National Library of Energy BETA

Sample records for investor-owned electric utilities

  1. Financial statistics of selected investor-owned electric utilities, 1989

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The Financial Statistics of Selected Investor-Owned Electric Utilities publication presents summary and detailed financial accounting data on the investor-owned electric utilities. The objective of the publication is to provide the Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to investor-owned electric utility issues.

  2. Financial Statistics of Major U.S. Investor-Owned Electric Utilities

    Reports and Publications (EIA)

    1997-01-01

    1996 - Final issue. Presents summary and detailed financial accounting data on the investor-owned electric utilities.

  3. Financial statistics of major US investor-owned electric utilities 1994

    SciTech Connect (OSTI)

    1995-12-01

    The Financial Statistics of Major U.S. Investor-Owned Electric Utilities publication presents summary and detailed financial accounting data on the investor-owned electric utilities. The objective of the publication is to provide Federal and State Governments, industry, and the general public with current and historical data that can be used for making policy and decisions relating to investor-owned electric utility issues.

  4. Financial statistics of major U.S. investor-owned electric utilities 1993

    SciTech Connect (OSTI)

    Not Available

    1995-01-01

    The Financial Statistics of Major US Investor-Owned Electric Utilities publication presents summary and detailed financial accounting data on the investor-owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to investor-owned electric utility issues.

  5. Revenue and earnings performance masked continuing investor-owned utility problems

    SciTech Connect (OSTI)

    Lincicome, R.A.

    1983-06-01

    The 1982 increase in revenues and net income for the top 100 electric utilities is misleading because the figure is distorted by the allowance for funds used during construction (AFUDC), which overstates the real dollar strength of most investor-owned utilities. A random sampling of profit and loss statements shows that companies heavily involved in plant construction can have AFUDC over 100% of net income. The average is 50% of utility earnings, while cash dividends run 75% of earnings. The problem is short-term, however, and will diminish as construction is completed. A summary of utility performance presents earnings growth statistics, sales data and comparisons, financial statistics, and income statistics and comparisons. A summary financial table lists the 100 utilities in alphabetical order. 7 tables. (DCK)

  6. Incentive regulation of investor-owned nuclear power plants by public utility regulators. Revision 1

    SciTech Connect (OSTI)

    McKinney, M.D.; Seely, H.E.; Merritt, C.R.; Baker, D.C.

    1995-04-01

    The US Nuclear Regulatory Commission (NRC) periodically surveys the Federal Energy Regulatory Commission (FERC) and state regulatory commissions that regulate utility owners of nuclear power plants. The NRC is interested in identifying states that have established economic or performance incentive programs applicable to nuclear power plants, how the programs are being implemented, and in determining the financial impact of the programs on the utilities. The NRC interest stems from the fact that such programs have the potential to adversely affect the safety of nuclear power plants. The current report is an update of NUREG/CR-5975, Incentive Regulation of Investor-Owned Nuclear Power Plants by Public Utility Regulators, published in January 1993. The information in this report was obtained from interviews conducted with each state regulatory agency that administers an incentive program and each utility that owns at least 10% of an affected nuclear power plant. The agreements, orders, and settlements that form the basis for each incentive program were reviewed as required. The interviews and supporting documentation form the basis for the individual state reports describing the structure and financial impact of each incentive program.

  7. Electric Utility Energy Efficiency Programs | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    national trends in electric utility energy efficiency programs for industrial customers, insights from investor-owned utilities, and national trendsdevelopments among ...

  8. Federal Utility Partnership Working Group Industry Commitment

    Broader source: Energy.gov [DOE]

    Investor-owned electric utility industry members of the Edison Electric Institute pledge to assist Federal agencies in achieving energy-saving goals. These goals are set in the Energy Policy Act of...

  9. Changing Structure of the Electric Power Industry 1999: Mergers and Other Corporate Combinations, The

    Reports and Publications (EIA)

    1999-01-01

    Presents data about corporate combinations involving investor-owned utilities in the United States, discusses corporate objectives for entering into such combinations, and assesses their cumulative effects on the structure of the electric power industry.

  10. Power Sales to Electric Utilities

    SciTech Connect (OSTI)

    1989-02-01

    The Public Utilities Regulatory Policies Act (PURPA) of 1979 requires that electrical utilities interconnect with qualifying facilities and purchase electricity at a rate based upon their full avoided costs (i.e., costs of providing both capacity and energy). Qualifying facilities (QF) include solar or geothermal electric units, hydropower, municipal solid waste or biomass-fired power plants, and cogeneration projects that satisfy maximum size, fuel use, ownership, location, and/or efficiency criteria. In Washington State, neither standard power purchase prices based upon a proxy ''avoided plant'', standard contracts, or a standard offer process have been used. Instead, a variety of power purchase contracts have been negotiated by developers of qualifying facilities with investor-owned utilities, public utility districts, and municipally-owned and operated utilities. With a hydro-based system, benefits associated with resource acquisition are determined in large part by how compatible the resource is with a utility's existing generation mix. Power purchase rates are negotiated and vary according to firm energy production, guarantees, ability to schedule maintenance or downtime, rights of refusal, power plant purchase options, project start date and length of contract; front-loading or levelization provisions; and the ability of the project to provide ''demonstrated'' capacity. Legislation was also enacted which allows PURPA to work effectively. Initial laws established ownership rights and provided irrigation districts, PUDs, and municipalities with expanded enabling powers. Financial processes were streamlined and, in some cases, simplified. Finally, laws were passed which are designed to ensure that development proceeds in an environmentally acceptable manner. In retrospect, PURPA has worked well within Washington. In the state of Washington, 20 small-scale hydroelectric projects with a combined generating capacity of 77 MW, 3 solid waste-to-energy facilities with 55 MW of electrical output, 4 cogeneration projects with 34.5 MW of generating capability, and 4 wastewater treatment facility digester gas-to-energy projects with 5 MW of electrical production have come on-line (or are in the final stages of construction) since the passage of PURPA. These numbers represent only a small portion of Washington's untapped and underutilized cogeneration and renewable resource generating potentials. [DJE-2005

  11. Electric Power Board of Chattanooga - Energy Efficient New Homes...

    Broader source: Energy.gov (indexed) [DOE]

    Construction Investor-Owned Utility Municipal Utilities Residential Cooperative Utilities Multifamily Residential Savings Category Comprehensive MeasuresWhole Building Program...

  12. Factors that affect electric-utility stranded commitments

    SciTech Connect (OSTI)

    Hirst, E.; Hadley, S.; Baxter, L.

    1996-07-01

    Estimates of stranded commitments for U.S. investor-owned utilities range widely, with many falling in the range of $100 to $200 billion. These potential losses exist because some utility-owned power plants, long-term power-purchase contracts and fuel-supply contracts, regulatory assets, and expenses for public-policy programs have book values that exceed their expected market values under full competition. This report quantifies the sensitivity of stranded- commitment estimates to the various factors that lead to these above- market-value estimates. The purpose of these sensitivity analyses is to improve understanding on the part of state and federal regulators, utilities, customers, and other electric-industry participants about the relative importance of the factors that affect stranded- commitment amounts.

  13. Effects of federal income taxes on the cash flow, operating revenue, and net income of electric utilities

    SciTech Connect (OSTI)

    Moore, J.T.

    1982-01-01

    The idea to do this research was suggested by the efforts of some consumer groups and others to seek passage of a law in the United States to exempt investor-owned electric utilities from federal income taxes. The goal of the consumer groups is to reduce the charges to utility customers (which is measured in this study by the amount of the operating revenues of the utilities) while not causing any harm to the utilities. The population of interest consisted of all investor-owned electric utilities included on a current Compustat utility tape. In the analysis of the data, the changes in cash flow, operating revenue, and net income were summarized by the 89 utilities as a total group and by the division of the utilities into smaller groups or combinations which used the same accounting methods during the test period. The results of this research suggest the following conclusions concerning the change to a situation in which electric utilities are not subject to federal income taxes: (1) as a group, the decrease in cash flow would be significant, (2) as a group, the decrease in operating revenue (charges to customers) would not be significant, (3) as a group, the increase in net income would be significant, and (4) in analyzing the effects of any financial adjustments or changes on electric utilities, the accounting policies used to the utilities are an important factor.

  14. Federal Utility Partnership Working Group Industry Commitment | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Federal Utility Partnership Working Group Industry Commitment Federal Utility Partnership Working Group Industry Commitment Investor-owned electric utility industry members of the Edison Electric Institute pledge to assist Federal agencies in achieving energy-saving goals. These goals are set in the Energy Policy Act of 1992 and subsequent executive orders. Federal agencies can contact Federal Utility Partnership Working Group utility partners for more information on assistance.

  15. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy LLC - (MT)","Investor-owned",5974533,2398528,3120726,455279,0 2,"Talen Energy Marketing, LLC","Investor-owned",2202299,0,131400,2070899,0 3,"Flathead Electric ...

  16. Electrical utilities relay settings

    SciTech Connect (OSTI)

    HACHE, J.M.

    1999-02-24

    This document contains the Hanford transmission and distribution system relay settings that are under the control of Electrical Utilities.

  17. Electric Trade in the United States

    Reports and Publications (EIA)

    1998-01-01

    Final Issue. Presents information on bulk power transactions by investor-owned utilities, federal and other publicly-owned utilities, and cooperative utilities.

  18. Electric Utility Industry Update

    Broader source: Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers significant electric industry trends and industry priorities with federal customers.

  19. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Kentucky Utilities Co","Investor-owned",18527337,6194856,5489716,6842765,0 2,"Louisville Gas & Electric Co","Investor-owned",11698975,4164049,4834960,2699966,0 3,"Kenergy Corp","Cooperative",9761288,743715,326221,8691352,0

  20. Electric trade in the United States 1992

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This publication, Electric Trade in the US 1992 (ELECTRA), is the fourth in a series of reports on wholesale power transactions prepared by the Electric Data Systems Branch, Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA). The electric trade data are published biennially. The first report presented 1986 data, and this report provides information on the electric power industry during 1992. The electric trade data collected and presented in this report furnish important information on the wholesale structure found within the US electric power industry. The patterns of interutility trade in the report support analyses of wholesale power transactions and provide input for a broader understanding of bulk power market issues that define the emerging national electric energy policies. The report includes information on the quantity of power purchased, sold, exchanged, and wheeled; the geographical locations of transactions and ownership classes involved; and the revenues and costs. Information on the physical transmission system are being included for the first time in this publication. Transmission data covering investor-owned electric utilities were shifted from the Financial Statistics of Selected Investor-Owned Electric Utilities to the ELECTRA publication. Some of the prominent features of this year`s report include information and data not published before on transmission lines for publicly owned utilities and transmission lines added during 1992 by investor-owned electric utilities.

  1. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Act 295, requiring the state's investor-owned utilities, alternative retail suppliers, electric cooperativ... Eligibility: Investor-Owned Utility, Municipal Utilities,...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Public Act 295, requiring the state's investor-owned utilities, alternative retail suppliers, electric cooperativ... Eligibility: Investor-Owned Utility, Municipal Utilities,...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    which requires both electric and natural gas investor-owned utilities to reduce energy sales, and spend a minimum ... Eligibility: Investor-Owned Utility, Retail Supplier...

  4. Optimal Electric Utility Expansion

    Energy Science and Technology Software Center (OSTI)

    1989-10-10

    SAGE-WASP is designed to find the optimal generation expansion policy for an electrical utility system. New units can be automatically selected from a user-supplied list of expansion candidates which can include hydroelectric and pumped storage projects. The existing system is modeled. The calculational procedure takes into account user restrictions to limit generation configurations to an area of economic interest. The optimization program reports whether the restrictions acted as a constraint on the solution. All expansionmore » configurations considered are required to pass a user supplied reliability criterion. The discount rate and escalation rate are treated separately for each expansion candidate and for each fuel type. All expenditures are separated into local and foreign accounts, and a weighting factor can be applied to foreign expenditures.« less

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    that created the Illinois Power Agency (IPA). The agency's purpose is to develop electricity procurement plans for investor-owne... Eligibility: Investor-Owned Utility,...

  6. "List of Covered Electric Utilities" under the Public Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 Revised "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2006 Revised Under Title I of the Public Utility Regulatory...

  7. Studying the Communications Requirements of Electric Utilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policies- Public Meeting Studying the Communications Requirements of Electric Utilities to...

  8. Wonewoc Electric & Water Util | Open Energy Information

    Open Energy Info (EERE)

    Wonewoc Electric & Water Util Jump to: navigation, search Name: Wonewoc Electric & Water Util Place: Wisconsin Phone Number: (608) 464-3114 Website: www.wonewocwisc.compublicwor...

  9. Tipton Municipal Electric Util | Open Energy Information

    Open Energy Info (EERE)

    Electric Util Jump to: navigation, search Name: Tipton Municipal Electric Util Address: P.O. Box 288 Place: Tipton, Indiana Zip: 46072 Service Territory: Indiana Phone Number:...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    alternative retail suppliers, electric cooperativ... Eligibility: Investor-Owned Utility, Municipal Utilities, Cooperative Utilities, Retail Supplier Savings Category:...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Eligible Technologies Eligibility: Investor-Owned Utility, Local Government, Municipal Utilities, Cooperative Utilities Savings Category: Solar Water Heat, Geothermal Electric,...

  12. "List of Covered Electric Utilities" under the Public Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2009 Under Title I, Sec. 102(c) of the Public Utility Regulatory Policies...

  13. "List of Covered Electric Utilities" under the Public Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2008 Under Title I of the Public Utility Regulatory Policies Act of 1978...

  14. Columbia Utilities Electricity | Open Energy Information

    Open Energy Info (EERE)

    Electricity Jump to: navigation, search Name: Columbia Utilities Electricity Place: New York Phone Number: (877) 726-5862 Website: www.columbiautilities.com Twitter:...

  15. Page Electric Utility | Open Energy Information

    Open Energy Info (EERE)

    Page Electric Utility Jump to: navigation, search Name: Page Electric Utility Place: Arizona Phone Number: (928) 645-2419 Website: pageutility.com Outage Hotline: (928) 645-2419...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Standard Eligible Technologies: Eligibility: Investor-Owned Utility, Local Government, Retail Supplier Savings Category: Geothermal Electric, Solar Thermal Electric, Solar...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternative Energy Portfolio Standard Background Eligibility: Investor-Owned Utility, Retail Supplier Savings Category: Geothermal Electric, Solar Thermal Electric, Solar...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Digestion Alternative Energy Portfolio Standard Background Eligibility: Investor-Owned Utility, Retail Supplier Savings Category: Geothermal Electric, Solar Thermal Electric,...

  19. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    August 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric Utility Authority for August 2008. Monthly Electric Utility Sales...

  20. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    December 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric Utility Authority for December 2008. Monthly Electric Utility...

  1. NREL: Technology Deployment - Electric Utility Assistance and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    utilities to help further the integration of renewable energy and energy efficiency technologies into the electric grid. Distributed Generation Interconnection Collaborative The...

  2. Lodi Electric Utility- PV Rebate Program

    Broader source: Energy.gov [DOE]

    Note: Lodi Electric Utility accepted applications for program year 2015 from January 2 - 30, 2015. The program is fully subscribed for 2015.  

  3. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Hawaiian Electric Co Inc","Investor-owned",6858536,1667309,2341257,2849970,0 2,"Maui Electric Co Ltd","Investor-owned",1134873,387909,379461,367503,0 3,"Hawaii Electric Light Co

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Renewables Portfolio Standard Eligible Technologies: Eligibility: Investor-Owned Utility, Local Government, Retail Supplier Savings Category: Geothermal Electric, Solar Thermal...

  5. List of Photovoltaics Incentives | Open Energy Information

    Open Energy Info (EERE)

    Standard West Virginia Investor-Owned Utility Retail Supplier Anaerobic Digestion Biodiesel Biomass CHPCogeneration Fuel Cells Geothermal Electric Hydroelectric energy...

  6. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Florida Power & Light Co","Investor-owned",103058588,54074164,45932938,2963404,88082 2,"Duke Energy Florida, Inc","Investor-owned",36615990,18507962,14901674,3206354,0 3,"Tampa Electric Co","Investor-owned",18417662,8469567,7921282,2026813,0

  7. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Baltimore Gas & Electric Co","Investor-owned",11968295,8967015,2846423,154857,0 2,"WGL Energy Services, Inc.","Investor-owned",7553788,1092845,6460943,0,0 3,"Potomac Electric Power

  8. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Oklahoma Gas & Electric Co","Investor-owned",24203012,8668433,9357636,6176943,0 2,"Public Service Co of Oklahoma","Investor-owned",17681663,6289643,6309019,5083001,0 3,"Oklahoma Electric Coop

  9. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Virginia Electric & Power Co","Investor-owned",74469354,28802062,39078780,6393908,194604 2,"Appalachian Power Co","Investor-owned",15783445,6297314,4011928,5474203,0 3,"Rappahannock Electric

  10. Category:Monthly Electric Utility Sales and Revenue Data | Open...

    Open Energy Info (EERE)

    Monthly Electric Utility Sales and Revenue Data Jump to: navigation, search Category for Monthly Electric Utility Revenue and Sales Information. Pages in category "Monthly Electric...

  11. Galena Electric Utility | Open Energy Information

    Open Energy Info (EERE)

    Name: Galena Electric Utility Place: Alaska Phone Number: (907) 656-1301 Website: www.ci.galena.ak.usindex.asp? Outage Hotline: (907) 656-1503 AFTER HOURS References: EIA Form...

  12. Farmington Electric Utility System- Net Metering

    Broader source: Energy.gov [DOE]

    Farmington Electric, a municipal utility, offers net metering to residential customers with systems up to 10 kilowatts (kW) in capacity. This option is available for photovoltaic (PV), wind, hydro...

  13. Tatitlek Electric Utility | Open Energy Information

    Open Energy Info (EERE)

    Electric Utility Place: Alaska Phone Number: 907-562-4155 or 1-800-478-4155 - toll free in Alaska Website: www.chugachmiut.orgtribestat Outage Hotline: 907-562-4155 or...

  14. Utility Partnerships Webinar Series: Electric Utility Energy Efficiency Programs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partnerships Webinar Series: Electric Utility Energy Efficiency Programs October 5, 2010 Industrial Technologies Program eere.energy.gov Speakers and Topics: * Consortium for Energy Efficiency (CEE), Industrial Program Manager, Kellem Emanuele, will discuss national trends in electric energy efficiency programs for industrial customers. * Xcel Energy, Trade Relations Manager in Colorado, Bob Macauley, and Trade Relations Manager in Minnesota, Brian Hammarsten, will provide insight from a large

  15. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    California" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Pacific Gas & Electric Co","Investor-owned",76390000,30552342,36055810,9781848,0 2,"Southern California Edison Co","Investor-owned",74480098,29742778,36850508,7826556,60256 3,"Los Angeles Department of Water &

  16. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"MidAmerican Energy Co","Investor-owned",20217549,5829442,5195709,9192398,0 2,"Interstate Power and Light Co","Investor-owned",14586595,3939183,3951419,6695993,0 3,"Board of Water Electric &

  17. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "megawatthours" ,"Entity","Type of Provider","All Sectors","Residential","Commercial","Industrial","Transportation" 1,"Westar Energy Inc","Investor-owned",9826375,3409863,4433462,1983050,0 2,"Kansas Gas & Electric Co","Investor-owned",9669223,3113287,3132064,3423872,0 3,"Kansas City Power & Light

  18. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"DTE Electric Company","Investor-owned",42272312,15273084,16715877,10283351,0 2,"Consumers Energy Co","Investor-owned",32556015,12792609,11117015,8646391,0 3,"First Energy Solutions

  19. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Union Electric Co - (MO)","Investor-owned",37030285,13561749,14737190,8709141,22205 2,"Kansas City Power & Light Co","Investor-owned",8562163,2598738,4458883,1504542,0 3,"KCP&L Greater Missouri Operations

  20. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Duke Energy Carolinas, LLC","Investor-owned",55301813,20601105,22341733,12351570,7405 2,"Duke Energy Progress - (NC)","Investor-owned",36886571,15249396,13425824,8211351,0 3,"Virginia Electric & Power

  1. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"South Carolina Electric&Gas Company","Investor-owned",21371090,7571438,7799857,5999795,0 2,"Duke Energy Carolinas, LLC","Investor-owned",20566058,6313640,5619965,8632453,0 3,"South Carolina Public Service

  2. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Wisconsin Electric Power Co","Investor-owned",24144805,7974652,8872580,7297573,0 2,"Wisconsin Public Service Corp","Investor-owned",10541535,2795812,3922944,3822779,0 3,"Wisconsin Power & Light

  3. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    United States" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Florida Power & Light Co","Investor-owned",103058588,54074164,45932938,2963404,88082 2,"Georgia Power Co","Investor-owned",81178648,25478655,32457010,23086501,156482 3,"Pacific Gas & Electric

  4. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Northern States Power Co - Minnesota","Investor-owned",2301544,827062,1138952,335530,0 2,"Montana-Dakota Utilities Co","Investor-owned",1949522,786334,994607,168581,0 3,"Otter Tail Power

  5. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    March 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric Utility Authority for March 2009. Monthly Electric Utility Sales and...

  6. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    July 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric Utility Authority for July 2008. Monthly Electric Utility Sales and...

  7. DOE New Madrid Seismic Zone Electric Utility Workshop Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Madrid Seismic Zone Electric Utility Workshop Summary Report - August 2010 DOE New Madrid Seismic Zone Electric Utility Workshop Summary Report - August 2010 The DOE New Madrid...

  8. An Updated Assessement of Copper Wire Thefts from Electric Utilities...

    Energy Savers [EERE]

    An Updated Assessement of Copper Wire Thefts from Electric Utilities - October 2010 An Updated Assessement of Copper Wire Thefts from Electric Utilities - October 2010 The U.S....

  9. Electrical utilities model for determining electrical distribution capacity

    SciTech Connect (OSTI)

    Fritz, R. L.

    1997-09-03

    In its simplest form, this model was to obtain meaningful data on the current state of the Site`s electrical transmission and distribution assets, and turn this vast collection of data into useful information. The resulting product is an Electrical Utilities Model for Determining Electrical Distribution Capacity which provides: current state of the electrical transmission and distribution systems; critical Hanford Site needs based on outyear planning documents; decision factor model. This model will enable Electrical Utilities management to improve forecasting requirements for service levels, budget, schedule, scope, and staffing, and recommend the best path forward to satisfy customer demands at the minimum risk and least cost to the government. A dynamic document, the model will be updated annually to reflect changes in Hanford Site activities.

  10. 2014 Utility Bundled Retail Sales- Residential

    Gasoline and Diesel Fuel Update (EIA)

    Residential (Data from forms EIA-861- schedules 4A & 4D and EIA-861S) Entity State Ownership Customers (Count) Sales (Megawatthours) Revenues (Thousands Dollars) Average Price (cents/kWh) Alaska Electric Light&Power Co AK Investor Owned 14,115 141,151 16,728.0 11.85 Alaska Power and Telephone Co AK Investor Owned 5,328 24,116 7,301.0 30.27 Alaska Village Elec Coop, Inc AK Cooperative 7,869 35,665 21,188.0 59.41 Anchorage Municipal Light and Power AK Municipal 24,429 133,411 21,435.0

  11. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Investor-Owned Utility, Municipal Utilities, Cooperative Utilities Savings Category: Solar Water Heat, Geothermal Electric, Solar Thermal Electric, Solar Thermal Process Heat,...

  12. Utility Sector Impacts of Reduced Electricity Demand

    SciTech Connect (OSTI)

    Coughlin, Katie

    2014-12-01

    This report presents a new approach to estimating the marginal utility sector impacts associated with electricity demand reductions. The method uses publicly available data and provides results in the form of time series of impact factors. The input data are taken from the Energy Information Agency's Annual Energy Outlook (AEO) projections of how the electric system might evolve in the reference case, and in a number of side cases that incorporate different effciency and other policy assumptions. The data published with the AEO are used to define quantitative relationships between demand-side electricity reductions by end use and supply-side changes to capacity by plant type, generation by fuel type and emissions of CO2, Hg, NOx and SO2. The impact factors define the change in each of these quantities per unit reduction in site electricity demand. We find that the relative variation in these impacts by end use is small, but the time variation can be significant.

  13. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - April 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric...

  14. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - May 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric...

  15. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - June 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric...

  16. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - March 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    gas and electric utilities, failure to submit an energ... Eligibility: Investor-Owned Utility, Municipal Utilities, Cooperative Utilities, Retail Supplier Savings Category:...

  18. High slot utilization systems for electric machines

    DOE Patents [OSTI]

    Hsu, John S (Oak Ridge, TN)

    2009-06-23

    Two new High Slot Utilization (HSU) Systems for electric machines enable the use of form wound coils that have the highest fill factor and the best use of magnetic materials. The epoxy/resin/curing treatment ensures the mechanical strength of the assembly of teeth, core, and coils. In addition, the first HSU system allows the coil layers to be moved inside the slots for the assembly purpose. The second system uses the slided-in teeth instead of the plugged-in teeth. The power density of the electric machine that uses either system can reach its highest limit.

  19. Net Metering

    Broader source: Energy.gov [DOE]

    Missouri enacted legislation in June 2007 requiring all electric utilities—investor-owned utilities, municipal utilities, and electric cooperatives—to offer net metering to customers with systems...

  20. Interconnection Guidelines

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power (PacifiCorp) has developed an interconnection application for net metering. All other electric utilities in Wyoming -- investor-owned utilities and rural electric associations...

  1. NMAC 17.9.569 Interconnection of Generating Facilities with a...

    Open Energy Info (EERE)

    Greater than 10 MWLegal Abstract This rule applies to every electric utility including rural electric cooperatives and investor-owned utilities within the state of New Mexico...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Eligibility: Investor-Owned Utility, Municipal Utilities, Cooperative Utilities, Retail Supplier Savings Category: Solar Water Heat, Solar Space Heat, Geothermal Electric,...

  3. Electric Market and Utility Operation Terminology (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01

    This fact sheet is a list of electric market and utility operation terminology for a series of three electricity fact sheets.

  4. Electric Market and Utility Operation Terminology (Fact Sheet)

    SciTech Connect (OSTI)

    2011-05-03

    This fact sheet is a list of electric market and utility operation terminology for a series of three electricity fact sheets.

  5. Electric utility industry experience with geomagnetic disturbances

    SciTech Connect (OSTI)

    Barnes, P.R.; Rizy, D.T.; McConnell, B.W. ); Taylor, E.R. Jr. ); Tesche, F.M.

