Powered by Deep Web Technologies
Note: This page contains sample records for the topic "investigation systems geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Decision Analysis for Enhanced Geothermal Systems Geothermal...  

Open Energy Info (EERE)

Recovery Act: Enhanced Geothermal Systems Component Research and DevelopmentAnalysis Project Type Topic 2 Geothermal Analysis Project Description The result of the proposed...

2

Geothermal: Sponsored by OSTI -- Engineered Geothermal Systems...  

Office of Scientific and Technical Information (OSTI)

Engineered Geothermal Systems Energy Return On Energy Investment Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

3

Investigation of component failures in downhole geothermal pumping systems. Final report  

DOE Green Energy (OSTI)

This study investigated component failures in electric, downhole submersible pumps which prevented the attainment of one year continuous downhole running times in geothermal wells at temperatures up to 375/sup 0/F. The feasibility of a pressurized motor to prevent brine intrusion was investigated, as well as improved pothead and packoff designs, and brine scale buildup on impeller sleeve bearings and thrust washers. (ACR)

Werner, D.K.

1985-03-15T23:59:59.000Z

4

Geothermal: Sponsored by OSTI -- Preliminary investigations of...  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Preliminary investigations of the thermal energy grid concept Geothermal Technologies Legacy Collection HelpFAQ |...

5

Geothermal: Sponsored by OSTI -- Laboratory investigation of...  

Office of Scientific and Technical Information (OSTI)

Laboratory investigation of steam adsorption in geothermal reservoir rocks Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic...

6

SEISMOLOGICAL INVESTIGATIONS AT THE GEYSERS GEOTHERMAL FIELD  

E-Print Network (OSTI)

P. Muffler, 1972. The Geysers Geothermal Area, California.B. C. Hearn, 1977. ~n Geothermal Prospecting Geology, TheC. , 1968. of the Salton Sea Geothermal System. pp. 129-166.

Majer, E. L.

2011-01-01T23:59:59.000Z

7

Geothermal: Sponsored by OSTI -- Investigation of Stimulation...  

Office of Scientific and Technical Information (OSTI)

Stimulation-Response Relationships for Complex Fracture Systems in Enhanced Geothermal Reservoirs Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin...

8

Hybrid Geothermal Heat Pump Systems  

Science Conference Proceedings (OSTI)

Hybrid geothermal heat pump systems offer many of the benefits of full geothermal systems but at lower installed costs. A hybrid geothermal system combines elements of a conventional water loop heat pump system in order to reduce the geothermal loop heat exchanger costs, which are probably the largest cost element of a geothermal system. These hybrid systems have been used successfully where sufficient ground space to install large heat exchangers for full geothermal options was unavailable, or where the...

2009-12-21T23:59:59.000Z

9

National Geothermal Data System (NGDS) Geothermal Data Domain...  

Open Energy Info (EERE)

National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Jump to: navigation, search OpenEI Reference LibraryAdd to library...

10

Sedimentary Geothermal Systems | Open Energy Information  

Open Energy Info (EERE)

Sedimentary Geothermal Systems Sedimentary Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geopressured Geothermal Systems Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps Sedimentary Geothermal Links Related documents and websites Estimate of the Geothermal Energy Resource in the Major Sedimentary Basins in the United States Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana EGS Schematic.jpg ] Dictionary.png Sedimentary Geothermal Systems: Sedimentary Geothermal Systems produce electricity from medium temperature,

11

Initial investigation of soil mercury geochemistry as an aid to drill site selection in geothermal systems  

DOE Green Energy (OSTI)

A mercury-in-soil survey was conducted at the Roosevelt Hot Springs Known Geothermal Resource Area (KGRA), Utah, to evaluate mercury soil geochemistry as a method of selecting exploration well sites in a hot-water geothermal system. Samples of -80 mesh soil were collected at 30.5 m intervals along traverses crossing known structures, surficial geothermal alteration, and exploration well sites, and were analyzed using a Gold Film Mercury Detector. Strong mercury anomalies occur at locations along known structures in close proximity to subsurface thermal activity; examples include areas over hot spring deposits and near a shallow producing well. In contrast, background mercury concentrations are present in nearby locations with little or no indication of subsurface thermal activity, such as areas around deep marginal producing wells and dry wells, and areas lacking hot spring deposits. These results indicate that mercury geochemical surveys can be useful for identifying and mapping structures controlling fluid flow in geothermal systems and for delineating areas overlying near-surface thermal activity. Soil mercury geochemistry thus provides information which may aid in the cost-effective selection of exploratory well sites.

Capuano, R.M.; Bamford, R.W.

1978-12-01T23:59:59.000Z

12

Modeling of geothermal systems  

DOE Green Energy (OSTI)

During the last decade the use of numerical modeling for geothermal resource evaluation has grown significantly, and new modeling approaches have been developed. In this paper we present a summary of the present status in numerical modeling of geothermal systems, emphasizing recent developments. Different modeling approaches are described and their applicability discussed. The various modeling tasks, including natural-state, exploitation, injection, multi-component and subsidence modeling, are illustrated with geothermal field examples. 99 refs., 14 figs.

Bodvarsson, G.S.; Pruess, K.; Lippmann, M.J.

1985-03-01T23:59:59.000Z

13

Residential Geothermal Systems Credit  

Energy.gov (U.S. Department of Energy (DOE))

A resident individual taxpayer of Montana who installs a geothermal heating or cooling system in their principal dwelling can claim a tax credit based on the installation costs of the system, not...

14

Property:Geothermal/OtherPrincipalInvestigator | Open Energy Information  

Open Energy Info (EERE)

OtherPrincipalInvestigator OtherPrincipalInvestigator Jump to: navigation, search Property Name Geothermal/OtherPrincipalInvestigator Property Type String Description Other Principal Investigators Subproperties This property has the following 2 subproperties: A A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project D Development of Chemical Model to Predict the Interactions between Supercritical CO2 and Fluid, Rocks in EGS Reservoirs Geothermal Project Pages using the property "Geothermal/OtherPrincipalInvestigator" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + John Louie, University of Nevada and Lisa Shevenell, University of Nevada +

15

Enhanced Geothermal Systems  

DOE Green Energy (OSTI)

Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Therefore, knowledge of the conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fractures are created in the reservoir using hydraulic fracturing. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result, it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have developed advanced poro-thermo-chemo-mechanical fracture models for rock fracture research in support of EGS design. The fracture propagation models are based on a regular displacement discontinuity formulation. The fracture propagation studies include modeling interaction of induced fractures. In addition to the fracture propagation studies, two-dimensional solution algorithms have been developed and used to estimate the impact of pro-thermo-chemical processes on fracture permeability and reservoir pressure. Fracture permeability variation is studied using a coupled thermo-chemical model with quartz reaction kinetics. The model is applied to study quartz precipitation/dissolution, as well as the variation in fracture aperture and pressure. Also, a three-dimensional model of injection/extraction has been developed to consider the impact poro- and thermoelastic stresses on fracture slip and injection pressure. These investigations shed light on the processes involved in the observed phenomenon of injection pressure variation (e.g., in Coso), and allow the assessment of the potential of thermal and chemical stimulation strategies.

Ahmad Ghassemi

2009-10-01T23:59:59.000Z

16

Enhanced Geothermal Systems (EGS) | Open Energy Information  

Open Energy Info (EERE)

Enhanced Geothermal Systems (EGS) Enhanced Geothermal Systems (EGS) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Enhanced Geothermal Systems (EGS) Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps EGS Links Related documents and websites DOE EGS Technical Roadmap DOE EGS Systems Demonstration Projects How EGS Works (Animation) EGS Development (Animation) EGS Schematic.jpg ] Dictionary.png Enhanced Geothermal Systems: Enhanced Geothermal Systems (EGS) are human engineered hydrothermal reservoirs developed for commercial use as an alternative to naturally

17

Application of seismic tomographic techniques in the investigation of geothermal systems  

DOE Green Energy (OSTI)

The utility of microearthquake data for characterizing the Northwest Geysers geothermal field and the Long Valley Caldera (LVC) was investigated. Three-dimensional (3-D) P- and S-wave seismic velocity models were estimated for the Coldwater Creek Steam Field (CCSF) in the Northwest Geysers region. Hypocenters relocated using these 3-D models appear to be associated with the steam producing zone, with a deeper cluster of hypocenters beneath an active injection well. Spatial and temporal patterns of seismicity exhibit strong correlation with geothermal exploitation. A 3-D differential attenuation model was also developed for the CCSF from spectral ratios corrected for strong site effects. High-velocity anomalies and low attenuation in the near surface correspond to Franciscan metagraywacke and greenstone units. Microearthquakes recorded at seismographic stations located near the metagraywacke unit exhibit high corner frequencies. Low-velocity anomalies and higher attenuation in the near surface are associated with sections of Franciscan melange. Near-surface high attenuation and high Vp/Vs are interpreted to indicate liquid-saturated regions affected by meteoric recharge. High attenuation and low Vp/Vs marks the steam producing zone, suggesting undersaturation of the reservoir rocks. The extent of the high attenuation and low Vp/Vs anomalies suggest that the CCSF steam reservoir may extend northwestward beyond the known producing zone. This study concludes that microearthquake monitoring may be useful as an active reservoir management tool. Seismic velocity and attenuation structures as well as the distribution of microearthquake activity can be used to identify and delineate the geothermal reservoir, while temporal variations in these quantities would be useful in tracking changes during exploitation.

Romero, A.E. Jr.

1995-05-01T23:59:59.000Z

18

Geothermal Technologies Program: Enhanced Geothermal Systems  

DOE Green Energy (OSTI)

This general publication describes enhanced geothermal systems (EGS) and the principles of operation. It also describes the DOE program R&D efforts in this area, and summarizes several projects using EGS technology.

Not Available

2004-08-01T23:59:59.000Z

19

National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment  

Open Energy Info (EERE)

National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Abstract To satisfy the critical need for geothermal data to advance geothermal energy as a viable renewable energy contender, the U.S. Department of Energy is in-vesting in the development of the National Geothermal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to sup-ply cutting edge geoinformatics. NGDS geothermal data acquisition, delivery, and methodology are dis-cussed. In particular, this paper addresses the various types of data required to effectively assess

20

American Geothermal Systems | Open Energy Information  

Open Energy Info (EERE)

navigation, search Name American Geothermal Systems Place Austin, Texas Sector Geothermal energy Product Installer of geothermal heating and cooling technologies, also has a...

Note: This page contains sample records for the topic "investigation systems geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM  

Open Energy Info (EERE)

BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM RESERVOIR DEVELOPMENT Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM RESERVOIR DEVELOPMENT Details Activities (1) Areas (1) Regions (0) Abstract: Thermal stimulation can be utilized to precondition a well to optimize fracturing and production during Enhanced Geothermal System (EGS) reservoir development. A finite element model was developed for the fully coupled processes consisting of: thermoporoelastic deformation, hydraulic conduction, thermal osmosis, heat conduction, pressure thermal effect, and the interconvertibility of mechanical and thermal energy. The model has

22

Geothermal: Sponsored by OSTI -- Enhanced Geothermal System Potential...  

Office of Scientific and Technical Information (OSTI)

Enhanced Geothermal System Potential for Sites on the Eastern Snake River Plain, Idaho Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On...

23

Geothermal Technologies Office: Enhanced Geothermal Systems Technologi...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

24

Geothermal Technologies Office: Enhanced Geothermal Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

25

OIT geothermal system improvements  

Science Conference Proceedings (OSTI)

Three geothermal wells drilled during the original campus construction vary from 396 m (1,300 ft) to 550 m (1,800 ft). These wells supply all of the heating and part of the cooling needs of the 11-building, 62,200 m{sup 2} (670,000 ft{sup 2}) campus. The combined capacity of the well pumps is 62 L/s(980 gpm) of 89{degrees}C (192{degrees}F) geothermal fluids. Swimming pool and domestic hot water heating impose a small but nearly constant year-round flow requirement. In addition to heating, a portion of the campus is also cooled using the geothermal resource. This is accomplished through the use of an absorption chiller. The chiller, which operates on the same principle as a gas refrigerator, requires a flow of 38 L/s (600 gpm) of geothermal fluid and produces 541 kW (154 tons) of cooling capacity (Rafferty, 1989). The annual operating costs for the system is about $35,000 including maintenance salary, equipment replacement and cost of pumping. This amounts to about $0.05 per square foot per year.

Lienau, P.J. [Geo-Heat Center, Klamath Falls, OR (United States)

1996-08-01T23:59:59.000Z

26

Geothermal investigations in West Virginia  

DOE Green Energy (OSTI)

Deep sedimentary basins and warm-spring systems in West Virginia are potential geothermal resources. A temperature gradient map based on 800 bottom-hole temperatures for West Virginia shows that variations of temperature gradient trend northeasterly, parallel to regional structure. Highest temperature gradient values of about 28/sup 0/C/km occur in east-central West Virginia, and the lowest gradients (18/sup 0/C/km) are found over the Rome Trough. Results from ground-water geochemistry indicate that the warm waters circulate in very shallow aquifers and are subject to seasonal temperature fluctuations. Silica heat-flow data in West Virginia vary from about 0.89 to 1.4 HFU and generally increase towards the west. Bouguer, magnetic, and temperature gradient profiles suggest that an ancient rift transects the state and is the site of several deep sedimentary basins.

Hendry, R.; Hilfiker, K.; Hodge, D.; Morgan, P.; Swanberg, C.; Shannon, S.S. Jr.

1982-11-01T23:59:59.000Z

27

Geothermal investigations at selected thermal systems of the northern Wasatch Front Weber and Box Elder Counties, Utah. Report of investigation No. 141  

DOE Green Energy (OSTI)

Numerous thermal springs are present along the Wasatch Front from Utah valley on the south to the state line on the north. These systems are just west of the Wasatch Mountains at the eastern edge of the Basin and Range physiographic province and within the active seismic zone referred to as the Intermountain Seismic Belt. This Report of Investigation is a summary of UGMS investigations at four northern Wasatch Front geothermal systems: Utah, Crystal (Madsen), and Udy hot springs; and the Little Mountain - south system. All of these resources are deep circulation systems and the water is heated by the normal heat flow of the Basin and Range Province. Heat from volcanic sources is not believed to contribute to the warming of any northern Wasatch Front springs. Data collected under the DOE/DGE state coupled program are presented for use by individuals interested in these systems.

Murphy, P.; Gwynn, J.W.

1979-11-01T23:59:59.000Z

28

Blind Geothermal System | Open Energy Information  

Open Energy Info (EERE)

Blind Geothermal System Blind Geothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Blind Geothermal System Dictionary.png Blind Geothermal System: An area with a geothermal heat source, but no modern surface manifestations. Other definitions:Wikipedia Reegle Modern Geothermal Features Typical list of modern geothermal features Hot Springs Fumaroles Warm or Steaming Ground Mudpots, Mud Pools, or Mud Volcanoes Geysers Blind Geothermal System Many geothermal areas show no signs of geothermal activity at the surface if the heated water is too far below or no conduits to the surface are available. An area of geothermal activity with no surface features is referred to as a "blind geothermal system." Examples Want to add an example to this list? Select a Geothermal Resource Area to

29

Enhanced Geothermal Systems (EGS) | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Enhanced Geothermal Systems (EGS) (Redirected from EGS) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Enhanced Geothermal Systems (EGS) Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps EGS Links Related documents and websites DOE EGS Technical Roadmap DOE EGS Systems Demonstration Projects How EGS Works (Animation) EGS Development (Animation)

30

Geothermal Site Assessment Using the National Geothermal Data System  

Open Energy Info (EERE)

Geothermal Site Assessment Using the National Geothermal Data System Geothermal Site Assessment Using the National Geothermal Data System (NGDS), with Examples from the Hawthorne Ammunition Depot Area Jump to: navigation, search Tool Summary Name: Geothermal Site Assessment Using the National Geothermal Data System (NGDS), with Examples from the Hawthorne Ammunition Depot Area Agency/Company /Organization: University of Nevada-Reno Sector: Energy Focus Area: Renewable Energy, Geothermal Topics: Resource assessment Resource Type: Case studies/examples, Publications Website: www.unr.edu/geothermal/pdffiles/PenfieldGRC2010_GeothermalSiteAssessme Cost: Free Language: English References: Paper[1] "This paper examines the features and functionality of the existing database, its integration into the 50-state NGDS, and its usage in

31

Hybrid Geothermal Heat Pump System Research Geothermal Project | Open  

Open Energy Info (EERE)

Hybrid Geothermal Heat Pump System Research Geothermal Project Hybrid Geothermal Heat Pump System Research Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Hybrid Geothermal Heat Pump System Research Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 2: Data Gathering and Analysis Project Description Geothermal, or ground-source heat pump systems have been shown to have superior energy performance to conventional heating and cooling systems in many building types and climates. There has been significant growth in the application of these systems; yet, geothermal systems have only been able to capture a few percent of the heating and cooling market. This is due primarily to the prohibitively high cost of installing the necessary ground loop.

32

National Geothermal Data System (NGDS)  

DOE Data Explorer (OSTI)

The National Geothermal Data System (NGDS) is a DOE-funded distributed network of databases and data sites. Much of the risk of geothermal energy development is associated with exploring for, confirming and characterizing the available geothermal resources. The overriding purpose of the NGDS is to help mitigate this up-front risk by serving as a central gateway for geothermal and relevant related data as well as a link to distributed data sources. Assessing and categorizing the nation's geothermal resources and consolidating all geothermal data through a publicly accessible data system will support research, stimulate public interest, promote market acceptance and investment, and, in turn, the growth of the geothermal industry. Major participants in the NGDS to date include universities, laboratories, the Arizona Geological Survey and Association of American State Geologists (Arizona Geological Survey, lead), the Geothermal Resources Council, and the U.S. Geological Survey. The Geothermal Energy Association is collaborating with the NGDS to insure that it meets the needs of the geothermal industry. [Copied from http://www.geothermaldata.org/Home.aspx

33

Mathematical Analysis of a Geothermal System.  

E-Print Network (OSTI)

??The issue being examined is to design a more economical and efficient therefore superior geothermal system than currently in use in industry. Current geothermal systems… (more)

Erceg, Ivan P.

2008-01-01T23:59:59.000Z

34

Geothermal resource investigations, Imperial Valley, California. Status report  

DOE Green Energy (OSTI)

The discussion is presented under the following chapter titles: geothermal resource investigations, Imperial Valley, California; the source of geothermal heat; status of geothermal resources (worldwide); geothermal aspects of Imperial Valley, California; potential geothermal development in Imperial Valley; environmental considerations; and proposed plan for development. (JGB)

Not Available

1971-04-01T23:59:59.000Z

35

Neutron imaging for geothermal energy systems  

Science Conference Proceedings (OSTI)

Geothermal systems extract heat energy from the interior of the earth using a working fluid, typically water. Three components are required for a commercially viable geothermal system: heat, fluid, and permeability. Current commercial electricity production using geothermal energy occurs where the three main components exist naturally. These are called hydrothermal systems. In the US, there is an estimated 30 GW of base load electrical power potential for hydrothermal sites. Next generation geothermal systems, named Enhanced Geothermal Systems (EGS), have an estimated potential of 4500 GW. EGSs lack in-situ fluid, permeability or both. As such, the heat exchange system must be developed or engineered within the rock. The envisioned method for producing permeability in the EGS reservoir is hydraulic fracturing, which is rarely practiced in the geothermal industry, and not well understood for the rocks typically present in geothermal reservoirs. High costs associated with trial and error learning in the field have led to an effort to characterize fluid flow and fracturing mechanisms in the laboratory to better understand how to design and manage EGS reservoirs. Neutron radiography has been investigated for potential use in this characterization. An environmental chamber has been developed that is suitable for reproduction of EGS pressures and temperatures and has been tested for both flow and precipitations studies with success for air/liquid interface imaging and 3D reconstruction of precipitation within the core.

Bingham, Philip R [ORNL; Anovitz, Lawrence {Larry} M [ORNL; Polsky, Yarom [ORNL

2013-01-01T23:59:59.000Z

36

Geothermal Energy Resource Investigations, Chocolate Mountains Aerial  

Open Energy Info (EERE)

Investigations, Chocolate Mountains Aerial Investigations, Chocolate Mountains Aerial Gunnery Range, Imperial Valley, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geothermal Energy Resource Investigations, Chocolate Mountains Aerial Gunnery Range, Imperial Valley, California Details Activities (5) Areas (1) Regions (0) Abstract: The US Navy's Geothermal Program Office (GPO), has conducted geothermal exploration in the Chocolate Mountains Aerial Gunnery Range (CMAGR) since the mid-1970s. At this time, the focus of the GPO had been on the area to the east of the Hot Mineral Spa KGRA, Glamis and areas within the Chocolate Mountains themselves. Using potential field geophysics, mercury surveys and geologic mapping to identify potential anomalies related to recent hydrothermal activity. After a brief hiatus starting in

37

Geothermal investigations in Idaho. Part 1. Geochemistry and...  

Open Energy Info (EERE)

in Idaho. Part 1. Geochemistry and geologic setting of selected thermal waters Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geothermal investigations in...

38

Geographic Information System At International Geothermal Area...  

Open Energy Info (EERE)

Indonesia (Nash, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At International Geothermal Area...

39

Geothermal chemistry/exploration investigations at Dixie Valley, Nevada  

DOE Green Energy (OSTI)

Dixie Valley geothermal field has continuously produced electric power since 1988. At the request of Oxbow Geothermal Corp. and the US Department of Energy, the authors have organized an inter-agency team of investigators to examine several topics of concern regarding management and behavior of the resource. These topics include scaling of the injection system, recharge of the reservoir, geochemical monitoring of the reservoir, and development of increased fumarolic activity north of the power plant.

Goff, F.; Bergfeld, D.; Counce, D. [Los Alamos National Lab., NM (United States); Janik, C.J. [Geological Survey (United States); Bruton, C.J.; Nimz, G. [Lawrence Livermore National Lab., CA (United States)

1998-12-01T23:59:59.000Z

40

Cooperative geochemical investigation of geothermal resources in the Imperial Valley and Yuma areas. Final report  

DOE Green Energy (OSTI)

Preliminary studies indicate that the Imperial Valley has a large geothermal potential. In order to delineate additional geothermal systems a chemical and isotopic investigation of samples from water wells, springs, and geothermal wells in the Imperial Valley and Yuma areas was conducted. Na, K, and Ca concentrations of nearly 200 well water, spring water, hot spring, and geothermal fluid samples from the Imperial Valley area were measured by atomic absorption spectrophotometry. Fournier and Truesdell's function was determined for each water sample. Suspected geothermal areas are identified. Hydrogen and oxygen isotope abundances were determined in order to determine and to identify the source of the water in the Mesa geothermal system. (JGB)

Coplen, T.B.

