnetic field or opposite to it. The intersecting beam of laser light is directed to selectively neutralize a majority of the ions in only one population, or given spin polarized group of H.sup.- ions, without neutralizing the ions in the other group thereby forming a population of H.sup.- ions each of which has its proton spin down, and a second group or population of H.sup.o atoms having proton spin up. Finally, the two groups of ions are separated from each other by magnetically bending the group of H.sup.- ions away from the group of neutralized ions, thereby to form an intense H.sup.- ion beam that is directed toward a predetermined objective.

  17. Laser-driven ion acceleration with hollow laser beams

    SciTech Connect (OSTI)

    Brabetz, C. Kester, O.; Busold, S.; Bagnoud, V.; Cowan, T.; Deppert, O.; Jahn, D.; Roth, M.; Schumacher, D.

    2015-01-15

    The laser-driven acceleration of protons from thin foils irradiated by hollow high-intensity laser beams in the regime of target normal sheath acceleration (TNSA) is reported for the first time. The use of hollow beams aims at reducing the initial emission solid angle of the TNSA source, due to a flattening of the electron sheath at the target rear side. The experiments were conducted at the PHELIX laser facility at the GSI Helmholtzzentrum für Schwerionenforschung GmbH with laser intensities in the range from 10{sup 18} W cm{sup −2} to 10{sup 20} W cm{sup −2}. We observed an average reduction of the half opening angle by (3.07±0.42)° or (13.2±2.0)% when the targets have a thickness between 12 μm and 14 μm. In addition, the highest proton energies were achieved with the hollow laser beam in comparison to the typical Gaussian focal spot.

  18. Focused ion beam and scanning electron microscopy for 3D materials...

    Office of Scientific and Technical Information (OSTI)

    microscopy for 3D materials characterization. Citation Details In-Document Search Title: Focused ion beam and scanning electron microscopy for 3D materials characterization. ...

  19. Acceleration and stability of a high-current ion beam in induction fields

    SciTech Connect (OSTI)

    Karas', V. I.; Manuilenko, O. V.; Tarakanov, V. P.; Federovskaya, O. V.

    2013-03-15

    A one-dimensional nonlinear analytic theory of the filamentation instability of a high-current ion beam is formulated. The results of 2.5-dimensional numerical particle-in-cell simulations of acceleration and stability of an annular compensated ion beam (CIB) in a linear induction particle accelerator are presented. It is shown that additional transverse injection of electron beams in magnetically insulated gaps (cusps) improves the quality of the ion-beam distribution function and provides uniform beam acceleration along the accelerator. The CIB filamentation instability in both the presence and the absence of an external magnetic field is considered.

  20. Determination of ion track radii in amorphous matrices via formation of nano-clusters by ion-beam irradiation

    SciTech Connect (OSTI)

    Buljan, M.; Karlusic, M.; Bogdanovic-Radovic, I.; Jaksic, M.; Radic, N.; Salamon, K.; Bernstorff, S.

    2012-09-03

    We report on a method for the determination of ion track radii, formed in amorphous materials by ion-beam irradiation. The method is based on the addition to an amorphous matrix of a small amount of foreign atoms, which easily diffuse and form clusters when the temperature is sufficiently increased. The irradiation causes clustering of these atoms, and the final separations of the formed clusters are dependent on the parameters of the ion-beam. Comparison of the separations between the clusters that are formed by ions with different properties in the same type of material enables the determination of ion-track radii.

  1. Demonstration of two-beam acceleration and 30 GHz power production in the CLIC Test Facility

    SciTech Connect (OSTI)

    Bossart, R.; Braun, H. H.; Carron, G.; Chanudet, M.; Chautard, F.; Delahaye, J. P.; Godot, J. C.; Hutchins, S.; Martinez, C.; Suberlucq, G.; Tenenbaum, P.; Thorndahl, L.; Trautner, H.; Valentini, M.; Wilson, I.; Wuensch, W. [CERN, 1211 Geneva 23 (Switzerland)

    1999-05-07

    The Compact Linear Collider (CLIC) Test Facility (CTF II) at CERN has recently demonstrated Two-Beam power production and acceleration at 30 GHz. With 41 MW of 30 GHz power produced in 14 ns pulses at a repetition rate of 5 Hz, the main beam has been accelerated by 28 MeV. The 30 GHz RF power is extracted in low impedance decelerating structures from a low-energy, high-current 'drive beam' which runs parallel to the main beam. The average current in the drive-beam train is 25 A, while the peak current exceeds 2 kA. Crosschecks between measured drive-beam charge, 30 GHz power and main-beam energy gain are in good agreement. In this paper, some relevant experimental and technical issues on drive-beam generation, two-beam power production and acceleration are presented.

  2. Novel Muon Beam Facilities for Project X at Fermilab

    SciTech Connect (OSTI)

    Neuffer, D.V.; Ankenbrandt, C.M.; Abrams, R.; Roberts, T.J.; Yoshikawa, C.Y.; /MUONS Inc., Batavia

    2012-05-01

    Innovative muon beam concepts for intensity-frontier experiments such as muon-to-electron conversion are described. Elaborating upon a previous single-beam idea, we have developed a design concept for a system to generate four high quality, low-energy muon beams (two of each sign) from a single beam of protons. As a first step, the production of pions by 1 and 3 GeV protons from the proposed Project X linac at Fermilab is being simulated and compared with the 8-GeV results from the previous study.

  3. Science Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Science Facilities The focal point for basic and applied R&D programs with a primary focus on energy but also encompassing medical, biotechnology, high-energy physics, and advanced scientific computing programs. Center for Integrated Nanotechnologies» Dual Axis Radiographic Hydrodynamic Test Facility (DARHT)» Electron Microscopy Lab» Ion Beam Materials Lab» Isotope Production Facility» Los Alamos Neutron Science Center» Lujan Center» Matter-Radiation Interactions in

  4. Direct Drive Heavy-Ion-Beam Inertial Fusion at High Coupling Efficiency

    SciTech Connect (OSTI)

    Logan, B. Grant; Logan, B. Grant; Perkins, L.J.; Barnard, J.J.

    2007-06-25

    Issues with coupling efficiency, beam illumination symmetry and Rayleigh Taylor (RT) instability are discussed for spherical heavy-ion-beam-driven targets with and without hohlraums. Efficient coupling of heavy ion beams to compress direct-drive inertial fusion targets without hohlraums is found to require ion range increasing several-fold during the drive pulse. One-dimensional implosion calculations using the LASNEX ICF target physics code shows the ion range increasing four-fold during the drive pulse to keep ion energy deposition following closely behind the imploding ablation front, resulting in high coupling efficiencies (shell kinetic energy/incident beam energy of 16 to 18%). Ways to increase beam ion range while mitigating Rayleigh-Taylor instabilities are discussed for future work.