    1991-09-01

    A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems' responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration. 49 refs.

  6. Electric Utility Industry Experience with Geomagnetic Disturbances

    SciTech Connect (OSTI)

    Barnes, P.R.

    1991-01-01

    A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as a few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems' responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration.

  7. Electric utility industry experience with geomagnetic disturbances

    SciTech Connect (OSTI)

    Barnes, P.R.; Rizy, D.T.; McConnell, B.W.; Taylor, E.R. Jr.; Tesche, F.M.

    1991-09-01

    A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems` responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration. 49 refs.

  8. New London Electric&Water Util | Open Energy Information

    Open Energy Info (EERE)

    Electric&Water Util Jump to: navigation, search Name: New London Electric&Water Util Place: Wisconsin Phone Number: (920) 982-8516 Website: newlondonutilities.org Outage Hotline:...

  9. Inventory of Electric Utility Power Plants in the United States

    Reports and Publications (EIA)

    2002-01-01

    Final issue of this report. Provides detailed statistics on existing generating units operated by electric utilities as of December 31, 2000, and certain summary statistics about new generators planned for operation by electric utilities during the next 5 years.

  10. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - November 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  11. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - February 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  12. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - February 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  13. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - January 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  14. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - October 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  15. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - January 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  16. Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology 2003 DEER Conference Presentation: Caterpillar Inc. PDF icon...

  17. Rural Utilities Service Electric Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utilities Service Electric Program Rural Utilities Service Electric Program The Rural Utilities Service Electric Program's loans and loan guarantees finance the construction of electric distribution, transmission, and generation facilities, including system improvements and replacement required to furnish and improve electric service in rural areas, as well as demand side management, energy conservation programs, and on-grid and off-grid renewable energy systems. Loans are made to corporations,

  18. Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology | Department of Energy Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology 2003 DEER Conference Presentation: Caterpillar Inc. PDF icon 2003_deer_algrain.pdf More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology An Engine System Approach to Exhaust Waste Heat Recovery

  19. Financial statistics of major publicly owned electric utilities, 1991

    SciTech Connect (OSTI)

    Not Available

    1993-03-31

    The Financial Statistics of Major Publicly Owned Electric Utilities publication presents summary and detailed financial accounting data on the publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with data that can be used for policymaking and decisionmaking purposes relating to publicly owned electric utility issues.

  20. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Eligibility: Investor-Owned Utility, Municipal Utilities, Cooperative Utilities Renewables Portfolio Standard Eligible Technologies: Eligibility: Investor-Owned Utility, Local...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Eligibility: Investor-Owned Utility, Retail Supplier Savings Category: Solar Water Heat, Solar Space Heat, Geothermal Electric, Solar Thermal Electric, Solar Thermal...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    demand-side management (DSM) electric savings goals leading to 2.0% reduction of electricity sa... Eligibility: Investor-Owned Utility, Retail Supplier Savings Category:...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Eligibility: Investor-Owned Utility Savings Category: Solar Water Heat, Solar Space Heat, Geothermal Electric, Solar Thermal Electric, Solar Thermal Process Heat, Solar...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Investor-Owned Utility, Retail Supplier Savings Category: Solar Water Heat, Solar Space Heat, Geothermal Electric, Solar Thermal Electric, Solar Thermal Process Heat, Solar...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    technologies Eligibility: Investor-Owned Utility, Retail Supplier Savings Category: Solar Water Heat, Solar Space Heat, Geothermal Electric, Solar Thermal Electric, Solar Thermal...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Standard Requirements Eligibility: Investor-Owned Utility Savings Category: Solar Water Heat, Solar Space Heat, Geothermal Electric, Solar Thermal Electric, Solar Thermal...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    in effect: Eligibility: Investor-Owned Utility, Retail Supplier Savings Category: Solar Water Heat, Solar Space Heat, Geothermal Electric, Solar Thermal Electric, Solar...

  8. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    New Mexico's Renewable Portfolio Standard requires that 20% of all electricity sold by investor-owned electric utilities, and 10% sold by cooperatives, come from renewable energy ...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Portfolio Standard Requirements Eligibility: Investor-Owned Utility Savings Category: Solar Water Heat, Solar Space Heat, Geothermal Electric, Solar Thermal Electric, Solar...

  10. Renewables Portfolio Standard | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Investor-Owned Utility Local Government Savings Category Geothermal Electric Solar Thermal Electric Solar Photovoltaics Wind (All) Biomass Municipal Solid Waste Landfill Gas Tidal...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    sur... Eligibility: Investor-Owned Utility, Retail Supplier Savings Category: Solar Water Heat, Geothermal Electric, Solar Thermal Electric, Solar Photovoltaics, Wind (All),...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    to establish demand-side management (DSM) electric savings goals leading to 2.0% reduction of electricity sa... Eligibility: Investor-Owned Utility, Retail Supplier Savings...

  13. Public Benefits Funds for Renewables and Efficiency

    Broader source: Energy.gov [DOE]

    California's 1996 electric industry restructuring legislation (AB 1890) directed the state’s three major investor-owned utilities (Southern California Edison, Pacific Gas and Electric Company, and...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Eligibility: Investor-Owned Utility, Retail Supplier Savings Category: Solar Water Heat, Solar Space Heat, Geothermal Electric, Solar Thermal Electric, Solar Thermal Process...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    technologies Eligibility: Investor-Owned Utility, Retail Supplier Savings Category: Solar Water Heat, Solar Space Heat, Geothermal Electric, Solar Thermal Electric, Solar...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    require state's investor-owned utilities and energy suppliers (and certain competitive municipal utilities and electric cooperatives) to offer net metering at non-......

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    companies and electric service suppliers also must provide this information in most marketing materials. Eligibility: Investor-Owned Utility, Municipal Utilities, Cooperative...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    New Jersey's net-metering rules require state's investor-owned utilities and energy suppliers (and certain competitive municipal utilities and electric cooperatives) to offer...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metering New Jersey's net-metering rules require state's investor-owned utilities and energy suppliers (and certain competitive municipal utilities and electric cooperatives) to...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    rules require state's investor-owned utilities and energy suppliers (and certain competitive municipal utilities and electric cooperatives) to offer net metering at non-......

  1. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a renewable portfolio standard (RPS) without having restructured its electric utility industry. The RPS sets a total goal... Eligibility: Investor-Owned Utility, Municipal...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Jersey's net-metering rules require state's investor-owned utilities and energy suppliers (and certain competitive municipal utilities and electric cooperatives) to offer net...

  3. Workforce Trends in the Electric Utility Industry | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trends in the Electric Utility Industry Workforce Trends in the Electric Utility Industry Section 1101 of the U.S. Energy Policy Act of 2005 (EPACT)1 calls for a report on the current trends in the workforce of (A) skilled technical personnel that support energy technology industries, and (B) electric power and transmission engineers. It also requests that the Secretary make recommendations (as appropriate) to meet the future labor requirements. PDF icon Workforce Trends in the Electric Utility

  4. Studying the Communications Requirements of Electric Utilities to Inform

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Smart Grid Policies- Public Meeting | Department of Energy Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policies- Public Meeting Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policies- Public Meeting Transcript of public meeting on Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policies PDF icon Studying the Communications Requirements of Electric

  5. Financial statistics of major US publicly owned electric utilities 1994

    SciTech Connect (OSTI)

    1995-12-15

    This publication presents 5 years (1990--94) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. Generator and nongenerator summaries are presented. Composite tables present: Aggregates of income statement and balance sheet data, financial indicators, electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data.

  6. Lodi Electric Utility- Commercial and Industrial Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    Lodi Electric Utility provides an on-bill financing program for the commercial and industrial customers. To participate, the customer must receive a rebate through the utility's rebate program, and...

  7. The Treatment of Solar Generation in Electric Utility Resource...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Treatment of Solar Generation in Electric Utility ... by the National Renewable Energy Laboratory ("NREL"), which ... Long-Term Planning * Production cost models take the set ...

  8. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Caterpillar Inc. PDF icon 2002deerhopmann.pdf More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine...

  9. Lodi Electric Utility- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Lodi Electric Utility (LEU) offers several residential energy efficiency programs, including the Appliance Rebate Program and the Home Improvement Rebate Program. 

  10. Approaches to Electric Utility Energy Efficiency for Low Income...

    Open Energy Info (EERE)

    Approaches to Electric Utility Energy Efficiency for Low Income Customers in a Changing Regulatory Environment Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Approaches...

  11. U.S. Electric Utility Demand-Side Management

    Reports and Publications (EIA)

    2002-01-01

    Final issue of this report. - Presents comprehensive information on electric power industry demand side management (DSM) activities in the United States at the national, regional, and utility levels.

  12. Lodi Electric Utility- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Lodi Electric Utility (LEU) offers energy efficiency incentives to eligible commercial and multifamily residential customers. More information regarding the rebate programs, including application...

  13. Orange and Rockland Utilities (Electric)- Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Orange and Rockland Utilities offers electric energy efficiency program that provides rebates to replace various appliances. To apply for rebate, submit rebate application form along with required...

  14. PPL Electric Utilities - Custom Energy Efficiency Program | Department...

    Broader source: Energy.gov (indexed) [DOE]

    0.08 per projected first year kWh savings Summary Prospective applicants should contact their PPL Electric Utilities Key Account Manager before beginning any project. If...

  15. Financial statistics of major US publicly owned electric utilities 1993

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    The 1993 edition of the Financial Statistics of Major U.S. Publicly Owned Electric Utilities publication presents five years (1989 to 1993) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decision making purposes related to publicly owned electric utility issues. Generator and nongenerator summaries are presented in this publication. The primary source of publicly owned financial data is the Form EIA-412, the Annual Report of Public Electric Utilities, filed on a fiscal basis.

  16. An Updated Assessement of Copper Wire Thefts from Electric Utilities -

    Energy Savers [EERE]

    October 2010 | Department of Energy An Updated Assessement of Copper Wire Thefts from Electric Utilities - October 2010 An Updated Assessement of Copper Wire Thefts from Electric Utilities - October 2010 The U.S. Department of Energy (DOE), Office of Electricity Delivery and Energy Reliability monitors changes, threats, and risks to the energy infrastructure in the United States. This report updates a previously published report on copper wire theft. The combined efforts of electric

  17. "List of Covered Electric Utilities" under the Public Utility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regulatory Policies Act of 1978 (PURPA) - 2008 | Department of Energy 8 "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2008 Under Title I of the Public Utility Regulatory Policies Act of 1978 (PURPA), the U.S. Department of Energy (DOE) is required to publish a list identifying each electric utility. PDF icon "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) More

  18. PPL Electric Utilities Corp | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 14715 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt...

  19. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology | Department of Energy 4 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Caterpillar/U.S. Department of Energy PDF icon 2004_deer_hopmann.pdf More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by Caterpillar, Inc., June 2011

  20. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology | Department of Energy 2 DEER Conference Presentation: Caterpillar Inc. PDF icon 2002_deer_hopmann.pdf More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology An Engine System Approach to Exhaust Waste Heat Recovery

  1. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Renewables and Efficiency California's 1996 electric industry restructuring legislation (AB 1890) directed the state's three major investor-owned utilities (Southern...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Electric Reliability Council of Texas (ERCOT), the program administrator for the Texas Renewable Energy Credit Trading Program, Texas sur... Eligibility: Investor-Owned Utility,...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal Electric Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Alternative Energy Portfolio Standard Eligible technologies Eligibility: Investor-Owned Utility,...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Texas Renewable Energy Credit Trading Program, Texas sur... Eligibility: Investor-Owned Utility, Retail Supplier Savings Category: Solar Water Heat, Geothermal Electric, Solar...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    electric load by 2025 and thereafter. Of this percentage,... Eligibility: Investor-Owned Utility, Retail Supplier Savings Category: Solar Water Heat, Solar Space Heat, Geothermal...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy Portfolio Standard Eligible technologies Eligibility: Investor-Owned Utility, Retail Supplier Savings Category: Solar Water Heat, Solar Space Heat, Geothermal Electric,...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    businesses, and local governments that generate electricity from solar power, wind power or... Eligibility: Commercial, Investor-Owned Utility, Local Government, Municipal...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Resource Standard In 2007, the Minnesota legislature passed the Next Generation Energy Act (NGEA), which requires both electric and natural gas investor-owned utilities to reduce...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    public school districts; community colleges; and universities that receive electricity and natural gas distribution service from... Eligibility: Investor-Owned Utility,...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Electric Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering New Jersey's net-metering rules require state's investor-owned utilities and...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Investor-Owned Utility Savings Category: Geothermal Electric, Solar Thermal Process Heat, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Geothermal Heat Pumps,...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a new Clean Energy Standard mandating 50% of the electricity consumed in NY to come from clean... Eligibility: Investor-Owned Utility, Local Government Savings Category: Solar...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    legislation (AB 1890) directed the state's three major investor-owned utilities (Southern California Edison, Pacific Gas and Electric Company, and... Eligibility: Commercial,...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    for individuals, businesses, and local governments that generate electricity from solar power, wind power or... Eligibility: Commercial, Investor-Owned Utility, Local...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Service Department (PSC) to establish a new Clean Energy Standard mandating 50% of the electricity consumed in NY to come from clean... Eligibility: Investor-Owned Utility,...

  16. Interconnection Guidelines

    Broader source: Energy.gov [DOE]

    The Missouri Public Service Commission (PSC) adopted administrative rules for investor-owned utilities that included simplified interconnection standards, and electric cooperatives and municipal ...

  17. Energy Optimization Standard

    Broader source: Energy.gov [DOE]

    In October 2008, Michigan enacted the Clean, Renewable, and Efficient Energy Act, Public Act 295, requiring the state's investor-owned utilities, alternative retail suppliers, electric cooperatives...

  18. Fuel Mix Disclosure | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Florida Program Type Generation Disclosure Summary In March 1999, the Florida Public Service Commission issued an order requiring the state's investor-owned electric utilities,...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    districts; community colleges; and universities that receive electricity and natural gas distribution service from... Eligibility: Investor-Owned Utility, Local Government,...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    fees as part of the Energy Efficiency Portfolio Standard (EEPS). For both natural gas and electric utilities, failure to submit an energ... Eligibility: Investor-Owned...

  1. Renewable Energy Standard

    Broader source: Energy.gov [DOE]

    In October 2008, Michigan enacted the Clean, Renewable, and Efficient Energy Act (Public Act 295), requiring the state's investor-owned utilities, alternative retail suppliers, electric...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    must ensure that a percentage of the electricity sold to retail customers in-state be derived from newer eligible ren... Eligibility: Investor-Owned Utility, Local Government,...

  3. Ashland Electric Utility - Photovoltaic Rebate Program | Department...

    Broader source: Energy.gov (indexed) [DOE]

    The City of Ashland Conservation Division offers electric customers installing photovoltaic systems a rebate of either 0.50 per watt (residential) or 0.75 per watt...

  4. "List of Covered Electric Utilities" under the Public Utility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regulatory Policies Act of 1978 (PURPA) - 2006 Revised | Department of Energy 6 Revised "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2006 Revised Under Title I of the Public Utility Regulatory Policies Act of 1978 (PURPA), the U.S. Department of Energy (DOE) is required to publish a list identifying each electric utility.

  5. "List of Covered Electric Utilities" under the Public Utility Regulatory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Policies Act of 1978 (PURPA) - 2009 | Department of Energy 9 "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2009 Under Title I, Sec. 102(c) of the Public Utility Regulatory Policies Act of 1978 (PURPA), the U.S. Department of Energy (DOE) is required to publish a list identifying each electric utility

  6. Electric Utility Sales and Revenue - EIA-826 detailed data file

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    826 detailed data The Form EIA-826 "Monthly Electric Utility Sales and Revenue Report with State Distributions" collects sales of electricity and associated revenue, each month, from a statistically chosen sample of electric utilities in the United States. The respondents to the Form EIA-826 are chosen from the Form EIA-861, "Annual Electric Utility Report." Methodology is based on the "Model-Based Sampling, Inference and Imputation." In 2003, EIA revised the survey

  7. DOE New Madrid Seismic Zone Electric Utility Workshop Summary Report

    Office of Environmental Management (EM)

    DOE New Madrid Seismic Zone Electric Utility Workshop Summary Report August 25, 2010 I In nt tr ro od du uc ct ti io on n The DOE New Madrid Seismic Zone Electric Utilities Workshop, held in Memphis, TN for the electric utilities in the seismic zone was a chance to bring together a diverse set of industry partners to discuss the potential effects of an earthquake in the New Madrid and Wabash Valley seismic zones. The electric sector was well represented by Independent Transmission System

  8. Cost and quality of fuels for electric utility plants, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-08-02

    This publication presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. The purpose of this publication is to provide energy decision-makers with accurate and timely information that may be used in forming various perspectives on issues regarding electric power.

  9. Cost and quality of fuels for electric utility plants, 1994

    SciTech Connect (OSTI)

    1995-07-14

    This document presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. Purpose of this publication is to provide energy decision-makers with accurate, timely information that may be used in forming various perspectives on issues regarding electric power.

  10. Dublin Municipal Electric Util | Open Energy Information

    Open Energy Info (EERE)

    Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes Activity Wholesale Marketing Yes This article is a stub. You can help OpenEI by expanding it. Utility...

  11. Sustainable Electric Utility (SEU)- SREC Purchase Program

    Broader source: Energy.gov [DOE]

    SREC purchase program is a joint incentive of Delaware Division of Energy and Climate (DNREC) and the state’s Sustainable Energy Utility (SEU). The program offers a standard onetime payment of $450...

  12. Electrolysis: Information and Opportunities for Electric Power Utilities

    SciTech Connect (OSTI)

    Kroposki, B.; Levene, J.; Harrison, K.; Sen, P.K.; Novachek, F.

    2006-09-01

    Recent advancements in hydrogen technologies and renewable energy applications show promise for economical near- to mid-term conversion to a hydrogen-based economy. As the use of hydrogen for the electric utility and transportation sectors of the U.S. economy unfolds, electric power utilities need to understand the potential benefits and impacts. This report provides a historical perspective of hydrogen, discusses the process of electrolysis for hydrogen production (especially from solar and wind technologies), and describes the opportunities for electric power utilities.

  13. Working With Industry and Utilities to Promote Electric Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Working With Industry and Utilities to Promote Electric Vehicles Working With Industry and Utilities to Promote Electric Vehicles June 10, 2015 - 10:45am Addthis Tom Kuhn, President of EEI and Secretary Moniz at the MOU signing on Monday, June 8, at Edison Electric Institute (EEI) Annual Convention in New Orleans, LA. | Photo courtesy of EEI Tom Kuhn, President of EEI and Secretary Moniz at the MOU signing on Monday, June 8, at Edison Electric Institute (EEI) Annual

  14. Financial statistics of major US publicly owned electric utilities 1992

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The 1992 edition of the Financial Statistics of Major US Publicly Owned Electric Utilities publication presents 4 years (1989 through 1992) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to publicly owned electric utility issues. Generator and nongenerator summaries are presented in this publication. Four years of summary financial data are provided. Summaries of generators for fiscal years ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data. The primary source of publicly owned financial data is the Form EIA-412, {open_quotes}Annual Report of Public Electric Utilities.{close_quotes} Public electric utilities file this survey on a fiscal year, rather than a calendar year basis, in conformance with their recordkeeping practices. In previous editions of this publication, data were aggregated by the two most commonly reported fiscal years, June 30 and December 31. This omitted approximately 20 percent of the respondents who operate on fiscal years ending in other months. Accordingly, the EIA undertook a review of the Form EIA-412 submissions to determine if alternative classifications of publicly owned electric utilities would permit the inclusion of all respondents.

  15. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Portland General Electric Co","Investor-owned",17808023,7701768,6816977,3281460,7818 2,"PacifiCorp","Investor-owned",13089576,5534975,5115094,2424852,14655 3,"City of Eugene - (OR)","Public",2404522,980515,873103,550904,0

  16. City of Shasta Lake Electric Utility- PV Rebate Program

    Broader source: Energy.gov [DOE]

    City of Shasta Lake Electric Utility is providing rebates to their customers for the purchase of photovoltaic (PV) systems. The rebate levels will decrease annually over the life of the program. ...

  17. U.S. electric utility demand-side management 1993

    SciTech Connect (OSTI)

    1995-07-01

    This report presents comprehensive information on electric power industry demand-side management activities in the United States at the national, regional, and utility levels. Data is included for energy savings, peakload reductions, and costs.

  18. Wholesale service obligation of electric utilities

    SciTech Connect (OSTI)

    Norton, F.L. IV; Spivak, M.R.

    1985-01-01

    The basic concepts of public utility status and utility regulation intertwine the obligation to provide service to the public as reasonably demanded with rate regulation and shielding from competitive interference. While a common law service obligation was not part of the Federal Power Act, the Federal Energy Regulatory Commission has taken the position that service, once commenced, may not be terminated without its approval. This view of Commission authority may not be supported by the legislative history of the Federal Power Act or by judicial precedent. The requirement to serve apart from recognition of a right to serve may result in increased rates in the near term and insufficient capacity, or both, in the long run. A review by the Commission and the courts is examining ways to introduce competition and shift risks from ratepayers to shareholders.

  19. Perspectives on the future of the electric utility industry

    SciTech Connect (OSTI)

    Tonn, B.; Schaffhauser, A.

    1994-04-01

    This report offers perspectives on the future of the electric utility industry. These perspectives will be used in further research to assess the prospects for Integrated Resource Planning (IRP). The perspectives are developed first by examining economic, political and regulatory, societal, technological, and environmental trends that are (1) national and global in scope and (2) directly related to the electric utility industry. Major national and global trends include increasing global economic competition, increasing political and ethnic strife, rapidly changing technologies, and increasing worldwide concern about the environment. Major trends in the utility industry include increasing competition in generation; changing patterns of electricity demand; increasing use of information technology to control power systems; and increasing implementation of environmental controls. Ways in which the national and global trends may directly affect the utility industry are also explored. The trends are used to construct three global and national scenarios- ``business as usual,`` ``technotopia future,`` and ``fortress state`` -and three electric utility scenarios- ``frozen in headlights,`` ``megaelectric,`` and ``discomania.`` The scenarios are designed to be thought provoking descriptions of potential futures, not predictions of the future, although three key variables are identified that will have significant impacts on which future evolves-global climate change, utility technologies, and competition. While emphasis needs to be placed on understanding the electric utility scenarios, the interactions between the two sets of scenarios is also of interest.

  20. A model for IPP sales to electric utilities

    SciTech Connect (OSTI)

    Norman, G.L.; Anderson, R.W.

    1996-11-01

    This paper shows several constraints that an unregulated plant would encounter. Florida Power Corporation has built a plant that has the characteristics of an IPP operating in the future deregulated electricity market. This plant, the University of Florida Cogeneration Plant undergoes the same conditions experienced in an IPP selling energy to the electric utilities when its contractual electric customer was unable to take the energy. It is a model of the future deregulated IPP.

  1. Reading the Tea Leaves: How Utilities in the West Are Managing Carbon Regulatory Risk in their Resource Plans

    SciTech Connect (OSTI)

    Barbose, Galen; Wiser, Ryan; Phadke, Amol; Goldman, Charles

    2008-02-01

    The long economic lifetime and development lead-time of many electric infrastructure investments requires that utility resource planning consider potential costs and risks over a lengthy time horizon. One long-term -- and potentially far-reaching -- risk currently facing the electricity industry is the uncertain cost of future carbon dioxide (CO2) regulations. Recognizing the importance of this issue, many utilities (sometimes spurred by state regulatory requirements) are beginning to actively assess carbon regulatory risk within their resource planning processes, and to evaluate options for mitigating that risk. However, given the relatively recent emergence of this issue and the rapidly changing political landscape, methods and assumptions used to analyze carbon regulatory risk, and the impact of this analysis on the selection of a preferred resource portfolio, vary considerably across utilities. In this study, we examine the treatment of carbon regulatory risk in utility resource planning, through a comparison of the most-recent resource plans filed by fifteen investor-owned and publicly-owned utilities in the Western U.S. Together, these utilities account for approximately 60percent of retail electricity sales in the West, and cover nine of eleven Western states. This report has two related elements. First, we compare and assess utilities' approaches to addressing key analytical issues that arise when considering the risk of future carbon regulations. Second, we summarize the composition and carbon intensity of the preferred resource portfolios selected by these fifteen utilities and compare them to potential CO2 emission benchmark levels.

  2. U.S. electric utility demand-side management 1996

    SciTech Connect (OSTI)

    1997-12-01

    The US Electric Utility Demand-Side Management report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it related to the US electric power industry. The first chapter, ``Profile: U.S. Electric Utility Demand-Side Management,`` presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs.

  3. Financial statistics major US publicly owned electric utilities 1996

    SciTech Connect (OSTI)

    1998-03-01

    The 1996 edition of The Financial Statistics of Major US Publicly Owned Electric Utilities publication presents 5 years (1992 through 1996) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decision making purposes related to publicly owned electric utility issues. Generator and nongenerator summaries are presented in this publication. Five years of summary financial data are provided. Summaries of generators for fiscal years ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data. 2 figs., 32 tabs.

  4. 2014 Utility Bundled Retail Sales- Commercial

    Gasoline and Diesel Fuel Update (EIA)

    Commercial (Data from forms EIA-861- schedules 4A & 4D and EIA-861S) Entity State Ownership Customers (Count) Sales (Megawatthours) Revenues (Thousands Dollars) Average Price (cents/kWh) Alaska Electric Light&Power Co AK Investor Owned 2,253 125,452 12,449.0 9.92 Alaska Power and Telephone Co AK Investor Owned 2,302 38,952 10,341.0 26.55 Alaska Village Elec Coop, Inc AK Cooperative 2,960 62,209 32,334.0 51.98 Anchorage Municipal Light and Power AK Municipal 6,362 879,373 113,515.6 12.91

  5. 2014 Utility Bundled Retail Sales- Total

    Gasoline and Diesel Fuel Update (EIA)

    Total (Data from forms EIA-861- schedules 4A & 4D and EIA-861S) Entity State Ownership Customers (Count) Sales (Megawatthours) Revenues (Thousands Dollars) Average Price (cents/kWh) Alaska Electric Light&Power Co AK Investor Owned 16,464 399,492 41,691.0 10.44 Alaska Power and Telephone Co AK Investor Owned 7,630 63,068 17,642.0 27.97 Alaska Village Elec Coop, Inc AK Cooperative 10,829 97,874 53,522.0 54.68 Anchorage Municipal Light and Power AK Municipal 30,791 1,012,784 134,950.6 13.32

  6. Cost analysis of energy storage systems for electric utility applications

    SciTech Connect (OSTI)

    Akhil, A.; Swaminathan, S.; Sen, R.K.