1973-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "investigation systems geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Computerized international geothermal information systems  

DOE Green Energy (OSTI)

The computerized international geothermal energy information system is reviewed. The review covers establishment of the Italy - United States linked data centers by the NATO Committee on Challenges of Modern Society, through a bilateral agreement, and up to the present time. The result of the information exchange project is given as the bibliographic and numerical data available from the data centers. Recommendations for the exchange of computerized geothermal information at the international level are discussed.

Phillips, S.L.; Lawrence, J.D.; Lepman, S.R.

1980-03-01T23:59:59.000Z

42

Susanville Geothermal Investigations, California, Supplemental Technical Data  

DOE Green Energy (OSTI)

The city of Susanville, in response to an unemployment rate exceeding 20 percent and other related community needs, has embarked on a comprehensive effort in community and economic development. To improve the local job market, an effort is underway to enhance the competitive position of the local commerce and industry. This effort is directed at the development of local geothermal resources in the form of an energy utility system to furnish low-cost energy to its job-intensive industry. The Susanville Geothermal Energy Project (SGEP) encompasses the research and development for the energy system. A team composed of key citizens, elected officials, city management, and industry has developed the project since late 1973. The Energy Research and Development Administration (ERDA) has contracted for a research program to define the economics of a community building an economic base through the utilization of geothermal energy. The ERDA effort will define the economic model, specific energy systems, and a program plan for the development of a demonstration geothermal utility system. An essential part of this effort will be the development of the institutional tools (policy, planning, organizational, financing, legal and environmental) as required for a community to implement such a development and utilization of its natural resources.

none

1976-06-01T23:59:59.000Z

43

GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM,  

Open Energy Info (EERE)

GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM, GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM, IDAHO Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM, IDAHO Details Activities (3) Areas (1) Regions (0) Abstract: The Raft River geothermal system is located in southern Idaho, near the Utah-Idaho state boarder in the Raft River Valley. The field, which is owned and operated by U.S. Geothermal, has been selected as an EGS demonstration site by the U. S. Department of Energy. This paper summarizes ongoing geologic and petrologic investigations being conducted in support of this project. The reservoir is developed in fractured Proterozoic schist and quartzite, and Archean quartz monzonite cut by younger diabase

44

Susanville Geothermal Investigations, California, Special Report  

DOE Green Energy (OSTI)

This report documents the investigations by the Bureau of Reclamation and others of the geothermal resource potential of the Susanville-Honey Lake Valley area, California, made during 1975 and the early part of 1976. Included are discussions on the nature of the resource and the analyses of the data gathered. Susanville is located in northeastern California about 210 miles (330 kilometers) northeast of San Francisco. The purpose of the study was to appraise the geothermal resources in the Susanville-Honey Lake area within the constraints of limited funds and available personnel. The main thrust of the studies consisted of: gathering and analyzing existing data; conducting and evaluating an electrical resistivity survey and an aerial thermal infrared survey; and drilling and logging of temperature gradient holes. The heat flow or energy potential of the resource was not determined.

none

1976-06-01T23:59:59.000Z

45

Residential space heating cost: geothermal vs conventional systems  

SciTech Connect

The operating characteristics and economies of several representative space heating systems are analyzed. The analysis techniques used may be applied to a larger variety of systems than considered herein, thereby making this document more useful to the residential developer, heating and ventilating contractor, or homeowner considering geothermal space heating. These analyses are based on the use of geothermal water at temperatures as low as 120/sup 0/F in forced air systems and 140/sup 0/F in baseboard convection and radiant floor panel systems. This investigation indicates the baseboard convection system is likely to be the most economical type of geothermal space heating system when geothermal water of at least 140/sup 0/F is available. Heat pumps utilizing water near 70/sup 0/F, with negligible water costs, are economically feasible and they are particularly attractive when space cooling is included in system designs. Generally, procurement and installation costs for similar geothermal and conventional space heating systems are about equal, so geothermal space heating is cost competitive when the unit cost of geothermal energy is less than or equal to the unit cost of conventional energy. Guides are provided for estimating the unit cost of geothermal energy for cases where a geothermal resource is known to exist but has not been developed for use in residential space heating.

Engen, I.A.

1978-02-01T23:59:59.000Z

46

Pre-Investigation Geological Appraisal Of Geothermal Fields | Open Energy  

Open Energy Info (EERE)

Pre-Investigation Geological Appraisal Of Geothermal Fields Pre-Investigation Geological Appraisal Of Geothermal Fields Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Pre-Investigation Geological Appraisal Of Geothermal Fields Details Activities (2) Areas (1) Regions (0) Abstract: In recent years there has been interest in the possibility of generating electricity from geothermal steam in many countries. The initial stage is the preliminary evaluation of geothermal resources and, apart from economic considerations, the problem is essentially geological. This paper deals with the factors involved in the selection of areas that warrant expenditure on investigation and development. Preferred requirements in geothermal fields for power generation are temperatures above 200°C and permeable aquifers or zones within 2000 m from the surface. The existence

47

Geological investigation of the Socorro geothermal area. Final report  

DOE Green Energy (OSTI)

The results of a comprehensive geological and geochemical study of the Socorro geothermal area are presented. The following are discussed: geologic setting, structural controls, stratigraphic controls, an ancient geothermal system, modern magma bodies, geothermal potential of the Socorro area, and the Socorro transverse shear zone. (MHR)

Chapin, C.E.; Sanford, A.R.; White, D.W.; Chamberlin, R.M.; Osburn, G.R.

1979-05-01T23:59:59.000Z

48

Study of Hybrid Geothermal Heat Pump Systems  

Science Conference Proceedings (OSTI)

Hybrid Ground Source Heat Pump systems often combine a traditional geothermal system with either a cooling tower or fluid cooler for heat rejection and a boiler or solar heat collector for heat addition to the loop. These systems offer the same energy efficiency benefits as full geothermal systems to utilities and their customers but at a potentially lower first cost. Many hybrid systems have materialized to resolve heat buildup in full geothermal system loops where loop temperatures continue to rise as ...

2010-12-06T23:59:59.000Z

49

Strategies To Detect Hidden Geothermal Systems Based On Monitoring and  

Open Energy Info (EERE)

To Detect Hidden Geothermal Systems Based On Monitoring and To Detect Hidden Geothermal Systems Based On Monitoring and Analysis Of CO2 In The Near-Surface Environment Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Strategies To Detect Hidden Geothermal Systems Based On Monitoring and Analysis Of CO2 In The Near-Surface Environment Details Activities (5) Areas (1) Regions (0) Abstract: We investigate the potential for CO2 monitoring in thenear-surface environment as an approach to exploration for hiddengeothermal systems. Numerical simulations of CO2 migration from a modelhidden geothermal system show that CO2 concentrations can reach highlevels in the shallow subsurface even for relatively low CO2 fluxes.Therefore, subsurface measurements offer an advantage over above-groundmeasurements which are affected by winds that rapidly disperse

50

An investigation of the Dixie Valley geothermal field, Nevada, using  

Open Energy Info (EERE)

investigation of the Dixie Valley geothermal field, Nevada, using investigation of the Dixie Valley geothermal field, Nevada, using temporal moment analysis of tracer tests Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: An investigation of the Dixie Valley geothermal field, Nevada, using temporal moment analysis of tracer tests Author Marshall J. Reed Conference Proceedings, 32nd Workshop on Geothermal Reservoir Engineering; Stanford University; 2007 Published Publisher Not Provided, 2007 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for An investigation of the Dixie Valley geothermal field, Nevada, using temporal moment analysis of tracer tests Citation Marshall J. Reed. 2007. An investigation of the Dixie Valley geothermal field, Nevada, using temporal moment analysis of tracer tests. In:

51

An investigation of the Dixie Valley geothermal field, Nevada...  

Open Energy Info (EERE)

2007 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for An investigation of the Dixie Valley geothermal field, Nevada, using...

52

Geothermal Data from the National Geothermal Data System (NGDS)  

DOE Data Explorer (OSTI)

The National Geothermal Data System (NGDS) is a distributed data system providing access to information resources related to geothermal energy from a network of data providers. Data are contributed by academic researchers, private industry, and state and federal agencies. Built on a scalable and open platform through the U.S. Geoscience Information Network (USGIN), NGDS respects data provenance while promoting shared resources.Since NGDS is built using a set of open protocols and standards, relying on the Open Geospatial Consortium (OGC) and International Organization for Standardization (ISO), members of the community may access the data in a variety of proprietary and open-source applications and software. In addition, developers can add functionality to the system by creating new applications based on the open protocols and standards of the NGDS. The NGDS, supported by the U.S. Department of Energy’s Geothermal Technology Program, is intended to provide access to all types of geothermal data to enable geothermal analysis and widespread public use in an effort to reduce the risk of geothermal energy development [copied from http://www.geothermaldata.org/page/about]. See the long list of data contributors at http://geothermaldata.org/page/data-types-and-contributors#data-contributors.

53

Geothermal systems of northern Nevada  

DOE Green Energy (OSTI)

Hot springs are numerous and nearly uniformly distributed in northern Nevada. Most occur on the flanks of basins, along Basin and Range (late Miocene to Holocene) faults, while some occur in the inner parts of the basins. Surface temperatures of the springs range from slightly above ambient to boiling; some springs are superheated. Maximum subsurface water temperatures calculated on the basis of quartz solubility range as high as 252/sup 0/C, although most are below 190/sup 0/C. Flows range from a trickle to several hundred liters per minute. The Nevada geothermal systems differ markedly from the power-producing system at The Geysers, Calif., and from those areas with a high potential for power production (e.g., Yellowstone Park, Wyo.; Jemez Mountains, N. Mex.). These other systems are associated with Quaternary felsic volcanic rocks and probably derive their heat from cooling magma rather high in the crust. In northern Nevada, however, felsic volcanic rocks are virtually all older than 10 million years, and analogous magmatic heat sources are, therefore, probably lacking. Nevada is part of an area of much higher average heat flow than the rest of the United States. In north-central Nevada, geothermal gradients are as great as 64/sup 0/C per kilometer in bedrock and even higher in basin fill. The high gradients probably result from a combination of thin crust and high temperature upper mantle. It is suggested that the geothermal systems of northern Nevada result from circulation of meteoric waters along Basin and Range faults and that their temperature chiefly depends upon (1) depth of circulation and (2) the geothermal gradient near the faults.

Hose, R.K.; Taylor, B.E.

1974-01-01T23:59:59.000Z

54

Isotope Transport and Exchange within the Coso Geothermal System | Open  

Open Energy Info (EERE)

Transport and Exchange within the Coso Geothermal System Transport and Exchange within the Coso Geothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Isotope Transport and Exchange within the Coso Geothermal System Details Activities (1) Areas (1) Regions (0) Abstract: We are investigating the plumbing of the Coso geothermal system and the nearby Coso Hot Springs using finite element models of single-phase, variable-density fluid flow, conductive- convective heat transfer, fluid-rock isotope exchange, and groundwater residence times. Using detailed seismic reflection data and geologic mapping, we constructed a regional crosssectional model that extends laterally from the Sierra Nevada to Wildhorse Mesa, west of the Argus Range. The base of the model terminates at the brittle-ductile transition zone. A sensitivity study was

55

Calpine Enhanced Geothermal Systems Project Final Environmental...  

NLE Websites -- All DOE Office Websites (Extended Search)

Calpine Enhanced Geothermal Systems Project Final Environmental Assessment June 2010 Prepared for: U.S. Department of Energy 1617 Cole Boulevard Golden, CO 80401 Prepared by: RMT...

56

Geographic Information Systems- Tools For Geotherm Exploration...  

Open Energy Info (EERE)

that can help the geothermal industry in exploration, tracer analysis, infrastructure management, and the general distribution and use of data. GIS systems are highly...

57

Design, construction and evaluation of a simulated geothermal flow system  

Science Conference Proceedings (OSTI)

A system was designed and built to simulate the flow from a geothermal well. The simulated flow will be used to power a Lysholm engine, the performance of which will then be evaluated for different simulated geothermal flows. Two main subjects are covered: 1) the design, construction and evaluation of the behavior of the system that simulates the geothermal flow; included in that topic is a discussion of the probable behavior of the Lysholm engine when it is put into operation, and 2) the investigation of the use of dynamic modeling techniques to determine whether they can provide a suitable means for predicting the behavior of the system.

Mackanic, J.C.

1980-07-28T23:59:59.000Z

58

Enhanced Geothermal Systems (EGS) R&D Program, Status Report: Foreign Research on Enhanced Geothermal Systems  

DOE Green Energy (OSTI)

This report reviews enhanced geothermal systems (EGS) research outside the United States. The term ''enhanced geothermal systems'' refers to the use of advanced technology to extract heat energy from underground in areas with higher than average heat flow but where the natural permeability or fluid content is limited. EGS covers the spectrum of geothermal resources from low permeability hydrothermal to hot dry rock.

McLarty, Lynn; Entingh, Daniel

2000-09-29T23:59:59.000Z

59

Co-Produced Geothermal Systems | Open Energy Information  

Open Energy Info (EERE)

Produced Geothermal Systems Produced Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Co-Produced Geothermal Systems Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps Dictionary.png Co-Produced Geothermal System: Co-Produced water is the water that is produced as a by-product during oil and gas production. If there is enough water produced at a high enough temperature co-produced water can be utilized for electricity production. Other definitions:Wikipedia Reegle General Air Cooled Co-Produced geothermal system demonstration at RMOTC oil site.

60

Geothermal system saving money at fire station | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal system saving money at fire station Geothermal system saving money at fire station April 9, 2010 - 3:45pm Addthis Joshua DeLung What will the project do? A geothermal...

Note: This page contains sample records for the topic "investigation systems geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Structural investigations at the Coso geothermal area using remote sensing  

Open Energy Info (EERE)

investigations at the Coso geothermal area using remote sensing investigations at the Coso geothermal area using remote sensing information, Inyo County, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Structural investigations at the Coso geothermal area using remote sensing information, Inyo County, California Details Activities (1) Areas (1) Regions (0) Abstract: Remote sensing studies have been made in and adjacent to the Coso geothermal field using TM FCC satellite imagery, 1:100,000 scale, US Geological Survey orthophotos, 1:24,OOO scale, and proprietary black-and-white photography by California Energy Company, Inc., at various scales including black-and-white positive film transparencies at a scale of 1:6,000. These studies have been made in an attempt to understand the complex geology seen on the surface and to try to improve the method of

62

A Fluid-Inclusion Investigation Of The Tongonan Geothermal Field,  

Open Energy Info (EERE)

Fluid-Inclusion Investigation Of The Tongonan Geothermal Field, Fluid-Inclusion Investigation Of The Tongonan Geothermal Field, Philippines Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Fluid-Inclusion Investigation Of The Tongonan Geothermal Field, Philippines Details Activities (0) Areas (0) Regions (0) Abstract: At least 660 fluid-inclusion homogenization temperature (Th) and 44 freezing temperature (Tm) measurements, mainly on anhydrite crystals sampled to 2.5 km depth from 28 wells, record thermal and chemical changes in the Tongonan geothermal field. Interpretations of the Th (175-368°C range). Tm (-0.3 to -12.7°C range) and crushing stage observations indicate that early trapped fluids contained up to (approximate)2 mol% CO2 (now measured at <0.4 mol%). reservoir temperatures have decreased by

63

Investigation of percussion drills for geothermal applications  

DOE Green Energy (OSTI)

A series of tests was conducted to provide data for an economic evaluation of percussion drilling in geothermal reservoirs. Penetration rate, operation on aqueous foam, and high temperature vulnerabilities of downhole percussion tools are described.

Finger, J.T.

1981-01-01T23:59:59.000Z

64

Philip, South Dakota geothermal district heating systems  

SciTech Connect

The geothermal heating project in Philip, South Dakota which uses the waste water from the Haakon School has now been in operation for 15 years. This project was one of the 23 cost shared by the U.S. DOE starting in 1978, of which 15 became operational. This article describes the geothermal heating system for eight buildings in downtown Philip.

Lund, J.W.

1997-12-01T23:59:59.000Z

65

NUMERICAL SIMULATION OF RESERVOIR COMPACTION IN LIQUID DOMINATED GEOTHERMAL SYSTEMS  

E-Print Network (OSTI)

13. modeling of liquid geothermal systems: Ph.D. thesis,of water dominated geothermal fields with large temper~of land subsidence in geothermal areas: Proc. 2nd Int. Symp.

Lippmann, M.J.

2010-01-01T23:59:59.000Z

66

Strategies To Detect Hidden Geothermal Systems Based On Monitoring...  

Open Energy Info (EERE)

Geothermal Systems Based On Monitoring and Analysis Of CO2 In The Near-Surface Environment Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article:...

67

Assessment of Hybrid Geothermal Heat Pump Systems - Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

cool- ing needs of the building and offers general guidelines Assessment of Hybrid Geothermal Heat Pump Systems Geothermal heat pumps offer attractive choice for space...

68

TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID...  

Open Energy Info (EERE)

TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID-INCLUSION GAS CHEMISTRY Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: TRACING...

69

A Geothermal District-Heating System and Alternative Energy Research...  

Open Energy Info (EERE)

Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project...

70

Reconnaissance geophysical studies of the geothermal system in...  

Open Energy Info (EERE)

geophysical studies of the geothermal system in southern Raft River Valley, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Reconnaissance...

71

A Geochemical Model Of The Platanares Geothermal System, Honduras | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » A Geochemical Model Of The Platanares Geothermal System, Honduras Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Geochemical Model Of The Platanares Geothermal System, Honduras Details Activities (0) Areas (0) Regions (0) Abstract: Results of exploration drilling combined with results of geologic, geophysical, and hydrogeochemical investigations have been used to construct a geochemical model of the Platanares geothermal system, Honduras. Three coreholes were drilled, two of which produced fluids from fractured Miocene andesite and altered Cretaceous to Eocene conglomerate at

72

Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field...  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ...

73

Strategies For Detecting Hidden Geothermal Systems By Near-Surface Gas  

Open Energy Info (EERE)

Strategies For Detecting Hidden Geothermal Systems By Near-Surface Gas Strategies For Detecting Hidden Geothermal Systems By Near-Surface Gas Monitoring Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Strategies For Detecting Hidden Geothermal Systems By Near-Surface Gas Monitoring Details Activities (6) Areas (1) Regions (0) Abstract: Hidden geothermal systems are those systems above which hydrothermal surface features (e.g., hot springs, fumaroles, elevated ground temperatures, hydrothermal alteration) are lacking. Emissions of moderate to low solubility gases (e.g., CO2, CH4, He) may be one of the primary near-surface signals from these systems. Detection of anomalous gas emissions related to hidden geothermal systems may therefore be an important tool to discover new geothermal resources. This study investigates the potential for CO2 detection and monitoring in the

74

Small geothermal electric systems for remote powering  

DOE Green Energy (OSTI)

This report describes conditions and costs at which quite small (100 to 1,000 kilowatt) geothermal systems could be used for off-grid powering at remote locations. This is a first step in a larger process of determining locations and conditions at which markets for such systems could be developed. The results suggest that small geothermal systems offer substantial economic and environmental advantages for powering off-grid towns and villages. Geothermal power is most likely to be economic if the system size is 300 kW or greater, down to reservoir temperatures of 100{degree}C. For system sizes smaller than 300 kW, the economics can be favorable if the reservoir temperature is about 120{degree}C or above. Important markets include sites remote from grids in many developing and developed countries. Estimates of geothermal resources in many developing countries are shown.

Entingh, Daniel J.; Easwaran, Eyob.; McLarty, Lynn

1994-08-08T23:59:59.000Z

75

Definition: Enhanced Geothermal Systems | Open Energy Information  

Open Energy Info (EERE)

Definition Also Known As EGS, Engineered Geothermal Systems References http:www1.eere.energy.govgeothermalenhancedsystems.html Ret LikeLike UnlikeLike You like this.Sign...

76

Near-Surface CO2 Monitoring And Analysis To Detect Hidden Geothermal Systems  

E-Print Network (OSTI)

dioxide flux at the Dixie Valley geothermal field, Nevada;volcanic system, USA Dixie Valley Geothermal Field, USAProvince system like the Dixie Valley (Nevada) geothermal

Lewicki, Jennifer L.; Oldenburg, Curtis M.

2005-01-01T23:59:59.000Z

77

Evaluation of geothermal cooling systems for Arizona  

DOE Green Energy (OSTI)

Arizona consumes nearly 50 percent more electricity during the peak summer season of May through part of October, due to the high cooling load met by electrical-driven air conditioning units. This study evaluates two geothermal-driven cooling systems that consume less electricity, namely, absorption cooling and heat pumps. Adsorption cooling requires a geothermal resource above 105{sup 0}C (220{sup 0}F) in order to operate at a reasonable efficiency and capacity. Geothermal resources at these temperatures or above are believed existing in the Phoenix and Tucson areas, but at such depths that geothermal-driven absorption systems have high capital investments. Such capital investments are uneconomical when paid out over only five months of operation each year, but become economical when cascaded with other geothermal uses. There may be other regions of the state, where geothermal resources exist at 105{sup 0}C (220{sup 0}F) or higher at much less depth, such as the Casa Grande/Coolidge or Hyder areas, which might be attractive locations for future plants of the high-technology industries. Geothermal assisted heat pumps have been shown in this study to be economical for nearly all areas of Arizona. They are more economical and reliable than air-to-air heat pumps. Such systems in Arizona depend upon a low-temperature geothermal resource in the narrow range of 15.5 to 26.6{sup 0}C (60 to 80{sup 0}F), and are widely available in Arizona. The state has over 3000 known (existing) thermal wells, out of a total of about 30,000 irrigation wells.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

78

Chemistry and materials in geothermal systems  

DOE Green Energy (OSTI)

The development of a geothermal fluid, from its origin as meteoric water precipitating on the earth's surface, as it flows through the soils and rocks of geological formations, to the point where it returns to the surface as a hot spring, geyser, well, etc. is traced. Water of magmatic origin is also included. The tendency of these hydrothermal fluids to form scales by precipitation of a portion of their dissolved solids is noted. A discussion is presented of types of information required for materials selection for energy systems utilizing geothermal fluids, including pH, temperature, the speciation of the particular geothermal fluid (particularly chloride, sulfide and carbon dioxide content) and various types of corrosive attack on common materials. Specific examplers of materials response to geothermal fluid are given.

Miller, R.L.

1979-05-01T23:59:59.000Z

79

Geothermal Heat Pump System for New Student Housing Geothermal...  

Open Energy Info (EERE)

Buildings Clean Energy Economy Coordinated Low Emissions Assistance Network Geothermal Incentives and Policies International Clean Energy Analysis Low Emission Development...

80

Geothermal Heat Pump System for Ice Arena Geothermal Project...  

Open Energy Info (EERE)

Buildings Clean Energy Economy Coordinated Low Emissions Assistance Network Geothermal Incentives and Policies International Clean Energy Analysis Low Emission Development...

