Sample records for investment group biomass

  1. Biomass Investment Group Inc BIG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouth Carolina:EnergyPark,BioJetMadison,BioflameBioilDataE

  2. Biomass energy : a real estate investment perspective

    E-Print Network [OSTI]

    Foo, Chester Ren Jie

    2014-01-01T23:59:59.000Z

    A central consideration in real estate is how value is created in real estate development and investment deals. A biomass power plant is not only an asset which generates revenues, but from a real estate perspective, it ...

  3. State Grid and Shenzhen Energy Group Biomass Engineering Technology...

    Open Energy Info (EERE)

    Energy Group Biomass Engineering Technology Research Centre Jump to: navigation, search Name: State Grid and Shenzhen Energy Group Biomass Engineering Technology Research Centre...

  4. USDA, DOE to Invest up to $18.4 million for Biomass Research...

    Broader source: Energy.gov (indexed) [DOE]

    "USDA and DOE will invest up to 18.4 million, over three years, for 21 biomass research and development (R&D), and demonstration projects" 2007jointsolicitation.pdf More...

  5. Greenlight Investment Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJump to: navigation,IISrlMassachusetts:Group Jump to:

  6. Florida Biomass Energy Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmore County,andJump to: navigation, searchFloridaBiomass

  7. Liaoning Energy Investment Group Co Ltd Liaoneng | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKoreaLaorLeopold KostalLiaoning Energy Investment

  8. SENT TO LSU AGCENTER/LOUISIANA FOREST PRODUCTS DEVELOPMENT CENTER -FOREST SECTOR / FORESTY PRODUCTS INTEREST GROUP Biomass Outlook 2014: Is Biomass About To Go Bang?

    E-Print Network [OSTI]

    PRODUCTS INTEREST GROUP 1 Biomass Outlook 2014: Is Biomass About To Go Bang? Biomass offers a multitude can bio go? David Appleyard, Contributing Editor February 06, 2014 LONDON -- Traditional biomass renewables collectively. Nonetheless, modern renewables, and modern biomass with it, is catching up fast

  9. Biomass Guidelines (Prince Edward Island, Canada)

    Broader source: Energy.gov [DOE]

    PEI Biomass Guidelines identify two major pathways that biomass projects may follow: No Public Investment, and Public Investment. Projects with Public Investment include any project that has:

  10. Thai group set to invest in Chinese petchem complex

    SciTech Connect (OSTI)

    Alperowicz, N.

    1993-01-06T23:59:59.000Z

    A $5-billion refinery and petrochemical complex is planned by Thailand's Charoen Pokphand (Bangkok) at the seaport of Nimpoh, near Shanghai. The company has discussed the project with the central government of China, and state oil and petrochemicals company Sinopec (Beijing) is due to complete a feasibility study within the next two months. Charoen's plastics processing subsidiary, Kuo Shen (Hong Kong), is expected to hold 70% in the venture, Sinopec 20%, and the Chinese government the remaining 10%. Western companies have been invited to participate. Solvay (Brussels), a 49% partner with Charoen Pokphand in the Vinythai polyvinyl chloride (PVC) joint venture at Map Ta Pud, Thailand, has not yet made a commitment. The 5-million m.t./year oil refinery would feed the complex, which will be based on a 450,000-m.t./year ethylene plant, downstream aromatics units, and a range of derivatives plants. The complex, which falls outside the many announced for Thailand's current five-year economic plan, is expcted to be implemented in stages. To begin with, a 120,000-m.t./year PVC plant will be built that will be fed on imported vinyl chloride monomer. Charoen is in discussions with process licensers, including Solvay, European Vinyl Corp., BFGoodrich, and Shinetsu. Half the PVC output will be consumed by Kuo Shen in China, where Charoen has several plastics processing units, including one in Shanghai and one in Nimpoh. Meanwhile, Sinopec's Hong Kong subsidiary is seeking partners to invest in joint venture projects in China. Sinopec president Liu Xuemin says the company is willing to cooperate with overseas companies to establish small petrochemical projects. In addition, Sinopec is negotiating with officials of Dayang in Jiangsu province and the special economic zone of Shen Zhen, near Hong Kong, on joint ventures for plastics and food additives.

  11. Working Group Meeting Presentation Guidance at a Glance Distributed Reforming of Biomass Pyrolysis Oils

    E-Print Network [OSTI]

    .31 O2 + 0.26 H2O 0.71 CO2 + 0.96 H2 #12;Key Performance Metrics Catalytic Steam Reforming of Bio-Oil Case (Ethanol Case) Bio-oil Storage Tank $106,040 Reformer $803,000 Shift Reactor, PSA, BOP $1Working Group Meeting Presentation Guidance at a Glance Distributed Reforming of Biomass Pyrolysis

  12. Finding investment criteria for monitoring based commissioning (MBCx) services- focus group evidence from Finland

    E-Print Network [OSTI]

    Laitala, A.

    2012-01-01T23:59:59.000Z

    Finding?investment?criteria?for? monitoring?based?commissioning? (MBCx)?services? ? focus?group?evidence?from?Finland Ari?Laitala Aalto?University,?Finland School?of?Engineering Department?of?Real?Estate,?Planning?and?Geoinformatics 12...?making?criterion ? In?the?line?with?the?earlier?research?findings? 11/12/2012 Ari?Laitala?ICEBO?2012 22 Criticism ? Evidence?power?of?the?focus?group?discussions ? On?the?other?hand?it?is?believed?that?many?of?the? leading?MBCx experts?(Finland...

  13. Marginalised social groups in contemporary weee management within social enterprises investments: A study in Greece

    SciTech Connect (OSTI)

    Papaoikonomou, K. [Department of Planning and Regional Development, University of Thessaly, 38334 Volos (Greece)], E-mail: epapaoik@uth.gr; Kipouros, S.; Kungolos, A. [Department of Planning and Regional Development, University of Thessaly, 38334 Volos (Greece); Somakos, L. [Arvis S.A. Environmental Enterprises of Greece, 10433, Athens (Greece); Aravossis, K. [Sector of Industrial Management and Operations Research, School of Mechanical Engineering, National Technical University of Athens, 15780, Athens (Greece); Antonopoulos, I.; Karagiannidis, A. [Laboratory of Heat Transfer and Environmental Engineering, Department of Mechanical Engineering, Aristotle University of Thessaloniki, Box 483, 54124 Thessaloniki (Greece)

    2009-05-15T23:59:59.000Z

    This paper deals with the creation of appropriate conditions aimed at developing social services for reuse and recycling of waste electrical and electronic equipment (WEEE), by the inclusion of handicapped and Roma people in the workforce. Application areas for the project are the Hellenic (Greek) regions of Thessaly and North Aegean, where these groups suffer from professional and social exclusion. The efforts to reduce unemployment in the two aforementioned groups, together with the efforts to implement related Greek and European legislation for sustainable WEEE management, are examined here. Furthermore, networking and cooperation at local, regional and central levels between small enterprises, entrepreneurships and local authorities are examined, so that these social enterprises and their corresponding investments may support the development of the Greek alternative WEEE recycling system.

  14. Biomass stakeholder views and concerns: Environmental groups and some trade association

    SciTech Connect (OSTI)

    Peelle, E.

    2000-01-01T23:59:59.000Z

    This exploratory study of the views and concerns of 25 environmental organizations found high interest and concern about which biomass feedstocks would be used and how these biomass materials would be converted to energy. While all favored renewable energy over fossil or nuclear energy, opinion diverged over whether energy crops, residues, or both should be the primary source of a biomass/bioenergy fuel cycle. About half of the discussants favored biomass ``in general'' as a renewable energy source, while the others were distributed about equally over five categories, from favor-with-conditions, uncertain, skeptical, opposed, to ``no organizational policy.''

  15. http://ase.tufts.edu/gdae/WorkingGroup_FDI.htm The Promise of Investment Liberalization

    E-Print Network [OSTI]

    technology and management transfer ­ Environmental "spillovers" to domestic firms ­ Export-led policy in the region. Brazil, Mexico, Argentina, Chile and Venezuela received more than 80 percent of all the FDI: Crowding Out Domestic Investment? Source: World Bank Development Indicators, 2006 #12;Lessons for Policy

  16. USDA, DOE to Invest up to $18.4 million for Biomass Research, Development and Demonstration Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and BatteryUS-EU-Japan Working GroupDepartmentDevelopmentPage 1

  17. The role of biomass in California's hydrogen economy

    E-Print Network [OSTI]

    Parker, Nathan C; Ogden, Joan; Fan, Yueyue

    2009-01-01T23:59:59.000Z

    investment in biomass hydrogen infrastructure. Recall thatin biomass hydrogen infrastructure decline sharply betweento supply that hydrogen and the infrastructure is built to

  18. The impact of instrument choice on investment in abatement technologies: a case study of tax versus trade incentives for CCS and Biomass for electricity

    E-Print Network [OSTI]

    Laing, T; Grubb, Michael

    over damages or the social cost of carbon can be seen in Figure 1. Estimates for 2050, even for this specific model vary by a factor of more than twenty. The uncertainties can be grouped into two basic areas. The first concerns the likely ‘cost... to be larger for regulators than for firms due to asymmetric information between the parties. 3 Figure 1: Social cost of carbon over time, Hope and Newberry (2008) Our aim is to investigate the impact that the choice of instruments has on firm...

  19. Biomass pretreatment

    DOE Patents [OSTI]

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21T23:59:59.000Z

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  20. CATALYTIC BIOMASS LIQUEFACTION

    E-Print Network [OSTI]

    Ergun, Sabri

    2013-01-01T23:59:59.000Z

    Solvent Systems Catalystic Biomass Liquefaction Investigatereactor Product collection Biomass liquefaction process12-13, 1980 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,

  1. AGCO Biomass Solutions: Biomass 2014 Presentation

    Broader source: Energy.gov [DOE]

    Plenary IV: Advances in Bioenergy Feedstocks—From Field to Fuel AGCO Biomass Solutions: Biomass 2014 Presentation Glenn Farris, Marketing Manager Biomass, AGCO Corporation

  2. Investment companies

    E-Print Network [OSTI]

    Sauer, Edward F

    1961-01-01T23:59:59.000Z

    stockholder challenged the management fee paid to F. Eberstadt & Co. , Inc. , manager and distributor of Chemical Fund. The court dismissed the case on the grounds that excessive fees had not been proved. This case, however, could hardly be considered a... Tax-Exempt Bond Funds. . . . . . . . Daily Pricing of Mutual Investment Company Shares. 56 57 59 59 60 iv Management Fees. . . . . Tax-Free Exchange Funds . 61 62 V. CONCLUSIONS 63 BIBLIOGRAPHY GLOSSARY OF TERMS Balanced fund...

  3. Biomass Feedstocks

    Broader source: Energy.gov [DOE]

    A feedstock is defined as any renewable, biological material that can be used directly as a fuel, or converted to another form of fuel or energy product. Biomass feedstocks are the plant and algal materials used to derive fuels like ethanol, butanol, biodiesel, and other hydrocarbon fuels. Examples of biomass feedstocks include corn starch, sugarcane juice, crop residues such as corn stover and sugarcane bagasse, purpose-grown grass crops, and woody plants. The Bioenergy Technologies Office works in partnership with the U.S. Department of Agriculture (USDA), national laboratories, universities, industry, and other key stakeholders to identify and develop economically, environmentally, and socially sustainable feedstocks for the production of energy, including transportation fuels, electrical power and heat, and other bioproducts. Efforts in this area will ultimately support the development of technologies that can provide a large and sustainable cellulosic biomass feedstock supply of acceptable quality and at a reasonable cost for use by the developing U.S. advanced biofuel industry.

  4. NREL: Biomass Research - Courtney E. Payne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and compositional analysis constituents. Courtney also mentors and manages the biomass analysis group's interns. Before joining NREL, Courtney worked as a synthetic organic...

  5. NREL: Biomass Research - Mark R. Nimlos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R. Nimlos Mark Nimlos is a Principal Scientist and Supervisor for the Biomass Molecular Sciences group in the National Bioenergy Center at the National Renewable Energy Laboratory....

  6. Biomass Surface Characterization Laboratory

    E-Print Network [OSTI]

    the recalcitrant nature of biomass feedstocks and the performance of techniques to deconstruct biomass NREL of biomass feedstocks. BSCL imaging capabilities include: · Confocal microscopy and Raman microscopy

  7. Investing in Math Education

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investing in Math Education 1663 Los Alamos science and technology magazine Latest Issue:January 2015 All Issues submit Investing in Math Education Making good on the Lab's...

  8. Project Finance and Investments

    Broader source: Energy.gov [DOE]

    Plenary III: Project Finance and Investment Project Finance and Investments Chris Cassidy, National Business Renewable Energy Advisor, U.S. Department of Agriculture

  9. Merchant transmission investment

    E-Print Network [OSTI]

    Joskow, Paul L.

    2003-01-01T23:59:59.000Z

    We examine the performance attributes of a merchant transmission investment framework that relies on "market driven" transmission investment to provide the infrastructure to support competitive wholesale markets for ...

  10. NREL: Biomass Research - Biomass Characterization Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    before and after pretreatment and during processing. The characterization of biomass feedstocks, intermediates, and products is a critical step in optimizing biomass conversion...

  11. COFIRING BIOMASS WITH LIGNITE COAL

    SciTech Connect (OSTI)

    Darren D. Schmidt

    2002-01-01T23:59:59.000Z

    The University of North Dakota Energy & Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO{sub x} emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a $1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community.

  12. Biomass shock pretreatment

    DOE Patents [OSTI]

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01T23:59:59.000Z

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  13. 17th European Biomass Conference and Exhibition 2009, Hamburg, Germany Lignocellulosic Ethanol: The Path to Market

    E-Print Network [OSTI]

    17th European Biomass Conference and Exhibition 2009, Hamburg, Germany Lignocellulosic Ethanol of transport fuels from biomass is essential if the EU aspiration to substitute 10% of transport fuels investment in R&D in the US, Europe and Asia. The production of ethanol from lignocellulosic biomass

  14. FirstChoice Investments

    E-Print Network [OSTI]

    Peters, Richard

    FirstChoice Wholesale Investments Product Disclosure Statement Including FirstRate Wholesale Saver and FirstRate Wholesale Term Deposits This is a combined Financial Services Guide and Product Disclosure in FirstChoice Wholesale Investments 1 3 How FirstChoice Wholesale Investments works 2 4 Risks of investing

  15. CATALYTIC LIQUEFACTION OF BIOMASS

    E-Print Network [OSTI]

    Seth, Manu

    2012-01-01T23:59:59.000Z

    liquid Fuels from Biomass: "Catalyst Screening and KineticUC-61 (l, RCO osn CDL or BIOMASS CATALYTIC LIQUEFACTION ManuCATALYTIC LIQUEFACTION OF BIOMASS Manu Seth, Roger Djafar,

  16. CATALYTIC BIOMASS LIQUEFACTION

    E-Print Network [OSTI]

    Ergun, Sabri

    2013-01-01T23:59:59.000Z

    LBL-11 019 UC-61 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,Catalytic Liquefaction of Biomass,n M, Seth, R. Djafar, G.of California. CATALYTIC BIOMASS LIQUEFACTION QUARTERLY

  17. Transportation Investment and

    E-Print Network [OSTI]

    Levinson, David M.

    Transportation Investment and Economic Development: Has the TIED turned? David Levinson University Transportation Investments was Historically Concomitant with Land and Economic Development #12;Canals Railways Surfaced Roads Crude Oil Pipelines Gas Pipelines Telegraph 1825 1985 Proportion of Maximum Extent Growth

  18. Sandia National Laboratories: Biomass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass "Bionic" Liquids from Lignin: Joint BioEnergy Institute Results Pave the Way for Closed-Loop Biofuel Refineries On December 11, 2014, in Biofuels, Biomass, Capabilities,...

  19. Sandia National Laboratories: Biomass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass Assessing the Economic Potential of Advanced Biofuels On September 10, 2013, in Biofuels, Biomass, Energy, Facilities, JBEI, News, News & Events, Partnership, Renewable...

  20. Biomass Analytical Library

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diversity and performance, The chemical and physical properties of biomass and biomass feedstocks are characterized as they move through the supply chain to various conversion...

  1. Biomass Densification Workshop Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    supply systems that ensure high- volume, reliable, and on-spec availability of biomass feedstocks. The United States has a diverse and abundant potential of biomass resources...

  2. FirstChoice Wholesale Investments

    E-Print Network [OSTI]

    Peters, Richard

    FirstChoice Wholesale Investments Product Disclosure Statement Including FirstRate Wholesale Saver Colonial First State 1 2 Benefits of investing in FirstChoice Wholesale Investments 1 3 How FirstChoice Wholesale Investments works 2 4 Risks of investing 2 5 Fees and other costs 6 6 How managed investment

  3. Biomass and Other Unconventional Energy Resources 

    E-Print Network [OSTI]

    Gershman, H. G.

    1982-01-01T23:59:59.000Z

    . The primary technologies used to convert biomass to energy are direct combustion systems and Ithe gasification/pyrolysis method. IThe latter method creates a gaseous, li~uid or solid fuel to be used by an industry. Gasification involves the destr... with environmentally sound energy conservation; and the high rate of return, IRR typically 30-40 percent after taxes for investments utilizing industrial solid waste. This final point is particularly important because any waste-to-energy facility must compete...

  4. Biomass treatment method

    DOE Patents [OSTI]

    Friend, Julie (Claymont, DE); Elander, Richard T. (Evergreen, CO); Tucker, III; Melvin P. (Lakewood, CO); Lyons, Robert C. (Arvada, CO)

    2010-10-26T23:59:59.000Z

    A method for treating biomass was developed that uses an apparatus which moves a biomass and dilute aqueous ammonia mixture through reaction chambers without compaction. The apparatus moves the biomass using a non-compressing piston. The resulting treated biomass is saccharified to produce fermentable sugars.

  5. Mapping Biomass Distribution Potential

    E-Print Network [OSTI]

    Schaetzel, Michael

    2010-11-18T23:59:59.000Z

    Mapping Biomass Distribution Potential Michael Schaetzel Undergraduate ? Environmental Studies ? University of Kansas L O C A T S I O N BIOMASS ENERGY POTENTIAL o According to DOE, Biomass has the potential to provide 14% of... the nation’s power o Currently 1% of national power supply o Carbon neutral? combustion of biomass is part of the natural carbon cycle o Improved crop residue management has potential to benefit environment, producers, and economy Biomass Btu...

  6. Characteristics of Aluminum Biosorption by Sargassum fluitans Biomass

    E-Print Network [OSTI]

    Volesky, Bohumil

    Characteristics of Aluminum Biosorption by Sargassum fluitans Biomass Hak Sung Lee1, * and Bohumil3A 2B2, Canada Abstract: Biomass of nonliving brown seaweed Sargassum fluitans pretreated.5. There are indications that the biomass hydroxyl groups were involved in sequestering the aluminum in the form

  7. Patterns of transmission investment

    E-Print Network [OSTI]

    Joskow, Paul L.

    2005-01-01T23:59:59.000Z

    This paper examines a number of issues associated with alternative analytical approaches for evaluating investments in electricity transmission infrastructure and alternative institutional arrangements to govern network ...

  8. Transmission Investment: A Primer

    SciTech Connect (OSTI)

    McGarvey, Joe

    2006-10-15T23:59:59.000Z

    This primer highlights recent trends in transmission investment, summarizes the division of jurisdictional authority over transmission, and presents four alternative models for transmission ownership. (author)

  9. BIOMASS ENERGY CONVERSION IN HAWAII

    E-Print Network [OSTI]

    Ritschard, Ronald L.

    2013-01-01T23:59:59.000Z

    Report, (unpublished, 1979). Biomass Project Progress 31.Operations, vol. 2 of Biomass Energy (Stanford: StanfordPhotosynthethic Pathway Biomass Energy Production," ~c:_! _

  10. Department of Energy Recovery Act Investment in Biomass Technologies...

    Energy Savers [EERE]

    and deployment. arrasummaryfactsheetweb.pdf More Documents & Publications Algae Biofuels Technology Bioenergy Technologies Office Overview Growing America's Energy...

  11. Department of Energy Recovery Act Investment in Biomass Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I E L D * A L A R A * N E UDepartment

  12. Pretreated densified biomass products

    DOE Patents [OSTI]

    Dale, Bruce E; Ritchie, Bryan; Marshall, Derek

    2014-03-18T23:59:59.000Z

    A product comprising at least one densified biomass particulate of a given mass having no added binder and comprised of a plurality of lignin-coated plant biomass fibers is provided, wherein the at least one densified biomass particulate has an intrinsic density substantially equivalent to a binder-containing densified biomass particulate of the same given mass and h a substantially smooth, non-flakey outer surface. Methods for using and making the product are also described.

  13. Original article Root biomass and biomass increment in a beech

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Original article Root biomass and biomass increment in a beech (Fagus sylvatica L.) stand in North ­ This study is part of a larger project aimed at quantifying the biomass and biomass increment been developed to estimate the biomass and biomass increment of coarse, small and fine roots of trees

  14. AVAILABLE NOW! Biomass Funding

    E-Print Network [OSTI]

    AVAILABLE NOW! Biomass Funding Guide 2010 The Forestry Commission and the Humber Rural Partnership (co-ordinated by East Riding of Yorkshire Council) have jointly produced a biomass funding guide fuel prices continue to rise, and the emerging biomass sector is well-placed to make a significant

  15. Technology Investment Roadmap 2012 -2017

    E-Print Network [OSTI]

    Hickman, Mark

    Technology Investment Roadmap 2012 - 2017 20 February 2012 #12;2 Contents Introduction & Overview................................................................... 23 #12;3 Introduction & Overview This Technology Investment Roadmap (TIR) has been developed

  16. Hydrothermal Liquefaction of Biomass

    SciTech Connect (OSTI)

    Elliott, Douglas C.

    2010-12-10T23:59:59.000Z

    Hydrothermal liquefaction technology is describes in its relationship to fast pyrolysis of biomass. The scope of work at PNNL is discussed and some intial results are presented. HydroThermal Liquefaction (HTL), called high-pressure liquefaction in earlier years, is an alternative process for conversion of biomass into liquid products. Some experts consider it to be pyrolysis in solvent phase. It is typically performed at about 350 C and 200 atm pressure such that the water carrier for biomass slurry is maintained in a liquid phase, i.e. below super-critical conditions. In some applications catalysts and/or reducing gases have been added to the system with the expectation of producing higher yields of higher quality products. Slurry agents ('carriers') evaluated have included water, various hydrocarbon oils and recycled bio-oil. High-pressure pumping of biomass slurry has been a major limitation in the process development. Process research in this field faded away in the 1990s except for the HydroThermal Upgrading (HTU) effort in the Netherlands, but has new resurgence with other renewable fuels in light of the increased oil prices and climate change concerns. Research restarted at Pacific Northwest National Laboratory (PNNL) in 2007 with a project, 'HydroThermal Liquefaction of Agricultural and Biorefinery Residues' with partners Archer-Daniels-Midland Company and ConocoPhillips. Through bench-scale experimentation in a continuous-flow system this project investigated the bio-oil yield and quality that could be achieved from a range of biomass feedstocks and derivatives. The project was completed earlier this year with the issuance of the final report. HydroThermal Liquefaction research continues within the National Advanced Biofuels Consortium with the effort focused at PNNL. The bench-scale reactor is being used for conversion of lignocellulosic biomass including pine forest residue and corn stover. A complementary project is an international collaboration with Canada to investigate kelp (seaweed) as a biomass feedstock. The collaborative project includes process testing of the kelp in HydroThermal Liquefaction in the bench-scale unit at PNNL. HydroThermal Liquefaction at PNNL is performed in the hydrothermal processing bench-scale reactor system. Slurries of biomass are prepared in the laboratory from whole ground biomass materials. Both wet processing and dry processing mills can be used, but the wet milling to final slurry is accomplished in a stirred ball mill filled with angle-cut stainless steel shot. The PNNL HTL system, as shown in the figure, is a continuous-flow system including a 1-litre stirred tank preheater/reactor, which can be connected to a 1-litre tubular reactor. The product is filtered at high-pressure to remove mineral precipitate before it is collected in the two high-pressure collectors, which allow the liquid products to be collected batchwise and recovered alternately from the process flow. The filter can be intermittently back-flushed as needed during the run to maintain operation. By-product gas is vented out the wet test meter for volume measurement and samples are collected for gas chromatography compositional analysis. The bio-oil product is analyzed for elemental content in order to calculate mass and elemental balances around the experiments. Detailed chemical analysis is performed by gas chromatography-mass spectrometry and 13-C nuclear magnetic resonance is used to evaluate functional group types in the bio-oil. Sufficient product is produced to allow subsequent catalytic hydroprocessing to produce liquid hydrocarbon fuels. The product bio-oil from hydrothermal liquefaction is typically a more viscous product compared to fast pyrolysis bio-oil. There are several reasons for this difference. The HTL bio-oil contains a lower level of oxygen because of more extensive secondary reaction of the pyrolysis products. There are less amounts of the many light oxygenates derived from the carbohydrate structures as they have been further reacted to phenolic Aldol condensation products. The bio-oil

  17. Understanding Biomass Feedstock Variability

    SciTech Connect (OSTI)

    Kevin L. Kenney; William A. Smith; Garold L. Gresham; Tyler L. Westover

    2013-01-01T23:59:59.000Z

    If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that due to inherent species variabilities, production conditions, and differing harvest, collection, and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture, and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

  18. Understanding Biomass Feedstock Variability

    SciTech Connect (OSTI)

    Kevin L. Kenney; Garold L. Gresham; William A. Smith; Tyler L. Westover

    2013-01-01T23:59:59.000Z

    If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per-ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that, due to inherent species variabilities, production conditions and differing harvest, collection and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

  19. Vert Investment Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate HomeVela Jump to:Isource History

  20. Rus Energy Investment Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AG Jump to: navigation,RollsElectric Conven CoopCTDT

  1. China City Investment Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd: ChinaInformationChestnutCountries2050OpenChina City

  2. Biodiesel Investment Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher Homes JumpMaintenanceBioFuelBioSolar

  3. BIOMASS REBURNING - MODELING/ENGINEERING STUDIES

    SciTech Connect (OSTI)

    Vladimir Zamansky; Chris Lindsey; Vitali Lissianski

    2000-01-28T23:59:59.000Z

    This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. During the ninth reporting period (September 27--December 31, 1999), EER prepared a paper Kinetic Model of Biomass Reburning and submitted it for publication and presentation at the 28th Symposium (International) on Combustion, University of Edinburgh, Scotland, July 30--August 4, 2000. Antares Group Inc, under contract to Niagara Mohawk Power Corporation, evaluated the economic feasibility of biomass reburning options for Dunkirk Station. A preliminary report is included in this quarterly report.

  4. Investment Tax Credit

    Broader source: Energy.gov [DOE]

    Vermont offers an investment tax credit for installations of renewable energy equipment on business properties. The credit is equal to 24% of the "Vermont-property portion" of the federal business...

  5. Residential Solar Investment Program

    Broader source: Energy.gov [DOE]

    In March 2012, the CT Green Bank* unveiled its solar photovoltaic residential investment program with the ultimate goal to support 30 megawatts of residential solar photovoltaics (PV). HB 6838...