    1997-02-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

  7. Better Buildings Working with Utilities Peer Exchange Call: Kick-off Call Slides and Discussion Summary, April 21, 2011

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Working with Utilities Peer Exchange Call: Kick-off Call Slides and Discussion Summary Agenda * What are peer exchange calls? * Call logistics and attendance * Key topics in working with utilities * Grant project go-around: * What is the institutional relationship between your BB project and utilities? * What kind of utility are you working with (e.g., municipal, investor-owned, etc.)? * What are some key challenges or needs related to working with utilities? * Any successful strategies? * Next

  8. Positioning the electric utility to build information infrastructure

    SciTech Connect (OSTI)

    Not Available

    1994-11-01

    In two particular respects (briefly investigated in this study from a lawyer`s perspective), electric utilities appear uniquely well-positioned to contribute to the National Information Infrastructure (NII). First of all, utilities have legal powers derived from their charters and operating authorities, confirmed in their rights-of-way, to carry out activities and functions necessary for delivering electric service. These activities and functions include building telecommunications facilities and undertaking information services that have become essential to managing electricity demand and supply. The economic value of the efficiencies made possible by telecommunications and information could be substantial. How great remains to be established, but by many estimates electric utility applications could fund a significant share of the capital costs of building the NII. Though utilities` legal powers to pursue such efficiencies through telecommunications and information appear beyond dispute, it is likely that the effort to do so will produce substantial excess capacity. Who will benefit from this excess capacity is a potentially contentious political question that demands early resolution. Will this windfall go to the utility, the customer, or no one (because of political paralysis), or will there be some equitable and practical split? A second aspect of inquiry here points to another contemporary issue of very great societal importance that could very well become the platform on which the first question can be resolved fortuitously-how to achieve universal telecommunications service. In the effort to fashion the NII that will now continue, ways and means to maximize the unique potential contribution of electric utilities to meeting important social and economic needs--in particular, universal service--merit priority attention.

  9. The distributed utility: A new electric utility planning and pricing paradigm

    SciTech Connect (OSTI)

    Feinstein, C.D.; Orans, R.; Chapel, S.W.

    1997-12-31

    The distributed utility concept provides an alternate approach to guide electric utility expansion. The fundamental idea within the distributed utility concept is that particular local load increases can be satisfied at least cost by avoiding or delaying the more traditional investments in central generation capacity, bulk transmission expansion, and local transmission and distribution upgrades. Instead of these investments, the distributed utility concept suggests that investments in local generation, local storage, and local demand-side management technologies can be designed to satisfy increasing local demand at lower total cost. Critical to installation of distributed assets is knowledge of a utility system`s area- and time-specific costs. This review introduces the distributed utility concept, describes an application of ATS costs to investment planning, discusses the various motivations for further study of the concept, and reviews relevant literature. Future research directions are discussed.

  10. Consumer's Guide to the economics of electric-utility ratemaking

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    This guide deals primarily with the economics of electric utilities, although certain legal and organizational aspects of utilities are discussed. Each of the seven chapters addresses a particular facet of public-utility ratemaking. Chapter One contains a discussion of the evolution of the public-utility concept, as well as the legal and economic justification for public utilities. The second chapter sets forth an analytical economic model which provides the basis for the next four chapters. These chapters contain a detailed examination of total operating costs, the rate base, the rate of return, and the rate structure. The final chapter discusses a number of current issues regarding electric utilities, mainly factors related to fuel-adjustment costs, advertising, taxes, construction work in progress, and lifeline rates. Some of the examples used in the Guide are from particular states, such as Illinois and California. These examples are used to illustrate specific points. Consumers in other states can generalize them to their states and not change the meaning or significance of the points. 27 references, 8 tables.

  11. Electric utility applications of hydrogen energy storage systems

    SciTech Connect (OSTI)

    Swaminathan, S.; Sen, R.K.

    1997-10-15

    This report examines the capital cost associated with various energy storage systems that have been installed for electric utility application. The storage systems considered in this study are Battery Energy Storage (BES), Superconducting Magnetic Energy Storage (SMES) and Flywheel Energy Storage (FES). The report also projects the cost reductions that may be anticipated as these technologies come down the learning curve. This data will serve as a base-line for comparing the cost-effectiveness of hydrogen energy storage (HES) systems in the electric utility sector. Since pumped hydro or compressed air energy storage (CAES) is not particularly suitable for distributed storage, they are not considered in this report. There are no comparable HES systems in existence in the electric utility sector. However, there are numerous studies that have assessed the current and projected cost of hydrogen energy storage system. This report uses such data to compare the cost of HES systems with that of other storage systems in order to draw some conclusions as to the applications and the cost-effectiveness of hydrogen as a electricity storage alternative.

  12. Electric-utility DSM programs: Terminology and reporting formats

    SciTech Connect (OSTI)

    Hirst, E. ); Sabo, C. )

    1991-10-01

    The number, scope, effects, and costs of electric-utility demand-site management programs are growing rapidly in the United States. Utilities, their regulators, and energy policy makers need reliable information on the costs of, participation in, and energy and load effects of these programs to make informed decisions. In particular, information is needed on the ability of these programs to cost-effectively provide energy and capacity resources that are alternatives to power plants. This handbook addresses the need for additional and better information in two ways. First, it discusses the key concepts associated with DSM-program types, participation, energy and load effects, and costs. Second, the handbook offers definitions and a sample reporting form for utility DSM programs. The primary purpose in developing these definitions and this form is to encourage consistency in the collection and reporting of data on DSM programs. To ensure that the discussions, reporting formats, and definitions will be useful and used, development of this handbook was managed by a committee, with membership from electric utilities, state regulatory commissions, and the US Department of Energy. Also, this data-collection form was pretested by seven people from six utilities, who completed the form for nine DSM programs.

  13. A primer on incentive regulation for electric utilities

    SciTech Connect (OSTI)

    Hill, L.J.

    1995-10-01

    In contemplating a regulatory approach, the challenge for regulators is to develop a model that provides incentives for utilities to engage in socially desirable behavior. In this primer, we provide guidance on this process by discussing (1) various models of economic regulation, (2) problems implementing these models, and (3) the types of incentives that various models of regulation provide electric utilities. We address five regulatory models in depth. They include cost-of-service regulation in which prudently incurred costs are reflected dollar-for-dollar in rates and four performance-based models: (1) price-cap regulation, in which ceilings are placed on the average price that a utility can charge its customers; (2) revenue-cap regulation, in which a ceiling is placed on revenues; (3) rate-of-return bandwidth regulation, in which a utility`s rates are adjusted if earnings fall outside a {open_quotes}band{close_quotes} around equity returns; and (4) targeted incentives, in which a utility is given incentives to improve specific components of its operations. The primary difference between cost-of-service and performance-based approaches is the latter sever the tie between costs and prices. A sixth, {open_quotes}mixed approach{close_quotes} combines two or more of the five basic ones. In the recent past, a common mixed approach has been to combine targeted incentives with cost-of-service regulation. A common example is utilities that are subject to cost-of-service regulation are given added incentives to increase the efficiency of troubled electric-generating units.

  14. Alabama Natural Gas % of Total Electric Utility Deliveries (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Electric Utility Deliveries (Percent) Alabama Natural Gas % of Total Electric Utility Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.17 0.13 0.23 0.23 0.29 0.60 0.53 2000's 0.81 1.29 1.98 1.68 2.14 1.79 2.34 2.57 2.46 3.30 2010's 3.81 4.53 4.40 4.08 4.23 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  15. Table 9. Retail electricity sales statistics, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" ,"Full service providers",,,,,"Other providers",, "Item","Investor-owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",17,34,"NA",19,"NA","NA","NA"," " "Number of retail

  16. Table 9. Retail electricity sales statistics, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" ,"Full service providers",,,,,"Other providers",, "Item","Investor-owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",1,"NA","NA","NA","NA",22,1," " "Number of retail

  17. Table 9. Retail electricity sales statistics, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" ,"Full service providers",,,,,"Other providers",, "Item","Investor-owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",3,"NA","NA",1,2,"NA","NA"," " "Number of retail

  18. Table 9. Retail electricity sales statistics, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" ,"Full service providers",,,,,"Other providers",, "Item","Investor-owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",6,72,"NA",40,"NA","NA","NA"," " "Number of retail

  19. Table 9. Retail electricity sales statistics, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" ,"Full service providers",,,,,"Other providers",, "Item","Investor-owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",3,137,"NA",42,"NA","NA","NA"," " "Number of retail

  20. Table 9. Retail electricity sales statistics, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" ,"Full service providers",,,,,"Other providers",, "Item","Investor-owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",5,21,"NA",12,"NA","NA","NA"," " "Number of retail

  1. Table 9. Retail electricity sales statistics, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" ,"Full service providers",,,,,"Other providers",, "Item","Investor-owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",4,86,"NA",42,"NA","NA","NA"," " "Number of retail

  2. Table 9. Retail electricity sales statistics, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska" ,"Full service providers",,,,,"Other providers",, "Item","Investor-owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities","NA",149,1,10,"NA","NA","NA"," " "Number of retail

  3. Table 9. Retail electricity sales statistics, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" ,"Full service providers",,,,,"Other providers",, "Item","Investor-owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",3,62,1,31,"NA","NA","NA"," " "Number of retail

  4. Table 9. Retail electricity sales statistics, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" ,"Full service providers",,,,,"Other providers",, "Item","Investor-owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",4,22,"NA",21,"NA","NA","NA"," " "Number of retail

  5. Table 9. Retail electricity sales statistics, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" ,"Full service providers",,,,,"Other providers",, "Item","Investor-owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",3,16,"NA",13,"NA","NA","NA"," " "Number of retail

  6. Table 9. Retail electricity sales statistics, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" ,"Full service providers",,,,,"Other providers",, "Item","Investor-owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",5,2,"NA",2,"NA","NA","NA"," " "Number of retail

  7. Annual Electric Utility Data - Form EIA-906 Database

    Gasoline and Diesel Fuel Update (EIA)

    Detailed data files > Historic Form EIA-906 Historic Form EIA-906 Detailed Data with previous form data (EIA-759) Historic electric utility data files include information on net generation, fuel consumption, fuel stocks, prime mover and fuel type. Data sources are surveys -- Form EIA-906, "Power Plant Report" and Form EIA-759, "Monthly Power Plant Report." Beginning with 1996, two separate files are available for each year: Monthly (M) data submitted by those respondents

  8. A knowledge based model of electric utility operations. Final report

    SciTech Connect (OSTI)

    1993-08-11

    This report consists of an appendix to provide a documentation and help capability for an analyst using the developed expert system of electric utility operations running in CLIPS. This capability is provided through a separate package running under the WINDOWS Operating System and keyed to provide displays of text, graphics and mixed text and graphics that explain and elaborate on the specific decisions being made within the knowledge based expert system.

  9. Electric Market and Utility Operation Terminology (Fact Sheet), Solar Energy Technologies Program (SETP)

    Broader source: Energy.gov [DOE]

    This fact sheet is a list of electric market and utility operation terminology for a series of three electricity fact sheets.

  10. 2014 Utility Bundled Retail Sales- Industrial

    Gasoline and Diesel Fuel Update (EIA)

    Industrial (Data from forms EIA-861- schedules 4A & 4D and EIA-861S) Entity State Ownership Customers (Count) Sales (Megawatthours) Revenues (Thousands Dollars) Average Price (cents/kWh) Alaska Electric Light&Power Co AK Investor Owned 96 132,889 12,514.0 9.42 Chugach Electric Assn Inc AK Cooperative 7 57,198 6,718.0 11.75 City & Borough of Sitka - (AK) AK Municipal 21 21,003 785.0 3.74 City of Seward - (AK) AK Municipal 125 31,961 5,927.0 18.54 City of Unalaska - (AK) AK Municipal

  11. Cyber Security Challenges in Using Cloud Computing in the Electric Utility Industry

    SciTech Connect (OSTI)

    Akyol, Bora A.

    2012-09-01

    This document contains introductory material that discusses cyber security challenges in using cloud computing in the electric utility industry.

  12. Central Wind Power Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities

    SciTech Connect (OSTI)

    Porter, K.; Rogers, J.

    2009-12-01

    The report addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America.

  13. Alternative Fuels Data Center: Utility Initiatives Foster Plug-In Electric

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle Charging at Home and Work Utility Initiatives Foster Plug-In Electric Vehicle Charging at Home and Work to someone by E-mail Share Alternative Fuels Data Center: Utility Initiatives Foster Plug-In Electric Vehicle Charging at Home and Work on Facebook Tweet about Alternative Fuels Data Center: Utility Initiatives Foster Plug-In Electric Vehicle Charging at Home and Work on Twitter Bookmark Alternative Fuels Data Center: Utility Initiatives Foster Plug-In Electric Vehicle Charging at

  14. FERC must fix its electric utility merger policy

    SciTech Connect (OSTI)

    Grankena, M.

    1996-10-01

    In evaluating mergers, FERC should adopt the approach of the federal antitrust agencies to prevent firms from gaining and exercising market power. Doing so will require changes in everything from how FERC defines product and geographic markets, and how market concentration, entry conditions and cost saving are evaluated, to how discovery is conducted - in short, to virtually every aspect of how FERC reaches a merger decision. Reliance on competition to benefit consumers carries with it the necessity to preserve competition that is threatened by mergers or other structural changes. Faced with numerous mergers of large and medium-size electric utilities and the expectation of more to come, in January 1996 the Federal Energy Regulatory Commission requested comments on how it should evaluate mergers. This paper addresses that need. Section I explains how FERC and the federal antitrust agencies have responded to the competitive issues raised by utility mergers during the past decade. Section II introduces the analytical approach used by the antitrust agencies to evaluate mergers. Section III highlights features of the electric power industry that make analysis of market power unusually complex. Section IV evaluates FERC`s past reliance on comparable open access transmission as a sufficient remedy for competitive concerns relating to the availability, reliability and pricing of transmission service. Section V suggests changes to FERC`s merger policy that would make it consistent with antitrust principles and FERC`s public interest responsibilities. The final section draws conclusions.

  15. Financial statistics of selected publicly owned electric utilities 1989. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1991-02-06

    The Financial Statistics of Selected Publicly Owned Electric Utilities publication presents summary and detailed financial accounting data on the publicly owned electric utilities. The objective of the publication is to provide the Federal and State governments, industry, and the general public with data that can be used for policymaking and decision making purposes relating to publicly owned electric utility issues. 21 tabs.

  16. Electric Utility Company Assigned to a Zip Code? | OpenEI Community

    Open Energy Info (EERE)

    Electric Utility Company Assigned to a Zip Code? Home I have found an error in the utility company assigned to a zip code. I am not sure if the "assigned" utility company covers...

  17. Net Metering

    Broader source: Energy.gov [DOE]

    * The PSC regulates investor-owned utilities and electric cooperatives in Louisiana; it does not regulate municipal-owned utilities, and its rules thereby do not apply to municipal utilities....

  18. Electric utilities sales and revenue monthly report (EIA-826), 1987. Data file

    SciTech Connect (OSTI)

    Curry, J.; Wilkins, S.

    1987-01-01

    The purpose of Form EI-826 formerly FERC-5, Electric Utility Company Monthly Statement, is to collect data necessary to fulfill regulatory responsibility; identify near-term trends in energy use; and contingency analysis. The form is filed monthly by approximately 150 electric utilities. All privately owned electric utilities with annual electric operating revenues of $100,000,000 or more must respond. In addition, the sample includes other selected electric utilities. The reported data is expanded by factors, calculated using annual data from a previous period, to give electric sales data by state and sector. Other information collected includes data gathered on depreciation, construction, net income before taxes, and extraordinary items.

  19. Electric Utilities Monthly Sales and Revenue Report (EIA-826), current. Data file

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    Form EI-826, formerly FERC-5, Electric Utility Company Monthly Statement, collects data necessary to fulfill regulatory responsibility; identify near-term trends in energy use; and contingency analysis. The form is filed monthly by approximately 150 electric utilities. All privately owned electric utilities with annual electric operating revenues of $100,000,000 or more must respond. In addition, the sample includes other selected electric utilities. The reported data is expanded by factors, calculated using annual data from a previous period, to give electric sales data by state and sector. Other information collected includes data gathered on depreciation, construction, net income before taxes, and extraordinary items.

  20. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Georgia Power Co","Investor-owned",81178648,25478655,32457010,23086501,156482 2,"Jackson Electric Member Corp - (GA)","Cooperative",4924212,2809034,1445094,670084,0 3,"Cobb Electric Membership

  1. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Green Mountain Power Corp","Investor-owned",4295605,1556518,1560705,1178382,0 2,"Vermont Electric Cooperative, Inc","Cooperative",442890,222441,119722,100727,0 3,"City of Burlington Electric -

  2. Applying electrical utility least-cost approach to transportation planning

    SciTech Connect (OSTI)

    McCoy, G.A.; Growdon, K.; Lagerberg, B.

    1994-09-01

    Members of the energy and environmental communities believe that parallels exist between electrical utility least-cost planning and transportation planning. In particular, the Washington State Energy Strategy Committee believes that an integrated and comprehensive transportation planning process should be developed to fairly evaluate the costs of both demand-side and supply-side transportation options, establish competition between different travel modes, and select the mix of options designed to meet system goals at the lowest cost to society. Comparisons between travel modes are also required under the Intermodal Surface Transportation Efficiency Act (ISTEA). ISTEA calls for the development of procedures to compare demand management against infrastructure investment solutions and requires the consideration of efficiency, socioeconomic and environmental factors in the evaluation process. Several of the techniques and approaches used in energy least-cost planning and utility peak demand management can be incorporated into a least-cost transportation planning methodology. The concepts of avoided plants, expressing avoidable costs in levelized nominal dollars to compare projects with different on-line dates and service lives, the supply curve, and the resource stack can be directly adapted from the energy sector.

  3. Methods to estimate stranded commitments for a restructuring US electricity industry

    SciTech Connect (OSTI)

    Hirst, E.; Hadley, S.; Baxter, L.

    1996-01-01

    Estimates of stranded commitments for US investor-owned electric utilities range widely, from as little as $20 billion to as much as $500 billion (more than double the shareholder equity in US utilities). These potential losses are a consequence of the above-market book values for some utility-owned power plants, long-term power-purchase contracts, deferred income taxes, regulatory assets, and public-policy programs. Because of the wide range of estimates and the potentially large dollar amounts involved, state and federal regulators need a clear understanding of the methods used to calculate these estimates. In addition, they may want simple methods that they can use to check the reasonableness of the estimates that utilities and other parties present in regulatory proceedings. This report explains various top-down and bottom-up methods to calculate stranded commitments. The purpose of this analysis is to help regulators and others understand the implications of different analytical approaches to estimating stranded-commitment amounts. Top-down methods, because they use the utility as the unit of analysis, are simple to apply and to understand. However, their aggregate nature makes it difficult to determine what specific assets and liabilities affect their estimates. Bottom-up methods use the individual asset (e.g., power plant) or liability (e.g., power-purchase contract, fuel-supply contract, and deferred income taxes) as the unit of analysis. These methods have substantial data and computational requirements.

  4. Annual Public Electric Utility data - EIA-412 data file

    Gasoline and Diesel Fuel Update (EIA)

    412 Archive Data (The EIA-412 survey has been terminated.) The EIA-412 "Annual Electric Industry Financial Report" collected information such as income statements, balance sheets, sales and purchases, and transmission line data. Form EIA-412 data Schedules Year 2 Electric Balance Sheet 3 Electric Income Statement 4 Electric Plant 5 Taxes, Tax Equivalents, Contributions, and Services During Year 6 Sales of Electricity for Resale (Account 447) 7 Electric Operation and Maintenance

  5. Ashland Electric Utility - Bright Way to Heat Water Loan | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Type Loan Program Summary The City of Ashland Conservation Division offers a solar water heating program to residential electric customers who currently use an electric...

  6. Austin Utilities (Gas and Electric) - Commercial and Industrial...

    Broader source: Energy.gov (indexed) [DOE]

    commercial location per year, 5,000 per industrial location per year Program Info Sector Name Utility Administrator Austin Utilities Website http:www.austinutilities.compages...

  7. Fuel Mix and Environmental Characteristics Disclosure

    Broader source: Energy.gov [DOE]

    In July 2010, New Hampshire enacted legislation (S.B. 327) requiring investor-owned utilities and electric cooperatives to disclose the energy sources of their electricity and the environmental...

  8. Net Metering

    Broader source: Energy.gov [DOE]

    Utah law requires their only investor-owned utility, Rocky Mountain Power (RMP), and most electric cooperatives* to offer net metering to customers who generate electricity using solar energy, wi...

  9. USCG Multi-site UESC in Florida

    Energy Savers [EERE]

    Resources * NextEra Energy Solutions * GEXA * FPL (Utility) * 3rd largest investor-owned utility * Typically 1 or 2 in Energy Efficiency (DSM programs) * Lowest Electric Rates in...

  10. Net Metering

    Broader source: Energy.gov [DOE]

    New Jersey's net-metering rules require state's investor-owned utilities and energy suppliers (and certain competitive municipal utilities and electric cooperatives) to offer net metering at non-...

  11. Interconnection Standards

    Broader source: Energy.gov [DOE]

    The PUC standards generally apply to investor-owned utilities (IOUs) with 40,000 or more customers and all electric cooperatives. Municipal utilities with 5,000 customers or more are required to ...

  12. Interconnection Standards

    Broader source: Energy.gov [DOE]

    Note: The Public Utilities Commission of Ohio (PUCO) opened a docket (Case 12-2051-EL-RDR) to review interconnection rules for investor-owned utilities. The PUCO adopted amended rules for electric...

  13. Net Metering

    Broader source: Energy.gov [DOE]

    Net metering is available to all customers of investor-owned utilities and rural electric cooperatives, exempting TVA utilities. Kentucky's requires the use of a single, bi-directional meter for...

  14. Interconnection Standards

    Broader source: Energy.gov [DOE]

    The new rules apply to interconnections of all types of distributed generation systems of less than 10 MW to the electric distribution system for all types of utilities -- investor-owned utilities...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virginia Wisconsin Wyoming Apply Current search Tankless Water Heater Remove Tankless Water Heater filter Investor-Owned Utility Remove Investor-Owned Utility filter Filter by...

  16. Utility to Purchase Electricity from Innovative DOE-Supported Clean Coal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project | Department of Energy Utility to Purchase Electricity from Innovative DOE-Supported Clean Coal Project Utility to Purchase Electricity from Innovative DOE-Supported Clean Coal Project January 17, 2012 - 12:00pm Addthis Washington, DC - An innovative clean coal technology project in Texas will supply electricity to the largest municipally owned utility in the United States under a recently signed Power Purchase Agreement, the U.S. Department of Energy (DOE) announced today. Under the

  17. Central Wind Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities: Revised Edition

    SciTech Connect (OSTI)

    Rogers, J.; Porter, K.

    2011-03-01

    The report and accompanying table addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America. The first part of the table focuses on electric utilities and regional transmission organizations that have central wind power forecasting in place; the second part focuses on electric utilities and regional transmission organizations that plan to adopt central wind power forecasting in 2010. This is an update of the December 2009 report, NREL/SR-550-46763.

  18. The Impacts of Commercial Electric Utility Rate Structure Elements on the

    Energy Savers [EERE]

    Economics of Photovoltaic Systems | Department of Energy Impacts of Commercial Electric Utility Rate Structure Elements on the Economics of Photovoltaic Systems The Impacts of Commercial Electric Utility Rate Structure Elements on the Economics of Photovoltaic Systems This analysis uses simulated building data, simulated solar photovoltaic (PV) data, and actual electric utility tariff data from 25 cities to better understand the impacts of different commercial rate structures on the value of

  19. Energy data report: Sales, Revenue, and Income of Electric Utilities. Monthly report, October 1981

    SciTech Connect (OSTI)

    Woods, T.F.

    1982-01-19

    This is the last issue of Sales, Revenue, and Income of Electric Utilities. The data contained in this report are being published in Section 10 of the Electric Power Monthly.

  20. Financial Statistics of Major U.S. Publicly Owned Electric Utilities

    Reports and Publications (EIA)

    2001-01-01

    2000 - Final issue. Presents summary financial data for 1994 through 2000 and detailed financial data for 2000 on major publicly owned electric utilities.

  1. Microsoft PowerPoint - Meeting Materials rev 7 (final)[1].ppt

    Office of Environmental Management (EM)

    Docket No. EERE-2010-BT-CE-0014 GE-Prolec CCE Meeting 10/19/2010 Distribution Transformers Commercial Commercial Residential Residential Products Customers Investor Owned Utilities Rural Electric Coops Municipal Electric Systems Industrials Covered Products Covered Products Market (1) Typical Price Range: $4,500 to $35,000 Typical Lot Size: 1 to 10 units Industrial Industrial Industrials Investor Owned Utilities Rural Electric Coops Municipal Electric Systems Typical Price Range: $18,000 to

  2. Ashland Electric Utility - Bright Way to Heat Water Rebate |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    average 800 to 1,000) Summary The City of Ashland Conservation Division offers a solar water heating program to its residential electric customers who currently use an electric...

  3. "2014 Utility Bundled Retail Sales- Industrial"

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial" "(Data from forms EIA-861- schedules 4A & 4D and EIA-861S)" "Entity","State","Ownership","Customers (Count)","Sales (Megawatthours)","Revenues (Thousands Dollars)","Average Price (cents/kWh)" "Alaska Electric Light&Power Co","AK","Investor Owned",96,132889,12514,9.4168818 "Chugach Electric Assn

  4. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Arizona Public Service Co","Investor-owned",28087605,13290096,12594486,2203023,0 2,"Salt River Project","Public",27127199,12581984,10940149,3605066,0 3,"Tucson Electric Power

  5. Cost and Quality of Fuels for Electric Utility Plants

    Gasoline and Diesel Fuel Update (EIA)

    ... Kentucky Utilities Co Green River ...... See footnotes at end of table. Source: Federal Energy Regulatory Commission, FERC Form ...

  6. Approaches to Electric Utility Energy Efficiency for Low Income Customers in a Changing Regulatory Environment

    SciTech Connect (OSTI)

    Brockway, N.