Note: This page contains sample records for the topic "investigation systems geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Preliminary geothermal investigations at Manley Hot Springs, Alaska  

DOE Green Energy (OSTI)

Manley Hot Springs is one of several hot springs which form a belt extending from the Seward Peninsula to east-central Alaska. All of the hot springs are low-temperature, water-dominated geothermal systems, having formed as the result of circulation of meteoric water along deepseated fractures near or within granitic intrusives. Shallow, thermally disturbed ground at Manley Hot Springs constitutes an area of 1.2 km by 0.6 km along the lower slopes of Bean Ridge on the north side of the Tanana Valley. This area includes 32 springs and seeps and one warm (29.1/sup 0/C) well. The hottest springs range in temperature from 61/sup 0/ to 47/sup 0/C and are presently utilized for space heating and irrigation. This study was designed to characterize the geothermal system present at Manley Hot Springs and delineate likely sites for geothermal drilling. Several surveys were conducted over a grid system which included shallow ground temperature, helium soil gas, mercury soil and resistivity surveys. In addition, a reconnaissance ground temperature survey and water chemistry sampling program was undertaken. The preliminary results, including some preliminary water chemistry, show that shallow hydrothermal activity can be delineated by many of the surveys. Three localities are targeted as likely geothermal well sites, and a model is proposed for the geothermal system at Manley Hot Springs.

East, J.

1982-04-01T23:59:59.000Z

82

Development of geothermal-well-completion systems. Final report  

DOE Green Energy (OSTI)

Results of a three year study concerning the completion of geothermal wells, specifically cementing, are reported. The research involved some specific tasks: (1) determination of properties an adequate geothermal well cement must possess; (2) thorough evaluation of current high temperature oilwell cementing technology in a geothermal context; (3) basic research concerning the chemical and physical behavior of cements in a geothermal environment; (4) recommendation of specific cement systems suitable for use in a geothermal well.

Nelson, E.B.

1979-01-01T23:59:59.000Z

83

Induced seismicity associated with enhanced geothermal system  

E-Print Network (OSTI)

Cooper Basin, Australia. Geothermal Resources Council Trans.a hot fractured rock geothermal project. Engineering Geologyseismicity in The Geysers geothermal area, California. J.

Majer, Ernest L.

2006-01-01T23:59:59.000Z

84

Temporal changes in noble gas compositions within the Aidlin sector ofThe Geysers geothermal system  

E-Print Network (OSTI)

felsite unit), Geysers geothermal field, California: a 40California – A summary. ” Geothermal Resources Councilsystematics of a continental geothermal system: results from

Dobson, Patrick; Sonnenthal, Eric; Kennedy, Mack; van Soest, Thijs; Lewicki, Jennifer

2006-01-01T23:59:59.000Z

85

Geographic Information System At International Geothermal Area, Indonesia  

Open Energy Info (EERE)

International Geothermal Area, Indonesia International Geothermal Area, Indonesia (Nash, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At International Geothermal Area Indonesia (Nash, Et Al., 2002) Exploration Activity Details Location International Geothermal Area Indonesia Exploration Technique Geographic Information System Activity Date Usefulness not indicated DOE-funding Unknown Notes GIs also facilitates grid data (raster) analysis and visualization. For example, a raster GIs layer, derived from an enhanced Landsat 7 Thematic Mapper (TM) image of the Karaha-Telaga Bodas area, Indonesia, is shown in Figure 2. References Gregory D. Nash, Christopher Kesler, Michael C. Adam (2002) Geographic Information Systems- Tools For Geotherm Exploration, Tracers

86

Geology of Injection Well 46A-19RD in the Coso Enhanced Geothermal Systems  

Open Energy Info (EERE)

of Injection Well 46A-19RD in the Coso Enhanced Geothermal Systems of Injection Well 46A-19RD in the Coso Enhanced Geothermal Systems Experiment Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Geology of Injection Well 46A-19RD in the Coso Enhanced Geothermal Systems Experiment Details Activities (1) Areas (1) Regions (0) Abstract: The Coso Geothermal Field is a large, high temperature system located in California on the western edge of the Basin and Range province. Well 46A-19RD, located in the southwestern portion of this field is currently the focus of a DOE-funded Enhanced Geothermal Systems (EGS) project. Petrologic and petrographic investigations of the well show that quartz diorite and granodiorite are dominant lithologies. Dikes of granophyre, containing phenocrysts of plagioclase, potassium feldspar, and

87

Geochemical characterization of geothermal systems in the Great...  

Open Energy Info (EERE)

insights into the possible contributions of geothermal systems to groundwater chemistry and development of mitigation strategies for attendant environmental issues....

88

Mathematical modeling of the behavior of geothermal systems under exploitation  

DOE Green Energy (OSTI)

Analytical and numerical methods have been used in this investigation to model the behavior of geothermal systems under exploitation. The work is divided into three parts: (1) development of a numerical code, (2) theoretical studies of geothermal systems, and (3) field applications. A new single-phase three-dimensional simulator, capable of solving heat and mass flow problems in a saturated, heterogeneous porous or fractured medium has been developed. The simulator uses the integrated finite difference method for formulating the governing equations and an efficient sparse solver for the solution of the linearized equations. In the theoretical studies, various reservoir engineering problems have been examined. These include (a) well-test analysis, (b) exploitation strategies, (c) injection into fractured rocks, and (d) fault-charged geothermal reservoirs.

Bodvarsson, G.S.

1982-01-01T23:59:59.000Z

89

Recommendations of the workshop on advanced geothermal drilling systems  

DOE Green Energy (OSTI)

At the request of the U.S. Department of Energy, Office of Geothermal Technologies, Sandia National Laboratories convened a group of drilling experts in Berkeley, CA, on April 15-16, 1997, to discuss advanced geothermal drilling systems. The objective of the workshop was to develop one or more conceptual designs for an advanced geothermal drilling system that meets all of the criteria necessary to drill a model geothermal well. The drilling process was divided into ten essential functions. Each function was examined, and discussions were held on the conventional methods used to accomplish each function and the problems commonly encountered. Alternative methods of performing each function were then listed and evaluated by the group. Alternative methods considered feasible or at least worth further investigation were identified, while methods considered impractical or not potentially cost-saving were eliminated from further discussion. This report summarizes the recommendations of the workshop participants. For each of the ten functions, the conventional methods, common problems, and recommended alternative technologies and methods are listed. Each recommended alternative is discussed, and a description is given of the process by which this information will be used by the U.S. DOE to develop an advanced geothermal drilling research program.

Glowka, D.A.

1997-12-01T23:59:59.000Z

90

Baseline System Costs for 50.0 MW Enhanced Geothermal System...  

Open Energy Info (EERE)

Baseline System Costs for 50.0 MW Enhanced Geothermal System -- A Function of: Working Fluid, Technology, and Location Geothermal Project Jump to: navigation, search Last modified...

91

Convective heat transport in geothermal systems  

DOE Green Energy (OSTI)

Most geothermal systems under exploitation for direct use or electrical power production are of the hydrothermal type, where heat is transferred essentially by convection in the reservoir, conduction being secondary. In geothermal systems, buoyancy effects are generally important, but often the fluid and heat flow patterns are largely controlled by geologic features (e.g., faults, fractures, continuity of layers) and location of recharge and discharge zones. During exploitation, these flow patterns can drastically change in response to pressure and temperature declines, and changes in recharge/discharge patterns. Convective circulation models of several geothermal systems, before and after start of fluid production, are described, with emphasis on different characteristics of the systems and the effects of exploitation on their evolution. Convective heat transport in geothermal fields is discussed, taking into consideration (1) major geologic features; (2) temperature-dependent rock and fluid properties; (3) fracture- versus porous-medium characteristics; (4) single- versus two-phase reservoir systems; and (5) the presence of noncondensible gases.

Lippmann, M.J.; Bodvarsson, G.S.

1986-08-01T23:59:59.000Z

92

Geothermal Progress Monitor. System status and operational experience  

DOE Green Energy (OSTI)

The Geothermal Progress Monitor (GPM) system was designed and implemented by MITRE for DOE's Division of Geothermal Energy (now the Division of Geothermal and Hydropower Technologies). This report summarizes MITRE's operational experience with the system during fiscal year 1983 and provides a qualitative assessment of its data sources.

Gerstein, R.E.; Medville, D.M.

1983-11-01T23:59:59.000Z

93

Induced seismicity associated with enhanced geothermal system  

Science Conference Proceedings (OSTI)

Enhanced Geothermal Systems (EGS) offer the potential to significantly add to the world energy inventory. As with any development of new technology, some aspects of the technology has been accepted by the general public, but some have not yet been accepted and await further clarification before such acceptance is possible. One of the issues associated with EGS is the role of microseismicity during the creation of the underground reservoir and the subsequent extraction of the energy. The primary objectives of this white paper are to present an up-to-date review of the state of knowledge about induced seismicity during the creation and operation of enhanced geothermal systems, and to point out the gaps in knowledge that if addressed will allow an improved understanding of the mechanisms generating the events as well as serve as a basis to develop successful protocols for monitoring and addressing community issues associated with such induced seismicity. The information was collected though literature searches as well as convening three workshops to gather information from a wide audience. Although microseismicity has been associated with the development of production and injection operations in a variety of geothermal regions, there have been no or few adverse physical effects on the operations or on surrounding communities. Still, there is public concern over the possible amount and magnitude of the seismicity associated with current and future EGS operations. It is pointed out that microseismicity has been successfully dealt with in a variety of non-geothermal as well as geothermal environments. Several case histories are also presented to illustrate a variety of technical and public acceptance issues. It is concluded that EGS Induced seismicity need not pose any threat to the development of geothermal resources if community issues are properly handled. In fact, induced seismicity provides benefits because it can be used as a monitoring tool to understand the effectiveness of the EGS operations and shed light on the mechanics of the reservoir.

Majer, Ernest; Majer, Ernest L.; Baria, Roy; Stark, Mitch; Oates, Stephen; Bommer, Julian; Smith, Bill; Asanuma, Hiroshi

2006-09-26T23:59:59.000Z

94

Geothermal energy systems plan for Boise City  

DOE Green Energy (OSTI)

This is a plan for development of a downtown Boise geothermal district space heating system incorporating legal, engineering, organizational, geological, and economic requirements. Topics covered include: resource characteristics, system design and feasibility, economic feasibility, legal overview, organizational alternatives, and conservation. Included in appendices are: property ownership patterns on the Boise Front, existing hot well data, legal briefs, environmental data, decision point communications, typical building heating system retrofit schematics, and background assumptions and data for cost summary. (MHR)

Not Available

1979-01-01T23:59:59.000Z

95

Geothermal investigations in Idaho. Part 1. Geochemistry and geologic  

Open Energy Info (EERE)

investigations in Idaho. Part 1. Geochemistry and geologic investigations in Idaho. Part 1. Geochemistry and geologic setting of selected thermal waters Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geothermal investigations in Idaho. Part 1. Geochemistry and geologic setting of selected thermal waters Details Activities (2) Areas (1) Regions (0) Abstract: At least 380 hot springs and wells are known to occur throughout the central and southern parts of Idaho. One hundred twenty-four of these were inventoried as a part of the study reported on herein. At the spring vents and wells visited, the thermal waters flow from rocks ranging in age from Precambrian to Holocene and from a wide range of rock types-igneous, metamorphic, and both consolidated and unconsolidated sediments. Twenty-eight of the sites visited occur on or near fault zones while a

96

Hydrogeochemical investigation of six geothermal sites in Honduras, Central America  

DOE Green Energy (OSTI)

We conducted detailed hydrogeochemical investigations at six geothermal sites in western Honduras: Azacualpa, El Olivar, Pavana, Platanares, Sambo Creek, and San Ignacio. None of the sites is associated with Quaternary silicic volcanism, although El Olivar lies adjacent to a small Quaternary basalt field and Pavana is part of a belt of hot spring activity parallel to and 35 km east of the Central American volcanic arc. None of the sites contains acid-sulfate waters indicative of vapor-dominated conditions. Thermal fluids are characterized by pH between 7 and 10, Cl<125 mg/l, HCO/sub 3/>Cl, SO/sub 4/greater than or equal toCl, Bless than or equal to17 mg/l, Liless than or equal to4 mg/l, and Asless than or equal to1.25 mg/l. Stable isotope analyses of the water show that recharge to the geothermal systems generally occurs from areas of higher elevation adjacent to the sites. Tritium contents of apparently undiluted thermal fluids range from 0 to 0.4 T.U., indicating residence times of fluids in the systems of more than 500 y. Various geochemical indicators show that mixing of hot and cold end-member fluids occurs in the system at Platanares and, to a lesser degree, in the systems at San Ignacio and Azacualpa. No mixing is apparent in the fluids discharging at Pavana, Sambo Creek, or El Olivar. Boiling is the dominant process responsible for subtle geochemical variations at Azacualpa and, possibly, San Ignacio. Our best estimates of subsurface reservoir temperatures are 225/sup 0/C at Platanares, 190/sup 0/C at San Ignacio, 185/sup 0/C at Azacualpa, 155/sup 0/C at Sambo Creek, 150/sup 0/C at Pavana, and 120/sup 0/C at El Olivar. The estimated power output of the three hottest sites is 45 thermal megawatts at Platanares, 14 thermal megawatts at San Ignacio, and 13 thermal megawatts at Azacualpa.

Goff, F.E.; Truesdell, A.H.; Grigsby, C.O.; Janik, C.J.; Shevenell, L.A.; Paredes, J.R.; Gutierrez, J.W.; Trujillo, Jr.; Counce, D.A.

1987-06-01T23:59:59.000Z

97

Materials selection guidelines for geothermal energy utilization systems  

DOE Green Energy (OSTI)

This manual includes geothermal fluid chemistry, corrosion test data, and materials operating experience. Systems using geothermal energy in El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, and the United States are described. The manual provides materials selection guidelines for surface equipment of future geothermal energy systems. The key chemical species that are significant in determining corrosiveness of geothermal fluids are identified. The utilization modes of geothermal energy are defined as well as the various physical fluid parameters that affect corrosiveness. Both detailed and summarized results of materials performance tests and applicable operating experiences from forty sites throughout the world are presented. The application of various non-metal materials in geothermal environments are discussed. Included in appendices are: corrosion behavior of specific alloy classes in geothermal fluids, corrosion in seawater desalination plants, worldwide geothermal power production, DOE-sponsored utilization projects, plant availability, relative costs of alloys, and composition of alloys. (MHR)

Ellis, P.F. II; Conover, M.F.

1981-01-01T23:59:59.000Z

98

Environmental development plan: geothermal energy systems  

DOE Green Energy (OSTI)

To ensure that environmental, health, and safety (EH and S) considerations are addressed adequately in the technology decision making process, the Environmental Development Plan (EDP) identifies and evaluates EH and S concerns; defines EH and S research and related assessments to examine or resolve the concerns; provides a coordinated schedule with the technology program for required EH and S research and developement; and indicates the timing for Environmental Assessments, Environmental Impact Statements, Environmental Readiness Documents, and Safety Analysis Reports. This EDP for geothermal energy systems covers all current and planned activities of the DOE Geothermal Energy Systems. Hydrothermal convection systems, geopressured systems, and hot-dry-rock systems are covered. Environmental concerns and requirements for resolution of these concerns are discussed at length. (MHR)

Not Available

1979-08-01T23:59:59.000Z

99

Geothermal Resource Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada  

DOE Green Energy (OSTI)

Publish new thermal and drill data from the Dizie Valley Geothermal Field that affect evaluation of Basin and Range Geothermal Resources in a very major and positive way. Completed new geophysical surveys of Dizie Valley including gravity and aeromagnetics and integrated the geophysical, seismic, geological and drilling data at Dizie Valley into local and regional geologic models. Developed natural state mass and energy transport fluid flow models of generic Basin and Range systems based on Dizie Valley data that help to understand the nature of large scale constraints on the location and characteristics of the geothermal systems. Documented a relation between natural heat loss for geothermal and electrical power production potential and determined heat flow for 27 different geothermal systems. Prepared data set for generation of a new geothermal map of North American including industry data totaling over 25,000 points in the US alone.

David Blackwell; Kenneth Wisian; Maria Richards; Mark Leidig; Richard Smith; Jason McKenna

2003-08-14T23:59:59.000Z

100

Results of investigations at the Ahuachapan geothermal field, El Salvador  

Science Conference Proceedings (OSTI)

Well logging operations were performed in eight of the geothermal wells at Ahuachapan. High-temperature downhole instruments, including a temperature/rabbit, caliper, fluid velocity spinner/temperature/pressure (STP), and fluid sampler, were deployed in each well. The caliper tool was used primarily to determine if chemical deposits were present in well casings or liners and to investigate a suspected break in the casing in one well. STP logs were obtained from six of the eight wells at various flow rates ranging from 30 to 80 kg/s. A static STP log was also run with the wells shut-in to provide data to be used in the thermodynamic analysis of several production wells. The geochemical data obtained show a system configuration like that proposed by C. Laky and associates in 1989. Our data indicate recharge to the system from the volcanic highlands south of the field. Additionally, our data indicate encroachment of dilute fluids into deeper production zones because of overproduction. 17 refs., 50 figs., 10 tabs.

Dennis, B.; Goff, F.; Van Eeckhout, E.; Hanold, B. (comps.)

1990-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "investigation systems geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Development of Exploration Methods for Engineered Geothermal Systems  

Open Energy Info (EERE)

Exploration Methods for Engineered Geothermal Systems Exploration Methods for Engineered Geothermal Systems Through Integrated Geophysical, Geologic and Geochemical Interpretation the Seismic Analysis Component Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Development of Exploration Methods for Engineered Geothermal Systems Through Integrated Geophysical, Geologic and Geochemical Interpretation the Seismic Analysis Component Authors Ileana M. Tibuleac, Joe Iovenitti, David von Seggern, Jon Sainsbury, Glenn Biasi and John G. Anderson Conference Stanford Geothermal Conference; Stanford University; 2013 Published PROCEEDINGS, Thirty-Eighth Workshop on Geothermal Reservoir Engineering Stanford University;, 2013 DOI Not Provided Check for DOI availability: http://crossref.org

102

Specific features of geothermal steam turbine control and emergency system  

SciTech Connect

There are significant construction as well as operational differences between geothermal and conventional steam turbines. These result in specific features associated with geothermal steam turbine control and emergency system. Several aspects of geothermal steam turbine control have been considered. Some proposals of geothermal steam turbine control have been presented. Among others the following operation modes have been considered: Driving turbine, driving well, turbine power and well steam pressure coupled control.

Domachowski, Z.; Gutierrez, A.

1986-01-01T23:59:59.000Z

103

Assessment of solar-geothermal hybrid system concepts  

SciTech Connect

Studies were conducted to assess the technical and economic merits and limitations of advanced solar-geothermal hybrid electric power plant concepts. Geothermal resource characteristics and technologies were reviewed to determine the best possible ways of combining solar and geothermal technologies into a hybrid operation. Potential hybrid system concepts are defined and their performance, resource usage, and economics are assessed relative to the individual solar and geothermal resource development techniques. Key results are presented.

Mathur, P.N.

1979-03-15T23:59:59.000Z

104

An Investigation Of The Potential For Geothermal-Energy Recovery...  

Open Energy Info (EERE)

For Geothermal-Energy Recovery In The Calgary Area In Southern Alberta, Canada, Using Petroleum-Exploration Data Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

105

Mapping Fractures In The Medicine Lake Geothermal System | Open Energy  

Open Energy Info (EERE)

Fractures In The Medicine Lake Geothermal System Fractures In The Medicine Lake Geothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Mapping Fractures In The Medicine Lake Geothermal System Details Activities (1) Areas (1) Regions (0) Abstract: A major challenge to energy production in the region has been locating high-permability fracture zones in the largely impermeable volcanic host rock. An understanding of the fracture networks will be a key to harnessing geothermal resources in the Cascades Author(s): Steven Clausen, Michal Nemcok, Joseph Moore, Jeffrey Hulen, John Bartley Published: GRC, 2006 Document Number: Unavailable DOI: Unavailable Core Analysis At Medicine Lake Area (Clausen Et Al, 2006) Medicine Lake Geothermal Area Retrieved from "http://en.openei.org/w/index.php?title=Mapping_Fractures_In_The_Medicine_Lake_Geothermal_System&oldid=388927

106

High Temperature 300°C Directional Drilling System Geothermal...  

Open Energy Info (EERE)

Recovery Act: Enhanced Geothermal Systems Component Research and DevelopmentAnalysis Project Type Topic 2 Directional Drilling Systems Project Description The development plan...

107

Behavior Of Rare Earth Element In Geothermal Systems, A New  

Open Energy Info (EERE)

Behavior Of Rare Earth Element In Geothermal Systems, A New Behavior Of Rare Earth Element In Geothermal Systems, A New Exploration-Exploitation Tool Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Behavior Of Rare Earth Element In Geothermal Systems, A New Exploration-Exploitation Tool Details Activities (32) Areas (17) Regions (0) Abstract: The goal of this four-year project was to provide a database by which to judge the utility of the rare earth elements (REE) in the exploration for and exploitation of geothermal fields in the United States. Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: (1) the North Island of New Zealand (1 set of samples); (2) the Cascades of Oregon; (3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; (4) the Dixie Valley and Beowawe fields

108

Geology, characteristics, and resource potential of the low-temperature geothermal system near Midway, Wasatch County, Utah. Report of Investigation No. 142  

DOE Green Energy (OSTI)

To evaluate the geothermal energy potential of the hot springs system near Midway, Wasatch Co., Utah, consideration was given to heat flow, water chemistry, and structural controls. Abnormal heat flow was indicated qualitatively by snow-melt patterns and quantitatively by heat-flow measurements that were obtained from two of four temperature-gradient wells drilled in the area. These measurements indicated that the area north of the town of Midway is characterized by heat flow equal to 321.75 MW/m/sup 2/, which is over four times the value generally considered as normal heat flow. Chemical analyses of water from six selected thermal springs and wells were used in conjunction with the silica and Na-K-Ca geothermometers to estimate the reservoir temperature of the thermal system. Because the calculated temperature was more than 25/sup 0/C above the maximum observed temperature, a mixing model calculation was used to project an upper limit for the reservoir temperature. Based on these calculations, the system has a reservoir temperature ranging from 46 to 125/sup 0/C. Structural information obtained from published geologic maps of the area and from an unpublished gravity survey, enabled two models to be developed for the system. The first model, based on geologic relationships in the mountains to the north and west of Midway, assumes that the heat for the thermal system comes from a relatively young intrusive or related hydrothermal convection system in the vicinity of the Mayflower mine. Meteoric waters would be heated as they approach the heat source and then move laterally to the south through faults and fractures in the rocks. These thermal waters then rise to the surface through fractures in the crest of an anticline underneath the Midway area. The second model, based on the gravity survey, assumes an igneous intrusion directly beneath Midway as the heat source.

Kohler, J.F.