  5. Nanostructuring superconductors by ion beams: A path towards materials engineering

    SciTech Connect (OSTI)

    Gerbaldo, Roberto; Ghigo, Gianluca; Gozzelino, Laura; Laviano, Francesco; Amato, Antonino; Rovelli, Alberto; Cherubini, Roberto

    2013-07-18

    The paper deals with nanostructuring of superconducting materials by means of swift heavy ion beams. The aim is to modify their structural, optical and electromagnetic properties in a controlled way, to provide possibility of making them functional for specific applications. Results are presented concerning flux pinning effects (implantation of columnar defects with nanosize cross section to enhance critical currents and irreversibility fields), confined flux-flow and vortex guidance, design of devices by locally tailoring the superconducting material properties, analysis of disorder-induced effects in multi-band superconductors. These studies were carried out on different kinds of superconducting samples, from single crystals to thin films, from superconducting oxides to magnesium diboride, to recently discovered iron-based superconductors.

  6. Ion beam sputter target and method of manufacture

    DOE Patents [OSTI]

    Higdon, Clifton; Elmoursi, Alaa A.; Goldsmith, Jason; Cook, Bruce; Blau, Peter; Jun, Qu; Milner, Robert

    2014-09-02

    A target for use in an ion beam sputtering apparatus made of at least two target tiles where at least two of the target tiles are made of different chemical compositions and are mounted on a main tile and geometrically arranged on the main tile to yield a desired chemical composition on a sputtered substrate. In an alternate embodiment, the tiles are of varied thickness according to the desired chemical properties of the sputtered film. In yet another alternate embodiment, the target is comprised of plugs pressed in a green state which are disposed in cavities formed in a main tile also formed in a green state and the assembly can then be compacted and then sintered.

  7. Electrostatic particle trap for ion beam sputter deposition

    DOE Patents [OSTI]

    Vernon, Stephen P.; Burkhart, Scott C.

    2002-01-01

    A method and apparatus for the interception and trapping of or reflection of charged particulate matter generated in ion beam sputter deposition. The apparatus involves an electrostatic particle trap which generates electrostatic fields in the vicinity of the substrate on which target material is being deposited. The electrostatic particle trap consists of an array of electrode surfaces, each maintained at an electrostatic potential, and with their surfaces parallel or perpendicular to the surface of the substrate. The method involves interception and trapping of or reflection of charged particles achieved by generating electrostatic fields in the vicinity of the substrate, and configuring the fields to force the charged particulate material away from the substrate. The electrostatic charged particle trap enables prevention of charged particles from being deposited on the substrate thereby enabling the deposition of extremely low defect density films, such as required for reflective masks of an extreme ultraviolet lithography (EUVL) system.

  8. ESTB: A New Beam Test Facility at SLAC

    SciTech Connect (OSTI)

    Pivi, M.; Fieguth, T.; Hast, C.; Iverson, R.; Jaros, J.; Jobe, K.; Keller, L.; Walz, D.; Weathersby, S.; Woods, M.; /SLAC

    2011-04-05

    End Station A Test Beam (ESTB) is a beam line at SLAC using a small fraction of the bunches of the 13.6 GeV electron beam from the Linac Coherent Light Source (LCLS), restoring test beam capabilities in the large End Station A (ESA) experimental hall. ESTB will provide one of a kind test beam essential for developing accelerator instrumentation and accelerator R&D, performing particle and particle astrophysics detector research, linear collider machine and detector interface (MDI) R&D studies, development of radiation-hard detectors, and material damage studies with several distinctive features. In the past, 18 institutions participated in the ESA program at SLAC. In stage I, 4 new kicker magnets will be added to divert 5 Hz of the LCLS beam to the A-line. A new beam dump will be installed and a new Personnel Protection System (PPS) is being built in ESA. In stage II, a secondary hadron target will be installed, able to produce pions up to about 12 GeV/c at 1 particle/pulse.

  9. BEAM LOSS ESTIMATES AND CONTROL FOR THE BNL NEUTRINO FACILITY.

    SciTech Connect (OSTI)

    WENG, W.-T.; LEE, Y.Y.; RAPARIA, D.; TSOUPAS, N.; BEEBE-WANG, J.; WEI, J.; ZHANG, S.Y.

    2005-05-16

    The requirement for low beam loss is very important both to protect the beam component, and to make the hands-on maintenance possible. In this report, the design considerations to achieving high intensity and low loss will be presented. We start by specifying the beam loss limit at every physical process followed by the proper design and parameters for realizing the required goals. The process considered in this paper include the emittance growth in the linac, the H{sup -} injection, the transition crossing, the coherent instabilities and the extraction losses.

  10. A hollow cathode ion source for production of primary ions for the BNL electron beam ion source

    SciTech Connect (OSTI)

    Alessi, James Beebe, Edward; Carlson, Charles; McCafferty, Daniel; Pikin, Alexander; Ritter, John

    2014-02-15

    A hollow cathode ion source, based on one developed at Saclay, has been modified significantly and used for several years to produce all primary 1+ ions injected into the Relativistic Heavy Ion Collider Electron Beam Ion Source (EBIS) at Brookhaven. Currents of tens to hundreds of microamperes have been produced for 1+ ions of He, C, O, Ne, Si, Ar, Ti, Fe, Cu, Kr, Xe, Ta, Au, and U. The source is very simple, relying on a glow discharge using a noble gas, between anode and a solid cathode containing the desired species. Ions of both the working gas and ionized sputtered cathode material are extracted, and then the desired species is selected using an ExB filter before being transported into the EBIS trap for charge breeding. The source operates pulsed with long life and excellent stability for most species. Reliable ignition of the discharge at low gas pressure is facilitated by the use of capacitive coupling from a simple toy plasma globe. The source design, and operating experience for the various species, is presented.