    2001-05-21

    As the electric industry goes through a transformation to a more market-driven model, traditional grounds for utility energy efficiency have come under fire, undermining the existing mechanisms to fund and deliver such services. The challenge, then, is to understand why the electric industry should sustain investments in helping low-income Americans use electricity efficiently, how such investments should be made, and how these policies can become part of the new electric industry structure. This report analyzes the opportunities and barriers to leveraging electric utility energy efficiency assistance to low-income customers during the transition of the electric industry to greater competition.

  7. Treatment of Solar Generation in Electric Utility Resource Planning (Presentation)

    SciTech Connect (OSTI)

    Cory, K.; Sterling, J.; Taylor, M.; McLaren, J.

    2014-01-01

    Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. Through interviews and a questionnaire, the authors gathered information on utility supply planning and how solar is represented. Utilities were asked to provide their resource planning process details, key assumptions (e.g. whether DG is represented as supply or negative load), modeling methodology (e.g. type of risk analytics and candidate portfolio development), capacity expansion and production simulation model software, and solar project representation (project size, capacity value and integration cost adder). This presentation aims to begin the exchange of information between utilities, regulators and other stakeholders by capturing utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

  8. Informatics requirements for a restructured competitive electric power industry

    SciTech Connect (OSTI)

    Pickle, S.; Marnay, C.; Olken, F.

    1996-08-01

    The electric power industry in the United States is undergoing a slow but nonetheless dramatic transformation. It is a transformation driven by technology, economics, and politics; one that will move the industry from its traditional mode of centralized system operations and regulated rates guaranteeing long-run cost recovery, to decentralized investment and operational decisionmaking and to customer access to true spot market prices. This transformation will revolutionize the technical, procedural, and informational requirements of the industry. A major milestone in this process occurred on December 20, 1995, when the California Public Utilities Commission (CPUC) approved its long-awaited electric utility industry restructuring decision. The decision directed the three major California investor-owned utilities to reorganize themselves by the beginning of 1998 into a supply pool, at the same time selling up to a half of their thermal generating plants. Generation will be bid into this pool and will be dispatched by an independent system operator. The dispatch could potentially involve bidders not only from California but from throughout western North America and include every conceivable generating technology and scale of operation. At the same time, large customers and aggregated customer groups will be able to contract independently for their supply and the utilities will be required to offer a real-time pricing tariff based on the pool price to all their customers, including residential. In related proceedings concerning competitive wholesale power markets, the Federal Energy Regulatory Commission (FERC) has recognized that real-time information flows between buyers and sellers are essential to efficient equitable market operation. The purpose of this meeting was to hold discussions on the information technologies that will be needed in the new, deregulated electric power industry.

  9. Treatment of Solar Generation in Electric Utility Resource Planning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Planning John Sterling Solar Electric Power Association Joyce McLaren National Renewable Energy Laboratory Mike Taylor ... NV Energy (Nevada) PCM production cost model PGE Portland ...

  10. Black Hills/Colorado Electric Utility Co. Smart Grid Project...

    Open Energy Info (EERE)

    Thermostats Targeted Benefits Reduced Meter Reading Costs Improved Electric Service Reliability Reduced Ancillary Service Cost Reduced Truck Fleet Fuel Usage Reduced Greenhouse...

  11. Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants

    Reports and Publications (EIA)

    2013-01-01

    The current and future projected cost and performance characteristics of new electric generating capacity are a critical input into the development of energy projections and analyses.

  12. Specific systems studies of battery energy storage for electric utilities

    SciTech Connect (OSTI)

    Akhil, A.A.; Lachenmeyer, L.; Jabbour, S.J.; Clark, H.K.

    1993-08-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. As a part of this program, four utility-specific systems studies were conducted to identify potential battery energy storage applications within each utility network and estimate the related benefits. This report contains the results of these systems studies.

  13. Norwich Public Utilities (Electric)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Norwich Public Utilities (NPU) provides residential customers with rebates on the ENERGY STAR-qualified appliances and energy efficient HVAC equipment. Eligible appliance purchases include...

  14. New Ulm Public Utilities- Solar Electric Rebate Program

    Broader source: Energy.gov [DOE]

    New Ulm Public Utilities provides solar photovoltaic (PV) rebates for residential, commercial, and industrial customers. Rebates are for $1 per nameplate watt, and customers must sign a net...

  15. Liberty Utilities (Electric)- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Liberty Utilities offers incentives and technical support to help customers implement energy efficiency upgrades to existing homes or build an ENERGY STAR certified home. Eligible equipment...

  16. Sustainable Energy Utility (Electric & Gas)- Business Energy Rebate Program

    Broader source: Energy.gov [DOE]

    The District of Columbia's Sustainable Energy Utility (DCSEU) administers the Business Energy Rebate Program. Rebates are available to businesses and institutions for the installation of energy...

  17. Electric utilities monthly sales and revenue report (EIA-826), current (on magnetic tape). Data file

    SciTech Connect (OSTI)

    1991-12-31

    Data regarding electricity sales (megawatthours) and associated revenue (thousand dollars) are submitted to the Energy Information Administration (EIA) by selected electric utilities on the Form EIA-826, `Monthly Electric Utility Sales and Revenue Report with State Distributions.` The Form EIA-826 survey is a statistical sample drawn from the respondents to the Form EIA-861, `Annual Electric Utility Report.` The monthly survey consists of the utilities with the largest sales within each state and a stratified random sample of the remaining utilities. The Form EIA-826 is designed to facilitate the estimation of electricity sales and associated revenue at the National Census Division, and state level, by class of consumer. These estimates in turn, can be used to calculate average revenue per milowatthour and estimates of sales, revenue, and average revenue per kilowatthour coefficients of variation.

  18. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology

    SciTech Connect (OSTI)

    Hopman, Ulrich,; Kruiswyk, Richard W.

    2005-07-05

    Caterpillar's Technology & Solutions Division conceived, designed, built and tested an electric turbocompound system for an on-highway heavy-duty truck engine. The heart of the system is a unique turbochargerr with an electric motor/generator mounted on the shaft between turbine and compressor wheels. When the power produced by the turbocharger turbine exceeds the power of the compressor, the excess power is converted to electrical power by the generator on the turbo shaft; that power is then used to help turn the crankshaft via an electric motor mounted in the engine flywheel housing. The net result is an improvement in engine fuel economy. The electric turbocompound system provides added control flexibility because it is capable of varying the amount of power extracted from the exhaust gases, thus allowing for control of engine boost. The system configuration and design, turbocharger features, control system development, and test results are presented.

  19. Financial statistics of major U.S. publicly owned electric utilities 1997

    SciTech Connect (OSTI)

    1998-12-01

    The 1997 edition of the ``Financial Statistics of Major U.S. Publicly Owned Electric Utilities`` publication presents 5 years (1993 through 1997) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to publicly owned electric utility issues. Generator (Tables 3 through 11) and nongenerator (Tables 12 through 20) summaries are presented in this publication. Five years of summary financial data are provided (Tables 5 through 11 and 14 through 20). Summaries of generators for fiscal years ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided in Appendix C. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, operating revenue, and electric energy account data. The primary source of publicly owned financial data is the Form EIA-412, ``Annual Report of Public Electric Utilities.`` Public electric utilities file this survey on a fiscal year basis, in conformance with their recordkeeping practices. The EIA undertook a review of the Form EIA-412 submissions to determine if alternative classifications of publicly owned electric utilities would permit the inclusion of all respondents. The review indicated that financial indicators differ most according to whether or not a publicly owned electric utility generates electricity. Therefore, the main body of the report provides summary information in generator/nongenerator classifications. 2 figs., 101 tabs.

  20. Treatment of Solar Generation in Electric Utility Resource Planning

    SciTech Connect (OSTI)

    Sterling, J.; McLaren, J.; Taylor, M.; Cory, K.

    2013-10-01

    Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. State and federal support policies, solar photovoltaic (PV) price declines, and the introduction of new business models for solar PV 'ownership' are leading to increasing interest in solar technologies (especially PV); however, solar introduces myriad new variables into the utility resource planning decision. Most, but not all, utility planners have less experience analyzing solar than conventional generation as part of capacity planning, portfolio evaluation, and resource procurement decisions. To begin to build this knowledge, utility staff expressed interest in one effort: utility exchanges regarding data, methods, challenges, and solutions for incorporating solar in the planning process. Through interviews and a questionnaire, this report aims to begin this exchange of information and capture utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

  1. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology

    SciTech Connect (OSTI)

    Gerke, Frank G.

    2001-08-05

    This cooperative program between the DOE Office of Heavy Vehicle Technology and Caterpillar, Inc. is aimed at demonstrating electric turbocompound technology on a Class 8 truck engine. This is a lab demonstration program, with no provision for on-truck testing of the system. The goal is to demonstrate the level of fuel efficiency improvement attainable with the electric turbocompound system. Also, electric turbocompounding adds an additional level of control to the air supply which could be a component in an emissions control strategy.

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    more than 5,100 MW of wind capacity installed and led the U.S. with 27% of the state's electricity generation coming from wind. Eligibility: Investor-Owned Utility Savings...

  3. California Solar Initiative- Multi-Family Affordable Solar Housing (MASH) Program

    Broader source: Energy.gov [DOE]

    The California Solar Initiative (CSI), enacted by SB 1 of 2006, provides financial incentives to customers in investor-owned utility (IOU) territories of Pacific Gas and Electric Company (PG&...

  4. Energy Efficiency Resource Standard

    Broader source: Energy.gov [DOE]

    The Colorado legislature enacted H.B. 1037 in 2007, requiring electricity and natural gas investor-owned utilities (IOUs) to engage in demand response and adopt demand-side management (DSM)...

  5. Renewable Portfolio Standard

    Broader source: Energy.gov [DOE]

    Requirements Large investor-owned utilities -- those with 3% or more of the state's load -- must ensure that a percentage of the electricity sold to retail customers in-state be derived from eli...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5,100 MW of wind capacity installed and led the U.S. with 27% of the state's electricity generation coming from wind. Eligibility: Investor-Owned Utility Savings Category: Solar...

  7. Interconnection Guidelines

    Broader source: Energy.gov [DOE]

    Delmarva, Delaware's only investor-owned electric utility, has four basic levels of interconnection based on system size and system type (inverter-based or non-inverter-based). In June 2011 the...

  8. GMP Solar Power

    Broader source: Energy.gov [DOE]

    Green Mountain Power, an investor-owned electric utility operating in Vermont, offers a credit to customers with net-metered photovoltaic (PV) systems. In addition to the benefits of net metering,...

  9. Energy Efficiency Resource Standards

    Broader source: Energy.gov [DOE]

    In July 2009 the Delaware legislature enacted legislation creating energy savings targets for Delaware’s investor-owned, municipal, and cooperative electric utilities, as well the state’s natural...

  10. Energy Efficiency Resource Standard

    Broader source: Energy.gov [DOE]

    In 2007, the Minnesota legislature passed the Next Generation Energy Act (NGEA), which requires both electric and natural gas investor-owned utilities to reduce energy sales, and spend a minimum ...

  11. Do You Buy Clean Electricity From Your Utility?

    Broader source: Energy.gov [DOE]

    If you can't set up a small renewable energy system of your own, buying clean electricity is a great way to support the use of renewable energy.

  12. Updated Capital Cost Estimates for Utility Scale Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... produce an output of 60 Hz, three-phase 480 volt ("V") AC electric power voltage. The inverters also provide power quality control and protection when designed to IEEE Standards. ...

  13. Orange and Rockland Utilities (Electric)- Commercial Efficiency Programs

    Broader source: Energy.gov [DOE]

    Orange and Rockland Utilities (O&R) offers energy efficiency program for both small business and large commercial and industrial customers to install high-efficiency equipment in eligible...

  14. Liberty Utilities (Electric)- Commercial Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    Liberty Utilities offers qualified commercial customers zero interest financing for energy efficiency improvements. Customers may borrow up to $50,000 per project and up to $150,000 per year. Loans...

  15. "2014 Utility Bundled Retail Sales- Commercial"

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial" "(Data from forms EIA-861- schedules 4A & 4D and EIA-861S)" "Entity","State","Ownership","Customers (Count)","Sales (Megawatthours)","Revenues (Thousands Dollars)","Average Price (cents/kWh)" "Alaska Electric Light&Power Co","AK","Investor Owned",2253,125452,12449,9.9233173 "Alaska Power and Telephone Co","AK","Investor

  16. "2014 Utility Bundled Retail Sales- Residential"

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential" "(Data from forms EIA-861- schedules 4A & 4D and EIA-861S)" "Entity","State","Ownership","Customers (Count)","Sales (Megawatthours)","Revenues (Thousands Dollars)","Average Price (cents/kWh)" "Alaska Electric Light&Power Co","AK","Investor Owned",14115,141151,16728,11.851138 "Alaska Power and Telephone Co","AK","Investor

  17. "2014 Utility Bundled Retail Sales- Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total" "(Data from forms EIA-861- schedules 4A & 4D and EIA-861S)" "Entity","State","Ownership","Customers (Count)","Sales (Megawatthours)","Revenues (Thousands Dollars)","Average Price (cents/kWh)" "Alaska Electric Light&Power Co","AK","Investor Owned",16464,399492,41691,10.436004 "Alaska Power and Telephone Co","AK","Investor

  18. Energy Efficiency as a Preferred Resource: Evidence from Utility Resource Plans in the Western United States and Canada

    SciTech Connect (OSTI)

    Hopper, Nichole; Barbose, Galen; Goldman, Charles; Schlegel, Jeff

    2008-09-15

    This article examines the future role of energy efficiency as a resource in the Western United States and Canada, as envisioned in the most recent resource plans issued by 16 utilities, representing about 60percent of the region's load. Utility and third-party administered energy efficiency programs proposed by 15 utilities over a ten-year horizon would save almost 19,000 GWh annually, about 5.2percent of forecast load. There are clear regional trends in the aggressiveness of proposed energy savings. California's investor-owned utilities (IOUs) had the most aggressive savings targets, followed by IOUs in the Pacific Northwest, and the lowest savings were proposed by utilities in Inland West states and by two public utilities on the West coast. The adoption of multiple, aggressive policies targeting energy efficiency and climate change appear to produce sizeable energy efficiency commitments. Certain specific policies, such as mandated energy savings goals for California's IOUs and energy efficiency provisions in Nevada's Renewable Portfolio Standard had a direct impact on the level of energy savings included in the resource plans. Other policies, such as revenue decoupling and shareholder incentives, and voluntary or legislatively mandated greenhouse gas emission reduction policies, may have also impacted utilities' energy efficiency commitments, though the effects of these policies are not easily measured. Despite progress among the utilities in our sample, more aggressive energy efficiency strategies that include high-efficiency standards for additional appliances and equipment, tighter building codes for new construction and renovation, as well as more comprehensive ratepayer-funded energy efficiency programs are likely to be necessary to achieve a region-wide goal of meeting 20percent of electricity demand with efficiency in 2020.

  19. An Examination of Temporal Trends in Electricity Reliability Based on Reports from U.S. Electric Utilities

    SciTech Connect (OSTI)

    Eto, Joseph H.; LaCommare, Kristina Hamachi; Larsen, Peter; Todd, Annika; Fisher, Emily

    2012-01-06

    Since the 1960s, the U.S. electric power system has experienced a major blackout about once every 10 years. Each has been a vivid reminder of the importance society places on the continuous availability of electricity and has led to calls for changes to enhance reliability. At the root of these calls are judgments about what reliability is worth and how much should be paid to ensure it. In principle, comprehensive information on the actual reliability of the electric power system and on how proposed changes would affect reliability ought to help inform these judgments. Yet, comprehensive, national-scale information on the reliability of the U.S. electric power system is lacking. This report helps to address this information gap by assessing trends in U.S. electricity reliability based on information reported by electric utilities on power interruptions experienced by their customers. Our research augments prior investigations, which focused only on power interruptions originating in the bulk power system, by considering interruptions originating both from the bulk power system and from within local distribution systems. Our research also accounts for differences among utility reliability reporting practices by employing statistical techniques that remove the influence of these differences on the trends that we identify. The research analyzes up to 10 years of electricity reliability information collected from 155 U.S. electric utilities, which together account for roughly 50% of total U.S. electricity sales. The questions analyzed include: 1. Are there trends in reported electricity reliability over time? 2. How are trends in reported electricity reliability affected by the installation or upgrade of an automated outage management system? 3. How are trends in reported electricity reliability affected by the use of IEEE Standard 1366-2003?

  20. How and why Tampa Electric Company selected IGCC for its next generating capacity addition

    SciTech Connect (OSTI)

    Pless, D.E. )

    1992-01-01

    As the title indicates, the purpose of this paper is to relate how and why Tampa Electric Company decided to select the Integrated Gasification Combined Cycle (IGCC) for their next capacity addition at Polk Power Station, Polk Unit No. 1. For a complete understanding of this process, it is necessary to review the history related to the initial formulation of the IGCC concept as it was proposed to the Department of Energy (DOE) Clean Coal Initiative Round Three. Further, it is important to understand the relationship between Tampa Electric Company and TECO Pay Services Corporation (TPS). TECO Energy, Inc. is an energy related holding company with headquarters in Tampa, Florida. Tampa Electric Company is the principal, wholly-owned subsidiary of TECO Energy, Inc. Tampa Electric Company is an investor-owned electric utility with about 3200 MW of generation capacity of which 97% is coal fired. Tampa Electric Company serves about 2,000 square miles and approximately 470,000 customers, in west central Florida, primarily in and around Hillsborough County and Tampa, Florida. Tampa Electric Company generating units consist of coal fired units ranging in size from a 110 MW coal fired cyclone unit installed in 1957 to a 450 MW pulverized coal unit with wet limestone flue gas desulfurization installed in 1985. In addition, Tampa Electric Company has six (6) No. 6 oil fired steam units totaling approximately 220 MW. Five (5) of these units, located at the Hookers Point Station, were installed in the late 1940's and early 1950's. Tampa Electric also has about 150 MW of No. 2 oil fired start-up and peaking combustion turbines. The company also owns a 1966 vintage 12 MW natural gas fired steam plant (Dinner Lake) and two nO. 6 oil fired diesel units with heat recovery equipment built in 1983 (Phillips Plant).

  1. Electric and gas utility marketing of residential energy conservation case studies

    SciTech Connect (OSTI)

    1980-05-01

    The objective of this research was to obtain information about utility conservation marketing techniques from companies actively engaged in performing residential conservation services. Many utilities currently are offering comprehensive services (audits, listing of contractors and lenders, post-installation inspection, advertising, and performing consumer research). Activities are reported for the following utilities: Niagara Mohawk Power Corporation; Tampa Electric Company; Memphis Light, Gas, and Water Division; Northern States Power-Wisconsin; Public Service Company of Colorado; Arizona Public Service Company; Pacific Gas and Electric Company; Sacramento Municipal Utility District; and Pacific Power and Light Company.

  2. Cost and Quality of Fuels for Electric Utility Plants 1997

    Gasoline and Diesel Fuel Update (EIA)

    7 Tables May 1998 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Energy Information Administration/Cost

  3. City of Statesville Electric Utility Department- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The City of Statesville Electric Utility Department offers rebates to its residential customers for installing new, energy efficient water heaters and heat pumps. To qualify for the heat pump...

  4. Electric utilities monthly sales and revenue report (EIA-826), current (for microcomputers). Data file

    SciTech Connect (OSTI)

    1992-08-01

    Data regarding electricity sales (megawatthours) and associated revenue (thousand dollars) are submitted to the Energy Information Administration (EIA) by selected electric utilities on the Form EIA-826, `Monthly Electric Utility Sales and Revenue Report with State Distributions.` The monthly survey consists of the utilities with the largest sales within each state and a stratified random sample of the remaining utilities. The Form EIA-826 is designed to facilitate the estimation of electricity sales and associated revenue at the National Census Division, and state level, by class of consumer. These estimates in turn, can be used to calculate average revenue per milowatthour and estimates of sales, revenue, and average revenue per kilowatthour coefficients of variation.

  5. Table 9. Retail electricity sales statistics, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" ,"Full service providers",,,,,"Other providers",, "Item","Investor-owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",6,29,3,9,11,"NA","NA"," " "Number of retail customers",1653072,1092343,15588,186056,11,"NA","NA",2947070 "Retail sales

  6. Table 9. Retail electricity sales statistics, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    California" ,"Full service providers",,,,,"Other providers",, "Item","Investor-owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",7,42,2,4,69,16,3," " "Number of retail customers",11805131,3248291,2193,16376,73,153026,"NA",15225090 "Retail sales

  7. Table 9. Retail electricity sales statistics, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" ,"Full service providers",,,,,"Other providers",, "Item","Investor-owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",2,29,1,28,9,"NA","NA"," " "Number of retail customers",1486366,435070,14,622879,9,"NA","NA",2544338 "Retail sales

  8. Table 9. Retail electricity sales statistics, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" ,"Full service providers",,,,,"Other providers",, "Item","Investor-owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",3,8,"NA","NA",4,29,2," " "Number of retail customers",845007,72702,"NA","NA",4,692239,"NA",1609952 "Retail sales

  9. Table 9. Retail electricity sales statistics, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" ,"Full service providers",,,,,"Other providers",, "Item","Investor-owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",1,9,"NA",1,1,25,1," " "Number of retail customers",276172,65959,"NA",86096,1,27812,"NA",456040 "Retail sales

  10. Table 9. Retail electricity sales statistics, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" ,"Full service providers",,,,,"Other providers",, "Item","Investor-owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",5,33,"NA",16,1,"NA","NA"," " "Number of retail customers",7473876,1396974,"NA",1079234,1,"NA","NA",9950085

  11. Table 9. Retail electricity sales statistics, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" ,"Full service providers",,,,,"Other providers",, "Item","Investor-owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",1,53,"NA",42,1,"NA","NA"," " "Number of retail customers",2387727,338375,"NA",1948580,1,"NA","NA",4674683

  12. Table 9. Retail electricity sales statistics, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" ,"Full service providers",,,,,"Other providers",, "Item","Investor-owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",3,11,2,17,4,"NA","NA"," " "Number of retail customers",683856,43864,2,83450,4,"NA","NA",811177 "Retail sales

  13. Table 9. Retail electricity sales statistics, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" ,"Full service providers",,,,,"Other providers",, "Item","Investor-owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",4,41,"NA",26,2,43,3," " "Number of retail customers",1985354,267486,"NA",300844,302,3169795,"NA",5723781 "Retail sales

  14. Table 9. Retail electricity sales statistics, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" ,"Full service providers",,,,,"Other providers",, "Item","Investor-owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",4,118,1,29,"NA","NA","NA"," " "Number of retail customers",946301,234421,1,293171,"NA","NA","NA",1473894 "Retail

  15. Table 9. Retail electricity sales statistics, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" ,"Full service providers",,,,,"Other providers",, "Item","Investor-owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",5,30,1,24,2,"NA","NA"," " "Number of retail customers",1216704,209426,17,813389,2,"NA","NA",2239538 "Retail sales

  16. Table 9. Retail electricity sales statistics, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" ,"Full service providers",,,,,"Other providers",, "Item","Investor-owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",1,4,"NA",2,"NA",30,6," " "Number of retail customers",37,10538,"NA",2518,"NA",783980,"NA",797073 "Retail sales

  17. Table 9. Retail electricity sales statistics, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" ,"Full service providers",,,,,"Other providers",, "Item","Investor-owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",5,5,"NA",3,7,43,5," " "Number of retail customers",1616182,34095,"NA",205915,7,618710,"NA",2474909 "Retail sales

  18. Table 9. Retail electricity sales statistics, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts" ,"Full service providers",,,,,"Other providers",, "Item","Investor-owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",6,40,"NA","NA",8,34,6," " "Number of retail customers",2201824,404811,"NA","NA",13,510563,"NA",3117211 "Retail

  19. Table 9. Retail electricity sales statistics, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" ,"Full service providers",,,,,"Other providers",, "Item","Investor-owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",8,41,"NA",10,3,12,3," " "Number of retail customers",4167904,305481,"NA",319033,3,6595,"NA",4799016 "Retail sales

  20. Table 9. Retail electricity sales statistics, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" ,"Full service providers",,,,,"Other providers",, "Item","Investor-owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",5,124,1,46,5,"NA","NA"," " "Number of retail customers",1487785,367230,4,767282,8,"NA","NA",2622309 "Retail sales

  1. Table 9. Retail electricity sales statistics, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi" ,"Full service providers",,,,,"Other providers",, "Item","Investor-owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",2,23,1,25,"NA","NA","NA"," " "Number of retail customers",627484,134811,7,734263,"NA","NA","NA",1496565

  2. Table 9. Retail electricity sales statistics, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" ,"Full service providers",,,,,"Other providers",, "Item","Investor-owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",5,1,2,29,"NA",2,2," " "Number of retail customers",369184,984,20910,195647,"NA",449,"NA",587174 "Retail sales

  3. Table 9. Retail electricity sales statistics, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada" ,"Full service providers",,,,,"Other providers",, "Item","Investor-owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",2,9,1,8,1,3,3," " "Number of retail customers",1189594,30352,2,36951,1,9,"NA",1256909 "Retail sales

  4. Table 9. Retail electricity sales statistics, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire" ,"Full service providers",,,,,"Other providers",, "Item","Investor-owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",3,5,"NA",1,1,16,4," " "Number of retail customers",514095,12197,"NA",77880,1,108287,"NA",712460 "Retail sales

  5. Table 9. Retail electricity sales statistics, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" ,"Full service providers",,,,,"Other providers",, "Item","Investor-owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",5,9,"NA",1,25,44,4," " "Number of retail customers",3202218,62911,"NA",11528,25,678906,"NA",3955588 "Retail sales

  6. Table 9. Retail electricity sales statistics, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" ,"Full service providers",,,,,"Other providers",, "Item","Investor-owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",3,8,1,20,1,"NA","NA"," " "Number of retail customers",718354,85240,13,209064,1,"NA","NA",1012672 "Retail sales

  7. Table 9. Retail electricity sales statistics, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    York" ,"Full service providers",,,,,"Other providers",, "Item","Investor-owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",9,48,"NA",4,5,59,9," " "Number of retail customers",5020899,1278061,"NA",18148,16,1759152,"NA",8076276 "Retail sales

  8. Table 9. Retail electricity sales statistics, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" ,"Full service providers",,,,,"Other providers",, "Item","Investor-owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",3,72,1,31,"NA","NA","NA"," " "Number of retail customers",3300103,593690,4,1039246,"NA","NA","NA",4933043

  9. Table 9. Retail electricity sales statistics, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    North Dakota" ,"Full service providers",,,,,"Other providers",, "Item","Investor-owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",3,12,1,21,"NA","NA","NA"," " "Number of retail customers",233453,11071,20,177426,"NA","NA","NA",421970

  10. Table 9. Retail electricity sales statistics, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" ,"Full service providers",,,,,"Other providers",, "Item","Investor-owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",8,85,"NA",25,4,34,6," " "Number of retail customers",2312998,374308,"NA",382103,4,2439254,"NA",5508667 "Retail sales

  11. Table 9. Retail electricity sales statistics, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" ,"Full service providers",,,,,"Other providers",, "Item","Investor-owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",3,18,1,19,1,4,3," " "Number of retail customers",1411786,295114,1,201893,1,595,"NA",1909390 "Retail sales

  12. Table 9. Retail electricity sales statistics, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" ,"Full service providers",,,,,"Other providers",, "Item","Investor-owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",11,35,"NA",13,5,59,9," " "Number of retail customers",3629465,84412,"NA",219222,5,2053710,"NA",5986814 "Retail sales

  13. Table 9. Retail electricity sales statistics, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" ,"Full service providers",,,,,"Other providers",, "Item","Investor-owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",2,1,"NA","NA","NA",16,1," " "Number of retail customers",474274,4618,"NA","NA","NA",19537,"NA",498429

  14. Table 9. Retail electricity sales statistics, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" ,"Full service providers",,,,,"Other providers",, "Item","Investor-owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",6,36,1,31,"NA","NA","NA"," " "Number of retail customers",241333,60042,21,152666,"NA","NA","NA",454062 "Retail

  15. Table 9. Retail electricity sales statistics, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee" ,"Full service providers",,,,,"Other providers",, "Item","Investor-owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",3,61,1,26,1,"NA","NA"," " "Number of retail customers",47276,2195950,23,965871,1,"NA","NA",3209121 "Retail sales

  16. Table 9. Retail electricity sales statistics, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" ,"Full service providers",,,,,"Other providers",, "Item","Investor-owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",83,72,"NA",67,13,"NA","NA"," " "Number of retail customers",7567394,1818721,"NA",2030847,50,"NA","NA",11417012

  17. Table 9. Retail electricity sales statistics, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" ,"Full service providers",,,,,"Other providers",, "Item","Investor-owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",1,40,1,9,"NA","NA","NA"," " "Number of retail customers",822874,236865,7,47341,"NA","NA","NA",1107087 "Retail

  18. Table 9. Retail electricity sales statistics, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" ,"Full service providers",,,,,"Other providers",, "Item","Investor-owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",1,14,"NA",2,2,"NA","NA"," " "Number of retail customers",258872,55228,"NA",49162,2,"NA","NA",363264 "Retail

  19. Table 9. Retail electricity sales statistics, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" ,"Full service providers",,,,,"Other providers",, "Item","Investor-owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",3,41,2,18,2,3,2," " "Number of retail customers",1451599,1650971,10,166079,2,16,"NA",3268677 "Retail sales

  20. Table 9. Retail electricity sales statistics, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin" ,"Full service providers",,,,,"Other providers",, "Item","Investor-owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",12,82,"NA",24,2,"NA","NA"," " "Number of retail customers",2425518,280677,"NA",259861,2,"NA","NA",2966058

  1. Table 9. Retail electricity sales statistics, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" ,"Full service providers",,,,,"Other providers",, "Item","Investor-owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",5,13,1,18,"NA","NA","NA"," " "Number of retail customers",196786,35737,5,99235,"NA","NA","NA",331763 "Retail

  2. Table 9. Retail electricity sales statistics, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    United States" ,"Full service providers",,,,,"Other providers",, "Item","Investor-owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",243,1949,6,810,137,145,67," " "Number of retail customers",93012392,21383674,38870,18905267,565,13065447,"NA",146406278 "Retail sales

  3. User's guide to SERICPAC: A computer program for calculating electric-utility avoided costs rates

    SciTech Connect (OSTI)

    Wirtshafter, R.; Abrash, M.; Koved, M.; Feldman, S.