1979-06-01T23:59:59.000Z

109

Prediction of Scaling in Geothermal Systems  

Science Conference Proceedings (OSTI)

One of the main objectives of the DOE Geothermal Program is to improve the efficiency and reliability of geothermal operations so that this renewable form of energy can be integrated into the nation's energy system. Scale formation and other chemical problems associated with energy extraction from high temperature brines frequently inhibit the economical utilization of geothermal resources. In some cases, these chemical problems can be so severe that development of a site must be abandoned after considerable capital investment. The goal of our research efforts is to construct an accurate computer model for describing the chemical behavior of geothermal brines under a wide range of operating conditions. This technology will provide industry a cost-effective means of identifying scaling problems in production and reinjection wells as well as in surface equipment, and also devising and testing methods for well as other uses described in table (1) can contribute significantly to meeting the objectives of the Geothermal Program. The chemical model we have developed to date can simulate calcium carbonate scale formation and gas solubilities in concentrated brines containing sodium, potassium, calcium, chloride and sulfate ions as a function of temperature to 250 C and for variable partial pressure of CO{sub 2}. It can predict the solubility of other scale-forming minerals, such as amorphous silica, gypsum-anhydrite, halite and glasserite, as a function of brine composition to 250 C. The only required input for the model is the temperature, pressure and composition of the brine. Our modeling approach is based on semi-empirical thermodynamic descriptions of aqueous solutions. The model equations are parameterized by careful comparison to a variety of laboratory data. The ability of the resulting models to accurately predict the chemical behavior of even very concentrated high temperature brines is well demonstrated. This ability is an unusual feature of our models which is vital for applications to many important geothermal systems, such as those found in the Imperial Valley of California. In this report, the use of the present version of our model will be illustrated by an application to the prediction of the onset of two phase flow (breakout) in a brine confined by an external pressure. Calculations of this kind are important in assessing the production potential of a geothermal resource because the initiation of breakout in a well bore or power plant is usually simultaneous with the appearance of massive scale deposition. It is therefore necessary to predict breakout and also to assess the consequences of breakout in designing more efficient energy extraction processes. For the geothermal brine for which we have reliable composition and breakout data (East Mesa in California), the model gives results which are essentially identical to the measured values. Calculations also illustrate the importance of contributions of dissolved gases to the total pressure of the brines. Applications to other scale formation problems in Dixie Valley geothermal brines will also be discussed.

Weare, John H.; Moller, Nancy E.

1989-03-21T23:59:59.000Z

110

Numerical Modelling of Geothermal Systems a Short Introduction | Open  

Open Energy Info (EERE)

Numerical Modelling of Geothermal Systems a Short Introduction Numerical Modelling of Geothermal Systems a Short Introduction Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Numerical Modelling of Geothermal Systems a Short Introduction Authors Mauro Cacace, Björn Onno Kaiser and Yvonne Cherubini Published Helmholtz Association, The date "N/A" was not understood.The date "N/A" was not understood. DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Numerical Modelling of Geothermal Systems a Short Introduction Citation Mauro Cacace,Björn Onno Kaiser,Yvonne Cherubini. N/A. Numerical Modelling of Geothermal Systems a Short Introduction. N/A. Helmholtz Association. N/Ap. Retrieved from "http://en.openei.org/w/index.php?title=Numerical_Modelling_of_Geothermal_Systems_a_Short_Introduction&oldid=688986"

111

Ball State building massive geothermal system | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ball State building massive geothermal system Ball State building massive geothermal system Ball State building massive geothermal system March 19, 2010 - 5:47pm Addthis Workers drill boreholes for a geothermal heating and cooling system at Ball State University’s campus in Muncie, Ind. | Photo courtesy of Ball State University Workers drill boreholes for a geothermal heating and cooling system at Ball State University's campus in Muncie, Ind. | Photo courtesy of Ball State University Paul Lester Communications Specialist for the Office of Energy Efficiency and Renewable Energy Ball State University is building America's largest ground source district geothermal heating and cooling system. The new operation will save the school millions of dollars, slash greenhouse gases and create jobs. The project will also "expand how America will define the use of

112

Ball State building massive geothermal system | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ball State building massive geothermal system Ball State building massive geothermal system Ball State building massive geothermal system March 19, 2010 - 5:47pm Addthis Workers drill boreholes for a geothermal heating and cooling system at Ball State University’s campus in Muncie, Ind. | Photo courtesy of Ball State University Workers drill boreholes for a geothermal heating and cooling system at Ball State University's campus in Muncie, Ind. | Photo courtesy of Ball State University Paul Lester Communications Specialist, Office of Energy Efficiency and Renewable Energy Ball State University is building America's largest ground source district geothermal heating and cooling system. The new operation will save the school millions of dollars, slash greenhouse gases and create jobs. The project will also "expand how America will define the use of

113

Numerical Modeling Of Basin And Range Geothermal Systems | Open Energy  

Open Energy Info (EERE)

Numerical Modeling Of Basin And Range Geothermal Systems Numerical Modeling Of Basin And Range Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Numerical Modeling Of Basin And Range Geothermal Systems Details Activities (3) Areas (3) Regions (0) Abstract: Basic qualitative relationships for extensional geothermal systems that include structure, heat input, and permeability distribution have been established using numerical models. Extensional geothermal systems, as described in this paper, rely on deep circulation of groundwater rather than on cooling igneous bodies for heat, and rely on extensional fracture systems to provide permeable upflow paths. A series of steady-state, two-dimensional simulation models is used to evaluate the effect of permeability and structural variations on an idealized, generic

114

Stragegies to Detect Hidden Geothermal Systems Based on Monitoring and Analysis of CO2 in the Near-Surface Environment  

E-Print Network (OSTI)

dioxide flux at the Dixie Valley geothermal field, Nevada;volcanic system, USA Dixie Valley Geothermal Field, USAProvince system like the Dixie Valley (Nevada) geothermal

Lewicki, Jennifer L.; Oldenburg, Curtis M.

2008-01-01T23:59:59.000Z

115

Stragegies to Detect Hidden Geothermal Systems Based on Monitoring and Analysis of CO2 in the Near-Surface Environment  

E-Print Network (OSTI)

in volcanic and geothermal areas. Appl. Geochem. , 13, 543–1977. Chemistry and Geothermal Systems. Academic Press, Newfor detecting hidden geothermal systems by near-surface gas

Lewicki, Jennifer L.; Oldenburg, Curtis M.

2008-01-01T23:59:59.000Z

116

Geochemical characterization of geothermal systems in the Great Basin:  

Open Energy Info (EERE)

characterization of geothermal systems in the Great Basin: characterization of geothermal systems in the Great Basin: Implications for exploration, exploitation, and environmental issues Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geochemical characterization of geothermal systems in the Great Basin: Implications for exploration, exploitation, and environmental issues Details Activities (0) Areas (0) Regions (0) Abstract: The objective of this ongoing project is the development of a representative geochemical database for a comprehensive range of elemental and isotopic parameters (i.e., beyond the typical data suite) for a range of geothermal systems in the Great Basin. Development of this database is one of the first steps in understanding the nature of geothermal systems in the Great Basin. Of particular importance in the Great Basin is utilizing

117

Geographic Information Systems- Tools For Geotherm Exploration, Tracers  

Open Energy Info (EERE)

Systems- Tools For Geotherm Exploration, Tracers Systems- Tools For Geotherm Exploration, Tracers Data Analysis, And Enhanced Data Distribution, Visualization, And Management Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geographic Information Systems- Tools For Geotherm Exploration, Tracers Data Analysis, And Enhanced Data Distribution, Visualization, And Management Details Activities (4) Areas (3) Regions (0) Abstract: Geographic information systems (GIS) are an underused resource that can help the geothermal industry in exploration, tracer analysis, infrastructure management, and the general distribution and use of data. GIS systems are highly customizable to specific user needs and can use entire corporate data sets through a visual interface. This paper briefly documents the use of GIS in specific examples of geothermal research at the

118

Exergetic Performance Investigation of Medium-Low Enthalpy Geothermal Power Generation  

Science Conference Proceedings (OSTI)

The renewable energy sources are becoming attractive solutions for clean and sustainable energy needs. Geothermal energy is increasingly contributing to the power supply worldwide. In evaluating the efficiency of energy conservation systems, the most ... Keywords: geothermal energy, power generation, binary cycle, exergetic efficiency, exergy analysis, geothermal power plant

Junkui Cui; Jun Zhao; Chuanshan Dai; Bin Yang

2009-10-01T23:59:59.000Z

119

Experience with the Development of Advanced Materials for Geothermal Systems  

Science Conference Proceedings (OSTI)

This chapter contains the following sections: Introduction, Advanced Cements, Materials Research and Development in Enhanced Geothermal Systems (EGS), Advanced Coatings, and Conclusions.

Sugama, T.; Butcher, T.; Ecker, L.

2011-01-01T23:59:59.000Z

120

36Cl/Cl ratios in geothermal systems- preliminary measurements...  

Open Energy Info (EERE)

(1) Areas (1) Regions (0) Abstract: The sub 36ClCl isotopic composition of chlorine in geothermal systems can be a useful diagnostic tool in characterizing hydrologic...

Note: This page contains sample records for the topic "investigation systems geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Identification of a New Blind Geothermal System with Hyperspectral...  

Open Energy Info (EERE)

a New Blind Geothermal System with Hyperspectral Remote Sensing and Shallow Temperature Measurements at Columbus Salt Marsh, Esmeralda County, Nevada Jump to: navigation, search...

122

Behavior of Rare Earth Elements in Geothermal Systems- A New...  

Open Energy Info (EERE)

2001 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Behavior of Rare Earth Elements in Geothermal Systems- A New Exploration...

123

Geothermal Resource Analysis and Structure of Basin and Range Systems,  

Open Energy Info (EERE)

Analysis and Structure of Basin and Range Systems, Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geothermal Resource Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada Authors David D. Blackwell, Kenneth W. Wisian, Maria C. Richards, Mark Leidig, Richard Smith and Jason McKenna Published U.S. Department of Energy, 2003 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Geothermal Resource Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada Citation David D. Blackwell,Kenneth W. Wisian,Maria C. Richards,Mark Leidig,Richard Smith,Jason McKenna. 2003. Geothermal Resource Analysis and Structure of

124

EA-1893: Canby Cascaded Geothermal Development System, Canby, California |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

93: Canby Cascaded Geothermal Development System, Canby, 93: Canby Cascaded Geothermal Development System, Canby, California EA-1893: Canby Cascaded Geothermal Development System, Canby, California Summary This EA will evaluate the environmental impacts of a proposal by Modoc Contracting Company to use DOE grant funds to fulfill its plan to expand its reliance on geothermal resources by producing more hot water and using it to produce power as well as thermal energy. The goal of the project is to complete a cascaded geothermal system that generates green power for the local community, provides thermal energy to support greenhouse and aquaculture operation, provide sustainable thermal energy for residential units, and eliminate the existing geothermal discharge to a local river. NOTE: NOTE: This EA has been cancelled.

125

Enthalpy restoration in geothermal energy processing system  

DOE Patents (OSTI)

A geothermal deep well energy extraction system is provided of the general type in which solute-bearing hot water is pumped to the earth's surface from a relatively low temperature geothermal source by transferring thermal energy from the hot water to a working fluid for driving a primary turbine-motor and a primary electrical generator at the earth's surface. The superheated expanded exhaust from the primary turbine motor is conducted to a bubble tank where it bubbles through a layer of sub-cooled working fluid that has been condensed. The superheat and latent heat from the expanded exhaust of the turbine transfers thermal energy to the sub-cooled condensate. The desuperheated exhaust is then conducted to the condenser where it is condensed and sub-cooled, whereupon it is conducted back to the bubble tank via a barometric storage tank. The novel condensing process of this invention makes it possible to exploit geothermal sources which might otherwise be non-exploitable.

Matthews, Hugh B. (Boylston, MA)

1983-01-01T23:59:59.000Z

126

Strategies for Detecting Hidden Geothermal Systems by Near-Surface Gas Monitoring  

E-Print Network (OSTI)

for Detection of Hidden Geothermal Systems Figure 7.4.for Detection of Hidden Geothermal Systems Figure 7.5.for Detection of Hidden Geothermal Systems Figure 7.6.

Lewicki, Jennifer L.; Oldenburg, Curtis M.

2004-01-01T23:59:59.000Z

127

Numerical models for the evaluation of geothermal systems  

DOE Green Energy (OSTI)

We have carried out detailed simulations of various fields in the USA (Bada, New Mexico; Heber, California); Mexico (Cerro Prieto); Iceland (Krafla); and Kenya (Olkaria). These simulation studies have illustrated the usefulness of numerical models for the overall evaluation of geothermal systems. The methodology for modeling the behavior of geothermal systems, different approaches to geothermal reservoir modeling and how they can be applied in comprehensive evaluation work are discussed.

Bodvarsson, G.S.; Pruess, K.; Lippmann, M.J.

1986-08-01T23:59:59.000Z

128

Understanding The Chena Hot Springs, Alaska, Geothermal System Using  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Understanding The Chena Hot Springs, Alaska, Geothermal System Using Temperature And Pressure Data From Exploration Boreholes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Understanding The Chena Hot Springs, Alaska, Geothermal System Using Temperature And Pressure Data From Exploration Boreholes Details Activities (7) Areas (1) Regions (0) Abstract: Chena Hot Springs is a small, moderate temperature, deep circulating geothermal system, apparently typical of those associated to hot springs of interior Alaska. Multi-stage drilling was used in some

129

Conceptual design of a geothermal site development forecasting system  

DOE Green Energy (OSTI)

A site development forecasting system has been designed in response to the need to monitor and forecast the development of specific geothermal resource sites for electrical power generation and direct heat applications. The system is comprised of customized software, a site development status data base, and a set of complex geothermal project development schedules. The system would use site-specific development status information obtained from the Geothermal Progress Monitor and other data derived from economic and market penetration studies to produce reports on the rates of geothermal energy development, federal agency manpower requirements to ensure these developments, and capital expenditures and technical/laborer manpower required to achieve these developments.

Neham, E.A.; Entingh, D.J.

1980-03-01T23:59:59.000Z

130

Geochemistry Of The Lake City Geothermal System, California, Usa | Open  

Open Energy Info (EERE)

Geochemistry Of The Lake City Geothermal System, California, Usa Geochemistry Of The Lake City Geothermal System, California, Usa Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geochemistry Of The Lake City Geothermal System, California, Usa Details Activities (2) Areas (1) Regions (0) Abstract: Lake City hot springs and geothermal wells chemically fall into a narrow compositional group. This indicates that, with the exception of a few hot springs, mixing with shallow cold ground waters does not have a significant influence on the chemistry of the hot springs. Narrow ranges in plots of F, B and Li versus Cl, and _D to _18O values indicate minimal mixing. Because of this, the compositions of the natural hot spring waters are fairly representative of the parent geothermal water. The average

131

Geophysical Characterization of a Geothermal System Neal Hot Springs,  

Open Energy Info (EERE)

Characterization of a Geothermal System Neal Hot Springs, Characterization of a Geothermal System Neal Hot Springs, Oregon, USA Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geophysical Characterization of a Geothermal System Neal Hot Springs, Oregon, USA Abstract Neal Hot Springs is an active geothermal area that is also the proposed location of a binary power plant, which is being developed by US Geothermal Inc. To date, two production wells have been drilled and an injection well is in the process of being completed. The primary goal of this field camp was to provide a learning experience for students studying geophysics, but a secondary goal was to characterize the Neal Hot Springs area to provide valuable information on the flow of geothermal fluids through the subsurface. This characterization was completed using a variety of

132

Geothermal Resource Analysis And Structure Of Basin And Range Systems,  

Open Energy Info (EERE)

Analysis And Structure Of Basin And Range Systems, Analysis And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geothermal Resource Analysis And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada Details Activities (12) Areas (5) Regions (0) Abstract: Publish new thermal and drill data from the Dizie Valley Geothermal Field that affect evaluation of Basin and Range Geothermal Resources in a very major and positive way. Completed new geophysical surveys of Dizie Valley including gravity and aeromagnetics and integrated the geophysical, seismic, geological and drilling data at Dizie Valley into local and regional geologic models. Developed natural state mass and energy

133

Geothermal energy control system and method  

DOE Patents (OSTI)

A geothermal energy transfer and utilization system makes use of thermal energy stored in hot solute-bearing well water to generate super-heated steam from an injected flow of clean water; the super-heated steam is then used for operating a turbine-driven pump at the well bottom for pumping the hot solute-bearing water at high pressure and in liquid state to the earth's surface, where it is used by transfer of its heat to a closed-loop boiler-turbine-alternator combination for the generation of electrical or other power. Residual concentrated solute-bearing water is pumped back into the earth. The clean cooled water is regenerated at the surface-located system and is returned to the deep well pumping system also for lubrication of a novel bearing arrangement supporting the turbine-driven pump system. The bearing system employs liquid lubricated thrust and radial bearings with all bearing surfaces bathed in clean water serving as a lubricant and maintained under pressure to prevent entry into the bearings of contaminated geothermal fluid, an auxiliary thrust ball bearing arrangement comes into operation when starting or stopping the pumping system.

Matthews, Hugh B. (Acton, MA)

1977-01-01T23:59:59.000Z

134

Hydrogeologic and geothermal investigation of Pagosa Springs, Colorado  

SciTech Connect

The following topics are covered: geology; geophysical surveys; geothermal wells, springs, and heat flow; hydrology; drilling program, well testing, and mineralogical and petrographic studies of samples from geothermal wells. (MHR)

Galloway, M.J.

1980-01-01T23:59:59.000Z

135

Property:Geothermal/PrincipalInvestigator | Open Energy Information  

Open Energy Info (EERE)

Buildings Clean Energy Economy Coordinated Low Emissions Assistance Network Geothermal Incentives and Policies International Clean Energy Analysis Low Emission Development...

136

Numerical modeling of liquid geothermal systems  

DOE Green Energy (OSTI)

A mathematical model describing the physical behavior of hot-water geothermal systems is presented. The model consists of a set of coupled partial differential equations for heat and mass transfer in porous media and an equation of state relating fluid density to temperature and pressure. The equations are solved numerically using an integrated finite difference method which can treat arbitrary nodal configurations in one, two, or three dimensions. The model is used to analyze cellular convection in permeable rock layers heated from below. Results for cases with constant fluid and rock properties are in good agreement with numerical and experimental results from other authors.

Sorey, M.L.

1978-01-01T23:59:59.000Z

137

Numerical studies of fluid-rock interactions in Enhanced Geothermal Systems (EGS) with CO2 as working fluid  

E-Print Network (OSTI)

Development of Enhanced Geothermal Systems,” paper presentedin the Deep Reservoir of the Mt. Amiata Geothermal Field,Italy,” Transactions, Geothermal Resources Council, 31, 153-

Xu, Tianfu; Pruess, Karsten; Apps, John

2008-01-01T23:59:59.000Z

138

Numerical simulation to study the feasibility of using CO2 as a stimulation agent for enhanced geothermal systems  

E-Print Network (OSTI)

stimulation of an enhanced geothermal system using a high pHTwenty-Ninth Workshop on Geothermal Reservoir Engineering,Calcite dissolution in geothermal reservoirs using chelants,

Xu, T.

2010-01-01T23:59:59.000Z

139

Role of Fluid Pressure in the Production Behavior of Enhanced Geothermal Systems with CO2 as Working Fluid  

E-Print Network (OSTI)

and Clay Swelling in a Fractured Geothermal Reservoir,Transactions, Geothermal Resources Council, Vol. 28, pp.2004b. Pruess, K. Enhanced Geothermal Systems (EGS) Using CO

Pruess, Karsten

2008-01-01T23:59:59.000Z

140

Characteristics of Basin and Range Geothermal Systems with Fluid  

Open Energy Info (EERE)

Characteristics of Basin and Range Geothermal Systems with Fluid Characteristics of Basin and Range Geothermal Systems with Fluid Temperatures of 150°C to 200°C Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Characteristics of Basin and Range Geothermal Systems with Fluid Temperatures of 150°C to 200°C Abstract Six geothermal reservoirs with fluid temperatures over 200°C and ten geothermal systems with measured fluid temperatures of 150-200°C have been discovered in the northern Basin and Range Province of the USA. A comparison of these high and moderate temperature systems shows considerable overlap in geographical distribution, geology, and physical properties. Our ability to distinguish between moderate and high temperature systems using fluid chemistry has been limited by often

Note: This page contains sample records for the topic "investigation systems geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Geothermal system saving money at fire station | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal system saving money at fire station Geothermal system saving money at fire station Geothermal system saving money at fire station April 9, 2010 - 3:45pm Addthis Joshua DeLung What will the project do? A geothermal heating and cooling system has enabled the substation to save taxpayers $15,000 annually when compared to a traditional system. The high temperature of the treatment building's water helps reduce the amount of energy needed to heat water in the substation. An environmentally friendly geothermal heating and cooling system in Pennsylvania will save taxpayers $15,000 a year as part of a new fire substation that will decrease emergency response times. The Alpha Fire Co. celebrated the opening of substation on the ground floor of the College Township municipal building earlier this year in State

142

Blind Geothermal System Exploration in Active Volcanic Environments;  

Open Energy Info (EERE)

System Exploration in Active Volcanic Environments; System Exploration in Active Volcanic Environments; Multi-phase Geophysical and Geochemical Surveys in Overt and Subtle Volcanic Systems, Hawaii and Maui Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Blind Geothermal System Exploration in Active Volcanic Environments; Multi-phase Geophysical and Geochemical Surveys in Overt and Subtle Volcanic Systems, Hawai'i and Maui Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description The project will perform a suite of stepped geophysical and geochemical surveys and syntheses at both a known, active volcanic system at Puna, Hawai'i and a blind geothermal system in Maui, Hawai'i. Established geophysical and geochemical techniques for geothermal exploration including gravity, major cations/anions and gas analysis will be combined with atypical implementations of additional geophysics (aeromagnetics) and geochemistry (CO2 flux, 14C measurements, helium isotopes and imaging spectroscopy). Importantly, the combination of detailed CO2 flux, 14C measurements and helium isotopes will provide the ability to directly map geothermal fluid upflow as expressed at the surface. Advantageously, the similar though active volcanic and hydrothermal systems on the east flanks of Kilauea have historically been the subject of both proposed geophysical surveys and some geochemistry; the Puna Geothermal Field (Puna) (operated by Puna Geothermal Venture [PGV], an Ormat subsidiary) will be used as a standard by which to compare both geophysical and geochemical results.

143

System design verification of a hybrid geothermal/coal fired power plant  

DOE Green Energy (OSTI)

This hybrid plant utilizes geothermal fluid for feedwater heating. With respect to the extraction of available work from the geothermal fluids, this cycle is approximately two times as efficient as the all geothermal plant. The System Design Verification Study presented verifies the technical and economic feasibility of the hybrid plant. This report is comprised of a conceptual design, cost estimate, and economic analysis of a one-unit 715 MW hybrid geothermal/coal fired power plant. In addition to the use of geothermal fluid for feedwater heating, its use is also investigated for additional power generation, condensate and cooling tower makeup water, coal beneficiation, air preheating, flue gas reheating and plant space heating requirements. An engineering and construction schedule for the hybrid plant is also included.

