Powered by Deep Web Technologies
Note: This page contains sample records for the topic "investigations chocolate mountains" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Geothermal Energy Resource Investigations, Chocolate Mountains Aerial  

Open Energy Info (EERE)

Investigations, Chocolate Mountains Aerial Investigations, Chocolate Mountains Aerial Gunnery Range, Imperial Valley, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geothermal Energy Resource Investigations, Chocolate Mountains Aerial Gunnery Range, Imperial Valley, California Details Activities (5) Areas (1) Regions (0) Abstract: The US Navy's Geothermal Program Office (GPO), has conducted geothermal exploration in the Chocolate Mountains Aerial Gunnery Range (CMAGR) since the mid-1970s. At this time, the focus of the GPO had been on the area to the east of the Hot Mineral Spa KGRA, Glamis and areas within the Chocolate Mountains themselves. Using potential field geophysics, mercury surveys and geologic mapping to identify potential anomalies related to recent hydrothermal activity. After a brief hiatus starting in

2

Chocolate Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Chocolate Mountains Geothermal Area Chocolate Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Chocolate Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Map: Chocolate Mountains Geothermal Area Chocolate Mountains Geothermal Area Location Map Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: Phase II - Resource Exploration and Confirmation Coordinates: 33.352°, -115.353° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.352,"lon":-115.353,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

3

Ground Gravity Survey At Chocolate Mountains Area (Alm, Et Al., 2010) |  

Open Energy Info (EERE)

Chocolate Mountains Area (Alm, Et Al., 2010) Chocolate Mountains Area (Alm, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Chocolate Mountains Area (Alm, Et Al., 2010) Exploration Activity Details Location Chocolate Mountains Area Exploration Technique Ground Gravity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Gravity and ground-based magnetics surveys were conducted during the summer of 2008. This data was acquired to aid in the identification of structures without fair surface expression, obscured by recent deposition. References Steve Alm, S. Bjornstad, M. Lazaro, A. Sabin1, D. Meade, J. Shoffner, W. C. Huang, J. Unruh, M. Strane, H. Ross (2010) Geothermal Energy Resource Investigations, Chocolate Mountains Aerial Gunnery Range,

4

Ground Magnetics At Chocolate Mountains Area (Alm, Et Al., 2010) | Open  

Open Energy Info (EERE)

Chocolate Mountains Area (Alm, Et Al., 2010) Chocolate Mountains Area (Alm, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At Chocolate Mountains Area (Alm, Et Al., 2010) Exploration Activity Details Location Chocolate Mountains Area Exploration Technique Ground Magnetics Activity Date Usefulness useful DOE-funding Unknown Notes Gravity and ground-based magnetics surveys were conducted during the summer of 2008. This data was acquired to aid in the identification of structures without fair surface expression, obscured by recent deposition. References Steve Alm, S. Bjornstad, M. Lazaro, A. Sabin1, D. Meade, J. Shoffner, W. C. Huang, J. Unruh, M. Strane, H. Ross (2010) Geothermal Energy Resource Investigations, Chocolate Mountains Aerial Gunnery Range,

5

Modeling-Computer Simulations At Chocolate Mountains Area (Alm...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit History Facebook icon Twitter icon Modeling-Computer Simulations At Chocolate Mountains Area (Alm, Et Al., 2010) Jump to: navigation,...

6

Thermal Gradient Holes At Chocolate Mountains Area (Sabin, Et Al., 2010) |  

Open Energy Info (EERE)

Thermal Gradient Holes At Chocolate Mountains Area Thermal Gradient Holes At Chocolate Mountains Area (Sabin, Et Al., 2010) Exploration Activity Details Location Chocolate Mountains Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes In lieu of Seabee TGH drilling, GPO awarded a large IDIQ TGH drilling contract in December, 2009. Over the next two years, 90 500-ft TGHs will be installed at select sites in California and Nevada. Interim data from this campaign are already available for the Chocolate Mountains and Hawthorne. Results of these programs can be found in the Chocolate Mountains and Hawthorne papers also available in this volume. References Andrew Sabin, S. Bjornstad, M. Lazaro, D. Meade, C. Page, S. Alm, A. Tiedeman, W. C. Huang (2010) Navy's Geothermal Program Office: Overview

7

LiDAR At Chocolate Mountains Area (Alm, Et Al., 2010) | Open Energy  

Open Energy Info (EERE)

LiDAR At Chocolate Mountains Area (Alm, Et Al., 2010) LiDAR At Chocolate Mountains Area (Alm, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: LiDAR At Chocolate Mountains Area (Alm, Et Al., 2010) Exploration Activity Details Location Chocolate Mountains Area Exploration Technique LiDAR Activity Date Usefulness useful DOE-funding Unknown Notes Recent exploration includes a high resolution aerial Li-DAR survey flown over the project areas, securing over 177,000 square kilometers of <30cm accuracy digital elevation data. LiDAR data were analyzed to characterize the active tectonic environment, and identify Holocene structures, which are common conduits for upwelling geothermal fluids. References Steve Alm, S. Bjornstad, M. Lazaro, A. Sabin1, D. Meade, J. Shoffner, W. C. Huang, J. Unruh, M. Strane, H. Ross (2010) Geothermal

8

Modeling-Computer Simulations At Chocolate Mountains Area (Alm, Et Al.,  

Open Energy Info (EERE)

Modeling-Computer Simulations At Chocolate Mountains Area (Alm, Et Al., Modeling-Computer Simulations At Chocolate Mountains Area (Alm, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Chocolate Mountains Area (Alm, Et Al., 2010) Exploration Activity Details Location Chocolate Mountains Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful DOE-funding Unknown Notes "Shallow temperature gradient drilling began at the CMAGR in January of 2010. 13 temperature gradient holes were completed to a depth of 500' below ground surface. Sites were selected based on the compilation of previous exploration and resulting data is being integrated into the most recent geologic model. This model will form the basis for the selection of a

9

Thermal Gradient Holes At Chocolate Mountains Area (Alm, Et Al., 2010) |  

Open Energy Info (EERE)

Chocolate Mountains Area (Alm, Et Al., 2010) Chocolate Mountains Area (Alm, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Chocolate Mountains Area (Alm, Et Al., 2010) Exploration Activity Details Location Chocolate Mountains Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes "Shallow temperature gradient drilling began at the CMAGR in January of 2010. 13 temperature gradient holes were completed to a depth of 500' below ground surface. Sites were selected based on the compilation of previous exploration and resulting data is being integrated into the most recent geologic model. This model will form the basis for the selection of a deeper (2000'-4000') temperature gradient drilling campaign at the CMAGR in

10

Geothermal Energy Resource Investigations, Chocolate Mountains...  

Open Energy Info (EERE)

securing over 177,000 square kilometers of <30cm accuracy digital elevation data. LiDAR data were analyzed to characterize the active tectonic environment, and identify...

11

Weapons test seismic investigations at Yucca Mountain  

Science Conference Proceedings (OSTI)

Yucca Mountain, located on and adjacent to the Nevada Test Site, is being characterized as part of an ongoing effort to identify a potential high-level nuclear waste repository. This site will be subjected to seismic ground motions induced by underground nuclear explosions. A knowledge of expected ground motion levels from these tests will enable the designers to provide for the necessary structural support in the designs of the various components of the repository. The primary objective of the Weapons Test Seismic Investigation project is to develop a method to predict the ground motions expected at the repository site as a result of future weapons tests. This paper summarizes the data base presently assembled for the Yucca Mountain Project, characteristics of expected ground motions, and characterization of the two-dimensional seismic properties along paths between Yucca Mountain and the testing areas of the Nevada Test Site.

Phillips, J.S.; Shephard, L.E.; Walck, M.C.

1991-01-01T23:59:59.000Z

12

The secrets of Belgian chocolate  

Science Conference Proceedings (OSTI)

Belgium produces 270,000 metric tons of chocolate each year and boasts more than 2,000 chocolate shops. But what is it about Belgian chocolate that makes it so smooth, flavorful, and melt-in-your-mouth irresistible? The secrets of Belgian chocolate Inform

13

Mountain  

U.S. Energy Information Administration (EIA) Indexed Site

Biodiesel (B100) Production by Petroleum Administration for Defense District (PADD)" Biodiesel (B100) Production by Petroleum Administration for Defense District (PADD)" "(million gallons)" "Period","PADD",,,,,,,,,,"U.S." ,"East Coast (PADD 1)",,"Midwest (PADD 2)",,"Gulf Coast (PADD 3)",,"Rocky Mountain (PADD 4)",,"West Coast (PADD 5)" 2011 "January",3,,30,,1,,0,,1,,35.355469 "February",3,,32,,4,,0,,1,,40.342355 "March",3,,47,,6,,0,,2,,59.59017 "April",3,,54,,10,,0,,3,,71.0517 "May",4,,58,,11,,0,,4,,77.196652 "June",4,,56,,14,,0,,7,,81.39104 "July",5,,65,,17,,0,,5,,91.679738 "August",5,,66,,20,,0,,5,,95.484891 "September",6,,65,,20,,0,,6,,95.880151 "October",7,,73,,22,,0,,4,,105.342474

14

Major results of geophysical investigations at Yucca Mountain and vicinity, southern Nevada  

SciTech Connect

In the consideration of Yucca Mountain as a possible site for storing high level nuclear waste, a number of geologic concerns have been suggested for study by the National Academy of Sciences which include: (1) natural geologic and geochemical barriers, (2) possible future fluctuations in the water table that might flood a mined underground repository, (3) tectonic stability, and (4) considerations of shaking such as might be caused by nearby earthquakes or possible volcanic eruptions. This volume represents the third part of an overall plan of geophysical investigation of Yucca Mountain, preceded by the Site Characterization Plan (SCP; dated 1988) and the report referred to as the Geophysical White Paper, Phase 1, entitled Status of Data, Major Results, and Plans for Geophysical Activities, Yucca Mountain Project (Oliver and others, 1990). The SCP necessarily contained uncertainty about applicability and accuracy of methods then untried in the Yucca Mountain volcano-tectonic setting, and the White Paper, Phase 1, focused on summarization of survey coverage, data quality, and applicability of results. For the most part, it did not present data or interpretation. The important distinction of the current volume lies in presentation of data, results, and interpretations of selected geophysical methods used in characterization activities at Yucca Mountain. Chapters are included on the following: gravity investigations; magnetic investigations; regional magnetotelluric investigations; seismic refraction investigations; seismic reflection investigations; teleseismic investigations; regional thermal setting; stress measurements; and integration of methods and conclusions. 8 refs., 60 figs., 2 tabs.

Oliver, H.W.; Ponce, D.A. [eds.] [Geological Survey, Menlo Park, CA (United States); Hunter, W.C. [ed.] [Geological Survey, Denver, CO (United States). Yucca Mountain Project Branch

1995-12-31T23:59:59.000Z

15

Investigations of a Winter Mountain Storm in Utah. Part I: Synoptic Analyses, Mesoscale Kinematics, and Water Release Rates  

Science Conference Proceedings (OSTI)

A winter storm passing across the northsouth-orientated Tushar Mountains in southwest Utah is investigated in this multipart paper. This Part I describes the evolving synoptic pattern, mesoscale kinematics, and calculated water release rates (...

Alexis B. Long; Arlen W. Huggins; Bernard A. Campistron

1990-06-01T23:59:59.000Z

16

Paleoseismic investigations of Stagecoach Road fault, southeastern Yucca Mountain, Nye County, Nevada  

Science Conference Proceedings (OSTI)

This report summarizes the results of paleoseismic investigations at two trenches (SCR-T1 and SCR-T3) excavated across the Stagecoach Road (SCR) fault at the southeastern margin of Yucca Mountain. The results of these studies are based on detailed mapping or logging of geologic and structural relationships exposed in trench walls, combined with descriptions of lithologic units, associated soils, and fault-related deformation. The ages of trench deposits are determined directly from geochronologic dating of selected units and soils, supplemented by stratigraphic and soil correlations with other surficial deposits in the Yucca Mountain area. The time boundaries used in this report for subdivision of the Quaternary period are listed in a table. These data and interpretations are used to identify the number, amounts, timing, and approximately lengths of late to middle Quaternary (less than 200 ka) surface-faulting events associated with paleoearthquakes at the trench sites. This displacement history forms the basis for calculating paleoearthquake recurrence intervals and fault-slip rates for the Stagecoach Road fault and allows comparison with fault behavior on other Quaternary faults at or near Yucca Mountain.

Menges, C.M.; Oswald, J.A.; Coe, J.A.; Lundstrom, S.C.; Paces, J.B.; Mahan, S.A.; Widmann, B.; Murray, M.

1998-04-01T23:59:59.000Z

17

Industrial Chocolate Manufacture and Use, 4th Edition  

Science Conference Proceedings (OSTI)

The fourth edition of Industrial Chocolate Manufacture and Use provides up-to-date coverage of all major aspects of chocolate manufacture and use, from the growing of cocoa beans to the packaging and marketing of the end product. Industrial Chocolate Manuf

18

Lidar Investigation of the Temporal and Spatial Distribution of Atmospheric Aerosols in Mountain Valleys  

Science Conference Proceedings (OSTI)

Lidar experiments were conducted in the mountainous region of Bulgaria to determine the spatial and temporal distribution of major aerosol sources and the zones of aerosol accumulation. When these lidar data are combined with conventional ...

Plamen B. Savov; Toni S. Skakalova; Ivan N. Kolev; Francis L. Ludwig

2002-05-01T23:59:59.000Z

19

Geologic and hydrologic investigations of a potential nuclear waste disposal site at Yucca Mountain, southern Nevada  

SciTech Connect

Yucca Mountain in southern Nye County, Nevada, has been selected by the United States Department of Energy as one of three potential sites for the nation`s first high-level nuclear waste repository. Its deep water table, closed-basin ground-water flow, potentially favorable host rock, and sparse population have made the Yucca Mountain area a viable candidate during the search for a nuclear waste disposal site. Yucca Mountain, however, lies within the southern Great Basin, a region of known contemporary tectonism and young volcanic activity, and the characterization of tectonism and volcanism remains as a fundamental problem for the Yucca Mountain site. The United States Geological Survey has been conducting extensive studies to evaluate the geologic setting of Yucca Mountain, as well as the timing and rates of tectonic and volcanic activity in the region. A workshop was convened by the Geologic Survey in Denver, Colorado, on August 19, 20, and 21, 1985, to review the scientific progress and direction of these studies. Considerable debate resulted. This collection of papers represents the results of some of the studies presented at the workshop, but by no means covers all of the scientific results and viewpoints presented. Rather, the volume is meant to serve as a progress report on some of the studies within the Geological Survey`s continuing research program toward characterizing the tectonic framework of Yucca Mountain. Individual papers were processed separately for the data base.

Carr, M.D.; Yount, J.C. (eds.)

1988-12-31T23:59:59.000Z

20

Modeling studies of mountain-scale radionuclide transport in the unsaturated zone at Yucca Mountain, Nevada  

E-Print Network (OSTI)

Investigations at Yucca Mountain - The Potential Repositoryin the Unsaturated Zone, Yucca Mountain, Nevada, ResourcesIN THE UNSATURATED ZONE AT YUCCA MOUNTAIN, NEVADA George J.

Moridis, George J.; Seol, Yongkoo; Wu, Yu-Shu

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "investigations chocolate mountains" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Effects of Mountain Uplift on East Asian Summer Climate Investigated by a Coupled AtmosphereOcean GCM  

Science Conference Proceedings (OSTI)

To study the effects of progressive mountain uplift on East Asian summer climate, a series of coupled general circulation model (CGCM) experiments were performed. Eight different mountain heights were used: 0% (no mountain), 20%, 40%, 60%, 80%, ...

Akio Kitoh

2004-02-01T23:59:59.000Z

22

Preliminary investigation of two areas in New York State in terms of possible potential for hot dry rock geothermal energy. [Adirondack Mountains and Catskill Mountains  

DOE Green Energy (OSTI)

Two areas in New York State were studied in terms of possible long range potential for geothermal energy: the Adirondack Mountains which are undergoing contemporary doming, and an anomalous circular feature centered on Panther Mountain in the Catskill Mountains. The Adirondack Mountains constitute an anomalously large, domical uplift on the Appalachian foreland. The domical configuration of the area undergoing uplift, combined with subsidence at the northeastern perimeter of the dome, argues for a geothermal rather than glacioisostatic origin. A contemporary hot spot near the crust-mantle boundary is proposed as the mechanism of doming, based on analogy with uplifts of similar dimensions elsewhere in the world, some of which have associated Tertiary volcanics. The lack of thermal springs in the area, or high heat flow in drill holes up to 370 m deep, indicates that the front of the inferred thermal pulse must be at some depth greater than 1 km. From isopach maps by Rickard (1969, 1973), it is clear that the present Adirondack dome did not come into existence until sometime after Late Devonian time. Strata younger than this are not present to provide further time stratigraphic refinement of this lower limit. However, the consequent radial drainage pattern in the Adirondacks suggests that the dome is a relatively young tectonic feature. Using arguments based on fixed hot spots in central Africa, and the movement of North American plate, Kevin Burke (Appendix I) suggests that the uplift may be less than 4 m.y. old.The other area of interest, the Panther Mountain circular feature in the Catskill Mountains, was studied using photogeology, gravity and magnetic profiling, gravity modeling, conventional field methods, and local shallow seismic refraction profiling.

Isachsen, Y.W.

1978-09-27T23:59:59.000Z

23

Investigation of two areas in New York State which may have potential for geothermal energy. Progress report, May 1, 1976--September 31, 1976. [Adirondack Mountains and Panther Mountain  

DOE Green Energy (OSTI)

Significant results to date include the following: (1) the present Adirondack Mountains Dome is undergoing rapid contemporary vertical doming; the velocity at the center of the dome is 3.7mm/yr, compared to 1mm/yr for the Swiss Alps; (2) post-Pleistocene fault offsets measuring from one to eleven millimeters have been found in the Adirondacks, indicating vertical uplift during the past 10,000 years; (3) the Panther Mountain Circular drainage feature is structurally-controlled and shows a 10 to 20 milligal negative Simple Bouguer gravity anomaly such as might be produced by a buried felsic pluton.

Isachsen, Y.W.

1976-09-01T23:59:59.000Z

24

Corrective Action Investigation Plan for Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nevada, Rev. No. 0  

SciTech Connect

This Corrective Action Investigation Plan (CAIP) was developed for Corrective Action Unit (CAU) 99, Rainier Mesa/Shoshone Mountain. The CAIP is a requirement of the ''Federal Facility Agreement and Consent Order'' (FFACO) agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense (DoD) (FFACO, 1996). The FFACO addresses environmental restoration activities at U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) facilities and sites including the underground testing area(s) of the Nevada Test Site (NTS). This CAIP describes the investigation activities currently planned for the Rainier Mesa/Shoshone Mountain CAU. These activities are consistent with the current Underground Test Area (UGTA) Project strategy described in Section 3.0 of Appendix VI, Revision No. 1 (December 7, 2000) of the FFACO (1996) and summarized in Section 2.1.2 of this plan. The Rainier Mesa/Shoshone Mountain CAU extends over several areas of the NTS (Figure 1-1) and includes former underground nuclear testing locations in Areas 12 and 16. The area referred to as ''Rainier Mesa'' includes the geographical area of Rainier Mesa proper and the contiguous Aqueduct Mesa. Figure 1-2 shows the locations of the tests (within tunnel complexes) conducted at Rainier Mesa. Shoshone Mountain is located approximately 20 kilometers (km) south of Rainier Mesa, but is included within the same CAU due to similarities in their geologic setting and in the nature and types of nuclear tests conducted. Figure 1-3 shows the locations of the tests conducted at Shoshone Mountain. The Rainier Mesa/Shoshone Mountain CAU falls within the larger-scale Rainier Mesa/Shoshone Mountain Investigation Area, which also includes the northwest section of the Yucca Flat CAU as shown in Figure 1-1. Rainier Mesa and Shoshone Mountain lie adjacent to the Timber Mountain Caldera Complex and are composed of volcanic rocks that erupted from the caldera as well as from more distant sources. This has resulted in a layered volcanic stratigraphy composed of thick deposits of welded and nonwelded ash-flow tuff and lava flows. These deposits are proximal to the source caldera and are interstratified with the more distal facies of fallout tephra and bedded reworked tuff from more distant sources. In each area, a similar volcanic sequence was deposited upon Paleozoic carbonate and siliciclastic rocks that are disrupted by various thrust faults, normal faults, and strike-slip faults. In both Rainier Mesa (km) to the southwest, and Tippipah Spring, 4 km to the north, and the tunnel complex is dry. Particle-tracking simulations performed during the value of information analysis (VOIA) (SNJV, 2004b) indicate that most of the regional groundwater that underlies the test locations at Rainier Mesa and Shoshone Mountain eventually follows similar and parallel paths and ultimately discharges in Death Valley and the Amargosa Desert. Particle-tracking simulations conducted for the regional groundwater flow and risk assessment indicated that contamination from Rainier Mesa and Shoshone Mountain were unlikely to leave the NTS during the 1,000-year period of interest (DOE/NV, 1997a). It is anticipated that CAU-scale modeling will modify these results somewhat, but it is not expected to radically alter the outcome of these previous particle-tracking simulations within the 1,000-year period of interest. The Rainier Mesa/Shoshone Mountain CAIP describes the corrective action investigation (CAI) to be conducted at the Rainier Mesa/Shoshone Mountain CAU to evaluate the extent of contamination in groundwater due to the underground nuclear testing. The CAI will be conducted by the UGTA Project, which is part of the NNSA/NSO Environmental Restoration Project (ERP). The purpose and scope of the CAI are presented in this section, followed by a summary of the entire document.

John McCord

2004-12-01T23:59:59.000Z

25

An Investigation of the Sources of Summertime Haze in the Blue Ridge Mountains Using Multivariate Statistical Methods  

Science Conference Proceedings (OSTI)

Multivariate statistical analyses are employed to identify the source areas of the fine particulates and sulfate, which are the primary components of summer haze in the Blue Ridge Mountains of Virginia. These analyses include principal component ...

George T. Wolff; Mark L. Morrissey; Nelson A. Kelly

1984-09-01T23:59:59.000Z

26

Investigation of Upstream Boundary Layer Influence on Mountain Wave Breaking and Lee Wave Rotors Using a Large-Eddy Simulation  

Science Conference Proceedings (OSTI)

Interactions between a turbulent boundary layer and nonlinear mountain waves are explored using a large-eddy simulation model. Simulations of a self-induced critical layer, which develop a stagnation layer and a strong leeside surface jet, are ...

Craig M. Smith; Eric D. Skyllingstad

2009-10-01T23:59:59.000Z

27

Investigations of a Winter Mountain Storm in Utah. Part II: Mesoscale Structure, Supercooled Liquid Water Development, and Precipitation Processes  

Science Conference Proceedings (OSTI)

A comprehensive analysis of a deep winter storm system during its passage over the Tushar Mountains of southwestern Utah is reported. The case study, drawn from the 1985 Utah/NOAA cooperative weather modification experiment, is divided into ...

Kenneth Sassen; Arlen W. Huggins; Alexis B. Long; Jack B. Snider; Rebecca J. Meitn

1990-06-01T23:59:59.000Z

28

A Multiscale and Multidisciplinary Investigation Of EcosystemAtmosphere CO2 Exchange Over the Rocky Mountains of Colorado  

Science Conference Proceedings (OSTI)

A significant fraction of Earth consists of mountainous terrain. However, the question of how to monitor the surfaceatmosphere carbon exchange over complex terrain has not been fully explored. This article reports on studies by a team of ...

Jielun Sun; Steven P. Oncley; Sean P. Burns; Britton B. Stephens; Donald H. Lenschow; Teresa Campos; Andrew S. Watt; Russell K. Monson; David J. P. Moore; Jia Hu; Mark Tschudi; David S. Schimel; Steven Aulenbach; William J. Sacks; Stephan F. J. De Wekker; Chun-Ta Lai; Brian Lamb; Eugene Allwine; Teresa Coons; Dennis Ojima; Patrick Z. Ellsworth; Leonel S. L. Sternberg; Sharon Zhong; Craig Clements; Dean E. Anderson

2010-02-01T23:59:59.000Z

29

Investigations of a Winter Mountain Storm in Utah. Part III: Single-Doppler Radar Measurements of Turbulence  

Science Conference Proceedings (OSTI)

This Part III of a multipart paper deals with the analysis of turbulent motion in a winter storm, which occurred over the mountains of southwest Utah. The storm was documented with a long duration single Doppler radar dataset (21 h) comprised of ...

Bernard Campistron; Arlen W. Huggins; Alexis B. Long

1991-05-01T23:59:59.000Z

30

2012 Short Course Fats and Oils for Confectionary and Chocolates: Chemistry, Primary Sources, Crystallization, Alternatives, and Stability  

Science Conference Proceedings (OSTI)

Fats and Oils for Confectionary and Chocolates: Chemistry, Primary Sources, Crystallization, Alternatives, and Stability held at the 103rd AOCS Annual Meeting and Expo. 2012 Short Course Fats and Oils for Confectionary and Chocolates: Chemistry, Primary So

31

YUCCA MOUNTAIN SITE DESCRIPTION  

SciTech Connect

The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel.

A.M. Simmons

2004-04-16T23:59:59.000Z

32

YUCCA MOUNTAIN SITE DESCRIPTION  

SciTech Connect

The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel.

A.M. Simmons

2004-04-16T23:59:59.000Z

33

Progress report No. 2 on the Scientific Investigation Program for the Nevada Yucca Mountain Site, October 1, 1989--March 31, 1990  

SciTech Connect

In accordance with the requirements of Section 113(b)(3) of the Nuclear Waste Policy Act of 1982 (Pub. L. No. 97-425), as amended, the US Department of Energy (DOE) has prepared this report on the progress of scientific investigation activities at Yucca Mountain in southern Nevada for October 1, 1989, through March 31, 1990. This report is the second of a series of reports that are issued at intervals of approximately six months during the period of scientific investigation. The progress report presents short summaries of the status of scientific investigation activities and cites technical reports and research products that provide more detailed information on the activities. The report provides highlights of work started during the reporting period, work in progress, and work completed and documented during the reporting period. In addition, the report is the vehicle for discussing major changes, if any, to the DOE`s scientific investigation program. The progress report conveys information in a convenient summary form to be used for informational purposes only. It is not intended to be the mechanism for controlling and documenting technical or policy positions regarding changes in schedules or the technical program. Such changes are controlled through rigorous DOE change-control procedures. The progress report only describes such approval changes. 49 refs., 3 tabs.

NONE

1990-12-31T23:59:59.000Z

34

Bomb-Pulse Chlorine-36 At The Proposed Yucca Mountain Repository Horizon: An Investigation Of Previous Conflicting Results And Collection Of New Data  

Science Conference Proceedings (OSTI)

Previous studies by scientists at Los Alamos National Laboratory (LANL) found elevated ratios of chlorine-36 to total chloride ({sup 36}Cl/Cl) in samples of rock collected from the Exploratory Studies Facility (ESF) and the Enhanced Characterization of the Repository Block (ECRB) at Yucca Mountain as the tunnels were excavated. The data were interpreted as an indication that fluids containing 'bomb-pulse' {sup 36}Cl reached the repository horizon in the {approx}50 years since the peak period of above-ground nuclear testing. Moreover, the data support the concept that so-called fast pathways for infiltration not only exist but are active, possibly through a combination of porous media, faults and/or other geologic features. Due to the significance of {sup 36}Cl data to conceptual models of unsaturated zone flow and transport, the United States Geological Survey (USGS) was requested by the Department of Energy (DOE) to design and implement a study to validate the LANL findings. The USGS chose to drill new boreholes at select locations across zones where bomb-pulse ratios had previously been identified. The drill cores were analyzed at Lawrence Livermore National Laboratory (LLNL) for {sup 36}Cl/Cl using both active and passive leaches, with the USGS/LLNL concluding that the active leach extracted too much rock-Cl and the passive leach did not show bomb-pulse ratios. Because consensus was not reached between the USGS/LLNL and LANL on several fundamental points, including the conceptual strategy for sampling, interpretation and use of tritium ({sup 3}H) data, and the importance and interpretation of blanks, in addition to the presence or absence of bomb-pulse {sup 36}Cl, an evaluation by an independent entity, the University of Nevada, Las Vegas (UNLV), using new samples was initiated. This report is the result of that study. The overall objectives of the UNLV study were to investigate the source or sources of the conflicting results from the previous validation study, and to obtain additional data to determine whether or not there are bomb-pulse isotopes at the repository horizon. To that en4 we have engaged in discussions with previous investigators, reviewed reports, and analyzed archived samples. We have also collected new samples of rock from the ESF, soil profiles from the surface of Yucca Mountain, and opportunistic samples of seep water from inside the south ramp of the ESF.

J. Cizdziel

2006-07-28T23:59:59.000Z

35

Mountain-eering University of Trento Spin off  

E-Print Network (OSTI)

Mountain-eering University of Trento Spin off www.mountain-eering.com Contacts Mountain-eering srl-mail: info@mountain-eering.com web site: www.mountain-eering.com Administrative Office via Giusti, 10 - 38122 Trento (Italy) #12;Company data Full legal name:· Mountain eering srl. Legal form of incorporation:· Ltd

36

The Sensitivity of Mountain Snowpack Accumulation to Climate Warming  

Science Conference Proceedings (OSTI)

Controls on the sensitivity of mountain snowpack accumulation to climate warming (?S) are investigated. This is accomplished using two idealized, physically based models of mountain snowfall to simulate snowpack accumulation for the Cascade ...

Justin R. Minder

2010-05-01T23:59:59.000Z

37

Progress report on the scientific investigation program for the Nevada Yucca Mountain Site, October 1, 1991--March 31, 1992, Number 6  

SciTech Connect

In accordance with the requirements of section 113(b)(3) of the Nuclear Waste Policy Act (NWPA) and 10 CFR 60.18(g), the US Department of Energy (DOE) has prepared this report on the progress of site characterization activities at Yucca Mountain, Nevada, for the period October 1, 1991, through March 31, 1992. This report is the sixth in a series of reports that are issued at intervals of approximately six months during site characterization. Also included in this report are activities such as public outreach and international programs that are not officially part of site characterization. Information on these activities is provided in order to fully integrate all aspects of the Yucca Mountain studies.

NONE

1992-09-01T23:59:59.000Z

38

Crystallization and Solidification Properties of LipidsChapter 19 Solidification Processes in Chocolate Confectionary Manufacture  

Science Conference Proceedings (OSTI)

Crystallization and Solidification Properties of Lipids Chapter 19 Solidification Processes in Chocolate Confectionary Manufacture Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry 9F7EBF52EFF0C2A0BEB0C942F6901ED

39

POTENTAIL HABITAT MOUNTAIN PLOVERS  

E-Print Network (OSTI)

in the Yucca Mountain region has been studied using two approaches: a geological approach that examines Yucca Mountain [Andrews et al., 2007]. In this paper we report on an exercise to verify the computer. These benchmarks targeted the particular case of earthquake rupture on a normal fault at Yucca Mountain, Nevada

40

Mountain Torque Events at the Tibetan Plateau  

Science Conference Proceedings (OSTI)

The interaction of large-scale wave systems with the Tibetan Plateau (TP) is investigated by regressing pressure, potential temperature, winds, precipitation, and selected fluxes in winter onto the three components Toi of this massifs mountain ...

Joseph Egger; Klaus-Peter Hoinka

2008-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "investigations chocolate mountains" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Daytime heat transfer processes over mountainous terrain  

Science Conference Proceedings (OSTI)

The daytime heat transfer mechanisms over mountainous terrain are investigated by means of large-eddy simulations over idealized valleys. Two- and three-dimensional topographies, corresponding to infinite and finite valleys, are used in order to ...

Juerg Schmidli

42

Progress report on the scientific investigation program for the Nevada Yucca Mountain site, September 15, 1988--September 30, 1989; Nuclear Waste Policy Act (Section 113), Number 1  

SciTech Connect

The Department of Energy (DOE) has prepared this report on the progress of site characterization activities at Yucca Mountain in southern Nevada. This report is the first of a series of reports that will hereafter be issued at intervals of approximately 6-months during site characterization. The DOE`s plans for site characterization are described in the Site Characterization Plan (SCP) for the Yucca Mountain site. The SCP has been reviewed and commented on by the NRC, the State of Nevada, the affected units of local government, other interested parties, and the public. More detailed information on plans for site characterization is being presented in study plans for the various site characterization activities. This progress report presents short summaries of the status of site characterization activities and cites technical reports and research products that provide more detailed information on the activities. The report provides highlights of work started during the reporting period, work in progress, and work completed and documented during the reporting period. In addition, the report is the vehicle for discussing major changes, if any, to the DOE`s site characterization program resulting from ongoing collection and evaluation of site information; the development of repository and waste-package designs; receipt of performance-assessment results; and changes, if any, that occur in response to external comments on the site characterization programs. 80 refs.

NONE

1990-02-01T23:59:59.000Z

43

Bomb-Pulse Chlorine-36 at the Proposed Yucca Mountain Repository Horizon: An Investigation of Previous Conflicting Results and Collection of New Data  

Science Conference Proceedings (OSTI)

Previous studies Los Alamos National Laboratory (LANL) found elevated ratios of chlorine-36 to total chloride (36Cl/Cl) in samples of rock collected from the Exploratory Studies Facility (ESF) at Yucca Mountain (YM). The data were interpreted as an indication that fluids containing bomb-pulse 36Cl reached the repository horizon in the ~50 years since the peak period of above-ground nuclear testing. Due to the significance of 36Cl data to conceptual models of unsaturated zone flow, the United States Geological Survey (USGS) implemented a study to validate the LANL findings. The USGS drilled new boreholes at select locations across zones where bomb-pulse ratios had previously been identified. The drill cores were analyzed at Lawrence Livermore National Laboratory (LLNL). Because consensus was not reached between the USGS/LLNL and LANL on several fundamental points including the presence or absence of bomb-pulse 36Cl, an evaluation by the University of Nevada, Las Vegas (UNLV), was initiated. The overall objectives of the UNLV study were to investigate the source of the validation studys conflicting results, and to obtain additional data on bomb-pulse isotopes at the repository horizon. UNLV engaged in discussions with previous investigators, reviewed reports, and analyzed archived samples. UNLV also collected new samples of rock from the ESF, soil profiles from the surface of YM, and samples of seep water from inside the ESF. Samples were analyzed for 36Cl/Cl ratios, and 99Tc and 129I in select samples. A column experiment was conducted mimicking the passage of bomb-pulse 36Cl through YM tuff. The work faced several obstacles including an extended shutdown of the tunnel. Only one sample yielded a background corrected 36Cl/Cl ratio that was higher than the accepted bomb-pulse threshold (1250 x 10-15). Specimen 01034214 obtained from the Drill Hole Wash fault (19+33) had a ratio of 1590 80 (1?) x10-15, whereas the other separate sample from this fault zone yielded 1160 50 (1?) x 10-15. Three samples collected from Alcove 6 averaged 490 100 (1?) x10-15; a sample from Sundance Fault resulted in a ratio of 920 60 (1?) x10-15, and a sample from the Bow Ridge Fault produced 530 20 (1?) x10-15. The results are significant because: 1) they tend to be lower than LANL data for comparable samples, albeit in agreement with the range of data produced in the area, and 2) they show that a bomb-pulse 36Cl/Cl ratio was measured in rock collected at the repository horizon level by a second and independent group of investigators (UNLV). Because of time UNLV was not able to replicate the results, and these few data points are insufficient to draw major and definitive conclusions. Leachates of soil samples collected from the surface above the ESF yielded several ratios with bomb-pulse 36Cl, particularly for samples encompassing the wetting front. Soil samples collected above the south ramp, where there was limited soil coverage due to a large amount of rock outcrop, had relatively large ratios ranging from 2170 110 (1?) x10-15 to 5670 350 (1?) x10-15. Soil samples from profiles from above the north ramp ranged from 820 70 (1?) x10-15 to 2390 160 (1?) x10-15, which compare favorably with previous measurements near the site. Water seepage into the ESF south ramp and 36Cl standards made from NIST material were also analyzed. The standards were produced to have nominal 36Cl/Cl ratios (10-15) of 500, 2,500 and 10,000 and the results showed good agreement with the calculated ratios. The seepage samples ranged between 680 40 (1?) x10-15 to 1110 40 (1?) x10-15, consistent with that found for modern meteoric water, with a small bomb-pulse component. Bomb-pulse 36Cl may not have been incorporated in this fast-path water because the surface above the infiltration zone consists mostly of outcrop and the flow pathways have probably mostly been leached. 99Tc was measured in five of nine leaches of ESF rock but poor analytical recoveries and lack of data overlap with 36Cl limit interpretations of these data

Cizdziel, James

2006-07-31T23:59:59.000Z

44

Mountainous | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Mountainous Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Mountainous Dictionary.png Mountainous: A geothermal areal located in terrain characterized by rugged and steep topography with high relief Other definitions:Wikipedia Reegle Topographic Features List of topographic features commonly encountered in geothermal resource areas: Mountainous Horst and Graben Shield Volcano Flat Lava Dome Stratovolcano Cinder Cone Caldera Depression Resurgent Dome Complex The interior of Iceland holds a vast expanse of mountainous geothermal areas, one of the more famous areas is landmannalaugar, Iceland. Photo by

45

A Modeling Study of Nonstationary Trapped Mountain Lee Waves. Part II: Nonlinearity  

Science Conference Proceedings (OSTI)

The generation of nonstationary trapped mountain lee waves through nonlinear wave dynamics without any concomitant change in the background flow is investigated by conducting two-dimensional mountain wave simulations. These simulations ...