    1982-05-01

    SERICPAC is a computer program developed to calculate average avoided cost rates for decentralized power producers and cogenerators that sell electricity to electric utilities. SERICPAC works in tandem with SERICOST, a program to calculate avoided costs, and determines the appropriate rates for buying and selling of electricity from electric utilities to qualifying facilities (QF) as stipulated under Section 210 of PURA. SERICPAC contains simulation models for eight technologies including wind, hydro, biogas, and cogeneration. The simulations are converted in a diversified utility production which can be either gross production or net production, which accounts for an internal electricity usage by the QF. The program allows for adjustments to the production to be made for scheduled and forced outages. The final output of the model is a technology-specific average annual rate. The report contains a description of the technologies and the simulations as well as complete user's guide to SERICPAC.

  4. A Quantitative Assessment of Utility Reporting Practices for Reporting Electric Power Distribution Events

    SciTech Connect (OSTI)

    Hamachi La Commare, Kristina

    2011-11-11

    Metrics for reliability, such as the frequency and duration of power interruptions, have been reported by electric utilities for many years. This study examines current utility practices for collecting and reporting electricity reliability information and discusses challenges that arise in assessing reliability because of differences among these practices. The study is based on reliability information for year 2006 reported by 123 utilities in 37 states representing over 60percent of total U.S. electricity sales. We quantify the effects that inconsistencies among current utility reporting practices have on comparisons of System Average Interruption Duration Index (SAIDI) and System Average Interruption Frequency Index (SAIFI) reported by utilities. We recommend immediate adoption of IEEE Std. 1366-2003 as a consistent method for measuring and reporting reliability statistics.

  5. Electric Utility Phase I Acid Rain Compliance Strategies for the Clean Air Act Amendments of 1990

    Reports and Publications (EIA)

    1994-01-01

    The Acid Rain Program is divided into two time periods; Phase I, from 1995 through 1999, and Phase II, starting in 2000. Phase I mostly affects power plants that are the largest sources of SO2 and NOx . Phase II affects virtually all electric power producers, including utilities and nonutilities. This report is a study of the effects of compliance with Phase I regulations on the costs and operations of electric utilities, but does not address any Phase II impacts.

  6. Statistical recoupling: A new way to break the link between electric-utility sales and revenues

    SciTech Connect (OSTI)

    Hirst, E.

    1993-09-01

    In 1991, US electric utilities spent almost $1.8 billion on demand-side management (DSM) programs. These programs cut peak demands 5% and reduced electricity sales 1% that year. Utility projections suggest that these reductions will increase to 9% and 3%, respectively, by the year 2001. However, utility DSM efforts vary enormously across the country, concentrated in a few states along the east and west coasts and the upper midwest. To some extent, this concentration is a function of regulatory reforms that remove disincentives to utility shareholders for investments in DSM programs. A key component of these reforms is recovery of the net lost revenues caused by utility DSM programs. These lost revenues occur between rate cases when a utility encourages its customers to improve energy efficiency and cut demand. The reduction in sales means that the utility has less revenue to cover its fixed costs. This report describes a new method, statistical recoupling (SR), that addresses this net-lost-revenue problem. Like other decoupling approaches, SR breaks the link between electric-utility revenues and sales. Unlike other approaches, SR minimizes changes from traditional regulation. In particular, the risks of revenue swings associated with year-to-year changes in weather and the economy remain with the utility under SR. Statistical recoupling uses statistical models, based on historical data, that explain retail electricity sales as functions of the number of utility customers, winter and summer weather, the condition of the local economy, electricity price, and perhaps a few other key variables. These models, along with the actual values of the explanatory variables, are then used to estimate ``allowed`` electricity sales and revenues in future years.

  7. The FERC`s policy on electric mergers: A bit of perspective

    SciTech Connect (OSTI)

    Cudahy, R.D.

    1997-10-01

    During the past sixty years when electric power has been a pervasively regulated industry, no comparable epidemic of mergers or related consolidations has broken out. There have been a few sporadic efforts at merger, but nothing like the present phenomenon. While pervasively regulated, electric utilities apparently saw little advantage in merger. They also probably correctly thought that their regulators, especially the state regulators, would not view merger activities with great favor. But above all, the utilities did not perceive the risk-the risk of bankruptcy-that deregulation has brought. Before the energy crisis of the 1970`s, the most significant risk encountered by the investor-owned electric utility industry was of a government take-over in the 1930`s or of the encroachment of public power at various times and places. Otherwise, the industry led a blissful life of guaranteed franchises, ever-expanding revenues, ever-declining costs and cost-plus regulation. In the 1970`s and 1980`s came the agonies of inflation, fuel shortages, cost overruns and plant disallowances. For the most part, however, the regulators saw to it that the industry continued to recover its costs, after a fashion. With competition only a gleam in professorial eyes, only a few mergers were announced and consummated. The floodgates opened with passage of the Energy Policy Act of 1992. Competition, centered on the generation segment of the classic trio of generation, transmission and distribution, loomed larger and larger. And with competition in generation came bedeviling risk. For with deregulation, the government presumably will cease to be concerned that the generating parts of the industry recover their costs. The electricity business thus has lost its oldest friend. Where there was once manageable or at least calculable risk, there is now formidable fear of the unknown and the potentially disastrous. 109 refs.

  8. Electric utility antitrust issues in an era of bulk power market competition

    SciTech Connect (OSTI)

    Green, D.G.; Bouknight, J.A. Jr.

    1994-12-31

    The electric utility industry is facing a new spectrum of antitrust issues reflecting its transformation from an industry that is fully regulated to one that is partly regulated, partly competitive. There are two principal antitrust issues: claims of price squeezes and claims by municipal and cooperative utilities that their traditional utility supplier is refusing to wheel power from other suppliers. This article discusses the following related topics: new antitrust issues; regional transmission groups and other joint ventures; mergers.

  9. Table 11.5 Electricity: Sales to Utility and Nonutility Purchasers, 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Electricity: Sales to Utility and Nonutility Purchasers, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: Utility and Nonutility Purchasers;" " Unit: Million Kilowatthours." " "," ",,,," " " "," ","Total of",,,"RSE" "NAICS"," ","Sales and","Utility","Nonutility","Row"

  10. Table 11.5 Electricity: Sales to Utility and Nonutility Purchasers, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Electricity: Sales to Utility and Nonutility Purchasers, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Utility and Nonutility Purchasers; Unit: Million Kilowatthours. Total of NAICS Sales and Utility Nonutility Code(a) Subsector and Industry Transfers Offsite Purchaser(b) Purchaser(c) Total United States 311 Food 347 168 179 3112 Grain and Oilseed Milling 142 6 136 311221 Wet Corn Milling 14 4 10 31131 Sugar Manufacturing 109 88 21 3114 Fruit and Vegetable Preserving and

  11. Table 11.6 Electricity: Sales to Utility and Nonutility Purchasers, 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity: Sales to Utility and Nonutility Purchasers, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Utility and Nonutility Purchasers;" " Unit: Million Kilowatthours." ,"Total of",,,"RSE" "Economic","Sales and","Utility","Nonutility","Row" "Characteristic(a)","Transfers

  12. Table E13.3. Electricity: Sales to Utility and Nonutility Purchasers, 1998

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Electricity: Sales to Utility and Nonutility Purchasers, 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Utility and Nonutility Purchasers;" " Unit: Million Kilowatthours." ,"Total of",,,"RSE" "Economic","Sales and","Utility","Nonutility","Row" "Characteristic(a)","Transfers

  13. Table N13.3. Electricity: Sales to Utility and Nonutility Purchasers, 1998

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Electricity: Sales to Utility and Nonutility Purchasers, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: Utility and Nonutility Purchasers;" " Unit: Million Kilowatthours." " "," ",,,," " " "," ","Total of",,,"RSE" "NAICS"," ","Sales and","Utility","Nonutility","Row"

  14. DOE Report to Congress„Energy Efficient Electric and Natural Gas Utilities

    Office of Environmental Management (EM)

    AND REGIONAL POLICIES THAT PROMOTE ENERGY EFFICIENCY PROGRAMS CARRIED OUT BY ELECTRIC AND GAS UTILITIES A REPORT TO THE UNITED STATES CONGRESS PURSUANT TO SECTION 139 OF THE ENERGY POLICY ACT OF 2005 MARCH 2007 U.S. DEPARTMENT OF ENERGY Sec. 139. Energy Efficient Electric and Natural Gas Utilities Study. a) IN GENERAL.-Not later than 1 year after the date of enactment of this Act, the Secretary, in consultation with the National Association of Regulatory Utility Commis- sioners and the National

  15. Financial statistics of major U.S. publicly owned electric utilities 1995

    SciTech Connect (OSTI)

    1997-07-01

    The 1995 Edition of the Financial Statistics of Major U.S. Publicly Owned Electric Utilities publication presents 5 years (1991 through 1995) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to publicly owned electric utility issues. Generator (Tables 3 through 11) and nongenerator (Tables 12 through 20) summaries are presented in this publication. Five years of summary financial data are provided (Tables 5 through 11 and 14 through 20). Summaries of generators for fiscal years ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided in Appendix C. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data. 9 figs., 87 tabs.

  16. Evaluation of Public Service Electric & Gas Company`s standard offer program, Volume I

    SciTech Connect (OSTI)

    Goldman, C.A.; Kito, M.S.; Moezzi, M.M.

    1995-07-01

    In May 1993, Public Service Electric and Gas (PSE&G), the largest investor-owned utility in New Jersey, initiated the Standard Offer program, an innovative approach to acquiring demand-side management (DSM) resources. In this program, PSE&G offers longterm contracts with standard terms and conditions to project sponsors, either customers or third-party energy service companies (ESCOs), on a first-come, first-serve basis to fill a resource block. The design includes posted, time-differentiated prices which are paid for energy savings that will be verified over the contract term (5, 10, or 15 years) based on a statewide measurement and verification (M&V) protocol. The design of the Standard Offer differs significantly from DSM bidding programs in several respects. The eligibility requirements and posted prices allow ESCOs and other energy service providers to market and develop projects among customers with few constraints on acceptable end use efficiency technologies. In contrast, in DSM bidding, ESCOs typically submit bids without final commitments from customers and the utility selects a limited number of winning bidders who often agree to deliver a pre-specified mix of savings from various end uses in targeted markets. The major objectives of the LBNL evaluation were to assess market response and customer satisfaction; analyze program costs and cost-effectiveness; review and evaluate the utility`s administration and delivery of the program; examine the role of PSE&G`s energy services subsidiary (PSCRC) in the program and the effect of its involvement on the development of the energy services industry in New Jersey; and discuss the potential applicability of the Standard Offer concept given current trends in the electricity industry (i.e., increasing competition and the prospect of industry restructuring).

  17. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    3,"WGL Energy Services, Inc.","Investor-owned",1270636,59707,1210929,0,0 4,"Direct Energy Business Marketing, LLC","Investor-owned",1208043,0,839195,220720,148128 5,"Direct Energy ...

  18. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    NewEnergy, Inc","Investor-owned",469721,0,296950,149198,23573 4,"TransCanada Power Marketing, Ltd.","Investor-owned",301970,0,0,301970,0 5,"Direct Energy Business ...

  19. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    NewEnergy, Inc","Investor-owned",3073373,0,2140922,923167,9284 5,"TransCanada Power Marketing, Ltd.","Investor-owned",2374650,0,0,2374650,0 " ","Total sales, top five ...

  20. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    4,"Niagara Mohawk Power Corp.","Investor-owned",13152596,8914956,3220135,1017505,0 5,"Direct Energy Business Marketing, LLC","Investor-owned",8604263,0,4198880,4405383,0 " ...

  1. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    3,"United Illuminating Co","Investor-owned",1771412,1179978,547455,43979,0 4,"TransCanada Power Marketing, Ltd.","Investor-owned",1347975,0,0,1347975,0 5,"Direct Energy ...

  2. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    3,"PECO Energy Co","Investor-owned",11394476,8577010,2270505,546961,0 4,"Talen Energy Marketing, LLC","Investor-owned",10381698,1509992,5324011,3260638,287057 5,"PPL ...

  3. Cost and quality of fuels for electric utility plants: Energy data report. 1980 annual

    SciTech Connect (OSTI)

    Not Available

    1981-06-25

    In 1980 US electric utilities reported purchasng 594 million tons of coal, 408.5 million barrels of oil and 3568.7 billion ft/sup 3/ of gas. As compared with 1979 purchases, coal rose 6.7%, oil decreased 20.9%, and gas increased for the fourth year in a row. This volume presents tabulated and graphic data on the cost and quality of fossil fuel receipts to US electric utilities plants with a combined capacity of 25 MW or greater. Information is included on fuel origin and destination, fuel types, and sulfur content, plant types, capacity, and flue gas desulfurization method used, and fuel costs. (LCL)

  4. Assessment of potential and existing problems concerning interface between electric utilities and cogenerators

    SciTech Connect (OSTI)

    Not Available

    1980-03-01

    The potential and existing problems concerning the interface between US electric utilities and cogenerators are considered by region. Also considered are regulatory barriers, rates and contracts, economic feasibility, and impact on system planning. Finally, the impact of the National Energy Act on the marketability potential of cogeneration is reviewed. The three appendixes summarize the utility meetings on cogeneration held in Washington, DC, Los Angeles, and Chicago.

  5. Table A18. Quantity of Electricity Sold to Utility and Nonutility Purchasers

    U.S. Energy Information Administration (EIA) Indexed Site

    8. Quantity of Electricity Sold to Utility and Nonutility Purchasers" " by Census Region, Industry Group, and Selected Industries, 1991" " (Estimates in Million Kilowatthours)" " "," "," "," "," ","RSE" "SIC"," "," ","Utility ","Nonutility","Row" "Code(a)","Industry Groups and Industry","Total

  6. Table A30. Quantity of Electricity Sold to Utility and Nonutility Purchasers

    U.S. Energy Information Administration (EIA) Indexed Site

    Quantity of Electricity Sold to Utility and Nonutility Purchasers" " by Census Region, Census Division, Industry Group, and Selected Industries, 1994" " (Estimates in Million Kilowatthours)" " "," "," "," "," ","RSE" "SIC"," "," ","Utility ","Nonutility","Row" "Code(a)","Industry Group and Industry","Total

  7. Table A31. Quantity of Electricity Sold to Utility and Nonutility Purchasers

    U.S. Energy Information Administration (EIA) Indexed Site

    Quantity of Electricity Sold to Utility and Nonutility Purchasers by Census Region," " Census Division, and Economic Characteristics of the Establishment, 1994" " (Estimates in Million Kilowatthours)" ,,,,"RSE" " "," ","Utility ","Nonutility","Row" "Economic Characteristics(a)","Total Sold","Purchaser(b)","Purchaser(c)","Factors" ,"Total United

  8. Table 11.6 Electricity: Sales to Utility and Nonutility Purchasers, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Electricity: Sales to Utility and Nonutility Purchasers, 2010; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Utility and Nonutility Purchasers; Unit: Million Kilowatthours. Total of Economic Sales and Utility Nonutility Characteristic(a) Transfers Offsite Purchaser(b) Purchaser(c) Total United States Value of Shipments and Receipts (million dollars) Under 20 194 100 93 20-49 282 280 3 50-99 1,115 922 194 100-249 5,225 4,288 936 250-499 5,595 2,696

  9. A Primer on Electric Utilities, Deregulation, and Restructuring of U.S. Electricity Markets

    SciTech Connect (OSTI)

    Warwick, William M.

    2002-06-03

    This primer is offered as an introduction to utility restructuring to better prepare readers for ongoing changes in public utilities and associated energy markets. It is written for use by individuals with responsibility for the management of facilities that use energy, including energy managers, procurement staff, and managers with responsibility for facility operations and budgets. The primer was prepared by the Pacific Northwest National Laboratory under sponsorship from the U.S. Department of Energy?s Federal Energy Management Program. The impetus for this primer originally came from the Government Services Administration who supported its initial development.

  10. Rate impacts and key design elements of gas and electric utility decoupling: a comprehensive review

    SciTech Connect (OSTI)

    Lesh, Pamela G.

    2009-10-15

    Opponents of decoupling worry that customers will experience frequent and significant rate increases as a result of its adoption, but a review of 28 natural gas and 17 electric utilities suggests that decoupling adjustments are both refunds to customers as well as charges and tend to be small. (author)

  11. The integration of renewable energy sources into electric power distribution systems. Volume 2, Utility case assessments

    SciTech Connect (OSTI)

    Zaininger, H.W.; Ellis, P.R.; Schaefer, J.C.

    1994-06-01

    Electric utility distribution system impacts associated with the integration of renewable energy sources such as photovoltaics (PV) and wind turbines (WT) are considered in this project. The impacts are expected to vary from site to site according to the following characteristics: (1) The local solar insolation and/or wind characteristics; (2) renewable energy source penetration level; (3) whether battery or other energy storage systems are applied; and (4) local utility distribution design standards and planning practices. Small, distributed renewable energy sources are connected to the utility distribution system like other, similar kW- and MW-scale equipment and loads. Residential applications are expected to be connected to single-phase 120/240-V secondaries. Larger kw-scale applications may be connected to three-phase secondaries, and larger hundred-kW and MW-scale applications, such as MW-scale windfarms or PV plants, may be connected to electric utility primary systems via customer-owned primary and secondary collection systems. Small, distributed renewable energy sources installed on utility distribution systems will also produce nonsite-specific utility generation system benefits such as energy and capacity displacement benefits, in addition to the local site-specific distribution system benefits. Although generation system benefits are not site-specific, they are utility-specific, and they vary significantly among utilities in different regions. In addition, transmission system benefits, environmental benefits and other benefits may apply. These benefits also vary significantly among utilities and regions. Seven utility case studies considering PV, WT, and battery storage were conducted to identify a range of potential renewable energy source distribution system applications.

  12. Collaborative jurisdiction in the regulation of electric utilities: A new look at jurisdictional boundaries

    SciTech Connect (OSTI)

    1991-12-31

    This conference is one of several activities initiated by FERC, DOE and NARUC to improve the dialogue between Federal and State regulators and policymakers. I am pleased to be here to participate in this conference and to address, with you, electricity issues of truly national significance. I would like to commend Ashley Brown and the NARUC Electricity Committee for its foresight in devising a conference on these issues at this critical juncture in the regulation of the electric utility industry. I also would like to commend Chairman Allday and the FERC for their efforts to improve communication between Federal and State electricity regulators; both through FERC`s Public Conference on Electricity Issues that was held last June, and through the FERC/NARUC workshops that are scheduled to follow this conference. These collaborative efforts are important and necessary steps in addressing successfully the many issues facing the electric utility industry those who regulate it, and those who depend upon it - in other words, about everyone.

  13. Electricity Use in the Pacific Northwest: Utility Historical Sales by Sector, 1989 and Preceding Years.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1990-06-01

    This report officially releases the compilation of regional 1989 retail customer sector sales data by the Bonneville Power Administration. This report is intended to enable detailed examination of annual regional electricity consumption. It gives statistics covering the time period 1970--1989, and also provides observations based on statistics covering the 1983--1989 time period. The electricity use report is the only information source that provides data obtained from each utility in the region based on the amount of electricity they sell to consumers annually. Data is provided on each retail customer sector: residential, commercial, industrial, direct-service industrial, and irrigation. The data specifically supports forecasting activities, rate development, conservation and market assessments, and conservation and market program development and delivery. All of these activities require a detailed look at electricity use. 25 figs., 34 tabs.

  14. Different approaches to estimating transition costs in the electric- utility industry

    SciTech Connect (OSTI)

    Baxter, L.W.

    1995-10-01

    The term ``transition costs`` describes the potential revenue shortfall (or welfare loss) a utility (or other actor) may experience through government-initiated deregulation of electricity generation. The potential for transition costs arises whenever a regulated industry is subject to competitive market forces as a result of explicit government action. Federal and state proposals to deregulate electricity generation sparked a national debate on transition costs in the electric-utility industry. Industry-wide transition cost estimates range from about $20 billion to $500 billion. Such disparate estimates raise important questions on estimation methods for decision makers. This report examines different approaches to estimating transition costs. The study has three objectives. First, we discuss the concept of transition cost. Second, we identify the major cost categories included in transition cost estimates and summarize the current debate on which specific costs are appropriately included in these estimates. Finally, we identify general and specific estimation approaches and assess their strengths and weaknesses. We relied primarily on the evidentiary records established at the Federal Energy Regulatory Commission and the California Public Utilities Commission to identify major cost categories and specific estimation approaches. We also contacted regulatory commission staffs in ten states to ascertain estimation activities in each of these states. We refined a classification framework to describe and assess general estimation options. We subsequently developed and applied criteria to describe and assess specific estimation approaches proposed by federal regulators, state regulators, utilities, independent power companies, and consultants.

  15. Table A21. Quantity of Electricity Sold to Utility and Nonutility Purchasers

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Quantity of Electricity Sold to Utility and Nonutility Purchasers" " by Census Region and Economic Characteristics of the Establishment, 1991" " (Estimates in Million Kilowatthours)" ,,,,"RSE" " "," ","Utility ","Nonutility","Row" "Economic Characteristics(a)","Total Sold","Purchaser(b)","Purchaser(c)","Factors" ,"Total United States",,, "RSE

  16. Impacts of Western Area Power Administration`s power marketing alternatives on electric utility systems

    SciTech Connect (OSTI)

    Veselka, T.D.; Portante, E.C.; Koritarov, V.

    1995-03-01

    This technical memorandum estimates the effects of alternative contractual commitments that may be initiated by the Western Area Power Administration`s Salt Lake City Area Office. It also studies hydropower operational restrictions at the Salt Lake City Area Integrated Projects in combination with these alternatives. Power marketing and hydropower operational effects are estimated in support of Western`s Electric Power Marketing Environmental Impact Statement (EIS). Electricity production and capacity expansion for utility systems that will be directly affected by alternatives specified in the EIS are simulated. Cost estimates are presented by utility type and for various activities such as capacity expansion, generation, long-term firm purchases and sales, fixed operation and maintenance expenses, and spot market activities. Operational changes at hydropower facilities are also investigated.