Not Available

1978-09-01T23:59:59.000Z

144

Geothermal Environmental Impact Assessment: Subsurface Environmental Assessment for Four Geothermal Systems  

DOE Green Energy (OSTI)

Geothermal systems are described for Imperial Valley and The Geysers, California; Klamath Falls, Oregon; and the Rio Grande Rift Zone, New Mexico; including information on location, area, depth, temperature, fluid phase and composition, resource base and status of development. The subsurface environmental assessment evaluates potential groundwater degradation, seismicity and subsidence. A general discussion on geothermal systems, pollution potential, chemical characteristics of geothermal fluids and environmental effects of geothermal water pollutants is presented as background material. For the Imperial Valley, all publicly available water quality and location data for geothermal and nongeothermal wells in and near the East Mesa, Salton Sea, Heber, Brawley, Dunes and Glamis KGRAs have been compiled and plotted. The geothermal fluids which will be reinjected range in salinity from a few thousand to more than a quarter million ppm. Although Imperial Valley is a major agricultural center, groundwater use in and near most of these KGRAs is minimal. Extensive seismicity and subsidence monitoring networks have been established in this area of high natural seismicity and subsidence. The vapor-dominated Geysers geothermal field is the largest electricity producer in the world. Groundwater in this mountainous region flows with poor hydraulic continuity in fractured rock. Ground and surface water quality is generally good, but high boron concentrations in hot springs and geothermal effluents is of significant concern; however, spent condensate is reinjected. High microearthquake activity is noted around the geothermal reservoir and potential subsidence effects are considered minimal. In Klamath Falls, geothermal fluids up to 113 C (235 F) are used for space heating, mostly through downhole heat exchangers with only minor, relatively benign, geothermal fluid being produced at the surface. Seismicity is low and is not expected to increase. Subsidence is not recognized. Of all geothermal occurrences in the Rio Grande Rift, the Valles Caldera is currently of primary interest. injection of geothermal effluent from hydrothermal production wells should remove any hydrologic hazard due to some potentially noxious constituents. Waters circulating in the LASL Hot Dry Rock experiment are potable. Seismic effects are expected to be minimal. Subsidence effects could develop.

Sanyal, Subir; Weiss, Richard

1978-11-01T23:59:59.000Z

145

Behavior of Rare Earth Elements in Geothermal Systems- A New  

Open Energy Info (EERE)

Behavior of Rare Earth Elements in Geothermal Systems- A New Behavior of Rare Earth Elements in Geothermal Systems- A New Exploration/Exploitation Tool? Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Behavior of Rare Earth Elements in Geothermal Systems- A New Exploration/Exploitation Tool? Abstract N/A Author Department of Geology and Geological Engineering niversity of Idaho Published Publisher Not Provided, 2001 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Behavior of Rare Earth Elements in Geothermal Systems- A New Exploration/Exploitation Tool? Citation Department of Geology and Geological Engineering niversity of Idaho. 2001. Behavior of Rare Earth Elements in Geothermal Systems- A New Exploration/Exploitation Tool?. (!) : (!) . Retrieved from

146

Development of Exploration Methods for Engineered Geothermal Systems  

Open Energy Info (EERE)

Development of Exploration Methods for Engineered Geothermal Systems Development of Exploration Methods for Engineered Geothermal Systems through Integrated Geophysical, Geologic and Geochemical Interpretation Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Development of Exploration Methods for Engineered Geothermal Systems through Integrated Geophysical, Geologic and Geochemical Interpretation Abstract N/A Author U.S. Department of Energy Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Development of Exploration Methods for Engineered Geothermal Systems through Integrated Geophysical, Geologic and Geochemical Interpretation Citation U.S. Department of Energy. Development of Exploration Methods for Engineered Geothermal Systems through Integrated Geophysical, Geologic and

147

Assessment of Favorable Structural Settings of Geothermal Systems in the  

Open Energy Info (EERE)

Assessment of Favorable Structural Settings of Geothermal Systems in the Assessment of Favorable Structural Settings of Geothermal Systems in the Great Basin, Western USA Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Assessment of Favorable Structural Settings of Geothermal Systems in the Great Basin, Western USA Abstract We have undertaken a thorough inventory of the structural settings of known geothermal systems (>400 total) in the extensional to transtensional terrane of the Great Basin in the western USA. Of the more than 200 geothermal fields catalogued to date, we found that step-overs or relay ramps in normal fault zones served as the most favorable structural setting, hosting ~32% of the systems. Such areas are characterized by multiple, commonly overlapping fault strands, increased fracture density,

148

Geothermal energy control system and method  

DOE Patents (OSTI)

A geothermal energy transfer and utilization system makes use of thermal energy stored in hot solute-bearing well water to generate super-heated steam from an injected flow of clean water; the super-heated steam is then used for operating a turbine-driven pump at the well bottom for pumping the hot solute-bearing water at high pressure and in liquid state to the earth's surface, where it is used by transfer of its heat to a closed-loop boiler-turbine-alternator combination for the generation of electrical or other power. Residual concentrated solute-bearing water is pumped back into the earth. The clean cooled water is regenerated at the surface-located system and is returned to the deep well pumping system also for lubrication of a novel bearing arrangement supporting the turbine-driven pump system.

Matthews, Hugh B. (Acton, MA)

1976-01-01T23:59:59.000Z

149

Numerical simulation of reservoir compaction in liquid dominated geothermal systems  

DOE Green Energy (OSTI)

A numerical model is introduced which simulates the effects of fluid production as well as reinjection on the vertical deformation of water dominated geothermal reservoirs. This program, based on an Integrated Finite Difference technique and Terzaghi's one-dimensional consolidation model, computes the transport of heat and water through porous media, and resulting pore volume changes. Examples are presented to show the effects of reservoir heterogeneities on the compaction of these hot water systems, as well as the effects of different production-injection schemes. The use of isothermal models to simulate the deformation of non-isothermal systems was also investigated.

Lippmann, M.J.; Narasimhan, T.N.; Witherspoon, P.A.

1976-12-01T23:59:59.000Z

150

Estimating Well Costs for Enhanced Geothermal System Applications  

SciTech Connect

The objective of the work reported was to investigate the costs of drilling and completing wells and to relate those costs to the economic viability of enhanced geothermal systems (EGS). This is part of a larger parametric study of major cost components in an EGS. The possibility of improving the economics of EGS can be determined by analyzing the major cost components of the system, which include well drilling and completion. Determining what costs in developing an EGS are most sensitive will determine the areas of research to reduce those costs. The results of the well cost analysis will help determine the cost of a well for EGS development.

K. K. Bloomfield; P. T. Laney

2005-08-01T23:59:59.000Z

151

Overview Of The Lake City, California Geothermal System | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Overview Of The Lake City, California Geothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Overview Of The Lake City, California Geothermal System Details Activities (1) Areas (1) Regions (0) Abstract: Following a spectacular mud volcano eruption in 1951, the Lake City geothermal system has been intermittently explored for 44 years. A discovery well was drilled 30 years ago. The geothermal system is associated with a two mile-long, north-south trending, abnormally complex section of the active Surprise Valley fault zone that has uplifted the

152

The Krafla Geothermal System. A Review of Geothermal Research and Revision  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » The Krafla Geothermal System. A Review of Geothermal Research and Revision of the Conceptual Model Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: The Krafla Geothermal System. A Review of Geothermal Research and Revision of the Conceptual Model Authors Mortensen A.K., Gudmundsson Á., Steingrímsson B., Sigmundsson F., Axelsson G., Ármannsson H., Björnsson H., Ágústsson K., Saemundsson K., Ólafsson M., Karlsdóttir R., Halldórsdóttir S. and Hauksson T. Organization Iceland GeoSurvey Published Iceland GeoSurvey, 2009

153

Geothermal Progress Monitor: system status and operational experience  

SciTech Connect

The Geothermal Progress Monitor (GPM) is an information system designed and implemented by the MITRE Corporation on behalf of the Division of Geothermal and Hydropower Technology (DGHT, formerly Division of Geothermal Energy) of the US Department of Energy (DOE). Its purpose is to keep track of and to report significant events and trends in the US geothermal industry and the federal geothermal program. The information sources of the GPM system are paper and computerized files maintained by a number of organizations throughout the United States. Trade and technical publications are also used to supplement the information-gathering network. Periodic reports from the GPM system consist mainly of manual and computerized analyses of the collected data. In addition, significant events and activities are usually highlighted. The GPM serves a dual function for DGHT and other members of the Interagency Geothermal Coordinating Council (IGCC). It supports effective management of the federal geothermal program and it provides information for executive, legislative, statutory, and public needs. This paper is a report on the current status of the GPM system and a summary of MITRE's operational experience during calendar year 1981 and the first quarter of 1982. It includes a description of the required output and the mechanism by which the information is gathered, integrated, and published as a Geothermal Progress Monitor Report.

Gerstein, R.E.; Kenkeremath, L.D.; Murphy, M.B.; Entingh, D.J.

1982-03-01T23:59:59.000Z

154

Geothermal Progress Monitor: system status and operational experience  

DOE Green Energy (OSTI)

The Geothermal Progress Monitor (GPM) is an information system designed and implemented by the MITRE Corporation on behalf of the Division of Geothermal and Hydropower Technology (DGHT, formerly Division of Geothermal Energy) of the US Department of Energy (DOE). Its purpose is to keep track of and to report significant events and trends in the US geothermal industry and the federal geothermal program. The information sources of the GPM system are paper and computerized files maintained by a number of organizations throughout the United States. Trade and technical publications are also used to supplement the information-gathering network. Periodic reports from the GPM system consist mainly of manual and computerized analyses of the collected data. In addition, significant events and activities are usually highlighted. The GPM serves a dual function for DGHT and other members of the Interagency Geothermal Coordinating Council (IGCC). It supports effective management of the federal geothermal program and it provides information for executive, legislative, statutory, and public needs. This paper is a report on the current status of the GPM system and a summary of MITRE's operational experience during calendar year 1981 and the first quarter of 1982. It includes a description of the required output and the mechanism by which the information is gathered, integrated, and published as a Geothermal Progress Monitor Report.

Gerstein, R.E.; Kenkeremath, L.D.; Murphy, M.B.; Entingh, D.J.

1982-03-01T23:59:59.000Z

155

Chemical Geothermometers And Mixing Models For Geothermal Systems | Open  

Open Energy Info (EERE)

Geothermometers And Mixing Models For Geothermal Systems Geothermometers And Mixing Models For Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Chemical Geothermometers And Mixing Models For Geothermal Systems Details Activities (1) Areas (1) Regions (0) Abstract: Qualitative chemical geothermometers utilize anomalous concentrations of various "indicator" elements in groundwaters, streams, soils, and soil gases to outline favorable places to explore for geothermal energy. Some of the qualitative methods, such as the delineation of mercury and helium anomalies in soil gases, do not require the presence of hot springs or fumaroles. However, these techniques may also outline fossil thermal areas that are now cold. Quantitative chemical geothermometers and mixing models can provide information about present probable minimum

156

Large Scale Geothermal Exchange System for Residential, Office and Retail  

Open Energy Info (EERE)

Geothermal Exchange System for Residential, Office and Retail Geothermal Exchange System for Residential, Office and Retail Development Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Large Scale Geothermal Exchange System for Residential, Office and Retail Development Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 1: Technology Demonstration Projects Project Description RiverHeath will be a new neighborhood, with residences, shops, restaurants, and offices. The design incorporates walking trails, community gardens, green roofs, and innovative stormwater controls. A major component of the project is our reliance on renewable energy. One legacy of the land's industrial past is an onsite hydro-electric facility which formerly powered the paper factories. The onsite hydro is being refurbished and will furnish 100% of the project's electricity demand.

157

A Demonstration System for Capturing Geothermal Energy from Mine Waters  

Open Energy Info (EERE)

System for Capturing Geothermal Energy from Mine Waters System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 1: Technology Demonstration Projects Project Description Butte, Montana, like many other mining towns that developed because of either hard-rock minerals or coal, is underlain by now-inactive water-filled mines. In Butte's case, over 10,000 miles of underground workings have been documented, but as in many other mining communities these waters are regarded as more of a liability than asset. Mine waters offer several advantages:

158

Regional Systems Development for Geothermal Energy Resources Pacific Region  

Open Energy Info (EERE)

Systems Development for Geothermal Energy Resources Pacific Region Systems Development for Geothermal Energy Resources Pacific Region (California and Hawaii). Task 3: water resources evaluation. Topical report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Regional Systems Development for Geothermal Energy Resources Pacific Region (California and Hawaii). Task 3: water resources evaluation. Topical report Details Activities (1) Areas (1) Regions (0) Abstract: The fundamental objective of the water resources analysis was to assess the availability of surface and ground water for potential use as power plant make-up water in the major geothermal areas of California. The analysis was concentrated on identifying the major sources of surface and ground water, potential limitations on the usage of this water, and the

159

Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Details Activities (5) Areas (2) Regions (0) Abstract: Two hot dry rock (HDR) geothermal energy reservoirs have been created by hydraulic fracturing of Precambrian granitic rock between two wells on the west flank of the Valles Caldera in the Jemez Mountains of northern New Mexico. Heat is extracted by injecting water into one well,

160

Geothermal: Sponsored by OSTI -- Investigation of the thermal...  

Office of Scientific and Technical Information (OSTI)

the thermal regime and geologic history of the Cascade volcanic arc: First phase of a program for scientific drilling in the Cascade Range Geothermal Technologies Legacy Collection...

Note: This page contains sample records for the topic "investigation systems geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Geothermal investigations in Idaho: Geothermal resource analysis in Twin Falls County, Idaho:  

DOE Green Energy (OSTI)

Increased utilization of the geothermal resource in the Twin Falls - Banbury area of southern Idaho has resulted in noticeable declines in the artesian head of the system. In order to determine the nature of the declines, a network of wells was identified for monitoring shut-in pressures and temperatures. In addition, a compilation of data and reconnaissance of the areal geology was undertaken in order to better understand the geologic framework and its relationship to the occurrence of the thermal waters in the system. The results of the monitoring indicate that while water temperatures have remained constant, the system shows a gradual overall decline in artesian pressure superimposed on fluctuations caused by seasonal use of the system. Well testing and the similarity of hydrographs resulting from well monitoring throughout the area suggest that there are no major hydrologic barriers to thermal water movement in the system and that wells are affected by increases and decreases in utilization of nearby wells. 46 refs., 13 figs., 1 tab.

Street, L.V.; DeTar, R.E.

1987-07-01T23:59:59.000Z

162

GRC Workshop: The Power of the National Geothermal Data System | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GRC Workshop: The Power of the National Geothermal Data System GRC Workshop: The Power of the National Geothermal Data System GRC Workshop: The Power of the National Geothermal Data System October 2, 2013 (All day) Flyer for the National Geothermal Data System workshop at the Geothermal Resources Council Annual Meeting on October 2, 2013 in Las Vegas. Drilling Down: How Legacy and New Research Data Can Advance Geothermal Development-The Power of the National Geothermal Data System (NGDS) A workshop at the Geothermal Resources Council Annual Meeting in Las Vegas, Nevada Abstract: The National Geothermal Data System's (NGDS) launch in 2014 will provide open access to millions of datasets, sharing technical geothermal-relevant data across the geosciences to propel geothermal development and production forward. By aggregating findings from the Energy Department's RD&D projects

163

Conceptual Models of Geothermal Systems - Introduction | Open Energy  

Open Energy Info (EERE)

Conceptual Models of Geothermal Systems - Introduction Conceptual Models of Geothermal Systems - Introduction Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Conceptual Models of Geothermal Systems - Introduction Abstract The key to the successful exploration, development (incl. drilling) and utilization of any type of geothermal system is a clear definition and understanding of the nature and characteristics of the system in question. This is best achieved through the development of a conceptual model of the system, which is a descriptive or qualitative model incorporating, and unifying, the essential physical features of the system. Conceptual models are mainly based on analysis of geological and geophysical information, temperature and pressure data, information on reservoir properties as well

164

A New Apparatus For Long-Term Petrophysical Investigations On Geothermal  

Open Energy Info (EERE)

Apparatus For Long-Term Petrophysical Investigations On Geothermal Apparatus For Long-Term Petrophysical Investigations On Geothermal Reservoir Rocks At Simulated In-Situ Conditions Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A New Apparatus For Long-Term Petrophysical Investigations On Geothermal Reservoir Rocks At Simulated In-Situ Conditions Details Activities (0) Areas (0) Regions (0) Abstract: We present a new apparatus capable of maintaining in-situ conditions pertinent to deep geothermal reservoirs over periods of months while in the same time allowing a variety of continuous petrophysical investigations. Two identical devices have been set up at the GFZ-Potsdam. Lithostatic overburden- and hydrostatic pore pressures of up to 100 and 50 MPa, respectively can be simulated. In addition in-situ temperature

165

Enhanced Geothermal Systems (EGS) R&D Program: US Geothermal Resources Review and Needs Assessment  

DOE Green Energy (OSTI)

The purpose of this report is to lay the groundwork for an emerging process to assess U.S. geothermal resources that might be suitable for development as Enhanced Geothermal Systems (EGS). Interviews of leading geothermists indicate that doing that will be intertwined with updating assessments of U.S. higher-quality hydrothermal resources and reviewing methods for discovering ''hidden'' hydrothermal and EGS resources. The report reviews the history and status of assessment of high-temperature geothermal resources in the United States. Hydrothermal, Enhanced, and Hot Dry Rock resources are addressed. Geopressured geothermal resources are not. There are three main uses of geothermal resource assessments: (1) They inform industry and other interest parties of reasonable estimates of the amounts and likely locations of known and prospective geothermal resources. This provides a basis for private-sector decisions whether or not to enter the geothermal energy business at all, and for where to look for useful resources. (2) They inform government agencies (Federal, State, local) of the same kinds of information. This can inform strategic decisions, such as whether to continue to invest in creating and stimulating a geothermal industry--e.g., through research or financial incentives. And it informs certain agencies, e.g., Department of Interior, about what kinds of tactical operations might be required to support such activities as exploration and leasing. (3) They help the experts who are performing the assessment(s) to clarify their procedures and data, and in turn, provide the other two kinds of users with a more accurate interpretation of what the resulting estimates mean. The process of conducting this assessment brings a spotlight to bear on what has been accomplished in the domain of detecting and understanding reservoirs, in the period since the last major assessment was conducted.

Entingh, Dan; McLarty, Lynn

2000-11-30T23:59:59.000Z

166

Feasibility investigation and design study of optical well logging methods for high temperature geothermal wells  

DOE Green Energy (OSTI)

The objective of this project was exploration of a novel approach to high temperature well logging, based on a system of optical transducers and an optical transmission line both theoretically capable of operation to at least 600/sup 0/C. The scope of the work involved the accomplishment of ten specific tasks. These had as their objective the determination of feasibility, and identification of major problem areas, in the implementation of continuous temperature logging of geothermal wells using optical techniques. The following tasks are reported: literature review and data compilation, measurement of fiber properties production fiber procurement, investigation of methods of fiber termination, cable design and fabrication, and sensor and system studies. (MHR)

Swanson, R.K.; Anderson, R.E.; Ash, J.I.; Beissner, R.E.; Smith, V.D.

1978-03-01T23:59:59.000Z

167

The Moana geothermal system in Reno, Nevada: A hydrologic, geochemical, and thermal analysis  

DOE Green Energy (OSTI)

The Moana geothermal systems, located in Reno, Nevada, is a moderate-temperature geothermal resource used for space heating applications. Both historic and new hydrologic, thermal, and groundwater chemistry data were collected to evaluate the Moana system and to develop a calibrated numerical model of the geothermal aquifer for investigation of resource development scenarios. The new data collection consisted of static water level measurements and temperature with depth measurements for a 13-month period at 26 geothermal wells to investigate hydrologic and thermal changes with time. In addition, groundwater chemistry sampling at 10 wells was used to evaluate mixing of thermal and nonthermal waters. Collected information indicates that in the most heavily used portion of the geothermal aquifer, the hydraulic heads have declined. This decline may induce additional leakage of cooler water from the overlying unconfined aquifer and lead to decreased temperatures at well locations in the geothermal aquifer. The groundwater chemistry data show concentration changes with temperature for boron, chloride, fluoride, lithium, and bicarbonate that are a function of the degree of mixing of thermal and nonthermal waters. Temporal changes in these constituents may be used as an indication of relative temperature changes in the geothermal system caused by mixing at a given location. An attempt was made to use the hydraulic head and maximum temperature data to develop a calibrated numerical model for the Moana geothermal system. However, lack of information about the horizontal and vertical thermal and fluid fluxes made the development of a calibrated model not possible at this time. 25 refs., 54 figs., 6 tabs.

Jacobson, E.A.; Johnston, J.W.

1991-03-01T23:59:59.000Z

168

High geothermal energy utilization geothermal/fossil hybrid power cycle: a preliminary investigation  

DOE Green Energy (OSTI)

Combining geothermal and fossil fuel energy into the so-called hybrid cycle is compared with a state-of-the-art double-flash geothermal power cycle using resources which vary from 429/sup 0/K (312/sup 0/F) to 588/sup 0/K (598/sup 0/F). It is demonstrated that a hybrid plant can compete thermodynamically with the combined output from both a fossil-fired and a geothermal plant operating separately. Economic comparison of the hybrid and double-flash cycles is outlined, and results are presented that indicate the performance of marginal hydrothermal resources may be improved enough to compete with existing power cycles on a cost basis. It is also concluded that on a site-specific basis a hybrid cycle is capable of complementing double-flash cycles at large-capacity resources, and can operate in a cycling load mode at constant geothermal fluid flow rate.

Grijalva, R. L.; Sanemitsu, S. K.

1978-11-01T23:59:59.000Z

169

Geothermics of Nile delta and southeast Mediterranean: Investigation and geothermal energy potential  

Science Conference Proceedings (OSTI)

The authors collected 289 temperature readings from 66 exploratory wells randomly distributed in an area about 57,000 km{sup 2} from different rock units of Tertiary and Quaternary ages. The bottom-hole temperature (BHT) readings were corrected using an empirical equation based on actual static formation temperatures collected from the study area. The authors modified the Fertl and Wichmann method to apply to the study area. If the Fertl and Wichmann curve is applied, readings can be corrected using a deduced relation. The geothermal gradient for each well calculated used the best-fit method utilizing all recorded BHTs in that well. A new geothermal gradient map was constructed using the corrected BHT values. A genetic relationship between the geothermal gradient and lithology, tectonic setup, gas saturation, and water saturation of the subsurface formations in the Nile delta and southeast Mediterranean area was sought. Isothermal maps at different depths in the study area were constructed. Areas of relatively high subsurface temperature were delineated. The Abu Madi gas field as a case study for geothermal behavior was emphasized. The geothermal reservoirs in the study area as possible new and renewable energy resources were defined and classified as low-temperature reservoirs. Two geothermal reservoirs have been recorded: a shallow one associated with Mit Ghamr-El Wastani rock units and a deep one associated with abu Madi-Qawassim Formations.