Louisa B. Nance; Dale R. Durran

1998-04-01T23:59:59.000Z

46

Mountain | OpenEI  

Open Energy Info (EERE)

Mountain Mountain Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 28, and contains only the reference case. The dataset uses million metric tons carbon dioxide equivalent. The data is broken down into residential, commercial, industrial, transportation, electric power, and total by fuel. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO carbon dioxide emissions EIA Mountain Data application/vnd.ms-excel icon AEO2011: Carbon Dioxide Emissions by Sector and Source - Mountain- Reference Case (xls, 74.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

47

February 14, 2002: Yucca Mountain | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

14, 2002: Yucca Mountain 14, 2002: Yucca Mountain February 14, 2002: Yucca Mountain February 14, 2002: Yucca Mountain February 14, 2002 Secretary Abraham formally recommends to President Bush that the Yucca Mountain site in Nevada be developed as the nation's first long-term geologic repository for high-level radioactive waste. "I have considered whether sound science supports the determination that the Yucca Mountain site is scientifically and technically suitable for the development of a repository," the Secretary informs the President. "I am convinced that it does. The results of this extensive investigation and the external technical reviews of this body of scientific work give me confidence for the conclusion, based on sound scientific principles, that a repository at

48

Yucca Mountain | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Yucca Mountain Yucca Mountain Yucca Mountain Addthis Fuel assembly for production of nuclear power 1 of 13 Fuel assembly for production of nuclear power Nuclear fuel pellets 2 of 13 Nuclear fuel pellets Aerial view of north end of the Yucca Mountain crest in February 1993 3 of 13 Aerial view of north end of the Yucca Mountain crest in February 1993 View of the first curve in the main drift of the Exploratory Studies Facility in October 1995 4 of 13 View of the first curve in the main drift of the Exploratory Studies Facility in October 1995 Aerial view of the crest of Yucca Mountain 5 of 13 Aerial view of the crest of Yucca Mountain Location of Yucca Mountain, Nevada 6 of 13 Location of Yucca Mountain, Nevada A scientist uses ultra-violet light to study how fluids move through rock

49

Green Mountain Energy RFP  

NLE Websites -- All DOE Office Websites (Extended Search)

PROPOSALS PROPOSALS GREEN MOUNTAIN ENERGY COMPANY TIM SMITH VP OF ORIGINATION AND BUSINESS DEVELOPMENT 550 WESTLAKE PARK BOULEVARD ROOM 172 HOUSTON, TEXAS 77079 281-366-5124 DATE ISSUED: JANUARY 21, 2005 DUE DATE & TIME FOR RESPONSES: FRIDAY, MARCH 3, 2005 @ 11:00 A.M. CENTRAL TIME RFP NOTICE GREEN MOUNTAIN ENERGY COMPANY IS REQUESTING PROPOSALS FROM GENERATORS AND MARKETERS OF RENEWABLE ENERGY CREDITS, RENEWABLE ENERGY ATTRIBUTES OR 'GREEN TAGS' ("RECs") ASSOCIATED WITH THE GENERATION OF ELECTRICITY FROM RENEWABLE RESOURCES. ANY QUESTIONS REGARDING THIS REQUEST FOR PROPOSAL SHOULD BE DIRECTED TO TIM SMITH, GREEN MOUNTAIN ENERGY COMPANY, 281-366-5124 or tim.smith@greenmountain.com. Upon signing this page the organization certifies that they have read and agree to

50

San Antonio Mountain Experiment (SAMEX)  

Science Conference Proceedings (OSTI)

The San Antonio Mountain Experiment (SAMEX) involves a 3325 m. conically shaped, isolated mountain in north-central New Mexico where hourly observations of temperature, relative humidity, wind speed, wind direction, and precipitation are being ...

Morris H. McCutchan; Douglas G. Fox; R. William Furman

1982-10-01T23:59:59.000Z

51

Moving Beyond the Yucca Mountain  

E-Print Network (OSTI)

of Energy in characterizing a site at Yucca Mountain, Nevada, as a possible location for a permanent to a decision by the Secretary of Energycurrently scheduled for 2001on whether to recommend the Yucca Mountain a clear description of how a Yucca Mountain repository would perform over thousands of years and how

52

Cocoa Butter and Related CompoundsChapter 17 Methods and Technologies Related to Shea Butter Chemophysical Properties and to the Delivery of Bioactives in Chocolate and Related Products  

Science Conference Proceedings (OSTI)

Cocoa Butter and Related Compounds Chapter 17 Methods and Technologies Related to Shea Butter Chemophysical Properties and to the Delivery of Bioactives in Chocolate and Related Products Food Science Health Nutrition eChapters Food Science

53

Crystallization and Solidification Properties of LipidsChapter 6 Differential Scanning Calorimetry as a Means of Predicting ChocolateFat-Blooming  

Science Conference Proceedings (OSTI)

Crystallization and Solidification Properties of Lipids Chapter 6 Differential Scanning Calorimetry as a Means of Predicting ChocolateFat-Blooming Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry 32CF4809AFB026A

54

Yucca Mountain Science and Engineering Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Yucca Mountain Science and Engineering Report Yucca Mountain Science and Engineering Report Yucca Mountain Science and Engineering Report Yucca Mountain Science and Engineering Report describes the results of scientific and engineering studies of the Yucca Mountain site, the waste forms to be disposed, the repository and waste package designs, and the results of the most recent assessments of the long-term performance of the potential repository. The scientific investigations include site characterization studies of the geologic, hydrologic, and geochemical environment, and evaluation of how conditions might evolve over time. These analyses considered a range of processes that would operate in and around the potential repository. Since projections of performance for 10,000 years are inherently uncertain, the uncertainties associated with analyses and

55

Yucca Mountain Science and Engineering Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Yucca Mountain Science and Engineering Report Yucca Mountain Science and Engineering Report Yucca Mountain Science and Engineering Report Yucca Mountain Science and Engineering Report describes the results of scientific and engineering studies of the Yucca Mountain site, the waste forms to be disposed, the repository and waste package designs, and the results of the most recent assessments of the long-term performance of the potential repository. The scientific investigations include site characterization studies of the geologic, hydrologic, and geochemical environment, and evaluation of how conditions might evolve over time. These analyses considered a range of processes that would operate in and around the potential repository. Since projections of performance for 10,000 years are inherently uncertain, the uncertainties associated with analyses and

56

The Dynamics of Mountain-Wave-Induced Rotors  

Science Conference Proceedings (OSTI)

The development of rotor flow associated with mountain lee waves is investigated through a series of high-resolution simulations with the nonhydrostatic Coupled OceanAtmospheric Mesoscale Prediction System (COAMPS) model using free-slip and no-...

James D. Doyle; Dale R. Durran

2002-01-01T23:59:59.000Z

57

The Penetration of Mountain Waves into the Middle Atmosphere  

Science Conference Proceedings (OSTI)

A linear nonhydrostatic model of gravity waves forced by a bell-shaped ridge is used to investigate the penetration of mountain waves into the stratosphere and mesosphere during winter and fall. Gravity waves with horizontal scales less than 30 ...

Mark R. Schoeberl

1985-12-01T23:59:59.000Z

58

Evolution of the unsaturated zone testing at Yucca Mountain  

E-Print Network (OSTI)

INTO DRIFTS AT YUCCA MOUNTAIN." JOURNAL OF CONTAMINANTFRACTURES AT YUCCA MOUNTAIN." JOURNAL OF CONTAMINANTPneumatic Testing at Yucca Mountain." International Journal

Wang, J.S.Y.; Bodvarsson, G.S.

2002-01-01T23:59:59.000Z

59

BLM Battle Mountain District Office | Open Energy Information  

Open Energy Info (EERE)

Battle Mountain District Office Jump to: navigation, search Logo: BLM Battle Mountain District Office Name BLM Battle Mountain District Office Short Name Battle Mountain Parent...

60

Rocky Mountain Customers  

NLE Websites -- All DOE Office Websites (Extended Search)

RM Home About RM Contact RM Customers Environmental Review-NEPA Operations & Maintenance Planning & Projects Power Marketing Rates Rocky Mountain Region's Customer list Use the filters above the customer list to refine your search. Click the "Clear" to reset the list. Western's full list of customers is available on the Western's Customer Web page. Customer Name Customer Type State Region Project Arapahoe and Roosevelt National Forests Federal Agencies CO RM LAP Arkansas River Power Authority Municipalities CO RM/CRSP LAP/SLIP Burlington, City of Municipalities CO RM LAP Cheyenne Mountain Air Force Base Federal Agencies CO RM LAP Clay Center, City of Municipalities KS RM LAP Denver Water Board Municipalities CO RM LAP

Note: This page contains sample records for the topic "investigations chocolate mountains" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Investigations Memorandum | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

25, 2006 Investigation of Allegations Involving False Statements and False Claims at the Yucca Mountain Project In March 2005, senior Department o Energy officials were alerted to...

62

BRMF Georgia Mountain Biofuels | Open Energy Information  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon BRMF Georgia Mountain Biofuels Jump to: navigation, search Name BRMFGeorgia Mountain Biofuels Place Clayton,...

63

Georgia Mountain | Open Energy Information  

Open Energy Info (EERE)

Georgia Mountain Georgia Mountain Jump to: navigation, search Name Georgia Mountain Facility Georgia Mountain Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner All Earth Renewables Developer All Earth Renewables Energy Purchaser Green Mountain Power Location Milton VT Coordinates 44.662351°, -73.067991° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.662351,"lon":-73.067991,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

64

Mountain Wind | Open Energy Information  

Open Energy Info (EERE)

Mountain Wind Mountain Wind Jump to: navigation, search Mountain Wind is a wind farm located in Uinta County, Wyoming. It consists of 67 turbines and has a total capacity of 140.7 MW. It is owned by Edison Mission Group.[1] Based on assertions that the site is near Fort Bridger, its approximate coordinates are 41.318716°, -110.386418°.[2] References ↑ http://www.wsgs.uwyo.edu/Topics/EnergyResources/wind.aspx ↑ http://www.res-americas.com/wind-farms/operational-/mountain-wind-i-wind-farm.aspx Retrieved from "http://en.openei.org/w/index.php?title=Mountain_Wind&oldid=132229" Category: Wind Farms What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

65

Back The Pico Mountain  

NLE Websites -- All DOE Office Websites (Extended Search)

Photos Photos *Pubs summary *Status *Inside view *Go Back The Pico Mountain free tropospheric station Richard Honrath, Michigan Tech (reh@mtu.edu) Paulo Fialho, University of the Azores (fialho.paulo@gmail.com) Detlev Helmig, University of Colorado Gracioso Pico *Photos *Pubs summary *Status *Inside view *Go Back View from sea level; Station height 2225 m Winter Station is usually above the MBL [Kleissl et al., 2007] *Photos *Pubs summary *Status *Inside view *Go Back Ideal location to sample impacts on the remote atmosphere -160 -140 -120 -100 -80 -60 -40 -20 0 20 0 10 20 30 40 50 60 70 80 90 Note haze layer from Quebec wildfires * Dominant transport patterns bring - Aged North American anthropogenic emissions. - Aged biomass burning emissions from boreal North America and Siberia. - Tropical North Atlantic air. - (African, European flow). * Note haze layer from Quebec wildfires *Photos

66

Iron Mountain Electromagnetic Results  

SciTech Connect

Iron Mountain Mine is located seventeen miles northwest of Redding, CA. After the completion of mining in early 1960s, the mine workings have been exposed to environmental elements which have resulted in degradation in water quality in the surrounding water sheds. In 1985, the EPA plugged ore stoops in many of the accessible mine drifts in an attempt to restrict water flow through the mine workings. During this process little data was gathered on the orientation of the stoops and construction of the plugs. During the last 25 years, plugs have begun to deteriorate and allow acidic waters from the upper workings to flow out of the mine. A team from Idaho National Laboratory (INL) performed geophysical surveys on a single mine drift and 3 concrete plugs. The project goal was to evaluate several geophysical methods to determine competence of the concrete plugs and orientation of the stopes.

Gail Heath

2012-07-01T23:59:59.000Z

67

Laurel Mountain | Open Energy Information  

Open Energy Info (EERE)

Mountain Mountain Jump to: navigation, search Name Laurel Mountain Facility Laurel Mountain Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner AES Corp. Developer AES Corp. Energy Purchaser Merchant Location Belington WV Coordinates 39.00702933°, -79.88500357° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.00702933,"lon":-79.88500357,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

68

mountain region | OpenEI  

Open Energy Info (EERE)

mountain region mountain region Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 8, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Consumption mountain region Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - Mountain- Reference Case (xls, 297.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

69

Spruce Mountain | Open Energy Information  

Open Energy Info (EERE)

Mountain Mountain Jump to: navigation, search Name Spruce Mountain Facility Spruce Mountain Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Patriot Renewables Developer Patriot Renewables Energy Purchaser Energy New England Location Bryant Pond ME Coordinates 44.43443869°, -70.55286884° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.43443869,"lon":-70.55286884,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

70

Flow Acceleration and Mountain Drag*  

Science Conference Proceedings (OSTI)

Dynamic explanations of mountain drag usually invoke viscous effects and/or wave momentum flux by either Rossby or internal gravity waves. This paper explores an alternative mechanism in terms of the unsteadiness of the incident flow. The ...

Peter R. Bannon

1985-12-01T23:59:59.000Z

71

Holy Mother of Chiri Mountain: A Female Mountain Spirit in Korea  

E-Print Network (OSTI)

Female Mountain Spirit in Korea by Maya Stiller UCLA Centera Female Mountain Spirit in Korea by Maya Stiller I n hisfemale mountain spirits in Korea, James Grayson argues that

Stiller, Maya

2011-01-01T23:59:59.000Z

72

Seepage into drifts in unsaturated fractured rock at Yucca Mountain  

E-Print Network (OSTI)

Fractured Rock at Yucca Mountain Jens Birkholzer, Guomin Lrepository site at Yucca Mountain, Nevada, as it is locatedclimate conditions at Yucca Mountain. The numerical study is

Birkholzer, Jens; Li, Guomin; Tsang, Chin-Fu; Tsang, Yvonne

1998-01-01T23:59:59.000Z

73

Information Request Yucca Mountain Site | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Information Request Yucca Mountain Site Information Request Yucca Mountain Site The Suitability of the Yucca Mountain Site and the Issue of Natural Barriers as the Principal...

74

2013 Annual Planning Summary for the Rocky Mountain Oilfield...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Mountain Oilfield Testing Center 2013 Annual Planning Summary for the Rocky Mountain Oilfield Testing Center 2013 Annual Planning Summary for the Rocky Mountain Oilfield...

75

Albedo Influences on Surface UV Irradiance at the Sonnblick High-Mountain Observatory (3106-m Altitude)  

Science Conference Proceedings (OSTI)

In this work the influences of ozone, aerosols, and albedo on the clear sky UVA and UVB irradiance at a high-mountain station are investigated by using both routine spectral UV measurements from the high-mountain Sonnblick observatory in Austria (...

Philipp Weihs; Stana Simic; Wolfgang Laube; Wieslaw Mikielewicz; Govindaraj Rengarajan; Michael Mandl

1999-11-01T23:59:59.000Z

76

A mountain-scale model for characterizing unsaturated flow and transport in fractured tuffs of Yucca Mountain  

E-Print Network (OSTI)

to Fault Zones at Yucca Mountain, Nevada, International2003c. Calibration of Yucca Mountain Unsaturated Zone FlowUnsaturated Zone, Yucca Mountain, Nevada, Water-Resources

Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Bodvarsson, G.S.

2003-01-01T23:59:59.000Z

77

Pine Mountain Builders | Open Energy Information  

Open Energy Info (EERE)

Pine Mountain Builders Pine Mountain Builders Place Pine Mountain, GA Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Pine Mountain Builders is a company located in Pine Mountain, GA. References Retrieved from "http://en.openei.org/w/index.php?title=Pine_Mountain_Builders&oldid=379448" Categories: Clean Energy Organizations Companies Organizations What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 1863719699

78

Information Request Yucca Mountain Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 2008 , 2008 TO: Sue Tierney, Phil Niedzielski-Eichner, Skila Harris FROM: Chris Kouts SUBJECT: Information Request As requested, enclosed is the additional information you requested last week regarding use of engineered barriers. Please let me know if you need additional information or have any questions. A,4- -/0 7 The Suitability of the Yucca Mountain Site and the Issue of Natural Barriers as the Principal Barriers for Demonstrating Safety This paper addresses two issues that are frequently raised concerning the suitability of the Yucca Mountain site for development as a repository. The first issue is that the Yucca Mountain site is technically unsound and that an engineered barrier system is required because the site is not capable of protecting public health and safety. The second issue is

79

Timber Mountain Precipitation Monitoring Station  

SciTech Connect

A precipitation monitoring station was placed on the west flank of Timber Mountain during the year 2010. It is located in an isolated highland area near the western border of the Nevada National Security Site (NNSS), south of Pahute Mesa. The cost of the equipment, permitting, and installation was provided by the Environmental Monitoring Systems Initiative (EMSI) project. Data collection, analysis, and maintenance of the station during fiscal year 2011 was funded by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office Environmental Restoration, Soils Activity. The station is located near the western headwaters of Forty Mile Wash on the Nevada Test and Training Range (NTTR). Overland flows from precipitation events that occur in the Timber Mountain high elevation area cross several of the contaminated Soils project CAU (Corrective Action Unit) sites located in the Forty Mile Wash watershed. Rain-on-snow events in the early winter and spring around Timber Mountain have contributed to several significant flow events in Forty Mile Wash. The data from the new precipitation gauge at Timber Mountain will provide important information for determining runoff response to precipitation events in this area of the NNSS. Timber Mountain is also a groundwater recharge area, and estimation of recharge from precipitation was important for the EMSI project in determining groundwater flowpaths and designing effective groundwater monitoring for Yucca Mountain. Recharge estimation additionally provides benefit to the Underground Test Area Sub-project analysis of groundwater flow direction and velocity from nuclear test areas on Pahute Mesa. Additionally, this site provides data that has been used during wild fire events and provided a singular monitoring location of the extreme precipitation events during December 2010 (see data section for more details). This letter report provides a summary of the site location, equipment, and data collected in fiscal year 2011.

Lyles Brad,McCurdy Greg,Chapman Jenny,Miller Julianne

2012-01-01T23:59:59.000Z

80

Frozen Ground 9 PERMAFROST HAZARDS IN MOUNTAINS  

E-Print Network (OSTI)

of potentially hazardous processes in regions with mountain permafrost. Buildings and utilities may be dam- aged for the maintenance or construction of high- mountain infrastructure. Increasing rockfall activity and a number

Kääb, Andreas

Note: This page contains sample records for the topic "investigations chocolate mountains" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

The vegetation of Yucca Mountain: Description and ecology  

Science Conference Proceedings (OSTI)

Vegetation at Yucca Mountain, Nevada, was monitored over a six-year period, from 1989 through 1994. Yucca Mountain is located at the northern limit of the Mojave Desert and is the only location being studied as a potential repository for high-level nuclear waste. Site characterization consists of a series of multidisciplinary, scientific investigations designed to provide detailed information necessary to assess the suitability of the Yucca Mountain Site as a repository. This vegetation description establishes a baseline for determining the ecological impact of site characterization activities; it porvides input for site characterization research and modeling; and it clarifies vegetation community dynamics and relationships to the physical environment. A companion study will describe the impact of site characterization of vegetation. Cover, density, production, and species composition of vascular plants were monitored at 48 Ecological Study Plots (ESPs) stratified in four vegetation associations. Precipitation, soil moisture, and maximum and minimum temperatures also were measured at each study plot.

NONE

1996-03-29T23:59:59.000Z

82

Rime Mushrooms on Mountains: Description, Formation, and Impacts on Mountaineering  

Science Conference Proceedings (OSTI)

Rime mushrooms, commonly called ice mushrooms, are large bulbous or mushroom-shaped accretions of hard rime that build up on the upwind side of mountain summits and ridges and on windward rock faces. This paper reviews the characteristics of rime ...

C. David Whiteman; Rolando Garibotti

2013-09-01T23:59:59.000Z

83

Propagation of Low-Level Circulation Features in the Vicinity of Mountain Ranges  

Science Conference Proceedings (OSTI)

The local influence of mountains upon large- and synoptic-scale low-level atmospheric circulations is investigated in this study. The sea-level pressure associated with low-frequency fluctuations exhibit phase propagation of monopolar structures ...

Huang-Hsiung Hsu

1987-09-01T23:59:59.000Z

84

Using NWP Simulations in Satellite Rainfall Estimation of Heavy Precipitation Events over Mountainous Areas  

Science Conference Proceedings (OSTI)

In this study we investigate the use of high-resolution simulations from the Weather Research and Forecasting atmospheric model (WRF) for evaluating satellite-rainfall biases of flood-inducing storms in mountainous areas. A probability matching ...

Xinxuan Zhang; Emmanouil N. Anagnostou; Maria Frediani; Stavros Solomos; George Kallos

85

Thunderstorm Genesis Zones in the Colorado Rocky Mountains as Determined by Traceback of Geosynchronous Satellite Images  

Science Conference Proceedings (OSTI)

Mountain thunderstorms often originate in preferred regions of the topography, as shown qualitatively by pilot reports and more quantitatively by meteorological radar, satellite, and lightning detector studies. To further investigate the ...

Robert M. Banta; Crystal Barker Schaaf

1987-02-01T23:59:59.000Z

86

ROMPEXThe Rocky Mountain Peaks Experiment of 1985: Preliminary Assessment  

Science Conference Proceedings (OSTI)

During the late summer of 1985 a field experiment was conducted to investigate mountaintop winds over a broad area of the Rocky Mountains extending from south central Wyoming through northern New Mexico. The principal motivation for this ...

Elmar R. Reiter; John D. Sheaffer; James E. Bossert; Richard C. Fleming; William E. Clements; J. T. Lee; Sumner Barr; John A. Archuleta; Donald E. Hoard

1987-04-01T23:59:59.000Z

87

Seasonal and Synoptic Variations in Near-Surface Air Temperature Lapse Rates in a Mountainous Basin  

Science Conference Proceedings (OSTI)

To accurately estimate near-surface (2 m) air temperatures in a mountainous region for hydrologic prediction models and other investigations of environmental processes, the authors evaluated daily and seasonal variations (with the consideration ...

Troy R. Blandford; Karen S. Humes; Brian J. Harshburger; Brandon C. Moore; Von P. Walden; Hengchun Ye

2008-01-01T23:59:59.000Z

88

Dynamic Forcing and Mesoscale Variability of Heavy Precipitation Events over the Sierra Nevada Mountains  

Science Conference Proceedings (OSTI)

The aim of this research is to investigate the causes for an isolated maximum in precipitation that is typically found along the northern half of the Sierra Nevada mountains of California, in the vicinity of Plumas National Forest (PNF), during ...

Heather Dawn Reeves; Yuh-Lang Lin; Richard Rotunno

2008-01-01T23:59:59.000Z

89

Influence of Cold Pools Downstream of Mountain Barriers on Downslope Winds and Flushing  

Science Conference Proceedings (OSTI)

The influence of cold pools downstream of mesoscale mountain barriers on downslope winds and flushing is investigated in this study by means of a numerical mesoscale model. The model is compared with existing analytical and numerical solutions. ...

Tsengdar J. Lee; Roger A. Pielke; Robert C. Kessler; John Weaver

1989-09-01T23:59:59.000Z

90

Conceptual evaluation of the potential role of fractures in unsaturated processes at Yucca Mountain  

E-Print Network (OSTI)

of Process Models, Yucca Mountain, Nevada. U.S. GeologicalUnsaturated Zone Model of Yucca Mountain, Nevada. J. Contam.Studies Facility, Yucca Mountain Project. Yucca Mountain,

Hinds, Jennifer J.; Bodvarsson, Gudmundur S.; Nieder-Westermann, Gerald H.

2002-01-01T23:59:59.000Z

91

Mountain Air | Open Energy Information  

Open Energy Info (EERE)

Air Air Jump to: navigation, search Name Mountain Air Facility Mountain Air Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Terna Energy Developer Terna Energy Energy Purchaser Idaho Power Location Hammett ID Coordinates 42.98719519°, -115.3985024° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.98719519,"lon":-115.3985024,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

92

ROCKY MOUNTAIN OILFIELD TESTING CENTER  

NLE Websites -- All DOE Office Websites (Extended Search)

ALLIED OIL & TOOL POWERJET SLOTTING TOOL ALLIED OIL & TOOL POWERJET SLOTTING TOOL JANUARY 10, 1996 FC9522 / 95DT3 ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS ALLIED OIL & TOOL POWERJET SLOTTING TOOL Prepared for: INDUSTRY PUBLICATION Prepared by: RALPH SCHULTE RMOTC Project Engineer January 11, 1996 551103/9522:jb CONTENTS Page Summary .......................................................................................................................2 Introduction.....................................................................................................................2 Description of Operations...................................................................................................3 Figure 1 ..........................................................................................................5

93

The hydrology of Yucca Mountain  

Science Conference Proceedings (OSTI)

Yucca Mountain, located in southern Nevada in the Mojave Desert, is being considered as a geologic repository for high-level radioactive waste. Although the site is arid, previous studies indicate net infiltration rates of 5-10 mm yr(-1) under current climate conditions. Unsaturated flow of water through the mountain generally is vertical and rapid through the fractures of the welded tuffs and slow through the matrix of the nonwelded tuffs. The vitric-zeolitic boundary of the nonwelded tuffs below the potential repository, where it exists, causes perching and substantial lateral flow that eventually flows through faults near the eastern edge of the potential repository and recharges the underlying groundwater system. Fast pathways are located where water flows relatively quickly through the unsaturated zone to the water table. For the bulk of the water a large part of the travel time from land surface to the potential repository horizon (similar to 300 m below land surface) is through the interlayered, low fracture density, nonwelded tuff where flow is predominantly through the matrix. The unsaturated zone at Yucca Mountain is being modeled using a three-dimensional, dual-continuum numerical model to predict the results of measurements and observations in new boreholes and excavations. The interaction between experimentalists and modelers is providing confidence in the conceptual model and the numerical model and is providing researchers with the ability to plan further testing and to evaluate the usefulness or necessity of further data collection.

Flint, A.L.; Flint, L.E.; Bodvarsson, G.S.; Kwicklis, E.M.; Fabryka-Martin, J.M.

2000-12-04T23:59:59.000Z

94

NEPA Yucca Mountain Downloads | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NEPA Yucca Mountain Downloads NEPA Yucca Mountain Downloads NEPA Yucca Mountain Downloads October 24, 2008 EIS-0250: Notice of Intent to Prepare a Supplement to the Environmental Impact Statement Geologic Repository for the Disposal of Spent Nuclear Fuel and High-level Radioactive Waste at Yucca Mountain, Nye County, Nevada October 10, 2008 EIS-0369: Floodplain Statement of Finding Rail Alignment for the Construction and Operation of a Railroad in Nevada to a Geologic Repository at Yucca Mountain, Nye County, Nevada October 10, 2008 EIS-0369: Record of Decision and Floodplain Statement of Findings Nevada Rail Alignment for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada June 2, 2008 EIS-0250-S2: Final Supplemental Environmental Impact Statement

95

Black Mountain Insulation | Open Energy Information  

Open Energy Info (EERE)

Insulation Insulation Jump to: navigation, search Name Black Mountain Insulation Place United Kingdom Sector Carbon Product UK-based manufacturer of sheeps wool insulation which has a low carbon footprint than traditional glassfiber insulation. Website http://www.blackmountaininsula References Black Mountain Insulation Website[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Black Mountain Insulation is a company located in United Kingdom. It was formerly known as Ochre Natural Insulation Company. [2] References ↑ "Black Mountain Insulation Website" ↑ http://www.companiesintheuk.co.uk/ltd/black-mountain-insulation Retrieved from "http://en.openei.org/w/index.php?title=Black_Mountain_Insulation&oldid=391648

96

Scientific and Technical Priorities at Yucca Mountain  

Science Conference Proceedings (OSTI)

Following completion of the site characterization and site recommendation phases, the Department of Energy (DOE) is moving to prepare and submit a license application to initiate construction of the geologic repository at Yucca Mountain. This report provides background on how the project arrived at this juncture in its history and detailed information on EPRI's Yucca Mountain-related activities during calendar year 2003. The report assesses the relative risk-importance of various Yucca Mountain system co...

2003-12-15T23:59:59.000Z

97

Green Mountain Energy Company | Open Energy Information  

Open Energy Info (EERE)

Mountain Energy Company Place Texas Utility Id 7554 Utility Location Yes Ownership R NERC Location TRE NERC ERCOT Yes Activity Retail Marketing Yes References EIA Form EIA-861...

98

Mountain Association for Community Economic Development - Solar...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heater Loan Program Mountain Association for Community Economic Development - Solar Water Heater Loan Program Eligibility Commercial Residential Savings For Heating &...

99

Application of natural analogues in the Yucca Mountain project - overview  

E-Print Network (OSTI)

Contractor) 2000. Yucca Mountain Site Description. TDR-CRW-in silicic tuff from Yucca Mountain, Nevada. Clays and ClayHazard Analysis for Yucca Mountain, Nevada. BA0000000-01717-

Simmons, Ardyth M.

2003-01-01T23:59:59.000Z

100

Drift Natural Convection and Seepage at the Yucca Mountain Repository  

E-Print Network (OSTI)

2 A Simulation Code for Yucca Mountain Transport Processes:List of Figures Yucca Mountain location, southwest1 Introduction 1.1 Yucca Mountain Repository . . . . 1.1.1

Halecky, Nicholaus Eugene

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "investigations chocolate mountains" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

ROCKY MOUNTAIN OILFIELD TESTING CENTER  

NLE Websites -- All DOE Office Websites (Extended Search)

SAM III PROJECT SAM III PROJECT Sandia National laboratories Prepared for: Project File Documentation Prepared by: MICHAEL J. TAYLOR Project Manager March 31, 1998 JO 850200 : FC 970009 ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a demonstration of the Surface Area Modulation Downhole Telemetry System (SAM 111) at the Department of Energy's Naval Petroleum Reserve No. 3 (NPR-3), in partnership with Sandia National Laboratories (SNL). The project encompassed the testing of a real-time wireless telemetry system in a simulated Measurement-While-Drilling (MWD) environment. A Surface Area Modulation (SAM) technique demonstrated data transmission rates greater than present techniques, in a deployment mode which requires

102

Yucca Mountain and The Environment  

Science Conference Proceedings (OSTI)

The Yucca Mountain Project places a high priority on protecting the environment. To ensure compliance with all state and federal environmental laws and regulations, the Project established an Environmental Management System. Important elements of the Environmental Management System include the following: (1) monitoring air, water, and other natural resources; (2) protecting plant and animal species by minimizing land disturbance; (3) restoring vegetation and wildlife habitat in disturbed areas; (4) protecting cultural resources; (5) minimizing waste, preventing pollution, and promoting environmental awareness; and (6) managing of hazardous and non-hazardous waste. Reducing the impacts of Project activities on the environment will continue for the duration of the Project.

NA

2005-04-12T23:59:59.000Z

103

Mercury Vapor At Socorro Mountain Area (Kooten, 1987) | Open...  

Open Energy Info (EERE)

Mercury Vapor At Socorro Mountain Area (Kooten, 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Socorro Mountain Area...

104

Department of Energy Files Motion to Withdraw Yucca Mountain...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Files Motion to Withdraw Yucca Mountain License Application Department of Energy Files Motion to Withdraw Yucca Mountain License Application March 3, 2010 - 12:00am Addthis...

105

Motion to Withdraw from Yucca Mountain application | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Motion to Withdraw from Yucca Mountain application Motion to Withdraw from Yucca Mountain application DOE's withdraws it's pending license application for a permanent geologic...

106

Magnetotellurics At Mcgee Mountain Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Magnetotellurics At Mcgee Mountain Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Mcgee Mountain Area (DOE...

107

Core Analysis At Mcgee Mountain Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Mcgee Mountain Area (DOE GTP) Exploration Activity Details Location Mcgee Mountain Area Exploration Technique Core Analysis Activity Date Usefulness not indicated DOE-funding...

108

Hydroprobe At Mcgee Mountain Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Hydroprobe At Mcgee Mountain Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hydroprobe At Mcgee Mountain Area (DOE GTP)...

109

Ground Gravity Survey At Mcgee Mountain Area (DOE GTP) | Open...  

Open Energy Info (EERE)

Ground Gravity Survey At Mcgee Mountain Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Mcgee Mountain...

110

Numerical Simulation of Slope and Mountain Flows  

Science Conference Proceedings (OSTI)

Early descriptive models of mountain-valley circulations indicated that the mountain flow (i.e., the along-valley axis component out of the valley) is a true three-dimensional phenomenon. According to these descriptions, at night shallow-down ...

Richard T. McNider; Roger A. Pielke

1984-10-01T23:59:59.000Z

111

Cemex Black Mountain Quarry | Open Energy Information  

Open Energy Info (EERE)

Mountain Quarry Mountain Quarry Jump to: navigation, search Name Cemex Black Mountain Quarry Facility Cemex Black Mountain Quarry Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Foundation Windpower Developer Foundation Windpower Energy Purchaser Cemex Black Mountain Quarry Location Apple Valley CA Coordinates 34.622028°, -117.111833° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.622028,"lon":-117.111833,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

112

Mountain View Grand | Open Energy Information  

Open Energy Info (EERE)

Grand Grand Jump to: navigation, search Name Mountain View Grand Facility Mountain View Grand Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Mountain View Grand Developer Sustainable Energy Developments Energy Purchaser Mountain View Grand Location Mountain View Grand Resort & Spa NH Coordinates 44.397987°, -71.590306° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.397987,"lon":-71.590306,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

113

Kibby Mountain II | Open Energy Information  

Open Energy Info (EERE)

Kibby Mountain II Kibby Mountain II Jump to: navigation, search Name Kibby Mountain II Facility Kibby Mountain II Sector Wind energy Facility Type Commercial Scale Wind Facility Status Under Construction Owner TransCanada Power Mktg Ltd Developer TransCanada Power Mktg Ltd Location Kibby Mountain ME Coordinates 45.354154°, -70.65412° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.354154,"lon":-70.65412,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

114

Turtle Mountain Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Turtle Mountain Wind Farm Turtle Mountain Wind Farm Facility Turtle Mountain Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Turtle Mountain Chippewa Energy Purchaser Turtle Mountain Chippewa Location Belcourt ND Coordinates 48.839486°, -99.745145° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.839486,"lon":-99.745145,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

115

Yucca Mountain Archival Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Yucca Mountain Archival Documents Yucca Mountain Archival Documents Yucca Mountain Archival Documents Yucca Mountain Archival Documents From the Former Office of Civilian Radioactive Waste Management President Obama and the Department of Energy are working to restart America's nuclear industry to help meet our energy and climate challenges and create thousands of new jobs. The Administration is fully committed to ensuring that long-term storage obligations for nuclear waste are met. The President has made clear that Yucca Mountain is not an option for waste storage. The Blue Ribbon Commission on America's Nuclear Future, led by Congressman Lee Hamilton and General Brent Scowcroft, has conducted a comprehensive review of policies for managing the back end of the nuclear fuel cycle, and has offered recommendations for developing a safe,

116

Yucca Mountain Press Conference | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Yucca Mountain Press Conference Yucca Mountain Press Conference Yucca Mountain Press Conference June 3, 2008 - 12:51pm Addthis Remarks as Prepared for Delivery for Secretary Bodman Thank you all for being here. I'm pleased to announce that this morning the Department of Energy submitted a license application to the U.S. Nuclear Regulatory Commission seeking authorization to build America's first national repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain, Nevada. We are confident that the NRC's rigorous review process will validate that the Yucca Mountain repository will provide for the safe disposal of spent nuclear fuel and high-level radioactive waste in a way that protects human health and our environment. This application represents the culmination of over 20 years of work by

117

The occurrence and distribution of erionite at Yucca Mountain, Nevada  

SciTech Connect

We have conducted an investigation to determine the occurrence and distribution of erionite, a potential carcinogen, at Yucca Mountain, Nevada. Using x-ray powder diffraction techniques yielding detection limits to below 0.05 wt %, we positively identified erionite in only 3 out of 76 bulk and 12 fracture samples investigated. The three erionite-bearing samples (J12-620/630, UE-25aNo.1-1296.2, and USW G4-1314) all occur above the static water level in clay/zeolite-rich horizons near the top of vitrophyres. Erionite occurs as trace amounts of less than 1 wt % in the whole rock, although it may occur locally in significant amounts as fracture fillings (e.g., UE-25aNo.1-1296.2 where it comprises approximately 45 wt % of the fracture filling material). All three occurrences appear to be extremely isolated cases since erionite was not detected in neighboring samples. Erionite at Yucca Mountain apparently formed only in localized microenvironments, possibly restricted to fractures. Since erionite occurs in trace amounts only in extremely isolated instances, it should pose little or no health hazard to workers in the potential repository at Yucca Mountain or to the public. The amounts of erionite liberated to the biosphere should be negligible, particularly when compared with the amounts of erionite occurring naturally at the surface in Nevada and surrounding states. 24 refs., 7 figs., 2 tabs.

Chipera, S.J.; Bish, D.L.

1989-09-01T23:59:59.000Z

118

ROCKY MOUNTAIN OILFIELD TESTING CENTER  

NLE Websites -- All DOE Office Websites (Extended Search)

NOVERFLO (SMART CABLE) NOVERFLO (SMART CABLE) LIQUID LEAK DETECTION SYSTEM FEBRUARY 12, 1996 FC9535/96ET3 RMOTC TEST REPORT NOVERFLO LIQUID LEAK DETECTION SYSTEM (SMART CABLE) Prepared for: INDUSTRY PUBLICATION Prepared by: RALPH SCHULTE RMOTC Project Engineer February 12, 1996 650200/9535:jb CONTENTS Page Summary 1 Introducation 1 NPR-3 Map 2 Description of Operations 3 1 st Test 3 2 nd Test 3 3 rd Test 4 4 th Test 5 Concluding Remarks 5 Acknowledgements 6 Rocky Mountain Oilfield Testing Center Technical Report Noverflo Liquid Leak Detection System (Smart Cable) Summary As part of RMOTC's continuing mission to support and strengthen the domestic oil and gas industry by allowing testing by individual inventors and commercial companies to evaluate their products and technology, RMOTC

119

ROCKY MOUNTAIN OILFIELD TESTING CENTER  

NLE Websites -- All DOE Office Websites (Extended Search)

AUTOMATIC SHUTDOWN VALVE AUTOMATIC SHUTDOWN VALVE CAMBRIA VALVE CORPORATION OCTOBER 17, 1995 FC9536/95ET1 RMOTC TEST REPORT Automatic Shutdown Valve Cambria Valve Corporation Prepared for: INDUSTRY PUBLICATION Prepared by: MICHAEL J. TAYLOR RMOTC Project Manager October 17, 1995 551103/9536:jb TABLE OF CONTENTS Page Introduction 1 Figure 1 2 Test Details 3 Table 1 4 Conclusions 5 Acknowledgments 5 ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a test of an Automatic Shutdown Valve (ASDV) for hydraulic systems at the Naval Petroleum Reserve No. 3 (NPR- 3). The Cambria Valve Corporation (CVC) manufactures the 3-Port ASDV that is designed to automatically shut down the flow of fluid through a hydraulic system in the event of a ruptured line and safely redirect flow to a bypass system. The CVC ASDV effectively demonstrated its

120

ROCKY MOUNTAIN OILFIELD TESTING CENTER  

NLE Websites -- All DOE Office Websites (Extended Search)

AUTOMATED THREE-PHASE CENTRIFUGE PROJECT AUTOMATED THREE-PHASE CENTRIFUGE PROJECT MARCH 30, 1998 FC9535/96ET5 RMOTC TEST REPORT AUTOMATED THREE-PHASE CENTRIFUGE PROJECT Centech, Inc. Prepared for: INDUSTRY PUBLICATION Prepared by: MICHAEL J. TAYLOR Project Manager March 30, 1998 850200/650200/650201:9583 ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a test of an Automated ThreePhase Centrifuge at the Department of Energy's Naval Petroleum Reserve No. 3 (NPR-3). Centech, Inc. has manufactured a three-phase centrifuge which has been retrofitted with a PCbased, fuzzy-logic, automated control system, by Los Alamos National Laboratory. The equipment is designed to automatically process tank-bottom wastes within operator-prescribed limits of Basic

Note: This page contains sample records for the topic "investigations chocolate mountains" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Colloid Transport and Deposition in Water-Saturated and Unsaturated Sand and Yucca Mountain Tuff: Effect of Ionic Strength and Moisture Saturation  

Science Conference Proceedings (OSTI)

Colloid-aided radionuclide transport has been considered a potentially important mechanism for the candidate spent fuel and high level waste (HLW) repository at Yucca Mountain. This mechanism, however, has not been treated in Yucca Mountain Total System Performance Assessments (TSPAs) until recently. Even then there has been little discussion of possible colloid retention in the unsaturated zone. This report summarizes investigations of potential colloid retention in sand and Yucca Mountain tuff as a fun...