  17. Table 8.13 Electric Utility Demand-Side Management Programs, 1989-2010

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Electric Utility Demand-Side Management Programs, 1989-2010 Year Actual Peakload Reductions 1 Energy Savings Electric Utility Costs 4 Energy Efficiency 2 Load Management 3 Total Megawatts Million Kilowatthours Thousand Dollars 5 1989 NA NA 12,463 14,672 872,935 1990 NA NA 13,704 20,458 1,177,457 1991 NA NA 15,619 24,848 1,803,773 1992 7,890 9,314 17,204 35,563 2,348,094 1993 10,368 12,701 23,069 45,294 2,743,533 1994 11,662 13,340 25,001 52,483 2,715,657 1995 13,212 16,347 29,561 57,421

  18. Electric utility engineer`s FGD manual -- Volume 1: FGD process design. Final report

    SciTech Connect (OSTI)

    1996-03-04

    Part 1 of the Electric Utility Engineer`s Flue Gas Desulfurization (FGD) Manual emphasizes the chemical and physical processes that form the basis for design and operation of lime- and limestone-based FGD systems applied to coal- or oil-fired steam electric generating stations. The objectives of Part 1 are: to provide a description of the chemical and physical design basis for lime- and limestone-based wet FGD systems; to identify and discuss the various process design parameters and process options that must be considered in developing a specification for a new FGD system; and to provide utility engineers with process knowledge useful for operating and optimizing a lime- or limestone-based wet FGD system.

  19. The revenue requirement approach to analysis of alternative technologies in the electric utility industry

    SciTech Connect (OSTI)

    Lohrasbi, J. )

    1990-01-01

    The advancement of coal-based power generation technology is of primary interest to the U.S. Department of Energy (DOE). The interests are well-founded due to increasing costs for premium fuels and, more importantly, the establishment of energy independence to promote national security. One of DOE's current goals is to promote the development of coal-fired technology for the electric utility industry. This paper is concerned with the economic comparison of two alternative technologies: the coal gasification-combined cycle (GCC) and the coal-fired magnetohydrodynamic (MHD)-combined cycle. The revenue requirement analysis was used for the economic evaluation of engineering alternatives in the electric utility industry. The results were compared based on year-by-year revenue requirement analysis. A computer program was written in Fortran to perform the calculations.

  20. Electric utilities monthly sales and revenue report with state distributions, 1991-1992 (EIA-826H). Data file

    SciTech Connect (OSTI)

    1992-12-31

    Data regarding electricity sales (megawatthours) and associated revenue (thousand dollars) are submitted to the Energy Information Administration (EIA) by selected electric utilities on the Form EIA-826, Monthly Electric Utility Sales and Revenue Report with State Distributions. The Form EIA-826 survey is a statistical sample drawn from the respondents to the Form EIA-861, Annual Electric Utility Report. The monthly survey consists of the utilities with the largest sales within each state and a stratified random sample of the remaining utilities. The form EIA-826 is designed to facilitate the estimation of electricity sales and associated revenue at the National Census Division, and state level, by class of consumer. These estimates in turn, can be used to calculate average revenue per milowatthour and estimates of sales, revenue, and average revenue per kilowatthour coefficients of variation.

  1. Electric utilities monthly sales and revenue report with state distributions, 1991-1992 (EIA-826H). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    Data regarding electricity sales (megawatthours) and associated revenue (thousand dollars) are submitted to the Energy Information Administration (EIA) by selected electric utilities on the Form EIA-826, Monthly Electric Utility Sales and Revenue Report with State Distributions. The Form EIA-826 survey is a statistical sample drawn from the respondents to the Form EIA-861, Annual Electric Utility Report. The monthly survey consists of the utilities with the largest sales within each state and a stratified random sample of the remaining utilities. The form EIA-826 is designed to facilitate the estimation of electricity sales and associated revenue at the National Census Division, and state level, by class of consumer. These estimates in turn, can be used to calculate average revenue per milowatthour and estimates of sales, revenue, and average revenue per kilowatthour coefficients of variation.

  2. Electricity Use in the Pacific Northwest: Utility Historical Sales by Sector, 1990 and Preceding Years.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1991-06-01

    This report officially releases the compilation of regional 1990 retail customer sector sales data by the Bonneville Power Administration. The report is intended to enable detailed examination of annual regional electricity consumption. It also provides observations based on statistics covering the 1983--1990 time period, and gives statistics covering the time period 1970--1990. The electricity use report is the only information source that provides data obtained from each utility in the region based on the amount of electricity they sell annually to four sectors. Data is provided on each retail customer sector and also on the customers Bonneville serves directly: residential, commercial, industrial, direct-service industrial, and irrigation. 21 figs., 40 tabs.

  3. Renewable Electricity Benefits Quantification Methodology: A Request for Technical Assistance from the California Public Utilities Commission

    SciTech Connect (OSTI)

    Mosey, G.; Vimmerstedt, L.

    2009-07-01

    The California Public Utilities Commission (CPUC) requested assistance in identifying methodological alternatives for quantifying the benefits of renewable electricity. The context is the CPUC's analysis of a 33% renewable portfolio standard (RPS) in California--one element of California's Climate Change Scoping Plan. The information would be used to support development of an analytic plan to augment the cost analysis of this RPS (which recently was completed). NREL has responded to this request by developing a high-level survey of renewable electricity effects, quantification alternatives, and considerations for selection of analytic methods. This report addresses economic effects and health and environmental effects, and provides an overview of related analytic tools. Economic effects include jobs, earnings, gross state product, and electricity rate and fuel price hedging. Health and environmental effects include air quality and related public-health effects, solid and hazardous wastes, and effects on water resources.

  4. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Hyde... Eligibility: Commercial, Industrial, Investor-Owned Utility, Local Government, Nonprofit, Municipal Utilities, Residential, Cooperative Utilities, Schools, State...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Renewable Energy and Energy Efficiency Portfolio Standard Eligible Technologies Eligibility: Investor-Owned Utility, Municipal Utilities, Cooperative Utilities Savings Category:...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Standard Eligible Technologies Eligibility: Investor-Owned Utility, Local Government, Municipal Utilities, Cooperative Utilities Savings Category: Solar Water Heat, Geothermal...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    other types o... Eligibility: Commercial, Industrial, Investor-Owned Utility, Local Government, Nonprofit, Municipal Utilities, Residential, Cooperative Utilities, Schools,...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    several other types o... Eligibility: Commercial, Industrial, Investor-Owned Utility, Local Government, Nonprofit, Municipal Utilities, Residential, Cooperative Utilities,...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    the end of 2011. In... Eligibility: Commercial, Industrial, Investor-Owned Utility, Local Government, Nonprofit, Municipal Utilities, Residential, Cooperative Utilities,...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Energy Fund History Eligibility: Commercial, Industrial, Investor-Owned Utility, Municipal Utilities, Residential, Cooperative Utilities, Institutional Savings Category:...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Investor-Owned Utility, Municipal Utilities, Cooperative Utilities Savings Category: Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Wind...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Renewable Portfolio Standard Eligible Technologies Eligibility: Investor-Owned Utility, Local Government, Municipal Utilities, Cooperative Utilities Savings Category: Solar Water...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    reimburs... Eligibility: Commercial, Construction, Industrial, Investor-Owned Utility, Local Government, Municipal Utilities, Cooperative Utilities, State Government, Federal...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Requirements for Wind Development Decommissioning Eligibility: Commercial, Construction, Industrial, Investor-Owned Utility, Municipal Utilities, Cooperative Utilities, Installers...

  15. Survey and analysis of selected jointly owned large-scale electric utility storage projects

    SciTech Connect (OSTI)

    Not Available

    1982-05-01

    The objective of this study was to examine and document the issues surrounding the curtailment in commercialization of large-scale electric storage projects. It was sensed that if these issues could be uncovered, then efforts might be directed toward clearing away these barriers and allowing these technologies to penetrate the market to their maximum potential. Joint-ownership of these projects was seen as a possible solution to overcoming the major barriers, particularly economic barriers, of commercializaton. Therefore, discussions with partners involved in four pumped storage projects took place to identify the difficulties and advantages of joint-ownership agreements. The four plants surveyed included Yards Creek (Public Service Electric and Gas and Jersey Central Power and Light); Seneca (Pennsylvania Electric and Cleveland Electric Illuminating Company); Ludington (Consumers Power and Detroit Edison, and Bath County (Virginia Electric Power Company and Allegheny Power System, Inc.). Also investigated were several pumped storage projects which were never completed. These included Blue Ridge (American Electric Power); Cornwall (Consolidated Edison); Davis (Allegheny Power System, Inc.) and Kttatiny Mountain (General Public Utilities). Institutional, regulatory, technical, environmental, economic, and special issues at each project were investgated, and the conclusions relative to each issue are presented. The major barriers preventing the growth of energy storage are the high cost of these systems in times of extremely high cost of capital, diminishing load growth and regulatory influences which will not allow the building of large-scale storage systems due to environmental objections or other reasons. However, the future for energy storage looks viable despite difficult economic times for the utility industry. Joint-ownership can ease some of the economic hardships for utilites which demonstrate a need for energy storage.

  16. Integration of distributed resources in electric utility systems: Current interconnection practice and unified approach. Final report

    SciTech Connect (OSTI)

    Barker, P.; Leskan, T.; Zaininger, H.; Smith, D.

    1998-11-01

    Deregulation of the electric utility industry, new state and federal programs, and technology developments are making distributed resources (DR) an increasingly utilized option to provide capacity for growing or heavily loaded electric power systems. Optimal DR placement near loads provides benefits not attainable from bulk generation system additions. These include reduced loading of the T and D system, reduced losses, voltage support, and T and D equipment upgrade deferments. The purpose of this document is to review existing interconnection practices and present interconnection guidelines are relevant to the protection, control, and data acquisition requirements for the interconnection of distributed resources to the utility system. This is to include protection performance requirements, data collection and reporting requirements, on-line communication requirements, and ongoing periodic documentation requirements. This document also provides guidelines for the practical placement and sizing of resources as pertinent to determining the interconnection equipment and system control requirements. The material contained herein has been organized into 4 sections dealing with application issues, existing practices, a unified interconnection approach, and future work. Section 2 of the report discusses the application issues associated with distributed resources and deals with various engineering issues such as overcurrent protection, voltage regulation, and islanding. Section 3 summarizes the existing utility interconnection practices and guidelines as determined from the documents provided by participating utilities. Section 4 presents a unified interconnection approach that is intended to serve as a guide for interconnection of distributed resources to the utility system. And finally, Section 5 outlines possible future areas of study to expand upon the topics discussed in this report.

  17. Direct participation of electrical loads in the California independent system operator markets during the Summer of 2000

    SciTech Connect (OSTI)

    Marnay, Chris; Hamachi, Kristina S.; Khavkin, Mark; Siddiqui, Afzal S.

    2001-04-01

    California's restructured electricity markets opened on 1 April 1998. The former investor-owned utilities were functionally divided into generation, transmission, and distribution activities, all of their gas-fired generating capacity was divested, and the retail market was opened to competition. To ensure that small customers shared in the expected benefit of lower prices, the enabling legislation mandated a 10% rate cut for all customers, which was implemented in a simplistic way that fossilized 1996 tariff structures. Rising fuel and environmental compliance costs, together with a reduced ability to import electricity, numerous plant outages, and exercise of market power by generators drove up wholesale electricity prices steeply in 2000, while retail tariffs remained unchanged. One of the distribution/supply companies entered bankruptcy in April 2001, and another was insolvent. During this period, two sets of interruptible load programs were in place, longstanding ones organized as special tariffs by the distribution/supply companies and hastily established ones run directly by the California Independent System Operator (CAISO). The distribution/supply company programs were effective at reducing load during the summer of 2000, but because of the high frequency of outages required by a system on the brink of failure, customer response declined and many left the tariff. The CAISO programs failed to attract enough participation to make a significant difference to the California supply demand imbalance. The poor performance of direct load participation in California's markets reinforces the argument for accurate pricing of electricity as a stimulus to energy efficiency investment and as a constraint on market volatility.

  18. Nitrogen oxides emission control options for coal-fired electric utility boilers

    SciTech Connect (OSTI)

    Ravi K. Srivastava; Robert E. Hall; Sikander Khan; Kevin Culligan; Bruce W. Lani

    2005-09-01

    Recent regulations have required reductions in emissions of nitrogen oxides (NOx) from electric utility boilers. To comply with these regulatory requirements, it is increasingly important to implement state-of-the-art NOx control technologies on coal-fired utility boilers. This paper reviews NOx control options for these boilers. It discusses the established commercial primary and secondary control technologies and examines what is being done to use them more effectively. Furthermore, the paper discusses recent developments in NOx controls. The popular primary control technologies in use in the United States are low-NOx burners and overfire air. Data reflect that average NOx reductions for specific primary controls have ranged from 35% to 63% from 1995 emissions levels. The secondary NOx control technologies applied on U.S. coal-fired utility boilers include reburning, selective noncatalytic reduction (SNCR), and selective catalytic reduction (SCR). Thirty-six U.S. coal-fired utility boilers have installed SNCR, and reported NOx reductions achieved at these applications ranged from 15% to 66%. Recently, SCR has been installed at 150 U.S. coal-fired utility boilers. Data on the performance of 20 SCR systems operating in the United States with low-NOx emissions reflect that in 2003, these units achieved NOx emission rates between 0.04 and 0.07 lb/106 Btu. 106 refs., 6 figs., 6 tabs.

  19. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Delmarva Power","Investor-owned",3647192,2744059,880296,22837,0 2,"Delaware Electric Cooperative","Cooperative",1262619,1033946,228673,0,0 3,"City of Dover - (DE)","Public",708294,201140,226520,280634,0 4,"Constellation

  20. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"PacifiCorp","Investor-Owned",24510395,6976758,8556034,8923492,54111 2,"Provo City Corp","Public",788727,242592,410382,135753,0 3,"City of St George","Public",619529,278940,67594,272995,0 4,"Moon Lake Electric Assn

  1. Buildings Energy Data Book: 6.1 Electric Utility Energy Consumption

    Buildings Energy Data Book [EERE]

    5 U.S. Electric Utility and Nonutility Net Summer Electricity Generation Capacity (GW) Coal Steam Other Fossil Combine Cycle Combustion Turbine Nuclear Pumped Total 1980 0.0 1981 0.0 1982 0.0 1983 0.0 1984 0.0 1985 0.0 1986 0.0 1987 0.0 1988 0.0 1989 18.1 1990 19.5 1991 18.4 1992 21.2 1993 21.1 1994 21.2 1995 21.4 1996 21.1 1997 19.3 1998 19.5 1999 19.6 2000 19.5 2001 19.7 2002 20.4 2003 20.5 2004 20.8 2005 21.3 2006 21.5 2007 21.9 2008 21.9 2009 22.2 2010 22.2 2011 22.2 2012 22.2 2013 22.2 2014

  2. Estimated Value of Service Reliability for Electric Utility Customers in the United States

    SciTech Connect (OSTI)

    Sullivan, M.J.; Mercurio, Matthew; Schellenberg, Josh

    2009-06-01

    Information on the value of reliable electricity service can be used to assess the economic efficiency of investments in generation, transmission and distribution systems, to strategically target investments to customer segments that receive the most benefit from system improvements, and to numerically quantify the risk associated with different operating, planning and investment strategies. This paper summarizes research designed to provide estimates of the value of service reliability for electricity customers in the US. These estimates were obtained by analyzing the results from 28 customer value of service reliability studies conducted by 10 major US electric utilities over the 16 year period from 1989 to 2005. Because these studies used nearly identical interruption cost estimation or willingness-to-pay/accept methods it was possible to integrate their results into a single meta-database describing the value of electric service reliability observed in all of them. Once the datasets from the various studies were combined, a two-part regression model was used to estimate customer damage functions that can be generally applied to calculate customer interruption costs per event by season, time of day, day of week, and geographical regions within the US for industrial, commercial, and residential customers. Estimated interruption costs for different types of customers and of different duration are provided. Finally, additional research and development designed to expand the usefulness of this powerful database and analysis are suggested.

  3. Electric utilities monthly sales and revenue report (EIA-826), current (for microcomputers) (January 1991-August 1992). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-08-01

    Data regarding electricity sales (megawatthours) and associated revenue (thousand dollars) are submitted to the Energy Information Administration (EIA) by selected electric utilities on the Form EIA-826, Monthly Electric Utility Sales and Revenue Report with State Distributions. The monthly survey consists of the utilities with the largest sales within each state and a stratified random sample of the remaining utilities. The Form EIA-826 is designed to facilitate the estimation of electricity sales and associated revenue at the National Census Division, and state level, by class of consumer. These estimates in turn, can be used to calculate average revenue per milowatthour and estimates of sales, revenue, and average revenue per kilowatthour coefficients of variation.

  4. Evaluation of Utility System Impacts and Benefits of Optimally Dispatched Plug-In Hybrid Electric Vehicles (Revised)

    SciTech Connect (OSTI)

    Denholm, P.; Short, W.

    2006-10-01

    Hybrid electric vehicles with the capability of being recharged from the grid may provide a significant decrease in oil consumption. These ''plug-in'' hybrids (PHEVs) will affect utility operations, adding additional electricity demand. Because many individual vehicles may be charged in the extended overnight period, and because the cost of wireless communication has decreased, there is a unique opportunity for utilities to directly control the charging of these vehicles at the precise times when normal electricity demand is at a minimum. This report evaluates the effects of optimal PHEV charging, under the assumption that utilities will indirectly or directly control when charging takes place, providing consumers with the absolute lowest cost of driving energy. By using low-cost off-peak electricity, PHEVs owners could purchase the drive energy equivalent to a gallon of gasoline for under 75 cents, assuming current national average residential electricity prices.

  5. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    repeals the Sustainably Priced Energy Enterprise Development program's renewable energy goals. The Renewable... Eligibility: Investor-Owned Utility, Municipal Utilities,...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    charge (or several other types o... Eligibility: Commercial, Industrial, Investor-Owned Utility, Local Government, Nonprofit, Municipal Utilities, Residential, Cooperative...

  7. An Updated Assessment of Copper Wire Thefts from Electric Utilities Page 1

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment of Copper Wire Thefts from Electric Utilities Page 1 An Updated Assessment of Copper Wire Thefts from Electric Utilities I I n n f f r r a a s s t t r r u u c c t t u u r r e e S S e e c c u u r r i i t t y y a a n n d d E E n n e e r r g g y y R R e e s s t t o o r r a a t t i i o o n n O O f f f f i i c c e e o o f f E E l l e e c c t t r r i i c c i i t t y y D D e e l l i i v v e e r r y y a a n n d d E E n n e e r r g g y y R R e e l l i i a a b b i i l l i i t t y y U U . . S S

  8. Penetration and air-emission-reduction benefits of solar technologies in the electric utilities

    SciTech Connect (OSTI)

    Sutherland, R.J.

    1981-01-01

    The results of a study of four solar energy technologies and the electric utility industry are reported. The purpose of the study was to estimate the penetration by federal region of four solar technologies - wind, biomass, phtovoltaics, and solar thermal - in terms of installed capacity and power generated. The penetration by these technologies occurs at the expense of coal and nuclear power. The displacement of coal plants implies a displacement of their air emissions, such as sulfur dioxide, oxides of nitrogen, and particulate matter. The main conclusion of this study is that solar thermal, photovoltaics, and biomass fail to penetrate significantly by the end of this century in any federal region. Wind energy penetrates the electric utility industry in several regions during the 1990s. Displaced coal and nuclear generation are also estimated by region, as are the corresponding reductions in air emissions. The small-scale penetration by the solar technologies necessarily limits the amount of conventional fuels displaced and the reduction in air emissions. A moderate displacement of sulfur dioxide and the oxides of nitrogen is estimated to occur by the end of this century, and significant lowering of these emissions should occur in the early part of the next century.

  9. Tool Helps Utilities Assess Readiness for Electric Vehicle Charging (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    NREL research helps answer a fundamental question regarding electric vehicles: Is the grid ready to handle them? Environmental, economic and security concerns regarding oil consumption make electrifying the transportation sector a high national priority. NREL's Center for Transportation Technologies & Systems (CTTS) has developed a framework for utilities to evaluate the plug-in vehicle (PEV) readiness of distribution transformers. Combining a wealth of vehicle performance statistics with load data from partner utilities including the Hawaiian Electric Company and Xcel Energy, NREL analyzed the thermal loading characteristics of distribution transformers due to vehicle charging. After running millions of simulations replicating varying climates and conditions, NREL is now able to predict aging rates for transformers when PEVs are added to existing building loads. With the NREL tool, users define simulation parameters by inputting vehicle trip and weather data; transformer load profiles and ratings; PEV penetration, charging rates and battery sizes; utility rates; the number of houses on each transformer; and public charging availability. Transformer load profiles, drive cycles, and ambient temperature data are then run through the thermal model to produce a one-year timeseries of the hotspot temperature. Annual temperature durations are calculated to help determine the annual aging rate. Annual aging rate results are grouped by independent variables. The most useful measure is transformer mileage, a measure of how many electrically-driven miles must be supplied by the transformer. Once the spectrum analysis has been conducted for an area or utility, the outputs can be used to help determine if more detailed evaluation is necessary, or if transformer replacement is required. In the majority of scenarios, transformers have enough excess capacity to charge PEVs. Only in extreme cases does vehicle charging have negative long-term impact on transformers. In those cases, upgrades to larger transformers would be recommended. NREL analysis also showed opportunity for newly-installed smart grids to offset distribution demands by time-shifting the charging loads. Most importantly, the model demonstrated synergies between PEVs and distributed renewables, not only providing clean renewable energy for vehicles, but also reducing demand on the entire distribution infrastructure by supplying loads at the point of consumption.

  10. Electric utility transmission and distribution upgrade deferral benefits from modular electricity storage : a study for the DOE Energy Storage Systems Program.

    SciTech Connect (OSTI)

    Eyer, James M.

    2009-06-01

    The work documented in this report was undertaken as part of an ongoing investigation of innovative and potentially attractive value propositions for electricity storage by the United States Department of Energy (DOE) and Sandia National Laboratories (SNL) Electricity Storage Systems (ESS) Program. This study characterizes one especially attractive value proposition for modular electricity storage (MES): electric utility transmission and distribution (T&D) upgrade deferral. The T&D deferral benefit is characterized in detail. Also presented is a generalized framework for estimating the benefit. Other important and complementary (to T&D deferral) elements of possible value propositions involving MES are also characterized.

  11. Financial Analysis of Incentive Mechanisms to Promote Energy Efficiency: Case Study of a Prototypical Southwest Utility

    SciTech Connect (OSTI)

    Cappers, Peter; Goldman, Charles; Chait, Michele; Edgar, George; Schlegel, Jeff; Shirley, Wayne

    2009-03-04

    Many state regulatory commissions and policymakers want utilities to aggressively pursue energy efficiency as a strategy to mitigate demand and energy growth, diversify the resource mix, and provide an alternative to building new, costly generation. However, as the National Action Plan for Energy Efficiency (NAPEE 2007) points out, many utilities continue to shy away from aggressively expanding their energy efficiency efforts when their shareholder's fundamental financial interests are placed at risk by doing so. Thus, there is increased interest in developing effective ratemaking and policy approaches that address utility disincentives to pursue energy efficiency or lack of incentives for more aggressive energy efficiency efforts. New regulatory initiatives to promote increased utility energy efficiency efforts also affect the interests of consumers. Ratepayers and their advocates are concerned with issues of fairness, impacts on rates, and total consumer costs. From the perspective of energy efficiency advocates, the quid pro quo for utility shareholder incentives is the obligation to acquire all, or nearly all, achievable cost-effective energy efficiency. A key issue for state regulators and policymakers is how to maximize the cost-effective energy efficiency savings attained while achieving an equitable sharing of benefits, costs and risks among the various stakeholders. In this study, we modeled a prototypical vertically-integrated electric investor-owned utility in the southwestern US that is considering implementing several energy efficiency portfolios. We analyze the impact of these energy efficiency portfolios on utility shareholders and ratepayers as well as the incremental effect on each party when lost fixed cost recovery and/or utility shareholder incentive mechanisms are implemented. A primary goal of our quantitative modeling is to provide regulators and policymakers with an analytic framework and tools that assess the financial impacts of alternative incentive approaches on utility shareholders and customers if energy efficiency is implemented under various utility operating, cost, and supply conditions.We used and adapted a spreadsheet-based financial model (the Benefits Calculator) which was developed originally as a tool to support the National Action Plan for Energy Efficiency (NAPEE). The major steps in our analysis are displayed graphically in Figure ES- 1. Two main inputs are required: (1) characterization of the utility which includes its initial financial and physical market position, a forecast of the utility?s future sales, peak demand, and resource strategy to meet projected growth; and (2) characterization of the Demand-Side Resource (DSR) portfolio ? projected electricity and demand savings, costs and economic lifetime of a portfolio of energy efficiency (and/or demand response) programs that the utility is planning or considering implementing during the analysis period. The Benefits Calculator also estimates total resource costs and benefits of the DSR portfolio using a forecast of avoided capacity and energy costs. The Benefits Calculator then uses inputs provided in the Utility Characterization to produce a ?business-as usual? base case as well as alternative scenarios that include energy efficiency resources, including the corresponding utility financial budgets required in each case. If a decoupling and/or a shareholder incentive mechanism are instituted, the Benefits Calculator model readjusts the utility?s revenue requirement and retail rates accordingly. Finally, for each scenario, the Benefits Calculator produces several metrics that provides insights on how energy efficiency resources, decoupling and/or a shareholder incentive mechanism impacts utility shareholders (e.g. overall earnings, return on equity), ratepayers (e.g., average customer bills and rates) and society (e.g. net resource benefits).

  12. Hot dry rock geothermal energy for U.S. electric utilities. Draft final report

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    In order to bring an electric utility component into the study of hot dry rock geothermal energy called for in the Energy Policy Act of 1992 (EPAct), EPRI organized a one-day conference in Philadelphia on January 14,1993. The conference was planned as the first day of a two-day sequence, by coordinating with the U.S. Geological Survey (USGS) and the U.S. Department of Energy (DOE). These two federal agencies were charged under EPAct with the development of a report on the potential for hot dry rock geothermal energy production in the US, especially the eastern US. The USGS was given lead responsibility for a report to be done in association with DOE. The EPRI conference emphasized first the status of technology development and testing in the U.S. and abroad, i.e., in western Europe, Russia and Japan. The conference went on to address the extent of knowledge regarding the resource base in the US, especially in the eastern half of the country, and then to address some practical business aspects of organizing projects or industries that could bring these resources into use, either for thermal applications or for electric power generation.