Zein El-Din, M.Y.; Zaghloul, Z.M.; Khidr, I.H. (Al Azhar Univ., Cairo (Egypt))

1988-08-01T23:59:59.000Z

170

Hybrid Cooling Systems for Low-Temperature Geothermal Power Production  

NLE Websites -- All DOE Office Websites (Extended Search)

LLC. Contract No. DE-AC36-08GO28308 Hybrid Cooling Systems for Low-Temperature Geothermal Power Production Andrea Ashwood and Desikan Bharathan Technical Report NREL...

171

NUMERICAL SIMULATION OF RESERVOIR COMPACTION IN LIQUID DOMINATED GEOTHERMAL SYSTEMS  

E-Print Network (OSTI)

4 x 104 kg/day of water were produced and 3.2 x 104 kg/dayand water through a porous geothermal system, including the vertical deformations produced

Lippmann, M.J.

2010-01-01T23:59:59.000Z

172

Resource investigation of low- and moderate-temperature geothermal areas in San Bernardino, California  

SciTech Connect

The California Division of Mines and Geology (CDMG) selected the San Bernardino area for detailed geothermal resource investigation because the area was known to contain promising geothermal resource sites, the area contained a large population center, and the City of San Bernardino had expressed serious interest in developing the area's geothermal resource. Ninety-seven geothermal wells and springs were identified and plotted on a compiled geologic map of the 40-square-mile study area. These wells and springs were concentrated in three distinguishable resource areas: Arrowhead Hot Springs, South San Bernardino, and Harlem Hot Springs--in each of which detailed geophysical, geochemical, and geological surveys were conducted. The Arrowhead Hot Springs geothermal area lies just north of the City of San Bernardino in the San Bernardino Mountains astride a shear zone (offshoot of the San Andreas fault) in pre-Cambrian gneiss and schist. The Harlem Hot Springs geothermal area, on the east side of the City, and the South San Bernardino geothermal area, on the south side, have geothermal reservoirs in Quaternary alluvial material which overlies a moderately deep sedimentary basin bound on the southwest by the San Jacinto fault (a ground water barrier). Geothermometry calculations suggest that the Arrowhead Hot Springs geothermal area, with a maximum reservoir temperature of 142 C, may have the highest maximum reservoir temperature of the three geothermal areas. The maximum temperature recorded by CDMG in the South San Bernardino geothermal area was 56 C from an artesian well, while the maximum temperature recorded in the Harlem Hot Springs geothermal areas was 49.5 C at 174 meters (570 feet) in an abandoned water well.

Youngs, Leslie G.

1982-07-01T23:59:59.000Z

173

Further Developments on the Geothermal System Scoping Model: Preprint  

Science Conference Proceedings (OSTI)

This paper discusses further developments and refinements for the uses of the Geothermal System Scoping Model in an effort to provide a means for performing a variety of trade-off analyses of surface and subsurface parameters, sensitivity analyses, and other systems engineering studies in order to better inform R&D direction and investment for the development of geothermal power into a major contributor to the U.S. energy supply.

Antkowiak, M.; Sargent, R.; Geiger, J. W.

2010-07-01T23:59:59.000Z

174

Heat pump assisted geothermal heating system for Felix Spa, Romania  

Science Conference Proceedings (OSTI)

The paper presents a pre-feasibility type study of a proposed heat pump assisted geothermal heating system for an average hotel in Felix Spa, Romania. After a brief presentation of the geothermal reservoir, the paper gives the methodology and the results of the technical and economical calculations. The technical and economical viability of the proposed system is discussed in detail in the final part of the paper.

Rosca, Marcel; Maghiar, Teodor

1996-01-24T23:59:59.000Z

175

A Fluid-Inclusion Investigation Of The Tongonan Geothermal Field...  

Open Energy Info (EERE)

on anhydrite crystals sampled to 2.5 km depth from 28 wells, record thermal and chemical changes in the Tongonan geothermal field. Interpretations of the Th (175-368C...

176

Phase 1 report: investigation of geothermal energy information sources  

DOE Green Energy (OSTI)

A subject screening list was developed which would be used by acquisitions specialists as a guide to the orientation of pertinent literature. The subject screening list was derived primarily from the geothermal subset of the ERDA Energy Thesaurus and from the ERDA Energy Information Data Base Subject Categories (TID-4584). The subject screening list is included. Subsequent to preparation of the subject screening list, a core list of serial publications containing geothermal energy information was generated by SIS library scientists. This list was corelated with the ERDA-TIC serial publications list. Included in both lists is an estimate of the annual geothermal information yield of the serial sources. A listing of sources of geothermal energy information other than serial publications and the conclusions, including methods of acquisitioning to be utilized and the estimated annual volume of information from all sources are presented.

Not Available

1976-07-14T23:59:59.000Z

177

Engineered Geothermal Systems Energy Return On Energy Investment  

NLE Websites -- All DOE Office Websites (Extended Search)

EGS EROI - 1 EGS EROI - 1 Engineered Geothermal Systems Energy Return On Energy Investment A.J. Mansure, Geothermal Consultant, ajm@q.com Albuquerque, NM 12/10/2012 Key Words: energy, EROI, EGS, efficiency, energy investment, energy return, input energy, energy payback, and net energy. Abstract Energy Return On Investment (EROI) is an important figure of merit for assessing the viability of energy alternatives. Too often comparisons of energy systems use "efficiency" when EROI would be more appropriate. For geothermal electric power generation, EROI is determined by the electricity delivered to the consumer compared to the energy consumed to construct, operate, and decommission the facility. Critical factors in determining the EROI of Engineered Geothermal Systems (EGS

178

Reconnaissance geophysical studies of the geothermal system in southern  

Open Energy Info (EERE)

geophysical studies of the geothermal system in southern geophysical studies of the geothermal system in southern Raft River Valley, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Reconnaissance geophysical studies of the geothermal system in southern Raft River Valley, Idaho Details Activities (4) Areas (1) Regions (0) Abstract: Gravity, aeromagnetic, and telluric current surveys in the southern Raft River have been used to infer the structure and the general lithology underlying the valley. The gravity data indicate the approximate thickness of the Cenozoic rocks and location of the larger normal faults, and the aeromagnetic data indicate the extent of the major Cenozoic volcanic units. The relative ellipse area contour map compiled from the telluric current survey generally conforms to the gravity map except for

179

Identification of a New Blind Geothermal System with Hyperspectral Remote  

Open Energy Info (EERE)

Identification of a New Blind Geothermal System with Hyperspectral Remote Identification of a New Blind Geothermal System with Hyperspectral Remote Sensing and Shallow Temperature Measurements at Columbus Salt Marsh, Esmeralda County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Identification of a New Blind Geothermal System with Hyperspectral Remote Sensing and Shallow Temperature Measurements at Columbus Salt Marsh, Esmeralda County, Nevada Abstract Hyperspectral remote sensing-derived mineral maps and follow-up shallow temperature measurements were used to identify a new blind geothermal target in the Columbus Salt Marsh playa, Esmeralda County, Nevada. The hyperspectral survey was conducted with the ProSpecTIR VS2 instrument and consists of 380 km2 of 4-meter spatial resolution data acquired on October

180

Monitoring well systems in geothermal areas  

DOE Green Energy (OSTI)

The ability to monitor the injection of spent geothermal fluids at reasonable cost might be greatly improved by use of multiple-completion techniques. Several such techniques, identified through contact with a broad range of experts from the groundwater and petroleum industries, are evaluated relative to application in the typical geologic and hydrologic conditions of the Basin and Range Province of the Western United States. Three basic monitor well designs are suggested for collection of pressure and temperature data: Single standpipe, multiple standpipe, and closed-system piezometers. A fourth design, monitor well/injection well dual completions, is determined to be inadvisable. Also, while it is recognized that water quality data is equally important, designs to allow water sampling greatly increase costs of construction, and so such designs are not included in this review. The single standpipe piezometer is recommended for use at depths less than 152 m (500 ft); several can be clustered in one area to provide information on vertical flow conditions. At depths greater than 152 m (500 ft), the multiple-completion standpipe and closed-system piezometers are likely to be more cost effective. Unique conditions at each monitor well site may necessitate consideration of the single standpipe piezometer even for deeper completions.

Lofgren, B.E.; O'Rourke, J.; Sterrett, R.; Thackston, J.; Fain, D.

1982-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "investigation systems geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Modeling studies of geothermal systems with a free water surface  

DOE Green Energy (OSTI)

A numerical simulator was developed for the modeling of air-steam-water systems. The simulator was applied to various problems involving injection into or production from a geothermal reservoir in hydraulic communication with a shallow free-surface aquifer. First, a one-dimensional column problem is considered and the water level movement during exploitation is studied using different capillary pressure functions. Second, a two-dimensional radial model is used to study and compare reservoir depletion for cases with and without a free-surface aquifer. Finally, the contamination of a shallow free-surface aquifer due to cold water injection is investigated. The primary aim of these studies is to obtain an understanding of the response of a reservoir in hydraulic communication with a unconfined aquifer during exploitation or injection and to determine under which circumstances conventional modeling techniques (fully saturated systems) can be applied to such systems.

Bodvarsson, G.S.; Pruess, K.

1983-12-01T23:59:59.000Z

182

Investigations of supercritical CO2 Rankine cycles for geothermal power plants  

Science Conference Proceedings (OSTI)

Supercritical CO2 Rankine cycles are investigated for geothermal power plants. The system of equations that describe the thermodynamic cycle is solved using a Newton-Rhapson method. This approach allows a high computational efficiency of the model when thermophysical properties of the working fluid depend strongly on the temperature and pressure. Numerical simulation results are presented for different cycle configurations in order to assess the influences of heat source temperature, waste heat rejection temperatures and internal heat exchanger design on cycle efficiency. The results show that thermodynamic cycle efficiencies above 10% can be attained with the supercritical brayton cycle while lower efficiencies can be attained with the transcritical CO2 Rankine cycle.

Sabau, Adrian S [ORNL; Yin, Hebi [ORNL; Qualls, A L [ORNL; McFarlane, Joanna [ORNL

2011-01-01T23:59:59.000Z

183

Geothermal heating system and method of installing the same  

SciTech Connect

A geothermal system and method of installing the same comprises the steps successively driving a drive pipe structure vertically into the ground at a plurality of locations so that a major portion of the length of the drive pipe structure is located below the frost line. An elongate geothermal pipe having closed ends is inserted into the drive pipe structure and its lower end is interlocked with a drive point device located at the lower end of the drive pipe structure. Thereafter, when the drive pipe is removed, the geothermal pipe remains anchored to the drive point. The geothermal pipes are connected together by conduits and connected to a heat pump so that a heat exchange liquid will be circulated through the system.

Kees, E.J.; Steiger, D.W.

1981-09-01T23:59:59.000Z

184

High-Temperature-High-Volume Lifting For Enhanced Geothermal Systems  

Open Energy Info (EERE)

Temperature-High-Volume Lifting For Enhanced Geothermal Systems Temperature-High-Volume Lifting For Enhanced Geothermal Systems Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title High-Temperature-High-Volume Lifting For Enhanced Geothermal Systems Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 High-Temperature-High-Volume Lifting Project Description The proposed scope of work is divided into three Phases. Overall system requirements will be established in Phase 1, along with an evaluation of existing lifting system capability, identification of technology limitations, and a conceptual design of an overall lifting system. In developing the system components in Phase 2, component-level tests will be conducted using GE facilities. Areas of development will include high-temperature drive system materials, journal and thrust bearings, and corrosion and erosion-resistant lifting pump components. Finally, in Phase 3, the overall lab-scale lifting system will be demonstrated in a flow loop that will be constructed at GE Global Research.

185

Environmental Development Plan (EDP). Geothermal energy systems, 1977  

DOE Green Energy (OSTI)

The Geothermal Energy Systems Environmental Development Plan (EDP) identifies the environmental, health, safety, social, and economic issues which are associated with the development, demonstration, and commercialization of geothermal resources and conversion technology. The EDP also describes the actions and implementation strategy required to resolve the issues identified. These actions may include the initiation of R and D activities, operations monitoring, baseline characterization studies, or activities leading to the development of standards and criteria in concert with other responsible agencies.

Not Available

1978-03-01T23:59:59.000Z

186

Seismic refraction investigation of the Salton Sea geothermal area, Imperial Valley, California  

DOE Green Energy (OSTI)

Seven seismic refraction profiles and four long-distance refraction shots have been used to investigate the Salton Sea geothermal area. From these data, two models of the geothermal and adjacent area are proposed. Model 1 proposes a basement high within the geothermal area trending parallel to the axis of the Imperial Valley. Model 2 assumes a horizontal basement in the E-W direction, and proposes a seismic velocity gradient that increases the apparent basement velocity from east to west approximately 15% within the geothermal area. Both models propose basement dip of 3 degrees to the south, yielding a thickness of sediments of 6.6 km near Brawley, California, in the center of the Imperial Valley. Based on offsets inferred in the sedimentary seismic layers of the geothermal area, two NW-SE trending fault zones are proposed.

Frith, R.B.

1978-12-01T23:59:59.000Z

187

Mono County geothermal activity  

SciTech Connect

Three geothermal projects have been proposed or are underway in Mono County, California. The Mammoth/Chance geothermal development project plans to construct a 10-MW geothermal binary power plant which will include 8 production and 3 injection wells. Pacific Lighting Energy Systems is also planning a 10-MW binary power plant consisting of 5 geothermal wells and up to 4 injection wells. A geothermal research project near Mammoth Lakes has spudded a well to provide a way to periodically measure temperature gradient, pressure, and chemistry of the thermal waters and to investigate the space-heating potential of the area in the vicinity of Mammoth Lakes. All three projects are briefly described.

Lyster, D.L.

1986-01-01T23:59:59.000Z

188

The Newcastle geothermal system, Iron County, Utah  

DOE Green Energy (OSTI)

Geological, geophysical and geochemical studies contributed to conceptual hydrologic model of the blind'' (no surface expression), moderate-temperature (greater than 130{degree}C) Newcastle geothermal system, located in the Basin and Range-Colorado Plateau transition zone of southwestern Utah. Temperature gradient measurements define a thermal anomaly centered near the surface trace of the range-bounding Antelope Range fault with and elongate dissipative plume extending north into the adjacent Escalante Valley. Spontaneous potential and resistivity surveys sharply define the geometry of the dominant upflow zone (not yet explored), indicating that most of the thermal fluid issues form a short segment along the Antelope Range fault and discharges into a gently-dipping aquifer. Production wells show that this aquifer lies at a depth between 85 and 95 meter. Electrical surveys also show that some leakage of thermal fluid occurs over a 1.5 km (minimum) interval along the trace of the Antelope Range fault. Major element, oxygen and hydrogen isotopic analyses of water samples indicate that the thermal fluid is a mixture of meteoric water derived from recharge areas in the Pine Valley Mountains and cold, shallow groundwater. A northwest-southeast trending system of faults, encompassing a zone of increased fracture permeability, collects meteoric water from the recharge area, allows circulation to a depth of 3 to 5 kilometers, and intersects the northeast-striking Antelope Range fault. We postulate that mineral precipitates form a seal along the Antelope Range fault, preventing the discharge of thermal fluids into basin-fill sediments at depth, and allowing heated fluid to approach the surface. Eventually, continued mineral deposition could result in the development of hot springs at the ground surface.

Blackett, R.E.; Shubat, M.A.; Bishop, C.E. (Utah Geological and Mineral Survey, Salt Lake City, UT (USA)); Chapman, D.S.; Forster, C.B.; Schlinger, C.M. (Utah Univ., Salt Lake City, UT (USA). Dept. of Geology and Geophysics)

1990-03-01T23:59:59.000Z

189

Geothermal Resource-Reservoir Investigations Based On Heat Flow And Thermal  

Open Energy Info (EERE)

Resource-Reservoir Investigations Based On Heat Flow And Thermal Resource-Reservoir Investigations Based On Heat Flow And Thermal Gradient Data For The United States Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geothermal Resource-Reservoir Investigations Based On Heat Flow And Thermal Gradient Data For The United States Details Activities (2) Areas (2) Regions (0) Abstract: Several activities related to geothermal resources in the western United States are described in this report. A database of geothermal site-specific thermal gradient and heat flow results from individual exploration wells in the western US has been assembled. Extensive temperature gradient and heat flow exploration data from the active exploration of the 1970's and 1980's were collected, compiled, and synthesized, emphasizing previously unavailable company data. Examples of

190

Temporary Cementitious Sealers in Enhanced Geothermal Systems  

DOE Green Energy (OSTI)

Unlike conventional hydrothennal geothermal technology that utilizes hot water as the energy conversion resources tapped from natural hydrothermal reservoir located at {approx}10 km below the ground surface, Enhanced Geothermal System (EGS) must create a hydrothermal reservoir in a hot rock stratum at temperatures {ge}200 C, present in {approx}5 km deep underground by employing hydraulic fracturing. This is the process of initiating and propagating a fracture as well as opening pre-existing fractures in a rock layer. In this operation, a considerable attention is paid to the pre-existing fractures and pressure-generated ones made in the underground foundation during drilling and logging. These fractures in terms of lost circulation zones often cause the wastage of a substantial amount of the circulated water-based drilling fluid or mud. Thus, such lost circulation zones must be plugged by sealing materials, so that the drilling operation can resume and continue. Next, one important consideration is the fact that the sealers must be disintegrated by highly pressured water to reopen the plugged fractures and to promote the propagation of reopened fractures. In response to this need, the objective of this phase I project in FYs 2009-2011 was to develop temporary cementitious fracture sealing materials possessing self-degradable properties generating when {ge} 200 C-heated scalers came in contact with water. At BNL, we formulated two types of non-Portland cementitious systems using inexpensive industrial by-products with pozzolanic properties, such as granulated blast-furnace slag from the steel industries, and fly ashes from coal-combustion power plants. These byproducts were activated by sodium silicate to initiate their pozzolanic reactions, and to create a cemetitious structure. One developed system was sodium silicate alkali-activated slag/Class C fly ash (AASC); the other was sodium silicate alkali-activated slag/Class F fly ash (AASF) as the binder of temper-try sealers. Two specific additives without sodium silicate as alkaline additive were developed in this project: One additive was the sodium carboxymethyl cellulose (CMC) as self-degradation promoting additive; the other was the hard-burned magnesium oxide (MgO) made from calcinating at 1,000-1,500 C as an expansive additive. The AASC and AASF cementitious sealers made by incorporating an appropriate amount of these additives met the following six criteria: 1) One dry mix component product; 2) plastic viscosity, 20 to 70 cp at 300 rpm; 3) maintenance of pumpability for at least 1 hour at 85 C; 4) compressive strength >2000 psi; 5) self-degradable by injection with water at a certain pressure; and 6) expandable and swelling properties; {ge}0.5% of total volume of the sealer.

Sugama T.; Pyatina, T.; Butcher, T.; Brothers, L.; Bour, D.

2011-12-31T23:59:59.000Z

191

Strategies for Detecting Hidden Geothermal Systems by Near-Surface Gas Monitoring  

DOE Green Energy (OSTI)

''Hidden'' geothermal systems are those systems above which hydrothermal surface features (e.g., hot springs, fumaroles, elevated ground temperatures, hydrothermal alteration) are lacking. Emissions of moderate to low solubility gases (e.g., CO2, CH4, He) may be one of the primary near-surface signals from these systems. Detection of anomalous gas emissions related to hidden geothermal systems may therefore be an important tool to discover new geothermal resources. This study investigates the potential for CO2 detection and monitoring in the subsurface and above ground in the near-surface environment to serve as a tool to discover hidden geothermal systems. We focus the investigation on CO2 due to (1) its abundance in geothermal systems, (2) its moderate solubility in water, and (3) the wide range of technologies available to monitor CO2 in the near-surface environment. However, monitoring in the near-surface environment for CO2 derived from hidden geothermal reservoirs is complicated by the large variation in CO2 fluxes and concentrations arising from natural biological and hydrologic processes. In the near-surface environment, the flow and transport of CO2 at high concentrations will be controlled by its high density, low viscosity, and high solubility in water relative to air. Numerical simulations of CO2 migration show that CO2 concentrations can reach very high levels in the shallow subsurface even for relatively low geothermal source CO2 fluxes. However, once CO2 seeps out of the ground into the atmospheric surface layer, surface winds are effective at dispersing CO2 seepage. In natural ecological systems in the absence of geothermal gas emissions, near-surface CO2 fluxes and concentrations are primarily controlled by CO2 uptake by photosynthesis, production by root respiration, and microbial decomposition of soil/subsoil organic matter, groundwater degassing, and exchange with the atmosphere. Available technologies for monitoring CO2 in the near-surface environment include (1) the infrared gas analyzer (IRGA) for measurement of concentrations at point locations, (2) the accumulation chamber (AC) method for measuring soil CO2 fluxes at point locations, (3) the eddy covariance (EC) method for measuring net CO2 flux over a given area, (4) hyperspectral imaging of vegetative stress resulting from elevated CO2 concentrations, and (5) light detection and ranging (LIDAR) that can measure CO2 concentrations over an integrated path. Technologies currently in developmental stages that have the potential to be used for CO2 monitoring include tunable lasers for long distance integrated concentration measurements and micro-electronic mechanical systems (MEMS) that can make widespread point measurements. To address the challenge of detecting potentially small-magnitude geothermal CO2 emissions within the natural background variability of CO2, we propose an approach that integrates available detection and monitoring methodologies with statistical analysis and modeling strategies. Within the area targeted for geothermal exploration, point measurements of soil CO2 fluxes and concentrations using the AC method and a portable IRGA, respectively, and measurements of net surface flux using EC should be made. Also, the natural spatial and temporal variability of surface CO2 fluxes and subsurface CO2 concentrations should be quantified within a background area with similar geologic, climatic, and ecosystem characteristics to the area targeted for geothermal exploration. Statistical analyses of data collected from both areas should be used to guide sampling strategy, discern spatial patterns that may be indicative of geothermal CO2 emissions, and assess the presence (or absence) of geothermal CO2 within the natural background variability with a desired confidence level. Once measured CO2 concentrations and fluxes have been determined to be of anomalous geothermal origin with high confidence, more expensive vertical subsurface gas sampling and chemical and isotopic analyses can be undertaken. Integrated analysis of all measurements will d

Lewicki, Jennifer L.; Oldenburg, Curtis M.