  6. Investing in Bonds

    E-Print Network [OSTI]

    Johnson, Jason; Polk, Wade

    2002-08-12T23:59:59.000Z

    Bonds, which are issued by governments and corporations, can be an important part of one's investment portfolio. U.S. government bonds, municipal bonds, zero-coupon bonds and other types are described. Also learn strategies for coping with inflation...

  7. Investments of uncertain cost

    E-Print Network [OSTI]

    Pindyck, Robert S.

    1992-01-01T23:59:59.000Z

    I study irreversible investment decisions when projects take time to complete, and are subject to two types of uncertainty over the cost of completion. The first is technical uncertainty, i.e., uncertainty over the amount ...

  8. Complex pendulum biomass sensor

    DOE Patents [OSTI]

    Hoskinson, Reed L. (Rigby, ID); Kenney, Kevin L. (Idaho Falls, ID); Perrenoud, Ben C. (Rigby, ID)

    2007-12-25T23:59:59.000Z

    A complex pendulum system biomass sensor having a plurality of pendulums. The plurality of pendulums allow the system to detect a biomass height and density. Each pendulum has an angular deflection sensor and a deflector at a unique height. The pendulums are passed through the biomass and readings from the angular deflection sensors are fed into a control system. The control system determines whether adjustment of machine settings is appropriate and either displays an output to the operator, or adjusts automatically adjusts the machine settings, such as the speed, at which the pendulums are passed through the biomass. In an alternate embodiment, an entanglement sensor is also passed through the biomass to determine the amount of biomass entanglement. This measure of entanglement is also fed into the control system.

  9. Sandia National Laboratories: Biomass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass Renewable Systems On November 4, 2010, in Renewable Systems Renewable Energy Transportation Nuclear Fossil Energy Efficiency Publications Events News Renewable Systems The...

  10. Biomass Processing Photolibrary

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Research related to bioenergy is a major focus in the U.S. as science agencies, universities, and commercial labs seek to create new energy-efficient fuels. The Biomass Processing Project is one of the funded projects of the joint USDA-DOE Biomass Research and Development Initiative. The Biomass Processing Photolibrary has numerous images, but there are no accompanying abstracts to explain what you are seeing. The project website, however, makes available the full text of presentations and publications and also includes an exhaustive biomass glossary that is being developed into an ASAE Standard.

  11. Co-firing biomass

    SciTech Connect (OSTI)

    Hunt, T.; Tennant, D. [Hunt, Guillot & Associates LLC (United States)

    2009-11-15T23:59:59.000Z

    Concern about global warming has altered the landscape for fossil-fuel combustion. The advantages and challenges of co-firing biomass and coal are discussed. 2 photos.

  12. Sandia National Laboratories: Biomass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Biofuels Publications Biochemical Conversion Program Lignocellulosic Biomass Microalgae Thermochemical Conversion Sign up for our E-Newsletter Required.gif?3.21 Email...

  13. Biomass energy systems information user study

    SciTech Connect (OSTI)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-02-01T23:59:59.000Z

    The results of a series of telephone interviews with groups of users of information on biomass energy systems are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. This report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. Results from 12 biomass groups of respondents are analyzed in this report: Federally Funded Researchers (2 groups), Nonfederally Funded Researchers (2 groups), Representatives of Manufacturers (2 groups), Representatives of State Forestry Offices, Private Foresters, Forest Products Engineers, Educators, Cooperative Extension Service County Agents, and System Managers. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  14. Biomass 2013 Attendee List | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Attendee List Biomass 2013 Attendee List This is a list of attendees for the Biomass 2013 conference. biomass2013attendeelist.pdf More Documents & Publications Biomass 2013...

  15. Investing in Stocks

    E-Print Network [OSTI]

    Johnson, Jason; Polk, Wade

    2002-08-12T23:59:59.000Z

    over- shoot or undershoot the stock?s true value, eventually, prices fol- low earnings. The potential profit from a stock investment is unlimited, while potential loss is limited to the amount of the investment. Stock prices (and thus the value of your...?re part of an industry that doesn?t currently interest investors. Value companies may not see much earnings growth at all, but they own various assets that make them attractive to some investors. These assets may include real estate, new products or a...

  16. Biomass One Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher HomesLyons BiomassBiofuels)Biomass Facility Jump

  17. Lasting social impact : Community Development Venture Capital investing

    E-Print Network [OSTI]

    Silberberg, Hattie Paige

    2008-01-01T23:59:59.000Z

    Community Development Venture Capital Funds (CDVC) funds are an emerging group of Community Development Financial Institutions, that make equity investments in businesses in economically distressed areas. As equity investors, ...

  18. Biomass Research Program

    SciTech Connect (OSTI)

    Kenney, Kevin; Wright, Christopher; Shelton-Davis, Colleen

    2011-01-01T23:59:59.000Z

    INL's mission is to achieve DOE's vision of supplying high-quality raw biomass; preprocessing biomass into advanced bioenergy feedstocks; and delivering bioenergy commodities to biorefineries. You can learn more about research like this at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

  19. Biomass Research Program

    ScienceCinema (OSTI)

    Kenney, Kevin; Wright, Christopher; Shelton-Davis, Colleen

    2013-05-28T23:59:59.000Z

    INL's mission is to achieve DOE's vision of supplying high-quality raw biomass; preprocessing biomass into advanced bioenergy feedstocks; and delivering bioenergy commodities to biorefineries. You can learn more about research like this at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

  20. NREL: Biomass Research - Projects in Biomass Process and Sustainabilit...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects in Biomass Process and Sustainability Analyses Researchers at NREL use biomass process and sustainability analyses to understand the economic, technical, and global...

  1. Module Handbook Specialisation Biomass Energy

    E-Print Network [OSTI]

    Damm, Werner

    Module Handbook Specialisation Biomass Energy 2nd Semester for the Master Programme REMA/EUREC Course 2008/2009 University of Zaragoza Specialisation Provider: Biomass Energy #12;Specialisation Biomass Energy, University of Zaragoza Modul: Introduction and Basic Concepts

  2. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY to treatment prescriptions and anticipated outputs of sawlogs and biomass fuel? How many individual operations biomass fuel removed. Typically in plantations. 50% No harvest treatment

  3. NREL: Biomass Research - Video Text

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    common corn grain ethanol. Cellulosic ethanol is made from organic plant matter called biomass. The video shows different forms of biomass such as switchgrass, corn stalks, and...

  4. BIOMASS ENERGY CONVERSION IN HAWAII

    E-Print Network [OSTI]

    Ritschard, Ronald L.

    2013-01-01T23:59:59.000Z

    biomass resources will have to be reassessed periodically in the light of priceEthanol Price. Effect of Sugar on Ethanol Cost • vii BIOMASS

  5. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY .................................................................................... 33 3.3 BIOMASS POWER PLANT OPERATION MODELS AND DATA

  6. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY and continuously between the earth's biomass and atmosphere. From a greenhouse gas perspective, forest treatments

  7. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY study. The Biomass to Energy (B2E) Project is exploring the ecological and economic consequences

  8. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY Citation: USDA Forest Service, Pacific Southwest Research Station. 2009. Biomass to Energy: Forest

  9. Developing better biomass feedstock | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Developing better biomass feedstock Developing better biomass feedstock Released: September 04, 2014 Multi-omics unlocking the workings of plants Kim Hixson, an EMSL research...

  10. Sandia National Laboratories: biomass conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biomass conversion Sandia Video Featured by DOE Bioenergy Technologies Office On December 10, 2014, in Biofuels, Biomass, Capabilities, Energy, Facilities, JBEI, News, News &...

  11. NREL: Biomass Research - Amie Sluiter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Biomass Analysis Technologies team to provide compositional analysis data on biomass feedstocks and process intermediates for use in pretreatment models and techno-economic...

  12. Clean Energy Investment Program (Florida)

    Broader source: Energy.gov [DOE]

    The Florida Opportunity Fund's Clean Energy Investment Program is a direct investment program created to promote the adoption of energy efficient and renewable energy (EE/RE) products and...

  13. Uncertainty, investment, and industry evolution

    E-Print Network [OSTI]

    Caballero, Ricardo J.

    1992-01-01T23:59:59.000Z

    We study the effects of aggregate and idiosyncratic uncertainty on the entry of firms, total investment, and prices in a competitive industry with irreversible investment. We first use standard dynamic programming methods ...

  14. The Use of Biomass for Power Generation in the U.S.

    SciTech Connect (OSTI)

    none

    2006-07-15T23:59:59.000Z

    Historically, biomass has been man's principal source of energy, mainly used in the form of wood for cooking and heating. With the industrial revolution and the introduction of motorized transportation and electricity, fossil fuels became the dominant source of energy. Today, biomass is the largest domestic source of renewable energy providing over 3% of total U.S. energy consumption, and surpassing hydropower. Yet, recent increases in the price and volatility of fossil fuel supplies and the financial impacts from a number of financially distressed investments in natural gas combined cycle power plants have led to a renewed interest in electricity generation from biomass. The biomass-fueled generation market is a dynamic one that is forecast to show significant growth over the next two decades as environmental drivers are increasingly supported by commercial ones. The most significant change is likely to come from increases in energy prices, as decreasing supply and growing demand increase the costs of fossil fuel-generated electricity and improve the competitive position of biomass as a power source. The report provides an overview of the renewed U.S. market interest in biomass-fueled power generation and gives a concise look at what's driving interest in biomass-fueled generation, the challenges faced in implementing biomass-fueled generation projects, and the current and future state of biomass-fueled generation. Topics covered in the report include: an overview of biomass-fueled generation including its history, the current market environment, and its future prospects; an analysis of the key business factors that are driving renewed interest in biomass-fueled generation; an analysis of the challenges that are hindering the implementation of biomass-fueled generation projects; a description of the various feedstocks that can be used for biomass-fueled generation; an evaluation of the biomass supply chain; a description of biomass-fueled generation technologies; and, a review of the economic drivers of biomass-fueled generation project success.

  15. COMMISSION REPORT 20122013 INVESTMENT PLAN

    E-Print Network [OSTI]

    , and diesel substitute fuels. State investment is necessary to fill the gap and fund the differential cost COMMISSION REPORT 20122013 INVESTMENT PLAN UPDATE FOR THE ALTERNATIVE AND RENEWABLE FUEL the Energy Commission to adopt an investment plan that describes how funding will complement existing public

  16. WP 3 Report: Biomass Potentials Biomass production potentials

    E-Print Network [OSTI]

    WP 3 Report: Biomass Potentials 1 Biomass production potentials in Central and Eastern Europe under different scenarios Final report of WP3 of the VIEWLS project, funded by DG-Tren #12;WP 3 Report: Biomass Potentials 2 Report Biomass production potentials in central and Eastern Europe under different scenarios

  17. DOE 2014 Biomass Conference

    Broader source: Energy.gov [DOE]

    Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels DOE 2014 Biomass Conference Jim Williams, Senior Manager, American Petroleum Institute

  18. Countercurrent Saccharification of Biomass 

    E-Print Network [OSTI]

    Derner, John David

    2015-04-21T23:59:59.000Z

    Our goal was to research and implement a countercurrent system to run enzymatic saccharification of biomass. The project provided clear results to show that this method is more efficient than the batch process that companies currently employ. Excess...

  19. Biomass Energy Production Incentive

    Broader source: Energy.gov [DOE]

    In 2007 South Carolina enacted the ''Energy Freedom and Rural Development Act'', which provides production incentives for certain biomass-energy facilities. Eligible systems earn $0.01 per kilowatt...

  20. Strategic Biomass Solutions (Mississippi)

    Broader source: Energy.gov [DOE]

    The Strategic Biomass Solutions (SBS) was formed by the Mississippi Technology Alliance in June 2009. The purpose of the SBS is to provide assistance to existing and potential companies, investors...

  1. Converting Biomass to Products

    SciTech Connect (OSTI)

    Graybeal, Judith W.

    2006-06-01T23:59:59.000Z

    For nearly 30 years, PNNL has been developing and applying novel thermal, chemical and biological processes to convert biomass to industrial and consumer products, fuels and energy. Honors for technologies resulting from this research include the Presidential Green Chemistry Award and several Federal Laboratory Consortium and R&D 100 Awards. PNNL’s research and development activities address the complete processing scheme, from feedstock pretreatment to purified product recovery. The laboratory applies fundamental science and advanced engineering capabilities to biomass conversion and processing to ensure effective recovery of optimal value from biomass; carbohydrate polymer systems to maximize energy efficiencies; and micro-technology systems for separation and conversion processes. For example, bioproducts researchers in the laboratory’s Institute for Interfacial Catalysis develop and demonstrate the utility of new catalyst formulations for production of bio-based chemicals. This article describes a sampling of current and recent catalysis projects for biomass conversion.

  2. Biomass 2014 Poster Session

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Bioenergy Technologies Office (BETO) invites students, researchers, public and private organizations, and members of the general public to submit poster abstracts for consideration for the annual Biomass Conference Poster Session. The Biomass 2014 conference theme focuses on topics that are advancing the growth of the bioeconomy, such as improvements in feedstock logistics; promising, innovative pathways for advanced biofuels; and market-enabling co-products.

  3. BIOMASS ACTION PLAN FOR SCOTLAND

    E-Print Network [OSTI]

    BIOMASS ACTION PLAN FOR SCOTLAND #12; #12;© Crown copyright 2007 ISBN: 978 0 7559 6506 9 Scottish% recyclable. #12;A BIOMASS ACTION PLAN FOR SCOTLAND #12;#12;1 CONTENTS FOREWORD 3 1. EXECUTIVE SUMMARY 5 2. INTRODUCTION 9 3. WIDER CONTEXT 13 4. SCOTLAND'S ROLE IN THE UK BIOMASS STRATEGY 17 5. BIOMASS HEATING 23 6

  4. Northeast Regional Biomass Program

    SciTech Connect (OSTI)

    Lusk, P.D.

    1992-12-01T23:59:59.000Z

    The Northeast Regional Biomass Program has been in operation for a period of nine years. During this time, state managed programs and technical programs have been conducted covering a wide range of activities primarily aim at the use and applications of wood as a fuel. These activities include: assessments of available biomass resources; surveys to determine what industries, businesses, institutions, and utility companies use wood and wood waste for fuel; and workshops, seminars, and demonstrations to provide technical assistance. In the Northeast, an estimated 6.2 million tons of wood are used in the commercial and industrial sector, where 12.5 million cords are used for residential heating annually. Of this useage, 1504.7 mw of power has been generated from biomass. The use of wood energy products has had substantial employment and income benefits in the region. Although wood and woodwaste have received primary emphasis in the regional program, the use of municipal solid waste has received increased emphasis as an energy source. The energy contribution of biomass will increase as potentia users become more familiar with existing feedstocks, technologies, and applications. The Northeast Regional Biomass Program is designed to support region-specific to overcome near-term barriers to biomass energy use.

  5. Biomass cogeneration. A business assessment

    SciTech Connect (OSTI)

    Skelton, J.C.

    1981-11-01T23:59:59.000Z

    This guide serves as an overview of the biomass cogeneration area and provides direction for more detailed analysis. The business assessment is based in part on discussions with key officials from firms that have adopted biomass cogeneration systems and from organizations such as utilities, state and federal agencies, and banks that would be directly involved in a biomass cogeneration project. The guide is organized into five chapters: biomass cogeneration systems, biomass cogeneration business considerations, biomass cogeneration economics, biomass cogeneration project planning, and case studies.

  6. Prospects for biomass-to-electricity projects in Yunnan Province, China

    SciTech Connect (OSTI)

    Perlack, R.D.

    1996-02-01T23:59:59.000Z

    Efforts have been underway since 1989 to assess the prospects for biomass-to-electricity projects in Yunnan Province. Results of prefeasibility studies for specific projects suggest that they are both financially and technically viable. Because of low labor costs and favorable climate biomass can be grown on marginal and underutilized land and converted to electricity at costs lower than other alternatives. Bases on current plantation establishment rates, the potential size of the biomass resource can easily support over 1 GW of electric generating capacity in small-sized (up to 20-40 MW) cogeneration and stand-alone projects. These projects, if implemented, can ease power shortages, reduce unemployment, and help sustain the region`s economic growth. Moreover, the external environmental benefits of biomass energy are also potentially significant. This report briefly summarizes the history of biomass assessment efforts in Yunnan Province and discusses in more detail twelve projects that have been identified for U.S. private sector investment. This discussion includes a feasibility analysis of the projects (plantation-grown biomass and its conversion to electricity) and an estimate of the biomass resource base in the general vicinity of each project. This data as well as information on power needs and local capabilities to manage and operate a biomass-to-electricity project are then used to rank-order the twelve projects. One cogeneration and one stand-alone facility are recommended for additional study and possible investment.

  7. Biomass Boiler and Furnace Emissions and Safety Regulations in...

    Open Energy Info (EERE)

    Air Use Management (NESCAUM) Sector: Energy Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels, Economic Development...

  8. Biomass Gasification using Solar Thermal Energy M. Munzinger and K. Lovegrove

    E-Print Network [OSTI]

    Biomass Gasification using Solar Thermal Energy M. Munzinger and K. Lovegrove Solar Thermal Group technical pathways for biomass gasification and shows their advantages and disadvantages especially in connection with the use of solar heat as energy source for the conversion reaction. Biomass gasification

  9. International Association for Energy Economics | 35 Regulating Generation Investment in Latin America

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad CatĂłlica de Chile)

    International Association for Energy Economics | 35 Regulating Generation Investment in Latin America: Future Challenges By Rodrigo Moreno, Luiz. Barroso, Hugh Rudnick, Bruno Flach, Bernardo Bezerra auctioned in Colombia; · Successful auction of other renewables such as wind, biomass and small hydro: more

  10. High Level Overview of DOE Biomass Logistics II Project Activities

    Broader source: Energy.gov [DOE]

    Breakout Session 1B—Integration of Supply Chains I: Breaking Down Barriers High Level Overview of DOE Biomass Logistics II Project Activities Kevin Comer, Associate Principal, Antares Group Inc.

  11. COFIRING OF BIOMASS AT THE UNIVERSITY OF NORTH DAKOTA

    SciTech Connect (OSTI)

    Phillip N. Hutton

    2002-01-01T23:59:59.000Z

    A project funded by the U.S. Department of Energy's National Energy Technology Laboratory was completed by the Energy & Environmental Research Center to explore the potential for cofiring biomass at the University of North Dakota (UND). The results demonstrate how 25% sunflower hulls can be cofired with subbituminous coal and provide a 20% return on investment or 5-year payback for the modifications required to enable firing biomass. Significant outcomes of the study are as follows. A complete resource assessment presented all biomass options to UND within a 100-mile radius. Among the most promising options in order of preference were sunflower hulls, wood residues, and turkey manure. The firing of up to 28% sunflower hulls by weight was completed at the university's steam plant to identify plant modifications that would be necessary to enable cofiring sunflower hulls. The results indicated investments in a new equipment could be less than $408,711. Data collected from test burns, which were not optimized for biomass firing, resulted in a 15% reduction in sulfur and NO{sub x} emissions, no increase in opacity, and slightly better boiler efficiency. Fouling and clinkering potential were not evaluated; however, no noticeable detrimental effects occurred during testing. As a result of this study, UND has the potential to achieve a cost savings of approximately $100,000 per year from a $1,500,000 annual fossil fuel budget by implementing the cofiring of 25% sunflower hulls.

  12. Starting an Investment Club

    E-Print Network [OSTI]

    Johnson, Jason; Thompson, Bill; Polk, Wade

    2002-08-12T23:59:59.000Z

    (Partner?s Share of Income, Credits, Deductions, etc.) for each of the partnership?s members; this form shows each member?s pro- portional ownership in the club?s portfolio. Each member should receive a copy of the Schedule K-1 to include with his or her... earnings; evaluating growth stocks; and diversifying the portfolio. Investing regularly reinforces the concept of taking a long-term perspective and creates a genuine purpose for each meeting. Reinvesting all earnings allows the power of compounded growth...

  13. NREL: Biomass Research - Biomass Characterization Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNREL NREL RefinesAnalysisBiochemical ConversionBiomass

  14. AgraPure Mississippi Biomass Project

    SciTech Connect (OSTI)

    Blackwell,D.A; Broadhead, L.W.; Harrell, W.J.

    2006-03-31T23:59:59.000Z

    The AgraPure Mississippi Biomass project was a congressionally directed project, initiated to study the utilization of Mississippi agricultural byproducts and waste products in the production of bio-energy and to determine the feasibility of commercialization of these agricultural byproducts and waste products as feedstocks in the production of energy. The final products from this project were two business plans; one for a Thermal plant, and one for a Biodiesel/Ethanol plant. Agricultural waste fired steam and electrical generating plants and biodiesel plants were deemed the best prospects for developing commercially viable industries. Additionally, oil extraction methods were studied, both traditional and two novel techniques, and incorporated into the development plans. Mississippi produced crop and animal waste biomasses were analyzed for use as raw materials for both industries. The relevant factors, availability, costs, transportation, storage, location, and energetic value criteria were considered. Since feedstock accounts for more than 70 percent of the total cost of producing biodiesel, any local advantages are considered extremely important in developing this particular industry. The same factors must be evaluated in assessing the prospects of commercial operation of a steam and electrical generation plant. Additionally, the access to the markets for electricity is more limited, regulated and tightly controlled than the liquid fuel markets. Domestically produced biofuels, both biodiesel and ethanol, are gaining more attention and popularity with the consuming public as prices rise and supplies of foreign crude become less secure. Biodiesel requires no major modifications to existing diesel engines or supply chain and offers significant environmental benefits. Currently the biodiesel industry requires Federal and State incentives to allow the industry to develop and become self-sustaining. Mississippi has available the necessary feedstocks and is geographically located to be able to service a regional market. Other states have active incentive programs to promote the industry. Mississippi has adopted an incentive program for ethanol and biodiesel; however, the State legislature has not funded this program, leaving Mississippi at a disadvantage when compared to other states in developing the bio-based liquid fuel industry. With all relevant factors being considered, Mississippi offers several advantages to developing the biodiesel industry. As a result of AgraPure's work and plan development, a private investor group has built a 7,000 gallon per day facility in central Mississippi with plans to build a 10 million gallon per year biodiesel facility. The development of a thermochemical conversion/generation facility requires a much larger financial commitment, making a longer operational time necessary to recover the capital invested. Without a renewable portfolio standard to put a floor under the price, or the existence of a suitable steam host, the venture is not economically viable. And so, it has not met with the success of the biodiesel plan. While the necessary components regarding feedstocks, location, permitting and technology are all favorable; the market is not currently favorable for the development of this type of project. In this region there is an abundance of energy generation capacity. Without subsidies or a Mississippi renewable portfolio standard requiring the renewable energy to be produced from Mississippi raw materials, which are not available for the alternative energy source selected by AgraPure, this facility is not economically viable.

  15. Biomass Reburning: Modeling/Engineering Studies

    SciTech Connect (OSTI)

    Vladimir M. Zamansky

    1998-01-20T23:59:59.000Z

    Reburning is a mature fuel staging NO{sub x} control technology which has been successfully demonstrated at full scale by Energy and Environmental Research Corporation (EER) and others on numerous occasions. Based on chemical kinetic modeling and experimental combustion studies, EER is currently developing novel concepts to improve the efficiency of the basic gas reburning process and to utilize various renewable and waste fuels for NO{sub x} control. This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. Basic and advanced biomass reburning have the potential to achieve 60-90+% NO{sub x} control in coal fired boilers at a significantly lower cost than SCR. The scope of work includes modeling studies (kinetic, CFD, and physical modeling), experimental evaluation of slagging and fouling associated with biomass reburning, and economic study of biomass handling requirements. Project participants include: EER, FETC R and D group, Niagara Mohawk Power Corporation and Antares, Inc. Most of the combustion experiments on development of biomass reburning technologies are being conducted in the scope of coordinated SBIR program funded by USDA. The first reporting period (October 1--December 31, 1997) included preparation of project management plan and organization of project kick-off meeting at DOE FETC. The quarterly report briefly describes the management plan and presents basic information about the kick-off meeting.

  16. YEAR 2 BIOMASS UTILIZATION

    SciTech Connect (OSTI)

    Christopher J. Zygarlicke

    2004-11-01T23:59:59.000Z

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from cofiring coal with waste paper, sunflower hulls, and wood waste showed a broad spectrum of chemical and physical characteristics, according to American Society for Testing and Materials (ASTM) C618 procedures. Higher-than-normal levels of magnesium, sodium, and potassium oxide were observed for the biomass-coal fly ash, which may impact utilization in cement replacement in concrete under ASTM requirements. Other niche markets for biomass-derived fly ash were explored. Research was conducted to develop/optimize a catalytic partial oxidation-based concept for a simple, low-cost fuel processor (reformer). Work progressed to evaluate the effects of temperature and denaturant on ethanol catalytic partial oxidation. A catalyst was isolated that had a yield of 24 mole percent, with catalyst coking limited to less than 15% over a period of 2 hours. In biodiesel research, conversion of vegetable oils to biodiesel using an alternative alkaline catalyst was demonstrated without the need for subsequent water washing. In work related to biorefinery technologies, a continuous-flow reactor was used to react ethanol with lactic acid prepared from an ammonium lactate concentrate produced in fermentations conducted at the EERC. Good yields of ester were obtained even though the concentration of lactic acid in the feed was low with respect to the amount of water present. Esterification gave lower yields of ester, owing to the lowered lactic acid content of the feed. All lactic acid fermentation from amylose hydrolysate test trials was completed. Management activities included a decision to extend several projects to December 31, 2003, because of delays in receiving biomass feedstocks for testing and acquisition of commercial matching funds. In strategic studies, methods for producing acetate esters for high-value fibers, fuel additives, solvents, and chemical intermediates were discussed with several commercial entities. Commercial industries have an interest in efficient biomass gasification designs but are waiting for economic incentives. Utility, biorefinery, pulp and paper, or o

  17. Sustainable Biomass Supply Systems

    SciTech Connect (OSTI)

    Erin Searcy; Dave Muth; Erin Wilkerson; Shahab Sokansanj; Bryan Jenkins; Peter Titman; Nathan Parker; Quinn Hart; Richard Nelson

    2009-04-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) aims to displace 30% of the 2004 gasoline use (60 billion gal/yr) with biofuels by 2030 as outlined in the Energy Independence and Security Act of 2007, which will require 700 million tons of biomass to be sustainably delivered to biorefineries annually. Lignocellulosic biomass will make an important contribution towards meeting DOE’s ethanol production goals. For the biofuels industry to be an economically viable enterprise, the feedstock supply system (i.e., moving the biomass from the field to the refinery) cannot contribute more that 30% of the total cost of the biofuel production. The Idaho National Laboratory in collaboration with Oak Ridge National Laboratory, University of California, Davis and Kansas State University are developing a set of tools for identifying economical, sustainable feedstocks on a regional basis based on biorefinery siting.

  18. Energy Efficiency Investment Fund Rebates

    Broader source: Energy.gov [DOE]

    Specific efficiency requirements for rebates are available at  the Energy Efficiency Investment Fund Website in applications for Lighting and Lighting Control Rebates, Natural Gas and Water Heati...

  19. NREL: Biomass Research - David W. Templeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    W. Templeton Photo of David Templeton David Templeton is the senior biomass analyst on the Biomass Analysis team (Biomass Compositional Analysis Laboratory) within the National...