1999-12-03T23:59:59.000Z

122

Mountain Wave Signatures in MODIS 6.7-?m Imagery and Their Relation to Pilot Reports of Turbulence  

Science Conference Proceedings (OSTI)

A technique for nowcasting turbulent mountain waves over the Front Range of the state of Colorado is investigated using Moderate Resolution Imaging Spectroradiometer (MODIS) water vapor (6.7 ?m) channel imagery. Pilot reports of turbulence were ...

N. L. Uhlenbrock; K. M. Bedka; W. F. Feltz; S. A. Ackerman

2007-06-01T23:59:59.000Z

123

White Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

White Mountains Geothermal Area White Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: White Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: New Hampshire Exploration Region: Other GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

124

Weekly Rocky Mountains (PADD 4) Operable Crude Oil Distillation ...  

U.S. Energy Information Administration (EIA)

Weekly Rocky Mountains (PADD 4) Operable Crude Oil Distillation Capacity (Thousand Barrels per Calendar Day)

125

Modeling studies of mountain-scale radionuclide transport in the unsaturated zone at Yucca Mountain, Nevada  

E-Print Network (OSTI)

Wu, and G.S. Bodvarsson, Radionuclide Transport Models Underdaughters of certain radionuclides. Increasing infiltrationOF MOUNTAIN-SCALE RADIONUCLIDE TRANSPORT IN THE UNSATURATED

Moridis, George J.; Seol, Yongkoo; Wu, Yu-Shu

2003-01-01T23:59:59.000Z

126

Green Mountain Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Green Mountain Wind Farm Green Mountain Wind Farm Facility Green Mountain Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer National Wind Power Energy Purchaser Green Mountain Energy Company Location Somerset County PA Coordinates 39.850753°, -79.066629° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.850753,"lon":-79.066629,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

127

Pillar Mountain II | Open Energy Information  

Open Energy Info (EERE)

Pillar Mountain II Pillar Mountain II Jump to: navigation, search Name Pillar Mountain II Facility Pillar Mountain II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Kodiak Electric Assoc. Developer Kodiak Electric Assoc. Energy Purchaser Kodiak Electric Assoc. Location Kodiak AK Coordinates 57.78667872°, -152.4434781° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":57.78667872,"lon":-152.4434781,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

128

Mountain Home Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Mountain Home Wind Farm Mountain Home Wind Farm Jump to: navigation, search Name Mountain Home Wind Farm Facility Mountain Home Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John Deere Wind Developer John Deere Wind Energy Purchaser Idaho Power Location Elmore County ID Coordinates 43.268356°, -116.167939° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.268356,"lon":-116.167939,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

129

Mountaineer Wind Energy Center | Open Energy Information  

Open Energy Info (EERE)

Mountaineer Wind Energy Center Mountaineer Wind Energy Center Jump to: navigation, search Name Mountaineer Wind Energy Center Facility Mountaineer Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Atlantic Renewable Energy Energy Purchaser Exelon Location Thomas WV Coordinates 39.163081°, -79.554516° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.163081,"lon":-79.554516,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

130

Turbulent Kinetic Energy Budgets over Mountainous Terrain  

Science Conference Proceedings (OSTI)

The objective of this study is to describe the characteristics of the airflow and turbulence structure over mountainous terrain. Turbulent characteristics of the airflow were measured using well-instrumented aircraft. The shear, buoyancy, ...

Theodore S. Karacostas; John D. Marwitz

1980-02-01T23:59:59.000Z

131

Ice Crystal Production by Mountain Surfaces  

Science Conference Proceedings (OSTI)

Evidence is presented for a process of ice crystal generation in supercooled orographic clouds in contact with snow-covered mountain surfaces. Comparisons of the crystal concentrations at the surface with aircraft sampling indicate that the ...

David C. Rogers; Gabor Vali

1987-09-01T23:59:59.000Z

132

On the Diurnal Variation of Mountain Waves  

Science Conference Proceedings (OSTI)

The diurnal variation of mountain waves and wave drag associated with flow past mesoscale ridges has been examined using the Coupled OceanAtmosphere Mesoscale Prediction System (COAMPS) and an analytical boundary layer (BL) model. The wave drag ...

Qingfang Jiang; James D. Doyle

2008-04-01T23:59:59.000Z

133

April 25, 1997: Yucca Mountain exploratory drilling  

Energy.gov (U.S. Department of Energy (DOE))

April 25, 1997Workers complete drilling of the five-mile long, horseshoe-shaped exploratory tunnel through Yucca Mountain at the proposed high-level nuclear waste repository in Nevada.

134

Anelastic Semigeostrophic Flow over a Mountain Ridge  

Science Conference Proceedings (OSTI)

Scale analysis indicates that five nondimensional parameters (R02 ?, ? ? and k?) characterize the disturbance generated by the steady flow of a uniform wind (U0, V0) incident on a mountain ridge of width a in an isothermal, uniformly rotating, ...

Peter R. Bannon; Pe-Cheng Chu

1988-03-01T23:59:59.000Z

135

Microsoft Word - IceMountainFinal.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

Tumbled-down boulders, called talus, on Ice Mountain's north- western slope collect ice during the winter. In the summer, cold air flows out of vents in the base of the talus,...

136

Mountain Torque and Rossby Wave Radiation  

Science Conference Proceedings (OSTI)

Planetary-scale orography exerts a substantial pressure drag on the atmosphere. This drag appears to be partially balanced by the convergence of momentum transports by Rossby waves induced by these mountains. Simple models of this process are ...

Joseph Egger

1998-09-01T23:59:59.000Z

137

Mountain Forces and the Atmospheric Energy Budget  

Science Conference Proceedings (OSTI)

Although mountains are generally thought to exert forces on the atmosphere, the related transfers of energy between earth and atmosphere are not represented in standard energy equations of the atmosphere. It is shown that the axial rotation of the ...

Joseph Egger

2011-11-01T23:59:59.000Z

138

Socorro Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Socorro Mountain Geothermal Area Socorro Mountain Geothermal Area (Redirected from Socorro Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Socorro Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (10) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

139

Jemez Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Mountain Geothermal Area Jemez Mountain Geothermal Area (Redirected from Jemez Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

140

ROCKY MOUNTAIN OILFIELD TESTING CENTER  

NLE Websites -- All DOE Office Websites (Extended Search)

MECHANICAL SLIMHOLE TESTING SYSTEM (MSTS) MECHANICAL SLIMHOLE TESTING SYSTEM (MSTS) SLIMHOLE DRILL STEM TESTER APRIL, 1995 FC9524/95DT4 MSTS Test in Casper Wyoming April 19,1995 Background MSTS EXP-2 was shipped back to SPT for modifications and re-testing. A 4-1/2" cased well at the Rocky Mountain Oilfield Testing Center (RMOTC) in Casper Wyoming was selected. The well conditions were: Casper Well Deviation 0 Casing 4-1/2" 10.5#/ft Test depth 5380 ft BHT NOT Tubing 2-3/8" 4.7#/ft Formation Fluid Water & Oil Kill Fluid 10#/gal brine The MSTS was tested with a single 3.06" Dowell packer which was set at 5380 ft, approximately 80 off bottom. The test string was configured: MSTS EXP-2 with Inflate recorder - HPR-D Formation Gage - HPR-D Single packer, Dowell 3.06 TFV - 12 inch stroke no cam 900 ft of 2-3/8" 4.7 #/ft tubing (3000 #)

Note: This page contains sample records for the topic "investigations chocolate mountains" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Analyzing flow patterns in unsaturated fractured rock of Yucca Mountain using an integrated modeling approach  

E-Print Network (OSTI)

zone site-scale model, Yucca Mountain Site Characterizationzone site- scale model, Yucca Mountain Project Milestonelateral diversion at Yucca Mountain, Nevada, Water Resources

Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Pan, Lehua; Bodvarsson, Gudmundur S.

2008-01-01T23:59:59.000Z

142

Modeling water seepage into heated waste emplacement drifts at Yucca Mountain  

E-Print Network (OSTI)

into drifts at Yucca Mountain, Journal of ContaminantEMPLACEMENT DRIFTS AT YUCCA MOUNTAIN Jens Birkholzer, Sumitfor nuclear waste at Yucca Mountain, Nevada. Heating of rock

Birkholzer, Jens; Mukhopadhyay, Sumitra; Tsang, Yvonne

2003-01-01T23:59:59.000Z

143

Calibration of Yucca Mountain unsaturated zone flow and transport model using porewater chloride data  

E-Print Network (OSTI)

of hydrogeologic units at Yucca Mountain, Nevada. U.S.infiltration for the Yucca Mountain Area, Nevada. Milestonethe unsaturated zone at Yucca Mountain, Nevada. J. Contam.

Liu, Jianchun; Sonnenthal, Eric L.; Bodvarsson, Gudmundur S.

2002-01-01T23:59:59.000Z

144

Characterization and Prediction of Subsurface Pneumatic Pressure Variations at Yucca Mountain, Nevada  

E-Print Network (OSTI)

Group Exposed at Yucca Mountain, Nevada, U. S. Geologicalunsaturated zone, Yucca Mountain, Nevada, Water Resourcesgeologic map of Yucca Mountain, Nye County, Nevada, with

Ahlers, C. Fredrik; Finsterle, Stefan; Bodvarsson, Gudmundur S.

1998-01-01T23:59:59.000Z

145

Several TOUGH2 Modules Developed for Site Characterization Studies of Yucca Mountain  

E-Print Network (OSTI)

Unsaturated Zone Model of Yucca Mountain, Nevada. Lawrencestudies of Yucca Mountain. The model formulations arebeing used in the Yucca Mountain project. Pruess, K . ,

Wu, Yu-Shu; Pruess, Karsten

1998-01-01T23:59:59.000Z

146

Multiple-point statistical prediction on fracture networks at Yucca Mountain  

E-Print Network (OSTI)

on fracture networks at Yucca Mountain Xiaoyan Liu 1 ,systems, such as at Yucca Mountain, water flow rate andflow field behavior at the Yucca Mountain waste repository

Liu, X.Y

2010-01-01T23:59:59.000Z

147

Temporal Damping Effect of the Yucca Mountain Fractured Unsaturated Rock on Transient Infiltration Pulses  

E-Print Network (OSTI)

unsaturated zone at Yucca Mountain. J. of Cont. Hydrol. ,2003b. Calibration of Yucca Mountain unsaturated zone flowthe unsaturated zone, Yucca Mountain, USGS Water Resources

Zhang, Keni; Wu, Yu-Shu; Pan, Lehua

2005-01-01T23:59:59.000Z

148

Effect of small-scale fractures on flow and transport processes at Yucca Mountain, Nevada  

E-Print Network (OSTI)

Transport Processes at Yucca Mountain, Nevada Yu-Shu Wu, H.matrix interaction in Yucca Mountain site characterizationthe Unsaturated Zone of Yucca Mountain, Nevada, Journal of

Wu, Yu-Shu; Liu, H.H.; Bodvarsson, G.S.

2002-01-01T23:59:59.000Z

149

Massively parallel computing simulation of fluid flow in the unsaturated zone of Yucca Mountain, Nevada  

E-Print Network (OSTI)

Central Block Area, Yucca Mountain, Nye County, Nevada. Mapunsaturated zone, Yucca Mountain, Nevada. Water-Resourcesisotope distributions at Yucca Mountain. Sandia National

Zhang, Keni; Wu, Yu-Shu; Bodvarsson, G.S.

2001-01-01T23:59:59.000Z

150

Fluid flow and reactive transport around potential nuclear waste emplacement tunnels at Yucca Mountain, Nevada  

E-Print Network (OSTI)

Unsaturated Zone at Yucca Mountain, Nevada. U.S. Geologicalzone model at Yucca Mountain, Nevada. J. Contaminantinvesti- gations at Yucca Mountain - the potential

Spycher, N.F.; Sonnenthal, E.L.; Apps, J.A.

2002-01-01T23:59:59.000Z

151

Experimental and numerical simulation of dissolution and precipitation: Implications for fracture sealing at Yucca Mountain, Nevada  

E-Print Network (OSTI)

FRACTURE SEALING AT YUCCA MOUNTAIN, NEVADA Patrick F. Dobsonpotential repository at Yucca Mountain, Nevada, would reducewas flowed through crushed Yucca Mountain tuff at 94C. The

Dobson, Patrick F.; Kneafsey, Timothy J.; Sonnenthal, Eric L.; Spycher, Nicolas; Apps, John A.

2001-01-01T23:59:59.000Z

152

Development of discrete flow paths in unsaturated fractures at Yucca Mountain  

E-Print Network (OSTI)

into drifts at Yucca Mountain. Journal of Contaminantof infiltration for the Yucca Mountain Area, Nevada, U. S.matrix properties, Yucca Mountain, Nevada, U.S. Geological

Bodvarsson, G.S.; Wu, Yu-Shu; Zhang, Keni

2002-01-01T23:59:59.000Z

153

Deep Blue No 1- A Slimhole Geothermal Discovery At Blue Mountain...  

Open Energy Info (EERE)

DOI: Unavailable Core Holes At Blue Mountain Area (Fairbank & Neggemann, 2004) Thermal Gradient Holes At Blue Mountain Area (Fairbank & Neggemann, 2004) Blue Mountain Geothermal...

154

International Centre for Integrated Mountain Development (ICIMOD) | Open  

Open Energy Info (EERE)

Centre for Integrated Mountain Development (ICIMOD) Centre for Integrated Mountain Development (ICIMOD) Jump to: navigation, search Name International Centre for Integrated Mountain Development (ICIMOD) Agency/Company /Organization International Centre for International Mountain Development (ICIMOD) Resource Type Training materials, Lessons learned/best practices Website http://www.icimod.org/ Country Afghanistan, Bangladesh, Bhutan, China, India, Myanmar, Nepal, Pakistan UN Region Southern Asia, Western Asia References ICIMOD[1] International Centre for Integrated Mountain Development (ICIMOD) Screenshot "The International Centre for Integrated Mountain Development, ICIMOD, is a regional knowledge development and learning centre serving the eight regional member countries of the Hindu Kush-Himalayas - Afghanistan,

155

Mcgee Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mcgee Mountain Geothermal Area Mcgee Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mcgee Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (7) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8,"lon":-118.87,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

156

Tungsten Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Tungsten Mountain Geothermal Area Tungsten Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Tungsten Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (4) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6751,"lon":-117.6945,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

157

Bald Mountain Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Bald Mountain Geothermal Project Bald Mountain Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Bald Mountain Geothermal Project Project Location Information Coordinates 40.365833333333°, -120.2425° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.365833333333,"lon":-120.2425,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

158

Green Mountain Power Corp | Open Energy Information  

Open Energy Info (EERE)

Green Mountain Power Corp Green Mountain Power Corp Jump to: navigation, search Name Green Mountain Power Corp Place Vermont Service Territory Vermont Website www.greenmountainpower.co Green Button Landing Page www.efficiencyvermont.com Green Button Committed Yes Utility Id 7601 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now!

159

Florida Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Florida Mountains Geothermal Area Florida Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Florida Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

160

Drum Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Drum Mountain Geothermal Area Drum Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Drum Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.544722222222,"lon":-112.91611111111,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "investigations chocolate mountains" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Socorro Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Socorro Mountain Geothermal Area Socorro Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Socorro Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (10) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

162

Jemez Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Mountain Geothermal Area Jemez Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

163

Augusta Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Augusta Mountains Geothermal Area Augusta Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Augusta Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (3) 9 Exploration Activities (0) 10 References Area Overview Geothermal Area Profile Location: Fallon, NV Exploration Region: Central Nevada Seismic Zone Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

164

Sand Mountain Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Mountain Electric Coop Mountain Electric Coop Jump to: navigation, search Name Sand Mountain Electric Coop Place Alabama Utility Id 16629 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Drainage Pumping Station LS - Outdoor Lighting Service Lighting RS - Residential Service Residential Schedule GSA - General Power Service - Part 1 Commercial Schedule GSA - General Power Service - Part 2 Commercial Schedule GSA - General Power Service - Part 3 Commercial Schedule GSB Commercial Schedule GSD Commercial

165

New Yucca Mountain Repository Design to be Simpler, Safer and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Yucca Mountain Repository Design to be Simpler, Safer and More Cost-Effective New Yucca Mountain Repository Design to be Simpler, Safer and More Cost-Effective untitled More...

166

Flow and Mixing in New Mexico Mountain Cumuli  

Science Conference Proceedings (OSTI)

Convection and cloud formation over mountains during weak winds and strong insolation were studied using an instrumented aircraft. Previous studies in cloudless situations had shown the existence of convergence over the mountain range at low ...

David J. Raymond; Marvin H. Wilkening

1982-10-01T23:59:59.000Z

167

Dongbai Mountain Wind Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Dongbai Mountain Wind Power Co Ltd Jump to: navigation, search Name Dongbai Mountain Wind Power Co Ltd Place Zhejiang Province, China Sector Wind energy Product Dongyang-based wind...

168

Environment/Health/Safety (EHS): ISSM: Mountain Lion Sightings  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Safeguards & Security Management Integrated Safeguards & Security Management Home ISSM Plan Security at LBNL Clearance Holders Export Control International Visitors Security Updates Contact Us CI Awareness Security and Emergency Operations Website Mountain Lion Sightings Mountain Lion Adult Mountain Lion Cub Mountain Lion Adult Mountain Lion Cub Updated 11/19/2012: Mountain lions generally exist where deer are found. Warning signs have been placed at walkways and gate entrances. As a precaution, the use of isolated stairs/walkways at dusk, night, or dawn is discouraged. To limit an interaction with a mountain lion, avoid hiking or jogging in the undeveloped areas of the lab alone or at dawn, dusk or night. If you see a mountain lion, immediately call 7-911 from any Lab phone or 911 from any cell phone. Go to http://www.dfg.ca.gov/keepmewild/lion.html

169

Yucca Mountain site characteriztion project bibliography. Progress Report, 1994--1995  

SciTech Connect

Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project which was added to the Department of Energy`s Energy Science and Technology Database from January 1, 1994, through December 31, 1995. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology database which were not sponsored by the project but have some relevance to it.

NONE

1996-08-01T23:59:59.000Z

170

Yucca Mountain Site Characterization Project bibliography, January--June 1995. Supplement 4, Add.3: An update  

SciTech Connect

Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy`s Energy Science and Technology Database from January 1, 1995, through June 30, 1995. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it.

Stephan, P.M. [ed.

1996-01-01T23:59:59.000Z

171

Yucca Mountain Site Characterization Project Bibliography, July--December 1994: An update  

SciTech Connect

Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Charactrization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy`s Science and Technology Database from July 1, 1994 through December 31, 1994. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it.

1995-03-01T23:59:59.000Z

172

Yucca Mountain Site Characterization Project Bibliography, January--June 1993. An update: Supplement 4, Addendum 1  

SciTech Connect

Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy`s Energy Science and Technology Database from January 1, 1994 through June 30, 1994. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers,and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it.

Stephan, P.M. [ed.

1995-01-01T23:59:59.000Z

173

Thermal Gradient Holes At Blue Mountain Area (Fairbank & Neggemann...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Blue Mountain Area (Fairbank & Neggemann, 2004) Exploration...

174

Ground Gravity Survey At Blue Mountain Area (Fairbank Engineering...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Blue Mountain Area (Fairbank Engineering, 2006) Exploration Activity...

175

THERMAL PROPERTIES OF GABLE MOUNTAIN BASALT CORES HANFORD NUCLEAR RESERVATION  

E-Print Network (OSTI)

1974. 7. Atlantic Richfield Hanford Company, Research andGABLE MOUNTAIN BASALT CORES HANFORD NUCLEAR RESERVATION L.

Martinez-Baez, L.F.

2011-01-01T23:59:59.000Z

176

Rocky Mountain (PADD 4) Exports of Normal Butane-Butylene ...  

U.S. Energy Information Administration (EIA)

Normal Butane/Butylene Supply and Disposition; Rocky Mountain (PADD 4) Exports of Crude Oil and Petroleum Products ...

177

Rocky Mountain (PADD 4) Refinery Operable Atmospheric Crude Oil ...  

U.S. Energy Information Administration (EIA)

Rocky Mountain (PADD 4) Refinery Operable Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day)

178

Test concept for waste package environment tests at Yucca Mountain  

SciTech Connect

The Nevada Nuclear Waste Storage Investigations Project is characterizing a tuffaceous rock unit at Yucca Mountain, Nevada to evaluate its suitability for a repository for high level radioactive waste. The candidate repository horizon is a welded, devitrified tuff bed located at a depth of about 300 m in the unsaturated zone, over 100 m above the water table. As part of the project, Lawrence Livermore National Laboratory is responsible for designing the waste packages and for assessing their expected performance in the repository environment. The primary region of interest to package design and performance assessment is the portion of the rock mass within a few meters of waste emplacement holes. Hydrologic mechanisms active in this unsaturated near-field environment, along with thermal and mechanical phenomena that influence the hydrology, need to be understood well enough to confirm the basis of the waste package designs and performance assessment. Large scale in situ tests (called waste package environment tests) are being planned in order to develop this understanding and to provide data sets for performance assessment model validation (Yow, 1985). Exploratory shafts and limited underground facilities for in-situ testing will be constructed at Yucca Mountain during site characterization. Multiple waste package environment tests are being planned for these facilities to represent horizontal and vertical waste emplacement configurations in the repository target horizon. These approximately half-scale tests are being designed to investigate rock mass hydrologic conditions during a cycle of thermal loading.

Yow, J.L. Jr.

1987-06-01T23:59:59.000Z

179

Simulating 3-D Radiative Transfer Effects over the Sierra Nevada Mountains using WRF  

Science Conference Proceedings (OSTI)

A surface solar radiation parameterization based on deviations between 3-D and conventional plane-parallel radiative transfer models has been incorporated into the Weather Research and Forecasting (WRF) model to understand the solar insolation over mountain/snow areas and to investigate the impact of the spatial and temporal distribution and variation of surface solar fluxes on land-surface processes. Using the Sierra-Nevada in the western United States as a testbed, we show that mountain effect could produce up to ?50 to + 50Wm?2 deviations in the surface solar fluxes over the mountain areas, resulting in a temperature increase of up to 1 C on the sunny side. Upward surface sensible and latent heat fluxes are modulated accordingly to compensate for the change in surface solar fluxes. Snow water equivalent and surface albedo both show decreases on the sunny side of the mountains, indicating more snowmelt and hence reduced snow albedo associated with more solar insolation due to mountain effect. Soil moisture increases on the sunny side of the mountains due to enhanced snowmelt, while decreases on the shaded side. Substantial differences are found in the morning hours from 8-10 a.m. and in the afternoon around 3-5 p.m., while differences around noon and in the early morning and late afternoon are comparatively smaller. Variation in the surface energy balance can also affect atmospheric processes, such as cloud fields, through the modulation of vertical thermal structure. Negative changes of up to ?40 gm?2 are found in the cloud water path, associated with reductions in the surface insolation over the cloud region. The day-averaged deviations in the surface solar flux are positive over the mountain areas and negative in the valleys, with a range between ?12~12Wm?2. Changes in sensible and latent heat fluxes and surface skin temperature follow the solar insolation pattern. Differences in the domain-averaged diurnal variation over the Sierras show that the mountain area receives more solar insolation during early morning and late afternoon, resulting in enhanced upward sensible heat and latent heat fluxes from the surface and a corresponding increase in surface skin temperature. During the middle of the day, however, the surface insolation and heat fluxes show negative changes, indicating a cooling effect. Hence overall, the diurnal variations of surface temperature and surface fluxes in the Sierra-Nevada are reduced through the interactions of radiative transfer and mountains. The hourly differences of the surface solar insolation in higher elevated regions, however, show smaller magnitude in negative changes during the middle of the day and possibly more solar fluxes received during the whole day.

Gu, Yu; Liou, K. N.; Lee, W- L.; Leung, Lai-Yung R.

2012-10-30T23:59:59.000Z

180

Holy Mother of Chiri Mountain: A Female Mountain Spirit in Korea  

E-Print Network (OSTI)

was highly popular with pilgrims throughout the Chos?n dy-su witnessed several groups of pilgrims travelling to theon the custom of local pilgrim- ages to Chiri Mountain and

Stiller, Maya

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "investigations chocolate mountains" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Surface Pressure and Mountain Drag for Transient Airflow over a Mountain Ridge  

Science Conference Proceedings (OSTI)

The linear problem of rotating, stratified, adiabatic, hydrostatic, Boussinesq airflow over a mountain ridge is solved analytically for the case where the spatially uniform, normally incident airflow is the sum of a steady and sinusoidally ...

Peter R. Bannon; Joseph A. Zehnder

1985-12-01T23:59:59.000Z

182

Delaware Mountain Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Delaware Mountain Wind Farm Delaware Mountain Wind Farm Jump to: navigation, search Name Delaware Mountain Wind Farm Facility Delaware Mountain Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer American National Wind Power/Orion Energy Energy Purchaser Lower Colorado River Authority Location Culberson County TX Coordinates 31.670717°, -104.739534° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.670717,"lon":-104.739534,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

183

Mcgee Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mcgee Mountain Geothermal Area Mcgee Mountain Geothermal Area (Redirected from Mcgee Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mcgee Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (7) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8,"lon":-118.87,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

184

Revision 2 Yucca Mountain Review Plan  

E-Print Network (OSTI)

The Yucca Mountain Review Plan provides guidance for the U.S. Nuclear Regulatory Commission staff to evaluate a U.S. Department of Energy license application for a geologic repository. It is not a regulation and does not impose regulatory requirements. The licensing criteria are contained in the U.S. Code of Federal Regulations (CFR) Title 10, Part 63

unknown authors

2003-01-01T23:59:59.000Z

185

GREEN MOUNTAIN BATTALION ROTC ALUMNI ASSOCIATION  

E-Print Network (OSTI)

level leadership! Strong subordinate leaders make for great organizations; not everyone can "make Society (elite scholar-leader organization). We sponsored Team entry to the Walter N. Levy Challenge to update and renovate the Green Mountain Battalion Fallen Heroes Memorial located in the ROTC HQ (601 N

Hayden, Nancy J.

186

Tungsten Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Tungsten Mountain Geothermal Area Tungsten Mountain Geothermal Area (Redirected from Tungsten Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Tungsten Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (4) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6751,"lon":-117.6945,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

187

Hueco Mountain Wind Ranch | Open Energy Information  

Open Energy Info (EERE)

Hueco Mountain Wind Ranch Hueco Mountain Wind Ranch Jump to: navigation, search Name Hueco Mountain Wind Ranch Facility Hueco Mountain Wind Ranch Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner El Paso Electric Co Developer Cielo Wind Power Energy Purchaser El Paso Electric Co Location El Paso County TX Coordinates 31.6966°, -106.295° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.6966,"lon":-106.295,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

188

Blue Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Blue Mountain Geothermal Area Blue Mountain Geothermal Area (Redirected from Blue Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Blue Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (15) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41,"lon":-118.13,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

189

Yucca Mountain Site Characterization Project technical data catalog; Yucca Mountain Site Characterization Project  

Science Conference Proceedings (OSTI)

The June 1, 1985, Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. Each new publication of the Technical Data Catalog supersedes the previous edition.

NONE

1992-09-30T23:59:59.000Z

190

The Influence of Soil Moisture on the Planetary Boundary Layer and on Cumulus Convection over an Isolated Mountain. Part I: Observations  

Science Conference Proceedings (OSTI)

Data collected around the Santa Catalina Mountains in Arizona as part of the Cumulus Photogrammetric, In Situ and Doppler Observations (CuPIDO) experiment during the 2006 summer monsoon season are used to investigate the effect of soil moisture on ...

Xin Zhou; Bart Geerts

2013-03-01T23:59:59.000Z

191

Viability Assessment of a Repository at Yucca Mountain | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Viability Assessment of a Repository at Yucca Mountain Viability Assessment of a Repository at Yucca Mountain Viability Assessment of a Repository at Yucca Mountain Summary The Viability Assessment of a Repository at Yucca Mountain describes the nuclear waste problem and explains why the United States and other nations are considering deep geologic disposal as the solution. The overview describes why the Unites States is considering Yucca Mountain and how a monitored geologic repository would work in the mountain. It presents a repository design, an assessment of its expected performance, and an evaluation of the possible effects on people living near Yucca Mountain. Also presented is the work remaining to be completed prior to a license application, along with the estimated cost of building and operating a

192

GreenMountain Engineering LLC | Open Energy Information  

Open Energy Info (EERE)

GreenMountain Engineering LLC GreenMountain Engineering LLC Jump to: navigation, search Name GreenMountain Engineering, LLC Place San Francisco, California Zip 94107 Product Consulting firm specializing in clean technology product design and manufacturing development. References GreenMountain Engineering, LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. GreenMountain Engineering, LLC is a company located in San Francisco, California . References ↑ "GreenMountain Engineering, LLC" Retrieved from "http://en.openei.org/w/index.php?title=GreenMountain_Engineering_LLC&oldid=346101" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes

193

A Preliminary Structural Model for the Blue Mountain Geothermal Field,  

Open Energy Info (EERE)

Structural Model for the Blue Mountain Geothermal Field, Structural Model for the Blue Mountain Geothermal Field, Humboldt County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Preliminary Structural Model for the Blue Mountain Geothermal Field, Humboldt County, Nevada Abstract The Blue Mountain geothermal field is a blind geothermalprospect (i.e., no surface hot springs) along the west flank of BlueMountain in southern Humboldt County, Nevada. Developmentwells in the system have high flow rates and temperatures above190°C at depths of ~600 to 1,070 m. Blue Mountain is a small~8-km-long east-tilted fault block situated between the EugeneMountains and Slumbering Hills. The geothermal field occupiesthe intersection between a regional NNE- to ENE-striking,west-dipping

194

Rail Access to Yucca Mountain: Critical Issues  

SciTech Connect

The proposed Yucca Mountain repository site currently lacks rail access. The nearest mainline railroad is almost 100 miles away. Absence of rail access could result in many thousands of truck shipments of spent nuclear fuel and high-level radioactive waste. Direct rail access to the repository could significantly reduce the number of truck shipments and total shipments. The U.S. Department of Energy (DOE) identified five potential rail access corridors, ranging in length from 98 miles to 323 miles, in the Final Environmental Impact Statement (FEIS) for Yucca Mountain. The FEIS also considers an alternative to rail spur construction, heavy-haul truck (HHT) delivery of rail casks from one of three potential intermodal transfer stations. The authors examine the feasibility and cost of the five rail corridors, and DOE's alternative proposal for HHT transport. The authors also address the potential for rail shipments through the Las Vegas metropolitan area.

Halstead, R. J.; Dilger, F.; Moore, R. C.

2003-02-25T23:59:59.000Z

195

Rocky Mountain Institute | Open Energy Information  

Open Energy Info (EERE)

Institute Institute Jump to: navigation, search Logo: Rocky Mountain Institute Name Rocky Mountain Institute Address 1820 Folsom Street Place Boulder, Colorado Zip 80302 Region Rockies Area Coordinates 40.01838°, -105.262323° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.01838,"lon":-105.262323,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

196

Maine Mountain Power | Open Energy Information  

Open Energy Info (EERE)

Maine Mountain Power Maine Mountain Power Place Yarmouth, Maine Zip 4096 Sector Wind energy Product Wind farm development company focused on projects in Maine. It is a subsidiary of Endless Energy Corporation. Coordinates 41.663318°, -70.198987° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.663318,"lon":-70.198987,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

197

ROCKY MOUNTAIN OILFIELD TESTING CENTER MICROTURBINE PROJECT  

NLE Websites -- All DOE Office Websites (Extended Search)

MICROTURBINE PROJECT MICROTURBINE PROJECT Stacy & Stacy Consulting, LLC March 31, 1998 ROCKY MOUNTAIN OILFIELD TESTING CENTER MICROTURBINE PROJECT Stacy & Stacy Consulting, LLC Prepared for: INDUSTRY PUBLICATION Prepared by: MICHAEL J. TAYLOR Project Manager March 31, 1998 JO 850200 : FC 980009 ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a demonstration of gas-fired, integrated microturbine systems at the Department of Energy's Naval Petroleum Reserve No. 3 (NPR-3), in partnership with Stacy & Stacy Consulting, LLC (Stacy & Stacy). The project encompassed the testing of two gas microturbine systems at two oil-production wellsites. The microturbine-generators were fueled directly by casinghead gas to power their beam-pumping-unit motors. The system at well 47-A-34 utilized the casinghead sweet gas (0-ppm

198

Predicting the Future at Yucca Mountain  

Science Conference Proceedings (OSTI)

This paper summarizes a climate-prediction model funded by the DOE for the Yucca Mountain nuclear waste repository. Several articles in the open literature attest to the effects of the Global Ocean Conveyor upon paleoclimate, specifically entrance and exit from the ice age. The data shows that these millennial-scale effects are duplicated on the microscale of years to decades. This work also identifies how man may have influenced the Conveyor, affecting global cooling and warming for 2,000 years.

J. R. Wilson

1999-07-01T23:59:59.000Z

199

An Investigation of the Equatorial OrographicDynamic Mechanism  

Science Conference Proceedings (OSTI)

A barotropic model over an equatorial beta-plane is used to investigate the response when a uniform zonal current crosses an isolated hypothetical mountain centered at the equator. The bounded derivative initialization method is applied to ...

Fredrick H. M. Semazzi

1985-01-01T23:59:59.000Z

200

Summary report on the geochemistry of Yucca Mountain and environs  

Science Conference Proceedings (OSTI)

This report gives a detailed description of work at Los Alamos that will help resolve geochemical issues pertinent to siting a high-level nuclear waste repository in tuff at Yucca Mountain, Nevada. It is necessary to understand the properties and setting of the host tuff because this rock provides the first natural barrier to migration of waste elements from a repository. The geochemistry of tuff is being investigated with particular emphasis on retardation processes. This report addresses the various aspects of sorption by tuff, physical and chemical makeup of tuff, diffusion processes, tuff/groundwater chemistry, waste element chemistry under expected repository conditions, transport processes involved in porous and fracture flow, and geochemical and transport modeling.

Daniels, W.R.; Wolfsberg, K.; Rundberg, R.S.

1982-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "investigations chocolate mountains" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Modeling coupled thermal-hydrological-chemical processes in the unsaturated fractured rock of Yucca Mountain, Nevada: Heterogeneity and seepage  

E-Print Network (OSTI)

emplacement drift at Yucca Mountain. Journal of ContaminantScale Heater Test at Yucca Mountain. International Journalemplacement tunnels at Yucca Mountain, Nevada. Journal of

Mukhopadhyay, Sumit; Sonnenthal, Eric L.; Spycher, Nicolas

2005-01-01T23:59:59.000Z

202

The use of TOUGH2/iTOUGH2 in support of the Yucca Mountain Project: Successes and limitations  

E-Print Network (OSTI)

emplace- ment drifts at Yucca Mountain, Proceedings: TOUGHLarge Block Test at Yucca Mountain, Nevada, Water Resourcesthe Unsaturated Zone, Yucca Mountain, Ne- vada. LBL-20553.

Bodvarsson, G.S.; Birkholzer, J.T.; Finsterle, S.; Liu, H.H.; Rutqvist, J.; Wu, Y.S.

2003-01-01T23:59:59.000Z

203

Estimation of host rock thermal conductivities using the temperature data from the drift-scale test at Yucca Mountain, Nevada  

E-Print Network (OSTI)

the Drift Scale Test at Yucca Mountain, Nevada, Journal ofunsaturated model of Yucca Mountain, Nevada, Journal ofE. , and Spycher, N. , Yucca Mountain single heater test

Mukhopadhyay, Sumitra; Tsang, Y.W.

2008-01-01T23:59:59.000Z

204

The Influence of Proposed Repository Thermal Load on Multiphase Flow and Heat Transfer in the Unsaturated Zone of Yucca Mountain  

E-Print Network (OSTI)

Studies Using the Yucca Mountain Unsaturated Zone Model,Unsaturated Zone at Yucca Mountain, Nevada, to Thermal LoadLarge Block Test at Yucca Mountain, Nevada, Water Resources

Wu, Y.-S.; Mukhopadhyay, Sumit; Zhang, Keni; Bodvarsson, G.S.

2006-01-01T23:59:59.000Z

205

Characterization of Spatial Variability of Hydrogeologic Properties for Unsaturated Flow in the Fractured Rocks at Yucca Mountain, Nevada  

E-Print Network (OSTI)

using matrix properties , Yucca Mountain, Nevada, USGS Waterof hydrogeologic units at Yucca Mountain, Nevada, U.S.Unsaturated Zone, Yucca Mountain, Nevada . Water-Resources

Zhou, Quanlin; Bodvarsson, Gudmundur S.; Liu, Hui-Hai; Oldenburg, Curtis M.

2002-01-01T23:59:59.000Z

206

Uncertainties in coupled thermal-hydrological processes associated with the drift scale test at Yucca Mountain, Nevada  

E-Print Network (OSTI)

Scale Test at Yucca Mountain, Nevada S. Mukhopadhyay * , Y.waste repository at Yucca Mountain, Nevada. The Drift Scalerock; Radioactive waste; Yucca Mountain, Nevada Introduction

Mukhopadhyay, Sumitra; Tsang, Y.W.

2002-01-01T23:59:59.000Z

207

A Mountain-Scale Thermal Hydrologic Model for Simulating Fluid Flow and Heat Transfer in Unsaturated Fractured Rock  

E-Print Network (OSTI)

Studies Using the Yucca Mountain Unsaturated Zone Model,Unsaturated Zone at Yucca Mountain, Nevada, to Thermal LoadUnsaturated Zone, Yucca Mountain, Nevada, Water-Resources

Wu, Yu-Shu; Mukhopadhyay, Sumit; Zhang, Keni; Bodvarsson, Gudmundur S.