  13. Buildings Energy Data Book: 6.1 Electric Utility Energy Consumption

    Buildings Energy Data Book [EERE]

    6 U.S. Renewable Electric Utility and Nonutility Net Summer Electricity Generation Capacity (GW) Conv. Hydropower Geothermal Municipal Solid Waste Biomass Solar Thermal Solar PV Wind 1980 81.7 0.9 0.0 0.1 0.0 N.A. N.A. 1981 82.4 0.9 0.0 0.1 0.0 N.A. 0.0 1982 83.0 1.0 0.0 0.1 0.0 N.A. 0.0 1983 83.9 1.2 0.0 0.2 0.0 N.A. 0.0 1984 85.3 1.2 0.0 0.3 0.0 N.A. 0.0 1985 88.9 1.6 0.2 0.2 0.0 N.A. 0.0 1986 89.3 1.6 0.2 0.2 0.0 N.A. 0.0 1987 89.7 1.5 0.2 0.2 0.0 N.A. 0.0 1988 90.3 1.7 0.2 0.2 0.0 N.A. 0.0

  14. Impacts of Commercial Electric Utility Rate Structure Elements on the Economics of Photovoltaic Systems

    SciTech Connect (OSTI)

    Ong, S.; Denholm, P.; Doris, E.

    2010-06-01

    This analysis uses simulated building data, simulated solar photovoltaic (PV) data, and actual electric utility tariff data from 25 cities to understand better the impacts of different commercial rate structures on the value of solar PV systems. By analyzing and comparing 55 unique rate structures across the United States, this study seeks to identify the rate components that have the greatest effect on the value of PV systems. Understanding the beneficial components of utility tariffs can both assist decision makers in choosing appropriate rate structures and influence the development of rates that favor the deployment of PV systems. Results from this analysis show that a PV system's value decreases with increasing demand charges. Findings also indicate that time-of-use rate structures with peaks coincident with PV production and wide ranges between on- and off-peak prices most benefit the types of buildings and PV systems simulated. By analyzing a broad set of rate structures from across the United States, this analysis provides an insight into the range of impacts that current U.S. rate structures have on PV systems.

  15. A utility survey and market assessment on repowering in the electric power industry

    SciTech Connect (OSTI)

    Klara, J.M.; Weinstein, R.E.; Wherley, M.R.

    1996-08-01

    Section 1 of this report provides a background about the DOE High Performance Power Systems (HIPPS) program. There are two kinds of HIPPS cycles under development. One team is led by the Foster Wheeler Development Corporation, the other team is led by the United Technologies Research Center. These cycles are described. Section 2 summarizes the feedback from the survey of the repowering needs of ten electric utility companies. The survey verified that the utility company planners favor a repowering for a first-of-a-kind demonstration of a new technology rather than an all-new-site application. These planners list the major factor in considering a unit as a repowering candidate as plant age: they identify plants built between 1955 and 1965 as the most likely candidates. Other important factors include the following: the need to reduce operating costs; the need to perform major maintenance/replacement of the boiler; and the need to reduce emissions. Section 3 reports the results of the market assessment. Using the size and age preferences identified in the survey, a market assessment was conducted (with the aid of a power plant data base) to estimate the number and characteristics of US generating units which constitute the current, primary potential market for coal-based repowering. Nearly 250 units in the US meet the criteria determined to be the potential repowering market.

  16. Utilizing Electric Vehicles to Assist Integration of Large Penetrations of Distributed Photovoltaic Generation Capacity

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Chassin, Forrest S.; Kintner-Meyer, Michael CW; Gowri, Krishnan

    2012-11-30

    Executive Summary Introduction and Motivation This analysis provides the first insights into the leveraging potential of distributed photovoltaic (PV) technologies on rooftop and electric vehicle (EV) charging. Either of the two technologies by themselves - at some high penetrations – may cause some voltage control challenges or overloading problems, respectively. But when combined, there – at least intuitively – could be synergistic effects, whereby one technology mitigates the negative impacts of the other. High penetration of EV charging may overload existing distribution system components, most prominently the secondary transformer. If PV technology is installed at residential premises or anywhere downstream of the secondary transformer, it will provide another electricity source thus, relieving the loading on the transformers. Another synergetic or mitigating effect could be envisioned when high PV penetration reverts the power flow upward in the distribution system (from the homes upstream into the distribution system). Protection schemes may then no longer work and voltage violation (exceeding the voltage upper limited of the ANSI voltage range) may occur. In this particular situation, EV charging could absorb the electricity from the PV, such that the reversal of power flow can be reduced or alleviated. Given these potential mutual synergistic behaviors of PV and EV technologies, this project attempted to quantify the benefits of combining the two technologies. Furthermore, of interest was how advanced EV control strategies may influence the outcome of the synergy between EV charging and distributed PV installations. Particularly, Californian utility companies with high penetration of the distributed PV technology, who have experienced voltage control problems, are interested how intelligent EV charging could support or affect the voltage control

  17. An examination of the costs and critical characteristics of electric utility distribution system capacity enhancement projects

    SciTech Connect (OSTI)

    Balducci, Patrick J.; Schienbein, Lawrence A.; Nguyen, Tony B.; Brown, Daryl R.; Fathelrahman, Eihab M.

    2004-06-01

    This report classifies and analyzes the capital and total costs (e.g., income tax, property tax, depreciation, centralized power generation, insurance premiums, and capital financing) associated with 130 electricity distribution system capacity enhancement projects undertaken during 1995-2002 or planned in the 2003-2011 time period by three electric power utilities operating in the Pacific Northwest. The Pacific Northwest National Laboratory (PNNL), in cooperation with participating utilities, has developed a large database of over 3,000 distribution system projects. The database includes brief project descriptions, capital cost estimates, the stated need for each project, and engineering data. The database was augmented by additional technical (e.g., line loss, existing substation capacities, and forecast peak demand for power in the area served by each project), cost (e.g., operations, maintenance, and centralized power generation costs), and financial (e.g., cost of capital, insurance premiums, depreciations, and tax rates) data. Though there are roughly 3,000 projects in the database, the vast majority were not included in this analysis because they either did not clearly enhance capacity or more information was needed, and not available, to adequately conduct the cost analyses. For the 130 projects identified for this analysis, capital cost frequency distributions were constructed, and expressed in terms of dollars per kVA of additional capacity. The capital cost frequency distributions identify how the projects contained within the database are distributed across a broad cost spectrum. Furthermore, the PNNL Energy Cost Analysis Model (ECAM) was used to determine the full costs (e.g., capital, operations and maintenance, property tax, income tax, depreciation, centralized power generation costs, insurance premiums and capital financing) associated with delivering electricity to customers, once again expressed in terms of costs per kVA of additional capacity. The projects were sorted into eight categories (capacitors, load transfer, new feeder, new line, new substation, new transformer, reconductoring, and substation capacity increase) and descriptive statistics (e.g., mean, total cost, number of observations, and standard deviation) were constructed for each project type. Furthermore, statistical analysis has been performed using ordinary least squares regression analysis to identify how various project variables (e.g., project location, the primary customer served by the project, the type of project, the reason for the upgrade, size of the upgrade) impact the unit cost of the project.

  18. Techniques of analyzing the impacts of certain electric-utility ratemaking and regulatory-policy concepts. Bibliography

    SciTech Connect (OSTI)

    1980-08-01

    This bibliography provides documentation for use by state public utility commissions and major nonregulated utilities in evaluating the applicability of a wide range of electric utility rate design and regulatory concepts in light of certain regulatory objectives. Part I, Utility Regulatory Objectives, contains 2084 citations on conservation of energy and capital; efficient use of facilities and resources; and equitable rates to electricity consumers. Part II, Rate Design Concepts, contains 1238 citations on time-of-day rates; seasonally-varying rates; cost-of-service rates; interruptible rates (including the accompanying use of load management techniques); declining block rates; and lifeline rates. Part III, Regulatory Concepts, contains 1282 references on restrictions on master metering; procedures for review of automatic adjustment clauses; prohibitions of rate or regulatory discrimination against solar, wind, or other small energy systems; treatment of advertising expenses; and procedures to protect ratepayers from abrupt termination of service.

  19. Other Policy | Open Energy Information

    Open Energy Info (EERE)

    Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Energy Portfolio Standard (Massachusetts) Other Policy Massachusetts Investor-Owned Utility...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Alternative Energy Portfolio Standard Eligible technologies Eligibility: Investor-Owned Utility, Retail...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Renewables Portfolio Standard Eligible Technologies: Eligibility: Investor-Owned Utility, Local Government,...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dehumidifiers Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Alternative Energy Portfolio Standard Eligible technologies Eligibility: Investor-Owned Utility,...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Renewable Fuels, Other Distributed Generation Technologies, Microturbines Alternative Energy Portfolio Standard Background Eligibility: Investor-Owned Utility, Retail Supplier...

  4. Annual Electric Utility Data - EIA-906/920/923 Data File

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    923 detailed data with previous form data (EIA-906920) The survey Form EIA-923 collects detailed electric power data -- monthly and annually -- on electricity generation, fuel...

  5. Mergers, acquisitions, divestitures, and applications for market-based rates in a deregulating electric utility industry

    SciTech Connect (OSTI)

    Cox, A.J.

    1999-05-01

    In this article, the author reviews FERC's current procedures for undertaking competitive analysis. The current procedure for evaluating the competitive impact of transactions in the electric utility industry is described in Order 592, in particular Appendix A. These procedures effectively revised criteria that had been laid out in Commonwealth Edison and brought its merger policy in line with the EPAct and the provisions of Order 888. Order 592 was an attempt to provide more certainty and expedition in handling mergers. It established three criteria that had to be satisfied for a merger to be approved: Post-merger market power must be within acceptable thresholds or be satisfactorily mitigated, acceptable customer protections must be in place (to ensure that rates will not go up as a result of increased costs) and any adverse effect on regulation must be addressed. FERC states that its Order 592 Merger Policy Statement is based upon the Horizontal Merger Guidelines issued jointly by the Federal Trade Commission and the Antitrust Division Department of Justice (FTC/DOJ Merger Guidelines). While it borrows much of the language and basic concepts of the Merger Guidelines, FERC's procedures have been criticized as not following the methodology closely enough, leaving open the possibility of mistakes in market definition.

  6. The state of energy storage in electric utility systems and its effect on renewable energy resources

    SciTech Connect (OSTI)

    Rau, N.S.

    1994-08-01

    This report describes the state of the art of electric energy storage technologies and discusses how adding intermittent renewable energy technologies (IRETs) to a utility network affects the benefits from storage dispatch. Load leveling was the mode of storage dispatch examined in the study. However, the report recommended that other modes be examined in the future for kilowatt and kilowatt-hour optimization of storage. The motivation to install storage with IRET generation can arise from two considerations: reliability and enhancement of the value of energy. Because adding storage increases cost, reliability-related storage is attractive only if the accruing benefits exceed the cost of storage installation. The study revealed that the operation of storage should not be guided by the output of the IRET but rather by system marginal costs. Consequently, in planning studies to quantify benefits, storage should not be considered as an entity belonging to the system and not as a component of IRETS. The study also indicted that because the infusion of IRET energy tends to reduce system marginal cost, the benefits from load leveling (value of energy) would be reduced. However, if a system has storage, particularly if the storage is underutilized, its dispatch can be reoriented to enhance the benefits of IRET integration.

  7. Effects of Title IV of the Clean Air Act Amendments of 1990 on Electric Utilities: An Update, The

    Reports and Publications (EIA)

    1997-01-01

    Describes the strategies used to comply with the Acid Rain Program in 1995, the effect of compliance on SO2 emissions levels, the cost of compliance, and the effects of the program on coal supply and demand. It updates and expands the EIA report, Electric Utility Phase I Acid Rain Compliance Strategies for the Clean Air Act Amendments of 1990.

  8. Energy Efficiency in Western Utility Resource Plans: Impacts onRegional Resources Assessment and Support for WGA Policies

    SciTech Connect (OSTI)

    Hopper, Nicole; Goldman, Charles; Schlegal, Jeff

    2006-08-01

    In the aftermath of the consumer price shocks and short-term power shortages of the 2000-01 electricity crisis, policymakers and regulators in Western states are placing increased emphasis on integrated resource planning (IRP), resource adequacy and assessment and a diversified portfolio of resources to meet the needs of electricity consumers. In some states, this has led to a resurgence in state and utility commitments to energy efficiency. Increasing interest in acquiring energy efficiency as a power-system resource is also driven by the desire to dampen high growth rates in electricity demand in some Western states, rapid increases in natural gas prices, concerns about the environmental impacts of electricity generation (e.g. water consumption by power plants, air quality), and the potential of energy efficiency to provide utility bill savings for households and businesses (WGA CDEAC 2006). Recognizing the cost-competitiveness and environmental benefits of energy efficiency, the Western Governor's Association (WGA) has set a high priority for energy efficiency, establishing a goal of reducing projected electricity demand by 20% across the West by 2020 in a policy resolution on Clean and Diversified Energy for the West (WGA 2004). Nationally, the need for improved tracking of demand-side resources in load forecasting is formalized in the North American Electric Reliability Council (NERC)'s recently adopted reliability standards, which utilities and regional reliability organizations will need to comply with (NERC 2005a and 2005b). In this study, we examine the treatment of energy efficiency in recent resource plans issued by fourteen investor-owned utilities (IOUs) in the Western United States and Canada. The goals of this study are to: (1) summarize energy-efficiency resources as represented in a large sample of recent resource plans prepared by Western utilities and identify key issues; (2) evaluate the extent to which the information provided in current resource plans can be used to support region-wide resource assessment and tracking of state/utility progress in meeting the WGA's energy-efficiency goals (WGA 2004); and (3) offer recommendations on information and documentation of energy-efficiency resources that should be included in future resource plans to facilitate comparative review and regional coordination. The scope of this report covers projected electric end-use efficiency investments reported in all Western utility resource plans that were publicly available as of February 2006. While a few utilities included additional demand-side resources, such as demand response, in their plans, we do not report that information. However, many of the issues and recommendations in reference to energy efficiency in this report are relevant to other demand-side resources as well. This report is organized as follows. Section 2 outlines the data sources and approach used in this study and conceptualizes methods and metrics for tracking energy-efficiency resources over time. Section 3 presents results from the review of the utility resource plans. Important issues encountered in reviewing the resource plans are discussed in section 4. Finally, section 5 concludes with recommendations for improving the tracking and reporting of energy efficiency in forthcoming resource plans.

  9. Impacts of Western Area Power Administration`s power marketing alternatives on retail electricity rates and utility financial viability

    SciTech Connect (OSTI)

    Bodmer, E.; Fisher, R.E.; Hemphill, R.C.

    1995-03-01

    Changes in power contract terms for customers of Western`s Salt Lake City Area Office affect electricity rates for consumers of electric power in Arizona, Colorado, Nevada, New Mexico, Utah, and Wyoming. The impacts of electricity rate changes on consumers are studied by measuring impacts on the rates charged by individual utility systems, determining the average rates in regional areas, and conducting a detailed rate analysis of representative utility systems. The primary focus is an evaluation of the way retail electricity rates for Western`s preference customers vary with alternative pricing and power quantity commitment terms under Western`s long-term contracts to sell power (marketing programs). Retail rate impacts are emphasized because changes in the price of electricity are the most direct economic effect on businesses and residences arising from different Western contractual and operational policies. Retail rates are the mechanism by which changes in cost associated with Western`s contract terms are imposed on ultimate consumers, and rate changes determine the dollar level of payments for electric power incurred by the affected consumers. 41 figs., 9 tabs.

  10. Quantifying the Effect of Fast Charger Deployments on Electric Vehicle Utility and Travel Patterns via Advanced Simulation: Preprint

    SciTech Connect (OSTI)

    Wood, E.; Neubauer, J.; Burton, E.

    2015-02-01

    The disparate characteristics between conventional (CVs) and battery electric vehicles (BEVs) in terms of driving range, refill/recharge time, and availability of refuel/recharge infrastructure inherently limit the relative utility of BEVs when benchmarked against traditional driver travel patterns. However, given a high penetration of high-power public charging combined with driver tolerance for rerouting travel to facilitate charging on long-distance trips, the difference in utility between CVs and BEVs could be marginalized. We quantify the relationships between BEV utility, the deployment of fast chargers, and driver tolerance for rerouting travel and extending travel durations by simulating BEVs operated over real-world travel patterns using the National Renewable Energy Laboratory's Battery Lifetime Analysis and Simulation Tool for Vehicles (BLAST-V). With support from the U.S. Department of Energy's Vehicle Technologies Office, BLAST-V has been developed to include algorithms for estimating the available range of BEVs prior to the start of trips, for rerouting baseline travel to utilize public charging infrastructure when necessary, and for making driver travel decisions for those trips in the presence of available public charging infrastructure, all while conducting advanced vehicle simulations that account for battery electrical, thermal, and degradation response. Results from BLAST-V simulations on vehicle utility, frequency of inserted stops, duration of charging events, and additional time and distance necessary for rerouting travel are presented to illustrate how BEV utility and travel patterns can be affected by various fast charge deployments.

  11. NREL Webinar: Treatment of Solar Generation in Electric Utility Resource Planning

    Broader source: Energy.gov [DOE]

    In this free webinar, you will hear how utilities are incorporating solar generation into their resource planning processes.

  12. A Framework for Organizing Current and Future Electric Utility Regulatory and Business Models

    Broader source: Energy.gov [DOE]

    In this report, we will present a descriptive and organizational framework for incremental and fundamental changes to regulatory and utility business models in the context of clean energy public policy goals. We will also discuss the regulated utility's role in providing value-added services that relate to distributed energy resources, identify the "openness" of customer information and utility networks necessary to facilitate change, and discuss the relative risks, and the shifting of risks, for utilities and customers.

  13. Cost and Quality of Fuels for Electric Utility Plants 2000 Tables

    Gasoline and Diesel Fuel Update (EIA)

    ... Kentucky Utilities Co Green River ...... See footnotes at end of table. Source: Federal Energy Regulatory Commission, FERC Form ...

  14. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"NextEra Energy Power Marketing","Investor-owned",19844...

  15. The effects of Title IV of the Clean Air Act amendments of 1990 on electric utilities: An update

    SciTech Connect (OSTI)

    1997-03-01

    This report presents data and analyses related to Phase I implementation of the Clean Air Act Amendment by electric utilities. It describes the strategies used to comply with the Acid Rain Program in 1995, the effect of compliance on sulfur dioxide emissions levels, the cost of compliance, and the effects of the program on coal supply and demand. The first year of Phase I demonstrated that the market-based sulfur dioxide emissions control system could achieve significant reductions in emissions at lower than expected costs. Some utilities reduced aggregate emissions below legal requirements due to economic incentives; other utilities purchased additional allowances to avoid noncompliance. More than half of the utilities switched to or blended with lower sulfur coal, due to price reductions in the coal market which were partially due to the allowance trading program. 21 figs., 20 tabs.

  16. Kentucky Utilities Company and Louisville Gas & Electric- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

     Kentucky Utilities Company's Home Energy Rebate program provides incentives for residential customers to upgrade to energy efficiency home appliances and heat and air conditioning equipment. ...

  17. Methods for Analyzing the Benefits and Costs of Distributed Photovoltaic Generation to the U.S. Electric Utility System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methods for Analyzing the Benefits and Costs of Distributed Photovoltaic Generation to the U.S. Electric Utility System Paul Denholm, Robert Margolis, Bryan Palmintier, Clayton Barrows, Eduardo Ibanez, and Lori Bird National Renewable Energy Laboratory Jarett Zuboy Independent Consultant Technical Report NREL/TP-6A20-62447 September 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable

  18. Surface area generation and droplet size control in solvent extraction systems utilizing high intensity electric fields

    DOE Patents [OSTI]

    Scott, Timothy C. (Knoxville, TN); Wham, Robert M. (Oak Ridge, TN)

    1988-01-01

    A method and system for solvent extraction where droplets are shattered by a high intensity electric field. These shattered droplets form a plurality of smaller droplets which have a greater combined surface area than the original droplet. Dispersion, coalescence and phase separation are accomplished in one vessel through the use of the single pulsing high intensity electric field. Electric field conditions are chosen so that simultaneous dispersion and coalescence are taking place in the emulsion formed in the electric field. The electric field creates a large amount of interfacial surface area for solvent extraction when the droplet is disintegrated and is capable of controlling droplet size and thus droplet stability. These operations take place in the presence of a counter current flow of the continuous phase.

  19. Regional versus global? -- Will strategies for reduction of sulfur dioxide emissions from electric utilities increase carbon dioxide emissions?

    SciTech Connect (OSTI)

    Randolph, J.C.; Dolsak, N.

    1996-12-31

    Electric utilities, which are dependent on high-sulfur coal are expected to reduce their SO{sub 2} emissions. The strategies for reduction of SO{sub 2} emissions may result in increased CO{sub 2} emissions. Thereby decrease of regional pollution may cause increase of global pollution. Environmental, political, moral, and economic consequences of the two types of pollution differ significantly. Midwestern electric utilities, USA, which are dependent on high-sulfur coal, are analyzed in the paper. However, the same problem is relevant for some European coal fueled power plants. Strategies for reduction of SO{sub 2} emissions, employed by Midwestern electric utilities to comply with the clean Air Act amendments (CAAA) of 1990 and their possible affects on CO{sub 2} emissions, are presented. The paper focuses on two general strategies for reduction of SO{sub 2} emissions. First is coal-switching or blending with a low-sulfur coal. Second is construction and use of flue-gas desulfurization devices (scrubbers). A combination of both strategies is also a viable option. Switching to low-sulfur coal may result in larger CO{sub 2} emissions because that coal has different characteristics and has to be transported much greater distances. Scrubbers require significant amounts of energy for their operation which requires burning more coal. This increases the level of CO{sub 2} emissions.

  20. Methods for Analyzing the Benefits and Costs of Distributed Photovoltaic Generation to the U.S. Electric Utility System

    SciTech Connect (OSTI)

    Denholm, P.; Margolis, R.; Palmintier, B.; Barrows, C.; Ibanez, E.; Bird, L.; Zuboy, J.

    2014-09-01

    This report outlines the methods, data, and tools that could be used at different levels of sophistication and effort to estimate the benefits and costs of DGPV. In so doing, we identify the gaps in current benefit-cost-analysis methods, which we hope will inform the ongoing research agenda in this area. The focus of this report is primarily on benefits and costs from the utility or electricity generation system perspective. It is intended to provide useful background information to utility and regulatory decision makers and their staff, who are often being asked to use or evaluate estimates of the benefits and cost of DGPV in regulatory proceedings. Understanding the technical rigor of the range of methods and how they might need to evolve as DGPV becomes a more significant contributor of energy to the electricity system will help them be better consumers of this type of information. This report is also intended to provide information to utilities, policy makers, PV technology developers, and other stakeholders, which might help them maximize the benefits and minimize the costs of integrating DGPV into a changing electricity system.

  1. Identification, definition and evaluation of potential impacts facing the US electric utility industry over the next decade. Final report

    SciTech Connect (OSTI)

    Grainger, J.J.; Lee, S.S.H.

    1993-11-26

    There are numerous conditions of the generation system that may ultimately develop into system states affecting system reliability and security. Such generation system conditions should also be considered when evaluating the potential impacts on system operations. The following five issues have been identified to impact system reliability and security to the greatest extent: transmission access/retail wheeling; non-utility generators and independent power producers; integration of dispersed storage and generation into utility distribution systems; EMF and right-of-way limitations; Clean Air Act Amendments. Strictly speaking, some issues are interrelated and one issue cannot be completely dissociated from the others. However, this report addresses individual issues separately in order to determine all major aspects of bulk power system operations affected by each issue. The impacts of the five issues on power system reliability and security are summarized. This report examines the five critical issues that the US electric utility industry will be facing over the next decade. The investigation of their impacts on utility industry will be facing over the next decade. The investigation of their impacts on utility system reliability and security is limited to the system operation viewpoint. Those five issues will undoubtedly influence various planning aspects of the bulk transmission system. However, those subjects are beyond the scope of this report. While the issues will also influence the restructure and business of the utility industry politically, sociologically, environmentally, and economically, all discussion included in the report are focused only on technical ramifications.

  2. Buildings Energy Data Book: 6.1 Electric Utility Energy Consumption

    Buildings Energy Data Book [EERE]

    7 U.S. Electric Power Sector Cumulative Power Plant Additions Needed to Meet Future Electricity Demand (1) Typical New Number of New Power Plants to Meet Demand Electric Generator Plant Capacity (MW) 2015 2020 2025 2030 2035 Coal Steam 1,300 7 8 8 8 8 Combined Cycle 540 28 29 43 79 130 Combustion Turbine/Diesel 148 62 105 174 250 284 Nuclear Power 2,236 1 3 3 3 4 Pumped Storage 147 (2) 0 0 0 0 0 Fuel Cells 10 0 0 0 0 0 Conventional Hydropower 20 (2) 20 47 81 125 185 Geothermal 50 9 26 41 62 81

  3. Kentucky Utilities Company and Louisville Gas & Electric- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Kentucky Utilities Company (KU) offers rebates to all commercial customers who pay a DSM charge on monthly bills. Rebates are available on lighting measures, sensors, air conditioners, heat pumps,...

  4. Development and utilization of new and renewable energy with Stirling engine system for electricity in China

    SciTech Connect (OSTI)

    Dong, W.; Abenavoli, R.I.; Carlini, M.

    1996-12-31

    China is the largest developing country in the world. Self-supporting and self-sustaining energy supply is the only solution for development. Recently, fast economic development exposed gradually increasing pressure of energy demand and environment concern. In order to increase the production of electricity of China, the Stirling engine system should be developed. This paper provides an investigation of energy production and consumption in China. The main features of the energy consumption and the development objectives of China`s electric power industry are also described. The necessity and possibility of development of Stirling engine system is discussed.

  5. Electricity from coal and utilization of coal combustion by-products

    SciTech Connect (OSTI)

    Demirbas, A.

    2008-07-01

    Most electricity in the world is conventionally generated using coal, oil, natural gas, nuclear energy, or hydropower. Due to environmental concerns, there is a growing interest in alternative energy sources for heat and electricity production. The major by-products obtained from coal combustion are fly ash, bottom ash, boiler slag, and flue gas desulfurization (FGD) materials. The solid wastes produced in coal-fired power plants create problems for both power-generating industries and environmentalists. The coal fly ash and bottom ash samples may be used as cementitious materials.

  6. Electricity-producing heating apparatus utilizing a turbine generator in a semi-closed brayton cycle

    DOE Patents [OSTI]

    Labinov, Solomon D.; Christian, Jeffrey E.

    2003-10-07

    The present invention provides apparatus and methods for producing both heat and electrical energy by burning fuels in a stove or boiler using a novel arrangement of a surface heat exchanger and microturbine-powered generator and novel surface heat exchanger. The equipment is particularly suited for use in rural and relatively undeveloped areas, especially in cold regions and highlands.