  20. NREL: International Activities - Biomass Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass Resource Assessment Map showing annual productivity of marginal lands in APEC economies. Biomass resource assessments quantify the existing or potential biomass material in...

  1. UCSD Biomass to Power Economic Feasibility Study

    E-Print Network [OSTI]

    Cattolica, Robert

    2009-01-01T23:59:59.000Z

    Teotl Energy Partners LLC, West Biofuels Biomass?to?Fuels Teotl Energy Partners LLC, West Biofuels Biomass-to-Fuelssolid?fuel biomass, solar thermal electric, or wind energy 

  2. November 2011 Model documentation for biomass,

    E-Print Network [OSTI]

    Noble, James S.

    1 November 2011 Model documentation for biomass, cellulosic biofuels, renewable of Education, Office of Civil Rights. #12;3 Contents Biomass.....................................................................................................................................................4 Variables in the biomass module

  3. UCSD Biomass to Power Economic Feasibility Study

    E-Print Network [OSTI]

    Cattolica, Robert

    2009-01-01T23:59:59.000Z

    Biofuels, LLC  UCSD Biomass to Power  Economic Feasibility Figure 1: West Biofuels Biomass Gasification to Power rates..……………………. ……31  UCSD Biomass to Power ? Feasibility 

  4. UCSD Biomass to Power Economic Feasibility Study

    E-Print Network [OSTI]

    Cattolica, Robert

    2009-01-01T23:59:59.000Z

    facilities that use biomass, waste, or renewable resources (Eligible renewable energy resources include biomass, solar renewable  power  than  there  is  in  the  market  for  biomass 

  5. Minimally refined biomass fuel

    DOE Patents [OSTI]

    Pearson, Richard K. (Pleasanton, CA); Hirschfeld, Tomas B. (Livermore, CA)

    1984-01-01T23:59:59.000Z

    A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water solubilizes the carbohydrates; and the alcohol aids in the combustion of the carbohydrate and reduces the vicosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

  6. Biomass | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher HomesLyons BiomassBiofuels)BiomassThermal

  7. High-biomass sorghums for biomass biofuel production

    E-Print Network [OSTI]

    Packer, Daniel

    2011-05-09T23:59:59.000Z

    for breeding evaluations. Seventeen hundred ninety two exotic sorghum accessions from 7 different geographic origins were evaluated for high-biomass desirability in 3 environments. Significant relationships between passport data and high-biomass desirability...

  8. Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana)

    Broader source: Energy.gov [DOE]

    The Indiana Department of Environmental Management requires permits before the construction or expansion of biomass anaerobic digestion or gasification facilities.

  9. Bamboo: An Overlooked Biomass Resource?

    SciTech Connect (OSTI)

    Scurlock, J.M.O.

    2000-02-01T23:59:59.000Z

    Bamboo is the common term applied to a broad group (1250 species) of large woody grasses, ranging from 10 cm to 40 m in height. Already in everyday use by about 2.5 billion people, mostly for fiber and food within Asia, bamboo may have potential as a bioenergy or fiber crop for niche markets, although some reports of its high productivity seem to be exaggerated. Literature on bamboo productivity is scarce, with most reports coming from various parts of Asia. There is little evidence overall that bamboo is significantly more productive than many other candidate bioenergy crops, but it shares a number of desirable fuel characteristics with certain other bioenergy feedstocks, such as low ash content and alkali index. Its heating value is lower than many woody biomass feedstocks but higher than most agricultural residues, grasses and straws. Although non-fuel applications of bamboo biomass may be actually more profitable than energy recovery, there may also be potential for co-productio n of bioenergy together with other bamboo processing. A significant drawback is the difficulty of selective breeding, given the lack of knowledge of flowering physiology. Further research is also required on propagation techniques, establishment and stand management, and mechanized harvesting needs to be developed.

  10. Burgeoning Biomass: Creating Efficient and Sustainable Forest Biomass Supply Chains in the Rockies

    E-Print Network [OSTI]

    1 Burgeoning Biomass: Creating Efficient and Sustainable Forest Biomass Supply Chains and removing beetle- killed trees, produce a byproduct called woody biomass. Also known as "slash, woody biomass can be collected, processed and transported SUMMARY Woody biomass could be used

  11. biomass | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    or products. More detailed information on the subject of biomassMSW gasification and co-gasification of coal and biomass is available. Challenges A few obstacles exist before...

  12. Biomass Feedstock National User Facility

    Broader source: Energy.gov [DOE]

    Breakout Session 1B—Integration of Supply Chains I: Breaking Down Barriers Biomass Feedstock National User Facility Kevin L. Kenney, Director, Biomass Feedstock National User Facility, Idaho National Laboratory

  13. ENERGY FROM BIOMASS AND

    E-Print Network [OSTI]

    in aeroderivative gas turbines has beencommerciallyestablished for natural gas-fired cogeneration since 1980. Steam!l!ledin a companionpaperprepared for this conference. 781 #12;BIOMASS-GASIFIER ~.INJECTED GAS TURBINE COGENERA110N FOR THE CANE of the gas turbine for cogeneration.applications(27) and the low unit capital cost of gas turbines comparedto

  14. A review on biomass classification and composition, cofiring issues and pretreatment methods

    SciTech Connect (OSTI)

    Jaya Shankar Tumuluru; Shahab Sokhansanj; Christopher T. Wright; Richard D. Boardman

    2011-08-01T23:59:59.000Z

    Presently around the globe there is a significant interest in using biomass for power generation as power generation from coal continues to raise environmental concerns. Biomass alone can be used for generation of power which can bring lot of environmental benefits. However the constraints of using biomass alone can include high investments costs for biomass feed systems and also uncertainty in the security of the feedstock supply due to seasonal variations and in most of the countries biomass is dispersed and the infrastructure for biomass supply is not well established. Alternatively cofiring biomass along with coal offer advantages like (a) reducing the issues related to biomass quality and buffers the system when there is insufficient feedstock quantity and (b) costs of adapting the existing coal power plants will be lower than building new systems dedicated only to biomass. However with the above said advantages there exists some technical constrains including low heating and energy density values, low bulk density, lower grindability index, higher moisture and ash content to successfully cofire biomass with coal. In order to successfully cofire biomass with coal, biomass feedstock specifications need to be established to direct pretreatment options that may include increasing the energy density, bulk density, stability during storage and grindability. Impacts on particle transport systems, flame stability, pollutant formation and boiler tube fouling/corrosion must also be minimized by setting feedstock specifications including composition and blend ratios if necessary. Some of these limitations can be overcome by using pretreatment methods. This paper discusses the impact of feedstock pretreatment methods like sizing, baling, pelletizing, briquetting, washing/leaching, torrefaction, torrefaction and pelletization and steam explosion in attainment of optimum feedstock characteristics to successfully cofire biomass with coal.

  15. International Environmental Agreements with Mixed Strategies and Investment

    E-Print Network [OSTI]

    Hong, Fuhai; Karp, Larry

    2012-01-01T23:59:59.000Z

    By incurring the investment cost ?, a country reduces thewelfare, exclusive of investment costs. Because Myerson (that invest incur the investment cost, all countries have

  16. Variation in Biomass Composition Components among Forage, Biomass, Sorghum-Sudangrass, and Sweet Sorghum Types

    SciTech Connect (OSTI)

    Stefaniak, T. R.; Dahlberg, J. A.; Bean, B. W.; Dighe, N.; Wolfrum, E. J.; Rooney, W. L.

    2012-07-01T23:59:59.000Z

    Alternative biomass sources must be developed if the United States is to meet the goal in the U.S. Energy Security Act of 2007 to derive 30% of its petroleum from renewable sources, and several different biomass crops are currently in development. Sorghum [Sorghum bicolor (L.) Moench] is one such crop that will be an important feedstock source for biofuel production. As composition influences productivity, there exists a need to understand the range in composition observed within the crop. The goal of this research was to assess the range in dietary fiber composition observed within different types of biomass sorghums. A total of 152 sorghum samples were divided into the four end-use types of sorghum: biomass, forage, sorghum-sudangrass, and sweet. These samples were analyzed chemically using dietary fiber analysis performed at the National Renewable Energy Laboratory using published protocols. Significant variation among the groups was detected for glucan and ash. Positive and highly significant correlations were detected between structural carbohydrates in the biomass and sweet sorghums while many of these correlations were negative or not significant in the forage and sorghum-sudangrass types. In addition, a wide range of variation was present within each group indicating that there is potential to manipulate the composition of the crop.

  17. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY as a result of emerging biomass opportunities on private industrial and public multiple-use lands (tracked in the vegetation domain) and the quantity of biomass consumed by the wildfire (tracked

  18. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;12-2 #12;Appendix 12: Biomass to Energy Project Team, Committee Members and Project Advisors Research Team. Nechodom's background is in biomass energy policy development and public policy research. Peter Stine

  19. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY or recommendations of the study. 1. INTRODUCTION 1.1 Domain Description The study area for the Biomass to Energy (B2 and environmental costs and benefits of using forest biomass to generate electrical power while changing fire

  20. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;10-2 #12;Appendix 10: Power Plant Analysis for Conversion of Forest Remediation Biomass to Renewable Fuels and Electricity 1. Report to the Biomass to Energy Project (B2E) Principal Authors: Dennis Schuetzle, TSS

  1. 7, 1733917366, 2007 Biomass burning

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 7, 17339­17366, 2007 Biomass burning plumes during the AMMA wet season experiment C. H. Mari a Creative Commons License. Atmospheric Chemistry and Physics Discussions Tracing biomass burning plumes from. Mari (marc@aero.obs-mip.fr) 17339 #12;ACPD 7, 17339­17366, 2007 Biomass burning plumes during the AMMA

  2. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY not substantively affect the findings or recommendations of the study. 2. Introduction The Biomass to Energy (B2E) Project is developing a comprehensive forest biomass-to- electricity model to identify and analyze

  3. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;6-2 #12;APPENDIX 6: Cumulative Watershed Effects Analysis for the Biomass to Energy Project 1. Principal the findings or recommendations of the study. Cumulative watershed effects (CWE) of the Biomass to Energy (B2E

  4. Reburn system with feedlot biomass

    DOE Patents [OSTI]

    Annamalai, Kalyan; Sweeten, John M.

    2005-12-13T23:59:59.000Z

    The present invention pertains to the use of feedlot biomass as reburn fuel matter to reduce NO.sub.x emissions. According to one embodiment of the invention, feedlot biomass is used as the reburn fuel to reduce NO.sub.x. The invention also includes burners and boiler in which feedlot biomass serves a reburn fuel.

  5. 13, 3226932289, 2013 Biomass burning

    E-Print Network [OSTI]

    Dong, Xiquan

    ACPD 13, 32269­32289, 2013 Biomass burning aerosol properties over the Northern Great Plains T (ACP). Please refer to the corresponding final paper in ACP if available. Biomass burning aerosol Geosciences Union. 32269 #12;ACPD 13, 32269­32289, 2013 Biomass burning aerosol properties over the Northern

  6. Biomass Energy Crops: Massachusetts' Potential

    E-Print Network [OSTI]

    Schweik, Charles M.

    Biomass Energy Crops: Massachusetts' Potential Prepared for: Massachusetts Division of Energy;#12;Executive Summary In Massachusetts, biomass energy has typically meant wood chips derived from the region's extensive forest cover. Yet nationally, biomass energy from dedicated energy crops and from crop residues

  7. Management Forecast Quality and Capital Investment Decisions

    E-Print Network [OSTI]

    Goodman, Theodore H.

    Corporate investment decisions require managers to forecast expected future cash flows from potential investments. Although these forecasts are a critical component of successful investing, they are not directly observable ...

  8. Biomass Supply and Carbon Accounting for

    E-Print Network [OSTI]

    Biomass Supply and Carbon Accounting for Southeastern Forests February 2012 #12;This Biomass Supply and Carbon Accounting for Southeastern Forests study was conducted by the Biomass Energy Resource Center Biomass Energy Resource Center Kamalesh Doshi Biomass Energy Resource Center Hillary Emick Biomass Energy

  9. Technology Investment Agreements | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Guidance Policy Flash 2006-31 - Technology Investment Agreements Financial Assistance Letter 2006-03 - Guidance for Awarding Technology Investment Agreements Final Rule - Financial...

  10. Capital Investment Incentive (Nova Scotia, Canada)

    Broader source: Energy.gov [DOE]

    The Capital Investment Incentive (CII) is part of the Productivity Investment Program as outlined in the economic growth plan for Nova Scotia, jobsHere.

  11. California Low Carbon Fuels Infrastructure Investment Initiative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Carbon Fuels Infrastructure Investment Initiative California Low Carbon Fuels Infrastructure Investment Initiative 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  12. Smart Grid Investments Improve Grid Reliability, Resilience,...

    Office of Environmental Management (EM)

    Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014) Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses (November...

  13. Science Activities in Biomass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearch BriefsTenney, Office of ScienceActivities in Biomass

  14. Hydrolysis of biomass material

    DOE Patents [OSTI]

    Schmidt, Andrew J.; Orth, Rick J.; Franz, James A.; Alnajjar, Mikhail

    2004-02-17T23:59:59.000Z

    A method for selective hydrolysis of the hemicellulose component of a biomass material. The selective hydrolysis produces water-soluble small molecules, particularly monosaccharides. One embodiment includes solubilizing at least a portion of the hemicellulose and subsequently hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A second embodiment includes solubilizing at least a portion of the hemicellulose and subsequently enzymatically hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A third embodiment includes solubilizing at least a portion of the hemicellulose by heating the biomass material to greater than 110.degree. C. resulting in an aqueous portion that includes the solubilized hemicellulose and a water insoluble solids portion and subsequently separating the aqueous portion from the water insoluble solids portion. A fourth embodiment is a method for making a composition that includes cellulose, at least one protein and less than about 30 weight % hemicellulose, the method including solubilizing at least a portion of hemicellulose present in a biomass material that also includes cellulose and at least one protein and subsequently separating the solubilized hemicellulose from the cellulose and at least one protein.

  15. Capital Investment Tax Credit (Florida)

    Broader source: Energy.gov [DOE]

    The Capital Investment Tax Credit is an annual credit, provided for up to twenty years, against the corporate income tax. Eligible projects are those in designated high-impact portions of the...

  16. Uncertainty and Energy Saving Investments

    E-Print Network [OSTI]

    Murto, Pauli

    Energy costs are notoriously uncertain but what is the effect of this on energysaving investments? We find that real-option frictions imply a novel equilibrium response to increasing but uncertain energy costs: early ...

  17. Fund Turnover and Investment Performance 

    E-Print Network [OSTI]

    Adams, Andrew T; Lambert, E

    1997-01-01T23:59:59.000Z

    We examine the level of share dealing activity of UK long-term institutional funds and, for UK pension funds, assess the impact of this dealing activity on investment performance. The analysis is carried out using annual ...

  18. CALIFORNIA INVESTMENT PLAN FOR THE

    E-Print Network [OSTI]

    in the Investment Plan. Bonnie HolmesGen, American Lung Association Stephen Clarke, Applied Intellectual Capital Carla Din, Apollo Alliance Tom Frantz, Association of Irritated Residents Jay McKeeman, California

  19. Essays on taxation and investment

    E-Print Network [OSTI]

    Edgerton, Jesse (Jesse James)

    2009-01-01T23:59:59.000Z

    This thesis consists of three essays that examine the impact of tax policy on firms' decisions to invest in productive capital. The first chapter uses newly-collected data on transaction prices of used construction machinery ...

  20. Virginia Jobs Investment Program (Virginia)

    Broader source: Energy.gov [DOE]

    The Virginia Jobs Investment Program provides cash grants to existing businesses which seek expansion or new facility locations. The company must create a minimum of 25 net new jobs within 12...

  1. Biomass -Feedstock User Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyandapproximately 10 wt%inandWBS 1.2.3.3 Biomass -

  2. Biomass 2013: Welcome

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyandapproximately 10 wt%inandWBS 1.2.3.31Biomass 2013

  3. Biomass Scenario Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyandapproximately 10 wt%inandWBSBiomassAct ofBiomass

  4. Biomass: Biogas Generator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find Find MoreTechnical Report: BiomassInnovationBIOGAS

  5. Remotely sensed heat anomalies linked with Amazonian forest biomass declines

    E-Print Network [OSTI]

    Toomey, M.; Roberts, D. A.; Still, C.; Goulden, M. L.; McFadden, J. P.

    2011-01-01T23:59:59.000Z

    with Amazonian forest biomass declines Michael Toomey, 1 Darof aboveground living biomass (p biomass declines, Geophys. Res.

  6. Interactions of Lignin and Hemicellulose and Effects on Biomass Deconstruction

    E-Print Network [OSTI]

    Li, Hongjia

    2012-01-01T23:59:59.000Z

    such lignocellulosic biomass feedstocks into ethanol via atools. Different biomass feedstocks have different cell wallmajor lignocellulosic biomass feedstocks, except softwoods,

  7. NREL: Biomass Research - Joseph Shekiro

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deacetylation and Mechanical (Disc) Refining Process for the Conversion of Renewable Biomass to Lower Cost Sugars." Biotechnology for Biofuels (7:7). Shekiro, J. ; Kuhn, E.M.;...

  8. NREL: Biomass Research - Josh Schaidle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of pyrolysis products to produce fungible transportation fuels. Research Interests Biomass conversion to fuels and chemicals Environmentally-sustainable engineering practices...

  9. NREL: Biomass Research - Michael Resch

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    improve the hydrolysis efficiency of cellulase and hemicellulase enzyme digestion of biomass. This work will help NREL lower the industrial cost of lignocellulosic enzyme...

  10. Sandia National Laboratories: Lignocellulosic Biomass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    industrial process environments, (3) development of high-throughput assays using microfluidics, and (4) understanding how microbial communities degrade biomass and the...

  11. Biomass Gasification | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    gasification involve reducing costs associated with capital equipment and biomass feedstocks. Research to lower capital costs: If oxygen is used in the gasifier, capital...

  12. Biomass Rapid Analysis Network (BRAN)

    SciTech Connect (OSTI)

    Not Available

    2003-10-01T23:59:59.000Z

    Helping the emerging biotechnology industry develop new tools and methods for real-time analysis of biomass feedstocks, process intermediates and The Biomass Rapid Analysis Network is designed to fast track the development of modern tools and methods for biomass analysis to accelerate the development of the emerging industry. The network will be led by industry and organized and coordinated through the National Renewable Energy Lab. The network will provide training and other activities of interest to BRAN members. BRAN members will share the cost and work of rapid analysis method development, validate the new methods, and work together to develop the training for the future biomass conversion workforce.

  13. System and process for biomass treatment

    DOE Patents [OSTI]

    Dunson, Jr., James B; Tucker, III, Melvin P; Elander, Richard T; Lyons, Robert C

    2013-08-20T23:59:59.000Z

    A system including an apparatus is presented for treatment of biomass that allows successful biomass treatment at a high solids dry weight of biomass in the biomass mixture. The design of the system provides extensive distribution of a reactant by spreading the reactant over the biomass as the reactant is introduced through an injection lance, while the biomass is rotated using baffles. The apparatus system to provide extensive assimilation of the reactant into biomass using baffles to lift and drop the biomass, as well as attrition media which fall onto the biomass, to enhance the treatment process.

  14. Biomass in the Deregulated Marketplace: Current Issues for Biomass Power

    SciTech Connect (OSTI)

    Not Available

    1998-12-01T23:59:59.000Z

    This issue brief provides readers with a monthly review and analysis of electric utility deregulation as it impacts biomass power production and distribution. The topical areas to be routinely covered will include Federal activities, State activities, Current challenges, and Current opportunities. Additionally, a monthly highlighted topic will provide more in-depth analysis of current issue impacting biomass power.

  15. A national research & development strategy for biomass crop feedstocks

    SciTech Connect (OSTI)

    Wright, L.L.; Cushman, J.H.

    1997-07-01T23:59:59.000Z

    Planning was initiated in 1996 with the objective of reevaluating current biomass feedstock research and development strategies to: (1) assure that by 2005, one or more commercial lignocellulosic to ethanol projects will be able to acquire a dependable supply of biomass crop feedstocks; (2) assure that recently initiated demonstrations of crops to electricity will be successful and; (3) assure that the research base needed to support future biomass industry expansion is being developed. Multiple trends and analyses indicate that biomass energy research and development strategies must take into account the fact that competition for land will define the upper limits of available biomass energy crop supplies and will largely dictate the price of those supplies. Only crop production and utilization strategies which contribute profit to the farmer or landowner and to energy producers will be used commercially for biomass energy production. Strategies for developing biomass {open_quotes}energy{close_quotes} crop supplies must take into consideration all of the methods by which biomass crops will enter biomass energy markets. The lignocellulosic materials derived from crops can be available as primary residues or crop by-products; secondary residues or processing by-products; co-products (at both the crop production and processing stages); or, as dedicated energy crops. Basic research and development (R&D) leading to yield improvement continues to be recommended as a major long-term focus for dedicated energy crops. Many additional near term topics need attention, some of which are also applicable to by-products and co-products. Switchgrass R&D should be expanded and developed with greater collaboration of USDA and state extension groups. Woody crop research should continue with significant cost-share from industries developing the crops for other commercial products. Co-product options need more investigation.

  16. Process for concentrated biomass saccharification

    DOE Patents [OSTI]

    Hennessey, Susan M. (Avondale, PA); Seapan, Mayis (Landenberg, PA); Elander, Richard T. (Evergreen, CO); Tucker, Melvin P. (Lakewood, CO)

    2010-10-05T23:59:59.000Z

    Processes for saccharification of pretreated biomass to obtain high concentrations of fermentable sugars are provided. Specifically, a process was developed that uses a fed batch approach with particle size reduction to provide a high dry weight of biomass content enzymatic saccharification reaction, which produces a high sugars concentration hydrolysate, using a low cost reactor system.

  17. Aboveground tree biomass on productive forest land in Alaska. Forest Service research paper

    SciTech Connect (OSTI)

    Yarie, J.; Mead, D.R.

    1982-08-01T23:59:59.000Z

    Total aboveground woody biomass of trees on forest land that can produce 1.4 cubic meters per hectare per year of industrial wood in Alaska is 1.33 billion metric tons green weight. The estimated energy value of the standing woody biomass is 11.9 x 10 Btu's. Statewide tables of biomass and energy values for softwoods, hardwoods, and species group are presented.

  18. Biomass 2014 Attendee List | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    is the attendee list for Biomass 2014, held July 29-July 30 in Washington, D.C. biomass2014attendeelist.pdf More Documents & Publications Biomass 2013 Attendee List Bioproducts:...

  19. BIOMASS LIQUEFACTION EFFORTS IN THE UNITED STATES

    E-Print Network [OSTI]

    Ergun, Sabri

    2012-01-01T23:59:59.000Z

    icat ion Preheat zone Biomass liquefaction Tubular reactor (design is shown in Figure 7, C I Biomass ua efaction Fic LBL Process BiOMASS t NON-REVERS lNG CYCLONE CONDENSER (

  20. Treatment of biomass to obtain fermentable sugars

    DOE Patents [OSTI]

    Dunson, Jr., James B. (Newark, DE); Tucker, Melvin (Lakewood, CO); Elander, Richard (Evergreen, CO); Hennessey, Susan M. (Avondale, PA)

    2011-04-26T23:59:59.000Z

    Biomass is pretreated using a low concentration of aqueous ammonia at high biomass concentration. Pretreated biomass is further hydrolyzed with a saccharification enzyme consortium. Fermentable sugars released by saccharification may be utilized for the production of target chemicals by fermentation.

  1. Biomass Producer or Collector Tax Credit (Oregon)

    Broader source: Energy.gov [DOE]

     The Oregon Department of Energy provides a tax credit for agricultural producers or collectors of biomass.  The credit can be used for eligible biomass used to produce biofuel; biomass used in...

  2. Mobile Biomass Pelletizing System

    SciTech Connect (OSTI)

    Thomas Mason

    2009-04-16T23:59:59.000Z

    This grant project examines multiple aspects of the pelletizing process to determine the feasibility of pelletizing biomass using a mobile form factor system. These aspects are: the automatic adjustment of the die height in a rotary-style pellet mill, the construction of the die head to allow the use of ceramic materials for extreme wear, integrating a heat exchanger network into the entire process from drying to cooling, the use of superheated steam for adjusting the moisture content to optimum, the economics of using diesel power to operate the system; a break-even analysis of estimated fixed operating costs vs. tons per hour capacity. Initial development work has created a viable mechanical model. The overall analysis of this model suggests that pelletizing can be economically done using a mobile platform.

  3. NREL: Biomass Research - Robert M. Baldwin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MI. Dr. Baldwin has extensive experience and expertise in thermochemical conversion of biomass to gaseous and liquid fuels, including catalysis and reaction engineering of biomass...

  4. NREL: Biomass Research - Daniel J. Schell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    more than 30 years of research experience in bio-based conversion of lignocellulosic biomass and has extensive expertise in integrated biomass conversion operations at the bench...

  5. NREL: Biomass Research - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Facility (IBRF). June 2, 2011 Science & Industry Peers Turn to NREL for Biomass Solutions The biomass industry looks to the U.S. Department of Energy's National...

  6. Supplying High-Quality, Raw Biomass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supplying High-Quality, Raw Biomass The building blocks to supply high-quality raw biomass start with harvesting and collection practices, product storage and recommendations of...

  7. Molecular Characterization of Biomass Burning Aerosols Using...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass Burning Aerosols Using High Resolution Mass Spectrometry. Molecular Characterization of Biomass Burning Aerosols Using High Resolution Mass Spectrometry. Abstract: Chemical...

  8. Converting Biomass to High-Value Feedstocks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Converting Biomass to High-Value Feedstocks Advanced feedstocks play an important role in economically and efficiently converting biomass into bioenergy products. Advanced...

  9. BSCL Use Plan: Solving Biomass Recalcitrance

    SciTech Connect (OSTI)

    Himmel, M.; Vinzant, T.; Bower, S.; Jechura, J.

    2005-08-01T23:59:59.000Z

    Technical report describing NREL's new Biomass Surface Characterization Laboratory (BSCL). The BSCL was constructed to provide the most modern commercial surface characterization equipment for studying biomass surfaces.

  10. Hydrogen Production Cost Estimate Using Biomass Gasification...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost Estimate Using Biomass Gasification: Independent Review Hydrogen Production Cost Estimate Using Biomass Gasification: Independent Review This independent review is the...

  11. Symbiosis: Addressing Biomass Production Challenges and Climate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Symbiosis: Addressing Biomass Production Challenges and Climate Change Symbiosis: Addressing Biomass Production Challenges and Climate Change This presentation was the opening...

  12. Coal-Biomass Feed and Gasification

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal-Biomass Feed and Gasification The Coal-Biomass Feed and Gasification Key Technology is advancing scientific knowledge of the production of liquid hydrocarbon fuels from coal...

  13. Hydrogen Production Cost Estimate Using Biomass Gasification

    E-Print Network [OSTI]

    Hydrogen Production Cost Estimate Using Biomass Gasification National Renewable Energy Laboratory Panel, Hydrogen Production Cost Estimate Using Biomass Gasification To: Mr. Mark Ruth, NREL, DOE

  14. NREL: Biomass Research - Ryan M. Ness

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    involve bench-scale wet chemical and instrumental analysis of lignocellulosic biomass feedstocks for the purpose of providing baseline, solids-intermediate, and biomass...