2005-01-01T23:59:59.000Z

208

Sensitivity Analysis Of Hydrological Parameters In Modeling Flow And Transport In The Unsaturated Zone Of Yucca Mountain  

E-Print Network (OSTI)

Unsaturated Zone of Yucca Mountain Keni Zhang, Yu-Shu Wu,volcanic deposits at Yucca Mountain have been intensivelyhydraulic properties, Yucca Mountain Introduction Site

Zhang, Keni; Wu, Yu-Shu; Houseworth, James E

2006-01-01T23:59:59.000Z

209

Modeling thermal-hydrological response of the unsaturated zone at Yucca Mountain, Nevada, to thermal load at a potential repository  

E-Print Network (OSTI)

Repository at Yucca Mountain. In Materials Research Societystudies using the Yucca Mountain unsaturated zone model.Unsaturated Zone, Yucca Mountain, Nevada. Water Resources

Haukwa, C.B.; Wu, Yu-Shu; Bodvarsson, G.S.

2002-01-01T23:59:59.000Z

210

Characterizing the Evolution of the In-Drift Environment in a Proposed Yucca Mountain Repository  

SciTech Connect

This presentation provides a high-level summary of the approach taken to achieve a conceptual understanding of the chemical environments likely to exist in the proposed Yucca Mountain repository after the permanent closure of the facility. That conceptual understanding was then made quantitative through laboratory and modeling studies. This summary gives an overview of the in-drift chemical environment modeling that was needed to evaluate a Yucca Mountain repository: it describes the geological, hydrological, and geochemical aspects of the chemistry of water contacting engineered barriers and includes a summary of the technical basis that supports the integration of this information into the total system performance assessment. In addition, it presents a description of some of the most important data and processes influencing the in-drift environment, and describes how data and parameter uncertainty are propagated through the modeling. Sources of data include: (1) external studies regarding climate changes; (2) site-specific studies of the structure of the mountain and the properties of its rock layers; (3) properties of dust in the mountain and investigations of the potential for deliquescence on that dust to create solutions above the boiling point of water; (4) obtaining thermal data from a comprehensive thermal test addressing coupled processes; and (5) modeling the evolution of the in-drift environment at several scales. Model validation is also briefly addressed.

Dr. Abraham Van Luik

2004-11-15T23:59:59.000Z

211

Sand Mountain Electric Cooperative - Residential Heat Pump Loan Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sand Mountain Electric Cooperative - Residential Heat Pump Loan Sand Mountain Electric Cooperative - Residential Heat Pump Loan Program Sand Mountain Electric Cooperative - Residential Heat Pump Loan Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Program Info State Alabama Program Type Utility Loan Program Rebate Amount 7% interest rate 5 or 10 year pay schedule maximum of $12,000 Provider Sand Mountain Electric Cooperative The Sand Mountain Electric Cooperative offers a heat pump loan program to eligible residential members. To qualify, members must have had power with Sand Mountain Electric Cooperative for at least one year, have the home electric bill and deeds in the same name, and pass a credit check. Heat pumps must be installed by a [http://www.smec.coop/heatpumpcontractors.htm

212

Faulting in the Yucca Mountain region: Critical review and analyses of tectonic data from the central Basin and Range  

SciTech Connect

Yucca Mountain, Nevada, has been proposed as the potential site for a high-level waste (HLW) repository. The tectonic setting of Yucca Mountain presents several potential hazards for a proposed repository, such as potential for earthquake seismicity, fault disruption, basaltic volcanism, magma channeling along pre-existing faults, and faults and fractures that may serve as barriers or conduits for groundwater flow. Characterization of geologic structures and tectonic processes will be necessary to assess compliance with regulatory requirements for the proposed high level waste repository. In this report, we specifically investigate fault slip, seismicity, contemporary stain, and fault-slip potential in the Yucca Mountain region with regard to Key Technical Uncertainties outlined in the License Application Review Plan (Sections 3.2.1.5 through 3.2.1.9 and 3.2.2.8). These investigations center on (i) alternative methods of determining the slip history of the Bare Mountain Fault, (ii) cluster analysis of historic earthquakes, (iii) crustal strain determinations from Global Positioning System measurements, and (iv) three-dimensional slip-tendency analysis. The goal of this work is to assess uncertainties associated with neotectonic data sets critical to the Nuclear Regulatory Commission and the Center for Nuclear Waste Regulatory Analyses` ability to provide prelicensing guidance and perform license application review with respect to the proposed HLW repository at Yucca Mountain.

Ferrill, D.A.; Stirewalt, G.L.; Henderson, D.B.; Stamatakos, J.; Morris, A.P.; Spivey, K.H. [Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses; Wernicke, B.P. [California Inst. of Tech., Pasadena, CA (United States). Div. of Geological and Planetary Sciences

1996-03-01T23:59:59.000Z

213

Green Mountain Energy Renewable Rewards Program (Texas) | Open...  

Open Energy Info (EERE)

is offered by a retail electric provider (REP); available to customers throughout the state where Green Mountain Energy offers retail electric service. Meter Aggregation Not...

214

Yucca Mountain Exploratory Studies Facilities: Construction status; Extended summary  

SciTech Connect

This paper discusses the progress to date on the construction planning development of the Yucca Mountain Site Characterization Project Exploratory Studies Facilities (ESF).

Allan, J. [Morrison-Knudsen Corp. (United States); Leonard, T.M. [Reynolds Electrical and Engineering Co., Inc., Las Vegas, NV (United States)

1992-09-01T23:59:59.000Z

215

Observation Wells At Blue Mountain Area (Warpinski, Et Al., 2004...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Observation Wells At Blue Mountain Area (Warpinski, Et Al., 2004) Exploration Activity Details Location...

216

Self Potential At Blue Mountain Area (Fairbank Engineering, 2008) | Open  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Self Potential At Blue Mountain Area (Fairbank Engineering, 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Self Potential At Blue Mountain Area (Fairbank Engineering, 2008) Exploration Activity Details Location Blue Mountain Area Exploration Technique Self Potential Activity Date Usefulness not indicated DOE-funding Unknown Notes Geophysical surveys that have been conducted specifically for the geothermal program at Blue Mountain include a self-potential (SP) survey, and additional IP/electrical resistivity traversing. These surveys were conducted under a cooperative program between Noramex Corporation and the Energy and Geosciences Institute (EGI), University of Utah, with funding

217

Earth Tidal Analysis At Marysville Mountain Geothermal Area (1984) | Open  

Open Energy Info (EERE)

Mountain Geothermal Area (1984) Mountain Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Earth Tidal Analysis At Marysville Mountain Geothermal Area (1984) Exploration Activity Details Location Marysville Mountain Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1984 Usefulness useful DOE-funding Unknown Exploration Basis Determine porosity of the reservoir Notes The response of a confined, areally infinite aquifer to external loads imposed by earth tides is examined. Because the gravitational influence of celestial objects occurs over large areas of the earth, the confined aquifer is assumed to respond in an undrained fashion. Since undrained response is controlled by water compressibility, earth tide response can be

218

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

MICROBIAL PRODUCTION STIMULATION MARCH 31, 1998 FC970010 ROCKY MOUNTAIN OILFIELD TESTING CENTER Microbial Production Stimulation for: D. Michael Dennis Geomicrobial Technologies,...

219

Green Mountain Power - Solar GMP | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of electricity generated by the system. This credit is available to all customers of Green Mountain Power. The incentive does not have a specified duration or expiration date....

220

Thermal Gradient Holes At Mcgee Mountain Area (DOE GTP) | Open...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Mcgee Mountain Area (DOE GTP) Exploration Activity Details Location...

Note: This page contains sample records for the topic "investigations chocolate mountains" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

EIS-0445: American Electric Power Service Corporation's Mountaineer...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: American Electric Power Service Corporation's Mountaineer Commercial Scale Carbon Capture and Storage Demonstration, New Haven, Mason County, West Virginia EIS-0445: American...

222

Rocky Mountain E&P Technology Transfer Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Rocky Mountain E&P Technology Transfer Workshop August 4, 2003 Table of Contents Disclaimer Papers and Presentations Disclaimer This report was prepared as an account of work...

223

Microsoft Word - Interim Use of Scott Mountain Communications...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clearance Memorandum Cynthia Rounds Project Manager - TPC-TPP-4 Proposed Action: Interim Use of Scott Mountain Communications Site Budget Information: Work Order 00004688, Task 04...

224

Modeling-Computer Simulations At White Mountains Area (Goff ...  

Open Energy Info (EERE)

Modeling-Computer Simulations At White Mountains Area (Goff & Decker, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer...

225

Rocky Mountain (PADD 4) Product Supplied of Normal Butane ...  

U.S. Energy Information Administration (EIA)

Normal Butane/Butylene Supply and Disposition; Product Supplied for Normal Butane/Butylene ; Rocky Mountain (PADD 4) Product Supplied for Crude Oil ...

226

Pages that link to "Aeromagnetic Survey At Blue Mountain Area...  

Open Energy Info (EERE)

wikiSpecial:WhatLinksHereAeromagneticSurveyAtBlueMountainArea(FairbankEngineering,2004)" Special pages About us Disclaimers Energy blogs Developer services...

227

Pages that link to "Aeromagnetic Survey At Blue Mountain Area...  

Open Energy Info (EERE)

wikiSpecial:WhatLinksHereAeromagneticSurveyAtBlueMountainArea(FairbankEngineering,2003)" Special pages About us Disclaimers Energy blogs Developer services...

228

Mountain Association for Community Economic Development - Solar Water  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mountain Association for Community Economic Development - Solar Mountain Association for Community Economic Development - Solar Water Heater Loan Program Mountain Association for Community Economic Development - Solar Water Heater Loan Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Solar Water Heating Program Info Funding Source Kentucky Solar Partnership (KSP) State Kentucky Program Type Local Loan Program Rebate Amount 100% of equipment and installation cost Provider Kentucky Solar Partnership The Kentucky Solar Partnership (KSP) and the Mountain Association for Community Economic Development (MACED) partner to offer low interest loans for the installation of solar water heaters. Loans cover the full equipment and installation cost. Flexible rate loans and terms are available. They

229

Analyzing flow patterns in unsaturated fractured rock of YuccaMountain using an integrated modeling approach  

SciTech Connect

This paper presents a series of modeling investigations to characterize percolation patterns in the unsaturated zone of Yucca Mountain, Nevada, a proposed underground repository site for storing high-level radioactive waste. The investigations are conducted using a modeling approach that integrates a wide variety of moisture, pneumatic, thermal, and isotopic geochemical field data into a comprehensive three-dimensional numerical model through model calibration. This integrated modeling approach, based on a dual-continuum formulation, takes into account the coupled processes of fluid and heat flow and chemical isotopic transport in Yucca Mountain's highly heterogeneous, unsaturated fractured tuffs. In particular, the model results are examined against different types of field-measured data and used to evaluate different hydrogeological conceptual models and their effects on flow patterns in the unsaturated zone. The objective of this work to provide understanding of percolation patterns and flow behavior through the unsaturated zone, which is a crucial issue in assessing repository performance.

Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Pan, Lehua; Bodvarsson,Gudmundur S.

2003-11-03T23:59:59.000Z

230

Tell President Obama About Coal River Mountain Coal River Mountain and the Heathrow Airport runway remind me how important it is to  

E-Print Network (OSTI)

Tell President Obama About Coal River Mountain Coal River Mountain and the Heathrow Airport runway remind me how important it is to keep our eye on the ball. Coal River Mountain is the site of an absurdity. I learned about Coal River Mountain from students at Virginia Tech last fall. They were concerned

Hansen, James E.

231

Review of Yucca Mountain Disposal Criticality Studies  

SciTech Connect

The U.S. Department of Energy (DOE), Office of Civilian Radioactive Waste Management, submitted a license application for construction authorization of a deep geologic repository at Yucca Mountain, Nevada, in June of 2008. The license application is currently under review by the U.S. Nuclear Regulatory Commission. However,on March 3, 2010 the DOE filed a motion requesting withdrawal of the license application. With the withdrawal request and the development of the Blue Ribbon Commission to seek alternative strategies for disposing of spent fuel, the status of the proposed repository at Yucca Mountain is uncertain. What is certain is that spent nuclear fuel (SNF) will continue to be generated and some long-lived components of the SNF will eventually need a disposition path(s). Strategies for the back end of the fuel cycle will continue to be developed and need to include the insights from the experience gained during the development of the Yucca Mountain license application. Detailed studies were performed and considerable progress was made in many key areas in terms of increased understanding of relevant phenomena and issues regarding geologic disposal of SNF. This paper reviews selected technical studies performed in support of the disposal criticality analysis licensing basis and the use of burnup credit. Topics include assembly misload analysis, isotopic and criticality validation, commercial reactor critical analyses, loading curves, alternative waste package and criticality control studies, radial burnup data and effects, and implementation of a conservative application model in the criticality probabilistic evaluation as well as other information that is applicable to operations regarding spent fuel outside the reactor. This paper summarizes the work and significant accomplishments in these areas and provides a resource for future, related activities.

Scaglione, John M [ORNL; Wagner, John C [ORNL

2011-01-01T23:59:59.000Z

232

A site scale model for modeling unsaturated zone processes at Yucca Mountain, Nevada  

E-Print Network (OSTI)

Unsaturated Zone Model of Yucca Mountain, Nevada, for theZone Trocesses at yucca Mountain, N G. S. Bodvarsson, Y. S.unsaturated zone at Yucca Mountain, Nevada, as a permanent

1997-01-01T23:59:59.000Z

233

Influence of faults on groundwater flow and transport at Yucca Mountain, Nevada  

E-Print Network (OSTI)

test well USW H- 6, Yucca Mountain area, Nye County, Nevada,by test well UE- 25p#1, Yucca Mountain Area, Nye County,assessment for Yucca Mountain-SNL second interation (TSPA-

Cohen, Andrew J.B.; Sitar, Nicholas

1999-01-01T23:59:59.000Z

234

Numerical analysis of thermal-hydrological conditions in the single heater test at Yucca Mountain  

E-Print Network (OSTI)

Single Heater Test at Yucca Mountain, LBNL-39789, E.O. LawSingle Heater Test at Yucca Mountain Jens T. Birkholzer andwaste repository at Yucca Mountain. The heating phase of the

Birkholzer, Jens T.; Tsang, Yvonne W.

1998-01-01T23:59:59.000Z

235

Modeling Unsaturated Flow and Transport Processes in Fractured Tuffs of Yucca Mountain  

E-Print Network (OSTI)

zone site-scale model, Yucca Mountain Site Characterizationsite-scale model, Yucca Mountain Project Milestone 3GLM105M,unsaturated zone, Yucca Mountain, Nevada. Water-Resources

Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Bodvarsson, G.S.

2003-01-01T23:59:59.000Z

236

Estimating Wind Velocities in Mountain Lee Waves Using Sailplane Flight Data  

Science Conference Proceedings (OSTI)

Mountain lee waves are a form of atmospheric gravity wave that is generated by flow over mountain topography. Mountain lee waves are of considerable interest, because they can produce drag that affects the general circulation, windstorms, and ...

R. P. Millane; G. D. Stirling; R. G. Brown; N. Zhang; V. L. Lo; E. Enevoldson; J. E. Murray

2010-01-01T23:59:59.000Z

237

Overview of the Yucca Mountain Licensing Process  

SciTech Connect

This paper presents an overview of the licensing process for a Yucca Mountain repository for high-level radioactive waste and spent nuclear fuel. The paper discusses the steps in the licensing proceeding, the roles of the participants, the licensing and hearing requirements contained in the Code of Federal Regulations. A description of the Nuclear Regulatory Commission (NRC) staff acceptance and compliance reviews of the Department of Energy (DOE) application for a construction authorization and a license to receive and possess high-level radioactive waste and spent nuclear fuel is provided. The paper also includes a detailed description of the hearing process.

M. Wisenburg

2004-05-03T23:59:59.000Z

238

Yucca MountainTransportation: Private Sector Perspective  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation: Transportation: Private Sector "Lessons Learned" US Transport Council David Blee Executive Director dblee@ustransportcouncil.org DOE Transportation External Coordination (TEC) Working Group April 4, 2005 Phoenix, Arizona US Transport Council -- DOE TEC 4/4/05 2 US Transport Council Formed in 2002 during the Yucca Mountain Ratification debate to provide factual information on nuclear materials transportation, experience, safety & emergency planning Comprised of 24 member companies from the transport sector including suppliers and customers Principal focus is transport education, policy and business commerce related to nuclear materials transport US Transport Council -- DOE TEC 4/4/05 3 USTC Members AREVA BNFL, Inc Burns & Roe Cameco

239

Flow Test At Mcgee Mountain Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Mcgee Mountain Area (DOE GTP) Exploration Activity Details Location Mcgee Mountain...

240

2-M Probe At Mcgee Mountain Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Mcgee Mountain Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: 2-M Probe At Mcgee Mountain Area (DOE GTP) Exploration Activity...

Note: This page contains sample records for the topic "investigations chocolate mountains" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Lee vorticity Production by Large-Scale Tropical Mountain Ranges. Part II: A Mechanism for the Production of African Waves  

Science Conference Proceedings (OSTI)

A mechanism that acts to produce vorticity in the lee of large-scale mountain ranges embedded in an easterly flow in a stably stratified rotating atmosphere is investigated as it applies to the production of westward-propagating African waves. ...

Joel B. Mozer; Joseph A. Zehnder

1996-02-01T23:59:59.000Z

242

Estimating Fractional Snow Cover in Mountain Environments with Fuzzy Classification  

Science Conference Proceedings (OSTI)

The disproportionate amount of water runoff from mountains to surrounding arid and semiarid lands has generated much research in snow water equivalent (SWE) modeling. A primary input in SWE models is snow covered area (SCA) which is generally obtained ... Keywords: Fuzzy Classification, GIS, Landsat ETM+, Mountain Environments, Recursive Partitioning, Remote Sensing, Snow Covered Area, Snow Water Equivalent

Clayton J. Whitesides; Matthew H. Connolly

2012-07-01T23:59:59.000Z

243

A Theoretical Study of Mountain Barrier Jets over Sloping Valleys  

Science Conference Proceedings (OSTI)

A shallow-water model is developed to examine the dynamics of mountain-barrier jets over a mesoscale sloping valley between two mountain ridges. In this model, the cold air trapped in the valley is represented by a shallow-water layer that is ...

Qin Xu; Ming Liu; Douglas L. Westphal

2000-05-01T23:59:59.000Z

244

Livelihood Assets Atlas Mountainous Districts of NWFP (Pakistan)  

E-Print Network (OSTI)

Livelihood Assets Atlas Mountainous Districts of NWFP (Pakistan) April 2009 SDPISustainable Mountainous Districts of NWFP (Pakistan) Abid Qaiyum Suleri, Babar Shahbaz, Sahab Haq Rana Nazir Mehmood and Gulbaz Ali Khan Sustainable Development Policy Institute 20 Hill Road, F-6/3, Islamabad - Pakistan www

Richner, Heinz

245

MOUNTAIN WEATHER PREDICTION: PHENOMENOLOGICAL CHALLENGES AND FORECAST METHODOLOGY  

E-Print Network (OSTI)

MOUNTAIN WEATHER PREDICTION: PHENOMENOLOGICAL CHALLENGES AND FORECAST METHODOLOGY Michael P. Meyers of the American Meteorological Society Mountain Weather and Forecasting Monograph Draft from Friday, May 21, 2010 of weather analysis and forecasting in complex terrain with special emphasis placed on the role of humans

Steenburgh, Jim

246

Yucca Mountain Climate Technical Support Representative  

SciTech Connect

The primary objective of Project Activity ORD-FY04-012, Yucca Mountain Climate Technical Support Representative, was to provide the Office of Civilian Radioactive Waste Management (OCRWM) with expertise on past, present, and future climate scenarios and to support the technical elements of the Yucca Mountain Project (YMP) climate program. The Climate Technical Support Representative was to explain, defend, and interpret the YMP climate program to the various audiences during Site Recommendation and License Application. This technical support representative was to support DOE management in the preparation and review of documents, and to participate in comment response for the Final Environmental Impact Statement, the Site Recommendation Hearings, the NRC Sufficiency Comments, and other forums as designated by DOE management. Because the activity was terminated 12 months early and experience a 27% reduction in budget, it was not possible to complete all components of the tasks as originally envisioned. Activities not completed include the qualification of climate datasets and the production of a qualified technical report. The following final report is an unqualified summary of the activities that were completed given the reduced time and funding.

Sharpe, Saxon E

2007-10-23T23:59:59.000Z

247

Magma Dynamics at Yucca Mountain, Nevada  

Science Conference Proceedings (OSTI)

Small-volume basaltic volcanic activity at Yucca Mountain has been identified as one of the potential events that could lead to release of radioactive material from the U.S. Department of Energy (DOE) designated nuclear waste repository at Yucca Mountain. Release of material could occur indirectly as a result of magmatic dike intrusion into the repository (with no associated surface eruption) by changing groundwater flow paths, or as a result of an eruption (dike intrusion of the repository drifts, followed by surface eruption of contaminated ash) or volcanic ejection of material onto the Earth's surface and the redistribution of contaminated volcanic tephra. Either release method includes interaction between emplacement drifts and a magmatic dike or conduit, and natural (geologic) processes that might interrupt or halt igneous activity. This analysis provides summary information on two approaches to evaluate effects of disruption at the repository by basaltic igneous activity: (1) descriptions of the physical geometry of ascending basaltic dikes and their interaction with silicic host rocks similar in composition to the repository host rocks; and (2) a summary of calculations developed to quantify the response of emplacement drifts that have been flooded with magma and repressurized following blockage of an eruptive conduit. The purpose of these analyses is to explore the potential consequences that could occur during the full duration of an igneous event.

D. Krier

2005-08-29T23:59:59.000Z

248

Blue Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Blue Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Blue Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (15) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41,"lon":-118.13,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

249

Glass Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Glass Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Glass Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (3) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7,"lon":-121.45,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

250

Green Mountain Energy Renewable Rewards Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mountain Energy Renewable Rewards Program Mountain Energy Renewable Rewards Program Green Mountain Energy Renewable Rewards Program < Back Eligibility Residential Savings Category Bioenergy Buying & Making Electricity Water Solar Wind Program Info State Texas Program Type Net Metering Provider Green Mountain Energy '''''Texas does not have statewide net metering as the term is generally understood. However, retail electricity providers in Texas are permitted, but not required, to compensate customers for electricity produced by distributed renewable energy generation systems and exported to the electric grid. The program described below operates in a fashion similar to net metering and has similar customer benefits up to a certain point.''''' Green Mountain Energy Company, a retail provider of green electricity,

251

List of Yucca Mountain Archival Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

List of Yucca Mountain Archival Documents List of Yucca Mountain Archival Documents List of Yucca Mountain Archival Documents March 3, 2010 Motion to Withdraw from Yucca Mountain application DOE's withdraws it's pending license application for a permanent geologic repository at Yucca Mountain, Nevada. December 30, 2008 Office of Civilian Radioactive Waste Management-Quality Assurance Requirements and Description A report detailling the requirements and description of the Quality Assurance program. December 9, 2008 The Report To The President And The Congress By The Secretary Of Energy On The Need For A Second Repository This report is prepared pursuant to Section 161 of the Nuclear Waste Policy Act of 1982, which requires the Secretary of Energy to report to the President and to the Congress on or after January 1, 2007, but not later

252

DOE Marks Milestone in Submitting Yucca Mountain License Application |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marks Milestone in Submitting Yucca Mountain License Marks Milestone in Submitting Yucca Mountain License Application DOE Marks Milestone in Submitting Yucca Mountain License Application June 3, 2008 - 12:51pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced submittal of a license application (LA) to the U.S. Nuclear Regulatory Commission (NRC) seeking authorization to construct America's first repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain, Nevada. The 8,600 page application describes DOE's plan to safely isolate spent nuclear fuel and high-level radioactive waste in tunnels deep underground at Yucca Mountain, a remote ridge on federally controlled land in the Mojave Desert 90 miles northwest of Las Vegas. Currently, the waste is stored at 121 temporary locations in 39 states

253

Geophysical Studies in the Vicinity of Blue Mountain and Pumpernickel  

Open Energy Info (EERE)

the Vicinity of Blue Mountain and Pumpernickel the Vicinity of Blue Mountain and Pumpernickel Valley near Winnemucca, North-Central Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geophysical Studies in the Vicinity of Blue Mountain and Pumpernickel Valley near Winnemucca, North-Central Nevada Abstract From May 2008 to September 2009, the U.S. Geological Survey (USGS) collected data from more than 660 gravity stations, 100 line-km of truck-towed magnetometer traverses, and 260 physical-property sites in the vicinity of Blue Mountain and Pumpernickel Valley, northern Nevada (fig. 1). Gravity, magnetic, and physical-property data were collected to study regional crustal structures as an aid to understanding the geologic framework of the Blue Mountain and Pumpernickel Valley areas, which in

254

Preliminary Notice of Violation, Rocky Mountain Remediation Services -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Mountain Remediation Rocky Mountain Remediation Services - EA-97-04 Preliminary Notice of Violation, Rocky Mountain Remediation Services - EA-97-04 June 6, 1997 Preliminary Notice of Violation issued to Rocky Mountain Remediation Services related to a Radioactive Material Release during Trench Remediation at the Rocky Flats Environmental Technology Site, (EA-97-04) This letter refers to the Department of Energy's (DOE) evaluation of noncompliances associated with the dispersal of radioactive material during the remediation of trenches. Preliminary Notice of Violation, Rocky Mountain Remediation Services - EA-97-04 More Documents & Publications Preliminary Notice of Violation, Kaiser-Hill Company - EA-97-03 Consent Order, Kaiser-Hill Company, LLC - EA 98-03 Preliminary Notice of Violation , Rocky Flats Environmental Technology Site

255

DOE Announces Yucca Mountain License Application Schedule | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Yucca Mountain License Application Schedule Yucca Mountain License Application Schedule DOE Announces Yucca Mountain License Application Schedule July 19, 2006 - 3:13pm Addthis New Director Ward Sproat Testifies on Revised Timeline WASHINGTON, DC - The Department of Energy (DOE) today announced that it will submit a license application to the Nuclear Regulatory Commission (NRC) for a nuclear waste repository at Yucca Mountain, Nevada, no later than June 30, 2008. The Department also announced that if requested legislative changes are enacted, the repository will be able to accept spent nuclear fuel and high-level waste starting in early 2017. Announcing a schedule for submitting a license application is another step in the Department's mission to provide stability, clarity and predictability in moving the Yucca Mountain Project forward as quickly as

256

Department of Energy Files Motion to Withdraw Yucca Mountain License  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Files Motion to Withdraw Yucca Mountain Files Motion to Withdraw Yucca Mountain License Application Department of Energy Files Motion to Withdraw Yucca Mountain License Application March 3, 2010 - 12:00am Addthis WASHINGTON, D.C. - The U.S. Department of Energy today filed a motion with the Nuclear Regulatory Commission to withdraw the license application for a high-level nuclear waste repository at Yucca Mountain with prejudice. "President Obama is fully committed to ensuring that the Nation meets our long-term storage obligations for nuclear waste," said Department of Energy General Counsel Scott Blake Harris. "In light of the decision not to proceed with the Yucca Mountain nuclear waste repository, the President directed Secretary Chu to establish the Blue Ribbon Commission on America's

257

Rocky Mountain Power - Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Mountain Power - Net Metering Rocky Mountain Power - Net Metering Rocky Mountain Power - Net Metering < Back Eligibility Agricultural Commercial Fed. Government Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Idaho Program Type Net Metering Provider Rocky Mountain Power Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has a net-metering tariff on file with the Idaho Public Utilities Commission (PUC). The framework of the utilities' net-metering programs is similar, in that each utility: (1) offers net

258

Direct-Current Resistivity At Blue Mountain Area (Fairbank Engineering,  

Open Energy Info (EERE)

Direct-Current Resistivity At Blue Mountain Area (Fairbank Engineering, Direct-Current Resistivity At Blue Mountain Area (Fairbank Engineering, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Blue Mountain Area (Fairbank Engineering, 2005) Exploration Activity Details Location Blue Mountain Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Geophysical surveys that have been conducted specifically for the geothermal program at Blue Mountain include a self-potential (SP) survey, and additional IP/electrical resistivity traversing. These surveys were conducted under a cooperative program between Noramex Corporation and the Energy and Geosciences Institute (EGI), University of Utah, with funding

259

Static Temperature Survey At Blue Mountain Area (Fairbank Engineering,  

Open Energy Info (EERE)

Static Temperature Survey At Blue Mountain Area (Fairbank Engineering, Static Temperature Survey At Blue Mountain Area (Fairbank Engineering, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Blue Mountain Area (Fairbank Engineering, 2010) Exploration Activity Details Location Blue Mountain Area Exploration Technique Static Temperature Survey Activity Date Usefulness useful DOE-funding Unknown Notes Using a precision thermistor probe, EGI, University of Utah, obtained detailed temperature logs of eleven new mineral exploration holes drilled at Blue Mountain. The holes, ranging in depth from 99 to 244 meters (325 to 800 feet), were drilled in areas to the northeast, northwest and southwest of, and up to distances of two kilometers from, the earlier mineral exploration drill holes that encountered hot artesian flows. Unfortunately,

260

List of Yucca Mountain Archival Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

List of Yucca Mountain Archival Documents List of Yucca Mountain Archival Documents List of Yucca Mountain Archival Documents March 10, 2004 EIS-0250-SA-01: Supplement Analysis Geologic Repository for the Disposal of Spent Nuclear and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada March 1, 2004 Nuclear Waste Policy Act Document on the Nuclear Waste Policy Act of 1982 An Act to provide for the development of repositories for the disposal of high-level radioactive waste and spent nuclear fuel, to establish a program of research, development, and demonstration regarding the disposal of high-level radioactive waste and spent nuclear fuel, and for other purposes. April 1, 2003 Final Report of theIgneous Consequences Peer Review Panel A report for the DOE on the Yucca Mountain Project.

Note: This page contains sample records for the topic "investigations chocolate mountains" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Rocky Mountain Power - Energy FinAnswer | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Mountain Power - Energy FinAnswer Rocky Mountain Power - Energy FinAnswer Rocky Mountain Power - Energy FinAnswer < Back Eligibility Agricultural Commercial Construction Industrial Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Other Maximum Rebate Retrofit: 50% of eligible measure cost Lighting Energy Savings Limit: 50%-75% of savings Program Info State Utah Program Type Utility Rebate Program Rebate Amount 0.12/kWh annual energy savings + 50/kW average monthly on-peak demand savings Provider Rocky Mountain Power Rocky Mountain Power's Energy FinAnswer program provides cash incentives to help its commercial and industrial customers improve the efficiency of their existing facilities and build new facilities that are significantly

262

DOE Defends Its Motion to Withdraw Yucca Mountain Application | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Defends Its Motion to Withdraw Yucca Mountain Application Defends Its Motion to Withdraw Yucca Mountain Application DOE Defends Its Motion to Withdraw Yucca Mountain Application May 27, 2010 - 2:22pm Addthis Today, the United States Department of Energy filed with the NRC's Atomic Safety and Licensing Board a reply brief making clear that its motion to withdraw the pending application to license the Yucca Mountain geologic repository is authorized by the Atomic Energy Act (AEA) and consistent with the Nuclear Waste Policy Act (NWPA). As today's filing details, the AEA vests the Department with broad authority over the disposal of spent nuclear fuel and high-level radioactive waste. The NWPA does not strip the Department of that authority or otherwise compel the Department to go forward with the construction of the Yucca Mountain repository. Rather, the

263

EIS-0445: American Electric Power Service Corporation's Mountaineer  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: American Electric Power Service Corporation's Mountaineer 5: American Electric Power Service Corporation's Mountaineer Commercial Scale Carbon Capture and Storage Demonstration, New Haven, Mason County, West Virginia EIS-0445: American Electric Power Service Corporation's Mountaineer Commercial Scale Carbon Capture and Storage Demonstration, New Haven, Mason County, West Virginia Summary This EIS evaluates the environmental impacts of a proposal to provide financial assistance for the construction and operation of a project proposed by American Electric Power Service Corporation (AEP). DOE selected tbis project for an award of financial assistance through a competitive process under the Clean Coal Power Initiative (CCPI) Program. AEP's Mountaineer Commercial Scale Carbon Capture and Storage Project (Mountaineer CCS II Project) would construct a commercial scale

264

Cuttings Analysis At Jemez Mountain Geothermal Area (1976) | Open Energy  

Open Energy Info (EERE)

Jemez Mountain Geothermal Area (1976) Jemez Mountain Geothermal Area (1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Jemez Mountain Geothermal Area (1976) Exploration Activity Details Location Jemez Mountain Geothermal Area Exploration Technique Cuttings Analysis Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the geologic environment of the geothermal area Notes The geologic environment of the particular areas of interest are described, including rock types, geologic structure, and other important parameters that help describe the reservoir and overlying cap rock. References Pratt, H. R.; Simonson, E. R. (1 January 1976) Geotechnical studies of geothermal reservoirs Retrieved from "http://en.openei.org/w/index.php?title=Cuttings_Analysis_At_Jemez_Mountain_Geothermal_Area_(1976)&oldid=473910

265

DOE - Office of Legacy Management -- Rocky Mountain Research Laboratories -  

Office of Legacy Management (LM)

Rocky Mountain Research Rocky Mountain Research Laboratories - CO 06 FUSRAP Considered Sites Site: ROCKY MOUNTAIN RESEARCH LABORATORIES (CO.06 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: 1020 Yuma Street , Denver , Colorado CO.06-1 Evaluation Year: Circa 1987 CO.06-3 Site Operations: Processed beryllium on a pilot scale. CO.06-1 Site Disposition: Eliminated - No indication of radioactive materials handled at the site CO.06-2 Radioactive Materials Handled: No Primary Radioactive Materials Handled: None Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP CO.06-2 Also see Documents Related to ROCKY MOUNTAIN RESEARCH LABORATORIES CO.06-1 - Rocky Mountain Research Letter; Burton to Smith; Subject:

266

DOE Defends Its Motion to Withdraw Yucca Mountain Application | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Its Motion to Withdraw Yucca Mountain Application Its Motion to Withdraw Yucca Mountain Application DOE Defends Its Motion to Withdraw Yucca Mountain Application May 27, 2010 - 2:22pm Addthis Today, the United States Department of Energy filed with the NRC's Atomic Safety and Licensing Board a reply brief making clear that its motion to withdraw the pending application to license the Yucca Mountain geologic repository is authorized by the Atomic Energy Act (AEA) and consistent with the Nuclear Waste Policy Act (NWPA). As today's filing details, the AEA vests the Department with broad authority over the disposal of spent nuclear fuel and high-level radioactive waste. The NWPA does not strip the Department of that authority or otherwise compel the Department to go forward with the construction of the Yucca Mountain repository. Rather, the

267

20th-century variations in area of cirque glaciers and glacierets, Rocky Mountain National Park, Rocky Mountains,  

E-Print Network (OSTI)

, Rocky Mountains, Colorado, USA Matthew J. HOFFMAN,1 Andrew G. FOUNTAIN,2 Jonathan M. ACHUFF3 1 maps and aerial and ground-based photographs for the small cirque glaciers and glacierets of Rocky Mountain National Park in the northern Front Range of Colorado, USA, indicates modest change during the 20

Fountain, Andrew G.

268

Mountain View IV | Open Energy Information  

Open Energy Info (EERE)

IV IV Facility Mountain View IV Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner AES Wind Generation Developer AES Wind Generation Energy Purchaser Southern California Edison Co Location White Water CA Coordinates 33.95475187°, -116.7015839° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.95475187,"lon":-116.7015839,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

269

Drum Mountain Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Project Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Drum Mountain Geothermal Project Project Location Information Coordinates 39.544722222222°, -112.91611111111° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.544722222222,"lon":-112.91611111111,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

270

Testimony of Greg Friedman Yucca Mountain  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environment and the Economy Environment and the Economy of the Committee on Energy and Commerce U.S. House of Representatives FOR RELEASE ON DELIVERY 1:00 PM Wednesday, June 1, 2011 1 Mr. Chairman and members of the Subcommittee, I am pleased to be here at your request to testify on matters relating to the Department of Energy's Yucca Mountain Project. As you know, issues surrounding the termination of the Project have been widely publicized. They directly impact the Department's responsibilities to manage legacy waste generated from nuclear weapons production and to accept and dispose of spent nuclear fuel emanating from commercial nuclear reactors. The United States has invested nearly 30 years of effort and expended over $15 billion to

271

White Mountain Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Project Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: White Mountain Geothermal Project Project Location Information Coordinates 44.571666666667°, -114.47916666667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.571666666667,"lon":-114.47916666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

272

Mountain Parks Electric, Inc | Open Energy Information  

Open Energy Info (EERE)

Parks Electric, Inc Parks Electric, Inc Jump to: navigation, search Name Mountain Parks Electric, Inc Place Colorado Utility Id 13050 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial: Large Power Peak-Shaving Rate (Primary Service) Commercial Commercial: Large Power Peak-Shaving Rate (Secondary Service) Commercial Commercial: Large Power Rate Commercial Commercial: Small Power Rate Commercial General Service (Residential): Time-of-Use Rate Rate A Residential General Service (Residential): Time-of-Use Rate, Rate B Residential

273

Rocky Mountain Humane Investing | Open Energy Information  

Open Energy Info (EERE)

Humane Investing Humane Investing Jump to: navigation, search Name Rocky Mountain Humane Investing Place Allenspark, Colorado Zip 80510 Product Allenspark-based investment management firm prioritising Socially Responsible Investing (SRI). Coordinates 40.19472°, -105.525719° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.19472,"lon":-105.525719,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

274

Aquarious Mountain Area, Arizona: APossible HDR Prospect  

DOE Green Energy (OSTI)

Exploration for Hot Dry Rock (HDR) requires the ability to delineate areas of thermal enhancement. It is likely that some of these areas will exhibit various sorts of anomalous conditions such as seismic transmission delays, low seismic velocities, high attenuation of seismic waves, high electrical conductivity in the crust, and a relatively shallow depth to Curie point of Magnetization. The Aquarius Mountain area of northwest Arizona exhibits all of these anomalies. The area is also a regional Bouguer gravity low, which may indicate the presence of high silica type rocks that often have high rates of radioactive heat generation. The one deficiency of the area as a HDR prospect is the lack of a thermal insulating blanket.

West, F.G.; Laughlin, A.W.

1979-05-01T23:59:59.000Z

275

Rocky Mountain Basins Produced Water Database  

DOE Data Explorer (OSTI)

Historical records for produced water data were collected from multiple sources, including Amoco, British Petroleum, Anadarko Petroleum Corporation, United States Geological Survey (USGS), Wyoming Oil and Gas Commission (WOGC), Denver Earth Resources Library (DERL), Bill Barrett Corporation, Stone Energy, and other operators. In addition, 86 new samples were collected during the summers of 2003 and 2004 from the following areas: Waltman-Cave Gulch, Pinedale, Tablerock and Wild Rose. Samples were tested for standard seven component "Stiff analyses", and strontium and oxygen isotopes. 16,035 analyses were winnowed to 8028 unique records for 3276 wells after a data screening process was completed. [Copied from the Readme document in the zipped file available at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the Zipped file to your PC. When opened, it will contain four versions of the database: ACCESS, EXCEL, DBF, and CSV formats. The information consists of detailed water analyses from basins in the Rocky Mountain region.