  7. Techniques for analyzing the impacts of certain electric-utility ratemaking and regulatory-policy concepts. Glossary

    SciTech Connect (OSTI)

    1980-08-01

    This document, Glossary, is the first in a series of reports to identify, describe, and apply techniques for analyzing the impacts of certain electric utility concepts. This report was developed with a focus on the currently evolving issues of ratemaking, especially as they might be expected to arise under Sections 101, 111, 113, 114, 131, 132, and 210 of the P.U.R.P.A. of 1978. Because the evolutionary process of ratemaking has led to multiple proceedings and changes of inference in some terms, the glossary attempts to delineate these changes where appropriate. Definitions not uniquely related to ratemaking are included if they are likely to be used in ratemaking proceedings. To avoid unnecessary duplication of effort and expense, the compilers relied heavily on previously developed, publicly available glossaries and definitions developed by organizations such as Edison Electric Institute, the Electric Power Research Institute, and the Institute of Electrical and Electronics Engineers. Existing definitions were revised and new ones were developed as appropriate.

  8. Tracking the Reliability of the U.S. Electric Power System: An Assessment of Publicly Available Information Reported to State Public Utility Commissions

    SciTech Connect (OSTI)

    LaCommare, Kristina H.; Eto, Joseph H.

    2008-10-10

    Large blackouts, such as the August 14-15, 2003 blackout in the northeasternUnited States and Canada, focus attention on the importance of reliable electric service. As public and private efforts are undertaken to improve reliability and prevent power interruptions, it is appropriate to assess their effectiveness. Measures of reliability, such as the frequency and duration of power interruptions, have been reported by electric utilities to state public utility commissions for many years. This study examines current state and utility practices for collecting and reporting electricity reliability information and discusses challenges that arise in assessing reliability because of differences among these practices. The study is based primarily on reliability information for 2006 reported by 123 utilities to 37 state public utility commissions.

  9. Performance-based ratemaking for electric utilities: Review of plans and analysis of economic and resource-planning issues. Volume 2, Appendices

    SciTech Connect (OSTI)

    Comnes, G.A.; Stoft, S.; Greene, N.; Hill, L.J.

    1995-11-01

    This document contains summaries of the electric utilities performance-based rate plans for the following companies: Alabama Power Company; Central Maine Power Company; Consolidated Edison of New York; Mississippi Power Company; New York State Electric and Gas Corporation; Niagara Mohawk Power Corporation; PacifiCorp; Pacific Gas and Electric; Southern California Edison; San Diego Gas & Electric; and Tucson Electric Power. In addition, this document also contains information about LBNL`s Power Index and Incentive Properties of a Hybrid Cap and Long-Run Demand Elasticity.

  10. Performance-based ratemaking for electric utilities: Review of plans and analysis of economic and resource-planning issues. Volume 1

    SciTech Connect (OSTI)

    Comnes, G.A.; Stoft, S.; Greene, N.; Hill, L.J. |

    1995-11-01

    Performance-Based Ratemaking (PBR) is a form of utility regulation that strengthens the financial incentives to lower rates, lower costs, or improve nonprice performance relative traditional regulation, which the authors call cost-of-service, rate-of-return (COS/ROR) regulation. Although the electric utility industry has considerable experience with incentive mechanisms that target specific areas of performance, implementation of mechanisms that cover a comprehensive set of utility costs or services is relatively rare. In recent years, interest in PBR has increased as a result of growing dissatisfaction with COS/ROR and as a result of economic and technological trends that are leading to more competition in certain segments of the electricity industry. In addition, incentive regulation has been used with some success in other public utility industries, most notably telecommunications in the US and telecommunications, energy, and water in the United Kingdom. In this report, the authors analyze comprehensive PBR mechanisms for electric utilities in four ways: (1) they describe different types of PBR mechanisms, (2) they review a sample of actual PBR plans, (3) they consider the interaction of PBR and utility-funded energy efficiency programs, and (4) they examine how PBR interacts with electric utility resource planning and industry restructuring. The report should be of interest to technical staff of utilities and regulatory commissions that are actively considering or designing PBR mechanisms. 16 figs., 17 tabs.

  11. Fuel Mix and Emissions Disclosure | Department of Energy

    Energy Savers [EERE]

    Fuel Mix and Emissions Disclosure Fuel Mix and Emissions Disclosure < Back Eligibility Investor-Owned Utility Municipal Utilities Cooperative Utilities Program Info Sector Name State Website http://www.powertochoose.org State Texas Program Type Generation Disclosure Summary Disclosure Requirements As part of Texas's 1999 electric utility restructuring legislation, the state's retail electric providers (REPs) are required to disclose certain information in the form of a standardized

  12. Market power in electric utility mergers: Access, energy, and the guidelines

    SciTech Connect (OSTI)

    Michaels, R.J. |

    1996-12-31

    All mergers affect competition, some by creating superior competitors and others by creating potential monopolists. The Antitrust Improvements Act of 1976 requires prescreening of proposed mergers to identify those that are likely to affect competition adversely. To implement that law, the US Department of Justice`s merger guidelines contain prescreening procedures that attempt a compromise between theoretical rigor, limited data, expeditious processing and consistency. This article discusses the following topics: the guidelines and their relevence, the problems encountered in applying them to electricity markets; FERC`s merger policy and deemphasizing antitrust markets for capacity and energy; critique of capacity and energy markets; general considerations of antitrust activism; general conclusions on the relationship between regulation and antitrust.

  13. Electrically heated ex-reactor pellet-cladding interaction (PCI) simulations utilizing irradiated Zircaloy cladding. [PWR

    SciTech Connect (OSTI)

    Barner, J.O.; Fitzsimmons, D.E.

    1985-02-01

    In a program sponsored by the Fuel Systems Research Branch of the US Nuclear Regulatory Commission, a series of six electrically heated fuel rod simulation tests were conducted at Pacific Northwest Laboratory. The primary objective of these tests was to determine the susceptibility of irradiated pressurized-water reactor (PWR) Zircaloy-4 cladding to failures caused by pellet-cladding mechanical interaction (PCMI). A secondary objective was to acquire kinetic data (e.g., ridge growth or relaxation rates) that might be helpful in the interpretation of in-reactor performance results and/or the modeling of PCMI. No cladding failures attributable to PCMI occurred during the six tests. This report describes the testing methods, testing apparatus, fuel rod diametral strain-measuring device, and test matrix. Test results are presented and discussed.

  14. Buildings Energy Data Book: 6.1 Electric Utility Energy Consumption

    Buildings Energy Data Book [EERE]

    1 Buildings Share of U.S. Electricity Consumption/Sales (Percent) Buildings Delivered Total | Total Industry Transportation Total (10^15 Btu) 1980 | 60.9% 38.9% 0.2% 100% | 7.15 1981 | 61.4% 38.5% 0.1% 100% | 7.33 1982 | 64.1% 35.7% 0.2% 100% | 7.12 1983 | 63.8% 36.1% 0.2% 100% | 7.34 1984 | 63.2% 36.7% 0.2% 100% | 7.80 1985 | 63.8% 36.0% 0.2% 100% | 7.93 1986 | 64.8% 35.1% 0.2% 100% | 8.08 1987 | 64.9% 34.9% 0.2% 100% | 8.38 1988 | 65.0% 34.8% 0.2% 100% | 8.80 1989 | 64.8% 35.0% 0.2% 100% |

  15. Buildings Energy Data Book: 6.1 Electric Utility Energy Consumption

    Buildings Energy Data Book [EERE]

    4 U.S. Electricity Net Generation, by Plant Type (Billion kWh) Renewables Growth Rate Hydr(1) Oth(2) Total CHP (3) Tot.(4) 2010-year 1980 276 6 282 N.A. 1981 261 6 267 N.A. 1982 309 5 314 N.A. 1983 332 6 339 N.A. 1984 321 9 330 N.A. 1985 281 11 292 N.A. 1986 291 12 302 N.A. 1987 250 12 262 N.A. 1988 223 12 235 N.A. 1989 269 28 297 42 1990 290 35 324 61 1991 286 38 324 72 1992 250 40 290 91 1993 278 42 320 108 1994 254 42 296 123 1995 305 39 345 141 1996 341 41 382 147 1997 351 41 392 148 1998

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy Efficiency Standard for Focus on Energy Origin Eligibility: Investor-Owned Utility, Municipal Utilities, Cooperative Utilities Savings Category: Solar Water Heat, Geothermal...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Clean Energy Portfolio Goal Eligible Technologies Eligibility: Investor-Owned Utility, Municipal Utilities, Cooperative Utilities, Retail Supplier Savings Category: Solar Water...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    mills per kWh) and applied only to... Eligibility: Commercial, Industrial, Investor-Owned Utility, Municipal Utilities, Residential, Cooperative Utilities, Institutional Savings...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Others pending approval, Other EE Energy Efficiency Standard for Focus on Energy Origin Eligibility: Investor-Owned Utility, Municipal Utilities, Cooperative Utilities...

  20. Buildings Energy Data Book: 6.1 Electric Utility Energy Consumption

    Buildings Energy Data Book [EERE]

    2 U.S. Electricity Generation Input Fuel Shares (Percent) Renewables Natural Gas Petroleum Coal Hydro. Oth(2) Total Nuclear Other (3) Total 1980 15.7% 10.8% 50.2% 11.8% 0.2% 12.1% 11.3% (1) 100% 1981 15.4% 9.0% 51.8% 11.2% 0.3% 11.4% 12.3% (1) 100% 1982 13.9% 6.6% 52.6% 13.6% 0.2% 13.8% 13.1% (1) 100% 1983 12.2% 6.3% 53.9% 14.3% 0.3% 14.6% 13.1% (1) 100% 1984 12.6% 5.1% 54.9% 13.2% 0.4% 13.5% 14.0% (1) 100% 1985 12.1% 4.2% 56.2% 11.3% 0.4% 11.8% 15.7% (1) 100% 1986 10.2% 5.6% 55.3% 11.7% 0.5%

  1. Buildings Energy Data Book: 6.1 Electric Utility Energy Consumption

    Buildings Energy Data Book [EERE]

    3 U.S. Electricity Generation Input Fuel Consumption (Quadrillion Btu) Renewables Growth Rate Hydro. Oth(2) Total Nuclear Other (3) Total 2010-Year 1980 2.87 0.06 2.92 2.74 (1) 24.32 1981 2.72 0.06 2.79 3.01 (1) 24.49 1982 3.23 0.05 3.29 3.13 (1) 23.95 1983 3.49 0.07 3.56 3.20 (1) 24.60 1984 3.35 0.09 3.44 3.55 (1) 25.59 1985 2.94 0.11 3.05 4.08 (1) 26.09 1986 3.04 0.12 3.16 4.38 (1) 26.22 1987 2.60 0.13 2.73 4.75 (1) 26.94 1988 2.30 0.12 2.43 5.59 (1) 28.27 1989 2.81 0.41 3.22 5.60 (1) 29.88

  2. JV Task 126 - Mercury Control Technologies for Electric Utilities Burning Bituminous Coal

    SciTech Connect (OSTI)

    Jason Laumb; John Kay; Michael Jones; Brandon Pavlish; Nicholas Lentz; Donald McCollor; Kevin Galbreath

    2009-03-29

    The EERC developed an applied research consortium project to test cost-effective mercury (Hg) control technologies for utilities burning bituminous coals. The project goal was to test innovative Hg control technologies that have the potential to reduce Hg emissions from bituminous coal-fired power plants by {ge}90% at costs of one-half to three-quarters of current estimates for activated carbon injection (ACI). Hg control technology evaluations were performed using the EERC's combustion test facility (CTF). The CTF was fired on pulverized bituminous coals at 550,000 Btu/hr (580 MJ/hr). The CTF was configured with the following air pollution control devices (APCDs): selective catalytic reduction (SCR) unit, electrostatic precipitator (ESP), and wet flue gas desulfurization system (WFDS). The Hg control technologies investigated as part of this project included ACI (three Norit Americas, Inc., and eleven Envergex sorbents), elemental mercury (Hg{sup 0}) oxidation catalysts (i.e., the noble metals in Hitachi Zosen, Cormetech, and Hitachi SCR catalysts), sorbent enhancement additives (SEAs) (a proprietary EERC additive, trona, and limestone), and blending with a Powder River Basin (PRB) subbituminous coal. These Hg control technologies were evaluated separately, and many were also tested in combination.

  3. Biomass Energy for Transport and Electricity: Large scale utilization under low CO2 concentration scenarios

    SciTech Connect (OSTI)

    Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

    2010-01-25

    This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to stabilize atmospheric concentrations of CO2 at 400ppm and 450ppm. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. The costs of processing and transporting biomass energy at much larger scales than current experience are also incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the dominant source. A key finding of this paper is the role that carbon dioxide capture and storage (CCS) technologies coupled with commercial biomass energy can play in meeting stringent emissions targets. Despite the higher technology costs of CCS, the resulting negative emissions used in combination with biomass are a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels and shows that both technologies are important contributors to liquid fuels production, with unique costs and emissions characteristics. Through application of the GCAM integrated assessment model, it becomes clear that, given CCS availability, bioenergy will be used both in electricity and transportation.

  4. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect (OSTI)

    C. Jean Bustard; Kenneth E. Baldrey; Richard Schlager

    2000-04-01

    The U.S. Department of Energy and ADA Environmental Solutions has begun a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the flyash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. Preliminary testing has identified a class of common deliquescent salts that effectively control flyash resistivity on a variety of coals. A method to evaluate cohesive properties of flyash in the laboratory has been selected and construction of an electrostatic tensiometer test fixture is underway. Preliminary selection of a variety of chemicals that will be screened for effect on flyash cohesion has been completed.

  5. A framework and review of customer outage costs: Integration and analysis of electric utility outage cost surveys

    SciTech Connect (OSTI)

    Lawton, Leora; Sullivan, Michael; Van Liere, Kent; Katz, Aaron; Eto, Joseph

    2003-11-01

    A clear understanding of the monetary value that customers place on reliability and the factors that give rise to higher and lower values is an essential tool in determining investment in the grid. The recent National Transmission Grid Study recognizes the need for this information as one of growing importance for both public and private decision makers. In response, the U.S. Department of Energy has undertaken this study, as a first step toward addressing the current absence of consistent data needed to support better estimates of the economic value of electricity reliability. Twenty-four studies, conducted by eight electric utilities between 1989 and 2002 representing residential and commercial/industrial (small, medium and large) customer groups, were chosen for analysis. The studies cover virtually all of the Southeast, most of the western United States, including California, rural Washington and Oregon, and the Midwest south and east of Chicago. All variables were standardized to a consistent metric and dollar amounts were adjusted to the 2002 CPI. The data were then incorporated into a meta-database in which each outage scenario (e.g., the lost of electric service for one hour on a weekday summer afternoon) is treated as an independent case or record both to permit comparisons between outage characteristics and to increase the statistical power of analysis results. Unadjusted average outage costs and Tobit models that estimate customer damage functions are presented. The customer damage functions express customer outage costs for a given outage scenario and customer class as a function of location, time of day, consumption, and business type. One can use the damage functions to calculate outage costs for specific customer types. For example, using the customer damage functions, the cost experienced by an ''average'' customer resulting from a 1 hour summer afternoon outage is estimated to be approximately $3 for a residential customer, $1,200 for small-medium commercial and industrial customer, and $82,000 for large commercial and industrial customer. Future work to improve the quality and coverage of information on the value of electricity reliability to customers is described.

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    dedicated crops grown for energy production and organic waste biomass, hydropower th... Eligibility: Commercial, Industrial, Investor-Owned Utility, Municipal Utilities,...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Advanced Energy Fund History Eligibility: Commercial, Industrial, Investor-Owned Utility, Municipal Utilities,...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    efficiency goals for the State. Previous state mandated energy efficiency program- EmPOWER Maryland Act is... Eligibility: Investor-Owned Utility, Municipal Utilities, Retail...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Alternative Energy Portfolio Standard Eligible technologies Eligibility: Investor-Owned Utility, Retail...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Municipal Utilities Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Renewable Portfolio Standard Eligible Technologies Eligibility: Investor-Owned Utility, Local...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    IOUs are required to offer customers a voluntary program for purchasing renewable energy. The volunt... Eligibility: Investor-Owned Utility, Municipal Utilities, Cooperative...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    identified, Anaerobic Digestion, Fuel Cells using Renewable Fuels Advanced Energy Fund History Eligibility: Commercial, Industrial, Investor-Owned Utility, Municipal Utilities,...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    not identified, Wind (Small), Fuel Cells using Renewable Fuels Advanced Energy Fund History Eligibility: Commercial, Industrial, Investor-Owned Utility, Municipal Utilities,...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    utilities (Alliant, Minnesota Power, Otter Tail Power Company, Xcel Energy) in the Community Solar Gardens... Eligibility: Commercial, Industrial, Investor-Owned Utility, Local...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    in renewable energy facilities between 1 MW and 10 MW with a cumulative installed capacity equal to one p... Eligibility: Investor-Owned Utility, Municipal Utilities,...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The remaining funds support low-income housing energy... Eligibility: Commercial, Industrial, Investor-Owned Utility, Local Government, Nonprofit, Municipal Utilities,...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    utilities (IOUs) to engage in demand response and adopt demand-side management (DSM)... Eligibility: Investor-Owned Utility Savings Category: CustomOthers pending...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    to meet all the scoring criteria. In particular reimburs... Eligibility: Commercial, Construction, Industrial, Investor-Owned Utility, Local Government, Municipal Utilities,...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility Savings Category: CustomOthers pending approval Energy Reduction Goals Origin Eligibility: Investor-Owned Utility, Local Government Savings Category: CustomOthers...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Windows, CustomOthers pending approval, Other EE Energy Efficiency Standard Origin Eligibility: Investor-Owned Utility, Local Government, Municipal Utilities,...

  1. Benchmarking for electric utilities, tree trimming benchmarking, service line installation to single family residence, and distribution revenue meter testing and repair

    SciTech Connect (OSTI)

    Harder, J.

    1994-12-31

    An American Public Power Association (APPA) task force study on benchmarking for electric utilities is presented. Benchmark studies were made of three activities: (1) Tree trimming; (2) Service line installation to single family residence; (3) Distribution revenue meter testing and repair criteria. The results of the study areas are summarized for 15 utilities. The methodologies used for data collection and analysis are discussed. 28 figs., 9 tabs.

  2. Panel 4, CPUCs Energy Storage Mandate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ix CPUC's Energy Storage Mandate: Hydrogen Energy Storage Workshop May 15, 2014 Melicia Charles California Public Utilities Commission ix Overview of CPUC Energy Oversight * The CPUC regulates the investor-owned electric and gas utilities in California that collectively serve over two-thirds of total electricity demand and over three-quarters of natural gas demand throughout California. * The CPUC has played a key role in making California a national and international leader on a number of

  3. Orange and Rockland Case Study

    Energy Savers [EERE]

    10 2012 Orange and Rockland Case Study 1 Voltage Control Device A "Model-Centric" Approach to Smarter Electric Distribution Systems Orange and Rockland Utilities (ORU), is an investor-owned utility and a subsidiary of Consolidated Edison Incorporated (Con Edison), and is located in suburban New York, New Jersey, and Pennsylvania, west of New York City. ORU is a key participant in Con Edison's $272 million Smart Grid Investment Grant (SGIG) project to modernize electric distribution

  4. Tribal Utility Policy Issues

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility Policy Issues New Mexico July 27, 2015 Margaret ... *US Energy Information Administration New ... nation in utility-scale electricity generation from solar ...

  5. $18.8 Million Award for Power Systems Engineering Research Center Continues Collaboration of 13 Universities and 35 Utilities for Electric Power Research, Building the Nation's Energy Workforce

    Broader source: Energy.gov [DOE]

    The Department of Energy awarded a cooperative agreement on January 16, 2009, to the Arizona State University (ASU) Board of Regents to operate the Power Systems Engineering Research Center (PSERC). PSERC is a collaboration of 13 universities with 35 electricity industry member organizations including utilities, transmission companies, vendors and research organizations.

  6. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Idaho Power Co","Investor-owned",13971178,5167474,3820824,4982880,0 2,"PacifiCorp","Investor-owned",3621646,718090,440163,2463393,0 3,"Avista Corp","Investor-owned",3236645,1205385,1012843,1018417,0 4,"City of Idaho Falls -

  7. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Public Service Co of NH","Investor-Owned",3772359,2488177,1149989,134193,0 2,"Constellation NewEnergy, Inc","Investor-Owned",978706,0,577347,401359,0 3,"Integrys Energy Services, Inc.","Investor-Owned",789158,3122,786036,0,0

  8. Electricity prices in a competitive environment: Marginal cost pricing of generation services and financial status of electric utilities. A preliminary analysis through 2015

    SciTech Connect (OSTI)

    1997-08-01

    The emergence of competitive markets for electricity generation services is changing the way that electricity is and will be priced in the United States. This report presents the results of an analysis that focuses on two questions: (1) How are prices for competitive generation services likely to differ from regulated prices if competitive prices are based on marginal costs rather than regulated {open_quotes}cost-of-service{close_quotes} pricing? (2) What impacts will the competitive pricing of generation services (based on marginal costs) have on electricity consumption patterns, production costs, and the financial integrity patterns, production costs, and the financial integrity of electricity suppliers? This study is not intended to be a cost-benefit analysis of wholesale or retail competition, nor does this report include an analysis of the macroeconomic impacts of competitive electricity prices.

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    -- were required to contribute revenue generated from a surcharge on customers' electricity use. In 1997, the... Eligibility: Commercial, Industrial, Investor-Owned...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    governments; public school districts; community colleges; and universities that receive electricity and natural gas distribution service from... Eligibility: Investor-Owned...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy Efficiency Resource Standard In 2007, the Minnesota legislature passed the Next Generation Energy Act (NGEA), which requires both electric and natural gas investor-owned...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Public Benefits Funds for Renewables and Efficiency California's 1996 electric industry restructuring legislation (AB 1890) directed the state's three major investor-owned...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by the Electric Reliability Council of Texas (ERCOT), the program administrator for the Texas Renewable Energy Credit Trading Program, Texas sur... Eligibility: Investor-Owned...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    competitive electricity providers must refer to the disclosure label in all written marketing materials promoting available generation service. Eligibility: Investor-Owned...

  15. Utilities Offering Federal Utility Energy Service Contracts

    Broader source: Energy.gov [DOE]

    The Energy Policy Act of 1992, codified as 42 USC Section 8256 (c) Utility Incentive Programs, authorizes and encourages agencies to participate in programs to increase energy efficiency and for water conservation or the management of electricity demand conducted by gas, water, or electric utilities and generally available to customers of such utilities.

  16. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering New Jersey's net-metering rules require state's investor-owned utilities and energy suppliers...

  17. Interconnection Standards

    Broader source: Energy.gov [DOE]

    Massachusetts' interconnection standards apply to all forms of distributed generation (DG), including renewables, and to all customers of the state's three investor-owned utilities (Unitil,...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Alternative Energy Portfolio Standard Eligible technologies Eligibility: Investor-Owned Utility, Retail Supplier Savings Category: Solar Water Heat, Solar Space Heat, Geothermal...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DuctAir sealing Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Alternative Energy Portfolio Standard Eligible technologies Eligibility: Investor-Owned Utility,...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Investor-Owned Utility, Local Government Savings Category: Solar Water Heat, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Combined Heat & Power, Fuel Cells...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    not identified, Anaerobic Digestion, Fuel Cells using Renewable Fuels Advanced Energy Fund History Eligibility: Commercial, Industrial, Investor-Owned Utility, Municipal...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Yes; specific technologies not identified, Wind (Small), Hydroelectric (Small) Advanced Energy Fund History Eligibility: Commercial, Industrial, Investor-Owned Utility, Municipal...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Eligibility: Investor-Owned Utility, Local Government Savings Category: Solar Water Heat, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Combined Heat & Power, Fuel Cells...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and creating two new classes of renewable energy credits (RECs): Zero Emission Renewable Energy... Eligibility: Commercial, Industrial, Investor-Owned Utility, Nonprofit,...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    in the District. In October 2008 the RPS was amended by... Eligibility: Investor-Owned Utility, Retail Supplier Savings Category: Solar Water Heat, Solar Space Heat, Geothermal...

  6. Renewable Energy Standard

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 2007, Minnesota legislation modified the state's 2001 voluntary renewable energy objective to create a mandatory renewable portfolio standard (RPS). Public utilities (i.e., investor-owned...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    gas distribution service from... Eligibility: Investor-Owned Utility, Local Government, State Government, Federal Government Savings Category: Geothermal Heat Pumps, Refrigerators...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ceiling Fan Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Alternative Energy Portfolio Standard Eligible technologies Eligibility: Investor-Owned Utility, Retail...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Council of Texas (ERCOT), the program administrator for the Texas Renewable Energy Credit Trading Program, Texas sur... Eligibility: Investor-Owned Utility, Retail Supplier Savings...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Other EE, Wind (Small), Hydroelectric (Small), Geothermal Direct-Use Alternative Energy Portfolio Standard Eligible technologies Eligibility: Investor-Owned Utility, Retail...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Motors, CustomOthers pending approval, Other EE, Wind (Small) Alternative Energy Portfolio Standard Eligible technologies Eligibility: Investor-Owned Utility, Retail...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EE, Wind (Small), Personal Computing Equipment, Tankless Water Heater Alternative Energy Portfolio Standard Eligible technologies Eligibility: Investor-Owned Utility, Retail...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind (Small), Hydroelectric (Small), Fuel Cells using Renewable Fuels Alternative Energy Portfolio Standard Eligible technologies Eligibility: Investor-Owned Utility, Retail...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Equipment, Other EE, Wind (Small), Fuel Cells using Renewable Fuels Alternative Energy Portfolio Standard Eligible technologies Eligibility: Investor-Owned Utility, Retail...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy Portfolio Standard The following schedule is currently in effect: Eligibility: Investor-Owned Utility, Retail Supplier Savings Category: Solar Water Heat, Solar Space Heat,...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reliability Council of Texas (ERCOT), the program administrator for the Texas Renewable Energy Credit Trading Program, Texas sur... Eligibility: Investor-Owned Utility, Retail...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supplier Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Alternative Energy Portfolio Standard Eligible technologies Eligibility: Investor-Owned Utility, Retail...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pumps Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Alternative Energy Portfolio Standard Eligible technologies Eligibility: Investor-Owned Utility, Retail...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washers Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Alternative Energy Portfolio Standard Eligible technologies Eligibility: Investor-Owned Utility, Retail...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    VFDs Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Alternative Energy Portfolio Standard Eligible technologies Eligibility: Investor-Owned Utility, Retail...