  11. The WARP Code: Modeling High Intensity Ion Beams

    SciTech Connect (OSTI)

    Grote, David P.; Friedman, Alex; Vay, Jean-Luc; Haber, Irving

    2005-03-15

    The Warp code, developed for heavy-ion driven inertial fusion energy studies, is used to model high intensity ion (and electron) beams. Significant capability has been incorporated in Warp, allowing nearly all sections of an accelerator to be modeled, beginning with the source. Warp has as its core an explicit, three-dimensional, particle-in-cell model. Alongside this is a rich set of tools for describing the applied fields of the accelerator lattice, and embedded conducting surfaces (which are captured at sub-grid resolution). Also incorporated are models with reduced dimensionality: an axisymmetric model and a transverse 'slice' model. The code takes advantage of modern programming techniques, including object orientation, parallelism, and scripting (via Python). It is at the forefront in the use of the computational technique of adaptive mesh refinement, which has been particularly successful in the area of diode and injector modeling, both steady-state and time-dependent. In the presentation, some of the major aspects of Warp will be overviewed, especially those that could be useful in modeling ECR sources. Warp has been benchmarked against both theory and experiment. Recent results will be presented showing good agreement of Warp with experimental results from the STS500 injector test stand. Additional information can be found on the web page http://hif.lbl.gov/theory/WARP{sub s}ummary.html.

  12. The WARP Code: Modeling High Intensity Ion Beams

    SciTech Connect (OSTI)

    Grote, D P; Friedman, A; Vay, J L; Haber, I

    2004-12-09

    The Warp code, developed for heavy-ion driven inertial fusion energy studies, is used to model high intensity ion (and electron) beams. Significant capability has been incorporated in Warp, allowing nearly all sections of an accelerator to be modeled, beginning with the source. Warp has as its core an explicit, three-dimensional, particle-in-cell model. Alongside this is a rich set of tools for describing the applied fields of the accelerator lattice, and embedded conducting surfaces (which are captured at sub-grid resolution). Also incorporated are models with reduced dimensionality: an axisymmetric model and a transverse ''slice'' model. The code takes advantage of modern programming techniques, including object orientation, parallelism, and scripting (via Python). It is at the forefront in the use of the computational technique of adaptive mesh refinement, which has been particularly successful in the area of diode and injector modeling, both steady-state and time-dependent. In the presentation, some of the major aspects of Warp will be overviewed, especially those that could be useful in modeling ECR sources. Warp has been benchmarked against both theory and experiment. Recent results will be presented showing good agreement of Warp with experimental results from the STS500 injector test stand. Additional information can be found on the web page http://hif.lbl.gov/theory/WARP{_}summary.html.

  13. CW/Pulsed H{sup ?} ion beam generation with PKU Cs-free 2.45 GHz microwave driven ion source

    SciTech Connect (OSTI)

    Peng, S. X. Ren, H. T.; Xu, Y.; Zhang, T.; Zhang, J. F.; Zhao, J.; Guo, Z. Y.; Zhang, A. L.; Chen, J. E.

    2015-04-08

    Circular accelerators used for positron emission tomography (PET, i.e. accelerator used for make radio isotopes) need several mA of CW H- ion beam for their routine operation. Other facilities, like Space Radio-Environment Simulate Assembly (SPRESA), require less than 10?mA pulsed mode H{sup ?} beam. Caesium free negative hydrogen ion source is a good choice for those facilities because of its compact structure, easy operation and low cost. Up to now, there is no H{sup ?} source able to produce very intense H{sup ?} beams with important variation of the duty factor{sup [1]}. Recently, a new version of 2.45?GHz microwave H{sup ?} ion source was designed at PKU, based on lessons learnt from the previous one. This non cesiated source is very compact thanks to its permanent magnet configuration. Special attention was paid on the design of the discharge chamber structure, electron dumping and extraction system. Source test to produce H{sup ?} ion beams in pulsed and CW mode was carried out on PKU ion source test bench. In CW mode, a 10.8?mA/30keV H{sup ?} beam with rms emittance about 0.16 ?mmmrad has been obtained with only 500?W rf power. The power efficiency reaches 21?mA/kW. In pulsed mode with duty factor of 10% (100Hz/1ms), this compact source can easily deliver 20?mA H{sup ?} ion beam at 35 keV with rms emittance about 0.2 ?mmmrad when RF power is set at 2.2 kW (peak power). Several hour successive running operation in both modes and totaling more than 200 hours proves its high quality. The outside dimension of this new H{sup ?} source body is ?116?mm 124?mm, and the entire H{sup ?} source infrastructure, including rf matching section, plasma chamber and extraction system, is ?310 180?mm. The high voltage region is limited with in a ?310?mm 230?mm diagram. Details are given in this paper.

  14. Selected List of Low Energy Beam Transport Facilities for Light...

    Office of Scientific and Technical Information (OSTI)

    A short discussion regarding the importance of the beam perveance in the choice of the ... DOE Contract Number: AC02-07CH11359 Resource Type: Technical Report Research Org: Fermi ...

  15. Applications of decelerated ions

    SciTech Connect (OSTI)

    Johnson, B.M.

    1985-03-01

    Many facilities whose sole purpose had been to accelerate ion beams are now becoming decelerators as well. The development and current status of accel-decel operations is reviewed here. Applications of decelerated ions in atomic physics experiments are discussed.

  16. Implementation of focused ion beam (FIB) system in characterization of nuclear fuels and materials

    SciTech Connect (OSTI)

    A. Aitkaliyeva; J. W. Madden; B. D. Miller; J I Cole; T A Hyde

    2014-10-01

    Beginning in 2007, a program was established at the Idaho National Laboratory to update key capabilities enabling microstructural and micro-chemical characterization of highly irradiated and/or radiologically contaminated nuclear fuels and materials at scales that previously had not been achieved for these types of materials. Such materials typically cannot be contact handled and pose unique hazards to instrument operators, facilities, and associated personnel. One of the first instruments to be acquired was a Dual Beam focused ion beam (FIB)-scanning electron microscope (SEM) to support preparation of transmission electron microscopy and atom probe tomography samples. Over the ensuing years, techniques have been developed and operational experience gained that has enabled significant advancement in the ability to characterize a variety of fuel types including metallic, ceramic, and coated particle fuels, obtaining insights into in-reactor degradation phenomena not obtainable by any other means. The following article describes insights gained, challenges encountered, and provides examples of unique results obtained in adapting Dual Beam FIB technology to nuclear fuels characterization.

  17. Negative ion beam injection apparatus with magnetic shield and electron removal means

    DOE Patents [OSTI]

    Anderson, Oscar A.; Chan, Chun F.; Leung, Ka-Ngo

    1994-01-01

    A negative ion source is constructed to produce H.sup.- ions without using Cesium. A high percentage of secondary electrons that typically accompany the extracted H.sup.- are trapped and eliminated from the beam by permanent magnets in the initial stage of acceleration. Penetration of the magnetic field from the permanent magnets into the ion source is minimized. This reduces the destructive effect the magnetic field could have on negative ion production and extraction from the source. A beam expansion section in the extractor results in a strongly converged final beam.