  15. NREL: Biomass Research - Biochemical Conversion Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL's projects in biochemical conversion involve three basic steps to convert biomass feedstocks to fuels: Converting biomass to sugar or other fermentation feedstock Fermenting...

  16. The Relation Between Competition and Investment – Towards a Synthesis

    E-Print Network [OSTI]

    Schmutzler, Armin

    2009-01-01T23:59:59.000Z

    Keywords: competition, investment, cost reduction JEL: L13,= Q i M i (gross of investment costs). By assumption, and inprecise form of the investment cost functions, because, by

  17. Angel Investment Credit (New Mexico)

    Broader source: Energy.gov [DOE]

    A taxpayer who files a New Mexico income tax return and who is a “qualified investor” may take a tax credit of up to $25,000 (25% of a qualified investment of not more than $100,000) for an...

  18. "Investment in knowledge pays the

    E-Print Network [OSTI]

    Cortes, Jesus

    Annual Report #12;Annual Report #12;"Investment in knowledge pays the best interest." Abraham to information about the organisation. Our accounts are audited annually and can be viewed on our website: www to leading institutions in Europe in terms of selecting, hiring and consolidating research talent. Ikerbasque

  19. RISK AND INVESTMENT IN LIBERALIZED

    E-Print Network [OSTI]

    RISK AND INVESTMENT MANAGEMENT IN LIBERALIZED ELECTRICITY MARKETS Jacob Lemming Department during the period 2000­2003. The papers are centered around the theme Financial Risk in a Liberalized at Risk Management To be included in: Modelling Prices in Competitive Electricity Markets, edited by Derek

  20. Energy Department Announces Building Energy Efficiency Investments...

    Office of Environmental Management (EM)

    Building Energy Efficiency Investments in Twenty-Two States Energy Department Announces Building Energy Efficiency Investments in Twenty-Two States June 27, 2012 - 6:55pm Addthis...

  1. Fixed Capital Investment Tax Credit (Connecticut)

    Broader source: Energy.gov [DOE]

    The Fixed Capital Investment Tax Credit allows a tax credit of 5% of the amount paid for any new fixed capital investment. Companies with fewer than 800 full-time employees may take a tax credit...

  2. IT investments and firm performance across economies

    E-Print Network [OSTI]

    Sahu, Rakesh

    2009-01-01T23:59:59.000Z

    Research has shown a positive relationship between IT investments and firm performance. But the results vary across firms and performance measures. Evidence indicates that IT resource allocations, in the form of investment ...

  3. Cost Effectiveness Analysis for Conservation Investments

    E-Print Network [OSTI]

    Reid, M. W.

    1984-01-01T23:59:59.000Z

    The Alliance to Save Energy conducted case studies of conservation investment practices in five energy-intensive industries. A portion of the case studies focused on the economic evaluation of proposed conservation investments. The results suggested...

  4. Job Development Investment Grant (North Carolina)

    Broader source: Energy.gov [DOE]

    The Job Development Investment Grant awards cash grants to new and expanding businesses that will provide economic benefit to that state. Grants are based on job creation and investment commitment...

  5. Jobs and Investment Tax Credit (Maine)

    Broader source: Energy.gov [DOE]

    The Jobs and Investment Tax Credit is available to businesses that create at least 100 new jobs within two years and invest at least $5 million in one year. The credit is limited to tax liability...

  6. EPA RE-Powering America's Lands: Kansas City Municipal Farm Site -- Biomass Power Analysis

    SciTech Connect (OSTI)

    Hunsberger, R.; Mosey, G.

    2015-01-01T23:59:59.000Z

    Through the RE-Powering America's Land initiative, the economic and technical feasibility of utilizing biomass at the Kansas City, Missouri, Municipal Farm site, a group of City-owned properties, is explored. The study that none of the technologies we reviewed--biomass heat, power and CHP--are economically viable options for the Municipal Farms site. However, if the site were to be developed around a future central biomass heating or CHP facility, biomass could be a good option for the site.

  7. Biothermal gasification of biomass

    SciTech Connect (OSTI)

    Chynoweth, D.P.; Srivastava, V.J.; Henry, M.P.; Tarman, P.B.

    1980-01-01T23:59:59.000Z

    The BIOTHERMGAS Process is described for conversion of biomass, organic residues, and peat to substitute natural gas (SNG). This new process, under development at IGT, combines biological and thermal processes for total conversion of a broad variety of organic feeds (regardless of water or nutrient content). The process employs thermal gasification for conversion of refractory digester residues. Ammonia and other inorganic nutrients are recycled from the thermal process effluent to the bioconversion unit. Biomethanation and catalytic methanation are presented as alternative processes for methanation of thermal conversion product gases. Waste heat from the thermal component is used to supply the digester heat requirements of the bioconversion component. The results of a preliminary systems analysis of three possible applications of this process are presented: (1) 10,000 ton/day Bermuda grass plant with catalytic methanation; (2) 10,000 ton/day Bermuda grass plant with biomethanation; and (3) 1000 ton/day municipal solid waste (MSW) sewage sludge plant with biomethanation. The results indicate that for these examples, performance is superior to that expected for biological or thermal processes used separately. The results of laboratory studies presented suggest that effective conversion of thermal product gases can be accomplished by biomethanation.

  8. Ohio Biomass Energy Program (Ohio)

    Broader source: Energy.gov [DOE]

    Ohio is one of seven states participating in the Great Lakes Regional Biomass Energy Program which was established in 1983. The Regional Program is administered by the Council of Great Lakes...

  9. Biomass Supply for a Bioenergy

    E-Print Network [OSTI]

    Hydrocarbon-based Biofuels; Zia Haq

    2012-01-01T23:59:59.000Z

    Resource assessment – do we have enough biomass? Techno-economic analysis – can biofuels be produced at competitive prices? • Integrated biorefineries – what is being funded at DOE and what are future plans?

  10. Cadmium Biosorption Rate in Protonated Sargassum Biomass

    E-Print Network [OSTI]

    Volesky, Bohumil

    Cadmium Biosorption Rate in Protonated Sargassum Biomass J I N B A I Y A N G A N D B O H U M I L V Sargassum fluitans biomass was accompanied by the release of hydrogen protons from the biomass. The uptake the overall biosorption rate of cadmium ions in flat seaweed biomass particles. The overall biosorption

  11. Global (International) Energy Policy and Biomass

    SciTech Connect (OSTI)

    Overend, R. P.

    2004-01-01T23:59:59.000Z

    Presentation to the California Biomass Collaboration--First Annual Forum, January 8th 2004, Sacramento, California

  12. Biomass Surface Characterization Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    This fact sheet provides information about Biomass Surface Characterization Laboratory capabilities and applications at NREL.

  13. November 2011 Competition for biomass among

    E-Print Network [OSTI]

    Noble, James S.

    remain high, limiting the development of national or even regional markets for biomass feedstocks. We

  14. Enzymatic Hydrolysis of Cellulosic Biomass

    SciTech Connect (OSTI)

    Yang, Bin; Dai, Ziyu; Ding, Shi-You; Wyman, Charles E.

    2011-08-22T23:59:59.000Z

    Biological conversion of cellulosic biomass to fuels and chemicals offers the high yields to products vital to economic success and the potential for very low costs. Enzymatic hydrolysis that converts lignocellulosic biomass to fermentable sugars may be the most complex step in this process due to substrate-related and enzyme-related effects and their interactions. Although enzymatic hydrolysis offers the potential for higher yields, higher selectivity, lower energy costs, and milder operating conditions than chemical processes, the mechanism of enzymatic hydrolysis and the relationship between the substrate structure and function of various glycosyl hydrolase components are not well understood. Consequently, limited success has been realized in maximizing sugar yields at very low cost. This review highlights literature on the impact of key substrate and enzyme features that influence performance to better understand fundamental strategies to advance enzymatic hydrolysis of cellulosic biomass for biological conversion to fuels and chemicals. Topics are summarized from a practical point of view including characteristics of cellulose (e.g., crystallinity, degree of polymerization, and accessible surface area) and soluble and insoluble biomass components (e.g., oligomeric xylan, lignin, etc.) released in pretreatment, and their effects on the effectiveness of enzymatic hydrolysis. We further discuss the diversity, stability, and activity of individual enzymes and their synergistic effects in deconstructing complex lignocellulosic biomass. Advanced technologies to discover and characterize novel enzymes and to improve enzyme characteristics by mutagenesis, post-translational modification, and over-expression of selected enzymes and modifications in lignocellulosic biomass are also discussed.

  15. australasian ethical investment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    market "Traditional" investments in timberland and timber production: TIMOs and timber REIT "Innovative" investments: Flexible mechanisms (CDM, JI, Emmission...

  16. Instructions for CEC-1250E-4 Biomass and Fossil Fuel Usage Report for Biomass Facilities

    E-Print Network [OSTI]

    Instructions for CEC-1250E-4 Biomass and Fossil Fuel Usage Report for Biomass Facilities Biomass energy input basis in the upcoming calendar year? - Please check "yes" or "no." 12. Types of Biomass Fuel Used - Please report the quantity and supplier of the following types of biomass fuel used

  17. Biomass and Bioenergy 31 (2007) 646655 Estimating biomass of individual pine trees using airborne lidar

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    Biomass and Bioenergy 31 (2007) 646­655 Estimating biomass of individual pine trees using airborne biomass and bio-energy feedstocks. The overall goal of this study was to develop a method for assessing aboveground biomass and component biomass for individual trees using airborne lidar data in forest settings

  18. Fiscalini Farms Biomass Energy Project

    SciTech Connect (OSTI)

    William Stringfellow; Mary Kay Camarillo; Jeremy Hanlon; Michael Jue; Chelsea Spier

    2011-09-30T23:59:59.000Z

    In this final report describes and documents research that was conducted by the Ecological Engineering Research Program (EERP) at the University of the Pacific (Stockton, CA) under subcontract to Fiscalini Farms LP for work under the Assistance Agreement DE-EE0001895 'Measurement and Evaluation of a Dairy Anaerobic Digestion/Power Generation System' from the United States Department of Energy, National Energy Technology Laboratory. Fiscalini Farms is operating a 710 kW biomass-energy power plant that uses bio-methane, generated from plant biomass, cheese whey, and cattle manure via mesophilic anaerobic digestion, to produce electricity using an internal combustion engine. The primary objectives of the project were to document baseline conditions for the anaerobic digester and the combined heat and power (CHP) system used for the dairy-based biomass-energy production. The baseline condition of the plant was evaluated in the context of regulatory and economic constraints. In this final report, the operation of the plant between start-up in 2009 and operation in 2010 are documented and an interpretation of the technical data is provided. An economic analysis of the biomass energy system was previously completed (Appendix A) and the results from that study are discussed briefly in this report. Results from the start-up and first year of operation indicate that mesophilic anaerobic digestion of agricultural biomass, combined with an internal combustion engine, is a reliable source of alternative electrical production. A major advantage of biomass energy facilities located on dairy farms appears to be their inherent stability and ability to produce a consistent, 24 hour supply of electricity. However, technical analysis indicated that the Fiscalini Farms system was operating below capacity and that economic sustainability would be improved by increasing loading of feedstocks to the digester. Additional operational modifications, such as increased utilization of waste heat and better documentation of potential of carbon credits, would also improve the economic outlook. Analysis of baseline operational conditions indicated that a reduction in methane emissions and other greenhouse gas savings resulted from implementation of the project. The project results indicate that using anaerobic digestion to produce bio-methane from agricultural biomass is a promising source of electricity, but that significant challenges need to be addressed before dairy-based biomass energy production can be fully integrated into an alternative energy economy. The biomass energy facility was found to be operating undercapacity. Economic analysis indicated a positive economic sustainability, even at the reduced power production levels demonstrated during the baseline period. However, increasing methane generation capacity (via the importation of biomass codigestate) will be critical for increasing electricity output and improving the long-term economic sustainability of the operation. Dairy-based biomass energy plants are operating under strict environmental regulations applicable to both power-production and confined animal facilities and novel approached are being applied to maintain minimal environmental impacts. The use of selective catalytic reduction (SCR) for nitrous oxide control and a biological hydrogen sulfide control system were tested at this facility. Results from this study suggest that biomass energy systems can be compliant with reasonable scientifically based air and water pollution control regulations. The most significant challenge for the development of biomass energy as a viable component of power production on a regional scale is likely to be the availability of energy-rich organic feedstocks. Additionally, there needs to be further development of regional expertise in digester and power plant operations. At the Fiscalini facility, power production was limited by the availability of biomass for methane generation, not the designed system capacity. During the baseline study period, feedstocks included manure, sudan grass silage, and

  19. Biomass One LP Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher HomesLyons BiomassBiofuels)Biomass Facility

  20. Ecopart Group formerly EcoInvest | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJump to: navigation, search Tool SummaryEconicthe

  1. Hong Kong Taiyang Investment Group Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California: EnergyHoloceneHonest Buildings

  2. China Lithium Energy Electric Vehicle Investment Group CLEEVIG | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd:Information China ElectronicChina Huadian

  3. EIG Renewable Energy Company Euro Investments Group | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergy OffshoreDeveloper - Q & ADoreenDyesolEere.gif

  4. Sichuan Provincial Hydro Power Investment Operation Group Co ltd | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AGShandongShirkeSichuan Miyi Shixia HydropowerLtd |

  5. Nanjing Dalu Industry Investment Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: Energy ResourcesOcean EnergyEnergyNance County,

  6. A Review on Biomass Torrefaction Process and Product Properties

    SciTech Connect (OSTI)

    Jaya Shankar Tumuluru; Shahab Sokhansanj; Christopher T. Wright; J. Richard Hess; Richard D. Boardman

    2011-08-01T23:59:59.000Z

    Biomass Torrefaction is gaining attention as an important preprocessing step to improve the quality of biomass in terms of physical properties and chemical composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of approximately 300 C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200-280 C. Thus, the process can be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, which produces a final product that will have a lower mass but a higher heating value. The present review work looks into (a) torrefaction process and different products produced during the process and (b) solid torrefied material properties which include: (i) physical properties like moisture content, density, grindability, particle size distribution and particle surface area and pelletability; (ii) chemical properties like proximate and ultimate composition; and (iii) storage properties like off-gassing and spontaneous combustion.

  7. Combined Municipal Solid Waste and biomass system optimization for district energy applications

    SciTech Connect (OSTI)

    Rentizelas, Athanasios A., E-mail: arent@central.ntua.gr; Tolis, Athanasios I., E-mail: atol@central.ntua.gr; Tatsiopoulos, Ilias P., E-mail: itat@central.ntua.gr

    2014-01-15T23:59:59.000Z

    Highlights: • Combined energy conversion of MSW and agricultural residue biomass is examined. • The model optimizes the financial yield of the investment. • Several system specifications are optimally defined by the optimization model. • The application to a case study in Greece shows positive financial yield. • The investment is mostly sensitive on the interest rate, the investment cost and the heating oil price. - Abstract: Municipal Solid Waste (MSW) disposal has been a controversial issue in many countries over the past years, due to disagreement among the various stakeholders on the waste management policies and technologies to be adopted. One of the ways of treating/disposing MSW is energy recovery, as waste is considered to contain a considerable amount of bio-waste and therefore can lead to renewable energy production. The overall efficiency can be very high in the cases of co-generation or tri-generation. In this paper a model is presented, aiming to support decision makers in issues relating to Municipal Solid Waste energy recovery. The idea of using more fuel sources, including MSW and agricultural residue biomass that may exist in a rural area, is explored. The model aims at optimizing the system specifications, such as the capacity of the base-load Waste-to-Energy facility, the capacity of the peak-load biomass boiler and the location of the facility. Furthermore, it defines the quantity of each potential fuel source that should be used annually, in order to maximize the financial yield of the investment. The results of an energy tri-generation case study application at a rural area of Greece, using mixed MSW and biomass, indicate positive financial yield of investment. In addition, a sensitivity analysis is performed on the effect of the most important parameters of the model on the optimum solution, pinpointing the parameters of interest rate, investment cost and heating oil price, as those requiring the attention of the decision makers. Finally, the sensitivity analysis is enhanced by a stochastic analysis to determine the effect of the volatility of parameters on the robustness of the model and the solution obtained.

  8. The role of biomass in California's hydrogen economy

    E-Print Network [OSTI]

    Parker, Nathan C; Ogden, Joan; Fan, Yueyue

    2009-01-01T23:59:59.000Z

    the biomass resources, hydrogen demands and prices to ?ndhydrogen. The price premium for biomass hydrogen comparedfrom biomass varies with hydrogen selling price. The curves

  9. The role of biomass in California's hydrogen economy

    E-Print Network [OSTI]

    Parker, Nathan C; Ogden, Joan; Fan, Yueyue

    2009-01-01T23:59:59.000Z

    Making a Business from Biomass in Energy, Environment,2004. An assessment of biomass resources in California.methanol and hydrogen from biomass. Journal of Power Sources

  10. Abengoa Bioenergy Biomass of Kansas LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Abengoa Bioenergy Biomass of Kansas LLC Abengoa Bioenergy Biomass of Kansas LLC Abengoa Bioenergy Biomass of Kansas LLC Location: Hugoton, KS Eligibility: 1705 Snapshot In...

  11. New process speeds conversion of biomass to fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conversion of Biomass to Fuels New process speeds conversion of biomass to fuels Scientists made a major step forward recently towards transforming biomass-derived molecules into...

  12. Biomass Resources Overview and Perspectives on Best Fits for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Resources Overview and Perspectives on Best Fits for Fuel Cells Biomass Resources Overview and Perspectives on Best Fits for Fuel Cells Biomass resources overview and...

  13. LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESS ENGINEERING UNIT (PEU)

    E-Print Network [OSTI]

    Figueroa, Carlos

    2012-01-01T23:59:59.000Z

    0092 UC-61 ORNIA LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESSLBL~l0092 LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESSof Energy LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESS

  14. MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE

    E-Print Network [OSTI]

    Haven, Kendall F.

    2011-01-01T23:59:59.000Z

    Design Parameters Marine Biomass Production Sea Farmof Various Types of Biomass . Biomethanation Parameters.Proceedings, Fuels from Biomass Symposium. University of

  15. The role of biomass in California's hydrogen economy

    E-Print Network [OSTI]

    Parker, Nathan C; Ogden, Joan; Fan, Yueyue

    2009-01-01T23:59:59.000Z

    promising than renewable sources, including biomass, for aof biomass. US Department of Energy, National RenewableRenewable Energy Laboratory projects the current technology production cost of biomass

  16. Interactions of Lignin and Hemicellulose and Effects on Biomass Deconstruction

    E-Print Network [OSTI]

    Li, Hongjia

    2012-01-01T23:59:59.000Z

    lignocellulosic biomass a promising renewable feedstock forNational Renewable Energy Laboratory (NREL) standard biomassLignocellulosic biomass is the only promising renewable

  17. ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improved Heat Recovery in Biomass-Fired Boilers ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers biomass-firedboilers.pdf More Documents &...

  18. The role of biomass in California's hydrogen economy

    E-Print Network [OSTI]

    Parker, Nathan C; Ogden, Joan; Fan, Yueyue

    2009-01-01T23:59:59.000Z

    for the same quantity of biomass. Finally, the distanceto ?nd the quantity of hydrogen from biomass that is likelyhow the quantity of hydrogen available from biomass varies

  19. Tracking Hemicellulose and Lignin Deconstruction During Hydrothermal Pretreatment of Biomass

    E-Print Network [OSTI]

    McKenzie, Heather Lorelei

    2012-01-01T23:59:59.000Z

    less recalcitrant biomass feedstocks and improved enzymes.of less recalcitrant biomass feedstocks and improvedpotential of improved biomass feedstocks and enzymes for the

  20. High-biomass sorghums for biomass biofuel production 

    E-Print Network [OSTI]

    Packer, Daniel

    2011-05-09T23:59:59.000Z

    photoperiod-sensitive (PS) hybrids within the Ma1/Ma5/Ma6 hybrid production system. High-biomass sorghums are PS and the Ma1/Ma5/Ma6 hybrid production system produces PS hybrids with PI parents by manipulating alleles at the Ma1, Ma5 and Ma6 sorghum maturity...

  1. Energy investment advisory series No. 3: Investment opportunities in the Persian Gulf energy sector

    SciTech Connect (OSTI)

    Hadgen, R.E.

    1994-12-01T23:59:59.000Z

    Sometimes the greatest investment opportunities are in those areas where the least progress seems to be taking place. This report describes energy-based developments taking place in the Persian/Arabian Gulf. The 8 Gulf states are building their nations; each has large minority groups and swelling populations; their economies are built on one product (hydrocarbons). Large expatriate populations, being integrated into local societies and economies, have led to hostility and guarded access to contacts with the outside world. Gulf nations cannot benefit from any oil price rise as they did in the past, as their populations have grown too rapidly. Policies change daily and can be changed back to original ones as well as into new ones. Since the oil and gas industries are the primary source of government revenue, oil and gas are likely to remain longest under government control. A breakdown of energy-base investment potentials in the Middle East is tabulated: upstream oil, refining, domestic oil marketing, upstream gas, LNG, electricity, petrochemical.

  2. Innovation investment area: Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    The mission of Environmental Management`s (EM) Office of Technology Development (OTD) Innovation Investment Area is to identify and provide development support for two types of technologies that are developed to characterize, treat and dispose of DOE waste, and to remediate contaminated sites. They are: technologies that show promise to address specific EM needs, but require proof-of-principle experimentation; and (2) already proven technologies in other fields that require critical path experimentation to demonstrate feasibility for adaptation to specific EM needs. The underlying strategy is to ensure that private industry, other Federal Agencies, universities, and DOE National Laboratories are major participants in developing and deploying new and emerging technologies. To this end, about 125 different new and emerging technologies are being developed through Innovation Investment Area`s (IIA) two program elements: RDDT&E New Initiatives (RD01) and Interagency Agreements (RD02). Both of these activities are intended to foster research and development partnerships so as to introduce innovative technologies into other OTD program elements for expedited evaluation.

  3. Accelerating Investments in the Geothermal Sector, Indonesia...

    Open Energy Info (EERE)

    in the Geothermal Sector, Indonesia (Presentation) Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Accelerating Investments in the Geothermal...

  4. Energy Conservation Project Evaluation by Investment Equivalents

    E-Print Network [OSTI]

    Larson, R. J.

    1984-01-01T23:59:59.000Z

    proposals, justify energy conservation projects, and choose between energy sensitive alternatives. Investment Equivalents are calculated and are used to evaluate energy savings proposals in sample problems....

  5. Alternative Ways of Financing Infrastructure Investment: Potential...

    Open Energy Info (EERE)

    'Novel' Financing Models Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Ways of Financing Infrastructure Investment: Potential for 'Novel' Financing Models...

  6. Transmission and Generation Investment in Electricity Markets

    E-Print Network [OSTI]

    Grimm Veronika

    2015-03-04T23:59:59.000Z

    Mar 4, 2015 ... The model incorporates investment decisions of the transmission operator and private firms in expectation of an energy-only market and ...

  7. Treatment of biomass to obtain ethanol

    DOE Patents [OSTI]

    Dunson, Jr., James B. (Newark, DE); Elander, Richard T. (Evergreen, CO); Tucker, III, Melvin P. (Lakewood, CO); Hennessey, Susan Marie (Avondale, PA)

    2011-08-16T23:59:59.000Z

    Ethanol was produced using biocatalysts that are able to ferment sugars derived from treated biomass. Sugars were obtained by pretreating biomass under conditions of high solids and low ammonia concentration, followed by saccharification.

  8. Biomass Resources for the Federal Sector

    SciTech Connect (OSTI)

    Not Available

    2005-08-01T23:59:59.000Z

    Biomass Resources for the Federal Sector is a fact sheet that explains how biomass resources can be incorporated into the federal sector, and also how they can provide opportunities to meet federal renewable energy goals.

  9. Biomass Sales and Use Tax Exemption

    Broader source: Energy.gov [DOE]

    Georgia enacted legislation in April 2006 (HB 1018) creating an exemption for biomass materials from the state's sales and use taxes. The term "biomass material" is defined as "organic matter,...

  10. Biomass Webinar Text Version | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Dowload the text version of the audio from the DOE Office of Indian Energy webinar on biomass. DOE Office of Indian Energy Foundational Course Webinar on Biomass: Text Version More...

  11. Biomass Equipment & Materials Compensating Tax Deduction

    Broader source: Energy.gov [DOE]

    In 2005, New Mexico adopted a policy to allow businesses to deduct the value of biomass equipment and biomass materials used for the processing of biopower, biofuels, or biobased products in...

  12. Conversion of Waste Biomass into Useful Products 

    E-Print Network [OSTI]

    Holtzapple, M.

    1998-01-01T23:59:59.000Z

    Waste biomass includes municipal solid waste (MSW), municipal sewage sludge (SS), industrial biosludge, manure, and agricultural residues. When treated with lime, biomass is highly digestible by a mixed culture of acid-forming microorganisms. Lime...

  13. Biomass Equipment and Materials Compensating Tax Deduction

    Broader source: Energy.gov [DOE]

    In 2005 New Mexico adopted a policy to allow businesses to deduct the value of biomass equipment and biomass materials used for the processing of biopower, biofuels or biobased products in...

  14. Biomass Feedstock Composition and Property Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Office of Energy Efficiency and Renewable Energy's Biomass Program works with industry, academia and national laboratory partners on a balanced portfolio of research in biomass feedstocks and conversion technologies. Through research, development, and demonstration efforts geared at the development of integrated biorefineries, the Biomass Program is helping transform the nation's renewable and abundant biomass resources into cost competitive, high performance biofuels, bioproducts, and biopower.(From the Biomass Program's home page at http://www1.eere.energy.gov/biomass/) The Biomass Feedstock Composition and Property Database allows the user to choose from more than 150 types of biomass samples. The specialized interface then guides the user through choices within the sample (such as "Ash" as a choice in the "Hardwood" sample and displays tables based on choice of composition properties, structure properties, elemental properties, extractive properties, etc.

  15. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect (OSTI)

    Unknown

    2001-10-01T23:59:59.000Z

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications.

  16. Biomass from Combined Backseatter Modeling

    E-Print Network [OSTI]

    Weishampel, John F.

    and SAR back- scatter. In this article we discuss' the use of models to help develop a relationship to an airbomw SAR (AIB- SAB) image over a fi?rested area in Maine. A relationship derived totall!l from model results was fi?und to undervs- timate biomass. Calibrating the modeled backscatter with limited AIRSAB

  17. WE INVEST IN TECHNOLOGY. NOW LET US INVEST IN YOU. Leap Technology Program

    E-Print Network [OSTI]

    Virginia Tech

    WE INVEST IN TECHNOLOGY. NOW LET US INVEST IN YOU. Leap Technology Program Fidelity Investments innovation, and effective deployment of leading-edge technologies. Our entry-level technology training, Quality Assurance, Mainframe Development and Technology Infrastructure and Engineering (TIE). Upon

  18. Biomass Catalyst Characterization Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01T23:59:59.000Z

    This fact sheet provides information about Biomass Catalyst Characterization Laboratory (BCCL) capabilities and applications at NREL's National Bioenergy Center.