2004-12-15T23:59:59.000Z

192

Environmental investigations associated with the LASL hot dry rock geothermal energy development project  

DOE Green Energy (OSTI)

The Los Alamos Scientific Laboratory (LASL) is currently evaluating the feasibility of extracting thermal energy from hot dry rock (HDR) geothermal reservoirs. An overview of the environmental studies that LASL has conducted relative to its HDR Geothermal Energy Development Project is presented. Because HDR geothermal technology is a new field of endeavor, environmental guidelines have not been established. It is anticipated that LASL's research will lead to the techniques necessary to mitigate undesirable environmental impacts in future HDR developments. To date, results of environmental investigations have been positive in that no undesirable environmental impacts have been found.

Rea, K.H.

1977-12-01T23:59:59.000Z

193

Higher-order differencing for front propagation in geothermal systems  

E-Print Network (OSTI)

and Renewable Energy, Geothermal Division, U.S. Departmentorder differencing for geothermal reservoir simulation,Proc. 22nd Workshop on Geothermal Reservoir Engineering,

Oldenburg, Curtis; Pruess, Karsten

1998-01-01T23:59:59.000Z

194

MATHEMATICAL MODELING OF THE BEHAVIOR OF GEOTHERMAL SYSTEMS UNDER EXPLOITATION  

E-Print Network (OSTI)

and momentum transfer i n a geothermal reservoir, Summaries2nd Work- shop Geothermal Reservoir Engineering, StanfordSchroeder, W e l l tests, Geothermal Resource and Reservoir

Bodvarsson, G.S.

2010-01-01T23:59:59.000Z

195

Development of Exploration Methods for Engineered Geothermal Systems  

Open Energy Info (EERE)

Exploration Methods for Engineered Geothermal Systems Exploration Methods for Engineered Geothermal Systems through Integrated Geophysical, Geologic and Geochemical Interpretation. Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Development of Exploration Methods for Engineered Geothermal Systems through Integrated Geophysical, Geologic and Geochemical Interpretation. Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Geophysical Exploration Technologies Project Description A comprehensive, interdisciplinary approach is proposed using existing geophysical exploration technology coupled with new seismic techniques and subject matter experts to determine the combination of geoscience data that demonstrates the greatest potential for identifying EGS drilling targets using non-invasive techniques. This proposed exploration methodology is expected to increase spatial resolution and reduce the non-uniqueness that is inherent in geological data, thereby reducing the uncertainty in the primary selection criteria for identifying EGS drilling targets. These criteria are, in order of importance: (1) temperatures greater than 200-250°C at 1-5 km depth; (2) rock type at the depth of interest, and; (3) stress regime.

196

Seismic Technology Adapted to Analyzing and Developing Geothermal Systems  

Open Energy Info (EERE)

Technology Adapted to Analyzing and Developing Geothermal Systems Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Geophysical Exploration Technologies Project Description Historically, areas where the Earth surface is covered by an exposed high-velocity rock layer have been locations where conventional, single-component, seismic P-waves have failed to provide usable geological information. The research will use new seismic sources that emphasize shear waves and new seismic data-acquisition technology based on cable-free data recording to acquire seismic research data across two sites covered with surface-exposed highvelocity rocks. Research tasks will involve acquiring, processing, and interpreting both conventional seismic data and multicomponent seismic data. Scientists at BEG will analyze well logs, cores, and reservoir test data to construct geological models of the targeted geology across each study site.

197

Residential Vertical Geothermal Heat Pump System Models: Calibration to Data:  

SciTech Connect

A detailed component-based simulation model of a geothermal heat pump system has been calibrated to monitored data taken from a family housing unit located at Fort Polk, Louisiana. The simulation model represents the housing unit, geothermal heat pump, ground heat exchanger, thermostat, blower, and ground-loop pump. Each of these component models was 'tuned' to better match the measured data from the site. These tuned models were then interconnect to form the system model. The system model was then exercised in order to demonatrate its capabilities.

Thornton, Jeff W. [Thermal Energy Systems Specialists, Inc.; McDowell, T. P. [Thermal Energy Systems Specialists, Inc.; Shonder, John A [ORNL; Hughes, Patrick [ORNL; Pahud, D. [University of Applied Sciences of Southern Switzerland; Hellstrom, G. [Lund University

1997-06-01T23:59:59.000Z

198

Environmental impact directory system: preliminary implementation for geothermal energy  

DOE Green Energy (OSTI)

An Environmental Impact Directory System (EIDS) was proposed as a method for a computerized search of the widely distributed data files and models pertaining to energy-related environmental effects. To define the scope and content of the system, an example was prepared for the case of geothermal energy. The resulting sub-directory is known as GEIDs (Geothermal Environmental Impact Directory System). In preparing or reviewing an Environmental Impact Statement (EIS), the user may employ GEIDS as an extensive checklist to make sure he has taken into account all predictable impacts at any level of severity.

Hess, F.D.; Hall, R.T.; Fullenwider, E.D.

1976-07-01T23:59:59.000Z

199

Category:Geothermal Technologies | Open Energy Information  

Open Energy Info (EERE)

Geothermal Systems (EGS) G Geothermal Direct Use G cont. GeothermalExploration Ground Source Heat Pumps H Hydrothermal System S Sedimentary Geothermal Systems Retrieved from...

200

Sonoma State Hospital, Eldridge, California, geothermal-heating system: conceptual design and economic feasibility report  

DOE Green Energy (OSTI)

The Sonoma State Mental Hospital, located in Eldridge, California, is presently equipped with a central gas-fired steam system that meets the space heating, domestic hot water, and other heating needs of the hospital. This system is a major consumer of natural gas - estimated at 259,994,000 cubic feet per year under average conditions. At the 1981 unit gas rate of $0.4608 per therm, an average of $1,258,000 per year is required to operate the steam heating system. The hospital is located in an area with considerable geothermal resources as evidenced by a number of nearby hot springs resorts. A private developer is currently investigating the feasibility of utilizing geothermally heated steam to generate electricity for sale to the Pacific Gas and Electric Company. The developer has proposed to sell the byproduct condensed steam to the hospital, which would use the heat energy remaining in the condensate for its own heating needs and thereby reduce the fossil fuel energy demand of the existing steam heating system. The geothermal heating system developed is capable of displacing an estimated 70 percent of the existing natural gas consumption of the steam heating system. Construction of the geothermal fluid distribution and collection system and the retrofits required within the buildings are estimated to cost $1,777,000. Annual expenses (operation and maintenance, insurance, and geothermal fluid purchase) have been estimated to be $40,380 per year in 1981 dollars. The proposed geothermal heating system could then be completely paid for in 32 months by the savings in natural gas purchases that would result.

Not Available

1982-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "investigation systems geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Evaluation of C-14 as a natural tracer for injected fluids at the Aidlin sector of The Geysers geothermal system through modeling of mineral-water-gas Reactions  

E-Print Network (OSTI)

breakthrough observed in geothermal systems (e.g. , Shook,recharge project, Geysers geothermal field, California, USA,media: Applications to geothermal injectivity and CO 2

Dobson, Patrick; Sonnenthal, Eric; Lewicki, Jennifer; Kennedy, Mack

2006-01-01T23:59:59.000Z

202

Enhanced geothermal systems (EGS) with CO2 as heat transmission fluid--A scheme for combining recovery of renewable energy with geologic storage of CO2  

E-Print Network (OSTI)

Interactions in Enhanced Geothermal Systems (EGS) with CO 2Fluid, Proceedings, World Geothermal Congress 2010, Bali,Remain? Transactions, Geothermal Resources Council, Vol. 17,

Pruess, K.

2010-01-01T23:59:59.000Z

203

A Phase-Partitioning Model for CO2–Brine Mixtures at Elevated Temperatures and Pressures: Application to CO2-Enhanced Geothermal Systems  

E-Print Network (OSTI)

D.W. : A hot dry rock geothermal energy concept utilizingtwenty-?fth workshop on geothermal reservoir engineering,the development of enhanced geothermal systems? In: Paper

Spycher, Nicolas; Pruess, Karsten

2010-01-01T23:59:59.000Z

204

Geology and alteration of the Raft River geothermal system, Idaho | Open  

Open Energy Info (EERE)

alteration of the Raft River geothermal system, Idaho alteration of the Raft River geothermal system, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Geology and alteration of the Raft River geothermal system, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: analcime; Cassia County Idaho; Cenozoic; chlorite; chlorite group; clay minerals; economic geology; exploration; framework silicates; geothermal energy; Idaho; illite; kaolinite; laumontite; montmorillonite; Neogene; Precambrian; Raft Formation; Raft River KGRA; Salt Lake Formation; sheet silicates; silicates; Tertiary; United States; wairakite; wells; zeolite group Author(s): Blackett, R.E.; Kolesar, P.T. Published: Geothermal Resource Council Transactions 1983, 1/1/1983 Document Number: Unavailable DOI: Unavailable

205

Strategies for Detecting Hidden Geothermal Systems by Near-Surface Gas Monitoring  

E-Print Network (OSTI)

Propulsion Laboratory, National Rev. 1.2 Strategies for Detection of Hidden Geothermal Systems Aeronautics and Space

Lewicki, Jennifer L.; Oldenburg, Curtis M.

2004-01-01T23:59:59.000Z

206

A History Of Hot Dry Rock Geothermal Energy Systems | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » A History Of Hot Dry Rock Geothermal Energy Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A History Of Hot Dry Rock Geothermal Energy Systems Details Activities (1) Areas (1) Regions (0) Abstract: This is a short history, so far as it can now be assembled, of early speculations and observations concerning the existence and origin of natural heat in the earth's crust; of some of the many methods proposed to extract and use it; and of recent investigations designed to develop and demonstrate such methods. It is probably only the preface to a much longer

207

Progress Toward an Advanced Geothermal Deep-Drilling System  

DOE Green Energy (OSTI)

A previously developed concept for an advanced geothermal drilling system (AGDS) has been extended toward a feasibility design stage. Hardware projects for two percussion, air and hydraulic, hammer drills are underway. Two drill string options and an unique nitrogen supply system are described.

Rowley, J.; Saito, S.; Long, R.

1995-01-01T23:59:59.000Z

208

Geothermal Turbine  

SciTech Connect

The first geothermal power generation in the world was started at Larderello, Italy in 1904. Then, New Zealand succeeded in the geothermal power generating country. These developments were then followed by the United States, Mexico, Japan and the Soviet Union, and at present, about 25 countries are utilizing geothermal power, or investigating geothermal resources.

1979-05-01T23:59:59.000Z

209

Geothermal investigations at Crystal Hot Springs, Salt Lake County, Utah. Report of Investigation No. 139  

DOE Green Energy (OSTI)

The Crystal Hot Springs geothermal system is located in southern Salt Lake County, Utah 22.5 km (14 miles) south of Salt Lake City near the town of Draper. The system is immediately west of the Wasatch Mountains at the easternmost edge of the Basin and Range physiographic province within an active seismic zone referred to as the Intermountain Seismic Belt. The springs are located north of an east-west trending horst known as the Traverse Range. The range is intermediate in elevation between the Wasatch Range to the east and the valley grabens to the north and south. A series of northeast striking normal faults with a combined displacement of at least 90/sup 0/m (3000 ft) separate the horst from the Jordan Valley graben to the north. The spring system is located between two closely spaced range-front faults where the faults are intersected by a north-northeast striking fault. The fractured Paleozoic quartzite bedrock 25 m (80 ft) beneath the surface leaks thermal water into the overlying unconsolidated material and the springs issue along zones of weaknesses in the relatively impermeable confining zone that parallel the bedrock faults. Meteoric water from the Wasatch Range is warmed in the normal geothermal gradient of the province (approximately 32/sup 0/C/km) as the water circulates to a minimum depth of approximately 2.5 km (1.55 miles) via an undetermined path through aquifers and faults. Data collected at the Crystal Hot Springs system under the DOE state coupled program are presented for use by individuals interested in the system.

Murphy, P.J.; Gwynn, J.W.

1979-10-01T23:59:59.000Z

210

Preliminary investigation of scale formation and fluid chemistry at the Dixie Valley Geothermal Field, Nevada  

DOE Green Energy (OSTI)

The chemistry of geothermal, production, and injection fluids at the Dixie Valley Geothermal Field, Nevada, was characterized to address an ongoing scaling problem and to evaluate the effects of reinjection into the reservoir. Fluids generally followed mixing-dilution trends. Recharge to the Dixie Valley system apparently originates from local sources. The low-pressure brine and injection waters were saturated with respect to amorphous silica, which correlated with the ongoing scaling problem. Local shallow ground water contains about 15% geothermal brine mixed with regional recharge. The elevated Ca, Mg, and HCO{sub 3} content of this water suggests that carbonate precipitation may occur if shallow groundwater is reinjected. Downhole reservoir fluids are close to equilibrium with the latest vein mineral assemblage of wairakite-epidote-quartz-calcite. Reinjection of spent geothermal brine is predicted to affect the region near the wellbore differently than it does the region farther away.

Bruton, C.J.; Counce, D.; Bergfeld, D.; Goff, F.; Johnson, S.D.; Moore, J.N.; Nimz, G.

1997-06-27T23:59:59.000Z

211

Geothermal System Saves Dollars, Makes Sense for Maryland Family |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

System Saves Dollars, Makes Sense for Maryland Family System Saves Dollars, Makes Sense for Maryland Family Geothermal System Saves Dollars, Makes Sense for Maryland Family April 16, 2010 - 5:15pm Addthis A 36-foot-tall drill was needed to install the geothermal system at the Gearon’s house in Derwood, MD. | Photo courtesy of Chris Gearon | A 36-foot-tall drill was needed to install the geothermal system at the Gearon's house in Derwood, MD. | Photo courtesy of Chris Gearon | Lindsay Gsell "At the end of the day, it cost us about the same as if we just replaced our furnace and AC with another furnace and AC, but the big difference is that we're not spending $3,000 on oil bills anymore." Chris Gearon, Derwood, MD resident who recently installed a geothermal system to heal and cool his home Chris Gearon's 24-year old oil furnace was tired. What happened if the

212

Characterization of hot dry rock geothermal energy extraction systems  

DOE Green Energy (OSTI)

The engineering of heat exchange systems by which geothermal heat can be efficiently extracted from hot impermeable rocks is studied. The system currently under investigation at Fenton Hill, New Mexico consists of a network of large fractures created through the hydraulic pressurization of a well penetrating hot basement rocks and subsequently intersected by a second well drilled to form a flow-thru system. Cool water pumped into the fractures through one well, once heated in the reservoir, returns to the surface through the second well, is cooled, and then recirculated. While much is known about the performance parameters of the fracture network from short-term flow tests, little is understood concerning the spatial dimensions and geometrical relationship of individual fractures comprising the network. Ultimately, the success one has in estimating the long-term performance of such a system where commercialization is an issue, and in engineering future systems with optimal performance, depends on the success in characterizing the flow-thru fracture networks. To date only nonconventional application of oil field logging techniques and acoustic emissions studies have been used in the characterization of the fracture network.

Albright, J.N.; Newton, C.A.

1981-01-01T23:59:59.000Z

213

Energy extraction characteristics of hot dry rock geothermal systems  

DOE Green Energy (OSTI)

The LASL Hot Dry Rock Geothermal Energy Project is investigating methods to extract energy at useful temperatures and rates from naturally heated crustal rock in locations where the rock does not spontaneously yield natural steam or hot water at a rate sufficient to support commercial utilization. Several concepts are discussed for application to low and high permeability formations. The method being investigated first is intended for use in formations of low initial permeability. It involves producing a circulation system within the hot rock by hydraulic fracturing to create a large crack connecting two drilled holes, then operating the system as a closed pressurized-water heat-extration loop. With the best input assumptions that present knowledge provides, the fluid-flow and heat-exchange calculations indicate that unpumped (buoyant) circulation through a large hydraulic fracture can maintain a commercially useful rate of heat extraction throughout a usefully long system life. With a power cycle designed for the temperature of the fluid produced, total capital investment and generating costs are estimated to be at least competitive with those of fossil-fuel-fired and nuclear electric plants. This paper discusses the potential of the hot dry rock resource, various heat extraction concepts, prediction of reservoir performance, and economic factors, and summarizes recent progress in the LASL field program.

Tester, J.W.; Smith, M.C.

1977-01-01T23:59:59.000Z

214

Dual-temperature Kalina cycle for geothermal-solar hybrid power systems  

E-Print Network (OSTI)

This thesis analyzes the thermodynamics of a power system coupling two renewable heat sources: low-temperature geothermal and a high-temperature solar. The process, referred to as a dual-temperature geothermal-solar Kalina ...

Boghossian, John G

2011-01-01T23:59:59.000Z

215

Modeling and analysis of hybrid geothermal-solar thermal energy conversion systems  

E-Print Network (OSTI)

Innovative solar-geothermal hybrid energy conversion systems were developed for low enthalpy geothermal resources augmented with solar energy. The goal is to find cost-effective hybrid power cycles that take advantage of ...

Greenhut, Andrew David

2010-01-01T23:59:59.000Z

216

Analysis of Power Cycles for Geothermal Wellhead Conversion Systems  

Science Conference Proceedings (OSTI)

Using the guidelines and data developed from 240 representative cases, utility engineers can make preliminary estimates of the performance of alternative energy conversion systems proposed for specific geothermal sites. This approach can reduce the cost and scope of initial engineering studies.

1985-06-14T23:59:59.000Z

217

Description and operation of Haakon School geothermal-heating system  

SciTech Connect

To encourage the development of hydrothermal energy, twenty-three demonstration projects were funded. The Haakon School project is one of twelve such projects. The geothermal direct-use heating system at the Haakon School complex in Philip, South Dakota is described and information gained during approximately three heating seasons of operation is presented.

Childs, F.W.; Kirol, L.D.; Sanders, R.D.; McLatchy, M.J.

1983-10-01T23:59:59.000Z

218

Energy analysis of geothermal-electric systems  

DOE Green Energy (OSTI)

Standard energy analysis was applied to 4 types of geothermal-electric technologies: liquid dominated, hot dry rock, geopressure, and vapor dominated. It was found that all are net energy producers. Expected uncertainties are not large enough to threaten this conclusion. Vapor dominated, the only technology in current commercial use to produce electricity in the US, has the highest energy ratio (13 +- 4). These results for energy ratio are equal to or less than some from other workers. In the case of liquid dominated, environmental control technology has a considerable energy requirement.

Herendeen, R.A.; Plant, R.

1979-12-01T23:59:59.000Z

219

Fluid origin, gas fluxes and plumbing system in the sediment-hosted Salton Sea Geothermal System (California, USA)  

E-Print Network (OSTI)

Fluid origin, gas fluxes and plumbing system in the sediment-hosted Salton Sea Geothermal System Available online 12 June 2011 Keywords: Salton Sea Geothermal System hydrothermal seeps gas and water geochemistry flux measurements mantle The Salton Sea Geothermal System (California) is an easily accessible

Mazzini, Adriano

220

Near-Surface CO2 Monitoring And Analysis To Detect Hidden Geothermal Systems  

DOE Green Energy (OSTI)

''Hidden'' geothermal systems are systems devoid of obvious surface hydrothermal manifestations. Emissions of moderate-to-low solubility gases may be one of the primary near-surface signals from these systems. We investigate the potential for CO2 detection and monitoring below and above ground in the near-surface environment as an approach to exploration targeting hidden geothermal systems. We focus on CO2 because it is the dominant noncondensible gas species in most geothermal systems and has moderate solubility in water. We carried out numerical simulations of a CO2 migration scenario to calculate the magnitude of expected fluxes and concentrations. Our results show that CO2 concentrations can reach high levels in the shallow subsurface even for relatively low geothermal source CO2 fluxes. However, once CO2 seeps out of the ground into the atmospheric surface layer, winds are effective at dispersing CO2 seepage. In natural ecological systems in the absence of geothermal gas emissions, near-surface CO2 fluxes and concentrations are predominantly controlled by CO2 uptake by photosynthesis, production by root respiration, microbial decomposition of soil/subsoil organic matter, groundwater degassing, and exchange with the atmosphere. Available technologies for monitoring CO2 in the near-surface environment include the infrared gas analyzer, the accumulation chamber method, the eddy covariance method, hyperspectral imaging, and light detection and ranging. To meet the challenge of detecting potentially small-magnitude geothermal CO2 emissions within the natural background variability of CO2, we propose an approach that integrates available detection and monitoring techniques with statistical analysis and modeling strategies. The proposed monitoring plan initially focuses on rapid, economical, reliable measurements of CO2 subsurface concentrations and surface fluxes and statistical analysis of the collected data. Based on this analysis, are as with a high probability of containing geothermal CO2 anomalies can be further sampled and analyzed using more expensive chemical and isotopic methods. Integrated analysis of all measurements will determine definitively if CO2 derived from a deep geothermal source is present, and if so, the spatial extent of the anomaly. The suitability of further geophysical measurements, installation of deep wells, and geochemical analyses of deep fluids can then be determined based on the results of the near surface CO2 monitoring program.

Lewicki, Jennifer L.; Oldenburg, Curtis M.

2005-01-19T23:59:59.000Z

Note: This page contains sample records for the topic "investigation systems geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Results of investigation at the Ahuachapan Geothermal Field, El Salvador  

DOE Green Energy (OSTI)

The Ahuachapan Geothermal Field (AGF) is a 95 megawatt geothemal-sourced power-plant operated by the Comision Ejecutiva Hidroelectrica del Rio Lempa (CEL) of El Salvador. During the past decade, as part of an effort to increase in situ thermal reserves in order to realize the full generation capacity of the AGF, extensive surface geophysical coverage has been obtained over the AGF and the prospective Chipilapa area to the east. The geophysical surveys were performed to determine physical property characteristics of the known reservoir and then to search for similar characteristics in the Chipilapa area. A secondary objective was to evaluate the surface recharge area in the highlands to the south of the AGF. The principal surface electrical geophysical methods used during this period were DC resistivity and magnetotellurics. Three available data sets have been reinterpreted using drillhole control to help form geophysical models of the area. The geophysical models are compared with the geologic interpretations.