  18. Sandia National Laboratories: Research: Materials Science: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science About Materials Science Research Image Gallery Video Gallery Facilities Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Facilities Center for Integrated Nanotechnologies (CINT) CINT Ion Beam Laboratory Ion Beam Laboratory MESA High Performance Computing Processing and Environmental Technology Laboratory Processing and Environmental

  19. Characterization of intense ion beam energy density and beam induced pressure on the target with acoustic diagnostics

    SciTech Connect (OSTI)

    Pushkarev, A. I.; Isakova, Yu. I.; Khailov, I. P.; Yu, Xiao

    2013-08-15

    We have developed the acoustic diagnostics based on a piezoelectric transducer for characterization of high-intensity pulsed ion beams. The diagnostics was tested using the TEMP-4M accelerator (150 ns, 250–300 kV). The beam is composed of C{sup +} ions (85%) and protons, the beam energy density is 0.5–5 J/cm{sup 2} (depending on diode geometry). A calibration dependence of the signal from a piezoelectric transducer on the ion beam energy density is obtained using thermal imaging diagnostics. It is shown that the acoustic diagnostics allows for measurement of the beam energy density in the range of 0.1–2 J/cm{sup 2}. The dependence of the beam generated pressure on the input energy density is also determined and compared with the data from literature. The developed acoustic diagnostics do not require sophisticated equipment and can be used for operational control of pulsed ion beam parameters with a repetition rate of 10{sup 3} pulses/s.

  20. High speed measurements of neutral beam turn-on and impact of beam modulation on measurements of ion density

    SciTech Connect (OSTI)

    Grierson, B. A. Grisham, L.; Burrell, K. H.; Crowley, B.; Scoville, J. T.

    2014-10-15

    Modulation of neutral beams on tokamaks is performed routinely, enabling background rejection for active spectroscopic diagnostics, and control of injected power and torque. We find that there exists an anomalous initial transient in the beam neutrals delivered to the tokamak that is not accounted for by the accelerator voltage and power supply current. Measurements of the charge-exchange and beam photoemission on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] at high speed (200 ?s) reveal that the energy of the beam neutrals is constant, but the density of beam neutrals displays dramatic variation in the first 23 ms following beam turn-on. The impact of this beam density variation on inferred ion densities and impurity transport is presented, with suggested means to correct for the anomalous transient.

  1. Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions

    SciTech Connect (OSTI)

    Valerio-Lizarraga, Cristhian A.; Lallement, Jean-Baptiste; Lettry, Jacques; Scrivens, Richard; Leon-Monzon, Ildefonso; Midttun, ystein; University of Oslo, Oslo

    2014-02-15

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H{sup ?} beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  2. Proposal for the Study of Thermophysical Properties of High-Energy-Density Matter Using Current and Future Heavy-Ion Accelerator Facilities at GSI Darmstadt

    SciTech Connect (OSTI)

    Tahir, N.A.; Spiller, P.; Deutsch, C.; Fortov, V.E.; Gryaznov, V.; Kulish, M.; Lomonosov, I.V.; Mintsev, V.; Nikolaev, D.; Shilkin, N.; Shutov, A.; Ternovoi, V.; Hoffmann, D.H.H.; Ni, P.; Udrea, S.; Varentsov, D.; Piriz, A.R.; Temporal, M.

    2005-07-15

    The subject of high-energy-density (HED) states in matter is of considerable importance to numerous branches of basic as well as applied physics. Intense heavy-ion beams are an excellent tool to create large samples of HED matter in the laboratory with fairly uniform physical conditions. Gesellschaft fuer Schwerionenforschung, Darmstadt, is a unique worldwide laboratory that has a heavy-ion synchrotron, SIS18, that delivers intense beams of energetic heavy ions. Construction of a much more powerful synchrotron, SIS100, at the future international facility for antiprotons and ion research (FAIR) at Darmstadt will lead to an increase in beam intensity by 3 orders of magnitude compared to what is currently available. The purpose of this Letter is to investigate with the help of two-dimensional numerical simulations, the potential of the FAIR to carry out research in the field of HED states in matter.

  3. Formation of long-range ordered quantum dots arrays in amorphous matrix by ion beam irradiation

    SciTech Connect (OSTI)

    Buljan, M.; Bogdanovic-Radovic, I.; Karlusic, M.; Desnica, U. V.; Radic, N.; Dubcek, P.; Drazic, G.; Salamon, K.; Bernstorff, S.; Holy, V.

    2009-08-10

    We demonstrate the production of a well ordered three-dimensional array of Ge quantum dots in amorphous silica matrix. The ordering is achieved by ion beam irradiation and annealing of a multilayer film. Structural analysis shows that quantum dots nucleate along the direction of the ion beam used for irradiation, while the mutual distance of the quantum dots is determined by the diffusion properties of the multilayer material rather than the distances between traces of ions that are used for irradiation.

  4. Beam Time Request - Radiation Effects Facility / Cyclotron Institute /

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Texas A&M University Beam-Time Request Information about scheduling beam-time: HOURLY RATE: Contact Henry Clark, 979-845-1411 or clark@comp.tamu.edu MINIMUM BILLING: There is an eight hour minimum billing, after that you are billed for time used including tuning time. CANCELLATION POLICY: If you schedule cyclotron time and need to cancel at a later date, you must notify Henry Clark two weeks prior to the start date to avoid the cancellation fee. The fee is in the amount of one half of

  5. Fast optimization and dose calculation in scanned ion beam therapy

    SciTech Connect (OSTI)

    Hild, S.; Graeff, C.; Trautmann, J.; Kraemer, M.; Zink, K.; Durante, M.; Bert, C.

    2014-07-15

    Purpose: Particle therapy (PT) has advantages over photon irradiation on static tumors. An increased biological effectiveness and active target conformal dose shaping are strong arguments for PT. However, the sensitivity to changes of internal geometry complicates the use of PT for moving organs. In case of interfractionally moving objects adaptive radiotherapy (ART) concepts known from intensity modulated radiotherapy (IMRT) can be adopted for PT treatments. One ART strategy is to optimize a new treatment plan based on daily image data directly before a radiation fraction is delivered [treatment replanning (TRP)]. Optimizing treatment plans for PT using a scanned beam is a time consuming problem especially for particles other than protons where the biological effective dose has to be calculated. For the purpose of TRP, fast optimization and fast dose calculation have been implemented into the GSI in-house treatment planning system (TPS) TRiP98. Methods: This work reports about the outcome of a code analysis that resulted in optimization of the calculation processes as well as implementation of routines supporting parallel execution of the code. To benchmark the new features, the calculation time for therapy treatment planning has been studied. Results: Compared to the original version of the TPS, calculation times for treatment planning (optimization and dose calculation) have been improved by a factor of 10 with code optimization. The parallelization of the TPS resulted in a speedup factor of 12 and 5.5 for the original version and the code optimized version, respectively. Hence the total speedup of the new implementation of the authors' TPS yielded speedup factors up to 55. Conclusions: The improved TPS is capable of completing treatment planning for ion beam therapy of a prostate irradiation considering organs at risk in this has been overseen in the review process. Also see below 6 min.