276

The Influence of the Rocky Mountain on the 1314 April 1986 Severe Weather Outbreak. Part I: Mesoscale Lee Cyclogenesis and Its Relationship to Severe Weather and Dust Storms  

Science Conference Proceedings (OSTI)

In this first of a two paper series, a sequence of dynamical processes involving the evolution of a mesoscale Ice cyclone and its subsequent interaction with a mesoscale tropopause fold downstream of the Rocky Mountains is investigated. These ...

V. Mohan Karyampudi; Michael L. Kaplan; Steven E. Koch; Robert J. Zamora

1995-05-01T23:59:59.000Z

277

Engineering in a mountain resort town  

E-Print Network (OSTI)

This Record of Study (ROS) summarizes the experiences and lessons learned while serving as an intern with Peak Land Consultants (PLC) in Vail, Colorado. The objectives of the internship were designed to provide benefits to myself, the United States Air Force Academy, and PLC. The first objective was to develop a business plan for a similar company in a mountain community. This provides a useful tool to begin a second career after retirement from the Air Force. The second objective was to build lesson plans based on the experience at PLC for the Air Force Academy cadets. Through the use of real engineering examples and by integrating civil engineering subjects across the curriculum, Air Force Academy cadets will be better prepared for their professional life as a civil engineer. The last objective was to provide PLC with an objective management review. The management review highlighted good practices and provided recommendations for further improvement in areas such as marketing, communication, project management, training, and company goals. Each one of the objectives was tested. The business plan was provided to a loan officer at Wells Fargo bank. The loan officer remarked that the plan was well researched. He also indicated that the bank was willing to provide a loan for the business. This positive result indicated that the objective to develop a business plan for a similar company in a mountain community was met. The second objective to build lesson plans for the Air Force Academy was also met. These plans were presented to a senior class in April 07. The cadets liked the idea of seeing how an engineer solves problems in the private sector. In addition, the cadets recognized the usefulness of AutoCAD in solving problems in their other classes. Finally, the objective for providing a management review of PLC also proved to be successful. PLC has already implemented a number of recommendations from the review and is using the review to build new company and employee goals.

Waters, Eric W.

2007-12-01T23:59:59.000Z

278

Geological map of Bare Mountain, Nye County, Nevada  

SciTech Connect

Bare Mountain comprises the isolated complex of mountain peaks southeast of the town of Beatty in southern Nye County, Nevada. This small mountain range lies between the alluvial basins of Crater Flat to the east and the northern Amargosa Desert to the southwest. The northern boundary of the range is less well defined, but for this report, the terrane of faulted Miocene volcanic rocks underlying Beatty Mountain and the unnamed hills to the east are considered to be the northernmost part of Bare Mountain. The southern tip of the mountain range is at Black Marble, the isolated hill at the southeast corner of the map. The main body of the range, between Fluorspar Canyon and Black Marble, is a folded and complexly faulted, but generally northward-dipping (or southward-dipping and northward-overturned), sequence of weakly to moderately metamorphosed upper Proterozoic and Paleozoic marine strata, mostly miogeoclinal (continental shelf) rocks. The geology of Bare Mountain is mapped at a scale of 1:24,000.

Monsen, S.A.; Carr, M.D.; Reheis, M.C.; Orkild, P.P.

1992-12-31T23:59:59.000Z

279

Repository site data report for unsaturated tuff, Yucca Mountain, Nevada  

Science Conference Proceedings (OSTI)

The US Department of Energy is currently considering the thick sequences of unsaturated, fractured tuff at Yucca Mountain, on the southwestern boundary of the Nevada Test Site, as a possible candidate host rock for a nuclear-waste repository. Yucca Mountain is in one of the most arid areas in the United States. The site is within the south-central part of the Great Basin section of the Basin and Range physiographic province and is located near a number of silicic calderas of Tertiary age. Although localized zones of seismic activity are common throughout the province, and faults are present at Yucca Mountain, the site itself is basically aseismic. No data are available on the composition of ground water in the unsaturated zone at Yucca Mountain. It has been suggested that the composition is bounded by the compositions of water from wells USW-H3, UE25p-1, J-13, and snow or rain. There are relatively few data available from Yucca Mountain on the moisture content and saturation, hydraulic conductivity, and characteristic curves of the unsaturated zone. The available literature on thermomechanical properties of tuff does not always distinguish between data from the saturated zone and data from the unsaturated zone. Geochemical, hydrologic, and thermomechanical data available on the unsaturated tuffs of Yucca Mountain are tabulated in this report. Where the data are very sparse, they have been supplemented by data from the saturated zone or from areas other than Yucca Mountain. 316 refs., 58 figs., 37 tabs.

Tien, P.L.; Updegraff, C.D.; Siegel, M.D.; Wahi, K.K.; Guzowski, R.V.

1985-11-01T23:59:59.000Z

280

Direct-Current Resistivity Survey At Blue Mountain Area (Fairbank  

Open Energy Info (EERE)

5) 5) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Blue Mountain Area (Fairbank Engineering, 2005) Exploration Activity Details Location Blue Mountain Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Geophysical surveys that have been conducted specifically for the geothermal program at Blue Mountain include a self-potential (SP) survey, and additional IP/electrical resistivity traversing. These surveys were conducted under a cooperative program between Noramex Corporation and the Energy and Geosciences Institute (EGI), University of Utah, with funding support from the DOE's Office of Geothermal Technology (DOE/OGT).

Note: This page contains sample records for the topic "investigations chocolate mountains" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

MOUNTAIN-SCALE COUPLED PROCESSES (TH/THC/THM)MODELS  

SciTech Connect

This report documents the development and validation of the mountain-scale thermal-hydrologic (TH), thermal-hydrologic-chemical (THC), and thermal-hydrologic-mechanical (THM) models. These models provide technical support for screening of features, events, and processes (FEPs) related to the effects of coupled TH/THC/THM processes on mountain-scale unsaturated zone (UZ) and saturated zone (SZ) flow at Yucca Mountain, Nevada (BSC 2005 [DIRS 174842], Section 2.1.1.1). The purpose and validation criteria for these models are specified in ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Drift-Scale Abstraction) Model Report Integration'' (BSC 2005 [DIRS 174842]). Model results are used to support exclusion of certain FEPs from the total system performance assessment for the license application (TSPA-LA) model on the basis of low consequence, consistent with the requirements of 10 CFR 63.342 [DIRS 173273]. Outputs from this report are not direct feeds to the TSPA-LA. All the FEPs related to the effects of coupled TH/THC/THM processes on mountain-scale UZ and SZ flow are discussed in Sections 6 and 7 of this report. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The mountain-scale TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH model captures mountain-scale three-dimensional flow effects, including lateral diversion and mountain-scale flow patterns. The mountain-scale THC model evaluates TH effects on water and gas chemistry, mineral dissolution/precipitation, and the resulting impact to UZ hydrologic properties, flow and transport. The mountain-scale THM model addresses changes in permeability due to mechanical and thermal disturbances in stratigraphic units above and below the repository host rock. The THM model focuses on evaluating the changes in UZ flow fields arising out of thermal stress and rock deformation during and after the thermal period (the period during which temperatures in the mountain are significantly higher than ambient temperatures).

Y.S. Wu

2005-08-24T23:59:59.000Z

282

Rocky Mountain Power - FinAnswer Express | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Mountain Power - FinAnswer Express Rocky Mountain Power - FinAnswer Express Rocky Mountain Power - FinAnswer Express < Back Eligibility Agricultural Commercial Construction Industrial Savings Category Other Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Design & Remodeling Windows, Doors, & Skylights Program Info State Idaho Program Type Utility Rebate Program Rebate Amount '''New Construction/Major Renovation Only''' Interior Lighting: $0.08/kwh annual energy savings LED Fixture (Exterior): $100 Induction Fixture (Exterior): $125 CFL Wallpack (Exterior): $30 Lighting Control (Exterior): $70 '''Retrofit Only''' Fluorescent Fixture Upgrades: $5-$20/fixture

283

Program on Technology Innovation: Room at the Mountain  

Science Conference Proceedings (OSTI)

This report provides a preliminary analysis of the physical capacity of Yucca Mountain for the disposal of additional commercial spent nuclear fuel (CSNF). The result of this examination is that the current legislative limit on Yucca Mountain disposal capacity, 70,000 MTU of a combination of CSNF, DOE, and defense wastes (63,000 MTU CSNF; 7000 MTU or equivalent of DOE and defense wastes) is a small fraction of the actual available physical capacity of the Yucca Mountain system. EPRI is confident that at ...

2006-05-31T23:59:59.000Z

284

Rocky Mountain Power - New Homes Program for Builders | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Mountain Power - New Homes Program for Builders Rocky Mountain Power - New Homes Program for Builders Rocky Mountain Power - New Homes Program for Builders < Back Eligibility Construction Installer/Contractor Multi-Family Residential Residential Savings Category Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Sealing Your Home Ventilation Heat Pumps Commercial Lighting Lighting Windows, Doors, & Skylights Program Info State Utah Program Type Utility Rebate Program Rebate Amount '''New Construction Whole Home Options''' Home Performance ENERGY STAR Version 3 Certified Home: $500 (Single Family); $200 (Multifamily) ENERGY STAR Version 3 Certified Home: $250 (Single Family); $150 (Multifamily)

285

Yucca Mountain Site Characterization Project bibliography, 1992--1994. Supplement 4  

Science Conference Proceedings (OSTI)

Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy`s Energy Science and Technology Database from January 1, 1992, through December 31, 1993. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it. Earlier information on this project can be found in the first bibliography DOE/TIC-3406, which covers 1977--1985, and its three supplements DOE/OSTI-3406(Suppl.1), DOE/OSTI-3406(Suppl.2), and DOE/OSTI-3406(Suppl.3), which cover information obtained during 1986--1987, 1988--1989, and 1990--1991, respectively. All entries in the bibliographies are searchable online on the NNW database file. This file can be accessed through the Integrated Technical Information System (ITIS) of the US Department of Energy (DOE).

NONE

1992-06-01T23:59:59.000Z

286

Independent management and financial review, Yucca Mountain Project, Nevada. Final report, Appendix  

SciTech Connect

The Nuclear Waste Policy Act of 1982 (Public Law 97-425), as amended by Public Law 100-203, December 22, 1987, established the Office of Civilian Radioactive Waste Management (OCRWM) within the Department of Energy (DOE), and directed the Office to investigate a site at Yucca Mountain, Nevada, to determine if this site is suitable for the construction of a repository for the disposal of high level nuclear waste. Work on site characterization has been under way for several years. Thus far, about $1.47 billion have been spent on Yucca Mountain programs. This work has been funded by Congressional appropriations from a Nuclear Waste Fund to which contributions have been made by electric utility ratepayers through electric utilities generating power from nuclear power stations. The Secretary of Energy and the Governor of the State of Nevada have appointed one person each to a panel to oversee an objective, independent financial and management evaluation of the Yucca Mountain Project. The Requirements for the work will include an analysis of (1) the Yucca Mountain financial and, contract management techniques and controls; (2) Project schedules and credibility of the proposed milestones; (3) Project organizational effectiveness and internal planning processes, and (4) adequacy of funding levels and funding priorities, including the cost of infrastructure and scientific studies. The recipient will provide monthly progress report and the following reports/documents will be presented as deliverables under the contract: (1) Financial and Contract Management Preliminary Report; (2) Project Scheduling Preliminary Report; (3)Project Organizational Effectiveness Preliminary Report; (4) Project Funding Levels and Funding Priorities Preliminary Report; and (5) Final Report.

1995-07-15T23:59:59.000Z

287

Geothermometry At Socorro Mountain Area (Armstrong, Et Al., 1995) | Open  

Open Energy Info (EERE)

Geothermometry At Socorro Mountain Area (Armstrong, Et Al., 1995) Geothermometry At Socorro Mountain Area (Armstrong, Et Al., 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Socorro Mountain Area (Armstrong, Et Al., 1995) Exploration Activity Details Location Socorro Mountain Area Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Corresponding Socorro caldera Carboniferous rocks were studied in the field in 1988-1992-Renault later completed geochemistry and silica-crystallite geothermometry, Armstrong petrographic analysis and cathodoluminescence, Oscarson SEM studies, and John Repetski (USGS, Reston, Virgina) conodont stratigraphy and color and textural alteration as guides to the carbonate rocks' thermal history. The carbonate-rock classification used in this

288

Two Independent Assessments Find the Department of Energy's Yucca Mountain  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Two Independent Assessments Find the Department of Energy's Yucca Two Independent Assessments Find the Department of Energy's Yucca Mountain Project is on Track Two Independent Assessments Find the Department of Energy's Yucca Mountain Project is on Track December 13, 2007 - 4:44pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) Director of the Office of Civilian Radioactive Waste Management (OCRWM) today released two independent assessments addressing areas critical to the overall success of the Yucca Mountain repository program. These assessments, which include an independent review of the OCRWM Quality Assurance (QA) Program and an independent review of its engineering processes and procedures, have concluded that the Yucca Mountain Project's current QA and engineering processes and procedures are consistent with standard nuclear industry

289

City of White Mountain, Alaska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Mountain, Alaska (Utility Company) Mountain, Alaska (Utility Company) Jump to: navigation, search Name City of White Mountain Place Alaska Utility Id 20535 Utility Location Yes Ownership M Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Rate Commercial Residential Rate Residential Average Rates Residential: $0.7230/kWh Commercial: $0.7470/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_White_Mountain,_Alaska_(Utility_Company)&oldid=410426"

290

Rock Sampling At Florida Mountains Area (Brookins, 1982) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Rock Sampling At Florida Mountains Area (Brookins, 1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Florida Mountains Area (Brookins, 1982) Exploration Activity Details Location Florida Mountains Area Exploration Technique Rock Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Radiogenic heat production analysis from U,Th,K concentrations. References D. G. Brookins (1982) Potassium, Uranium, Thorium Radiogenic Heat Contribution To Heat Flow In The Precambrian And Younger Silicic Rocks Of The Zuni And Florida Mountains, New Mexico (Usa)

291

Two Independent Assessments Find the Department of Energy's Yucca Mountain  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Assessments Find the Department of Energy's Yucca Independent Assessments Find the Department of Energy's Yucca Mountain Project is on Track Two Independent Assessments Find the Department of Energy's Yucca Mountain Project is on Track December 13, 2007 - 4:44pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) Director of the Office of Civilian Radioactive Waste Management (OCRWM) today released two independent assessments addressing areas critical to the overall success of the Yucca Mountain repository program. These assessments, which include an independent review of the OCRWM Quality Assurance (QA) Program and an independent review of its engineering processes and procedures, have concluded that the Yucca Mountain Project's current QA and engineering processes and procedures are consistent with standard nuclear industry

292

Reflection Survey At Blue Mountain Area (Fairbank Engineering, 2007) | Open  

Open Energy Info (EERE)

Blue Mountain Area (Fairbank Engineering, 2007) Blue Mountain Area (Fairbank Engineering, 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Blue Mountain Area (Fairbank Engineering, 2007) Exploration Activity Details Location Blue Mountain Area Exploration Technique Reflection Survey Activity Date Usefulness useful DOE-funding Unknown Notes A high-resolution seismic reflection survey was conducted by Utah Geophysical, Inc. (1990) along four widely spaced survey lines normal to range front fault sets. The survey was designed primarily to detect silicified zones or zones of argillic alteration, and faulting, to depths of about 300 meters (1000 feet), as part of the precious metals exploration program. One interpretation of the data showed discrete, high-angle faults

293

Mesoscale Modeling for Mountain Weather Forecasting Over the Himalayas  

Science Conference Proceedings (OSTI)

Severe weather has a more calamitous effect in the mountainous region-because the terrain is complex and the economy is poorly developed and fragile. Such weather systems occurring on a small spatiotemporal scale invite application of models with ...

Someshwar Das; S. V. Singh; E. N. Rajagopal; Robert Gall

2003-09-01T23:59:59.000Z

294

Inversion Breakup in Small Rocky Mountain and Alpine Basins  

Science Conference Proceedings (OSTI)

Comparisons are made between the postsunrise breakup of temperature inversions in two similar closed basins in very different climate settings, one in the eastern Alps and one in the Rocky Mountains. The small, high-altitude, limestone sinkholes ...

C. David Whiteman; Bernhard Pospichal; Stefan Eisenbach; Philipp Weihs; Craig B. Clements; Reinhold Steinacker; Erich Mursch-Radlgruber; Manfred Dorninger

2004-08-01T23:59:59.000Z

295

Epithermal Gold Mineralization and a Geothermal Resource at Blue Mountain,  

Open Energy Info (EERE)

Epithermal Gold Mineralization and a Geothermal Resource at Blue Mountain, Epithermal Gold Mineralization and a Geothermal Resource at Blue Mountain, Humboldt County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Epithermal Gold Mineralization and a Geothermal Resource at Blue Mountain, Humboldt County, Nevada Abstract Shallow exploration drilling on the west flank of Blue Mountain discovered sub economic gold mineralization and a spatially associated active geothermal system. The gold mineralization is an unusual example of an acid sulfate type epithermal system developed in pre Tertiary sedimentary host rocks. The geothermal system is largely unexplored but is unusual in that surface manifestation s typically associated with active geothermal system are not present. Authors Andrew J. Parr and Timothy J. Percival

296

Aeromagnetic Survey At Blue Mountain Area (Fairbank Engineering, 2003) |  

Open Energy Info (EERE)

Blue Mountain Area (Fairbank Blue Mountain Area (Fairbank Engineering, 2003) Exploration Activity Details Location Blue Mountain Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes The airborne magnetometer and VLF-EM surveys carried out by Aerodat Limited, in 1988, covered the western flank of Blue Mountain including most of the geothermal lease area. The interpreted data (total field magnetic contours; calculated vertical magnetic gradient) indicate parallel sets of northerly, northeasterly, and northwesterly-trending structures that correspond well with the major fault sets identified from geologic mapping and interpreted drilling sections. Also, an elongate northerly-trending area of low magnetic gradient coincides closely with the area of intense

297

Geology and Temperature Gradient Surveys Blue Mountain Geothermal  

Open Energy Info (EERE)

Geology and Temperature Gradient Surveys Blue Mountain Geothermal Geology and Temperature Gradient Surveys Blue Mountain Geothermal Discovery, Humboldt County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geology and Temperature Gradient Surveys Blue Mountain Geothermal Discovery, Humboldt County, Nevada Abstract Triassic argillite and sandstone of the Grass Valley Formation and phyllitic mudstone of the overlying Raspberry Formation, also of Triassic age, host a blind geothermal system under exploration by Blue Mountain Power Company Inc. with assistance from the Energy & Geoscience Institute. Geologically young, steeply dipping, open fault sets, striking N50-60°E,N50-60°W, and N-S intersect in the geothermal zone providing deep permeability over a wide area. Extensive silicification andhydro

298

Technical Report Confirms Reliability of Yucca Mountain Technical Work |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technical Report Confirms Reliability of Yucca Mountain Technical Technical Report Confirms Reliability of Yucca Mountain Technical Work Technical Report Confirms Reliability of Yucca Mountain Technical Work February 17, 2006 - 11:59am Addthis WASHINGTON, DC - The Department of Energy's Office of Civilian Radioactive Waste Management (OCRWM) today released a report confirming the technical soundness of infiltration modeling work performed by U.S. Geological Survey (USGS) employees. "The report makes clear that the technical basis developed by the USGS has a strong conceptual foundation and is corroborated by independently-derived scientific conclusions, and provides a solid underpinning for the 2002 site recommendation," said OCRWM's Acting Director Paul Golan. "We are committed to opening Yucca Mountain based only on sound science. The work

299

Snowflake White Mountain Power Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Snowflake White Mountain Power Biomass Facility Snowflake White Mountain Power Biomass Facility Jump to: navigation, search Name Snowflake White Mountain Power Biomass Facility Facility Snowflake White Mountain Power Sector Biomass Owner Renegy Location Snowflake, Arizona Coordinates 34.5133698°, -110.0784491° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.5133698,"lon":-110.0784491,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

300

ND-TRIBE-TURTLE MOUNTAIN BAND OF CHIPPEWA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ND-TRIBE-TURTLE MOUNTAIN BAND OF CHIPPEWA ND-TRIBE-TURTLE MOUNTAIN BAND OF CHIPPEWA Energy Efficiency and Conservation Block Grant Program Location: Tribe ND-TRIBE-TURTLE MOUNTAIN BAND OF CHIPPEWA ND American Recovery and Reinvestment Act: Proposed Action or Project Description The Turtle Mountain Band of Chippewa Indians of North Dakota propose to 1) explore the potential for wind energy development on the Reservation by soliciting expertise from an engineering company to determine the best option for tapping wind energy on the reservation for its public buildings and seek legal expertise to study legal barriers that may exist; 2) conduct energy audits and a feasibility study to determine if several sizeable public buildings have the potential to be sites for either district heating or a

Note: This page contains sample records for the topic "investigations chocolate mountains" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Rocky Mountain (PADD 4) Refinery and Blender Net Production of ...  

U.S. Energy Information Administration (EIA)

Rocky Mountain (PADD 4) Refinery and Blender Net Production of Normal Butane (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8

302

Observations of Liquid Water in Orographic Clouds over Elk Mountain  

Science Conference Proceedings (OSTI)

The relatively simple orographic clouds forming in winter over Elk Mountain, Wyoming provided useful opportunities for field studies of cloud formation and of ice crystal development. In this paper, the observations of cloud droplet populations ...

Marcia K. Politovich; Gabor Vali

1983-05-01T23:59:59.000Z

303

Waves on a Marine Inversion Undergoing Mountain Leeside Wind Shear  

Science Conference Proceedings (OSTI)

Inland penetration of a shallow layer of marine air is a common occurrence along the coast of southern California. The marine air generally is confined to the coastal basin by surrounding mountains and a capping inversion. Air above the inversion ...

William T. Sommers

1981-06-01T23:59:59.000Z

304

Topography and Radiation Exchange of a Mountainous Watershed  

Science Conference Proceedings (OSTI)

This report deals with the radiation exchange of a complex terrain. A relatively simple network for computing topographic parameters global radiation, and net radiation of a mountainous terrain was developed and applied to a forested Appalachian ...

Hailiang Fu; Stanislaw J. Tajchman; James N. Kochenderfer

1995-04-01T23:59:59.000Z

305

Mesoscale Snowfall Prediction and Verification in Mountainous Terrain  

Science Conference Proceedings (OSTI)

Short-term forecasting of precipitation often relies on meteorological radar coverage to provide information on the intensity, extent, and motion of approaching mesoscale features. However, in significant portions of mountainous regions, radar ...

Melanie Wetzel; Michael Meyers; Randolph Borys; Ray McAnelly; William Cotton; Andrew Rossi; Paul Frisbie; David Nadler; Douglas Lowenthal; Stephen Cohn; William Brown

2004-10-01T23:59:59.000Z

306

WaveTurbulence Interactions in a Breaking Mountain Wave  

Science Conference Proceedings (OSTI)

The mean and turbulent structures in a breaking mountain wave are considered through an ensemble of high-resolution (essentially large-eddy simulation) wave-breaking calculations. Of particular interest are the turbulent heat and momentum fluxes ...

Craig C. Epifanio; Tingting Qian

2008-10-01T23:59:59.000Z

307

Large-Amplitude Mountain Wave Breaking over Greenland  

Science Conference Proceedings (OSTI)

A large-amplitude mountain wave generated by strong southwesterly flow over southern Greenland was observed during the Fronts and Atlantic Storm-Track Experiment (FASTEX) on 29 January 1997 by the NOAA G-IV research aircraft. Dropwindsondes ...

James D. Doyle; Melvyn A. Shapiro; Qingfang Jiang; Diana L. Bartels

2005-09-01T23:59:59.000Z

308

Rocky Mountain (PADD 4) Foreign Crude Oil Refinery Receipts by ...  

U.S. Energy Information Administration (EIA)

Rocky Mountain (PADD 4) Foreign Crude Oil Refinery Receipts by Tank Cars (Rail) (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8

309

A New Look at Snowpack Trends in the Cascade Mountains  

Science Conference Proceedings (OSTI)

This study examines the changes in Cascade Mountain spring snowpack since 1930. Three new time series facilitate this analysis: a water-balance estimate of Cascade snowpack from 1930 to 2007 that extends the observational record 20 years earlier ...

Mark T. Stoelinga; Mark D. Albright; Clifford F. Mass

2010-05-01T23:59:59.000Z

310

Energy Flux and Wavelet Diagnostics of Secondary Mountain Waves  

Science Conference Proceedings (OSTI)

In recent years, aircraft data from mountain waves have been primarily analyzed using velocity and temperature power spectrum and momentum flux estimation. Herein it is argued that energy flux wavelets (i.e., pressurevelocity wavelet cross-...

Bryan K. Woods; Ronald B. Smith

2010-11-01T23:59:59.000Z

311

Australian Winter Mountain Storm Clouds: Precipitation Augmentation Potential  

Science Conference Proceedings (OSTI)

Two Australian winter mountain storm field research projects were conducted by the Commonwealth Scientific and Industrial Research Organisation Division of Atmospheric Research and the Desert Research Institute Atmospheric Sciences Center in the ...

Alexis B. Long; Elizabeth J. Carter

1996-09-01T23:59:59.000Z

312

Pressure Perturbations and Upslope Flow over a Heated, Isolated Mountain  

Science Conference Proceedings (OSTI)

Surface and upper-air data, collected as part of the Cumulus Photogrammetric, In Situ, and Doppler Observations (CuPIDO) experiment during the 2006 monsoon season around the Santa Catalina Mountains in southeast Arizona, are used to study the ...

Bart Geerts; Qun Miao; J. Cory Demko

2008-11-01T23:59:59.000Z

313

The Interaction of Simulated Squall Lines with Idealized Mountain Ridges  

Science Conference Proceedings (OSTI)

Numerical simulations of squall lines traversing sinusoidal mountain ridges are performed using the Advanced Regional Prediction System cloud-resolving model. Precipitation and updraft strength are enhanced through orographic ascent as a squall ...

Jeffrey Frame; Paul Markowski

2006-07-01T23:59:59.000Z

314

Do Breaking Mountain Waves Deceierate the Local Mean Flow?  

Science Conference Proceedings (OSTI)

Numerical simulations are examined in order to determine the local mean flow response to the generation, propagation, and breakdown of two-dimensional mountain waves. Realistic and idealized cases are considered, and in all instances the pressure ...

Dale R. Durran

1995-11-01T23:59:59.000Z

315

Rocky Mountain Power - Residential Energy Efficiency Rebate Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for contractor) Duct Sealing: 275 - 375 (75 for contractor) Windows: 1sq. ft. Insulation: 0.15 - 0.60sq. ft. Rocky Mountain Power offers the Home Energy Savings Program...

316

Density of Freshly Fallen Snow in the Central Rocky Mountains  

Science Conference Proceedings (OSTI)

New snow density distributions are presented for six measurement sites in the mountains of Colorado and Wyoming. Densities were computed from daily measurements of new snow depth and water equivalent from snow board cores. All data were measured ...

Arthur Judson; Nolan Doesken

2000-07-01T23:59:59.000Z

317

INTER-MOUNTAIN BASINS SHALE BADLAND extent exaggerated for display  

E-Print Network (OSTI)

INTER-MOUNTAIN BASINS SHALE BADLAND R.Rondeau extent exaggerated for display ACHNATHERUM HYMENOIDES HERBACEOUS ALLIANCE Achnatherum hymenoides Shale Barren Herbaceous Vegetation ARTEMISIA BIGELOVII SHRUBLAND ALLIANCE Leymus salinus Shale Sparse Vegetation Overview: This widespread ecological system

318

Yucca Mountain Total System Performance Assessment, Phase 3  

Science Conference Proceedings (OSTI)

This report discusses recent developments of EPRI's Total System Performance Assessment (TSPA) model applied to the candidate spent fuel and high-level radioactive waste (HLW) disposal site at Yucca Mountain, Nevada. Building on earlier work where a probability-based methodology was developed, the report details the recent modifications to the EPRI TSPA code, IMARC, applied to Yucca Mountain. The report also includes performance analyses using IMARC, identifies key technical components important to Yucca...

1996-12-02T23:59:59.000Z

319

Biosphere Modeling and Dose Assessment for Yucca Mountain  

Science Conference Proceedings (OSTI)

This report develops a biosphere model appropriate for use in calculating doses to hypothetical individuals living in the far future in the vicinity of Yucca Mountain, Nevada. Doses are assumed to arise from potential releases from a spent fuel and high-level radioactive waste (HLW) disposal facility located beneath Yucca Mountain. The model provides guidance on approaches to dealing with the biosphere appropriate for site suitability and licensing assessments.

1996-12-31T23:59:59.000Z

320

Program on Technology Innovation: Room at the Mountain  

Science Conference Proceedings (OSTI)

Projected expansion of nuclear power beyond the year 2014 will result in the need for commercial spent nuclear fuel (CSNF) management options in addition to the currently legislated CSNF storage capacity at the proposed Yucca Mountain geological repository. At present, 70,000 MTHM of storage capacity has been authorized, with a projection that 63,000 MTHM would be used for CSNF. This report extends preliminary analyses of the maximum physical capacity of the Yucca Mountain repository, presented in EPRI r...

2007-06-29T23:59:59.000Z

Note: This page contains sample records for the topic "investigations chocolate mountains" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Yucca Mountain Site Characterization Project: Technical Data Catalog quarterly supplement  

Science Conference Proceedings (OSTI)

The March 21, 1993, Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. A complete revision to the Catalog is published at the end of each fiscal year. Supplements to the end-of-year edition are published each quarter. These supplements provide information related to new data items not included in previous quarterly updates and data items affected by changes to previously published reference information. The Technical Data Catalog, dated September 30, 1993, should be retained as the baseline document for the supplements until the end-of-year revision is published and distributed in October 1994.

NONE

1994-03-31T23:59:59.000Z

322

Yucca Mountain Site Characterization Project technical data catalog: Quarterly supplement  

SciTech Connect

The Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where the data may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed-in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and distributed in the month following the end of each quarter. A complete revision to the catalog is published at the end of each fiscal year. Supplements to the end-of-year edition are published each quarter. These supplements provide information related to new data items not included in previous quarterly updates and data items affected by changes to previously published reference information. The Technical Data Catalog, dated September 30, 1994, should be retained as the baseline document for the supplements until the end-of-year revision is published and distributed in October 1995.

NONE

1994-12-31T23:59:59.000Z

323

Mountain-Wave Drag in the Stratosphere and Mesosphere Inferred from Observed Winds and a Simple Mountain-Wave Parameterization Scheme  

Science Conference Proceedings (OSTI)

A daily analysis of mountain-wave propagation through observed, global wind, and temperature fields in January and August is presented. Winds and temperatures are obtained from the daily 18-level NMC Climate Analysis Center. Mountain-wave ...

Julio T. Bacmeister

1993-02-01T23:59:59.000Z

324

Geomorphic and Geochemical Characteristics of Five Alpine Fens in the San Juan Mountains, Colorado  

E-Print Network (OSTI)

Fens are abundant in the San Juan Mountains. By exploring the geomorphology and geochemistry of fen wetlands, the functions that fens serve can be better understood. In this research, two main studies were conducted involving the geomorphology and geochemistry of fens. The first study involved a complex investigation of the geomorphology of five fen sites in the San Juan Mountains near Silverton, Colorado. Geomorphic maps were constructed for each fen site at a scale of ~1:3,000. A geomorphic classification scheme was then made based on fen location, and fens were placed in one of three categories: 1) valley-bottom, 2) valley-side, and 3) terrace. Fen circularity and elongation values were calculated for thirty fens to determine morphometry. A pattern for elongation of fens emerged between the three types of alpine fens with valley-bottom fens having an average elongation value of 1.7, valley-side 2.4, and terrace 1.9. Valley-side fens are more elongated than valley-bottom and terrace fens, which exhibit similar elongation values. In addition, sediment samples at each site were sectioned along visual breaks in the sediment column and were sieved. Mean phi values were calculated for each section and at each site. The mean phi values at California Gulch, Glacial Lake Ironton, Howardsville, Red Mountain Pass North, and Red Mountain Pass South, are 0.2112, 0.9045, 1.6028, 0.0178, and 1.0516, respectively. Overall, coarse-grained particles are associated with valley-side fens, and medium-grained particles are associated with valley-bottom and terrace fens. The second part of the study involved investigating the geochemistry of fen sediment. The geochemistry portion of this research focused on concentration and isotopic ratios of Pb and the amount of 137Cs in fen sediment to better understand variations of Pb with depth and calculate approximate sedimentation rates. Based on isotopic ratios of Pb, binary mixing was determined with the presence of ore mineralized Pb and non-ore mineralized. Binary mixing of two types of ore-mineralized Pb is present at the Howardsville fen and both ore-mineralized and non-ore mineralized Pb is present at the Red Mountain Pass North fen. Based on 137Cs in fen sediment at Howardsville, an average rate of deposition of sediment is approximately 0.16 cm/yr, with a visible change in sedimentation rates pre- and post-1960s.

McClenning, Bree Kathleen 1985-

2012-12-01T23:59:59.000Z

325

Bibliography of publications related to the Yucca Mountain Site Characterization Project prepared by U.S. Geological Survey personnel through April 1991  

Science Conference Proceedings (OSTI)

Personnel of the US Geological Survey have participated in nuclear-waste management studies in the State of Nevada since the mid-1970`s. A bibliography of publications prepared principally for the US Department of Energy Yucca Mountain Site Characterization Project (formerly Nevada Nuclear Waste Storage Investigations) through April 1991 contains 475 entries in alphabetical order. The listing includes publications prepared prior to the inception of the Nevada Nuclear Waste Storage Investigations Project in April 1977 and selected publications of interest to the Yucca Mountain region. 480 refs.

Glanzman, V.M.

1991-11-01T23:59:59.000Z

326

Mercury audit at Rocky Mountain Arsenal  

Science Conference Proceedings (OSTI)

This report presents the results of an environmental compliance audit to identify potential mercury-containing equipment in 261 building and 197 tanks at the Rocky Mountain Arsenal (RMA). The RMA, located near Denver, Colorado, is undergoing clean up and decommissioning by the Department of the Army. Part of the decommissioning procedure is to ensure that all hazardous wastes are properly identified and disposed of. The purpose of the audit was to identify any mercury spills and mercury-containing instrumentation. The audit were conducted from April 7, 1992, through July 16, 1992, by a two-person team. The team interviewed personnel with knowledge of past uses of the buildings and tanks. Information concerning past mercury spills and the locations and types of instrumentation that contain mercury proved to be invaluable for an accurate survey of the arsenal. The team used a Jerome{reg_sign} 431-X{trademark} Mercury Vapor Analyzer to detect spills and confirm locations of mercury vapor. Twelve detections were recorded during the audit and varied from visible mercury spills to slightly elevated readings in the corners of rooms with past spills. The audit also identified instrumentation that contained mercury. All data have been incorporated into a computerized data base that is compatible with the RMA data base.

Smith, S.M.; Jensen, M.K. [Oak Ridge National Lab., TN (United States); Anderson, G.M. [Rocky Mountain Arsenal, Denver, CO (United States)

1994-02-01T23:59:59.000Z

327

Modeling of coupled heat transfer and reactive transport processes in porous media: Application to seepage studies at Yucca Mountain, Nevad a  

E-Print Network (OSTI)

Fractured Rock of Yucca Mountain, Nevada: Heterogeneity andfractured rocks of Yucca Mountain have been extensivelyHydrothermal Flow at Yucca Mountain, Part I: Modeling and

Mukhopadhyay, S.; Sonnenthal, E.L.; Spycher, N.

2008-01-01T23:59:59.000Z

328

Evaluating the Moisture Conditions in the Fractured Rock at Yucca Mountain: The Impact of Natural Convection Processes in Heated Emplacement Drifts  

E-Print Network (OSTI)

THE FRACTURED ROCK AT YUCCA MOUNTAIN: THE IMPACT OF NATURALgeologic repository at Yucca Mountain, Nevada, will stronglyWaste Emplacement Drifts at Yucca Mountain, Nevada, Nuclear

Birkholzer, J.T.; Webb, S.W.; Halecky, N.; Peterson, P.F.; Bodvarsson, G.S.

2005-01-01T23:59:59.000Z

329

Response to "Analysis of the Treatment, by the U.S. Department of Energy, of the FEP Hydrothermal Activity in the Yucca Mountain Performance Assessment" by Yuri Dublyansky  

E-Print Network (OSTI)

Mineral Formation at Yucca Mountain, Nevada. Geochimica etand Heat Flow Near Yucca Mountain, Nevada: Some Tectonic andNuclear Waste Site, Yucca Mountain, Nevada, USA: Pedogenic,

Houseworth, J.E.

2010-01-01T23:59:59.000Z

330

Revised potentiometric-surface map, Yucca Mountain and vicinity, Nevada  

SciTech Connect

The revised potentiometric-surface map presented in this report updates earlier maps of the Yucca Mountain area using mainly 1988 average water levels. Because of refinements in the corrections to the water-level measurements, these water levels have increased accuracy and precision over older values. The small-gradient area to the southeast of Yucca Mountain is contoured with a 0.25-meter interval and ranges in water-level altitude from 728.5 to 73 1.0 meters. Other areas with different water levels, to the north and west of Yucca Mountain, are illustrated with shaded patterns. The potentiometric surface can be divided into three regions: (1) A small-gradient area to the southeast of Yucca Mountain, which may be explained by flow through high-transmissivity rocks or low ground-water flux through the area; (2) A moderate-gradient area, on the western side of Yucca Mountain, where the water-level altitude ranges from 775 to 780 meters, and appears to be impeded by the Solitario Canyon Fault and a splay of that fault; and (3) A large-gradient area, to the north-northeast of Yucca Mountain, where water level altitude ranges from 738 to 1,035 meters, possibly as a result of a semi-perched groundwater system. Water levels from wells at Yucca Mountain were examined for yearly trends using linear least-squares regression. Data from five wells exhibited trends which were statistically significant, but some of those may be a result of slow equilibration of the water level from drilling in less permeable rocks. Adjustments for temperature and density changes in the deep wells with long fluid columns were attempted, but some of the adjusted data did not fit the surrounding data and, thus, were not used.

Ervin, E.M.; Luckey, R.R.; Burkhardt, D.J.