  19. Dairy Biomass as a Renewable Fuel Source

    E-Print Network [OSTI]

    Mukhtar, Saqib; Goodrich, Barry; Engler, Cady; Capareda, Sergio

    2008-03-19T23:59:59.000Z

    biomass. This publication explains the properties of dairy manure that could make it an excellent source of fuel....

  20. Dairy Biomass as a Renewable Fuel Source 

    E-Print Network [OSTI]

    Mukhtar, Saqib; Goodrich, Barry; Engler, Cady; Capareda, Sergio

    2008-03-19T23:59:59.000Z

    biomass. This publication explains the properties of dairy manure that could make it an excellent source of fuel....

  1. Biomass Compositional Analysis Laboratory (Fact Sheet), National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Providing detailed and accurate characterization of the chemical composition of biomass feedstocks, intermediates, and products Compositional Analysis Service Capabilities...

  2. Biomass Compositional Analysis Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01T23:59:59.000Z

    This fact sheet provides information about Biomass Compositional Analysis Laboratory (BCAL) capabilities and applications at NREL's National Bioenergy Center.

  3. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect (OSTI)

    Unknown

    2001-07-01T23:59:59.000Z

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts proceeded, and Carbona completed the gasifier island design package. Nexant has completed the balance of plant support systems design and the design for the biomass feed system. Work on the Technoeconomic Study is proceeding. Approximately 75% of the specified hardware quotations have been received at the end of the reporting period. A meeting is scheduled for July 23 rd and 24 th to review the preliminary cost estimates. GTI presented a status review update of the project at the DOE/NETL contractor's review meeting in Pittsburgh on June 21st.

  4. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect (OSTI)

    Francis S. Lau

    2003-09-01T23:59:59.000Z

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Natural gas and waste coal fines were evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. A design was developed for a cofiring combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures in a power generation boiler, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. Following the preliminary design, GTI evaluated the gasification characteristics of selected feedstocks for the project. To conduct this work, GTI assembled an existing ''mini-bench'' unit to perform the gasification tests. The results of the test were used to confirm the process design completed in Phase Task 1. As a result of the testing and modeling effort, the selected biomass feedstocks gasified very well, with a carbon conversion of over 98% and individual gas component yields that matched the RENUGAS{reg_sign} model. As a result of this work, the facility appears very attractive from a commercial standpoint. Similar facilities can be profitable if they have access to low cost fuels and have attractive wholesale or retail electrical rates for electricity sales. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. Phase II has not been approved for construction at this time.

  5. Determination of Protein Content in Biomass: Laboratory Analytical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Biomass") and biomass before extraction. 2.2 This procedure is suitable for biomass feedstocks, process solids, and process liquids. 2.3 Some types of biomass feedstocks, such...

  6. Original article Micronutrients in biomass fractions

    E-Print Network [OSTI]

    Boyer, Edmond

    Original article Micronutrients in biomass fractions of holm oak, beech and fir forests biomass fractions in individual monospecific stands of holm oak (Quercus ilex L), beech (Fagus sylvatica L in different biomass fractions of the holm oak forest studied. This can be related to the low soil pH values

  7. UCSD Biomass to Power Economic Feasibility Study

    E-Print Network [OSTI]

    Cattolica, Robert

    2009-01-01T23:59:59.000Z

    and  the  high  price  of  the  biomass  from  the  Miramar biomass to be secured under long?term contracts at better prices.   biomass and any dual fuel)  • Moisture, ash, and carbon concentrations (for weight calculations of input fuel and facility waste)  • Sale price 

  8. Also inside this issue: Bioengineering Better Biomass

    E-Print Network [OSTI]

    Also inside this issue: Bioengineering Better Biomass DOE JGI/EMSL Collaborative Science Projects and degrade carbon. This is an image of the Mn(II)-oxidizing fungus Stilbella aciculosa ­ the fungal biomass Better Biomass Feedstock Science Highlights 15 Clouds up Close Improving Catalysts Pore Challenge

  9. 4, 707745, 2007 Proxies of biomass

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    BGD 4, 707­745, 2007 Proxies of biomass for primary production Y. Huot et al. Title Page Abstract the best index of phytoplankton biomass for primary productivity studies? Y. Huot 1,2 , M. Babin 1,2 , F of biomass for primary production Y. Huot et al. Title Page Abstract Introduction Conclusions References

  10. Thermodynamics of Energy Production from Biomass

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    Thermodynamics of Energy Production from Biomass Tad W. Patzek 1 and David Pimentel 2 1 Department #12;3 Biomass from Tropical Tree Plantations 14 3.1 Scope of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Environmental Impacts of Industrial Biomass Production . . . . . . . . . . . . . . . 16 3

  11. 4, 51355200, 2004 A review of biomass

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 4, 5135­5200, 2004 A review of biomass burning emissions, part II J. S. Reid et al. Title Page and Physics Discussions A review of biomass burning emissions, part II: Intensive physical properties of biomass burning particles J. S. Reid 1 , R. Koppmann 2 , T. F. Eck 3 , and D. P. Eleuterio 4 1 Marine

  12. 4, 52015260, 2004 A review of biomass

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 4, 5201­5260, 2004 A review of biomass burning emissions part III J. S. Reid et al. Title Page and Physics Discussions A review of biomass burning emissions part III: intensive optical properties of biomass burning particles J. S. Reid1 , T. F. Eck2 , S. A. Christopher3 , R. Koppmann4 , O. Dubovik3 , D

  13. 5, 1045510516, 2005 A review of biomass

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 5, 10455­10516, 2005 A review of biomass burning emissions, part I R. Koppmann et al. Title and Physics Discussions A review of biomass burning emissions, part I: gaseous emissions of carbon monoxide A review of biomass burning emissions, part I R. Koppmann et al. Title Page Abstract Introduction

  14. Energie-Cits 2001 BIOMASS -WOOD

    E-Print Network [OSTI]

    Energie-Cités 2001 BIOMASS - WOOD Gasification / Cogeneration ARMAGH United Kingdom Gasification is transferring the combustible matters in organic waste or biomass into gas and pure char by burning the fuel via it allows biomass in small-scaled engines and co-generation units ­ which with conventional technologies

  15. Woody Biomass Logistics Robert Keefe1

    E-Print Network [OSTI]

    14 Woody Biomass Logistics Robert Keefe1 , Nathaniel Anderson2 , John Hogland2 , and Ken Muhlenfeld The economics of using woody biomass as a fuel or feedstock for bioenergy applications is often driven by logistical considerations. Depending on the source of the woody biomass, the acquisition cost of the material

  16. Fermentable sugars by chemical hydrolysis of biomass

    E-Print Network [OSTI]

    Raines, Ronald T.

    Fermentable sugars by chemical hydrolysis of biomass Joseph B. Binder and Ronald T. Raines1 19, 2009) Abundant plant biomass has the potential to become a sustainable source of fuels of biomass into monosaccharides. Add- ing water gradually to a chloride ionic liquid-containing catalytic

  17. Vanadium catalysts break down biomass for fuels

    E-Print Network [OSTI]

    - 1 - Vanadium catalysts break down biomass for fuels March 26, 2012 Vanadium catalysts break down biomass into useful components Due to diminishing petroleum reserves, non-food biomass (lignocellulose) is an attractive alternative as a feedstock for the production of renewable chemicals and fuels. The Department

  18. Researchers at the Biomass Energy Center

    E-Print Network [OSTI]

    Lee, Dongwon

    is renewable, and can be grown domestically. In all its variet- ies, biomass is also plentiful, and hasHARVEST OF ENERGY Researchers at the Biomass Energy Center are homing in on future fuels --By David--seriously for much longer than that. These are just a few examples of biomass, plant matter that can be transformed

  19. The role of biomass in California's hydrogen economy

    E-Print Network [OSTI]

    Parker, Nathan C; Ogden, Joan; Fan, Yueyue

    2009-01-01T23:59:59.000Z

    hydrogen from dry biomass feedstocks (i.e. straws, stovers,be produced from the wet biomass feedstocks (manures, urban

  20. SONOMA STATE ENTERPRISES, INC. INVESTMENT POLICY

    E-Print Network [OSTI]

    Ravikumar, B.

    of the Corporation by achieving a maximum rate of return on assets consistent with prudent investment management. This policy, which emphasizes preservation of capital, should enhance "real" asset value. "Real" asset value that are financially sound and that have favorable prospects for earnings growth. Stock investments should

  1. SWOT Technology Investments September 19, 2008

    E-Print Network [OSTI]

    Christian, Eric

    1 SWOT Technology Investments Overview September 19, 2008 Robert Bauer Earth Science Technology Office HyspIRI Technology Investment Overview October 22, 2008 Janice L. Buckner Earth Science Technology Office #12;2 ·Advances in Earth science are often enabled by advances in technology ·In many cases

  2. Scientific Innovation Through Integration Investing in Innovation

    E-Print Network [OSTI]

    Scientific Innovation Through Integration Investing in Innovation: EMSL and the American Recovery transfer (FRET) in living cells. Transcriptional profiling using next-generation sequencing technology (RNA Act, EMSL users are benefitting from a $60 million investment in innovation that will further develop

  3. Regional Transit System: Return on Investment Assessment

    E-Print Network [OSTI]

    Minnesota, University of

    Regional Transit System: Return on Investment Assessment May 2014 #12;1 Today's agenda Itasca transit options Enables strategic, efficient investment in long-term infrastructure, e.g., energy grid are seeking cities with good transit Transit can be a cost-efficient way to add capacity in corridors

  4. USDA, DOE to Invest up to $18.4 million for Biomass Research...

    Energy Savers [EERE]

    Bush Administration's strategy of bringing online more clean, bio-based products and biofuels to help reduce our dependence on oil from unstable parts of the world and mitigate...

  5. USDA, DOE to Invest up to $18.4 million for Biomass Research, Development

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015 -Helicopter AccidentSeptemberDepartment of Energy USDAand

  6. USDA, DOE to Invest up to $18.4 million for Biomass Research, Development

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015 -Helicopter AccidentSeptemberDepartment of Energy USDAandand

  7. Combustion Group Group members

    E-Print Network [OSTI]

    Wang, Wei

    Combustion Group Group members: Thierry Poinsot, Emilien Courtine, Luc Vervisch, Benjamin Farcy 2014 #12;Combustion Group Combustion Physics and Modeling Pollutants, Emissions, and Soot Formation Thermoacoustics and Combustion Dynamics Research focus § Examine mechanisms responsible for flame stabilization

  8. BIOMASS FOR HYDROGEN AND OTHER TRANSPORT FUELS -POTENTIALS, LIMITATIONS & COSTS

    E-Print Network [OSTI]

    BIOMASS FOR HYDROGEN AND OTHER TRANSPORT FUELS - POTENTIALS, LIMITATIONS & COSTS Senior scientist - "Towards Hydrogen Society" ·biomass resources - potentials, limits ·biomass carbon cycle ·biomass for hydrogen - as compared to other H2- sources and to other biomass paths #12;BIOMASS - THE CARBON CYCLE

  9. The Potential for Biomass District Energy Production in Port Graham, Alaska

    SciTech Connect (OSTI)

    Charles Sink, Chugachmiut; Keeryanne Leroux, EERC

    2008-05-08T23:59:59.000Z

    This project was a collaboration between The Energy & Environmental Research Center (EERC) and Chugachmiut – A Tribal organization Serving the Chugach Native People of Alaska and funded by the U.S. Department of Energy (DOE) Tribal Energy Program. It was conducted to determine the economic and technical feasibility for implementing a biomass energy system to service the Chugachmiut community of Port Graham, Alaska. The Port Graham tribe has been investigating opportunities to reduce energy costs and reliance on energy imports and support subsistence. The dramatic rise in the prices of petroleum fuels have been a hardship to the village of Port Graham, located on the Kenai Peninsula of Alaska. The Port Graham Village Council views the forest timber surrounding the village and the established salmon industry as potential resources for providing biomass energy power to the facilities in their community. Benefits of implementing a biomass fuel include reduced energy costs, energy independence, economic development, and environmental improvement. Fish oil–diesel blended fuel and indoor wood boilers are the most economical and technically viable options for biomass energy in the village of Port Graham. Sufficient regional biomass resources allow up to 50% in annual heating savings to the user, displacing up to 70% current diesel imports, with a simple payback of less than 3 years for an estimated capital investment under $300,000. Distributive energy options are also economically viable and would displace all imported diesel, albeit offering less savings potential and requiring greater capital. These include a large-scale wood combustion system to provide heat to the entire village, a wood gasification system for cogeneration of heat and power, and moderate outdoor wood furnaces providing heat to 3–4 homes or community buildings per furnace. Coordination of biomass procurement and delivery, ensuring resource reliability and technology acceptance, and arbitrating equipment maintenance mitigation for the remote village are challenges to a biomass energy system in Port Graham that can be addressed through comprehensive planning prior to implementation.

  10. Corporate Governance & The UK Split Capital Investment Trust Crisis 

    E-Print Network [OSTI]

    Adams, Andrew T; Angus, Robin

    2005-01-01T23:59:59.000Z

    of corporate governance issues. This paper draws on the results of a survey of investment trust directors and other investment professionals connected with the investment trust industry to examine the lessons to be learned from the crisis. The regulatory...

  11. Distributed Generation Investment by a Microgrid under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2008-01-01T23:59:59.000Z

    not only the tangible investment costs such as the turnkeyDG unit minus the investment cost. As for Eq. (9), it is aplus the amortised investment cost per kWh e of the DG unit

  12. Distributed Generation Investment by a Microgrid Under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal; Marnay, Chris

    2006-01-01T23:59:59.000Z

    only the tangible investment costs, but also the opportunityDG unit minus the investment cost. As for Equation (9), itplus the amortised investment cost per kWh of the DG unit is

  13. Electricity Distribution Networks: Investment and Regulation, and Uncertain Demand

    E-Print Network [OSTI]

    Jamasb, Tooraj; Marantes, Cristiano

    2011-01-31T23:59:59.000Z

    " and describes a network investment assessment model developed as a tool to identify and assess the investment requirements of distribution networks. A broadening of the scope of network investments to include demand-related measures that can reduce the need...

  14. Biomass Logistics and Particle Technology Group Purdue Improved Drying

    E-Print Network [OSTI]

    Ginzel, Matthew

    to maintain quality of grain in storage. n Farmers primarily depended on open air solar drying after logistics Grain & pest management Pre-Harvest losses from: Insect, molds and birds Harvesting & handling of PICS, technology Open Air Solar Drying of Maize in Ejura Market, Ashanti Region, Ghana #12;4 Chronology

  15. State Grid and Shenzhen Energy Group Biomass Engineering Technology

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt. Francis(RedirectedStarr County,and5 Plans for

  16. Roadmap for Agriculture Biomass Feedstock Supply in the United States

    SciTech Connect (OSTI)

    J. Richard Hess; Thomas D. Foust; Reed Hoskinson; David Thompson

    2003-11-01T23:59:59.000Z

    The Biomass Research and Development Technical Advisory Committee established a goal that biomass will supply 5% of the nation’s power, 20% of its transportation fuels, and 25% of its chemicals by 2030. These combined goals are approximately equivalent to 30% of the country’s current petroleum consumption. The benefits of a robust biorefinery industry supplying this amount of domestically produced power, fuels, and products are considerable, including decreased demand for imported oil, revenue to the depressed agricultural industry, and revitalized rural economies. A consistent supply of highquality, low-cost feedstock is vital to achieving this goal. This biomass roadmap defines the research and development (R&D) path to supplying the feedstock needs of the biorefinery and to achieving the important national goals set for biomass. To meet these goals, the biorefinery industry must be more sustainable than the systems it will replace. Sustainability hinges on the economic profitability of all participants, on environmental impact of every step in the process, and on social impact of the product and its production. In early 2003, a series of colloquies were held to define and prioritize the R&D needs for supplying feedstock to the biorefinery in a sustainable manner. These colloquies involved participants and stakeholders in the feedstock supply chain, including growers, transporters, equipment manufacturers, and processors as well as environmental groups and others with a vested interest in ensuring the sustainability of the biorefinery. From this series of colloquies, four high-level strategic goals were set for the feedstock area: • Biomass Availability – By 2030, 1 billion dry tons of lignocellulosic feedstock is needed annually to achieve the power, fuel, and chemical production goals set by the Biomass Research and Development Technology Advisory Production Committee • Sustainability – Production and use of the 1 billion dry tons annually must be accomplished in a sustainable manner • Feedstock Infrastructure – An integrated feedstock supply system must be developed and implemented that can serve the feedstock needs of the biorefinery at the cost, quality, and consistency of the set targets • System Profitability – Economic profitability and sustainability need to be ensured for all required participants in the feedstock supply system. For each step in the biomass supply process—production, harvesting and collection, storage, preprocessing, system integration, and transportation—this roadmap addresses the current technical situations, performance targets, technical barriers, R&D needs, and R&D priorities to overcome technical barriers and achieve performance targets. Crop residue biomass is an attractive starting feedstock, which shows the best near-term promise as a biorefinery feedstock. Because crop residue is a by-product of grain production, it is an abundant, underutilized, and low cost biomass resource. Corn stover and cereal straw are the two most abundant crop residues available in the United States. Therefore, this roadmap focuses primarily on the R&D needed for using these biomass sources as viable biorefinery feedstocks. However, achieving the goal of 1 billion dry tons of lignocellulosic feedstock will require the use of other biomass sources such as dedicated energy crops. In the long term, the R&D needs identified in this roadmap will need to accommodate these other sources of biomass as well.

  17. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect (OSTI)

    Unknown

    2002-09-30T23:59:59.000Z

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts focused on completion of the Topical Report, summarizing the design and techno-economic study of the project's feasibility. GTI received supplemental authorization A002 from DOE contracts for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI will assemble an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1.

  18. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect (OSTI)

    Unknown

    2001-12-31T23:59:59.000Z

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts focused on completion of the Topical Report, summarizing the design and techno-economic study of the project's feasibility. GTI received supplemental authorization A002 from DOE contracts for additional work to be performed under Phase I that will further extend the performance period until the end of 2002. GTI worked with DOE to develop the Statement of Work for the supplemental activities. DOE granted an interim extension of the project until the end of January 2002 to complete the contract paperwork. GTI worked with Calla Energy to develop request for continued funding to proceed with Phase II, submitted to DOE on November 1, 2001.

  19. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect (OSTI)

    Unknown

    2002-06-30T23:59:59.000Z

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts focused on completion of the Topical Report, summarizing the design and techno-economic study of the project's feasibility. GTI received supplemental authorization A002 from DOE contracts for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI will assemble an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1.

  20. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect (OSTI)

    Unknown

    2002-03-31T23:59:59.000Z

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts focused on completion of the Topical Report, summarizing the design and techno-economic study of the project's feasibility. GTI received supplemental authorization A002 from DOE contracts for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI will assemble an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1.

  1. Engineered plant biomass feedstock particles

    DOE Patents [OSTI]

    Dooley, James H. (Federal Way, WA); Lanning, David N. (Federal Way, WA); Broderick, Thomas F. (Lake Forest Park, WA)

    2012-04-17T23:59:59.000Z

    A new class of plant biomass feedstock particles characterized by consistent piece size and shape uniformity, high skeletal surface area, and good flow properties. The particles of plant biomass material having fibers aligned in a grain are characterized by a length dimension (L) aligned substantially parallel to the grain and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces. The L.times.W surfaces of particles with L/H dimension ratios of 4:1 or less are further elaborated by surface checking between longitudinally arrayed fibers. The length dimension L is preferably aligned within 30.degree. parallel to the grain, and more preferably within 10.degree. parallel to the grain. The plant biomass material is preferably selected from among wood, agricultural crop residues, plantation grasses, hemp, bagasse, and bamboo.

  2. Obama Administration Announces $12 Million i6 Green Investment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    12 Million i6 Green Investment to Promote Clean Energy Innovation and Job Creation Obama Administration Announces 12 Million i6 Green Investment to Promote Clean Energy...

  3. Recovery Act Selections for Smart Grid Investment Grant Awards...

    Broader source: Energy.gov (indexed) [DOE]

    State - Updated November 2011 Recovery Act Selections for Smart Grid Investment Grant Awards - By State - Updated November 2011 List of selections for the Smart Grid Investment...

  4. Recovery Act Selections for Smart Grid Investment Grant Awards...

    Broader source: Energy.gov (indexed) [DOE]

    Category Updated November 2011 Recovery Act Selections for Smart Grid Investment Grant Awards - By Category Updated November 2011 List of selections for the Smart Grid Investment...

  5. Davis Bacon Act Applicability to Smart Grid Investment Grant...

    Broader source: Energy.gov (indexed) [DOE]

    Davis Bacon Act Applicability to Smart Grid Investment Grant (SGIG) Program Grants Davis Bacon Act Applicability to Smart Grid Investment Grant (SGIG) Program Grants Letter to...

  6. Questions and Answers for the Smart Grid Investment Grant Program...

    Energy Savers [EERE]

    Questions and Answers for the Smart Grid Investment Grant Program: Buy American Questions and Answers for the Smart Grid Investment Grant Program: Buy American Additional questions...

  7. Energy Department Invests More Than $55 Million to Advance Efficient...

    Energy Savers [EERE]

    Invests More Than 55 Million to Advance Efficient Vehicle Technologies Energy Department Invests More Than 55 Million to Advance Efficient Vehicle Technologies August 15, 2014 -...

  8. Distributed Generation Investment by a Microgrid Under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal; Marnay, Chris

    2006-01-01T23:59:59.000Z

    option on natural gas generation, which increases in valueL ABORATORY Distributed Generation Investment by a MicrogridORMMES’06 Distributed Generation Investment by a Microgrid

  9. Guangdong Nuclear Power and New Energy Industrial Investment...

    Open Energy Info (EERE)

    Guangdong Nuclear Power and New Energy Industrial Investment Fund Management Company Jump to: navigation, search Name: Guangdong Nuclear Power and New Energy Industrial Investment...

  10. Federal Fuel Cell Tax Incentives: An Investment in Clean and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Tax Incentives: An Investment in Clean and Efficient Technologies Federal Fuel Cell Tax Incentives: An Investment in Clean and Efficient Technologies A brief created by...

  11. The Geothermal Technologies Office Invests $18 Million for Innovative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Geothermal Technologies Office Invests 18 Million for Innovative Projects The Geothermal Technologies Office Invests 18 Million for Innovative Projects The McGuiness Hills...

  12. Energy Department Invests to Drive Down Costs of Carbon Capture...

    Energy Savers [EERE]

    Invests to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution Energy Department Invests to Drive Down Costs of Carbon Capture, Support Reductions...

  13. Department of Energy to Invest Nearly $18 Million for Advanced...

    Energy Savers [EERE]

    Department of Energy to Invest Nearly 18 Million for Advanced Biofuels User Facility Department of Energy to Invest Nearly 18 Million for Advanced Biofuels User Facility March...

  14. Department of Energy Announces up to $12 Million in Investments...

    Energy Savers [EERE]

    up to 12 Million in Investments to Support Development and Production of Drop-In Biofuels Department of Energy Announces up to 12 Million in Investments to Support...

  15. American Wind Energy Association Wind Energy Finance and Investment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    American Wind Energy Association Wind Energy Finance and Investment Seminar American Wind Energy Association Wind Energy Finance and Investment Seminar October 20, 2014 8:00AM EDT...

  16. Conservation Screening Curves to Compare Efficiency Investments to Power Plants

    E-Print Network [OSTI]

    Koomey, J.G.

    2008-01-01T23:59:59.000Z

    Efficiency Investments to Power Plants J. Koorney, A.H.Efficiency Investments to Power Plants Jonathan Koorney,Pollution, and Avoid Power Plant Construction. Testimony

  17. Energy Department Announces New Investment in Innovative Small...

    Energy Savers [EERE]

    Energy Department Announces New Investment in Innovative Small Modular Reactor Energy Department Announces New Investment in Innovative Small Modular Reactor December 12, 2013 -...

  18. Now Available: Smart Grid Investments Improve Grid Reliability...

    Energy Savers [EERE]

    Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014) Now Available: Smart Grid Investments Improve Grid Reliability, Resilience, and...

  19. Recovery Act Selections for Smart Grid Investment Grant Awards...

    Office of Environmental Management (EM)

    Recovery Act Selections for Smart Grid Investment Grant Awards- By Category Updated July 2010 Recovery Act Selections for Smart Grid Investment Grant Awards- By Category Updated...

  20. Smart Grid Investment Grant Program (SGIG) Recipient Workshop...

    Broader source: Energy.gov (indexed) [DOE]

    Smart Grid Investment Grant (SGIG) Kickoff Welcome and Overview: Familiarize SGIG selectees with Grant Award Process. Smart Grid Investment Grant Program (SGIG) Recipient Workshop:...

  1. Questions and Answers for the Smart Grid Investment Grant Program...

    Office of Environmental Management (EM)

    Questions and Answers for the Smart Grid Investment Grant Program: Frequently Asked Questions Questions and Answers for the Smart Grid Investment Grant Program: Frequently Asked...

  2. Biomass Energy Data Book, 2011, Edition 4

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wright, L.; Boundy, B.; Diegel, S. W.; Davis, S. C.

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the fourth edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability.

  3. Biomass Energy Data Book: Edition 2

    SciTech Connect (OSTI)

    Wright, Lynn L [ORNL; Boundy, Robert Gary [ORNL; Badger, Philip C [ORNL; Perlack, Robert D [ORNL; Davis, Stacy Cagle [ORNL

    2009-12-01T23:59:59.000Z

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the second edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, assumptions for selected tables and figures, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  4. Biomass Energy Data Book: Edition 1

    SciTech Connect (OSTI)

    Wright, Lynn L [ORNL; Boundy, Robert Gary [ORNL; Perlack, Robert D [ORNL; Davis, Stacy Cagle [ORNL; Saulsbury, Bo [ORNL

    2006-09-01T23:59:59.000Z

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of the Biomass Program and the Office of Planning, Budget and Analysis in the Department of Energy's Energy Efficiency and Renewable Energy (EERE) program. Designed for use as a desk-top reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use. This is the first edition of the Biomass Energy Data Book and is currently only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass is a section on biofuels which covers ethanol, biodiesel and BioOil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is about the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also three appendices which include measures of conversions, biomass characteristics and assumptions for selected tables and figures. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  5. Biomass Energy Data Book: Edition 4

    SciTech Connect (OSTI)

    Boundy, Robert Gary [ORNL; Diegel, Susan W [ORNL; Wright, Lynn L [ORNL; Davis, Stacy Cagle [ORNL

    2011-12-01T23:59:59.000Z

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the fourth edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also two appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  6. Biomass Energy Data Book: Edition 3

    SciTech Connect (OSTI)

    Boundy, Robert Gary [ORNL; Davis, Stacy Cagle [ORNL

    2010-12-01T23:59:59.000Z

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the third edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  7. Upgraded Coal Interest Group

    SciTech Connect (OSTI)

    Evan Hughes

    2009-01-08T23:59:59.000Z

    The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

  8. Lyonsdale Biomass LLC Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma: Energy ResourcesLyonOhio: EnergyLLC Biomass

  9. Combustion Group Group members

    E-Print Network [OSTI]

    Wang, Wei

    Combustion Group Group members: Thierry Poinsot, Emilien Courtine, Luc Vervisch, Benjamin Farcy § New combustion and energy-conversion concepts #12;Introduction Combustion research thrusts Combustion Dynamics and Flame-Stabilization Research objectives § Obtain fundamental understanding of combustion

  10. Ghost towers : distressed condominium investing in Atlanta

    E-Print Network [OSTI]

    Whalen, Faraji L

    2009-01-01T23:59:59.000Z

    The purpose of this paper is to explore investment opportunities in these now-distressed residential condo properties. The paper will characterize the economic and development environment to determine the extent of ...