  6. Remote Handling and Maintenance in the Facility for Rare Isotope Beams

    SciTech Connect (OSTI)

    Burgess, Thomas W; Aaron, Adam M; Carroll, Adam J; DeVore, Joe R; Giuliano, Dominic R; Graves, Van B; Bennett, Richard P; Bollen, Georg; Cole, Daniel F.; Ronningen, Reginald M.; Schein, Mike E; Zeller, Albert F

    2011-01-01

    Michigan State University (MSU) in East Lansing, MI was selected by the U.S. Department of Energy (DOE) to design and establish a Facility for Rare Isotope Beams (FRIB), a cutting-edge research facility to advance the understanding of rare nuclear isotopes and the evolution of the cosmos. The research conducted at the FRIB will involve experimentation with intense beams of rare isotopes within a well-shielded target cell that will result in activation and contamination of components. The target cell is initially hands-on accessible after shutdown and a brief cool-down period. Personnel are expected to have hands-on access to the tops of shielded component modules with the activated in-beam sections suspended underneath. The modules are carefully designed to include steel shielding for protecting personnel during these hand-on operations. However, as the facility has greater levels of activation and contamination, a bridge mounted servomaniputor may be added to the cell, to perform the disconnecting of services to the component assemblies. Dexterous remote handling and exchange of the modularized activated components is completed at a shielded window workstation with a pair of master-slave manipulators. The primary components requiring exchange or maintenance are the production target, the beam wedge filter, the beam dump, and the beam focusing and bending magnets. This paper provides an overview of the FRIB Target Facility remote handling and maintenance design requirements, concepts, and techniques.

  7. Effect of the electrostatic plasma lens on the emittance of ahigh-current heavy ion beam

    SciTech Connect (OSTI)

    Chekh, Yu.; Goncharov, A.; Protsenko, I.; Brown, I.G.

    2004-01-10

    We describe measurements we have made of the emittance of a high-current, moderate-energy ion beam after transport through a permanent-magnet electrostatic plasma lens. The results indicate the absence of emittance growth due to the lens, when the lens is adjusted for optimal beam focusing. The measured emittance for a 16 keV Cu{sup 2+} ion beam formed by a vacuum arc ion source was about 0.4 {pi} {center_dot} mm {center_dot} mrad at a beam current of 50 mA rising more-or-less linearly to 1.5 {pi} {center_dot} mm {center_dot} mrad at 250 mA, and was conserved in beam transport through the lens. These results have significance for the application of high-current ion sources and the electrostatic plasma lens to particle accelerator injection.

  8. Beam charge and current neutralization of high-charge-state heavy ions

    SciTech Connect (OSTI)

    Logan, B.G.; Callahan, D.A.

    1997-10-29

    High-charge-state heavy-ions may reduce the accelerator voltage and cost of heavy-ion inertial fusion drivers, if ways can be found to neutralize the space charge of the highly charged beam ions as they are focused to a target in a fusion chamber. Using 2-D Particle-In- Cell simulations, we have evaluated the effectiveness of two different methods of beam neutralization: (1) by redistribution of beam charge in a larger diameter, preformed plasma in the chamber, and (2), by introducing a cold-electron-emitting source within the beam channel at the beam entrance into the chamber. We find the latter method to be much more effective for high-charge-state ions.

  9. Project Title: Nuclear Astrophysics Data from Radioactive Beam Facilities

    SciTech Connect (OSTI)

    Alan A. Chen

    2008-03-27

    The scientific aims of this project have been the evaluation and dissemination of key nuclear reactions in nuclear astrophysics, with a focus on ones to be studied at new radioactive beam facilities worldwide. These aims were maintained during the entire funding period from 2003 - 2006. In the following, a summary of the reactions evaluated during this period is provided. Year 1 (2003-04): {sup 21}Na(p,{gamma}){sup 22}Mg and {sup 18}Ne({alpha},p){sup 21}Na - The importance of the {sup 21}Na(p,{gamma}){sup 22}Mg and the {sup 18}Ne({alpha},p){sup 21}Na reactions in models of exploding stars has been well documented: the first is connected to the production of the radioisotope {sup 22}Na in nova nucleosynthesis, while the second is a key bridge between the Hot-CNO cycles and the rp-process in X-ray bursts. By the end of Summer 2004, our group had updated these reaction rates to include all published data up to September 2004, and cast the reaction rates into standard analytical and tabular formats with the assistance of Oak Ridge National Laboratory's computational infrastructure for reaction rates. Since September 2004, ongoing experiments on these two reactions have been completed, with our group's participation in both: {sup 21}Na(p,{gamma}){sup 22}Mg at the TRIUMF-ISAC laboratory (DRAGON collaboration), and 18Ne({alpha},p){sup 21}Na at Argonne National Laboratory (collaboration with Ernst Rehm, Argonne). The data from the former was subsequently published and included in our evaluation. Publication from the latter still awaits independent confirmation of the experimental results. Year 2 (2004-05): The 25Al(p,{gamma}){sup 26}Si and {sup 13}N(p,{gamma})14O reactions - For Year 2, we worked on evaluations of the {sup 25}Al(p,{gamma}){sup 26}Si and {sup 13}N(p,{gamma}){sup 14}O reactions, in accordance with our proposed deliverables and following similar standard procedures to those used in Year 1. The {sup 25}Al(p,{gamma}){sup 26}Si reaction is a key uncertainty in

  10. Ion-beam apparatus and method for analyzing and controlling integrated circuits

    DOE Patents [OSTI]

    Campbell, A.N.; Soden, J.M.