1994-12-01T23:59:59.000Z

331

Thermal Gradient Holes At Blue Mountain Area (Fairbank & Neggemann, 2004) |  

Open Energy Info (EERE)

Blue Mountain Area (Fairbank & Neggemann, 2004) Blue Mountain Area (Fairbank & Neggemann, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Blue Mountain Area (Fairbank & Neggemann, 2004) Exploration Activity Details Location Blue Mountain Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown References Brian D. Fairbank, Kim V. Niggemann (2004) Deep Blue No 1- A Slimhole Geothermal Discovery At Blue Mountain, Humboldt County, Nevada Retrieved from "http://en.openei.org/w/index.php?title=Thermal_Gradient_Holes_At_Blue_Mountain_Area_(Fairbank_%26_Neggemann,_2004)&oldid=386709" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link

332

Armenia Mountain Wind Energy Project | Open Energy Information  

Open Energy Info (EERE)

Armenia Mountain Wind Energy Project Armenia Mountain Wind Energy Project Jump to: navigation, search Name Armenia Mountain Wind Energy Project Facility Armenia Mountain Wind Energy Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner AES Armenia Mountain Wind Developer AES Energy Purchaser Old Dominion Electric Location Tioga and Bradford Counties PA Coordinates 41.763272°, -76.842613° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.763272,"lon":-76.842613,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

333

Field trip guide to selected outcrops, Arbuckle Mountains, Oklahoma  

Science Conference Proceedings (OSTI)

The Arbuckle Mountains, named for Brigadier General Matthew Arbuckle, are located in south-central Oklahoma. The formations that comprise the Arbuckle Mountains have been extensively studied for hydrocarbon source rock and reservoir rock characteristics that can be applied to the subsurface in the adjacent Anadarko and Ardmore basins. Numerous reports and guidebooks have been written concerning the Arbuckle Mountains. A few important general publications are provided in the list of selected references. The purpose of this handout is to provide general information on the geology of the Arbuckle Mountains and specific information on the four field trip stops, adapted from the literature. The four stops were at: (1) Sooner Rock and Sand Quarry; (2) Woodford Shale; (3) Hunton Anticline and Hunton Quarry; and (4) Tar Sands of Sulfur Area. As part of this report, two papers are included for more detail: Paleomagnetic dating of basinal fluid migration, base-metal mineralization, and hydrocarbon maturation in the Arbuckle Mountains, Oklahoma and Laminated black shale-bedded chert cyclicity in the Woodford Formation, southern Oklahoma.

NONE

1991-11-17T23:59:59.000Z

334

A Conceptual and Numerical Model for Thermal-Hydrological-Chemical Processes in the Yucca Mountain Drift Scale Test  

E-Print Network (OSTI)

of the unsaturated zone at Yucca Mountain, NV from three-Scale Heater Test. Yucca Mountain Project Level 4 MilestoneReport, Chapter 6. Yucca Mountain Project Level 4 Milestone

Sonnenthal, Eric L.; Spycher, Nicolas F.; Conrad, Mark; Apps, John

2003-01-01T23:59:59.000Z

335

Preliminary 3-D site-scale studies of radioactive colloid transort in the unsaturated zone at Yucca Mountain, Nevada  

E-Print Network (OSTI)

into drifts at Yucca Mountain. J. Contam. Hydrol. , 38(1pneumatic response at Yucca Mountain, Nevada. J. Contam.unsaturated zone model of Yucca Mountain, Nevada. J. Contam.

Moridis, G.J.; Hu, Q.; Wu, Y.-S.; Bodvarsson, G.S.

2001-01-01T23:59:59.000Z

336

Coupled Analysis of Change in Fracture Permeability during the Cooling Phase of the Yucca Mountain Drift Scale Test  

E-Print Network (OSTI)

mechanical analysis of the Yucca Mountain Drift Scale Test scale heater test at Yucca Mountain, Nevada, USA. In.t J.and Cooling at the Yucca Mountain Drift Scale Test. In.t J.

Rutqvist, J.

2008-01-01T23:59:59.000Z

337

Evaluating Flake Assemblage and Stone Tool Distributions at a Large Western Stemmed Tradition Site Near Yucca Mountain, Nevada  

E-Print Network (OSTI)

Tradition Site Near Yucca Mountain, Nevada G R E G O R Y M .Institute near Yucca Mountain, Nevada, have revealed anlevel at the top of Yucca Mountain. Vegetation is typi- cal

Haynes, Gregory M

1996-01-01T23:59:59.000Z

338

Performance predictions for mechanical excavators in Yucca Mountain tuffs; Yucca Mountain Site Characterization Project  

SciTech Connect

The performances of several mechanical excavators are predicted for use in the tuffs at Yucca Mountain: Tunnel boring machines, the Mobile Miner, a roadheader, a blind shaft borer, a vertical wheel shaft boring machine, raise drills, and V-Moles. Work summarized is comprised of three parts: Initial prediction using existing rock physical property information; Measurement of additional rock physical properties; and Revision of the initial predictions using the enhanced database. The performance predictions are based on theoretical and empirical relationships between rock properties and the forces-experienced by rock cutters and bits during excavation. Machine backup systems and excavation design aspects, such as curves and grades, are considered in determining excavator utilization factors. Instanteous penetration rate, advance rate, and cutter costs are the fundamental performance indicators.

Ozdemir, L.; Gertsch, L.; Neil, D.; Friant, J. [Colorado School of Mines, Golden, CO (United States). Earth Mechanics Inst.

1992-09-01T23:59:59.000Z

339

Cuttings Analysis At Marysville Mountain Geothermal Area (1976) | Open  

Open Energy Info (EERE)

Geothermal Area (1976) Geothermal Area (1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Marysville Mountain Geothermal Area (1976) Exploration Activity Details Location Marysville Mountain Geothermal Area Exploration Technique Cuttings Analysis Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the geologic environment of the geothermal area Notes The geologic environment of the particular areas of interest are described, including rock types, geologic structure, and other important parameters that help describe the reservoir and overlying cap rock. References Pratt, H. R.; Simonson, E. R. (1 January 1976) Geotechnical studies of geothermal reservoirs Retrieved from "http://en.openei.org/w/index.php?title=Cuttings_Analysis_At_Marysville_Mountain_Geothermal_Area_(1976)&oldid=473911"

340

Rocky Mountain Power - FinAnswer Express | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Mountain Power - FinAnswer Express Rocky Mountain Power - FinAnswer Express Rocky Mountain Power - FinAnswer Express < Back Eligibility Agricultural Commercial Construction Industrial Multi-Family Residential Savings Category Other Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Insulation Design & Remodeling Windows, Doors, & Skylights Program Info State Utah Program Type Utility Rebate Program Rebate Amount Interior Lighting: $0.08/kWh annual savings Induction Fixture (Exterior): $125/unit LED Outdoor/Roadway Fixture (Exterior): $100/unit CFL Wall Pack (Exterior): $30/unit Lighting Controls: $75/sensor Wall Insulation: $0.07/sq. ft. Roof Insulation: $0.05/sq. ft.

Note: This page contains sample records for the topic "investigations chocolate mountains" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Interior Bureau of Land Management Battle Mountain District Office  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States Department of the United States Department of the Interior Bureau of Land Management Battle Mountain District Office Battle Mountain Nevada November 19, 2010 Tonopah Field Office Tonopah, Nevada FES-10-57 N-86292 DOI-BLM-NVB020-2009-0104-EIS Tonopah Solar Energy, LLC Crescent Dunes Solar Energy Project Final Environmental Impact Statement Proposed Crescent Dunes Solar Energy Project: Final EIS| ii BLM Mission Statement It is the mission of the Bureau of Land Management to sustain the health, diversity, and productivity of the public lands for the use and enjoyment of present and future generations. BLM/NV/BM/EIS/10/30+1793 DOI No. FES 10-57 http://www.blm.gov/nv/stlenlfo/battle_mountain_field.html In Reply Refer To: N-86292 DOI-BLM-NVBO2O-2009-0 1 04-EIS 2800 (NVB0200) Dear

342

Rocky Mountain Power - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Mountain Power - Residential Energy Efficiency Rebate Program Rocky Mountain Power - Residential Energy Efficiency Rebate Program Rocky Mountain Power - Residential Energy Efficiency Rebate Program < Back Eligibility Installer/Contractor Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Commercial Lighting Lighting Water Heating Program Info State Utah Program Type Utility Rebate Program Rebate Amount Clothes Washers: up to $50 Dishwashers: $20 Refrigerator: $40 Freezer: $20 Electric Water Heaters: $50 CFL/LED Light Fixtures: $20/fixture Insulation: $0.15 - $0.65/sq. ft., plus potential bonus Windows: $0.50 - $2/sq. ft. Room Air Conditioners: $30 Duct Sealing/Insulation/Weatherization (Electric): up to $300

343

Thermohydrologic behavior and repository design at Yucca Mountain  

DOE Green Energy (OSTI)

Radioactive decay of nuclear waste emplaced at Yucca Mountain will produce an initial heat flux many times larger than the heat flux in some natural geothermal systems. This heat flux will change the thermal and hydrologic environment at Yucca Mountain significantly, affecting both the host rock and conditions within the emplacement tunnels (drifts). Understanding the thermohydrologic behavior in this coupled natural and engineered system is critical to the assessment of the viability of Yucca Mountain as a nuclear-waste repository site and for repository design decision-making. We report results from a study that uses our multi-scale modeling approach to explore the relationship between repository design, thermohydrologic behavior, and key repository performance measures.

Buscheck, T; Rosenberg, N D; Gansemer, J D; Sun, Y

2000-10-01T23:59:59.000Z

344

Buffalo Mountain Wind Energy Center I | Open Energy Information  

Open Energy Info (EERE)

Buffalo Mountain Wind Energy Center I Buffalo Mountain Wind Energy Center I Facility Buffalo Mountain Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Tennessee Valley Authority Developer EnXco Energy Purchaser Tennessee Valley Authority Location Anderson County TN Coordinates 36.115822°, -84.333742° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.115822,"lon":-84.333742,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

345

Electrical Resistivity and Self-Potential Surveys Blue Mountain Geothermal  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Electrical Resistivity and Self-Potential Surveys Blue Mountain Geothermal Area, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Electrical Resistivity and Self-Potential Surveys Blue Mountain Geothermal Area, Nevada Abstract Self potential and electrical resistivity surveys have been completed at the Blue Mountain geothermal area to search for the source of thermal fluids discovered during drilling for mineral exploration, and to help characterize the geothermal resource. Two large SP anomalies are associated with the artesian thermal area and the area of highest temperature observed in drill holes. Two similar anomalies were mapped 1 to 3 km to the south

346

Jemez Mountains Elec Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Jemez Mountains Elec Coop, Inc Jemez Mountains Elec Coop, Inc Jump to: navigation, search Name Jemez Mountains Elec Coop, Inc Place New Mexico Utility Id 9699 Utility Location Yes Ownership C NERC Location WECC Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Power Service Industrial Large Power Service-TOU Industrial Municipal Service and Small School Service Commercial Municipal Service and Small School Service TOU Commercial Residential Service Residential Residential Time of Use Rates Residential Small Commercial Service Residential

347

Magnetotellurics At Socorro Mountain Area (Owens, Et Al., 2005) | Open  

Open Energy Info (EERE)

Owens, Et Al., 2005) Owens, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Socorro Mountain Area (Owens, Et Al., 2005) Exploration Activity Details Location Socorro Mountain Area Exploration Technique Magnetotellurics Activity Date Usefulness not indicated DOE-funding Unknown Notes magneto-telluric surveys are pending for the near future when geochemical and surface geophysical surveys are complete. Results of this survey should verify the occurrence of low-resisitivity fluids and alteration at depth. References Lara Owens, Richard Baars, David Norman, Harold Tobin (2005) New Methods In Exploration At The Socorro Peak Kgra- A Gred Iii Project Retrieved from "http://en.openei.org/w/index.php?title=Magnetotellurics_At_Socorro_Mountain_Area_(Owens,_Et_Al.,_2005)&oldid=388765

348

City of Kings Mountain, North Carolina (Utility Company) | Open Energy  

Open Energy Info (EERE)

Mountain, North Carolina (Utility Company) Mountain, North Carolina (Utility Company) Jump to: navigation, search Name City of Kings Mountain Place North Carolina Utility Id 10324 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Housing Authority Industrial Large General Service (>500kW) Commercial Large Industrial Service (>500kW) Industrial Medium General Service (100-500kW) Commercial Medium Industrial Service (100-500kW) Industrial Outdoor Lighting Service- 150W High Pressure Sodium- Urban, Existing Pole

349

Geothermal Drilling Success at Blue Mountain, Nevada | Open Energy  

Open Energy Info (EERE)

Drilling Success at Blue Mountain, Nevada Drilling Success at Blue Mountain, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Drilling Success at Blue Mountain, Nevada Abstract Exploration in a blind prospect has led to the confirmation of a geothermal resource at Blue Mt.Nevada. The latest results include drilling of three production wells into Piedmont faults. These wells produce from a 185 to 190°C dilute benign brine reservoir. Short flow tests have shown prolific flow rates and indications of reservoir continuity.Well entries have shown that system permeability is fault-dominated. This is confirmed by the results of seismic reflection imaging. Young faulting in the area includes intersecting range front faults that strike NW, NS, and NE. Exposure of

350

Zuni Mountains Nm Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Zuni Mountains Nm Geothermal Area Zuni Mountains Nm Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Zuni Mountains Nm Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Other GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

351

Rocky Mountain Power - FinAnswer Express | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Mountain Power - FinAnswer Express Rocky Mountain Power - FinAnswer Express Rocky Mountain Power - FinAnswer Express < Back Eligibility Agricultural Commercial Construction Industrial Installer/Contractor Savings Category Other Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Manufacturing Heat Pumps Commercial Lighting Lighting Insulation Design & Remodeling Water Heating Windows, Doors, & Skylights Maximum Rebate Lighting Retrofit: 70% of project cost Program Info State Wyoming Program Type Utility Rebate Program Rebate Amount Custom: $0.10/annual kWh saved Interior Lighting: $0.08/kwh annual energy savings LED Fixture (Exterior): $100 Induction Fixture (Exterior): $125 Lighting Control (Exterior): $70 Air Conditioners and Heat Pumps: $50-$100/ton

352

Mountain View Electric Association, Inc - Energy Efficiency Credit Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mountain View Electric Association, Inc - Energy Efficiency Credit Mountain View Electric Association, Inc - Energy Efficiency Credit Program Mountain View Electric Association, Inc - Energy Efficiency Credit Program < Back Eligibility Agricultural Commercial Industrial Residential Savings Category Appliances & Electronics Heating & Cooling Commercial Heating & Cooling Heat Pumps Commercial Lighting Lighting Manufacturing Water Heating Maximum Rebate LED Street Lighting: $20,000 LED Refrigerated Case Lighting Retrofit: $3,000 Commercial Lighting Replacement: $20,000 Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Geothermal Heat Pumps: $150/ton, additional $150 per unit for Energy Star units greater than 3 tons, additional $120 if attached to electric water heater Air-Source Heat Pump: $125 - $150/ton, additional $100 - $150 per unit for

353

Rocky Mountain Power - Energy FinAnswer | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

70% project cost 70% project cost New Construction: 50% Lighting: 50%-75% of savings Program Info State Wyoming Program Type Utility Rebate Program Rebate Amount $0.15/kWh annual energy savings + $50/kW average monthly demand savings Provider Rocky Mountain Power Rocky Mountain Power's Energy FinAnswer program provides incentives to help its customers improve the efficiency of existing facilities and build new facilities that are significantly more efficient than code. New construction and retrofit projects for all industrial facilities can participate as well as all new commercial projects and commercial retrofits in facilities larger than 20,000 square feet. Rocky Mountain Power will be involved from the beginning of the construction process. They will start by reviewing the facility plans and

354

Rocky Mountain Oilfield Testing Center | Open Energy Information  

Open Energy Info (EERE)

Oilfield Testing Center Oilfield Testing Center Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Rocky Mountain Oilfield Testing Center General Information Name Rocky Mountain Oilfield Testing Center Facility Rocky Mountain Oilfield Testing Center Sector Geothermal energy Location Information Coordinates 42.9724567°, -106.3160188° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.9724567,"lon":-106.3160188,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

355

Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data  

SciTech Connect

Groundwater samples in the Yucca Mountain area were collected for chemical and isotopic analyses and measurements of water temperature, pH, specific conductivity, and alkalinity were obtained at the well or spring at the time of sampling. For this project, groundwater samples were analyzed for major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). The U.S. Geological Survey (USGS) performed all the fieldwork on this project including measurement of water chemistry field parameters and sample collection. The major ions dissolved in the groundwater, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) were analyzed by the USGS. All preparation and processing of samples for DOC carbon isotopic analyses and geochemical modeling were performed by the Desert Research Institute (DRI). Analysis of the DOC carbon dioxide gas produced at DRI to obtain carbon-13 and carbon-14 values was conducted at the University of Arizona Accelerator Facility (a NSHE Yucca Mountain project QA qualified contract facility). The major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of DIC were used in geochemical modeling (NETPATH) to determine groundwater sources, flow paths, mixing, and ages. The carbon isotopes of DOC were used to calculate groundwater ages that are independent of DIC model corrected carbon-14 ages. The DIC model corrected carbon-14 calculated ages were used to evaluate groundwater travel times for mixtures of water including water beneath Yucca Mountain. When possible, groundwater travel times were calculated for groundwater flow from beneath Yucca Mountain to down gradient sample sites. DOC carbon-14 groundwater ages were also calculated for groundwaters in the Yucca Mountain area. When possible, groundwater travel times were estimated for groundwater flow from beneath Yucca Mountain to down gradient groundwater sample sites using the DOC calculated groundwater ages. The DIC calculated groundwater ages were compared with DOC calculated groundwater ages and both of these ages were compared to travel times developed in ground-water flow and transport models. If nuclear waste is stored in Yucca Mountain, the saturated zone is the final barrier against the release of radionuclides to the environment. The most recent rendition of the TSPA takes little credit for the presence of the saturated zone and is a testament to the inadequate understanding of this important barrier. If radionuclides reach the saturated zone beneath Yucca Mountain, then there is a travel time before they would leave the Yucca Mountain area and flow down gradient to the Amargosa Valley area. Knowing how long it takes groundwater in the saturated zone to flow from beneath Yucca Mountain to down gradient areas is critical information for potential radionuclide transport. Radionuclide transport in groundwater may be the quickest pathway for radionuclides in the proposed Yucca Mountain repository to reach land surface by way of groundwater pumped in Amargosa Valley. An alternative approach to ground-water flow and transport models to determine the travel time of radionuclides from beneath Yucca Mountain to down gradient areas in the saturated zone is by carbon-14 dating of both inorganic and organic carbon dissolved in the groundwater. A standard method of determining ground-water ages is to measure the carbon-13 and carbon-14 of DIC in the groundwater and then correct the measured carbon-14 along a flow path for geochemical reactions that involve carbon containing phases. These geochemical reactions are constrained by carbon-13 and isotopic fractionations. Without correcting for geochemical reactions, the ground-water ages calculated from only the differences in carbon-14 measured along a flow path (assuming the decrease in carbon-14 is due strictly to radioactive decay) could be tens of thousands of years too old. The computer program NETPATH, developed by the USGS, is the best geochemical program for correcting carbon-14 activities for geochemical r

Thomas, James; Decker, David; Patterson, Gary; Peterman, Zell; Mihevc, Todd; Larsen, Jessica; Hershey, Ronald

2007-06-25T23:59:59.000Z

356

Preparing to Submit a License Application for Yucca Mountain  

Science Conference Proceedings (OSTI)

In 1982, the U.S. Congress passed the Nuclear Waste Policy Act, a Federal law that established U.S. policy for the permanent disposal of spent nuclear fuel and high-level radioactive waste. Congress amended the Act in 1987, directing the Department of Energy to study only Yucca Mountain, Nevada as the site for a permanent geologic repository. As the law mandated, the Department evaluated Yucca Mountain to determine its suitability as the site for a permanent geologic repository. Decades of scientific studies demonstrated that Yucca Mountain would protect workers, the public, and the environment during the time that a repository would be operating and for tens of thousands of years after closure of the repository. A repository at this remote site would also: preserve the quality of the environment; allow the environmental cleanup of Cold War weapons facilities; provide the nation with additional protection from acts of terrorism; and support a sound energy policy. Throughout the scientific evaluation of Yucca Mountain, there has been no evidence to disqualify Yucca Mountain as a suitable site for the permanent disposal of spent nuclear fuel and high-level radioactive waste. Upon completion of site characterization, the Secretary of Energy considered the results and concluded that a repository at Yucca Mountain would perform in a manner that protects public health and safety. The Secretary recommended the site to the President in February 2002; the President agreed and recommended to Congress that the site be approved. The Governor of Nevada submitted a notice of disapproval, and both houses of Congress acted to override the disapproval. In July 2002, the President's approval allowed the Department to begin the process of submittal of a license application for Yucca Mountain as the site for the nation's first repository for spent nuclear fuel and high-level radioactive waste. Yucca Mountain is located on federal land in Nye County in southern Nevada, an arid region of the United States, approximately 100 miles (160 kilometers) northwest of Las Vegas (Figure 1). The location is remote from population centers, and there are no permanent residents within approximately 14 miles (23 km) of the site. Overall, Nye County has a population density of about two persons per square mile (two persons per 2.5 square km); in the vicinity of Yucca Mountain, it is significantly less. Yucca Mountain is a series of north-south-trending ridges extending approximately 25 miles (40 km), and consists of successive layers of fine-grained volcanic tuffs, millions of years old, underlain by older carbonate rocks. The alternating layers of welded and nonwelded volcanic tuffs have differing hydrologic properties that significantly impact the manner in which water moves through the mountain. The repository horizon will be in welded tuff located in the unsaturated zone, more than 1,000 feet (300 meters) above the water table in the present-day climate, and is expected to remain well above the water table during wetter future climate conditions. Future meteorology and climatology at Yucca Mountain are important elements in understanding the amount of water available to potentially interact with the waste.

W.J. Arthur; M.D. Voegele

2005-03-14T23:59:59.000Z

357

Age constraints on fluid inclusions in calcite at Yucca Mountain  

Science Conference Proceedings (OSTI)

The {sup 207}Pb/{sup 235}U ages for 14 subsamples of opal or chalcedony layers younger than calcite formed at elevated temperature range between 1.88 {+-} 0.05 and 9.7 {+-} 1.5 Ma with most values older than 6-8 Ma. These data indicate that fluids with elevated temperatures have not been present in the unsaturated zone at Yucca Mountain since about 1.9 Ma and most likely since 6-8 Ma. Discordant U-Pb isotope data for chalcedony subsamples representing the massive silica stage in the formation of the coatings are interpreted using a model of the diffusive loss of U decay products. The model gives an age estimate for the time of chalcedony formation around 10-11 Ma, which overlaps ages of clay minerals formed in tuffs below the water table at Yucca Mountain during the Timber Mountain thermal event.

Neymark, Leonid A.; Amelin, Yuri V.; Paces, James B.; Peterman, Zell E.; Whelan, Joseph F.

2001-04-29T23:59:59.000Z

358

City of Mountain Lake, Minnesota (Utility Company) | Open Energy  

Open Energy Info (EERE)

Mountain Lake Mountain Lake Place Minnesota Utility Id 13048 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png City Rates Commercial Commercial Commercial Industrial Industrial Residential- Rural Residential Residential- Urban Residential Average Rates Residential: $0.0957/kWh Commercial: $0.0842/kWh Industrial: $0.0804/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Mountain_Lake,_Minnesota_(Utility_Company)&oldid=40998

359

City of Mountain View, Missouri (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Mountain View Mountain View Place Missouri Utility Id 13057 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Residential Residential Average Rates Residential: $0.0810/kWh Commercial: $0.0807/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Mountain_View,_Missouri_(Utility_Company)&oldid=409985" Categories: EIA Utility Companies and Aliases Utility Companies Organizations Stubs What links here

360

Secondary plant succession on disturbed sites at Yucca Mountain, Nevada  

SciTech Connect

This report presents the results of a study of secondary plant succession on disturbed sites created during initial site investigations in the late 1970s and early 1980s at Yucca Mountain, NV. Specific study objectives were to determine the rate and success of secondary plant succession, identify plant species found in disturbances that may be suitable for site-specific reclamation, and to identify environmental variables that influence succession on disturbed sites. During 1991 and 1992, fifty seven disturbed sites were located. Vegetation parameters, disturbance characteristics and environmental variables were measured at each site. Disturbed site vegetation parameters were compared to that of undisturbed sites to determine the status of disturbed site plant succession. Vegetation on disturbed sites, after an average of ten years, was different from undisturbed areas. Ambrosia dumosa, Chrysothamnus teretifolius, Hymenoclea salsola, Gutierrezia sarothrae, Atriplex confertifolia, Atriplex canescens, and Stephanomeria pauciflora were the most dominant species across all disturbed sites. With the exception of A. dumosa, these species were generally minor components of the undisturbed vegetation. Elevation, soil compaction, soil potassium, and amounts of sand and gravel in the soil were found to be significant environmental variables influencing the species composition and abundance of perennial plants on disturbed sites. The recovery rate for disturbed site secondary succession was estimated. Using a linear function (which would represent optimal conditions), the recovery rate for perennial plant cover, regardless of which species comprised the cover, was estimated to be 20 years. However, when a logarithmic function (which would represent probable conditions) was used, the recovery rate was estimated to be 845 years. Recommendations for future studies and site-specific reclamation of disturbances are presented.

Angerer, J.P.; Ostler, W.K.; Gabbert, W.D.; Schultz, B.W.

1994-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "investigations chocolate mountains" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Boundary Layer Energy Transport and Cumulus Development over a Heated Mountain: An Observational Study  

Science Conference Proceedings (OSTI)

Aircraft and surface measurements of the boundary layer transport of mass and moisture toward an isolated, heated mountain are presented. The data were collected around the Santa Catalina Mountains in Arizona, 2030 km in diameter, during the ...

J. Cory Demko; Bart Geerts; Qun Miao; Joseph A. Zehnder

2009-01-01T23:59:59.000Z

362

Yucca Mountain - U.S. Department of Energy's Brief in Support...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Yucca Mountain - U.S. Department of Energy's Brief in Support of Review and Reversal of the Board's Ruling on the Motion to Withdraw Yucca Mountain - U.S. Department of Energy's...

363

The Role of Terrain and Pressure Stresses in Rocky Mountain Lee Cyclones  

Science Conference Proceedings (OSTI)

The earthatmosphere exchange of storm absolute dynamic circulation by mountain-induced surface pressure stress and the response of the circulation in a Rocky Mountain Ice cyclone is examined. Surface pressure stresses that transfer horizontal ...

Alan C. Czarnetzki; Donald R. Johnson

1996-04-01T23:59:59.000Z

364

The Role of the Central Asian Mountains on the Midwinter Suppression of North Pacific Storminess  

Science Conference Proceedings (OSTI)

The role of the central Asian mountains on North Pacific storminess is examined using an atmospheric general circulation model by varying the height and the areas of the mountains. A series of model integrations show that the presence of the ...

Hyo-Seok Park; John C. H. Chiang; Seok-Woo Son

2010-11-01T23:59:59.000Z

365

Max-Min characterization of the mountain pass energy level for a class of variational problems  

E-Print Network (OSTI)

We provide a max-min characterization of the mountain pass energy level for a family of variational problems. As a consequence we deduce the mountain pass structure of solutions to suitable PDEs, whose existence follows from classical minimization argument.

Jacopo Bellazzini; Nicola Visciglia

2009-09-01T23:59:59.000Z

366

Max-Min characterization of the mountain pass energy level for a class of variational problems  

E-Print Network (OSTI)

We provide a max-min characterization of the mountain pass energy level for a family of variational problems. As a consequence we deduce the mountain pass structure of solutions to suitable PDEs, whose existence follows from classical minimization argument.

Bellazzini, Jacopo

2009-01-01T23:59:59.000Z

367

Evaluation of an Ecohydrologic-Process Model Approach to Estimating Annual Mountain-Block Recharge.  

E-Print Network (OSTI)

??Magruder, Ian, M.S., December 2006 Geology Evaluation of an Ecohydrologic-Process Model Approach to Estimating Annual Mountain-Block Recharge Chairperson: Dr. William Woessner Regional subsurface mountain-block recharge (more)

Magruder, Ian Auguste

2007-01-01T23:59:59.000Z

368

Three-Dimensional Numerical Model Simulations of Airflow Over Mountainous Terrain: A Comparison with Observations  

Science Conference Proceedings (OSTI)

Numerical simulations of airflow over two different choices of mountainous terrain and the comparisons of results with aircraft observations are presented. Two wintertime casts for flow over Elk Mountain, Wyoming where surface heating is assumed ...

Terry L. Clark; Robert Gall

1982-07-01T23:59:59.000Z

369

Climatic Controls on the Snowmelt Hydrology of the Northern Rocky Mountains  

Science Conference Proceedings (OSTI)

The northern Rocky Mountains (NRMs) are a critical headwaters region with the majority of water resources originating from mountain snowpack. Observations showing declines in western U.S. snowpack have implications for water resources and ...

Gregory T. Pederson; Stephen T. Gray; Toby Ault; Wendy Marsh; Daniel B. Fagre; Andrew G. Bunn; Connie A. Woodhouse; Lisa J. Graumlich

2011-03-01T23:59:59.000Z

370

Observations of Mountain WaveInduced Precipitation Shadows over Northeast Pennsylvania  

Science Conference Proceedings (OSTI)

WSR-88D depictions of two mountain waveinduced precipitation shadows observed near the Wyoming Valley of northeast Pennsylvania are presented. These mountain waves developed in similar synoptic environments that featured a strong south to ...

Raymond H. Brady; Jeff S. Waldstreicher

2001-06-01T23:59:59.000Z

371

Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Great Smoky Mountains Great Smoky Mountains National Park Turns to Alternative Fuels to someone by E-mail Share Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to Alternative Fuels on Facebook Tweet about Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to Alternative Fuels on Twitter Bookmark Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to Alternative Fuels on Google Bookmark Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to Alternative Fuels on Delicious Rank Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to Alternative Fuels on Digg Find More places to share Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to Alternative Fuels on AddThis.com...

372

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

PETROLEUM MAGNETICS INTERNATIONAL PETROLEUM MAGNETICS INTERNATIONAL NOVEMBER 28, 1996 FC9520 / 95PT8 ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS PETROLEUM MAGNETIC INTERNATIONAL DOWNHOLE MAGNETS FOR SCALE CONTROL Prepared for: Industry Publication Prepared by: MICHAEL R. TYLER RMOTC Field Engineer November 28, 1995 650100/9520:jb ABSTRACT November 28, 1995 The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a field test on the Petroleum Magnetics International (PMI) downhole magnet, at the Naval Petroleum Reserve No. 3 (NPR- 3) located 35 miles north of Casper in Natrona County, Wyoming. PMI of Odessa, Texas, states that the magnets are designed to reduce scale and paraffin buildup on the rods, tubing

373

Blue Ridge Mountain Electric Membership Corporation - Water Heater Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Blue Ridge Mountain Electric Membership Corporation - Water Heater Rebate Program Blue Ridge Mountain Electric Membership Corporation - Water Heater Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Ventilation Manufacturing Heat Pumps Appliances & Electronics Water Heating Program Info State Georgia Program Type Utility Rebate Program Rebate Amount In-Home Energy Evaluation Program Windows: $500 Duct Repair: $500 Rehabilitation Work: $250 HVAC Replacement: $250/unit HVAC Tune-up: $150/unit Insulation: $500 Water Heater and Pipe Insulation: $50 Air Sealing: $500 Energy Right Program

374

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

TANK LEVEL GAUGING SYSTEM TANK LEVEL GAUGING SYSTEM JULY 25, 1996 FC9519 / 95PT7 ROCKY MOUNTAIN OILFIELD TESTING CENTER TANK LEVEL GAUGING SYSTEM DOUBLE M ELECTRIC Prepared for: Industry Publication Prepared by: MICHAEL R. TYLER RMOTC Field Engineer July 25, 1996 551103/9519:jb ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a test of a Tank Level Gauging System at the Naval Petroleum Reserve No. 3 (NPR-3). Double M. Electric manufactures the equipment that incorporates an optical-encoder sending unit, cellular communications, and software interface. The system effectively displayed its capabilities for remote monitoring and recording of tank levels.

375

Report on the Copper Mountain Conference on Multigrid Methods  

SciTech Connect

OAK B188 Report on the Copper Mountain Conference on Multigrid Methods. The Copper Mountain Conference on Multigrid Methods was held on April 11-16, 1999. Over 100 mathematicians from all over the world attended the meeting. The conference had two major themes: algebraic multigrid and parallel multigrid. During the five day meeting 69 talks on current research topics were presented as well as 3 tutorials. Talks with similar content were organized into sessions. Session topics included: Fluids; Multigrid and Multilevel Methods; Applications; PDE Reformulation; Inverse Problems; Special Methods; Decomposition Methods; Student Paper Winners; Parallel Multigrid; Parallel Algebraic Multigrid; and FOSLS.

2001-04-06T23:59:59.000Z

376

Evaluation of a Spent Fuel Repository at Yucca Mountain, Nevada  

Science Conference Proceedings (OSTI)

In June 2008, the U.S. Department of Energy (DOE) submitted a license application to the U.S. Nuclear Regulatory Commission (NRC) for the construction of a geologic repository at Yucca Mountain, Nevada, for the disposal of spent nuclear fuel and high-level radioactive waste. The license application was accepted for formal NRC review in September 2008. Throughout the more than 20-year history of the Yucca Mountain project, EPRI has performed independent assessments of key technical and scientific issues t...

2008-12-22T23:59:59.000Z

377

RWU 4201 Wildlife Ecology in Rocky Mountain Landscapes A Winter Survey Method for Detecting and  

E-Print Network (OSTI)

in the Pioneer, Anaconda-Pintler, Flint Creek, and Beaverhead mountain ranges in southwest Montana. We began

378

Volcanism Studies: Final Report for the Yucca Mountain Project  

SciTech Connect

This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. An assessment of the risk of future volcanic activity is one of many site characterization studies that must be completed to evaluate the Yucca Mountain site for potential long-term storage of high-level radioactive waste. The presence of several basaltic volcanic centers in the Yucca Mountain region of Pliocene and Quaternary age indicates that there is a finite risk of a future volcanic event occurring during the 10,000-year isolation period of a potential repository. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (<5 Ma). The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The Crater Flat volcanic zone is defined and described as one of many alternative models of the structural controls of the distribution of Plio-Quaternary basalt centers in the YMR. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. Geochemical and isotopic data are presented for post-Miocene basalts of the Yucca Mountain region. Alternative petrogenetic models are assessed for the formation of the Lathrop Wells volcanic center. Based on geochemical data, basaltic ash in fault trenches near Yucca Mountain is shown to have originated from the Lathrop Wells center. Chapter 5 synthesizes eruptive and subsurface effects of basaltic volcanism on a potential repository and summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 synthesizes current knowledge of the probability of disruption of a potential repository at Yucca Mountain. In 1996, an Expert Elicitation panel was convened by DOE that independently conducted PVHA for the Yucca Mountain site. Chapter 6 does not attempt to revise this PVHA; instead, it further examines the sensitivity of variables in PVHA. The approaches and results of PVHA by the expert judgment panel are evaluated and incorporated throughout this chapter. The disruption ratio (E2) is completely re-evaluated using simulation modeling that describes volcanic events based on the geometry of basaltic feeder dikes. New estimates of probability bounds are developed. These comparisons show that it is physically implausible for the probability of magmatic disruption of the Yucca Mountain site to be > than about 7 x 10{sup {minus}8} events yr{sup {minus}1} . Simple probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Amargosa Valley. The sensitivity of the disruption probability to the location of northeast boundaries of volcanic zones near the Yucca Mountain si

Bruce M. Crowe; Frank V. Perry; Greg A. Valentine; Lynn M. Bowker

1998-12-01T23:59:59.000Z

379

Volcanism Studies: Final Report for the Yucca Mountain Project  

Science Conference Proceedings (OSTI)

This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. An assessment of the risk of future volcanic activity is one of many site characterization studies that must be completed to evaluate the Yucca Mountain site for potential long-term storage of high-level radioactive waste. The presence of several basaltic volcanic centers in the Yucca Mountain region of Pliocene and Quaternary age indicates that there is a finite risk of a future volcanic event occurring during the 10,000-year isolation period of a potential repository. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The Crater Flat volcanic zone is defined and described as one of many alternative models of the structural controls of the distribution of Plio-Quaternary basalt centers in the YMR. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. Geochemical and isotopic data are presented for post-Miocene basalts of the Yucca Mountain region. Alternative petrogenetic models are assessed for the formation of the Lathrop Wells volcanic center. Based on geochemical data, basaltic ash in fault trenches near Yucca Mountain is shown to have originated from the Lathrop Wells center. Chapter 5 synthesizes eruptive and subsurface effects of basaltic volcanism on a potential repository and summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 synthesizes current knowledge of the probability of disruption of a potential repository at Yucca Mountain. In 1996, an Expert Elicitation panel was convened by DOE that independently conducted PVHA for the Yucca Mountain site. Chapter 6 does not attempt to revise this PVHA; instead, it further examines the sensitivity of variables in PVHA. The approaches and results of PVHA by the expert judgment panel are evaluated and incorporated throughout this chapter. The disruption ratio (E2) is completely re-evaluated using simulation modeling that describes volcanic events based on the geometry of basaltic feeder dikes. New estimates of probability bounds are developed. These comparisons show that it is physically implausible for the probability of magmatic disruption of the Yucca Mountain site to be > than about 7 x 10{sup {minus}8} events yr{sup {minus}1} . Simple probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Amargosa Valley. The sensitivity of the disruption probability to the location of northeast boundaries of volcanic zones near the Yucca Mountain si

Bruce M. Crowe; Frank V. Perry; Greg A. Valentine; Lynn M. Bowker

1998-12-01T23:59:59.000Z

380

Preliminary background ozone concentrations in the mountain and coastal areas of Bulgaria  

E-Print Network (OSTI)

the Govedartsi Valley on the northwest slope of Rila Mountain in southwest Bulgaria (Donev et al. 1996, 1998. These two wind regimes impact diel O3 con- centration patterns as discussed by Donev et al. (1996). A second part of Rila Mountain (Zeller et al. 1992, 1997; Donev et al. 1996, 1998, 1999), the highest mountain

Note: This page contains sample records for the topic "investigations chocolate mountains" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Dynamic rupture through a branched fault2 configuration at Yucca Mountain and resulting3  

E-Print Network (OSTI)

for the District of Columbia Circuit, which remanded to the U.S. Environmental Protection Agency its Yucca Mountain). The design of surface facilities at Yucca Mountain should be an integrated part of the total waste, storage, and disposal) casks for transporting, storing, and disposing of spent fuel at Yucca Mountain

Dmowska, Renata

382

Limited hydrologic response to Pleistocene climate change in deep vadose zones --Yucca Mountain, Nevada  

E-Print Network (OSTI)

regulations for radiation releases from the planned permanent U.S. nuclear-waste repository in Yucca Mountain releases from the proposed U.S. nuclear-waste repository in Yucca Mountain, Nevada.1 E.P.A. recommended these guarantees for Yucca Mountain. Instead E.P.A. recommends changes both in the exposure-limits and in how

Holliday, Vance T.