  11. Essays on international trade and investment

    E-Print Network [OSTI]

    Tang, Heiwai

    2008-01-01T23:59:59.000Z

    This dissertation consists of three essays on international trade and investment. In the first essay, I study how cross-country differences in labor market institutions shape the pattern of international trade with a focus ...

  12. Model Investment Grade Audit and Project Proposal

    Broader source: Energy.gov [DOE]

    Information and documents for conducting an investment grade audit to evaluate potential measures and presenting a project proposal for a set of bundled measures that deliver savings to pay for the project over the finance term.

  13. Alternative Energy Investment Tax Credit (Corporate) | Department...

    Broader source: Energy.gov (indexed) [DOE]

    or equal to 5,000. Provider Montana Department of Revenue Commercial and net metering alternative energy investments of 5,000 or more are eligible for a tax credit of up to...

  14. Alternative Energy Investment Tax Credit (Personal) | Department...

    Broader source: Energy.gov (indexed) [DOE]

    or equal to 5,000. Provider Montana Department of Revenue Commercial and net metering alternative energy investments of 5,000 or more are eligible for a tax credit of up to...

  15. Electricity reform abroad and US investment

    SciTech Connect (OSTI)

    NONE

    1997-10-01T23:59:59.000Z

    This report reviews and analyzes the recent electricity reforms in Argentina, Australia, and the United Kingdom (UK) to illustrate how different models of privatization and reform have worked in practice. This report also analyzes the motivations of the U.S. companies who have invested in the electricity industries in these countries, which have become the largest targets of U.S. foreign investment in electricity. Two calculations of foreign investment are used. One is the foreign direct investment series produced by the U.S. Department of Commerce. The other is based on transactions in electric utilities of the three countries. The electricity reform and privatization experiences reviewed may offer some insight as to how the U.S. electricity industry might develop as a result of recent domestic reform efforts and deregulation at the state and national levels. 126 refs., 23 figs., 27 tabs.

  16. Office leases & landlord investment in energy efficiency

    E-Print Network [OSTI]

    Meyer, Brian S. (Brian Stewart)

    2008-01-01T23:59:59.000Z

    What is the relationship between the structure of leases in the Boston office rental market and how much landlords invest in energy efficient building systems for their existing buildings? I am drawn to this question because ...

  17. The new option view of investment

    E-Print Network [OSTI]

    Dixit, Avinash K.

    1995-01-01T23:59:59.000Z

    This paper provides a simple introduction to the new option view of investment. We explain the shortcomings of the orthodox theory, and then outline the basic ideas behind the option framework. Several industry examples ...

  18. Copyright Association for Investment Management Research. Reproduced

    E-Print Network [OSTI]

    ­Based Models for Investment Doyne Farmer McKinsey Professor Santa Institute Santa New Mexico s far as I players, of interconnected market ecology. I getting Fundamental Empirical Models experience at Prediction

  19. It's About Time: Investing in Transportation to

    E-Print Network [OSTI]

    MARCH 2011 It's About Time: Investing in Transportation to Keep Texas Economically Competitive #12 of Contents Preface 1 The Challenge Facing Texans 3 Texas Transportation Action Principles 6 Texas' Deteriorating Transportation System: Background and Measurement 8 Baseline Scenario: Unacceptable Conditions

  20. A note on competitive investment under uncertainty

    E-Print Network [OSTI]

    Pindyck, Robert S.

    1991-01-01T23:59:59.000Z

    This paper clarifies how uncertainty affects irreversible investment in a competitive market equilibrium. With free entry, irreversibility affects the distribution of future prices, and thereby creates an opportunity cost ...

  1. Linked Investment Program for Commercial Enterprises (Maine)

    Broader source: Energy.gov [DOE]

    The Linked Investment Program for Commercial Enterprises reduces a borrower’s interest rate. The Maine State Treasurer makes a certificate of deposit at up to 2% less than the prevailing rate on...

  2. AN ECONOMETRIC ANALYSIS OF NET INVESTMENT IN

    E-Print Network [OSTI]

    NOTES AN ECONOMETRIC ANALYSIS OF NET INVESTMENT IN GULF SHRIMP FISHING VESSELS1 The major capital to the Gulf shrimp fishery. The purpose of this study is to estimate an econometric model of annual real net

  3. Turkish residential real estate investment analysis

    E-Print Network [OSTI]

    Ciller, Berk (Berk U.)

    2007-01-01T23:59:59.000Z

    This paper examines the investment potential for Turkish Residential Real Estate Market, focusing mainly on Istanbul. With a stable economy since 2002, dynamic population, geo-political location and the potential accession ...

  4. INVESTMENT PLAN FOR THE ALTERNATIVE AND

    E-Print Network [OSTI]

    and priorities for consideration in the Investment Plan: #12;Bonnie Holmes-Gen, American Lung Association Stephen Clarke, Applied Intellectual Capital Carla Din, Apollo Alliance Tom Frantz, Association of Irritated

  5. Clean energy investments in an uncertain future

    E-Print Network [OSTI]

    Harrison, Jessica (Jessica Kit)

    2005-01-01T23:59:59.000Z

    The energy sector faces a multitude of challenges related to climate change and energy security. These challenges will likely prompt considerable changes in the coming decades, including significant investment and new ...

  6. Biomass Resource Allocation among Competing End Uses

    SciTech Connect (OSTI)

    Newes, E.; Bush, B.; Inman, D.; Lin, Y.; Mai, T.; Martinez, A.; Mulcahy, D.; Short, W.; Simpkins, T.; Uriarte, C.; Peck, C.

    2012-05-01T23:59:59.000Z

    The Biomass Scenario Model (BSM) is a system dynamics model developed by the U.S. Department of Energy as a tool to better understand the interaction of complex policies and their potential effects on the biofuels industry in the United States. However, it does not currently have the capability to account for allocation of biomass resources among the various end uses, which limits its utilization in analysis of policies that target biomass uses outside the biofuels industry. This report provides a more holistic understanding of the dynamics surrounding the allocation of biomass among uses that include traditional use, wood pellet exports, bio-based products and bioproducts, biopower, and biofuels by (1) highlighting the methods used in existing models' treatments of competition for biomass resources; (2) identifying coverage and gaps in industry data regarding the competing end uses; and (3) exploring options for developing models of biomass allocation that could be integrated with the BSM to actively exchange and incorporate relevant information.

  7. Investment performance of life-science venture capital investment funds, persistence, and subsector analysis

    E-Print Network [OSTI]

    Behrens, Jeffrey S

    2007-01-01T23:59:59.000Z

    Venture capital investment performance data and performance attribution are not typically published. Venture investors articulate (and sell to LPs) conflicting strategies; the popular business literature and culture is ...

  8. Estimates of US biomass energy consumption 1992

    SciTech Connect (OSTI)

    Not Available

    1994-05-06T23:59:59.000Z

    This report is the seventh in a series of publications developed by the Energy Information Administration (EIA) to quantify the biomass-derived primary energy used by the US economy. It presents estimates of 1991 and 1992 consumption. The objective of this report is to provide updated estimates of biomass energy consumption for use by Congress, Federal and State agencies, biomass producers and end-use sectors, and the public at large.

  9. Biomass Compositional Analysis Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-07-01T23:59:59.000Z

    At the Biomass Compositional Analysis Laboratory, NREL scientists have more than 20 years of experience supporting the biomass conversion industry. They develop, refine, and validate analytical methods to determine the chemical composition of biomass samples before, during, and after conversion processing. These high-quality compositional analysis data are used to determine feedstock compositions as well as mass balances and product yields from conversion processes.

  10. NREL: Learning - Biomass Energy Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit |Infrastructure TheSolar Energy SponsorsBiomass

  11. High-Solids Enzymatic Saccharification Screening Method for Lignocellulosic Biomass (Poster)

    SciTech Connect (OSTI)

    Roche, C. M.; Stickel, J. J.

    2009-05-01T23:59:59.000Z

    The ability to screen new biomass pretreatments and advanced enzyme systems at process-relevant conditions is key to developing economically viable lignocellulosic ethanol. While much research is being invested in developing pretreatment technologies and enzyme systems that will more efficiently convert cellulosic biomass to sugars, the current standard reactor vessel, a shake flask, that is used for screening enzymatic saccharification of cellulosic biomass is inadequate at high-solids conditions. Shake flasks do not provide adequate mixing at high solids conditions. In this work, a roller bottle reactor was identified as a small-scale high-solids saccharification reaction vessel, and a method was developed for use in screening both pretreated biomass and enzyme systems at process-relevant conditions. This new method addresses mixing issues observed in high-solids saccharifications. In addition, yield calculations from sugar concentrations on a mass basis were used to account for the two-phase nature of the saccharification slurry, which eliminates discontinuities in comparing high-solids to low-solids saccharifications that occur when using concentrations on a volume basis. The roller bottle reactors out-performed the shake flasks by 5% for an initial insoluble solids loading of 15% and 140% for an initial soluble solids loading of 30%. The reactor system and method was compared at bench and floor scales and determined to be scalable for initial insoluble solids loading in the range of 15% to 30%. Pretreatment and enzyme screening results indicate that mid severity pretreated biomass is more digestible than the low and high severity biomass and GC220 is a superior enzyme to Spezyme CP.

  12. Conference for Biomass and Energy, Copenhagen, 1996 published by Elsevier BIOMASS ENERGY PRODUCTION: THE GLOBAL POTENTIAL

    E-Print Network [OSTI]

    Keeling, Stephen L.

    9th Conference for Biomass and Energy, Copenhagen, 1996 ­ published by Elsevier 1 BIOMASS ENERGY PRODUCTION: THE GLOBAL POTENTIAL AND THE NET INFLUENCE ON THE CO2 CONCENTRATION G. AHAMER Austrian Federal

  13. Understanding Substrate Features Influenced by Pretreatments that Limit Biomass Deconstruction by Enzymes

    E-Print Network [OSTI]

    Gao, Xiadi

    2013-01-01T23:59:59.000Z

    Biomass feedstocks .Materials and Methods Biomass feedstocks Two kinds ofthe screening of biomass feedstocks. In this study, a one-

  14. NREL: Biomass Research - Jonathan J. Stickel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the leader (Principal Investigator) for the Mechanistic Process Modeling task of the Biomass Program. This work involves fundamental and applied research of the fluid mechanics,...

  15. Low Solids Enzymatic Saccharification of Lignocellulosic Biomass...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Low Solids Enzymatic Saccharification of Lignocellulosic Biomass Laboratory Analytical Procedure (LAP) Issue Date: February 4, 2015 M. G. Resch, J. O. Baker, and S. R. Decker...

  16. NREL: Biomass Research - Eric P. Knoshaug

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in August 2000 and has since worked on engineering yeast for efficient utilization of biomass-generated pentose sugars, protein design and evolution for increased activity on...

  17. NREL: Biomass Research - Justin B. Sluiter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Justin B. Sluiter Justin Sluiter is a biomass analyst at the National Renewable Energy Laboratory's National Bioenergy Center. Justin started at NREL in 1996 working on a lignin...

  18. NREL: Biomass Research - Thermochemical Conversion Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fuel synthesis reactor. NREL investigates thermochemical processes for converting biomass and its residues to fuels and intermediates using gasification and pyrolysis...

  19. Biomass Catalyst Characterization Laboratory (Fact Sheet), NREL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization Laboratory Enabling fundamental understanding of thermochemical biomass conversion catalysis and performance NREL is a national laboratory of the U.S....

  20. NREL: Biomass Research - Gregg T. Beckham

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bonds. An illustration of lignin is shown below. In current selective routes for biomass utilization, lignin is typically burned for heat and power. However, the energy and...

  1. Biomass for energy and materials Local technologies -

    E-Print Network [OSTI]

    to rural development. · Biomass can be converted to storable biofuels such as bioethanol, biodiesel (bioethanol, hydrogen and biogas) · Efficient pre-treament · Low cost enzymes · Fermentation

  2. UCSD Biomass to Power Economic Feasibility Study

    E-Print Network [OSTI]

    Cattolica, Robert

    2009-01-01T23:59:59.000Z

    use biomass, waste, or renewable resources (including wind, and  emerging  renewable  resource  technologies.   new,  and  emerging  renewable  resources.   The  goal  of 

  3. Biomass IBR Fact Sheet: Haldor Topsoe, Inc.

    Broader source: Energy.gov [DOE]

    Haldor Topsoe, Inc. will integrate the Carbona Gasification and the Haldor Topsoe TIGAS (Topsoe Integrated Gasoline Synthesis) proprietary processes to produce renewable gasoline from woody biomass.

  4. Characterization of Catalysts for Aftertreatment and Biomass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stories from the High Temperature Materials Laboratory (HTML) User Program Characterization of Catalysts for Aftertreatment and Biomass-derived Fuels: Success Stories from...

  5. UCSD Biomass to Power Economic Feasibility Study

    E-Print Network [OSTI]

    Cattolica, Robert

    2009-01-01T23:59:59.000Z

    Figure 1: West Biofuels Biomass Gasification to Power process will utilize  gasification technology provided by is  pioneering the gasification technology that has been 

  6. NREL: Biomass Research - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to economically produce drop-in gasoline, diesel and jet fuel from non-food biomass feedstocks, the federal laboratory announced today. November 26, 2012 NREL Researchers Use...

  7. NREL: Biomass Research - Michelle L. Reed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis Technologies (BAT) team. She provides compositional analysis data on biomass feedstocks and process intermediates for use in pretreatment models and techno-economic...

  8. NREL: Biomass Research - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    users to layer related bioenergy data onto a single map to gather information on biomass feedstocks, biopower and biofuels potential, production and distribution. BioEnergy Atlas...

  9. Biomass Gasification at The Evergreen State College

    E-Print Network [OSTI]

    Natural Gas vs. Biomass Gasification...................................................................33..........................................................................................23 Transportation Impacts and Methods of Mitigation...................................24 Biochar, the Bad, and the Slash..........................................................................31 Natural

  10. EERC Center for Biomass Utilization 2006

    SciTech Connect (OSTI)

    Christopher J. Zygarlicke; John P. Hurley; Ted R. Aulich; Bruce C. Folkedahl; Joshua R. Strege; Nikhil Patel; Richard E. Shockey

    2009-05-27T23:59:59.000Z

    The Center for Biomass Utilization (CBU�®) 2006 project at the Energy & Environmental Research Center (EERC) consisted of three tasks related to applied fundamental research focused on converting biomass feedstocks to energy, liquid transportation fuels, and chemicals. Task 1, entitled Thermochemical Conversion of Biomass to Syngas and Chemical Feedstocks, involved three activities. Task 2, entitled Crop Oil Biorefinery Process Development, involved four activities. Task 3, entitled Management, Education, and Outreach, focused on overall project management and providing educational outreach related to biomass technologies through workshops and conferences.

  11. Strengthening the Nigerian Sovereign Investment Authority: A Policy Analysis of the Nigerian Excess Crude Account and the Nigerian Sovereign Investment Authority Act

    E-Print Network [OSTI]

    Ugwuibe, Cynthia

    2012-01-01T23:59:59.000Z

    Savings Authority Oil Investment Corporation of ReserveBrunei Iran Oil Oil Libyan Investment Authority Reserve Fundcurrent and future investments of oil windfalls. Since

  12. Biomass Support for the China Renewable Energy Law: International Biomass Energy Technology Review Report, January 2006

    SciTech Connect (OSTI)

    Not Available

    2006-10-01T23:59:59.000Z

    Subcontractor report giving an overview of the biomass power generation technologies used in China, the U.S., and Europe.

  13. Evaluate Supply and Recovery of Woody Biomass for Energy

    E-Print Network [OSTI]

    Gray, Matthew

    Biomass Recovery DataContrasting Woody Biomass Recovery Data Forest Biomass Supply in the Southeastern4/11/2011 1 Evaluate Supply and Recovery of Woody Biomass for Energy Production from Natural. Other studies of biomass supply have supply have assumedassumed a technical recovery rate

  14. Engineered plant biomass feedstock particles

    DOE Patents [OSTI]

    Dooley, James H. (Federal Way, WA); Lanning, David N. (Federal Way, WA); Broderick, Thomas F. (Lake Forest Park, WA)

    2011-10-18T23:59:59.000Z

    A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. At least 80% of the particles pass through a 1/4 inch screen having a 6.3 mm nominal sieve opening but are retained by a No. 10 screen having a 2 mm nominal sieve opening. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.

  15. Engineered plant biomass feedstock particles

    DOE Patents [OSTI]

    Dooley, James H. (Federal Way, WA); Lanning, David N. (Federal Way, WA); Broderick, Thomas F. (Lake Forest Park, WA)

    2011-10-11T23:59:59.000Z

    A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.

  16. The optimum substrate to biomass ratio to reduce net biomass yields and inert compounds in biological leachate treatment

    E-Print Network [OSTI]

    Bae, Jin-Woo

    The optimum substrate to biomass ratio to reduce net biomass yields and inert compounds that microorganisms must satisfy their maintenance energy requirements prior to synthesizing new biomass, a set on the excess biomass production. Decreasing the supply of substrate per unit biomass resulted in gradual

  17. Biomass plants face wood supply risks Report warns giant new biomass power plants will be hugely reliant on wood chip

    E-Print Network [OSTI]

    Biomass plants face wood supply risks Report warns giant new biomass power plants will be hugely's biomass energy sector could be undermined unless businesses move to resolve the supply chain issues-scale biomass plants will leave generators largely reliant on biomass from overseas such as wood chips, elephant

  18. www.mcgill.ca/investment-management BCom Honours in Investment Management

    E-Print Network [OSTI]

    Barthelat, Francois

    will prepare you for careers on the buy-side, in financial asset management, or on the sell-side, working will have the opportunity to work as a research analyst at Desautels Capital Management while taking courseswww.mcgill.ca/investment-management BCom Honours in Investment Management The BCom Honours

  19. Successful biomass (wood pellets ) implementation in

    E-Print Network [OSTI]

    Successful biomass (wood pellets ) implementation in Estonia Biomass Utilisation of Local of primary energy in Estonia ! Wood fuels production ! Pellet firing projects in Estonia ­ SIDA Demo East Production of wood fuels in Estonia in 2002 Regional Energy Centres in Estonia Wood pellets production

  20. Liquid Transportation Fuels from Coal and Biomass

    E-Print Network [OSTI]

    Liquid Transportation Fuels from Coal and Biomass Technological Status, Costs, and Environmental for liquid fuels produced from coal or biomass. · Evaluate environmental, economic, policy, and social Impacts Panel on Alternative Liquid Transportation Fuels DOE LDV Workshop 7-26-10 Mike Ramage and Jim

  1. Lessons learned from existing biomass power plants

    SciTech Connect (OSTI)

    Wiltsee, G.

    2000-02-24T23:59:59.000Z

    This report includes summary information on 20 biomass power plants, which represent some of the leaders in the industry. In each category an effort is made to identify plants that illustrate particular points. The project experiences described capture some important lessons learned that lead in the direction of an improved biomass power industry.

  2. SEE ALSO SIDEBARS: RECOURCES SOLARRESOURCES BIOMASS & BIOFUELS

    E-Print Network [OSTI]

    Kammen, Daniel M.

    373 SEE ALSO SIDEBARS: RECOURCES · SOLARRESOURCES · BIOMASS & BIOFUELS Engineered and Artificial, and the production of liquid biofuels for transportation is growing rapidly. However, both traditional biomass energy and crop-based biofuels technologies have negative environmental and social impacts. The overall research

  3. Tracking Hemicellulose and Lignin Deconstruction During Hydrothermal Pretreatment of Biomass

    E-Print Network [OSTI]

    McKenzie, Heather Lorelei

    2012-01-01T23:59:59.000Z

    2.3. Effects of low pH on biomass solids……………………………. ………………of effects of low pH on biomass……………………………. ….25 2.4. Low pHof low pH biomass reactions………………………. ……………..46

  4. High Biomass Low Export Regimes in the Southern Ocean

    E-Print Network [OSTI]

    Lam, Phoebe J.; Bishop, James K.B.

    2006-01-01T23:59:59.000Z

    of enhanced carbon biomass and export at 55 degrees S duringHigh Biomass Low Export Regimes in the Southern Ocean PhoebeSurface waters with high biomass levels and high proportion

  5. Original article Biomass, litterfall and nutrient content in

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Original article Biomass, litterfall and nutrient content in Castanea sativa coppice stands November 1995) Summary - Aboveground biomass and nutrient content, litterfall and nutrient return) and Catania (Italy). Best regression equations for the aboveground biomass were obtained by applying the allo

  6. Hydrogen from Biomass Catalytic Reforming of Pyrolysis Vapors

    E-Print Network [OSTI]

    kg H2/day) with catalyst attrition rates Biomass Feedstocks 6 CO2 +6 H2O C6 waste Issues: Biomass Availability and Costs Georgia Biomass Feedstock Supply 0 3 6 9 12 2000 2010 2020

  7. Bioconversion of waste biomass to useful products

    DOE Patents [OSTI]

    Grady, J.L.; Chen, G.J.

    1998-10-13T23:59:59.000Z

    A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, Bacillus smithii ATCC No. 55404. 82 figs.

  8. Bioconversion of waste biomass to useful products

    DOE Patents [OSTI]

    Grady, James L. (Fayetteville, AR); Chen, Guang Jiong (Fayetteville, AR)

    1998-01-01T23:59:59.000Z

    A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, bacillus smithii ATCC No. 55404.

  9. Superheater Corrosion Produced By Biomass Fuels

    SciTech Connect (OSTI)

    Sharp, William (Sandy) [SharpConsultant] [SharpConsultant; Singbeil, Douglas [FPInnovations] [FPInnovations; Keiser, James R [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    About 90% of the world's bioenergy is produced by burning renewable biomass fuels. Low-cost biomass fuels such as agricultural wastes typically contain more alkali metals and chlorine than conventional fuels. Although the efficiency of a boiler's steam cycle can be increased by raising its maximum steam temperature, alkali metals and chlorine released in biofuel boilers cause accelerated corrosion and fouling at high superheater steam temperatures. Most alloys that resist high temperature corrosion protect themselves with a surface layer of Cr{sub 2}O{sub 3}. However, this Cr{sub 2}O{sub 3} can be fluxed away by reactions that form alkali chromates or volatilized as chromic acid. This paper reviews recent research on superheater corrosion mechanisms and superheater alloy performance in biomass boilers firing black liquor, biomass fuels, blends of biomass with fossil fuels and municipal waste.

  10. Assessment of Biomass Resources in Liberia

    SciTech Connect (OSTI)

    Milbrandt, A.

    2009-04-01T23:59:59.000Z

    Biomass resources meet about 99.5% of the Liberian population?s energy needs so they are vital to basic welfare and economic activity. Already, traditional biomass products like firewood and charcoal are the primary energy source used for domestic cooking and heating. However, other more efficient biomass technologies are available that could open opportunities for agriculture and rural development, and provide other socio-economic and environmental benefits.The main objective of this study is to estimate the biomass resources currently and potentially available in the country and evaluate their contribution for power generation and the production of transportation fuels. It intends to inform policy makers and industry developers of the biomass resource availability in Liberia, identify areas with high potential, and serve as a base for further, more detailed site-specific assessments.

  11. IMPROVING BIOMASS LOGISTICS COST WITHIN AGRONOMIC SUSTAINABILITY CONSTRAINTS AND BIOMASS QUALITY TARGETS

    SciTech Connect (OSTI)

    J. Richard Hess; Kevin L. Kenney; Christopher T. Wright; David J. Muth; William Smith

    2012-10-01T23:59:59.000Z

    Equipment manufacturers have made rapid improvements in biomass harvesting and handling equipment. These improvements have increased transportation and handling efficiencies due to higher biomass densities and reduced losses. Improvements in grinder efficiencies and capacity have reduced biomass grinding costs. Biomass collection efficiencies (the ratio of biomass collected to the amount available in the field) as high as 75% for crop residues and greater than 90% for perennial energy crops have also been demonstrated. However, as collection rates increase, the fraction of entrained soil in the biomass increases, and high biomass residue removal rates can violate agronomic sustainability limits. Advancements in quantifying multi-factor sustainability limits to increase removal rate as guided by sustainable residue removal plans, and mitigating soil contamination through targeted removal rates based on soil type and residue type/fraction is allowing the use of new high efficiency harvesting equipment and methods. As another consideration, single pass harvesting and other technologies that improve harvesting costs cause biomass storage moisture management challenges, which challenges are further perturbed by annual variability in biomass moisture content. Monitoring, sampling, simulation, and analysis provide basis for moisture, time, and quality relationships in storage, which has allowed the development of moisture tolerant storage systems and best management processes that combine moisture content and time to accommodate baled storage of wet material based upon “shelf-life.” The key to improving biomass supply logistics costs has been developing the associated agronomic sustainability and biomass quality technologies and processes that allow the implementation of equipment engineering solutions.

  12. Improvements of biomass deconstruction enzymes

    SciTech Connect (OSTI)

    Sale, K. L.

    2012-03-01T23:59:59.000Z

    Sandia National Laboratories and DSM Innovation, Inc. collaborated on the investigation of the structure and function of cellulases from thermophilic fungi. Sandia's role was to use its expertise in protein structure determination and X-ray crystallography to solve the structure of these enzymes in their native state and in their substrate and product bound states. Sandia was also tasked to work with DSM to use the newly solved structure to, using computational approaches, analyze enzyme interactions with both bound substrate and bound product; the goal being to develop approaches for rationally designing improved cellulases for biomass deconstruction. We solved the structures of five cellulases from thermophilic fungi. Several of these were also solved with bound substrate/product, which allowed us to predict mutations that might enhance activity and stability.

  13. For more information contact the Biomass Energy Centre, (01420) 526197 biomass.centre@forestry.gsi.gov.uk

    E-Print Network [OSTI]

    For more information contact the Biomass Energy Centre, (01420) 526197 · biomass, but with effective management, a substantial quantity of wood is available from forestry which is not suitable suppliers are available on the Biomass Energy Centre website (www

  14. For more information contact the Biomass Energy Centre, (01420) 526197 biomass.centre@forestry.gsi.gov.uk

    E-Print Network [OSTI]

    For more information contact the Biomass Energy Centre, (01420) 526197 · biomass to become the most widespread across Europe. Pellets are usually . Pellets made from other forms of biomass are available, and may be cheaper, but might be unsuitable

  15. Pivotal Investments | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to: navigation, search Name:Pipo Systems JumpPivotalPivotal

  16. NM Invest | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreenMoonNASA/Ames Global EmissionsNIFE BateriasNITNM

  17. High Tonnage Forest Biomass Production Systems from Southern...

    Broader source: Energy.gov (indexed) [DOE]

    Biomass Program Review High Tonnage Forest Biomass Production Systems from Southern Pine Energy Plantations DE-EE0001036 S. Taylor (Auburn University), R. Rummer (USDA Forest...