    1998-12-01

    An ion-beam apparatus and method for analyzing and controlling integrated circuits are disclosed. The ion-beam apparatus comprises a stage for holding one or more integrated circuits (ICs); a source means for producing a focused ion beam; and a beam-directing means for directing the focused ion beam to irradiate a predetermined portion of the IC for sufficient time to provide an ion-beam-generated electrical input signal to a predetermined element of the IC. The apparatus and method have applications to failure analysis and developmental analysis of ICs and permit an alteration, control, or programming of logic states or device parameters within the IC either separate from or in combination with applied electrical stimulus to the IC for analysis thereof. Preferred embodiments of the present invention including a secondary particle detector and an electron floodgun further permit imaging of the IC by secondary ions or electrons, and allow at least a partial removal or erasure of the ion-beam-generated electrical input signal. 4 figs.

  11. Ion-beam apparatus and method for analyzing and controlling integrated circuits

    DOE Patents [OSTI]

    Campbell, Ann N.; Soden, Jerry M.

    1998-01-01

    An ion-beam apparatus and method for analyzing and controlling integrated circuits. The ion-beam apparatus comprises a stage for holding one or more integrated circuits (ICs); a source means for producing a focused ion beam; and a beam-directing means for directing the focused ion beam to irradiate a predetermined portion of the IC for sufficient time to provide an ion-beam-generated electrical input signal to a predetermined element of the IC. The apparatus and method have applications to failure analysis and developmental analysis of ICs and permit an alteration, control, or programming of logic states or device parameters within the IC either separate from or in combination with applied electrical stimulus to the IC for analysis thereof. Preferred embodiments of the present invention including a secondary particle detector and an electron floodgun further permit imaging of the IC by secondary ions or electrons, and allow at least a partial removal or erasure of the ion-beam-generated electrical input signal.

  12. Plasma focus ion beam fluence and fluxFor various gases

    SciTech Connect (OSTI)

    Lee, S. [Centre for Plasma Research, INTI International University, 71800 Nilai (Malaysia) [Centre for Plasma Research, INTI International University, 71800 Nilai (Malaysia); Institute for Plasma Focus Studies, 32 Oakpark Drive, Chadstone 3148 (Australia); Physics Department, University of Malaya (Malaysia); Saw, S. H. [Centre for Plasma Research, INTI International University, 71800 Nilai (Malaysia) [Centre for Plasma Research, INTI International University, 71800 Nilai (Malaysia); Institute for Plasma Focus Studies, 32 Oakpark Drive, Chadstone 3148 (Australia)

    2013-06-15

    A recent paper derived benchmarks for deuteron beam fluence and flux in a plasma focus (PF) [S. Lee and S. H. Saw, Phys. Plasmas 19, 112703 (2012)]. In the present work we start from first principles, derive the flux equation of the ion beam of any gas; link to the Lee Model code and hence compute the ion beam properties of the PF. The results show that, for a given PF, the fluence, flux, ion number and ion current decrease from the lightest to the heaviest gas except for trend-breaking higher values for Ar fluence and flux. The energy fluence, energy flux, power flow, and damage factors are relatively constant from H{sub 2} to N{sub 2} but increase for Ne, Ar, Kr and Xe due to radiative cooling and collapse effects. This paper provides much needed benchmark reference values and scaling trends for ion beams of a PF operated in any gas.

  13. Negative ion production and beam extraction processes in a large...

    Office of Scientific and Technical Information (OSTI)

    Spatial density and flow distributions of negative hydrogen ions (Hsup -) and positive hydrogen ions together with those of electrons are investigated with a 4-pin probe and a ...

  14. Facile time-of-flight methods for characterizing pulsed superfluid helium droplet beams

    SciTech Connect (OSTI)

    He, Yunteng; Zhang, Jie; Li, Yang; Freund, William M.; Kong, Wei

    2015-08-15

    We present two facile time-of-flight (TOF) methods of detecting superfluid helium droplets and droplets with neutral dopants. Without an electron gun and with only a heated filament and pulsed electrodes, the electron impact ionization TOF mass spectrometer can resolve ionized helium clusters such as He{sub 2}{sup +} and He{sub 4}{sup +}, which are signatures of superfluid helium droplets. Without ionizing any helium atoms, multiphoton non-resonant laser ionization of CCl{sub 4} doped in superfluid helium droplets at 266 nm generates complex cluster ions of dopant fragments with helium atoms, including (He){sub n}C{sup +}, (He){sub n}Cl{sup +}, and (He){sub n}CCl{sup +}. Using both methods, we have characterized our cryogenic pulsed valve—the Even-Lavie valve. We have observed a primary pulse with larger helium droplets traveling at a slower speed and a rebound pulse with smaller droplets at a faster speed. In addition, the pickup efficiency of dopant is higher for the primary pulse when the nozzle temperature is higher than 13 K, and the total time duration of the doped droplet pulse is only on the order of 20 μs. These results stress the importance of fast and easy characterization of the droplet beam for sensitive measurements such as electron diffraction of doped droplets.

  15. Applications of laser produced ion beams to nuclear analysis of materials

    SciTech Connect (OSTI)

    Mima, K.; Azuma, H.; Fujita, K.; Yamazaki, A.; Okuda, C.; Ukyo, Y.; Kato, Y.; Arrabal, R. Gonzalez; Soldo, F.; Perlado, J. M.; Nishimura, H.; Nakai, S.

    2012-07-11

    Laser produced ion beams have unique characteristics which are ultra-short pulse, very low emittance, and variety of nuclear species. These characteristics could be used for analyzing various materials like low Z ion doped heavy metals or ceramics. Energies of laser produced ion beam extend from 0.1MeV to 100MeV. Therefore, various nuclear processes can be induced in the interactions of ion beams with samples. The ion beam driven nuclear analysis has been developed for many years by using various electrostatic accelerators. To explore the applicability of laser ion beam to the analysis of the Li ion battery, a proton beam with the diameter of {approx} 1.0 {mu}m at Takasaki Ion Acceleration for Advanced Radiation Application (TIARA), JAEA was used. For the analysis, the PIGE (Particle-Induced Gamma Ray Emission) is used. The proton beam scans over Li battery electrode samples to diagnose Li density in the LiNi{sub 0.85}Co{sub 0.15}O{sub 2} anode. As the results, PIGE images for Li area density distributions are obtained with the spatial resolution of better than 1.5{mu}m FWHM. By the Li PIGE images, the depth dependence of de-intercalation levels of Li in the anode is obtained. By the POP experiments at TIARA, it is clarified that laser produced ion beam is appropriate for the Li ion battery analysis. 41.85.Lc, 41.75.Jv, 42.62.cf.

  16. Stripline fast faraday cup for measuring GHz structure of ion beams

    DOE Patents [OSTI]

    Bogaty, John M.