383

Dynamic Rupture through a Branched Fault Configuration at Yucca Mountain, and Resulting Ground Motions  

E-Print Network (OSTI)

-term care. Now, after decades of expensive false starts, and with an uncertain future for Yucca Mountain Yucca Mountain can handle, even if the statutory limits on its capacity are doubled repository. Second, it is unclear whether Yucca Mountain will ever receive a license from the Nuclear

Bhat, Harsha S.

384

Surface-to-tunnel seismic tomography studies at Yucca Mountain, Nevada  

E-Print Network (OSTI)

Dynamic Rupture through a Branched Fault Configuration at Yucca Mountain, and Resulting Ground of Yucca Mountain, Nevada, a potential site for a high-level radioactive waste repository. The Solitario km away from the SCF beneath the crest of Yucca Mountain, causing the repository site to experience

Korneev, Valeri A.

385

Board Oversight of the DOE's Scientific and Technical Activities at Yucca Mountain  

E-Print Network (OSTI)

Surface-to-tunnel seismic tomography studies at Yucca Mountain, Nevada Roland Gritto, Valeri A in the proposed nuclear waste repository area at Yucca Mountain, Nevada. A 5-km-long source line and a 3-km-long receiver line were located on top of Yucca Mountain ridge and inside the Exploratory Study Facility (ESF

386

Testing for fault activity at Yucca Mountain, Nevada, using independent GPS results from the BARGEN network  

E-Print Network (OSTI)

that will not support nesting Mountain Plovers. Included in these areas is a hilly section of yucca and sagebrushPOTENTAIL HABITAT FOR MOUNTAIN PLOVERS ON COLORADO SPRINGS UTILITIES PROPERTY A Report to Colorado Delivery Fort Collins, Colorado 80523-8002 #12;INTRODUCTION The Mountain Plover (Charadrius montanus

Blewitt, Geoffrey

387

A Radionuclide Transport Model for the Unsaturated Zone at Yucca Mountain Bruce A. Robinson  

E-Print Network (OSTI)

.S. Geological Survey #12;Yucca Mountain (arrow) in its regional setting. From lower left to upper right (toward southeast), Forty-Mile Wash (trending south), and Jackass Flat (JF, sandy-colored area east ofYucca Mountain). Between Yucca Mountain and theAmargosa River lie Crater Flat (CF) with its young volcanic centers (red

Lu, Zhiming

388

Climatological lightning characteristics of the Southern Rocky and Appalachian Mountain chains, a comparison of two distinct mountain effects  

E-Print Network (OSTI)

This study presents a high-resolution lightning climatology for southern portions of both the Rocky Mountains and the Appalachian Mountains. Data from the National Lightning Detection Network (NLDN) are analyzed to produce maps of average annual lightning flash density, positive flash density, percent positive flashes, median peak current, and multiplicity. Three-hourly increments are used to demonstrate the annual average diurnal evolution of flash density. Data are also divided into seasonal averages for the same three-hourly increments to describe the daily evolution of flash density for each of the four seasons: December-January-February, March-April-May, June-July-August, and September-October-November. The flash density analyses reveal opposite mountain-valley effects. In the Rocky Mountains, flash density enhancements occur over and near mountains and flash density minima occur in the valleys. In the Appalachians, the enhancements occur in the valleys, while minimums are noted over the mountains. The eastern edge of the Appalachian lightning suppression is determined to be a result of faster propagation of mountain-initiated convection. Weaker mountain breezes in the Appalachians are theorized to be the catalysts for this. The western edge of the suppression is the cumulative effect of consistent flash density gradients at the Appalachian's western slopes. A theory is presented which links this gradient to observations of high median peak currents. Statistical tests on flash density means show that the Appalachian suppression is significant. Multiple regressions predict lightning flash density from terrain characteristics. Vertical wind and thermodynamic profiles, horizontal temperature differences at summit levels, and average annual precipitation complete the study. From these data, a conceptual model is presented to describe the nature of the lightning evolution in each region, and explain the processes that lead to the end state. This study concludes that the differences between the patterns of lightning characteristics in the Southern Rockies and the Southern Appalachians are the cumulative effects of subtle differences in the diurnal evolution patterns. Furthermore, the Appalachian lightning suppression is a product of lightning propagation and storm evolution, rather than a suppression of convective initiation.

Phillips, Stephen Edward

2001-01-01T23:59:59.000Z

389

YUCCA MOUNTAIN PROJECT RECOMMENDATION BY THE SECRETARY OF ENERGY REGARDING THE SUITABILITY OF THE YUCCA MOUNTAIN SITE FOR A REPOSITORY UNDER THE NUCLEAR WASTE POLICY ACT OF 1982  

Science Conference Proceedings (OSTI)

For more than half a century, since nuclear science helped us win World War II and ring in the Atomic Age, scientists have known that !he Nation would need a secure, permanent facility in which to dispose of radioactive wastes. Twenty years ago, when Congress adopted the Nuclear Waste Policy Act of 1982 (NWPA or ''the Act''), it recognized the overwhelming consensus in the scientific community that the best option for such a facility would be a deep underground repository. Fifteen years ago, Congress directed the Secretary of Energy to investigate and recommend to the President whether such a repository could be located safely at Yucca Mountain, Nevada. Since then, our country has spent billions of dollars and millions of hours of research endeavoring to answer this question. I have carefully reviewed the product of this study. In my judgment, it constitutes sound science and shows that a safe repository can be sited there. I also believe that compelling national interests counsel in favor of proceeding with this project. Accordingly, consistent with my responsibilities under the NWPA, today I am recommending that Yucca Mountain be developed as the site for an underground repository for spent fuel and other radioactive wastes. The first consideration in my decision was whether the Yucca Mountain site will safeguard the health and safety of the people, in Nevada and across the country, and will be effective in containing at minimum risk the material it is designed to hold. Substantial evidence shows that it will. Yucca Mountain is far and away the most thoroughly researched site of its kind in the world. It is a geologically stable site, in a closed groundwater basin, isolated on thousands of acres of Federal land, and farther from any metropolitan area than the great majority of less secure, temporary nuclear waste storage sites that exist in the country today. This point bears emphasis. We are not confronting a hypothetical problem. We have a staggering amount of radioactive waste in this country--nearly 100,000,000 gallons of high-level nuclear waste and more than 40,000 metric tons of spent nuclear fuel with more created every day. Our choice is not between, on the one hand, a disposal site with costs and risks held to a minimum, and, on the other, a magic disposal system with no costs or risks at all. Instead, the real choice is between a single secure site, deep under the ground at Yucca Mountain, or making do with what we have now or some variant of it--131 aging surface sites, scattered across 39 states. Every one of those sites was built on the assumption that it would be temporary. As time goes by. every one is closer to the limit of its safe life span. And every one is at least a potential security risk--safe for today, but a question mark in decades to come.

NA

2002-03-26T23:59:59.000Z

390

Areal power density: A preliminary examination of underground heat transfer in a potential Yucca Mountain repository and recommendations for thermal design approaches; Yucca Mountain Site Characterization Project  

SciTech Connect

The design of the potential Yucca Mountain repository is subject to many thermal goals related to the compliance of the site with federal regulations. This report summarizes a series of sensitivity studies that determined the expected temperatures near the potential repository. These sensitivity studies were used to establish an efficient loading scheme for the spent fuel canisters and a maximum areal power density based strictly on thermal goals. Given the current knowledge of the site, a design-basis areal power density of 80 kW/acre can be justified based on thermal goals only. Further analyses to investigate the impacts of this design-basis APD on mechanical and operational aspects of the potential repository must be undertaken before a final decision is made.

Hertel, E.S. Jr.; Ryder, E.E.

1991-11-01T23:59:59.000Z

391

Petrologic studies of drill cores USW-G2 and UE25b-1H, Yucca Mountain, Nevada  

SciTech Connect

The tuffs of the Nevada Test Site are currently under investigation as a possible deep geologic site for high-level radioactive waste disposal. This report characterizes tuff retrieved in core from two drill holes, USW-G2 and UE25b-1H, at the Yucca Mountain block. The USW-G2 drill core is from the northernmost extent of the block, whereas UE25b-1H is adjacent to an earlier drill hole, UE25a-1. The drill cores USW-G2 and UE25b-1H bottomed at 6000 and 4200 ft, respectively. Petrographic and x-ray diffraction studies of the two drill cores are presented in this report and indicate that tuffs (composed primarily of variably welded ash flows) are partially recrystallized to secondary minerals. Correlations of stratigraphy are also made with previous drill cores from Yucca Mountain.

Caporuscio, F.; Vaniman, D.; Bish, D.; Broxton, D.; Arney, B.; Heiken, G.; Byers, F.; Gooley, R.; Semarge, E.

1982-07-01T23:59:59.000Z

392

Geothermal data for 95 thermal and nonthermal waters of the Valles Caldera - southern Jemez Mountains region, New Mexico  

DOE Green Energy (OSTI)

Field, chemical, and isotopic data for 95 thermal and nonthermal waters of the southern Jemez Mountains, New Mexico are presented. This region includes all thermal and mineral waters associated with Valles Caldera and many of those located near the Nacimiento Uplift, near San Ysidro. Waters of the region can be categorized into five general types: (1) surface and near surface meteoric waters; (2) acid-sulfate waters (Valles Caldera); (3) thermal meteoric waters (Valles Caldera); (4) deep geothermal and derivative waters (Valles Caldera); and (5) mineralized waters near San Ysidro. Some waters display chemical and isotopic characteristics intermediate between the types listed. The object of the data is to help interpret geothermal potential of the Jemez Mountains region and to provide background data for investigating problems in hydrology, structural geology, hydrothermal alterations, and hydrothermal solution chemistry.

Goff, F.; McCormick, Trujillo, P.E. Jr.; Counce, D.; Grigsby, C.O.

1982-05-01T23:59:59.000Z

393

Hydrogeochemical data for thermal and nonthermal waters and gases of the Valles Caldera- southern Jemez Mountains region, New Mexico  

DOE Green Energy (OSTI)

This report presents field, chemical, gas, and isotopic data for thermal and nonthermal waters of the southern Jemez Mountains, New Mexico. This region includes all thermal and mineral waters associated with Valles Caldera and many of those located near the Nacimiento Uplift, north of San Ysidro. Waters of the region can be categorized into five general types: (1) surface and near-surface meteoric waters; (2) acid-sulfate waters at Sulphur Springs (Valles Caldera); (3) thermal meteoric waters in the ring fracture zone (Valles Caldera); (4) deep geothermal waters of the Baca geothermal field and derivative waters in the Soda Dam and Jemez Springs area (Valles Caldera); and (5) mineralized waters near San Ysidro. Some waters display chemical and isotopic characteristics intermediate between the types listed. Data in this report will help in interpreting the geothermal potential of the Jemez Mountains region and will provide background for investigating problems in hydrology, structural geology, hydrothermal alterations, and hydrothermal solution chemistry.

Shevenell, L.; Goff, F.; Vuataz, F.; Trujillo, P.E. Jr.; Counce, D.; Janik, C.J.; Evans, W.

1987-03-01T23:59:59.000Z

394

Turtle Mountain Community College Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Community College Wind Farm Community College Wind Farm Jump to: navigation, search Name Turtle Mountain Community College Wind Farm Facility Turtle Mountain Community College Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Turtle Mountain Community College Developer Distributed Gen Energy Purchaser Turtle Mountain Community College Location St. John ND Coordinates 48.884703°, -99.751936° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.884703,"lon":-99.751936,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

395

Goat Mountain Phase I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Goat Mountain Phase I Wind Farm Goat Mountain Phase I Wind Farm Jump to: navigation, search Name Goat Mountain Phase I Wind Farm Facility Goat Mountain Phase I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Cielo/Edison Mission Group Developer Cielo/Edison Mission Group Energy Purchaser Market Location North of San Angelo TX Coordinates 31.908696°, -100.824122° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.908696,"lon":-100.824122,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

396

Goat Mountain Phase II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Goat Mountain Phase II Wind Farm Goat Mountain Phase II Wind Farm Jump to: navigation, search Name Goat Mountain Phase II Wind Farm Facility Goat Mountain Phase II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Cielo/Edison Mission Group Developer Cielo/Edison Mission Group Energy Purchaser Market Location North of San Angelo TX Coordinates 31.910008°, -100.869355° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.910008,"lon":-100.869355,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

397

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

PETRO-PLUG PETRO-PLUG BENTONITE PLUGGING JANUARY 27, 1998 Report No. RMOTC/97PT22 ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS PETRO-PLUG BENTONITE PLUGGING Prepared for: INDUSTRY PUBLICATION Prepared by: Michael R. Tyler RMOTC Project Manager January 27, 1998 Report No. RMOTC/96ET4 CONTENTS Page Technical Description ...................................................................................................... 1 Problem ............................................................................................................................ 1 Solution ............................................................................................................................ 2 Operation..........................................................................................................................

398

Mountaineer Commerical Scale Carbon Capture and Storage (CCS) Project  

Science Conference Proceedings (OSTI)

The Final Technical documents all work performed during the award period on the Mountaineer Commercial Scale Carbon Capture & Storage project. This report presents the findings and conclusions produced as a consequence of this work. As identified in the Cooperative Agreement DE-FE0002673, AEP's objective of the Mountaineer Commercial Scale Carbon Capture and Storage (MT CCS II) project is to design, build and operate a commercial scale carbon capture and storage (CCS) system capable of treating a nominal 235 MWe slip stream of flue gas from the outlet duct of the Flue Gas Desulfurization (FGD) system at AEP's Mountaineer Power Plant (Mountaineer Plant), a 1300 MWe coal-fired generating station in New Haven, WV. The CCS system is designed to capture 90% of the CO{sub 2} from the incoming flue gas using the Alstom Chilled Ammonia Process (CAP) and compress, transport, inject and store 1.5 million tonnes per year of the captured CO{sub 2} in deep saline reservoirs. Specific Project Objectives include: (1) Achieve a minimum of 90% carbon capture efficiency during steady-state operations; (2) Demonstrate progress toward capture and storage at less than a 35% increase in cost of electricity (COE); (3) Store CO{sub 2} at a rate of 1.5 million tonnes per year in deep saline reservoirs; and (4) Demonstrate commercial technology readiness of the integrated CO{sub 2} capture and storage system.

Deanna Gilliland; Matthew Usher

2011-12-31T23:59:59.000Z

399

Sustaining mobile pastoralists in the mountains of northern Pakistan  

E-Print Network (OSTI)

Sustaining mobile pastoralists in the mountains of northern Pakistan Mobile pastoralism According-West Frontier Province), in northern Pakistan. But the provision of these goods and services is at risk payments for ecosystem services. Case studies featured here were conducted in: Pakistan, Tanzania

Richner, Heinz

400

Asymmetric Removal of Temperature Inversions in a High Mountain Valley  

Science Conference Proceedings (OSTI)

During July 1985 the transition from nighttime to daytime wind regimes was studied in a steep-sided, broad mountain valley at about 2200 m MSL, in southeastern Wyoming. An array of surface weather stations and plot balloon releases from several ...

Robert D. Kelly

1988-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "investigations chocolate mountains" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Natural Gas in the Rocky Mountains: Developing Infrastructure  

Reports and Publications (EIA)

This Supplement to EIA's Short-Term Energy Outlook analyzes current natural gas production, pipeline and storage infrastructure in the Rocky Mountains, as well as prospective pipeline projects in these States. The influence of these factors on regional prices and price volatility is examined.

Information Center

2007-09-20T23:59:59.000Z

402

Uranium and Neptunium Desorption from Yucca Mountain Alluvium  

SciTech Connect

Uranium and neptunium were used as reactive tracers in long-term laboratory desorption studies using saturated alluvium collected from south of Yucca Mountain, Nevada. The objective of these long-term experiments is to make detailed observations of the desorption behavior of uranium and neptunium to provide Yucca Mountain with technical bases for a more realistic and potentially less conservative approach to predicting the transport of adsorbing radionuclides in the saturated alluvium. This paper describes several long-term desorption experiments using a flow-through experimental method and groundwater and alluvium obtained from boreholes along a potential groundwater flow path from the proposed repository site. In the long term desorption experiments, the percentages of uranium and neptunium sorbed as a function of time after different durations of sorption was determined. In addition, the desorbed activity as a function of time was fit using a multi-site, multi-rate model to demonstrate that different desorption rate constants ranging over several orders of magnitude exist for the desorption of uranium from Yucca Mountain saturated alluvium. This information will be used to support the development of a conceptual model that ultimately results in effective K{sub d} values much larger than those currently in use for predicting radionuclide transport at Yucca Mountain.

C.D. Scism; P.W. Reimus; M. Ding; S.J. Chipera

2006-03-16T23:59:59.000Z

403

Natural gels in the Yucca Mountain Area, Nevada, USA  

SciTech Connect

Relict gels at Yucca Mountain include pore- and fracture-fillings of silica and zeolite related to diagenetic and hydrothermal alteration of vitric tuffs. Water-rich free gels in fractures at Rainier Mesa consist of smectite with or without silica-rich gel fragments. Gels are being studied for their potential role in transport of radionuclides from a nuclear-waste repository.

Levy, S.S.

1991-12-31T23:59:59.000Z

404

Mountain-Induced Convection under Fair Weather Conditions  

Science Conference Proceedings (OSTI)

Measurements of the structure of dry convection over an isolated mountain range heated by the sun are presented. Filter techniques are used to deduce those scales of motion of significance to the circulation. A two-scale process is observed in ...

David Raymond; Marvin Wilkening

1980-12-01T23:59:59.000Z

405

Data report for the 1983 seismic-refraction experiment at Yucca Mountain, Beatty and vicinity, southwestern Nevada  

SciTech Connect

In June 1983, the US Geological Survey (USGS) conducted a seismic-refraction survey in the vicinity of Yucca Mountain and Beatty, Nevada to better define the P(compressional)-wave velocity structure of the upper crust in this area. This experiment is part of continuing seismic investigations in the region of the Nevada Test Site (NTS) by the USGS on behalf of the Nevada Nuclear Waste Storage Investigation Project (NNWSI) to aid in determining the feasibility of the proposed nuclear waste disposal site at Yucca Mountin. The 1983 seismic-refraction survey consisted of ten individual explosions at nine shotpoints, recorded by two deployments of 120 portable seismographs constituting North-South and East-West profiles (Plate 1). The North-South profile extended 45 kilometers along the western flank of Yucca Mountain. Recorder station spacing averaged 0.40 km, and seven shots spaced 8 km apart were fired. The East-West profile extended 60 km from Yucca Mountain west through Fluorspar Canyon and Titus Canyon to the floor of Death Valley, California. Recorder station spacing averaged 0.40 km to 0.60 km and three shots were fired at Yucca Mountain, near Beatty, and at the Death Valley boundary. This report includes record sections from the ten shotpoints (Plates 2-11), a list of siesmograph locations (Appendix A), a list of shotpoint locations and shot times, DKDAT data files and Tape Grade Code (Appendix B), and a list of first-arrival traveltime picks (Appendix C). Detailed interpretation of these data will be published in a subsequent report.

Sutton, V.D.

1984-12-31T23:59:59.000Z

406

Communicating A Controversial and Complex Project to the Public: Yucca Mountain Tours - Real and Virtual Communication  

SciTech Connect

Since 1983, under the Nuclear Waste Policy Act of 1982, as amended (42 U.S.C. 10101 et seq.), the U.S. Department of Energy (the Department) has been investigating a site at Yucca Mountain, Nevada, to determine whether it is suitable for development as the nation's first repository for permanent geologic disposal of spent nuclear fuel and high-level radioactive waste. By far, the largest quantity of waste destined for geologic disposal is spent nuclear fuel from 118 commercial nuclear power reactors at 72 power plant sites and 1 commercial storage site across the United States. Currently, 104 of these reactors are still in operation and generate about 20 percent of the country's electricity. Under standard contracts that DOE executed with the utilities, DOE is to accept spent nuclear fuel from the utilities for disposal. Until that happens, the utilities must safely store their spent nuclear fuel in compliance with Nuclear Regulatory Commission regulations. As of December 1998, commercial spent nuclear fuel containing approximately 38,500 metric tons of heavy metal (MTHM) was stored in 33 states. The balance of the waste destined for geologic disposal in a repository is Department-owned spent nuclear fuel and high-level radioactive waste. The Department's spent nuclear fuel includes naval spent nuclear fuel and irradiated fuel from weapons production, domestic research reactors, and foreign research reactors. For disposal in a geologic repository, high-level radioactive waste would be processed into a solid glass form and placed into approximately 20,000 canisters. No liquid or hazardous wastes regulated under the Resource Conservation and Recovery Act of 1976 would be disposed of in a geologic repository. The difficulty in siting new facilities, particularly those designed as nuclear or nuclear-related facilities, is well documented. In this context, national boundaries are not significant distinguishing barriers. As one publication observed, ''Environmental activists, local residents and governmental officials are protesting proposed waste facilities from Taiwan to Texas''. Here in Nevada, Yucca Mountain is no exception. The Department's study of the Yucca Mountain site for possible development as a permanent repository for spent nuclear fuel and high-level radioactive waste has been criticized by many, for many reasons. The Yucca Mountain Project is both controversial and complex--a fact that makes communication with the public a challenge.

A.B. Benson; P.V. Nelson; M. d' Ouville

2000-03-01T23:59:59.000Z

407

Step-Mountain Technique Applied to an Atmospheric C-Grid Model, or How to Improve Precipitation near Mountains  

Science Conference Proceedings (OSTI)

Starting with Arakawa and Lambs second-order C-grid scheme, this paper describes the modifications made to the dynamics to create a C-grid atmospheric model with a variable number of cells for each vertical column. Where mountains exist, grid ...

Gary L. Russell

2007-12-01T23:59:59.000Z

408

Experiment and analysis comparison in support of the Yucca Mountain Project  

SciTech Connect

Sandia National Laboratories, as a participant in the Yucca Mountain Project, administered by the Nevada Operations Office of the US Department of Energy, is in the process of evaluating a proposed site for geologic disposal of high-level nuclear wastes in the volcanic tuffs at Yucca Mountain, Nevada. In a repository, loads will be imposed on the rock mass as a result of excavation of the openings and heating of the rock by the nuclear waste. In an attempt to gain a better understanding of the thermal, mechanical, and thermomechanical response of fractured tuff, a series of experiments have been performed, and measurements have been taken in the welded and nonwelded tuffs at the G-Tunnel underground test facility at Rainier Mesa, Nevada. Comparisons between measured and calculated data of the G-Tunnel High-Pressure Flatjack Development Experiment are presented in this investigation. Calculated results were obtained from two dimensional finite element analysis using a recently developed compliant-joint rock-mass model. The purpose of this work was to assess the predictive capability of the model based on limited material property data for the G-Tunnel welded tuff. The results of this evaluation are discussed.

Chen, E.P.; Bauer, S.J.; Costin, L.S.; Hansen, F.D.

1991-01-01T23:59:59.000Z

409

Exploratory Shaft Seismic Design Basis Working Group report; Yucca Mountain Project  

SciTech Connect

This report was prepared for the Yucca Mountain Project (YMP), which is managed by the US Department of Energy. The participants in the YMP are investigating the suitability of a site at Yucca Mountain, Nevada, for construction of a repository for high-level radioactive waste. An exploratory shaft facility (ESF) will be constructed to permit site characterization. The major components of the ESF are two shafts that will be used to provide access to the underground test areas for men, utilities, and ventilation. If a repository is constructed at the site, the exploratory shafts will be converted for use as intake ventilation shafts. In the context of both underground nuclear explosions (conducted at the nearby Nevada Test Site) and earthquakes, the report contains discussions of faulting potential at the site, control motions at depth, material properties of the different rock layers relevant to seismic design, the strain tensor for each of the waveforms along the shaft liners, and the method for combining the different strain components along the shaft liners. The report also describes analytic methods, assumptions used to ensure conservatism, and uncertainties in the data. The analyses show that none of the shafts` structures, systems, or components are important to public radiological safety; therefore, the shafts need only be designed to ensure worker safety, and the report recommends seismic design parameters appropriate for this purpose. 31 refs., 5 figs., 6 tabs.

Subramanian, C.V. [Sandia National Labs., Albuquerque, NM (USA); King, J.L. [Science Applications International Corp., Las Vegas, NV (USA); Perkins, D.M. [Geological Survey, Denver, CO (USA); Mudd, R.W. [Fenix and Scisson, Inc., Tulsa, OK (USA); Richardson, A.M. [Parsons, Brinckerhoff, Quade and Douglas, Inc., San Francisco, CA (USA); Calovini, J.C. [Holmes and Narver, Inc., Las Vegas, NV (USA); Van Eeckhout, E. [Los Alamos National Lab., NM (USA); Emerson, D.O. [Lawrence Livermore National Lab., CA (USA)

1990-08-01T23:59:59.000Z

410

Yucca Mountain program summary of research and technical review activities, July 1988--June 1989  

Science Conference Proceedings (OSTI)

The Desert Research Institute (DRI), through its Water Resources Center (WRC), since 1984 has supported the State of Nevada Nuclear Waste Project Office`s activities related to the proposed high-level radioactive waste repository at Yucca Mountain on the Nevada Test Site (NTS). This effort is directed at providing the State Office with an unbiased evaluation of the Yucca Mountain Project (YMP) investigations performed by the US Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC). The overall objective is to determine independently whether or not the site meets the performance criteria defined by the Nuclear Waste Policy Act of 1982 and amendments for isolating and containing the wastes during emplacement and the proposed life of the repository. A particularly important area of concern with the proposed repository is the site`s hydrology. The faculty of the DRI have long been involved with research throughout the State and have particular expertise in groundwater studies related to radionuclide migration and hydrologic safety of underground nuclear testing by DOE and predecessor agencies. In addition, we utilize laboratory personnel for chemical and isotopic analyses in both of the DRI-WMC water chemistry laboratories.

NONE

1989-11-01T23:59:59.000Z

411

Conceptual, experimental and computational approaches to support performance assessment of hydrology and chemical transport at Yucca Mountain; Yucca Mountain Site Characterization Project  

SciTech Connect

The authors of this report have been participating in the Sandia National Laboratory`s hydrologic performance assessment of the Yucca Mountain, Nevada, since 1983. The scope of this work is restricted to the unsaturated zone at Yucca Mountain and to technical questions about hydrology and chemical transport. The issues defined here are not to be confused with the elaborate hierarchy of issues that forms the framework of the US Department of Energy plans for characterizing the site (DOE, 1989). The overall task of hydrologic performance assessment involves issues related to hydrology, geochemistry, and energy transport in a highly heterogeneous natural geologic system which will be perturbed in a major way by the disposal activity. Therefore, a rational evaluation of the performance assessment issues must be based on an integrated appreciation of the aforesaid interacting processes. Accordingly, a hierarchical approach is taken in this report, proceeding from the statement of the broad features of the site that make it the site for intensive studies and the rationale for disposal strategy, through the statement of the fundamental questions that need to be answered, to the identification of the issues that need resolution. Having identified the questions and issues, the report then outlines the tasks to be undertaken to resolve the issues. The report consists essentially of two parts. The first part deals with the definition of issues summarized above. The second part summarizes the findings of the authors between 1983 and 1989 under the activities of the former Nevada Nuclear Waste Storage Investigations (NNWSI) and the current YMP.

Narasimhan, T.N.; Wang, J.S.Y. [Lawrence Berkeley Lab., CA (United States)

1992-07-01T23:59:59.000Z

412

Climate and the autumnal moth (Epirrita autumnata) at Mountain Birch (Betula pubecens ssp. czerepanovii) Treelines in northern Sweden.  

E-Print Network (OSTI)

The main objectives of this investigation were to determine the impact of climate on mountain birch (Betula pubecens ssp. czerepanovii (Orlova)) growth and to develop a regional chronology of autumnal moth outbreaks. To accomplish the objective, cores of mountain birch were taken from 21 sites in Norrbotten, Sweden. Tree-ring chronologies were developed for each site. Climatic influences were determined by correlating ring widths to climatic variables (average monthly temperature, average monthly precipitation and NAO). Outbreaks were recovered from the ring width indices using the non-host method with Scots pine (Pinus sylvestris (L.)) as the non-host. This method removes the climatic influence on growth to enhance other factors. Patterns of synchrony and regional outbreaks were detected using regression and cluster analysis techniques. The primary climatic influences on the tree ring growth of mountain birch are June and July temperatures; precipitation during October is of secondary importance. Climate explained 46% of yearly tree ring width variation. Outbreaks of the autumnal moth occur at varying time intervals depending on the scale of study. Intervals between outbreaks on the tree level are twice as long as at the plot level. On the regional scale plots within the same valley had more similar outbreak intervals and magnitudes of outbreaks. Elevation is a driver in determining the length of outbreaks and length between outbreaks. The percent monocormicity of a plot is also a determining factor of the length between outbreaks. This study is the first regional scale study on climate and outbreaks of the autumnal moth on mountain birch. The results complement research being conducted on autumnal moth larval densities and will help in modeling and assessing the effects of outbreaks with increasing climatic change.

Young, Amanda B.

2008-08-01T23:59:59.000Z

413

Aeromagnetic Survey At Blue Mountain Area (Fairbank Engineering, 2004) |  

Open Energy Info (EERE)

4) 4) Exploration Activity Details Location Blue Mountain Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes The airborne magnetometer and VLF-EM surveys carried out by Aerodat Limited, in 1988, covered the western flank of Blue Mountain including most of the geothermal lease area. The interpreted data (total field magnetic contours; calculated vertical magnetic gradient) indicate parallel sets of northerly, northeasterly, and northwesterly-trending structures that correspond well with the major fault sets identified from geologic mapping and interpreted drilling sections. Also, an elongate northerly-trending area of low magnetic gradient coincides closely with the area of intense hydrothermal alteration associated with the prominent north-south range

414

NETL: Ambient Monitoring - Great Smoky Mountains National Park  

NLE Websites -- All DOE Office Websites (Extended Search)

Great Smoky Mountains Project (GSMP) Great Smoky Mountains Project (GSMP) Background Fine particle annual mass concentrations in the Tennessee Valley range from 14 to20 micrograms per cubic meter. All seven urban/suburban sites exceeded the annual PM2.5 standard; only the rural Lawrence County TN site remained below the 15 µg/m3 annual standard. None of the stations exceeded the 65 µg/m3 level of the 24-hour PM2.5 standard. Summer high-winter low seasonality is evident. The current FRM PM2.5 mass measurements under-estimate the contribution of volatile/semi-volatile nitrates and organic carbon species. The semi-volatile organic fraction is both highly variable and significant, and assessments of semi-volatile and non-volatile organic carbon fractions are needed when particle composition measurements are made, especially at urban sites.

415

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

AJUST A PUMP BEAM PUMPING UNIT AJUST A PUMP BEAM PUMPING UNIT FEBRUARY 19, 1997 FC9532 / 95EC1 ROCKY MOUNTAIN OILFIELD TESTING CENTER AJUST A PUMP TEST Rosemond Manufacturing, Inc. (RMI) Prepared for: INDUSTRY PUBLICATION Prepared by: MICHAEL J. TAYLOR Project Manager February 19, 1997 650200/551107:9532 ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a test of a Model-2000 Ajust A Pump system at the Naval Petroleum Reserve No. 3 (NPR-3). Rosemond Manufacturing, Inc. (RMI) manufactures compact beam-pumping units that incorporate energy-efficient gear boxes. The equipment is designed to reduce operating costs and minimize maintenance labor. This report documents the equipment performance and the results of the Ajust A Pump test. The purpose of the test was to demonstrate claims of energy efficiency and reduced labor requirements. The test showed

416

Signal Mountain, Tennessee: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Signal Mountain, Tennessee: Energy Resources Signal Mountain, Tennessee: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.1225727°, -85.3438488° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.1225727,"lon":-85.3438488,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

417

Rocky Mountain Power - Energy FinAnswer | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

50% of eligible measure cost 50% of eligible measure cost Lighting Energy Savings Limit: 50%-75% of savings Payback Cap: 1 year; if incentive brings the simple payback below one year, the incenive is reduced so the simple payback equals one year Program Info State Idaho Program Type Utility Rebate Program Rebate Amount $0.12/kWh annual energy savings + $50/kW average monthly on-peak demand savings Provider Rocky Mountain Power Rocky Mountain Power's Energy FinAnswer program provides incentives to help its customers improve the efficiency of existing facilities and build new facilities that are significantly more efficient than code. New construction and retrofit projects for all industrial facilities can participate as well as all new commercial projects and commercial retrofits in facilities larger than 20,000 square feet.

418

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

PERMANENT DOWNHOLE PRESSURE GAUGE PERMANENT DOWNHOLE PRESSURE GAUGE MARCH 15, 1998 FC9553/96PT16 ROCKY MOUNTAIN OILFIELD TESTING CENTER Sperry-Sun Permanent Downhole Pressure Gauge PROJECT TEST RESULTS March 16, 1998 Michael R. Tyler Project Manager Abstract The Sperry-Sun Downhole Permanent Pressure Gauge (DPPG) is a pressure gauge that is designed to remain in the well for long periods of time providing real time surface data on borehole pressures. The DPPG was field tested at the Rocky Mountain Oilfield Testing Center in well 63-TPX-10. The instrument was attached to the production string directly above a submersible pump. It was expected to monitor pressure draw-down and build-ups during normal production cycles. During the first two months of the test, the tool worked fine providing a pressure up survey that

419

Drum Mountain Geothermal Project (3) | Open Energy Information  

Open Energy Info (EERE)

Development Project: Drum Mountain Geothermal Project (3) Development Project: Drum Mountain Geothermal Project (3) Project Location Information Coordinates The following coordinate was not recognized: 39.32.41" N, 112°55'1" W.The following coordinate was not recognized: 39.32.41" N, 112°55'1" W. Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

420

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

MAG-WELL DOWNHOLE MAGNETIC FLUID CONDITIONERS MAG-WELL DOWNHOLE MAGNETIC FLUID CONDITIONERS APRIL 4,1995 FC9511 / 95PT5 ROCKY MOUNTAIN OILFIELD TESTING CENTER MAG-WELL DOWNHOLE MAGNETIC FLUID CONDITIONERS PROJECT TEST RESULTES Prepared for: Industry Publication Prepared by: MICHAEL R. TYLER RMOTC Field Engineer November 28, 1995 650100/9511:jb ABSTRACT November 28, 1995 The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a field test on the Mag-Well Downhole Magnetic Fluid Conditioners (MFCs), at the Naval Petroleum Reserve No. 3 (NPR- 3) located 35 miles north of Casper in Natrona County, Wyoming. Mag-Well, Inc., manufactures the MFCs, that are designed to reduce scale and paraffin buildup on the rods, tubing and downhole pump of producing oil wells. The Mag-Well magnetic tools failed to

Note: This page contains sample records for the topic "investigations chocolate mountains" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Squirrel Mountain Valley, California: Energy Resources | Open Energy  

Open Energy Info (EERE)

Squirrel Mountain Valley, California: Energy Resources Squirrel Mountain Valley, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.6232866°, -118.4098058° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.6232866,"lon":-118.4098058,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

422

Mountain View Elec Assn, Inc | Open Energy Information  

Open Energy Info (EERE)

Mountain View Elec Assn, Inc Mountain View Elec Assn, Inc Place Colorado Utility Id 13058 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 16.01 RESIDENTIAL RATE Residential 16.05 RESIDENTIAL TIME OF DAY SERVICE RATE Residential 18.40 SMALL POWER RATE Commercial 18.60 LARGE POWER RATE Commercial 18.61 LARGE POWER - PRIMARY METERING RATE Commercial 18.62 LARGE POWER - LOAD MANAGEMENT RATE Commercial 18.63 LARGE POWER - LOAD MANAGEMENT - PRIMARY METERING RATE Commercial 18.64 GENERAL POWER RATE Industrial

423

The National Repository at Yucca Mountain, Russ Dyer  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Repository at Repository at Yucca Mountain Presented to: EM High Level Waste Corporate Board Presented by: Russ Dyer Chief Scientist Office of Civilian Radioactive Waste Management July 24, 2008 Idaho National Laboratory 2 SBBB-GeneralBriefing_070808Rev1.ppt Solving a national problem now * On June 3, 2008, the U.S. Department of Energy submitted an application to the U.S. Nuclear Regulatory Commission for a license to construct a repository at Yucca Mountain 3 SBBB-GeneralBriefing_070808Rev1.ppt Repository license application * The LA seeks authorization to construct the nation's first geologic repository * It is a culmination of more than 25 years of scientific research and engineering * The LA describes DOE's plan to safely isolate spent nuclear fuel and high-level radioactive

424

Rocky Mountain White Tilapia Aquaculture Low Temperature Geothermal  

Open Energy Info (EERE)

Tilapia Aquaculture Low Temperature Geothermal Tilapia Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Rocky Mountain White Tilapia Aquaculture Low Temperature Geothermal Facility Facility Rocky Mountain White Tilapia Sector Geothermal energy Type Aquaculture Location Alamosa, Colorado Coordinates 37.4694491°, -105.8700214° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

425

Degradation Modes of Alloy 22 in Yucca Mountain Repository Conditions  

DOE Green Energy (OSTI)

The nuclear waste package design for Yucca Mountain (Nevada, USA), in its current configuration, consists of a double wall cylindrical container fabricated using a highly corrosion resistant Ni-based Alloy 22 for the outer barrier and type 316 stainless steel for the inner structural vessel. A mailbox-shaped drip shield fabricated primarily using Ti Grade 7 will cover the waste packages. The environmental degradation of the relevant materials have been extensively studied and modeled for over ten years. This paper reviews the state-of-the-art understanding of the degradation modes of Alloy 22 (N06022) due to its interaction with the predicted in-drift mountain conditions including temperature and types of electrolytes. Subjects discussed include thermal aging and phase stability, dry oxidation, general and localized corrosion, stress corrosion cracking and hydrogen induced cracking.

Hua, F; Gordon, G M; Mon, K G; Rebak, R B

2005-11-05T23:59:59.000Z

426

DEGRADATION MODES OF ALLOY 22 IN YUCCA MOUNTAIN REPOSITORY CONDITIONS  

DOE Green Energy (OSTI)

The nuclear waste package design for Yucca Mountain (Nevada, USA), in its current configuration, consists of a double wall cylindrical container fabricated using a highly corrosion resistant Ni-based Alloy 22 for the outer barrier and type 316 stainless steel for the inner structural vessel. A mailbox-shaped drip shield fabricated primarily using Ti Grade 7 will cover the waste packages. The environmental degradation of the relevant materials have been extensively studied and modeled for over ten years. This paper reviews the state-of-the-art understanding of the degradation modes of Alloy 22 (N06022) due to its interaction with the predicted in-drift mountain conditions including temperature and types of electrolytes. Subjects discussed include thermal aging and phase stability, dry oxidation, general and localized corrosion, stress corrosion cracking and hydrogen induced cracking.