  18. Commercialization of IH2® Biomass Direct-to-Hydrocarbon Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    Commercialization of IH2 Biomass Direct-to-Hydrocarbon Fuel Technology Commercialization of IH2 Biomass Direct-to-Hydrocarbon Fuel Technology Breakout Session 2: Frontiers and...

  19. Recovery Act, Office of the Biomass Program,Funding Opportunity...

    Broader source: Energy.gov (indexed) [DOE]

    Recovery Act, Office of the Biomass Program,Funding Opportunity Announcements Special Notice Recovery Act, Office of the Biomass Program,Funding Opportunity Announcements Special...

  20. Biomass Compositional Analysis: NIR Rapid Methods (Fact Sheet...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at NREL use near-infrared spectroscopy to predict the composition of a variety of biomass types. Photo by Dennis Schroeder, NREL 26528 Biomass Compositional Analysis: NIR...

  1. Quarterly Biomass Program/Clean Cities State Web Conference:...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    feraci.pdf More Documents & Publications Quarterly Biomass ProgramClean Cities State Web Conference: May 6, 2010 Quarterly Biomass ProgramClean Cities State Web Conference: May...

  2. Quarterly Biomass Program/Clean Cities States Web Conference...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quarterly Biomass ProgramClean Cities States Web Conference: January 21, 2010 Quarterly Biomass ProgramClean Cities States Web Conference: January 21, 2010 Presentation from the...

  3. Biomass 2014: Growing the Future Bioeconomy | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass 2014: Growing the Future Bioeconomy Biomass 2014: Growing the Future Bioeconomy An error occurred. Unable to execute Javascript. Bioenergy: America's Energy Future is a...

  4. Biomass IBR Fact Sheet: Amyris, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inc. Biomass IBR Fact Sheet: Amyris, Inc. Demonstrating the conversion of sweet sorgum biomass to hydrocarbon fuel and chemicals. ibrarraamyris.pdf More Documents &...

  5. Reduction in biomass burning aerosol light absorption upon humidificat...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in biomass burning aerosol light absorption upon humidification: Roles of inorganically-induced hygroscopicity, Reduction in biomass burning aerosol light absorption upon...

  6. Specific Effects of Fiber Size and Fiber Swelling on Biomass...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effects of Fiber Size and Fiber Swelling on Biomass Substrate Surface Area and Enzymatic Digestibility. Specific Effects of Fiber Size and Fiber Swelling on Biomass Substrate...

  7. Los Alamos improves biomass-to-fuel process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass-to-fuel Process Improved Los Alamos improves biomass-to-fuel process Los Alamos scientists and collaborators published an article in the scientific journal Nature Chemistry...

  8. 2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 DOE Biomass Program Integrated Biorefinery Project Comprehensive Project Review 2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive Project Review Plenary I:...

  9. High Tonnage Forest Biomass Production Systems from Southern...

    Energy Savers [EERE]

    High Tonnage Forest Biomass Production Systems from Southern Pine Energy Plantations High Tonnage Forest Biomass Production Systems from Southern Pine Energy Plantations This...

  10. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case Production of Gasoline and Diesel from Biomass via Fast Pyrolysis,...

  11. Addressing Biomass Supply Chain Challenges With AFEX(tm) Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addressing Biomass Supply Chain Challenges With AFEX(tm) Technology Addressing Biomass Supply Chain Challenges With AFEX(tm) Technology Plenary IV: Advances in Bioenergy...

  12. Lignocellulosic Biomass to Ethanol Process Design and Economics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass to Hydrocarbons: Dilute-Acid and Enzymatic Deconstruction of Biomass to Sugars and Biological Conversion of Sugars to Hydrocarbons Advanced Bio-based Jet Fuel...

  13. attached biomass growth: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    animal manure, black liquor,etc. Waste: household waste, sewage sludge, animal manure, slaughterhouse waste. 12;Biomass characteristics Biomass is a storable...

  14. aboveground biomass distributions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    animal manure, black liquor,etc. Waste: household waste, sewage sludge, animal manure, slaughterhouse waste. 12;Biomass characteristics Biomass is a storable...

  15. algal biomass biosorbents: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    animal manure, black liquor,etc. Waste: household waste, sewage sludge, animal manure, slaughterhouse waste. 12;Biomass characteristics Biomass is a storable...

  16. advanced biomass reburning: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    animal manure, black liquor,etc. Waste: household waste, sewage sludge, animal manure, slaughterhouse waste. 12;Biomass characteristics Biomass is a storable...

  17. SYNTHESIS GAS UTILIZATION AND PRODUCTION IN A BIOMASS LIQUEFACTION FACILITY

    E-Print Network [OSTI]

    Figueroa, C.

    2012-01-01T23:59:59.000Z

    Pressure on the Steam Gasification of Biomass," Departmentof Energy, Catalytic Steam Gasification of Biomass, 11 AprilII. DISCUSSION III. GASIFICATION/LIQUEFACTION DESIGN BASIS

  18. Forest Carbon and Biomass Energy - LCA Issues and Challenges...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forest Carbon and Biomass Energy - LCA Issues and Challenges Forest Carbon and Biomass Energy - LCA Issues and Challenges Breakout Session 2D-Building Market Confidence and...

  19. Progress toward Biomass and Coal-Derived Syngas Warm Cleanup...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Progress toward Biomass and Coal-Derived Syngas Warm Cleanup: Proof-of-Concept Process Demonstration of Multicontaminant Removal Progress toward Biomass and Coal-Derived Syngas...

  20. DOE Announces Webinars on Natural Gas for Biomass Technologies...

    Office of Environmental Management (EM)

    Natural Gas for Biomass Technologies, Additive Manufacturing for Fuel Cells, and More DOE Announces Webinars on Natural Gas for Biomass Technologies, Additive Manufacturing for...

  1. Microsoft PowerPoint - Quinault Indian Nation Biomass Renewable...

    Energy Savers [EERE]

    biomass heating facility as primary heat source * Estimated total biomass boiler heating demand for existing and proposed buildings * Created preliminary conceptual drawings for...

  2. High-Speed Pipeline Revs Up Biomass Analysis (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01T23:59:59.000Z

    Researchers at the National Renewable Energy Laboratory (NREL) have developed a new biomass evaluation process that opens up research avenues into understanding and manipulating biomass recalcitrance.

  3. USDA and DOE Award Biomass Research and Development Grants to...

    Broader source: Energy.gov (indexed) [DOE]

    and national laboratory partners on a balanced portfolio of research in biomass feedstocks and conversion technologies. For more information on DOE's Biomass Program,...

  4. Production of New Biomass/Waste-Containing Solid Fuels

    SciTech Connect (OSTI)

    Glenn A. Shirey; David J. Akers

    2005-09-23T23:59:59.000Z

    CQ Inc. and its industry partners--PBS Coals, Inc. (Friedens, Pennsylvania), American Fiber Resources (Fairmont, West Virginia), Allegheny Energy Supply (Williamsport, Maryland), and the Heritage Research Group (Indianapolis, Indiana)--addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that is applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provides environmental benefits compared with coal. During Phase I of this project (January 1999 to July 2000), several biomass/waste materials were evaluated for potential use in a composite fuel. As a result of that work and the team's commercial experience in composite fuels for energy production, paper mill sludge and coal were selected for further evaluation and demonstration in Phase II. In Phase II (June 2001 to December 2004), the project team demonstrated the GranuFlow technology as part of a process to combine paper sludge and coal to produce a composite fuel with combustion and handling characteristics acceptable to existing boilers and fuel handling systems. Bench-scale studies were performed at DOE-NETL, followed by full-scale commercial demonstrations to produce the composite fuel in a 400-tph coal cleaning plant and combustion tests at a 90-MW power plant boiler to evaluate impacts on fuel handling, boiler operations and performance, and emissions. A circuit was successfully installed to re-pulp and inject paper sludge into the fine coal dewatering circuit of a commercial coal-cleaning plant to produce 5,000 tons of a ''composite'' fuel containing about 5% paper sludge. Subsequent combustion tests showed that boiler efficiency and stability were not compromised when the composite fuel was blended with the boiler's normal coal supply. Firing of the composite fuel blend did not have any significant impact on emissions as compared to the normal coal supply, and it did not cause any excursions beyond Title V regulatory limits; all emissions were well within regulatory limits. SO{sub 2} emissions decreased during the composite fuel blend tests as a result of its higher heat content and slightly lower sulfur content as compared to the normal coal supply. The composite fuel contained an extremely high proportion of fines because the parent coal (feedstock to the coal-cleaning plant) is a ''soft'' coal (HGI > 90) and contained a high proportion of fines. The composite fuel was produced and combustion-tested under record wet conditions for the local area. In spite of these conditions, full load was obtained by the boiler when firing the composite fuel blend, and testing was completed without any handling or combustion problems beyond those typically associated with wet coal. Fuel handling and pulverizer performance (mill capacity and outlet temperatures) could become greater concerns when firing composite fuels which contain higher percent

  5. Preprocessing Moist Lignocellulosic Biomass for Biorefinery Feedstocks

    SciTech Connect (OSTI)

    Neal Yancey; Christopher T. Wright; Craig Conner; J. Richard Hess

    2009-06-01T23:59:59.000Z

    Biomass preprocessing is one of the primary operations in the feedstock assembly system of a lignocellulosic biorefinery. Preprocessing is generally accomplished using industrial grinders to format biomass materials into a suitable biorefinery feedstock for conversion to ethanol and other bioproducts. Many factors affect machine efficiency and the physical characteristics of preprocessed biomass. For example, moisture content of the biomass as received from the point of production has a significant impact on overall system efficiency and can significantly affect the characteristics (particle size distribution, flowability, storability, etc.) of the size-reduced biomass. Many different grinder configurations are available on the market, each with advantages under specific conditions. Ultimately, the capacity and/or efficiency of the grinding process can be enhanced by selecting the grinder configuration that optimizes grinder performance based on moisture content and screen size. This paper discusses the relationships of biomass moisture with respect to preprocessing system performance and product physical characteristics and compares data obtained on corn stover, switchgrass, and wheat straw as model feedstocks during Vermeer HG 200 grinder testing. During the tests, grinder screen configuration and biomass moisture content were varied and tested to provide a better understanding of their relative impact on machine performance and the resulting feedstock physical characteristics and uniformity relative to each crop tested.

  6. EERC Center for Biomass Utilization 2005

    SciTech Connect (OSTI)

    Zygarlicke, C.J.; Schmidt, D.D.; Olson, E.S.; Leroux, K.M.; Wocken, C.A.; Aulich, T.A.; WIlliams, K.D.

    2008-07-28T23:59:59.000Z

    Biomass utilization is one solution to our nation’s addiction to oil and fossil fuels. What is needed now is applied fundamental research that will cause economic technology development for the utilization of the diverse biomass resources in the United States. This Energy & Environmental Research Center (EERC) applied fundamental research project contributes to the development of economical biomass utilization for energy, transportation fuels, and marketable chemicals using biorefinery methods that include thermochemical and fermentation processes. The fundamental and basic applied research supports the broad scientific objectives of the U.S. Department of Energy (DOE) Biomass Program, especially in the area of developing alternative renewable biofuels, sustainable bioenergy, technologies that reduce greenhouse gas emissions, and environmental remediation. Its deliverables include 1) identifying and understanding environmental consequences of energy production from biomass, including the impacts on greenhouse gas production, carbon emission abatement, and utilization of waste biomass residues and 2) developing biology-based solutions that address DOE and national needs related to waste cleanup, hydrogen production from renewable biomass, biological and chemical processes for energy and fuel production, and environmental stewardship. This project serves the public purpose of encouraging good environmental stewardship by developing biomass-refining technologies that can dramatically increase domestic energy production to counter current trends of rising dependence upon petroleum imports. Decreasing the nation’s reliance on foreign oil and energy will enhance national security, the economy of rural communities, and future competitiveness. Although renewable energy has many forms, such as wind and solar, biomass is the only renewable energy source that can be governed through agricultural methods and that has an energy density that can realistically compete with, or even replace, petroleum and other fossil fuels in the near future. It is a primary domestic, sustainable, renewable energy resource that can supply liquid transportation fuels, chemicals, and energy that are currently produced from fossil sources, and it is a sustainable resource for a hydrogen-based economy in the future.

  7. Government Leasing Policy and the Multi-Stage Investment Timing Game in Offshore Petroleum Production

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia; Leighty, Wayne

    2007-01-01T23:59:59.000Z

    multi-stage investment timing decisions in oil explorationthe investment and production timing decisions in oil supplyoil production decisions rather than exploration and development investments,

  8. Innovation, renewable energy, and state investment: Case studies of leading clean energy funds

    E-Print Network [OSTI]

    Wiser, Ryan; Bolinger, Mark; Milford, Lewis; Porter, Kevin; Clark, Roger

    2002-01-01T23:59:59.000Z

    and renewable energy investments, as well as clean energyState Investment: Case Studies of Leading Clean Energy Fundsfor renewable energy investments. These clean energy funds

  9. Analysis of Long-range Clean Energy Investment Scenarios for Eritrea, East Africa

    E-Print Network [OSTI]

    Van Buskirk, Robert D.

    2004-01-01T23:59:59.000Z

    of Long-range Clean Energy Investment Scenarios for Eritrea,to facilitate clean energy investments, and to accelerateEritrea's clean energy development is investment capital.

  10. Financial policies, investment, and the financial crisis

    E-Print Network [OSTI]

    Lin, Xiaodong

    in repurchases and net equity issuance. · Decrease in capex, but not higher for unrated, small firms, constrained to the bank credit channel increase cash more ­ investment grade firms. · No evidence of a differential capex and debt issuance, capex changes · Conclusion #12;Data · We need quarterly data, so use CRSP

  11. INVEST IN YOUR BONES Living with Osteoporosis

    E-Print Network [OSTI]

    INVEST IN YOUR BONES Living with Osteoporosis Leaflet 5 Living with osteoporosis can be done environment safe to avoid falls. Early detection of bone loss or osteoporosis is now possible with bone to be most effective in reducing bone loss during the five to ten years following menopause, when bone loss

  12. INVEST IN YOUR BONES Daily Activities

    E-Print Network [OSTI]

    INVEST IN YOUR BONES Daily Activities Leaflet 3 Another osteoporosis prevention step to decrease lifestyle. Let's see how you can do that. If you have osteoporosis, follow carefully the activity program. Remember the following about osteoporosis: is largely preventable and treatable is a serious

  13. Kittiwakes strategically reduce investment in replacement clutches

    E-Print Network [OSTI]

    Alvarez, Nadir

    Kittiwakes strategically reduce investment in replacement clutches Julien Gasparini1,*, Alexandre). In birds, egg production is lower in replacement clutches than in first clutches, but it is unknown whether the replacement clutch is produced) or from a strategic allocation of resources between the two breeding attempts

  14. Gelcasting Alumina Cores for Investment Casting

    SciTech Connect (OSTI)

    Janney, M A; Klug, F J

    2001-01-01T23:59:59.000Z

    General Electric currently uses silica investment casting cores for making superalloy turbine blades. The silica core technology does not provide the degree of dimensional control needed for advanced turbine system manufacture. The sum of the various process variables in silica core manufacturing produces cores that have more variability than is allowed for in advanced, power-generation gas turbine airfoils.

  15. Energy Management and the Conservation Investment Decision

    E-Print Network [OSTI]

    DeLozier, T. C.

    1983-01-01T23:59:59.000Z

    This paper will describe briefly the model and method used to determine the value of the differential cash flow from an Energy Conservation Investment (E.C.I.). The key ingredients are the net effect on cash flow over the useful life...

  16. GOVERNMENT OF CANADA INVESTMENT PAYS OFF AS

    E-Print Network [OSTI]

    GOVERNMENT OF CANADA INVESTMENT PAYS OFF AS SFU RESEARCH COMES OF AGE November 2013 of Canada allow us to provide the tools and support researchers need to stay at the cutting edge and transformative outputs that stimulate Canada's innovation ecosystem. As SFU nears its 50th anniversary in 2015

  17. Alternative Fuels Is US Investment in Hydrogen,

    E-Print Network [OSTI]

    Bowen, James D.

    · In the early 1960's NASA used fuel cells in both Gemini and Apollo · Fuel cell powered vehicles first hit similar to a battery #12;How the Fuel Cell Works #12;Advantages · Offers a vehicle range similar to carsAlternative Fuels Is US Investment in Hydrogen, Electric Vehicles, and BioFuels Worth It?BioFuels

  18. MONGOLIA'S INVESTMENT PRIORITIES FROM A NATIONAL DEVELOPMENT

    E-Print Network [OSTI]

    Kammen, Daniel M.

    1 MONGOLIA'S INVESTMENT PRIORITIES FROM A NATIONAL DEVELOPMENT PERSPECTIVE SHAGDAR ENKHBAYAR, DAVID FOR MONGOLIA 17 4 RESULTS 25 5 CONCLUDING REMARKS 29 6 REFERENCES 30 ANNEX 1: SUMMARY OF THE MONGOLIA calibration 36 #12;3 ABSTRACT Mongolia is an economy remarkably rich in natural resources, at the outset

  19. Tool to Prioritize Energy Efficiency Investments

    SciTech Connect (OSTI)

    Farese, P.; Gelman, R.; Hendron, R.

    2012-08-01T23:59:59.000Z

    To provide analytic support of the U.S. Department of Energy's Office of the Building Technology Program (BTP), NREL developed a Microsoft Excel-based tool to provide an open and objective comparison of the hundreds of investment opportunities available to BTP. This tool uses established methodologies to evaluate the energy savings and cost of those savings.

  20. INDIAN COUNTRY ENERGY AND INFRASTRUCTURE WORKING GROUP ICEIWG

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    waste (which addresses tribal environmental issues) o How to encourage DOE to develop a technology assessment group focused on biomass? o Role of U.S. Department of Agriculture...

  1. Advanced Pattern Material for Investment Casting Applications

    SciTech Connect (OSTI)

    F. Douglas Neece Neil Chaudhry

    2006-02-08T23:59:59.000Z

    Cleveland Tool and Machine (CTM) of Cleveland, Ohio in conjunction with Harrington Product Development Center (HPDC) of Cincinnati, Ohio have developed an advanced, dimensionally accurate, temperature-stable, energy-efficient and cost-effective material and process to manufacture patterns for the investment casting industry. In the proposed technology, FOPAT (aFOam PATtern material) has been developed which is especially compatible with the investment casting process and offers the following advantages: increased dimensional accuracy; increased temperature stability; lower cost per pattern; less energy consumption per pattern; decreased cost of pattern making equipment; decreased tooling cost; increased casting yield. The present method for investment casting is "the lost wax" process, which is exactly that, the use of wax as a pattern material, which is then melted out or "lost" from the ceramic shell. The molten metal is then poured into the ceramic shell to produce a metal casting. This process goes back thousands of years and while there have been improvements in the wax and processing technology, the material is basically the same, wax. The proposed technology is based upon an established industrial process of "Reaction Injection Molding" (RIM) where two components react when mixed and then "molded" to form a part. The proposed technology has been modified and improved with the needs of investment casting in mind. A proprietary mix of components has been formulated which react and expand to form a foam-like product. The result is an investment casting pattern with smooth surface finish and excellent dimensional predictability along with the other key benefits listed above.

  2. Biomass production from inland brines

    SciTech Connect (OSTI)

    Reach, C.D. Jr.

    1985-01-01T23:59:59.000Z

    The feasibility of utilizing inland saline waters to produce biomass through the application of marine aquaculture was investigated. From available data, the diatom Phaeodactylum tricornutum and the crustacea Artemia salina were selected as the experimental marine organisms. The proposed diatom served to establish primary productivity and concurrently provide a food source for the herbivorus crustacea. The objective of the first phase research was to investigate the ability of P. tricornutum and A. salina to survive in the inland saline environment. Clarified activated sludge and anaerobic digester effluents were evaluated as nutrient sources for the diatom cultures. Experimental results indicated that diatom and crustacea growth in the inland brine was equivalent to control cultures utilizing seawater. Wastewater effluents were successful as nutrient sources for the diatom cultures. Bioassay experiments conducted with petroleum related brines yielded mixed results respect to the survival and growth of the P. tricornutum and A. salina organisms. A second series of experiments involved cholornaphthalene, chlorophenanthene, and chlorophenanthrene, and chloroanthracene as the experimental hydrocarbons. Results of the diatom studies show chloroanthracene to induce toxic effects at a concentration of 500 ug/L. Artemia studies showed no acutely toxic effects relative to the test hydrocarbons at 50 and 100 ug/L.

  3. Adult Female English Language Learners: Investment, Identity and Benefits 

    E-Print Network [OSTI]

    Wharton, Anna

    2013-07-31T23:59:59.000Z

    for investing in the English language. This study explores the self-recounted experiences of three adult female English language learners’ (ELLs) motivation for investing in English language learning, their identities and the benefits gained in a nonacademic...

  4. Investment in Energy Infrastructure and the Tax Code

    E-Print Network [OSTI]

    Metcalf, Gilbert E.

    Federal tax policy provides a broad array of incentives for energy investment. I review those policies and construct estimates of marginal effective tax rates for different energy capital investments as of 2007. Effective ...

  5. Opportunities and challenges of investing in Indian real estate

    E-Print Network [OSTI]

    Wadhwani, Kunal (Kunal P.)

    2009-01-01T23:59:59.000Z

    In recent years, global real estate investment has become an important component of efficient global mixed asset portfolios. Although these investments carry increased political, regulatory and currency risk, international ...

  6. Information Environment and the Investment Decisions of Multinational Corporations

    E-Print Network [OSTI]

    Shroff, Nemit

    This paper examines how the external information environment in which foreign subsidiaries operate affects the investment decisions of multinational corporations (MNCs). We hypothesize and find that the investment decisions ...

  7. Distributed Generation Investment by a Microgrid Under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal; Marnay, Chris

    2006-01-01T23:59:59.000Z

    the amortised investment cost per kWh of the DG unit is lessis equal to the fixed cost per kWh of switching states. Forcurves reflects the investment cost per kWh. As indicated in

  8. Distributed Generation Investment by a Microgrid under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2008-01-01T23:59:59.000Z

    amortised investment cost per kWh e of the DG unit is lessis equal to the fixed cost per kWh e of switching states.reflects the investment cost per kWh e . As indicated in

  9. Inner Mongolia Guodian Energy Investment Co Ltd formerly Inner...

    Open Energy Info (EERE)

    Inner Mongolia Guodian Energy Investment Co Ltd formerly Inner Mongolia Energy Power Investment Co Jump to: navigation, search Logo: eco-trend ltd Name: eco-trend ltd Address:...

  10. Energy Department Invests Over $7 Million to Deploy Tribal Clean...

    Energy Savers [EERE]

    Invests Over 7 Million to Deploy Tribal Clean Energy Projects Energy Department Invests Over 7 Million to Deploy Tribal Clean Energy Projects November 14, 2013 - 10:00am Addthis...

  11. UCSD Biomass to Power Economic Feasibility Study

    E-Print Network [OSTI]

    Cattolica, Robert

    2009-01-01T23:59:59.000Z

    char from the gasifier  to  the  char  combustor  and  heat from  the  char  combustor  back  to  the  gasifier.   Such exhaust stream of the Char Combustor (R?2).  The biomass is 

  12. Biomass Energy and Competition for Land

    E-Print Network [OSTI]

    Reilly, John

    We describe an approach for incorporating biomass energy production and competition for land into the MIT Emissions Prediction and Policy Analysis (EPPA) model, a computable general equilibrium model of the world economy, ...

  13. Sandia National Laboratories: pretreatment for biomass deconstruc...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pretreatment for biomass deconstruc-tion of switchgrass "Bionic" Liquids from Lignin: Joint BioEnergy Institute Results Pave the Way for Closed-Loop Biofuel Refineries On December...

  14. Assessment of Biomass Resources in Afghanistan

    SciTech Connect (OSTI)

    Milbrandt, A.; Overend, R.

    2011-01-01T23:59:59.000Z

    Afghanistan is facing many challenges on its path of reconstruction and development. Among all its pressing needs, the country would benefit from the development and implementation of an energy strategy. In addition to conventional energy sources, the Afghan government is considering alternative options such as energy derived from renewable resources (wind, solar, biomass, geothermal). Biomass energy is derived from a variety of sources -- plant-based material and residues -- and can be used in various conversion processes to yield power, heat, steam, and fuel. This study provides policymakers and industry developers with information on the biomass resource potential in Afghanistan for power/heat generation and transportation fuels production. To achieve this goal, the study estimates the current biomass resources and evaluates the potential resources that could be used for energy purposes.

  15. COUNTERCURRENT CONVERSION OF BIOMASS TO SUGARS 

    E-Print Network [OSTI]

    Yang, Russell

    2015-04-17T23:59:59.000Z

    Our goal was to research and implement a countercurrent system to run enzymatic saccharification of biomass. The project provided clear results to show that this method is more efficient than the batch process that companies currently employ. Excess...

  16. Tax Credit for Forest Derived Biomass

    Broader source: Energy.gov [DOE]

    Forest-derived biomass includes tree tops, limbs, needles, leaves, and other woody debris leftover from activities such as timber harvesting, forest thinning, fire suppression, or forest health m...

  17. Countercurrent Conversion of Biomass to Sugars 

    E-Print Network [OSTI]

    Brooks, Heather Lauren

    2014-09-26T23:59:59.000Z

    Our goal was to research and implement a countercurrent system to run enzymatic saccharification of biomass. The project provided clear results to show that this method is more efficient than the batch process that companies currently employ. Excess...

  18. Tribal Renewable Energy Curriculum Foundational Course: Biomass...

    Broader source: Energy.gov (indexed) [DOE]

    U.S. Department of Energy Office of Indian Energy foundational course webinar on biomass renewable energy by clicking on the .swf link below. You can also download the PowerPoint...

  19. Ozone treatment of biomass to enhance digestibility 

    E-Print Network [OSTI]

    Almendarez, Maria Elena

    2000-01-01T23:59:59.000Z

    is very resistant to enzymatic degradation. Lignocellulosic materials require pretreatment to enhance their digestibility. The main objective of this research was to further enhance the digestibility of biomass (bagasse) with ozonation as a follow...

  20. Ozone treatment of biomass to enhance digestibility

    E-Print Network [OSTI]

    Almendarez, Maria Elena

    2000-01-01T23:59:59.000Z

    is very resistant to enzymatic degradation. Lignocellulosic materials require pretreatment to enhance their digestibility. The main objective of this research was to further enhance the digestibility of biomass (bagasse) with ozonation as a follow...

  1. Biomass 2014: Growing the Future Bioeconomy

    Office of Energy Efficiency and Renewable Energy (EERE)

    Register for Biomass 2014 today and don’t miss your chance to take part in this important event that will help move the nation to a more secure, sustainable, and economically sound future.