    1992-01-01

    The Stripline Fast Faraday Cup is a device which is used to quantitatively and qualitatively measure gigahertz time structure characteristics of ion beams with energies up to at least 30 Mev per nucleon. A stripline geometry is employed in conjunction with an electrostatic screen and a Faraday cup to provide for analysis of the structural characteristics of an ion beam. The stripline geometry allows for a large reduction in the size of the instrument while the electrostatic screen permits measurements of the properties associated with low speed ion beams.

  17. Large Area Microcorrals and Cavity Formation on Cantilevers using a Focused Ion Beam

    SciTech Connect (OSTI)

    Saraf, Laxmikant V.; Britt, David W.

    2011-09-14

    We utilize focused ion beam (FIB) to explore various sputtering parameters to form large area microcorrals and cavities on cantilevers. Microcorrals were rapidly created by modifying ion beam blur and overlaps. Modification in FIB sputtering parameters affects the periodicity and shape of corral microstructure. Cantilever deflections show ion beam amorphization effects as a function of sputtered area and cantilever base cavities with or without side walls. The FIB sputtering parameters address a method for rapid creation of a cantilever tensiometer with integrated fluid storage and delivery.

  18. Diagnostics of ion beam generated from a Mather type plasma focus device

    SciTech Connect (OSTI)

    Lim, L. K. Ngoi, S. K. Wong, C. S. Yap, S. L.

    2014-03-05

    Diagnostics of ion beam emission from a 3 kJ Mather-type plasma focus device have been performed for deuterium discharge at low pressure regime. Deuterium plasma focus was found to be optimum at pressure of 0.2 mbar. The energy spectrum and total number of ions per shot from the pulsed ion beam are determined by using biased ion collectors, Faraday cup, and solid state nuclear track detector CR-39. Average energy of the ion beam obtained is about 60 keV. Total number of the ions has been determined to be in the order of 10{sup 11} per shot. Solid state nuclear track detectors (SSNTD) CR39 are employed to measure the particles at all angular direction from end on (0) to side on (90). Particle tracks are registered by SSNTD at 30 to 90, except the one at the end-on 0.

  19. Operational head-on beam-beam compensation with electron lenses in the Relativistic Heavy Ion Collider

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fischer, W.; Gu, X.; Altinbas, Z.; Costanzo, M.; Hock, J.; Liu, C.; Luo, Y.; Marusic, A.; Michnoff, R.; Miller, T. A.; et al

    2015-12-23

    Head-on beam-beam compensation has been implemented in the Relativistic Heavy Ion Collider (RHIC) in order to increase the luminosity delivered to the experiments. We discuss the principle of combining a lattice for resonance driving term compensation and an electron lens for tune spread compensation. We describe the electron lens technology and its operational use. As of this date the implemented compensation scheme approximately doubled the peak and average luminosities.

  20. Initial electron-beam characterizations for the Los Alamos APEX Facility

    SciTech Connect (OSTI)

    Lumpkin, A.H.; Feldman, R.B.; Apgar, S.A.; Feldman, D.W.; O'Shea, P.G. ); Fiorito, R.B.; Rule, D.W. )

    1991-01-01

    The ongoing upgrade of the Los Alamos Free-Electron Laser (FEL) Facility involves the addition of a photoelectric injector (PEI) and acceleration capability to about 40 MeV. The electron-beam and high-speed diagnostics provide key measurements of charge, beam position and profile, divergence emittance, energy (centroid, spread, slew, and extraction efficiency), micropulse duration, and phase stability. Preliminary results on the facility include optical transition radiation interferometer measurements of divergence (1 to 2 mrad), FEL extraction efficiency (0.6 {plus minus} 0.2%), and drive laser phase stability (< 2 ps (rms)). 10 refs.

  1. Initial electron-beam characterizations for the Los Alamos APEX Facility

    SciTech Connect (OSTI)

    Lumpkin, A.H.; Feldman, R.B.; Apgar, S.A.; Feldman, D.W.; O`Shea, P.G.; Fiorito, R.B.; Rule, D.W.

    1991-12-31

    The ongoing upgrade of the Los Alamos Free-Electron Laser (FEL) Facility involves the addition of a photoelectric injector (PEI) and acceleration capability to about 40 MeV. The electron-beam and high-speed diagnostics provide key measurements of charge, beam position and profile, divergence emittance, energy (centroid, spread, slew, and extraction efficiency), micropulse duration, and phase stability. Preliminary results on the facility include optical transition radiation interferometer measurements of divergence (1 to 2 mrad), FEL extraction efficiency (0.6 {plus_minus} 0.2%), and drive laser phase stability (< 2 ps [rms]). 10 refs.

  2. A Magnetic Residual Ion Removal System with In-Line Ion Dumps for the ITER Neutral Beam Injection System

    SciTech Connect (OSTI)

    Franzen, Peter; Sielanko, Juliusz; Esch, Hubert Peter Lambert De; Speth, Eckehart; Heinemann, Bernd; Riedl, Rudolph

    2003-12-15

    An alternative residual ion removal concept for the ITER neutral beam system is presented. It consists of magnetic deflection of the residual ions to in-line ion dumps. The target plates are hit from one side and form a 0.5-m-wide opening to the beam. First calculations show that for the most severe case of a 3-mrad beam, the maximum power load can be kept below 15 MW/m{sup 2}, using a different horizontal focal length. However, this different beamlet optic increases the beam peak power density changing the plasma deposition profile and increasing the shine-through power during low-density operation. First calculations showed that using a passive screening, the additional stray field created by the magnet could be kept below the required 1 gauss within the neutralizer. The overall beamline transmission increases by {approx}10% (i.e., an additional 1.7-MW injected power for each beamline for a 3-mrad beam) due to the open structure of the magnet and the ion dumps. Furthermore, the concept offers a larger operating window regarding beam alignment, divergence, steering, and transmission, and it avoids creating accelerated secondary electrons.