F. Hua; G.M. Gordon; R.B. Rebak

2005-10-13T23:59:59.000Z

427

Pine Mountain, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Pine Mountain, GA) (Redirected from Pine Mountain, GA) Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.6759423°, -84.1149163° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.6759423,"lon":-84.1149163,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

428

Casper Mountain, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Mountain, Wyoming: Energy Resources Mountain, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.7330199°, -106.3266921° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.7330199,"lon":-106.3266921,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

429

Mountain Wind II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Facility Mountain Wind II Facility Mountain Wind II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Edison Mission Group Developer Edison Mission Group Energy Purchaser PacifiCorp Location WY Coordinates 41.275629°, -110.539488° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.275629,"lon":-110.539488,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

430

Investigation of Groundwater Flow in Foothill and Mountain regions using Heat Flow measurements  

E-Print Network (OSTI)

balance with the thermal energy balance. The 3D subsurfacebalance and subsurface thermal energy balance underlies theof model domain for thermal energy and groundwater mass

Fogg, Graham E.; Trask, James C

2009-01-01T23:59:59.000Z

431

Coal River Mountain Redux Below is an update to the Coal River Mountain story that I described earlier in an e-mail, in an  

E-Print Network (OSTI)

Coal River Mountain Redux Below is an update to the Coal River Mountain story that I described billion gallons of toxic coal sludge located directly above Marsh Fork Elementary School. (No word yet on their campus a couple of years ago. Underground Appalachian coal mining is being replaced in recent years

Hansen, James E.

432

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

D-JAX PUMP-OFF CONTROLLER D-JAX PUMP-OFF CONTROLLER APRIL 4,1995 FC9510 / 95PT4 ROCKY MOUNTAIN OILFIELD TESTING CENTER D-JAX PUMP-OFF CONTROLLER PROJECT TEST RESULTES Prepared for: Industry Publication Prepared by: MICHAEL R. TYLER RMOTC Field Engineer April 4, 1995 55103/9510:jb CONTENTS Page Introduction........................................................................................1 NPR-3 Map........................................................................................2 Benefits of D-JAX Pump-Off Controller.....................................................3 Test Results.......................................................................................3 Production Information..........................................................................4

433

Determination of HEat Capacity of Yucca Mountain Strtigraphic Layers  

DOE Green Energy (OSTI)

The heat generated from the radioactive waste to be placed in the proposed geologic repository at Yucca Mountain, Nevada, will affect the thermal-hydrology of the Yucca Mountain stratigraphic layers. In order to assess the effect of the movement of repository heat into the fractured rocks accurate determination of thermodynamic and hydraulic properties is important. Heat capacity is one of the properties that are required to evaluate energy storage in the fractured rock. Rock-grain heat capacity, the subject of this study, is the heat capacity of the solid part of the rock. Yucca Mountain consists of alternating lithostratigraphic units of welded and non-welded ash-flow tuff, mainly rhyolitic in composition and displaying varying degrees of vitrification and alteration. A number of methods exist that can be used to evaluate heat capacity of the stratigraphic layers that consist of different compositions. In this study, the mineral summation method has been used to quantify the heat capacity of the stratigraphic layers based on Kopp's rule. The mineral summation method is an addition of the weighted heat capacity of each mineral found in a specific layer. For this study the weighting was done based on the mass percentage of each mineral in the layer. The method utilized a mineralogic map of the rocks at the Yucca Mountain repository site. The Calico Hills formation and adjacent bedded tuff layers display a bimodal mineral distribution of vitric and zeolitic zones with differing mineralogies. Based on this bimodal distribution in zeolite abundance, the boundary between the vitric and zeolitic zones was selected to be 15% zeolitic abundance. Thus, based on the zeolite abundance, subdivisions have been introduced to these layers into ''vitric'' and ''zeolitic'' zones. Heat capacity values have been calculated for these layers both as ''layer average'' and ''zone average''. The heat capacity determination method presented in this report did not account for spatial variability in the horizontal direction within each layer.

T. Hadgu; C. Lum; J.E. Bean

2006-06-20T23:59:59.000Z

434

Regional geology and geophysics of the Jemez Mountains  

DOE Green Energy (OSTI)

The western margin of the Rocky Mountain tectonic belt is the initial site for the Los Alamos Geothermal Project. lgneous activity in the area culminated with the formation of a collapsed volcanic caldera and the deposition of thick beds of tuff. Geophysical studies indicate that the region is one of relatively highterrestrial heat flow, low-crustal density, low-crustal seismic velocities, low-crustal magnetoelectric impedance, and thin crust. 34 references. (auth)

West, F.G.

1973-08-01T23:59:59.000Z

435

Rocky Mountain Power - Solar Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Mountain Power - Solar Incentive Program Rocky Mountain Power - Solar Incentive Program Rocky Mountain Power - Solar Incentive Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $5,000 Small Non-Residential (up to 25 kW): $25,000 Large Non-Residential (greater than 25 kW, up to 1,000 kW): $800,000 Program Info Funding Source Rate-payer funds Start Date 9/1/2007 Expiration Date 12/31/2017 State Utah Program Type Utility Rebate Program Rebate Amount Program Year 2012/2013 (application period is closed): Residential: $1.25/W-AC Small Non-Residential (up to 25 kW): $1.00/W-AC Large Non-Residential (greater than 25 kW, up to 1,000 kW): $0.80/W-AC '''''Note: Applications for 2013 were accepted during a two-week period

436

Radiation environment at high-mountains stations and onboard spacecraft  

SciTech Connect

Radiation environment has been studied at high-mountain observatories and onboard spacecraft. The most important contribution to this environment at high-mountain observatories represents cosmic radiation component. We have been studied this environment in two high-mountain observatories: one situated on the top of Lomnicky Stit, High Tatras, Slovakia, and another one close to the top of Moussala, Rila, Bulgaria (Basic Environment Observatory--BEO). The studies have been performed using: an energy deposition spectrometer with a Si-diode (MDU) developed at BAS, Sofia, permitting to estimate non-neutron as well as neutron component of the radiation field; other active equipment designated to measure natural radiation background, and thermoluminescent detectors as passive dosimeters. Basic dosimetry characteristics of these fields are presented, analyzed, and discussed; they are also compared with the estimation of cosmic radiation component as published in the Report of UNSCEAR 2000. Measuring instruments mentioned above, together with an LET spectrometer based on chemically etched track detectors have been also used to characterize radiation environment onboard spacecraft, particularly International Space Station. They have been exposed on the surface and/or inside a phantom. Some of results obtained are presented, and discussed.

Spurny, Frantisek; Ploc, Ondrej; Jadrmickova, Iva [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Prague (Czech Republic)

2008-08-07T23:59:59.000Z

437

A floristic survey of Yucca Mountain and vicinity, Nye County, Nevada  

SciTech Connect

A survey of the vascular flora of Yucca Mountain and vicinity, Nye County, Nevada, was conducted from March to June 1994, and from March to October 1995. An annotated checklist of recorded taxa was compiled. Voucher plant specimens were collected and accessioned into the Herbarium at the University of Nevada, Las Vegas. Collection data accompanying these specimens were entered into that herbarium`s electronic data base. Combined results from this survey and the works of other investigators reveal the presence of a total of 375 specific and intraspecific taxa within the area these allocated to 179 genera and 54 families. No taxon currently listed as threatened or endangered under the Endangered Species Act was encountered during this study. Several candidate species for listing under this Act were present, and distributional data for these were recorded. No change in the status of these candidate species is recommended as the result of this study.

Niles, W.E.; Leary, P.J.; Holland, J.S.; Landau, F.H.

1995-12-01T23:59:59.000Z

438

The importance of thermal loading conditions to waste package performance at Yucca Mountain  

SciTech Connect

Temperature and relative humidity are primary environmental factors affecting waste package corrosion rates for the potential repository in the unsaturated zone at Yucca Mountain, Nevada. Under ambient conditions, the repository environment is quite humid. If relative humidity is low enough (<70%), corrosion will be minimal. Under humid conditions, corrosion is reduced if the temperature is low (<60 C). Using the V-TOUGH code, the authors model thermo-hydrological flow to investigate the effect of repository heat on temperature and relative humidity in the repository for a wide range of thermal loads. These calculations indicate that repository heat may substantially reduce relative humidity on the waste package, over hundreds of years for low thermal loads and over tens of thousands of year for high thermal loads. Temperatures associated with a given relative humidity decrease with increasing thermal load. Thermal load distributions can be optimized to yield a more uniform reduction in relative humidity during the boiling period.

Buscheck, T.A.; Nitao, J.J.

1994-10-01T23:59:59.000Z

439

Reply to "Commentary: Assessment of past infiltration fluxes through Yucca Mountain on the basis of the secondary mineral record-is it a viable methodology?", by Y.V. Dublyansky and S.Z. Smirnov  

E-Print Network (OSTI)

infiltration fluxes through Yucca Mountain on the basis ofdata for the unsaturated zone at Yucca Mountain (Nevada).AMR U0085, Yucca Mountain Nuclear Waste Disposal Project,

Sonnenthal, Eric; Xu, Tianfu; Bodvarrson, Gudmundur

2005-01-01T23:59:59.000Z

440

Yucca Mountain - U.S. Department of Energy's Brief in Support of Review and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Yucca Mountain - U.S. Department of Energy's Brief in Support of Yucca Mountain - U.S. Department of Energy's Brief in Support of Review and Reversal of the Board's Ruling on the Motion to Withdraw Yucca Mountain - U.S. Department of Energy's Brief in Support of Review and Reversal of the Board's Ruling on the Motion to Withdraw Proceeding before the Nuclear Regulatory Commission on DOE's application for a license to construct a high-level waste repository at Yucca Mountain, Nevada; DOE brief arguing that the NRC should review and reverse the order of the Atomic Safety and Licensing Board denying DOE's motion to withdraw its application. Yucca Mountain - U.S. Department of Energy's Brief in Support of Review and Reversal of the Board's Ruling on the Motion to Withdraw More Documents & Publications Yucca Mountain - U.S. Department of Energy's Reply to the Responses to the

Note: This page contains sample records for the topic "investigations chocolate mountains" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Rock Sampling At Zuni Mountains Nm Area (Brookins, 1982) | Open Energy  

Open Energy Info (EERE)

Zuni Mountains Nm Area (Brookins, 1982) Zuni Mountains Nm Area (Brookins, 1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Zuni Mountains Nm Area (Brookins, 1982) Exploration Activity Details Location Zuni Mountains Nm Area Exploration Technique Rock Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Radiogenic heat production analysis from U,Th,K concentrations. References D. G. Brookins (1982) Potassium, Uranium, Thorium Radiogenic Heat Contribution To Heat Flow In The Precambrian And Younger Silicic Rocks Of The Zuni And Florida Mountains, New Mexico (Usa) Retrieved from "http://en.openei.org/w/index.php?title=Rock_Sampling_At_Zuni_Mountains_Nm_Area_(Brookins,_1982)&oldid=387056" Category: Exploration Activities

442

VEE-0076 - In the Matter of Green Mountain Energy Company | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

76 - In the Matter of Green Mountain Energy Company 76 - In the Matter of Green Mountain Energy Company VEE-0076 - In the Matter of Green Mountain Energy Company On August 23, 2000, the Green Mountain Energy Company (Green Mountain) of Austin, Texas, filed an Application for Exception with the Office of Hearings and Appeals of the Department of Energy (DOE). In its application, Green Mountain requests an exception, pursuant to 10 C.F.R. § 1003, which, if granted, would have the effect of withholding from public release - either through regular publication by the Energy Information Administration (EIA) or through the Freedom of Information Act (FOIA), 5 U.S.C. § 552 -- data which the firm files with the DOE Energy Information Administration on Forms EIA-826 and EIA- 861. These Forms are, respectively, the "Monthly

443

STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain  

Open Energy Info (EERE)

STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain Geothermal Power Facility Jump to: navigation, search OpenEI Reference LibraryAdd to library General: STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain Geothermal Power Facility Author BRIAN D. FAIRBANK Published Publisher Not Provided, 2012 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain Geothermal Power Facility Citation BRIAN D. FAIRBANK. 2012. STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain Geothermal Power Facility. N/Ap. Retrieved from "http://en.openei.org/w/index.php?title=STATEMENT_OF_BRIAN_D._FAIRBANK_Nevada_Geothermal_Power_Inc.%27s_Blue_Mountain_Geothermal_Power_Facility&oldid=682760

444

Stepout-Deepening Wells At Blue Mountain Area (Niggemann Et Al, 2005) |  

Open Energy Info (EERE)

Blue Mountain Area (Niggemann Et Al, 2005) Blue Mountain Area (Niggemann Et Al, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Step-out Well At Blue Mountain Area (Niggemann Et Al, 2005) Exploration Activity Details Location Blue Mountain Area Exploration Technique Step-out Well Activity Date Usefulness not indicated DOE-funding Unknown Notes Deep Blue No. 2 was sited as a step out t5 meters.5o Deep Blue No. 1 which measured 145oC at a depth of 645 m. Max temp recorded in Deep Blue No. 2 while drilling was 167.5oC at References Kim Niggemann, Brian Fairbank, Susan Petty (2005) Deep Blue No 2- A Resource In The Making At Blue Mountain Retrieved from "http://en.openei.org/w/index.php?title=Stepout-Deepening_Wells_At_Blue_Mountain_Area_(Niggemann_Et_Al,_2005)&oldid=687863"

445

Total-system performance assessment for Yucca Mountain - SNL second iteration (TSPA-1993); Volume 2  

Science Conference Proceedings (OSTI)

Sandia National Laboratories has completed the second iteration of the periodic total-system performance assessments (TSPA-93) for the Yucca Mountain Site Characterization Project (YMP). These analyses estimate the future behavior of a potential repository for high-level nuclear waste at the Yucca Mountain, Nevada, site under consideration by the Department of Energy. TSPA-93 builds upon previous efforts by emphasizing YMP concerns relating to site characterization, design, and regulatory compliance. Scenarios describing expected conditions (aqueous and gaseous transport of contaminants) and low-probability events (human-intrusion drilling and volcanic intrusion) are modeled. The hydrologic processes modeled include estimates of the perturbations to ambient conditions caused by heating of the repository resulting from radioactive decay of the waste. Hydrologic parameters and parameter probability distributions have been derived from available site data. Possible future climate changes are modeled by considering two separate groundwater infiltration conditions: {open_quotes}wet{close_quotes} with a mean flux of 10 mm/yr, and {open_quotes}dry{close_quotes} with a mean flux of 0.5 mm/yr. Two alternative waste-package designs and two alternative repository areal thermal power densities are investigated. One waste package is a thin-wall container emplaced in a vertical borehole, and the second is a container designed with corrosion-resistant and corrosion-allowance walls emplaced horizontally in the drift. Thermal power loadings of 57 kW/acre (the loading specified in the original repository conceptual design) and 114 kW/acre (a loading chosen to investigate effects of a {open_quotes}hot repository{close_quotes}) are considered. TSPA-93 incorporates significant new detailed process modeling, including two- and three-dimensional modeling of thermal effects, groundwater flow in the saturated-zone aquifers, and gas flow in the unsaturated zone.

Wilson, M.L.; Barnard, R.W.; Barr, G.E.; Dockery, H.A.; Dunn, E.; Eaton, R.R.; Martinez, M.J. [Sandia National Labs., Albuquerque, NM (United States); Gauthier, J.H.; Guerin, D.C.; Lu, N. [and others

1994-04-01T23:59:59.000Z

446

Total-system performance assessment for Yucca Mountain - SNL second iteration (TSPA-1993); Volume 1  

Science Conference Proceedings (OSTI)

Sandia National Laboratories has completed the second iteration of the periodic total-system performance assessments (TSPA-93) for the Yucca Mountain Site Characterization Project (YMP). These analyses estimate the future behavior of a potential repository for high-level nuclear waste at the Yucca Mountain, Nevada, site under consideration by the Department of Energy. TSPA-93 builds upon previous efforts by emphasizing YMP concerns relating to site characterization, design, and regulatory compliance. Scenarios describing expected conditions (aqueous and gaseous transport of contaminants) and low-probability events (human-intrusion drilling and volcanic intrusion) are modeled. The hydrologic processes modeled include estimates of the perturbations to ambient conditions caused by heating of the repository resulting from radioactive decay of the waste. Hydrologic parameters and parameter probability distributions have been derived from available site data. Possible future climate changes are modeled by considering two separate groundwater infiltration conditions: {open_quotes}wet{close_quotes} with a mean flux of 10 mm/yr, and {open_quotes}dry{close_quotes} with a mean flux of 0.5 mm/yr. Two alternative waste-package designs and two alternative repository areal thermal power densities are investigated. One waste package is a thin-wall container emplaced in a vertical borehole, and the second is a container designed with corrosion-resistant and corrosion-allowance walls emplaced horizontally in the drift. Thermal power loadings of 57 kW/acre (the loading specified in the original repository conceptual design) and 114 kW/acre (a loading chosen to investigate effects of a {open_quotes}hot repository{close_quotes}) are considered. TSPA-93 incorporates significant new detailed process modeling, including two- and three-dimensional modeling of thermal effects, groundwater flow in the saturated-zone aquifers, and gas flow in the unsaturated zone.

Wilson, M.L.; Gauthier, J.H.; Barnard, R.W.; Barr, G.E.; Dockery, H.A.; Dunn, E.; Eaton, R.R.; Guerin, D.C.; Lu, N.; Martinez, M.J. [and others] [and others

1994-04-01T23:59:59.000Z

447

DOE/EA-1644: Kildeer to Mountain Transmission Project Pre-Decisional Environmental Assessment (May 2009)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

KILLDEER TO MOUNTAIN KILLDEER TO MOUNTAIN TRANSMISSION PROJECT PRE-DECISIONAL ENVIRONMENTAL ASSESSMENT MAY 5, 2009 DOE/EA-1644 PRE-DECISIONAL ENVIRONMENTAL ASSESSMENT KILLDEER TO MOUNTAIN PAGE i MAY 2009 TRANSMISSION PROJECT DOE/EA -1644 TABLE OF CONTENTS 1.0 INTRODUCTION .............................................................................................. 1-1 1.1 Purpose of and Need for Action ........................................................................................... 1-1 1.1.1 Project Purpose ............................................................................................................ 1-1 1.1.2 Western's Purpose and Need ..................................................................................... 1-1

448

Six-Week Time Series Of Eddy Covariance Co2 Flux At Mammoth Mountain...  

Open Energy Info (EERE)

Six-Week Time Series Of Eddy Covariance Co2 Flux At Mammoth Mountain, California- Performance Evaluation And Role Of Meteorological Forcing Jump to: navigation, search GEOTHERMAL...

449

Microsoft Word - BlueMountainGeotherm_FONSI_FinalDrft v3 Clean...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FINDING OF NO SIGNIFICANT IMPACT DEPARTMENT OF ENERGY LOAN GUARANTEE FOR NEVADA GEOTHERMAL POWER'S BLUE MOUNTAIN GEOTHERMAL DEVELOPMENT PROJECT IN HUMBOLDT AND PERSHING...

450

The Impact of the Central Asian Mountains on Downstream Storminess and Monsoon Onset.  

E-Print Network (OSTI)

??In the first part of the thesis, the role of the Central Asian mountains on North Pacific storminess is examined using an atmospheric general circulation (more)

Park, Hyo Seok

2010-01-01T23:59:59.000Z

451

Gas Flux Sampling At Socorro Mountain Area (Owens, Et Al., 2005...  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Gas Flux Sampling At Socorro Mountain Area (Owens, Et Al., 2005) Jump to: navigation,...

452

Massively parallel computing simulation of fluid flow in the unsaturated zone of Yucca Mountain, Nevada  

E-Print Network (OSTI)

at Yucca Mountain. Sandia National Laboratories Milestone3672. Sandia National Laboratories, Albuquerque, New Mexico.Computing Research Laboratory, Sandia National Laboratories,

Zhang, Keni; Wu, Yu-Shu; Bodvarsson, G.S.

2001-01-01T23:59:59.000Z

453

Ground water of Yucca Mountain: How high can it rise?; Final report  

SciTech Connect

This report describes the geology, hydrology, and possible rise of the water tables at Yucca Mountain. The possibilities of rainfall and earthquakes causing flooding is discussed.

NONE

1992-12-31T23:59:59.000Z

454

Horizontal coring using air as the circulating fluid: Some prototype studies conducted in G Tunnel at the Nevada Test Site for the Yucca Mountain Project  

SciTech Connect

Horizontal coring using air as the circulating fluid has been conducted in the G Tunnel Underground Facility (GTUF) at the Nevada Test Site. This work is part of the prototype investigations of hydrogeology for the Yucca Mountain Project. The work is being conducted to develop methods and procedures that will be used at the Department of Energy`s Yucca Mountain Site, a candidate site for the nation`s first high-level nuclear waste repository, during the site characterization phase of the investigations. The United States Geological Survey (USGS) is conducting this prototype testing under the guidance of the Los Alamos National Laboratory (LANL) and in conjunction with Reynolds Electrical & Engineering Company (REECo), the drilling contractor. 7 refs., 8 figs., 5 tabs.

Chornack, M.P. [Geological Survey, Las Vegas, NV (USA); French, C.A. [Reynolds Electrical and Engineering Co., Inc., Las Vegas, NV (USA)

1989-12-31T23:59:59.000Z

455

Products of an Artificially Induced Hydrothermal System at Yucca Mountain  

DOE Green Energy (OSTI)

Studies of mineral deposition in the recent geologic past at Yucca Mountain, Nevada, address competing hypotheses of hydrothermal alteration and deposition from percolating groundwater. The secondary minerals being studied are calcite-opal deposits in fractures and lithophysal cavities of ash-flow tuffs exposed in the Exploratory Studies Facility (ESF), a 7.7-km tunnel excavated by the Yucca Mountain Site Characterization Project within Yucca Mountain. An underground field test in the ESF provided information about the minerals deposited by a short-lived artificial hydrothermal system and an opportunity for comparison of test products with the natural secondary minerals. The heating phase lasted nine months, followed by a nine-month cooling period. Natural pore fluids were the only source of water during the thermal test. Condensation and reflux of water driven away from the heater produced fluid flow in certain fractures and intersecting boreholes. The mineralogic products of the thermal test are calcite-gypsum aggregates of less than 4-micrometer crystals and amorphous silica as glassy scale less than 0.2 mm thick and as mounds of tubules with diameters less than 0.7 micrometers. The minute crystal sizes of calcite and gypsum from the field test are very different from the predominantly coarser calcite crystals (up to cm scale) in natural secondary-mineral deposits at the site. The complex micrometer-scale textures of the amorphous silica differ from the simple forms of opal spherules and coatings in the natural deposits, even though some natural spherules are as small as 1 micrometer. These differences suggest that the natural minerals, especially if they were of hydrothermal origin, may have developed coarser or simpler forms during subsequent episodes of dissolution and redeposition. The presence of gypsum among the test products and its absence from the natural secondary-mineral assemblage may indicate a higher degree of evaporation during the test than during the deposition of natural calcite-opal deposits.

S. Levy

2000-08-07T23:59:59.000Z

456

Geochemical interpretation of Kings Mountain, North Carolina, orientation area  

SciTech Connect

An orientation study has been made of uranium occurrences in the area of Kings Mountain, North Carolina. This is one of the orientation studies of known uranium occurrences that are being conducted in several geologic provinces and under various climatic (weathering) conditions to provide the technical basis for design and interpretation of NURE geochemical reconnaissance programs. The Kings Mountain area was chosen for study primarily because of the reported presence of high-uranium monazite. This 750-mi/sup 2/ area is in the deeply weathered southern Appalachian Piedmont and spans portions of the Inner Piedmont, Kings Mountain, and Charlotte geologic belts. Uranium concentration maps for ground and surface water samples clearly outline the outcrop area of the Cherryville Quartz Monzonite with highs up to 10 ppb uranium near the reported uraninite. Several surface water samples appear to be anomalous because of trace industrial contamination. Uranium concentration maps for -100 to +200 mesh stream sediments indicate the area of monazite abundance. Several samples with >100 ppM uranium content appear to be high in uranium-rich resistate minerals. When the uranium content of sediment samples is ratioed to the sum of Hf, Dy, and Th, the anomaly pattern shifts to coincide with uranium highs in ground and surface water samples. False anomalies from concentrations of monazite (Ce,ThPO/sub 4/), xenotime (Y,DyPO/sub 4/), and zircon (Zr,HfSiO/sub 4/) in stream sediment samples can thus be eliminated. Residual anomalies should be related to unusual uranium enrichment of these common minerals or to the presence of an uncommon uranium-rich mineral. Tantalum, beryllium, and tin in stream sediments correspond to high concentrations of uranium in stream and ground water but not to uranium in sediments. In an initial reconnaissance, several media should be sampled, and it is essential to correct uranium in sediments for the sample mineralogy.

Price, V.; Ferguson, R.B.

1977-01-01T23:59:59.000Z

457

Precipitation-Front Modeling: Issues Relating to Nucleation and Metastable Precipitation in the Planned Nuclear Waste Repository at Yucca Mountain, Nevada  

E-Print Network (OSTI)

Mineralogic Model of Yucca Mountain, Nevada, Rev. 1. Reportfor fracture sealing at Yucca Mountain, Nevada. Journal ofWaste Repository at Yucca Mountain, Nevada J.A. Apps and

Apps, J.A.; Sonnenthal, E.L.

2004-01-01T23:59:59.000Z

458

Analysis of Thermally Induced Changes in Fractured Rock Permeability during Eight Years of Heating and Cooling at the Yucca Mountain Drift Scale Test  

E-Print Network (OSTI)

and Cooling at the Yucca Mountain Drift Scale Test J.mechanical analysis of the Yucca Mountain Drift Scale Test scale heater test at Yucca Mountain, Nevada, USA. Int J Rock

Rutqvist, J.

2008-01-01T23:59:59.000Z

459

Coupled thermal-hydrological-mechanical analyses of the Yucca Mountain Drift Scale Test - Comparison of field measurements to predictions of four different numerical models  

E-Print Network (OSTI)

mechanical analyses of the Yucca Mountain Drift Scale Test Chemical Responses in the Yucca Mountain Drift Scale Test.Heating Phase of the Yucca Mountain Drift Scale Test. In:

2004-01-01T23:59:59.000Z

460

SBOT WYOMING ROCKY MOUNTAIN OILFIELD CENTER POC Jenny Krom Telephone  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WYOMING WYOMING ROCKY MOUNTAIN OILFIELD CENTER POC Jenny Krom Telephone (307) 233-4818 Email jenny.krom@rmotc.doe.gov ADMINISTATIVE / WASTE / REMEDIATION Office Administrative Services 561110 Facilities Support Services 561210 Security Guards and Patrol Services 561612 Security Systems Services (except Locksmiths) 561621 Locksmiths 561622 Exterminating and Pest Control Services 561710 Janitorial Services 561720 Solid Waste Collection 562111 Hazardous Waste Collection 562112 Other Waste Collection 562119 Hazardous Waste Treatment and Disposal 562211 Solid Waste Landfill 562212 Solid Waste Combustors and Incinerators 562213 Other Nonhazardous Waste Treatment and Disposal 562219 Remediation Services 562910 Materials Recovery Facilities 562920 All Other Miscellaneous Waste Management Services 562998

Note: This page contains sample records for the topic "investigations chocolate mountains" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Total system performance assessment - 1995: An evaluation of the potential Yucca Mountain repository  

SciTech Connect

The U.S. Department of Energy (DOE) is currently investigating the feasibility of permanently disposing the nation`s commercial high-level radioactive wastes (in the form of spent fuel from the over 100 electric power-generating nuclear reactors across the U.S.) and a portion of the defense high-level radioactive wastes (currently stored at federal facilities around the country) in the unsaturated tuffaceous rocks at Yucca Mountain, Nevada. Quantitative predictions based on the most current understanding of the processes and parameters potentially affecting the long-term behavior of the disposal system are used to assess the ability of the site and its associated engineered designs to meet regulatory objectives of the US NRC and the US EPA. The evaluation of the ability of the overall system to meet the performance objectives specified in the applicable regulatory standards has been termed total system performance assessment (TSPA). Total system performance assessments require the explicit quantification of the relevant processes and process interactions. In addition assessments are useful to help define the most significant processes, the information gaps and uncertainties and therefore the additional information required for more robust and defensible assessment of the overall performance. The aim of any total system performance assessment is to be as complete and reasonably conservative as possible and to assure that the descriptions of the predictive models and parameters are sufficient to ascertain their accuracy. Total system performance assessments evolve with time. Previous iterations of total system performance assessment of the Yucca Mountain site and associated engineered barriers have been conducted in 1991 and 1993.

Atkins, J.E.; Lee, J.H.; Lingineni, S.; Mishra, S; McNeish, J.A.; Sassani, D.C.; Sevougian, S.D.

1995-11-01T23:59:59.000Z

462

Total system performance assessment - 1995: An evaluation of the potential Yucca Mountain Repository  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) is currently investigating the feasibility of permanently disposing the nation`s commercial high-level radioactive wastes (in the form of spent fuel from the over 100 electric power-generating nuclear reactors across the U.S.) and a portion of the defense high-level radioactive wastes (currently stored at federal facilities around the country) in the unsaturated tuffaceous rocks at Yucca Mountain, Nevada. Quantitative predictions based on the most current understanding of the processes and parameters potentially affecting the long-term behavior of the disposal system are used to assess the ability of the site and its associated engineered designs to meet regulatory objectives set forward by the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Environmental Protection Agency (EPA). The evaluation of the ability of the overall system to meet the performance objectives specified in the applicable regulatory standards has been termed total system performance assessment (TSPA). The aim of any total system performance assessment is to be as complete and reasonably conservative as possible and to assure that the descriptions of the predictive models and parameters are sufficient to ascertain their accuracy. Total system performance assessments evolve with time. As additional site and design information is generated, performance assessment analyses can be revised to become more representative of the expected conditions and remove some of the conservative assumptions necessitated by the incompleteness of site and design data. Previous iterations of total system performance assessment of the Yucca Mountain site and associated engineered barriers have been conducted in 1991 and 1993. These analyses have been documented in Barnard, Eslinger, Wilson and Andrews.

NONE

1995-11-01T23:59:59.000Z

463

A Rocky Mountain Storm. Part II: The Forest Blowdown over the West Slope of the Northern Colorado MountainsObservations, Analysis, and Modeling  

Science Conference Proceedings (OSTI)

A devastating winter storm affected the Rocky Mountain states over the 3-day period of 2426 October 1997. Blizzard conditions persisted over the foothills and adjoining plains from Wyoming to southern New Mexico, with maximum total snowfall ...

Michael P. Meyers; John S. Snook; Douglas A. Wesley; Gregory S. Poulos

2003-08-01T23:59:59.000Z

464

Alleviation of Stationary Biases in a GCM through a Mountain Drag Parameterization Scheme and a Simple Representation of Mountain Lift Forces  

Science Conference Proceedings (OSTI)

The problem of the representation of the orientation of mountain forces in a GCM is examined. First a series of winter simulations is presented with the Laboratoire de Mtorologie Dynamique GCM where the model ground is flat and where the ...

Franois Lott

1999-05-01T23:59:59.000Z

465

Seasonal and Diurnal Variations in Aerosol Concentration on Whistler Mountain: Boundary Layer Influence and Synoptic-Scale Controls  

Science Conference Proceedings (OSTI)

A mountain air chemistry observatory has been operational on the summit of Whistler Mountain in British Columbia, Canada, since 2002. A 1-yr dataset of condensation nuclei (CN) concentration from this site has been analyzed along with ...

John P. Gallagher; Ian G. McKendry; Anne Marie Macdonald; W. Richard Leaitch

2011-11-01T23:59:59.000Z

466

Reactive transport model for the ambient unsaturated hydrogeochemical system at Yucca mountain, Nevada  

Science Conference Proceedings (OSTI)

To assist a technical review of a potential application for a geologic repository, a reactive transport model is presented for the ambient hydrogeochemical system at Yucca Mountain (YM). The model simulates two-phase, nonisothermal, advective and diffusive ... Keywords: Yucca mountain, geochemistry, groundwater chemistry, groundwater flow and transport, hydrology, reactive transport model, unsaturated zone

Lauren Browning; William M. Murphy; Chandrika Manepally; Randall Fedors

2003-04-01T23:59:59.000Z

467

Estimation of Unsaturated Zone Traveltimes for Rainier Mesa and Shoshone Mountain, Nevada Test  

E-Print Network (OSTI)

of Las Vegas. The NTS is bordered by the Nellis Air Force Range and the Tonopah 5 #12;Test RangeEstimation of Unsaturated Zone Traveltimes for Rainier Mesa and Shoshone Mountain, Nevada Test Site for Rainier Mesa and Shoshone Mountain, Nevada Test Site, Nevada, using a source-responsive preferential

468

Factors Affecting Cold-Air Outbreaks East of the Rocky Mountains  

Science Conference Proceedings (OSTI)

A two-layer isentropic model is used to examine the parameters controlling the severity of cold-air outbreaks east of the Rocky Mountains, and in particular the channeling effect of the mountain range. The case that is scrutinized is the cold-air ...

Gisela Hartjenstein; Rainer Bleck

1991-09-01T23:59:59.000Z

469

Woodward Mountain I & II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

I & II Wind Farm I & II Wind Farm Jump to: navigation, search Name Woodward Mountain I & II Wind Farm Facility Woodward Mountain Wind Ranch I and II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Cielo Wind Power/Renewable Energy Systems Energy Purchaser TXU Electric & Gas Location Pecos County TX Coordinates 30.970703°, -102.396491° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.970703,"lon":-102.396491,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

470

Mountain View Power Partners I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

I Wind Farm I Wind Farm Jump to: navigation, search Name Mountain View Power Partners I Wind Farm Facility Mountain View Power Partners I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner MDU Resources Developer SeaWest Energy Purchaser L.A. Department of Water Resources Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

471

King Mountain Wind Ranch I | Open Energy Information  

Open Energy Info (EERE)

Ranch I Ranch I Jump to: navigation, search Name King Mountain Wind Ranch I Facility King Mountain Wind Ranch Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Cielo Wind Power/Renewable Energy Systems Energy Purchaser Texas-New Mexico Power- Reliant Energy- Austin Energy Location Upton County TX Coordinates 31.280873°, -102.195861° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.280873,"lon":-102.195861,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

472

Kibby Mountain Phase I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Phase I Wind Farm Phase I Wind Farm Jump to: navigation, search Name Kibby Mountain Phase I Wind Farm Facility Kibby Mountain Phase I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner TransCanada Power Mktg Ltd Developer TransCanada Power Mktg Ltd Location Kibby Township ME Coordinates 43.973144°, -71.030844° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.973144,"lon":-71.030844,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

473

Maintenance of a rural precipitation chemistry center at Whiteface Mountain  

SciTech Connect

For the Past 11 years, Whiteface Mountain (WFM) has been successfully collecting data according to the MAP3S (Multistate Power Production Pollution Study) protocols. These protocols include field sampling, laboratory procedures, sample handling and shipment, and supporting measurements at the summit or lodge including meteorological and air quality parameters. All blind tests and audits have been successfully passed. Since the beginning of the MAP3S program it was recognized that, because of its remoteness, WFM needed some additional support to process the samples and to obtain site specific supporting data. The primary purpose of this funding was to insure the technical support to maintain the availability of WFM so that the necessary high quality research monitoring could continue. In addition, during the past year, we were able to: (1) perform all operations required by the National Trends Network (NTN) precipitation monitoring network: (2) begin the comparison of MAP3S data with similar data taken at WFM; (3) begin a series of ion chromatography measurements on MAP3S duplicate samples (when sufficient volume was available) to study the effect of time delays between sample collection and chemical analysis: (4) provide wet deposition data to the EPA Mountain Cloud Chemistry Program (MCCP); (5) assess the precipitation data quality of the ENSR measurements collocated with MAP3S. Selected results are presents. 6 refs., 1 fig.

Mohnen, V.A.

1991-09-01T23:59:59.000Z

474

The origin and history of alteration and carbonatization of the Yucca Mountain ignimbrites. Volume 2, Appendix B  

SciTech Connect

A geological history is presented for Yucca Mountain. This appendix concentrates on the alteration and carbonatization of ignimbrites.

Szymanski, J.S.

1992-04-01T23:59:59.000Z

475

Yucca Mountain - U.S. Department of Energy's Response to the Motion for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Yucca Mountain - U.S. Department of Energy's Response to the Motion Yucca Mountain - U.S. Department of Energy's Response to the Motion for Recusal/Disqualification Yucca Mountain - U.S. Department of Energy's Response to the Motion for Recusal/Disqualification Brief filed before the Nuclear Regulatory Commission in the proceeding on DOE's applciation to construct a high-level waste repository at Yucca Mountain, Nevada; DOE opposes the motion of Washington, South Carolina, Aiken County, and White Pine County to disqualify Commissioners Magwood and Ostendorff from voting on the appeal of the Atomic Safety and Licensing Board's denial of DOE's motion to withdraw its application. Yucca Mountain - U.S. Department of Energy's Response to the Motion for Recusal/Disqualification More Documents & Publications 3116 Public Meeting Summaries - November 2006

476

Geothermal Literature Review At White Mountains Area (Goff & Decker, 1983)  

Open Energy Info (EERE)

White Mountains Area (Goff & Decker, 1983) White Mountains Area (Goff & Decker, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At White Mountains Area (Goff & Decker, 1983) Exploration Activity Details Location White Mountains Area Exploration Technique Geothermal Literature Review Activity Date Usefulness useful DOE-funding Unknown Notes Review and identification of 24 potential sites for EGS development across the U.S., as well as modeling of the representative geologic systems in which promising EGS sites occur. References Fraser Goff, Edward R. Decker (1983) Candidate Sites For Future Hot Dry Rock Development In The United States Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_White_Mountains_Area_(Goff_%26_Decker,_1983)&oldid=510828

477

Geothermometry At Socorro Mountain Area (Owens, Et Al., 2005) | Open Energy  

Open Energy Info (EERE)

Geothermometry At Socorro Mountain Area (Owens, Et Al., 2005) Geothermometry At Socorro Mountain Area (Owens, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Socorro Mountain Area (Owens, Et Al., 2005) Exploration Activity Details Location Socorro Mountain Area Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Pre-existing evidence includes heat gradients of upwards of 490mW/m2 from thermal-gradient wells, tepid spring waters (32oC) and silica geochemistry indicating thermal waters with a minimum of 82oC at depth References Lara Owens, Richard Baars, David Norman, Harold Tobin (2005) New Methods In Exploration At The Socorro Peak Kgra- A Gred Iii Project Retrieved from "http://en.openei.org/w/index.php?title=Geothermometry_At_Socorro_Mountain_Area_(Owens,_Et_Al.,_2005)&oldid=389518