  2. Relating forest biomass to SAR data

    SciTech Connect (OSTI)

    LeToan, T.; Beaudoin, A. (Centre d'Etude Spatiale des Rayonnements CNRS- Univ. Paul Sabatier Toulouse (FR)); Riom, J.; Guyon, D. (Lab. de Bioclimatologie INRA, Bordeaux (FR))

    1992-03-01T23:59:59.000Z

    This paper presents the results of an experiment defined to demonstrate the use of radar to retrieve forest biomass. The SAR data, after calibration, has been analyzed together with ground data collected on forest stands from young stage (8 yrs) to nature stage (46 yrs). The dynamic range of the radar backscatter intensity from forest was found maximum at P-band and decreases with increasing frequencies. Also, cross-polarized backscatter intensity yields the best sensitivities to variations of forest biomass. L-band data confirmed past results on good correlation with forest parameters. The most striking observation has been the strong correlation of P-band backscatter intensity to forest biomass. In order to develop algorithms to infer forest biomass from spaceborne SAR's, the experimental results will be compared with observations on other forest ecosystems and will be interpreted by theoretical modeling.

  3. Methanol from biomass via steam gasification

    SciTech Connect (OSTI)

    Coffman, J.A. [Wright-Malta Corp., Ballston Spa, NY (United States)

    1995-12-31T23:59:59.000Z

    R&D at Wright-Malta on gasification of biomass, and use of this gas in methanol synthesis, has now reached the stage where a demonstration plant is feasible. The gasifier has evolved into a long, slender, slightly declined, graded temperature stationary kiln, with a box beam rotor and twin piston feed. The methanol reactor is envisioned as a smaller, more declined, graded temperature, water-filled kiln, with a multi-pipe rotor. Input to the demo plant will be 100 tons/day of green (45% water) wood chips; output will be 11,000 gal/day of methanol and 7500 lbs/hr of steam. The over-all biomass to methanol system is tightly integrated in its mechanical design to take full advantage of the reactivity of biomass under a slow, steady, steamy pressurized cook, and the biomass pyrolysis and methanol synthesis exotherms. This is expected to yield good energy efficiency, environmental attractiveness, and economical operation.

  4. Biomass Technology Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic matter such as plants, residue from agriculture and forestry, and the organic...

  5. Biomass reforming processes in hydrothermal media

    E-Print Network [OSTI]

    Peterson, Andrew A

    2009-01-01T23:59:59.000Z

    While hydrothermal technologies offer distinct advantages in being able to process a wide variety of biomass feedstocks, the composition of the feedstock will have a large effect on the processing employed. This thesis ...

  6. Agricultural real estate investment decision aid: model development

    E-Print Network [OSTI]

    McDonald, Roy Alan

    1991-01-01T23:59:59.000Z

    realize depreciation tax savings in years where the real estate investment generates income. In years that a loss is experienced, no depreciation tax savings are realized. The seventh component of the NPV equation is the terminal value returns... In years where a negative cash flow margin exists, the investment is financially infeasible. This often occurs in the early years of an agricultural real estate investment when cash flows generated from the investment are not sufficient to make debt...

  7. Investment and Upgrade in Distributed Generation under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2008-01-01T23:59:59.000Z

    utility tari?s, the electricity price may be revised only Investment and Upgrade in Distributed Generation

  8. Energy Returned On Investment of Engineered Geothermal Systems

    Broader source: Energy.gov [DOE]

    Project objective: Determine the Energy Returned on Investment (EROI) for electric power production of Engineered Geothermal Systems (EGS).

  9. Process for the treatment of lignocellulosic biomass

    DOE Patents [OSTI]

    Dale, Bruce E.

    2014-07-08T23:59:59.000Z

    A process for the treatment of biomass to render structural carbohydrates more accessible and/or digestible using concentrated ammonium hydroxide with or without anhydrous ammonia addition, is described. The process preferably uses steam to strip ammonia from the biomass for recycling. The process yields of monosaccharides from the structural carbohydrates are good, particularly as measured by the enzymatic hydrolysis of the structural carbohydrates. The monosaccharides are used as animal feeds and energy sources for ethanol production.

  10. Process for the treatment of lignocellulosic biomass

    DOE Patents [OSTI]

    Dale, Bruce E.; Lynd, Lee R.; Laser, Mark

    2013-03-12T23:59:59.000Z

    A process for the treatment of biomass to render structural carbohydrates more accessible and/or digestible using concentrated ammonium hydroxide with or without anhydrous ammonia addition, is described. The process preferably uses steam to strip ammonia from the biomass for recycling. The process yields of monosaccharides from the structural carbohydrates are good, particularly as measured by the enzymatic hydrolysis of the structural carbohydrates. The monosaccharides are used as animal feeds and energy sources for ethanol production.

  11. Direct conversion of algal biomass to biofuel

    DOE Patents [OSTI]

    Deng, Shuguang; Patil, Prafulla D; Gude, Veera Gnaneswar

    2014-10-14T23:59:59.000Z

    A method and system for providing direct conversion of algal biomass. Optionally, the method and system can be used to directly convert dry algal biomass to biodiesels under microwave irradiation by combining the reaction and combining steps. Alternatively, wet algae can be directly processed and converted to fatty acid methyl esters, which have the major components of biodiesels, by reacting with methanol at predetermined pressure and temperature ranges.

  12. Biomass Resource Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartmentWindConversionResults in FirstBiomassBlast:PeerBiomass

  13. Biosorption of Trivalent Chromium on the Brown Seaweed Biomass

    E-Print Network [OSTI]

    Volesky, Bohumil

    Biosorption of Trivalent Chromium on the Brown Seaweed Biomass Y E O U N G - S A N G Y U N , D O N brown alga Ecklonia biomass as a model system. Titration of the biomass revealed that it contains that various biosorbents are able to effectively remove chromium (4-11). Some of the biomass types have

  14. Method of producing hydrogen, and rendering a contaminated biomass inert

    DOE Patents [OSTI]

    Bingham, Dennis N. (Idaho Falls, ID) [Idaho Falls, ID; Klingler, Kerry M. (Idaho Falls, ID) [Idaho Falls, ID; Wilding, Bruce M. (Idaho Falls, ID) [Idaho Falls, ID

    2010-02-23T23:59:59.000Z

    A method for rendering a contaminated biomass inert includes providing a first composition, providing a second composition, reacting the first and second compositions together to form an alkaline hydroxide, providing a contaminated biomass feedstock and reacting the alkaline hydroxide with the contaminated biomass feedstock to render the contaminated biomass feedstock inert and further producing hydrogen gas, and a byproduct that includes the first composition.

  15. Barnsley Biomass Working towards carbon emissions reduction in Yorkshire

    E-Print Network [OSTI]

    Barnsley Biomass Working towards carbon emissions reduction in Yorkshire objectives Fifteen years Yorkshire town are being replaced by a cleaner, green alternative: biomass. Barnsley's Communal Biomass on to residents. · To increase energy efficiency. · To develop biomass usage in new and refurbished public

  16. Canada Biomass-Bioenergy Report May 31, 2006

    E-Print Network [OSTI]

    Canada Biomass-Bioenergy Report May 31, 2006 Doug Bradley President Climate Change Solutions;2 Table of Contents 1. Policy Setting 2. Biomass Volumes 2.1. Woody Biomass 2.1.1. Annual Residue Production 2.1.2. Pulp Chips 2.1.3. Existing Hog Fuel Piles 2.1.4. Forest Floor Biomass 2.2. Agricultural

  17. The Biomass Energy Data Book Center for Transportation Analysis

    E-Print Network [OSTI]

    of biomass feedstocks to their end use, including discussions on sustainability. This work is sponsored

  18. Process for the conversion of and aqueous biomass hydrolyzate into fuels or chemicals by the selective removal of fermentation inhibitors

    DOE Patents [OSTI]

    Hames, Bonnie R. (Westminster, CO); Sluiter, Amie D. (Arvada, CO); Hayward, Tammy K. (Broomfield, CO); Nagle, Nicholas J. (Broomfield, CO)

    2004-05-18T23:59:59.000Z

    A process of making a fuel or chemical from a biomass hydrolyzate is provided which comprises the steps of providing a biomass hydrolyzate, adjusting the pH of the hydrolyzate, contacting a metal oxide having an affinity for guaiacyl or syringyl functional groups, or both and the hydrolyzate for a time sufficient to form an adsorption complex; removing the complex wherein a sugar fraction is provided, and converting the sugar fraction to fuels or chemicals using a microorganism.

  19. Review: Enzymatic Hydrolysis of Cellulosic Biomass

    SciTech Connect (OSTI)

    Yang, Bin; Dai, Ziyu; Ding, Shi-You; Wyman, Charles E.

    2011-07-16T23:59:59.000Z

    Biological conversion of cellulosic biomass to fuels and chemicals offers the high yields to products vital to economic success and the potential for very low costs. Enzymatic hydrolysis that converts lignocellulosic biomass to fermentable sugars may be the most complex step in this process due to substrate-related and enzyme-related effects and their interactions. Although enzymatic hydrolysis offers the potential for higher yields, higher selectivity, lower energy costs, and milder operating conditions than chemical processes, the mechanism of enzymatic hydrolysis and the relationship between the substrate structure and function of various glycosyl hydrolase components are not well understood. Consequently, limited success has been realized in maximizing sugar yields at very low cost. This review highlights literature on the impact of key substrate and enzyme features that influence performance to better understand fundamental strategies to advance enzymatic hydrolysis of cellulosic biomass for biological conversion to fuels and chemicals. Topics are summarized from a practical point of view including characteristics of cellulose (e.g., crystallinity, degree of polymerization, and accessible surface area) and soluble and insoluble biomass components (e.g., oligomeric xylan, lignin, etc.) released in pretreatment, and their effects on the effectiveness of enzymatic hydrolysis. We further discuss the diversity, stability, and activity of individual enzymes and their synergistic effects in deconstructing complex lignocellulosic biomass. Advanced technologies to discover and characterize novel enzymes and to improve enzyme characteristics by mutagenesis, post-translational modification, and over-expression of selected enzymes and modifications in lignocellulosic biomass are also discussed.

  20. BARRIER ISSUES TO THE UTILIZATION OF BIOMASS

    SciTech Connect (OSTI)

    Jay R. Gunderson; Bruce C. Folkedahl; Darren D. Schmidt; Greg F. Weber; Christopher J. Zygarlicke

    2002-05-01T23:59:59.000Z

    The Energy & Environmental Research Center (EERC) is conducting a project to examine the fundamental issues limiting the use of biomass in small industrial steam/power systems in order to increase the future use of this valuable domestic resource. Specifically, the EERC is attempting to elucidate the ash-related problems--grate clinkering and heat exchange surface fouling--associated with cofiring coal and biomass in grate-fired systems. Utilization of biomass in stoker boilers designed for coal can be a cause of concern for boiler operators. Boilers that were designed for low-volatile fuels with lower reactivities can experience damaging fouling when switched to higher-volatile and more reactive lower-rank fuels, such as when cofiring biomass. Higher heat release rates at the grate can cause more clinkering or slagging at the grate because of higher temperatures. Combustion and loss of volatile matter can start too early with biomass fuels compared to design fuel, vaporizing alkali and chlorides which then condense on rear walls and heat exchange tube banks in the convective pass of the boiler, causing noticeable increases in fouling. In addition, stoker-fired boilers that switch to biomass blends may encounter new chemical species such as potassium sulfates and various chlorides in combination with different flue gas temperatures because of changes in fuel heating value, which can adversely affect ash deposition behavior.

  1. NASA Earth Science Technology Office (ESTO) Decadal Survey Technology Investments

    E-Print Network [OSTI]

    Christian, Eric

    investments · Risks are retired before major dollars are invested: a cost-effective approach to technologyNASA Earth Science Technology Office (ESTO) Decadal Survey Technology Investments January 7, 2009 #12;Overview: Earth Science Technology Office Science Driven, Competed, Actively Managed

  2. Reducing "Search Cost" and Risk in Energy-efficiency Investments

    E-Print Network [OSTI]

    Reducing "Search Cost" and Risk in Energy-efficiency Investments: Two Success Stories Philip E "search Cost"and Risk in Energy-Eficiency Investments: Two Success Stories - 4.91 #12;Perspectives that the unsystematic risk associated with energy-efficiency investments is often very large, since the actual

  3. Biomass Stove Pollution Sam Beck ATOC-3500 Biomass energy accounts for about 15% of the world's primary energy consumption and

    E-Print Network [OSTI]

    Toohey, Darin W.

    Biomass Stove Pollution Sam Beck ATOC-3500 Biomass energy accounts for about 15% of the world. Furthermore, biomass often accounts for more than 90% of the total rural energy supplies in developing countries. The traditional stoves in developing countries waste a lot of biomass, mainly because

  4. Personnel changes at Phillips, Hager & North Investment Management Ltd. November 30, 2010

    E-Print Network [OSTI]

    Northern British Columbia, University of

    ; Financials sector coverage), Gordon Gee (Energy sector coverage), and Don Anderson (Materials, gold, rails sponsors may wish to consider whether this investment update has any implications for the investment sector coverage). The investment committee going forward includes six investment professionals

  5. Biomass Thermochemical Conversion Program. 1983 Annual report

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1984-08-01T23:59:59.000Z

    Highlights of progress achieved in the program of thermochemical conversion of biomass into clean fuels during 1983 are summarized. Gasification research projects include: production of a medium-Btu gas without using purified oxygen at Battelle-Columbus Laboratories; high pressure (up to 500 psia) steam-oxygen gasification of biomass in a fluidized bed reactor at IGT; producing synthesis gas via catalytic gasification at PNL; indirect reactor heating methods at the Univ. of Missouri-Rolla and Texas Tech Univ.; improving the reliability, performance, and acceptability of small air-blown gasifiers at Univ. of Florida-Gainesville, Rocky Creek Farm Gasogens, and Cal Recovery Systems. Liquefaction projects include: determination of individual sequential pyrolysis mechanisms at SERI; research at SERI on a unique entrained, ablative fast pyrolysis reactor for supplying the heat fluxes required for fast pyrolysis; work at BNL on rapid pyrolysis of biomass in an atmosphere of methane to increase the yields of olefin and BTX products; research at the Georgia Inst. of Tech. on an entrained rapid pyrolysis reactor to produce higher yields of pyrolysis oil; research on an advanced concept to liquefy very concentrated biomass slurries in an integrated extruder/static mixer reactor at the Univ. of Arizona; and research at PNL on the characterization and upgrading of direct liquefaction oils including research to lower oxygen content and viscosity of the product. Combustion projects include: research on a directly fired wood combustor/gas turbine system at Aerospace Research Corp.; adaptation of Stirling engine external combustion systems to biomass fuels at United Stirling, Inc.; and theoretical modeling and experimental verification of biomass combustion behavior at JPL to increase biomass combustion efficiency and examine the effects of additives on combustion rates. 26 figures, 1 table.

  6. Pyrolysis and ignition behavior of coal, cattle biomass, and coal/cattle biomass blends 

    E-Print Network [OSTI]

    Martin, Brandon Ray

    2009-05-15T23:59:59.000Z

    derived from biomass. Current research at Texas A&M University is focused on the effectiveness of using cattle manure biomass as a fuel source in conjunction with coal burning utilities. The scope of this project includes fuel property analysis, pyrolysis...

  7. Pyrolysis and ignition behavior of coal, cattle biomass, and coal/cattle biomass blends

    E-Print Network [OSTI]

    Martin, Brandon Ray

    2009-05-15T23:59:59.000Z

    derived from biomass. Current research at Texas A&M University is focused on the effectiveness of using cattle manure biomass as a fuel source in conjunction with coal burning utilities. The scope of this project includes fuel property analysis, pyrolysis...

  8. Carbonic Acid Pretreatment of Biomass

    SciTech Connect (OSTI)

    G. Peter van Walsum; Kemantha Jayawardhana; Damon Yourchisin; Robert McWilliams; Vanessa Castleberry

    2003-05-31T23:59:59.000Z

    This project sought to address six objectives, outlined below. The objectives were met through the completion of ten tasks. 1) Solidify the theoretical understanding of the binary CO2/H2O system at reaction temperatures and pressures. The thermodynamics of pH prediction have been improved to include a more rigorous treatment of non-ideal gas phases. However it was found that experimental attempts to confirm theoretical pH predictions were still off by a factor of about 1.8 pH units. Arrhenius experiments were carried out and the activation energy for carbonic acid appears to be substantially similar to sulfuric acid. Titration experiments have not yet confirmed or quantified the buffering or acid suppression effects of carbonic acid on biomass. 2) Modify the carbonic acid pretreatment severity function to include the effect of endogenous acid formation and carbonate buffering, if necessary. It was found that the existing severity functions serve adequately to account for endogenous acid production and carbonate effects. 3) Quantify the production of soluble carbohydrates at different reaction conditions and severity. Results show that carbonic acid has little effect on increasing soluble carbohydrate concentrations for pretreated aspen wood, compared to pretreatment with water alone. This appears to be connected to the release of endogenous acids by the substrate. A less acidic substrate such as corn stover would derive benefit from the use of carbonic acid. 4) Quantify the production of microbial inhibitors at selected reaction conditions and severity. It was found that the release of inhibitors was correlated to reaction severity and that carbonic acid did not appear to increase or decrease inhibition compared to pretreatment with water alone. 5) Assess the reactivity to enzymatic hydrolysis of material pretreated at selected reaction conditions and severity. Enzymatic hydrolysis rates increased with severity, but no advantage was detected for the use of carbonic acid compared to water alone. 6) Determine optimal conditions for carbonic acid pretreatment of aspen wood. Optimal severities appeared to be in the mid range tested. ASPEN-Plus modeling and economic analysis of the process indicate that the process could be cost competitive with sulfuric acid if the concentration of solids in the pretreatment is maintained very high (~50%). Lower solids concentrations result in larger reactors that become expensive to construct for high pressure applications.

  9. 1982 annual report: Biomass Thermochemical Conversion Program

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1983-01-01T23:59:59.000Z

    This report provides a brief overview of the Thermochemical Conversion Program's activities and major accomplishments during fiscal year 1982. The objective of the Biomass Thermochemical Conversion Program is to generate scientific data and fundamental biomass converison process information that, in the long term, could lead to establishment of cost effective processes for conversion of biomass resources into clean fuels and petrochemical substitutes. The goal of the program is to improve the data base for biomass conversion by investigating the fundamental aspects of conversion technologies and exploring those parameters which are critical to these conversion processes. To achieve this objective and goal, the Thermochemical Conversion Program is sponsoring high-risk, long-term research with high payoff potential which industry is not currently sponsoring, nor is likely to support. Thermochemical conversion processes employ elevated temperatures to convert biomass materials into energy. Process examples include: combustion to produce heat, steam, electricity, direct mechanical power; gasification to produce fuel gas or synthesis gases for the production of methanol and hydrocarbon fuels; direct liquefaction to produce heavy oils or distillates; and pyrolysis to produce a mixture of oils, fuel gases, and char. A bibliography of publications for 1982 is included.

  10. Biomass Thermochemical Conversion Program. 1984 annual report

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1985-01-01T23:59:59.000Z

    The objective of the program is to generate scientific data and conversion process information that will lead to establishment of cost-effective process for converting biomass resources into clean fuels. The goal of the program is to develop the data base for biomass thermal conversion by investigating the fundamental aspects of conversion technologies and by exploring those parameters that are critical to the conversion processes. The research activities can be divided into: (1) gasification technology; (2) liquid fuels technology; (3) direct combustion technology; and (4) program support activities. These activities are described in detail in this report. Outstanding accomplishments during fiscal year 1984 include: (1) successful operation of 3-MW combustor/gas turbine system; (2) successful extended term operation of an indirectly heated, dual bed gasifier for producing medium-Btu gas; (3) determination that oxygen requirements for medium-Btu gasification of biomass in a pressurized, fluidized bed gasifier are low; (4) established interdependence of temperature and residence times on biomass pyrolysis oil yields; and (5) determination of preliminary technical feasibility of thermally gasifying high moisture biomass feedstocks. A bibliography of 1984 publications is included. 26 figs., 1 tab.

  11. BIOMASS TO BIO-OIL BY LIQUEFACTION

    SciTech Connect (OSTI)

    Wang, Huamin; Wang, Yong

    2013-01-10T23:59:59.000Z

    Significant efforts have been devoted to develop processes for the conversion of biomass, an abundant and sustainable source of energy, to liquid fuels and chemicals, in order to replace diminishing fossil fuels and mitigate global warming. Thermochemical and biochemical methods have attracted the most attention. Among the thermochemical processes, pyrolysis and liquefaction are the two major technologies for the direct conversion of biomass to produce a liquid product, often called bio-oil. This chapter focuses on the liquefaction, a medium-temperature and high-pressure thermochemical process for the conversion of biomass to bio-oil. Water has been most commonly used as a solvent and the process is known as hydrothermal liquefaction (HTL). Fundamentals of HTL process, key factors determining HTL behavior, role of catalyst in HTL, properties of produced bio-oil, and the current status of the technology are summarized. The liquefaction of biomass by using organic solvents, a process called solvolysis, is also discussed. A wide range of biomass feedstocks have been tested for liquefaction including wood, crop residues, algae, food processing waste, and animal manure.

  12. Research, Development and Demonstration of Bio-Mass Boiler for Food Industry

    SciTech Connect (OSTI)

    Fisher, Steve; Knapp, David

    2012-03-31T23:59:59.000Z

    Frito-Lay is working to reduce carbon emissions from their manufacturing plants. As part of this effort, they invested in a â??biomass-firedâ?ť boiler at the Topeka, Kansas, plant. Frito-Lay partnered with Burns & McDonnell Engineering, Inc. and CPL Systems, Inc., to design and construct a steam producing boiler using â??carbon neutralâ?ť fuels such as wood wastes (e.g. tree bark), shipping pallets, and used rubber vehicle tires. The U.S. Department of Energy (DOE) joined with Frito-Lay, Burns & McDonnell, and CPL to analyze the reductions in carbon dioxide (CO{sub 2}) emissions that result from use of biomass-fired boilers in the food manufacturing environment. DOE support provided for the data collection and analysis, and reporting necessary to evaluate boiler efficiencies and reductions in CO{sub 2} emissions. The Frito-Lay biomass-fired boiler has resulted in significant reductions in CO{sub 2} emissions from the Topeka production facility. The use of natural gas has been reduced by 400 to 420 million standard cubic feet per year with corresponding reductions of 24,000 to 25,000 tons of CO{sub 2}. The boiler does require auxiliary â??functions,â?ť however, that are unnecessary for a gas-fired boiler. These include heavy motors and fans for moving fuel and firing the boiler, trucks and equipment for delivering the fuel and moving at the boiler plant, and chippers for preparing the fuel prior to delivery. Each of these operations requires the combustion of fossil fuels or electricity and has associated CO{sub 2} emissions. Even after accounting for each of these auxiliary processes, however, the biomass-fired boiler results in net emission reductions of 22,500 to 23,500 tons of CO{sub 2} per year.

  13. Specialists' workshop on fast pyrolysis of biomass

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    This workshop brought together most of those who are currently working in or have published significant findings in the area of fast pyrolysis of biomass or biomass-derived materials, with the goal of attaining a better understanding of the dominant mechanisms which produce olefins, oxygenated liquids, char, and tars. In addition, background papers were given in hydrocarbon pyrolysis, slow pyrolysis of biomass, and techniques for powdered-feedstock preparation in order that the other papers did not need to introduce in depth these concepts in their presentations for continuity. In general, the authors were requested to present summaries of experimental data with as much interpretation of that data as possible with regard to mechanisms and process variables such as heat flux, temperatures, partial pressure, feedstock, particle size, heating rates, residence time, etc. Separate abstracts have been prepared of each presentation for inclusion in the Energy Data Base. (DMC)

  14. BARRIER ISSUES TO THE UTILIZATION OF BIOMASS

    SciTech Connect (OSTI)

    Greg F. Weber; Christopher J. Zygarlicke

    2001-05-01T23:59:59.000Z

    In summary, stoker-fired boilers that cofire or switch to biomass fuel may potentially have to deal with ash behavior issues such as production of different concentrations and quantities of fine particulate or aerosols and ash-fouling deposition. Stoker boiler operators that are considering switching to biomass and adding potential infrastructure to accommodate the switch may also at the same time be looking into upgrades that will allow for generating additional power for sale on the grid. This is the case for the feasibility study being done currently for a small (<1-MW) stoker facility at the North Dakota State Penitentiary, which is considering not only the incorporation of a lower-cost biomass fuel but also a refurbishing of the stoker boiler to burn slightly hotter with the ability to generate more power and sell excess energy on the grid. These types of fuel and boiler changes can greatly affect ash behavior issues.

  15. Nuclear war, US agriculture, and biomass energy

    SciTech Connect (OSTI)

    Chester, C.V.

    1986-01-01T23:59:59.000Z

    In the event of most of the plausible scenarios for nuclear war, most US farms and farm populations are likely to survive. Fallout and ''Nuclear Winter'' are likely to cause loss of at least one year's production, which can be endured if surviving grain stocks can be distributed to the surviving population. A year after the attack when fallout radiation has decayed by a factor of 10/sup 5/, in most areas the major threat to resumed farm production is damage to oil refining capability. Biomass could be an invulnerable alternative to petroleum fuels on the farm if in peacetime the costs can be made competitive and ease and convenience of use made acceptable. The long-term prospect of increasing oil prices and decreasing food prices may eventually make some source of biomass energy (gasification, vegetable oils) economically competitive. Development of on-farm biomass energy would enhance US security.

  16. Understanding Substrate Features Influenced by Pretreatments that Limit Biomass Deconstruction by Enzymes

    E-Print Network [OSTI]

    Gao, Xiadi

    2013-01-01T23:59:59.000Z

    fuels, chemicals, and energy from lignocellulosic biomass [fuel, chemical and energy from lignocellulosic biomass [fuels, chemicals, and energy from lignocellulosic biomass [

  17. Estimation of Biomass Heat Storage Using Thermal Infrared Imagery: Application to a Walnut Orchard

    E-Print Network [OSTI]

    Garai, Anirban; Kleissl, Jan; Llewellyn Smith, Stefan G.

    2010-01-01T23:59:59.000Z

    NOTE Estimation of Biomass Heat Storage Using Thermalmethod to estimate tree biomass heat storage from thermalinfrared (TIR) imaging of biomass surface temperature is

  18. Biomass burning and urban air pollution over the Central Mexican Plateau

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    J. D. Crounse et al. : Biomass burning pollution overChemistry and Physics Biomass burning and urban airprimary anthropogenic and biomass burning organic aerosols

  19. The Effects of Surfactant Pretreatment and Xylooligomers on Enzymatic Hydrolysis of Cellulose and Pretreated Biomass

    E-Print Network [OSTI]

    Qing, Qing

    2010-01-01T23:59:59.000Z

    Enzymatic Conversion of Biomass for Fuels Production, 566,B. , 2002. Lignocellulosic Biomass to Ethanol Process DesignSummary of findings from the Biomass Refining Consortium for

  20. Biomass crops can be used for biological disinfestation and remediation of soils and water

    E-Print Network [OSTI]

    Stapleton, James J; Banuelos, Gary

    2009-01-01T23:59:59.000Z

    liquid biofuels from biomass: The writings on the walls. Newreduced feed intake. Biomass crop sustainability flexibilityMC, et al. 2009. Cali- fornia biomass resources, potentials,