  3. Ion beam synthesis of SiGe alloy layers

    SciTech Connect (OSTI)

    Im, Seongil

    1994-05-01

    Procedures required for minimizing structural defects generated during ion beam synthesis of SiGe alloy layers were studied. Synthesis of 200 mm SiGe alloy layers by implantation of 120-keV Ge ions into <100> oriented Si wafers yielded various Ge peak concentrations after the following doses, 2{times}10{sup 16}cm{sup {minus}2}, 3{times}10{sup 16}cm{sup {minus}2} (mid), and 5{times}10{sup 16}cm{sup {minus}2} (high). Following implantation, solid phase epitaxial (SPE) annealing in ambient N2 at 800C for 1 hr. resulted in only slight redistribution of the Ge. Two kinds of extended defects were observed in alloy layers over 3{times}l0{sup 16}cm{sup {minus}2}cm dose at room temperature (RT): end-of-range (EOR) dislocation loops and strain-induced stacking faults. Density of EOR dislocation loops was much lower in alloys produced by 77K implantation than by RT implantation. Decreasing the dose to obtain 5 at% peak Ge concentration prevents strain relaxation, while those SPE layers with more than 7 at% Ge peak show high densities of misfit- induced stacking faults. Sequential implantation of C following high dose Ge implantation (12 at% Ge peak concentration in layer) brought about a remarkable decrease in density of misfit-induced stacking faults. For peak implanted C > 0.55 at%, stacking fault generation in the epitaxial layer was suppressed, owing to strain compensation by C atoms in the SiGe lattice. A SiGe alloy layer with 0.9 at% C peak concentration under a 12 at% Ge peak exhibited the best microstructure. Results indicate that optimum Ge/C ratio for strain compensation is between 11 and 22. The interface between amorphous and regrown phases (a/c interface) had a dramatic morphology change during its migration to the surface. Initial <100> planar interface decomposes into a <111> faceted interface, changing the growth kinetics; this is associated with strain relaxation by stacking fault formation on (111) planes in the a/c interface.

  4. Rare-earth neutral metal injection into an electron beam ion...

    Office of Scientific and Technical Information (OSTI)

    injection into an electron beam ion trap plasma Authors: Magee, E W ; Beiersdorfer, P ; Brown, G V ; Hell, N Publication Date: 2014-05-28 OSTI Identifier: 1169881 Report Number(s):...

  5. Measurement of the density profile of pure and seeded molecular beams by femtosecond ion imaging

    SciTech Connect (OSTI)

    Meng, Congsen; Janssen, Maurice H. M.

    2015-02-15

    Here, we report on femtosecond ion imaging experiments to measure the density profile of a pulsed supersonic molecular beam. Ion images are measured for both a molecular beam and bulk gas under identical experimental conditions via femtosecond multiphoton ionization of Xe atoms. We report the density profile of the molecular beam, and the measured absolute density is compared with theoretical calculations of the centre line beam density. Subsequently, we discuss reasons accounting for the differences between measurements and calculations and propose that strong skimmer interference is the most probable cause for the differences. Furthermore, we report on experiments measuring the centre line density of seeded supersonic beams. The femtosecond ion images show that seeding the heavy Xe atom at low relative seed fractions (1%-10%) in a light carrier gas like Ne results in strong relative enhancements of up to two orders of magnitude.

  6. Status of the SNS H- ion source and low-energy beam transport system

    SciTech Connect (OSTI)

    Keller, R.; Thomae, R.; Stockli, M.; Welton, R.

    2002-04-01

    The ion source and Low-Energy Transport (LEBT) system that will provide H{sup -} ion beams to the Spallation Neutron Source (SNS) Front End and the accelerator chain have been developed into a mature unit that will satisfy the operational needs through the commissioning and early operating phases of SNS. The ion source was derived from the SSC ion source, and many of its original features have been improved to achieve reliable operation at 6% duty factor, producing beam currents in the 35-mA range and above. The LEBT utilizes purely electrostatic focusing and includes static beam-steering elements and a pre-chopper. This paper will discuss the latest design features of the ion source and LEBT, give performance data for the integrated system, and report on relevant commissioning results obtained with the SNS RFQ accelerator. Perspectives for further improvements will be outlined in concluding remarks.

  7. Experimental observation of ion beams in the Madison Helicon eXperiment

    SciTech Connect (OSTI)

    Wiebold, Matt; Sung, Yung-Ta; Scharer, John E.

    2011-06-15

    Argon ion beams up to E{sub b} = 165 eV at P{sub rf} = 500 W are observed in the Madison Helicon eXperiment (MadHeX) helicon source with a magnetic nozzle. A two-grid retarding potential analyzer (RPA) is used to measure the ion energy distribution, and emissive and rf-filtered Langmuir probes measure the plasma potential, electron density, and temperature. The supersonic ion beam (M = v{sub i}/c{sub s} up to 5) forms over tens of Debye lengths and extends spatially for a few ion-neutral charge-exchange mean free paths. The parametric variation of the ion beam energy is explored, including flow rate, rf power, and magnetic field dependence. The beam energy is equal to the difference in plasma potentials in the Pyrex chamber and the grounded expansion chamber. The plasma potential in the expansion chamber remains near the predicted eV{sub p} {approx} 5kT{sub e} for argon, but the upstream potential is much higher, likely due to wall charging, resulting in accelerated ion beam energies E{sub b} = e[V{sub beam} - V{sub plasma}] > 10kT{sub e}.

  8. Development of hollow electron beams for proton and ion collimation

    SciTech Connect (OSTI)

    Stancari, G.; Drozhdin, A.I.; Kuznetsov, G.; Shiltsev, V.; Still, D.A.; Valishev, A.; Vorobiev, L.G.; Assmann, R.; Kabantsev, A.

    2010-06-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable material damage. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and built. Its performance and stability were measured at the Fermilab test stand. The gun will be installed in one of the existing Tevatron electron lenses for preliminary tests of the hollow-beam collimator concept, addressing critical issues such as alignment and instabilities of the overlapping proton and electron beams.

  9. Defocusing of an ion beam propagating in background plasma due...

    Office of Scientific and Technical Information (OSTI)

    and have a wide range of applications in inertial fusion and high energy density physics. ... Language: English Subject: 70 PLASMA PHYSICS AND FUSION TECHNOLOGY; APERTURES; BEAM ...

  10. First Beam Waist Measurements in the Final Focus Beam Line at the KEK Accelerator Test Facility

    SciTech Connect (OSTI)

    Bai, Sha; Aryshev, Alexander; Bambade, Philip; McCormick, Doug; Bolzon, Benoit; Gao, Jie; Tauchi, Toshiaki; Zhou, Feng; /SLAC

    2012-06-22

    The ATF2 project is the final focus system prototype for the ILC and CLIC linear collider projects, with a purpose to reach a 37 nm vertical beam size at the interaction point using compact optics based on a novel scheme of local chromaticity correction. Construction of all components and installation were completed at the end of 2008. An initial commissioning phase followed in 2009, using larger than nominal {beta} functions at the interaction point, corresponding to reduced demagnification factors in comparison to the design, to limit effects from higher-order optical aberrations and hence simplify beam tuning procedures while key instrumentation was being tested and calibrated. In this paper, first measurements of dispersion and Twiss parameters are presented based on scanning the beam during this period with a set of tungsten wires located just behind the interaction point, using two complementary analysis methods.