Fink, J.B. (HydroGeophysics, Tucson, AZ (United States))

1990-04-01T23:59:59.000Z

222

Multiparameter fiber optic sensing system for monitoring enhanced geothermal systems  

DOE Green Energy (OSTI)

The goal of this project was to design, fabricate and test an optical fiber cable which supports multiple sensing modalities for measurements in the harsh environment of enhanced geothermal systems. To accomplish this task, optical fiber was tested at both high temperatures and strains for mechanical integrity, and in the presence of hydrogen for resistance to darkening. Both single mode (SM) and multimode (MM) commercially available optical fiber were identified and selected for the cable based on the results of these tests. The cable was designed and fabricated using a tube-within-tube construction containing two MM fibers and one SM fiber, and without supporting gel that is not suitable for high temperature environments. Commercial fiber optic sensing instruments using Raman DTS (distributed temperature sensing), Brillouin DTSS (distributed temperature and strain sensing), and Raleigh COTDR (coherent optical time domain reflectometry) were selected for field testing. A microelectromechanical systems (MEMS) pressure sensor was designed, fabricated, packaged, and calibrated for high pressure measurements at high temperatures and spliced to the cable. A fiber Bragg grating (FBG) temperature sensor was also spliced to the cable. A geothermal well was selected and its temperature and pressure were logged. The cable was then deployed in the well in two separate field tests and measurements were made on these different sensing modalities. Raman DTS measurements were found to be accurate to ���±5���°C, even with some residual hydrogen darkening. Brillouin DTSS measurements were in good agreement with the Raman results. The Rayleigh COTDR instrument was able to detect some acoustic signatures, but was generally disappointing. The FBG sensor was used to determine the effects of hydrogen darkening, but drift over time made it unreliable as a temperature or pressure sensor. The MEMS sensor was found to be highly stable and accurate to better than its 0.1% calibration.

William A. Challener

2014-12-04T23:59:59.000Z

223

Investigation of Low-Temperature Geothermal Resources in the Sonoma Valley Area, California  

DOE Green Energy (OSTI)

The Sonoma Valley area contains low-temperature geothermal resources (20 C {le} T {le} 90 C) having the potential for useful development. Sonoma Valley residents, local governments and institutions, private developers, and manufacturers may be able to utilize the geothermal resources as an alternate energy source. Historically, there have been at least six geothermal spring areas developed in the Sonoma Valley. Four of these (Boyes Hot Springs, Fetter's Hot Springs, Agua Caliente Springs, and the Sonoma State Hospital warm spring) lie on a linear trend extending northwestward from the City of Sonoma. Detailed geophysical surveys delineated a major fault trace along the east side of the Sonoma Valley in association with the historic geothermal areas. Other fault traces were also delineated revealing a general northwest-trending structural faulting fabric underlying the valley. Water wells located near the ''east side'' fault have relatively high boron concentrations. Geochemical evidence may suggest the ''east side'' fault presents a barrier to lateral fluid migration but is a conduit for ascending fluids. Fifteen of the twenty-nine geothermal wells or springs located from literature research or field surveys are located along or east of this major fault in a 10 km (6.2 miles) long, narrow zone. The highest recorded water temperature in the valley appears to be 62.7 C (145 F) at 137.2 meters (450 feet) in a well at Boyes Hot Springs. This is consistent with the geothermal reservoir temperature range of 52-77 C (126-171 F) indicated by geothermometry calculations performed on data from wells in the area. Interpretation of data indicates a low-temperature geothermal fluid upwelling or ''plume'', along the ''east side'' fault with subsequent migration into permeable aquifers predominantly within volcanic strata. It is quite likely other geothermal fluid ''plumes'' in association with faulting are present within the Sonoma Valley area. A 5.8 km{sup 2} geothermal zone, that parallels the fault trace, is delineated and is perhaps the most favorable area for further investigation and possible geothermal production.

Youngs, Leslie G.; Chapman, Rodger H.; Chase, Gordon W.; Bezore, Stephen P.; Majmundar, Hasu H.

1983-01-01T23:59:59.000Z

224

Modeling Studies of Geothermal Systems with a Free Water Surface  

DOE Green Energy (OSTI)

Numerical simulators developed for geothermal reservoir engineering applications generally only consider systems which are saturated with liquid water and/or steam. However, most geothermal fields are in hydraulic communicatino with shallow ground water aquifers having free surface (water level), so that production or injection operations will cause movement of the surface, and of the air in the pore spaces above the water level. In some geothermal fields the water level is located hundreds of meters below the surface (e.g. Olkaria, Kenya; Bjornsson, 1978), so that an extensive so that an extensive unsaturated zone is present. In other the caprock may be very leaky or nonexistent [e.g., Klamath Falls, oregon (Sammel, 1976)]; Cerro Prieto, Mexico; (Grant et al., 1984) in which case ther eis good hydraulic communication between the geothermal reservoir and the shallow unconfined aquifers. Thus, there is a need to explore the effect of shallow free-surface aquifers on reservoir behavior during production or injection operations. In a free-surface aquifer the water table moves depending upon the rate of recharge or discharge. This results in a high overall storativity; typically two orders of magnitude higher than that of compressed liquid systems, but one or two orders of magnitude lower than that for liquid-steam reservoirs. As a consequence, various data analysis methods developed for compressed liquid aquifers (such as conventional well test analysis methods) are not applicable to aquifer with a free surface.

Bodvarsson, Gudmundur S.; Pruess, K.

1983-12-15T23:59:59.000Z

225

Numerical modeling of geothermal systems with applications to Krafla, Iceland and Olkaria, Kenya  

SciTech Connect

The use of numerical models for the evaluation of the generating potential of high temperature geothermal fields has increased rapidly in recent years. In the present paper a unified numerical approach to the modeling of geothermal systems is discussed and the results of recent modeling of the Krafla geothermal field in Iceland and the Olkaria, Kenya, are described. Emphasis is placed on describing the methodology using examples from the two geothermal fields.

Bodvarsson, G.S.

1987-08-01T23:59:59.000Z

226

36Cl/Cl ratios in geothermal systems- preliminary measurements from the  

Open Energy Info (EERE)

Cl/Cl ratios in geothermal systems- preliminary measurements from the Cl/Cl ratios in geothermal systems- preliminary measurements from the Coso Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: 36Cl/Cl ratios in geothermal systems- preliminary measurements from the Coso Field Details Activities (1) Areas (1) Regions (0) Abstract: The {sub 36}Cl/Cl isotopic composition of chlorine in geothermal systems can be a useful diagnostic tool in characterizing hydrologic structure, in determining the origins and age of waters within the systems, and in differentiating the sources of chlorine (and other solutes) in the thermal waters. The {sub 36}Cl/Cl values for several geothermal water samples and reservoir host rock samples from the Coso, California geothermal field have been measured for these purposes. The results

227

Baseline System Costs for 50.0 MW Enhanced Geothermal System -- A Function  

Open Energy Info (EERE)

Baseline System Costs for 50.0 MW Enhanced Geothermal System -- A Function Baseline System Costs for 50.0 MW Enhanced Geothermal System -- A Function of: Working Fluid, Technology, and Location Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Baseline System Costs for 50.0 MW Enhanced Geothermal System -- A Function of: Working Fluid, Technology, and Location Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Geothermal Analysis Project Description This effort will support the expansion of Enhanced Geothermal Systems (EGS), supporting DOE Strategic Themes of "energy security" and sub goal of "energy diversity"; reducing the Nation's dependence on foreign oil while improving our environment. A 50 MW has been chosen as a design point, so that the project may also assess how different machinery approaches will change the costing - it is a mid point in size where multiple solutions exist that will allow the team to effectively explore the options in the design space and understand the cost.

228

Introduction to electric energy conversion systems for geothermal energy resources  

SciTech Connect

The types of geothermal energy conversion systems in use are classified as follows: direct, dry steam; separated steam; single-flash steam; double-flash steam; multi-flash steam; brine/Freon binary cycle; and brine/isobutane binary cycle. The thermodynamics of each of these is discussed with reference to simplified flow diagrams. Typical existing power plants are identified for each type of system. (MHR)

DiPippo, R.

1978-06-01T23:59:59.000Z

229

Geothermal Heat Pump Systems: Applications and Technology Development  

Science Conference Proceedings (OSTI)

This report discusses a hybrid geothermal heat pump system, an efficient, all-electric heating and cooling option for small and large commercial buildings. In this system, the ground loop heat exchanger is sized for winter heating and supplemented by auxiliary heat rejection devices (such as fluid coolers or cooling towers) for summer operation that prevent performance-impeding heat buildup in the earth surrounding the ground loop.

2003-11-03T23:59:59.000Z

230

Seal/lubricant systems for geothermal drilling equipment  

DOE Green Energy (OSTI)

The development and testing of seals and lubricants for journal-type roller-cone rock bits for drilling into geothermal reservoirs at temperatures over 260/sup 0/C (500/sup 0/F) are described. The conditions experienced by seals and lubricants subjected to geothermal drilling are reviewed along with the basic design requirements for roller-cone bit seals and journal bearing lubricants. Two unique test facilities are described: a seal test machine which simulates pressures, temperatures, and mechanical eccentricities, and a lubricant tester capable of evaluating load-bearing ability at temperature and pressure. Three candidate elastomeric compounds demonstrated 288/sup 0/C (550/sup 0/F) capability and several others demonstrated 260/sup 0/C (500/sup 0/F) or greater capability. Successful elastomeric seal candidates were proprietary compounds based on EPDM, Kalrez, and/or Viton polymers. Three mechanical seals for reservoir temperatures over 288/sup 0/C (550/sup 0/F) are presented. Lubricant screening tests on more than 50 products are summarized, and several newly developed lubricants which meet both the compatibility and lubrication requirements are described. Several seal/lubricant systems are recommended for laboratory or field geothermal drilling tests in roller-cone drill bits. The future availability of drill bits for geothermal use is discussed, as well as the potential spinoffs of the program findings for nongeothermal roller-cone bits.

Hendrickson, R.R.; Winzenried, R.W.

1980-07-01T23:59:59.000Z

231

Development of a Hydrothermal Spallation Drilling System for EGS Geothermal  

Open Energy Info (EERE)

Hydrothermal Spallation Drilling System for EGS Geothermal Hydrothermal Spallation Drilling System for EGS Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Development of a Hydrothermal Spallation Drilling System for EGS Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Drilling Systems Project Description Potter Drilling has recently demonstrated hydrothermal spallation drilling in the laboratory. Hydrothermal spallation drilling creates boreholes using a focused jet of superheated water, separating individual grains ("spalls") from the rock surface without contact between the rock and the drill head. This process virtually eliminates the need for tripping. Previous tests of flame-jet spallation achieved ROP of 50 ft/hr and higher in hard rock with minimal wear on the drilling assembly, but operating this technology in an air-filled borehole created challenges related to cuttings transport and borehole stability. The Potter Drilling system uses a water based jet technology in a fluid-filled borehole and as a result has the potential to achieve similarly high ROP that is uncompromised by stability or cuttings transport issues.

232

Engineered Geothermal Systems Energy Return On Energy Investment  

SciTech Connect

Energy Return On Investment (EROI) is an important figure of merit for assessing the viability of energy alternatives. Too often comparisons of energy systems use â??efficiencyâ? when EROI would be more appropriate. For geothermal electric power generation, EROI is determined by the electricity delivered to the consumer compared to the energy consumed to construct, operate, and decommission the facility. Critical factors in determining the EROI of Engineered Geothermal Systems (EGS) are examined in this work. These include the input energy embodied into the system. Embodied energy includes the energy contained in the materials, as well as, that consumed in each stage of manufacturing from mining the raw materials to assembling the finished system. Also critical are the system boundaries and value of the energy â?? heat is not as valuable as electrical energy. The EROI of an EGS depends upon a number of factors that are currently unknown, for example what will be typical EGS well productivity, as well as, reservoir depth, temperature, and temperature decline rate. Thus the approach developed is to consider these factors as parameters determining EROI as a function of number of wells needed. Since the energy needed to construct a geothermal well is a function of depth, results are provided as a function of well depth. Parametric determination of EGS EROI is calculated using existing information on EGS and US Department of Energy (DOE) targets and is compared to the â??minimumâ? EROI an energy production system should have to be an asset rather than a liability.

Mansure, A J

2012-12-10T23:59:59.000Z

233

Isotope hydrology of a basin and range geothermal system  

Science Conference Proceedings (OSTI)

If the geothermal resources in Dixie Valley are exploited, a complete understanding of the hydrologic system is essential in managing the geothermal system. As a reconnaissance study in an area of minimal hydrologic research, it is necessary to examine many facets of the local hydrologic cycle in Dixie Valley. To this end, this paper will discuss the isotopic composition of local precipitation, the age and origin of the hot spring waters and the type of water most important for recharge of both the thermal and nonthermal systems. This study was accomplished by using stable and radioactive environmental isotopes, and to a lesser extent, water chemistry. Dueterium and oxygen-18 were heavily relied upon in formulating conclusions, but some tritium and carbon-14 sampling were also performed.

Jacobson, R.L.; Ingraham, N.L.; Campana, M.E.

1983-08-01T23:59:59.000Z

234

Community Geothermal Technology Program: Bottom heating system using geothermal power for propagation. Final report, Phases 1 and 2  

DOE Green Energy (OSTI)

The objective is to develop and study a bottom-heating system in a greenhouse utilizing geothermal energy to aid germination and speed growth of palms. Source of heat was geothermal brine from HGP-A well. The project was successful; the heat made a dramatic difference with certain varieties, such as Areca catechu (betelnut) with 82% germination with heat, zero without. For other varieties, germination rates were much closer. Quality of seed is important. Tabs, figs.

Downing, J.C.

1990-01-01T23:59:59.000Z

235

Water information bulletin No. 30 geothermal investigations in Idaho  

DOE Green Energy (OSTI)

There are 899 thermal water occurrences known in Idaho, including 258 springs and 641 wells having temperatures ranging from 20 to 93/sup 0/C. Fifty-one cities or towns in Idaho containing 30% of the state's population are within 5 km of known geothermal springs or wells. These include several of Idaho's major cities such as Lewiston, Caldwell, Nampa, Boise, Twin Falls, Pocatello, and Idaho Falls. Fourteen sites appear to have subsurface temperatures of 140/sup 0/C or higher according to the several chemical geothermometers applied to thermal water discharges. These include Weiser, Big Creek, White Licks, Vulcan, Roystone, Bonneville, Crane Creek, Cove Creek, Indian Creek, and Deer Creek hot springs, and Raft River, Preston, and Magic Reservoir areas. These sites could be industrial sites, but several are in remote areas away from major transportation and, therefore, would probably be best utilized for electrical power generation using the binary cycle or Magma Max process. Present uses range from space heating to power generation. Six areas are known where commercial greenhouse operations are conducted for growing cut and potted flowers and vegetables. Space heating is substantial in only two places (Boise and Ketchum) although numerous individuals scattered throughout the state make use of thermal water for space heating and private swimming facilities. There are 22 operating resorts using thermal water and two commercial warm-water fish-rearing operations.

Mitchell, J.C.; Johnson, L.L.; Anderson, J.E.; Spencer, S.G.; Sullivan, J.F.

1980-06-01T23:59:59.000Z

236

Seismic methods for resource exploration in enhanced geothermal systems  

DOE Green Energy (OSTI)

A finite-difference modeling study of seismic wave propagation was conducted to determine how to best investigate subsurface faults and fracture zones in geothermal areas. The numerical model was created based on results from a previous seismic reflection experiment. A suite of fault models was investigated including blind faults and faults with surface expressions. The seismic data suggest that blind faults can be detected by a sudden attenuation of seismic wave amplitudes, as long the fault is located below the receiver array. Additionally, a conversion from P- to S-waves indicates the reflection and refraction of the P-waves while propagating across the fault. The drop in amplitudes and the excitation of S-waves can be used to estimate the location of the fault at depth. The accuracy of the numerical modeling depends on the availability of a priori in situ information (velocity and density) from borehole experiments in the geothermal area.

Gritto, Roland; Majer, Ernest L.

2002-06-12T23:59:59.000Z

237

ERDA test facilities, East Mesa Test Site. Geothermal resource investigations, Imperial Valley, California  

DOE Green Energy (OSTI)

Detailed specifications which must be complied with in the construction of the ERDA Test Facilities at the East Mesa Site for geothermal resource investigations in Imperial Valley, California are presented for use by prospective bidders for the construction contract. The principle construction work includes a 700 gpm cooling tower with its associated supports and equipment, pipelines from wells, electrical equipment, and all earthwork. (LCL)

Not Available

1976-01-01T23:59:59.000Z

238

Advanced Horizontal Well Recirculation Systems for Geothermal Energy Recovery in Sedimentary Formations  

Science Conference Proceedings (OSTI)

There is increased recognition that geothermal energy resources are more widespread than previously thought, with potential for providing a significant amount of sustainable clean energy worldwide. Recent advances in drilling, completion, and production technology from the oil and gas industry can now be applied to unlock vast new geothermal resources, with some estimates for potential electricity generation from geothermal energy now on the order of 2 million megawatts. Terralog USA, in collaboration with the University of California, Irvine (UCI), are currently investigating advanced design concepts for paired horizontal well recirculation systems, optimally configured for geothermal energy recovery in permeable sedimentary and crystalline formations of varying structure and material properties. This two-year research project, funded by the US Department of Energy, includes combined efforts for: 1) Resource characterization; 2) Small and large scale laboratory investigations; 3) Numerical simulation at both the laboratory and field scale; and 4) Engineering feasibility studies and economic evaluations. The research project is currently in its early stages. This paper summarizes our technical approach and preliminary findings related to potential resources, small-scale laboratory simulation, and supporting numerical simulation efforts.

Mike Bruno; Russell L. Detwiler; Kang Lao; Vahid Serajian; Jean Elkhoury; Julia Diessl; Nicky White

2012-09-30T23:59:59.000Z

239

Geothermal Systems of the Yellowstone Caldera Field Trip Guide  

Science Conference Proceedings (OSTI)

Geothermal studies are proceedings on two fronts in the West Yellowstone area. High-temperature resources for the generation of electricity are being sought in the Island Park area, and lower temperatures resources for direct applications, primarily space heating, are being explored for near the town of West Yellowstone. Potential electric geothermal development in the Island Park area has been the subject of widespread publicity over fears of damage to thermal features in Yellowstone Park. At the time of writing this guide, companies have applied for geothermal leases in the Island Park area, but these leases have not yet been granted by the US Forest Service. The Senate is now discussing a bill that would regulate geothermal development in Island Park; outcome of this debate will determine the course of action on the lease applications. The Island Park area was the site of two cycles of caldera activity, with major eruptions at 2.0 and 1.2 million years ago. The US Geological Survey estimates that 16,850 x 10{sup 18} joules of energy may remain in the system. Geothermal resources suitable for direct applications are being sought in the West Yellowstone vicinity by the Montana Bureau of Mines and Geology, under funding from the US Department of Energy. West Yellowstone has a mean annual temperature of 1-2 C. Research thus far suggests that basement rocks in the vicinity are at a depth of about 600 m and are probably similar to the rocks exposed north of Hebgen Lake, where Precambrian, Paleozoic and Mesozoic rocks have been mapped. A few sites with anomalously warm water have been identified near the town. Work is continuing on this project.

Foley, Duncan; Neilson, Dennis L.; Nichols, Clayton R.

1980-09-08T23:59:59.000Z

240

Aspects of forced convective heat transfer in geothermal systems  

DOE Green Energy (OSTI)

A knowledge of convective heat transfer is essential to understanding geothermal systems and other systems of moving groundwater. A simple, kinematic approach toward convective heat transfer is taken here. Concern is not with the cause of the groundwater motion but only with the fact that the water is moving and transferring heat. The mathematical basis of convective heat transfer is the energy equation which is a statement of the first law of thermodynamics. The general solution of this equation for a specific model of groundwater flow has to be done numerically. The numerical algorithm used here employs a finite difference approximation to the energy equation that uses central differences for the heat conduction terms and one-sided differences for the heat convection terms. Gauss--Seidel iteration is then used to solve the finite difference equation at each node of a non-uniform mesh. The Monroe and Red Hill hot springs, a small hydrothermal system in central Utah, provide an example to illustrate the application of convective heat transfer theory to a geophysical problem. Two important conclusions regarding small geothermal systems follow immediately from the results of this application. First, the most rapid temperature rise in the convecting part of a geothermal system is near the surface. Below this initially rapid temperature increase the temperature increases very slowly, and thus temperatures extrapolated from shallow boreholes can be seriously in error. Second, the temperatures and heat flows observed at Monroe and Red Hill, and probably at many other small geothermal areas, can easily result from moderate vertical groundwater velocities in faults and fracture zones in an area of normal heat flow.

Kilty, K.; Chapman, D.S.; Mase, C.

1978-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "investigation systems geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Thermally conductive cementitious grout for geothermal heat pump systems  

DOE Patents (OSTI)

A thermally conductive cement-sand grout for use with a geothermal heat pump system. The cement sand grout contains cement, silica sand, a superplasticizer, water and optionally bentonite. The present invention also includes a method of filling boreholes used for geothermal heat pump systems with the thermally conductive cement-sand grout. The cement-sand grout has improved thermal conductivity over neat cement and bentonite grouts, which allows shallower bore holes to be used to provide an equivalent heat transfer capacity. In addition, the cement-sand grouts of the present invention also provide improved bond strengths and decreased permeabilities. The cement-sand grouts can also contain blast furnace slag, fly ash, a thermoplastic air entraining agent, latex, a shrinkage reducing admixture, calcium oxide and combinations thereof.

Allan, Marita (Old Field, NY)

2001-01-01T23:59:59.000Z

242

High Temperature Components of Magma-Related Geothermal Systems: An Experimental and Theoretical Approach  

DOE Green Energy (OSTI)

This summarizes select components of a multi-faceted study of high temperature magmatic fluid behavior in shallow, silicic, volcano-plutonic geothermal systems. This work built on a foundation provided by DOE-supported advances made in our lab in understanding the physics and chemistry of the addition of HCI and other chlorides into the high temperature regions of geothermal systems. The emphasis of this project was to produce a model of the bolatile contributions from felsic magmatic systems to geothermal systems

Philip A. Candela; Philip M. Piccoli

2004-03-15T23:59:59.000Z

243

Geothermal district heating system feasibility analysis, Thermopolis, Wyoming  

DOE Green Energy (OSTI)

The purpose of this study is to determine the technical and economic feasibility of constructing and operating a district heating system to serve the residential, commercial, and public sectors in Thermopolis. The project geothermal resource assessment, based on reviews of existing information and data, indicated that substantial hot water resources likely exist in the Rose Dome region 10 miles northeast of Thermopolis, and with quantities capable of supporting the proposed geothermal uses. Preliminary engineering designs were developed to serve the space heating and hot water heating demands for buildings in the Thermopolis-East Thermopolis town service area. The heating district design is based on indirect geothermal heat supply and includes production wells, transmission lines, heat exchanger units, and the closed loop distribution and collection system necessary to serve the individual customers. Three options are presented for disposal of the cooled waters-reinjection, river disposal, and agricultural reuse. The preliminary engineering effort indicates the proposed system is technically feasible. The design is sized to serve 1545 residences, 190 businesses, and 24 public buildings. The peak design meets a demand of 128.2 million Btu at production rates of 6400 gpm.

Goering, S.W.; Garing, K.L.; Coury, G.; Mickley, M.C.

1982-04-26T23:59:59.000Z

244

Reinjection Model Studies in Fractured and Homogeneous Geothermal Systems  

DOE Green Energy (OSTI)

Reinjection of geothermal waste waters has become an important topic of interest for industry as well as for research. The environmental concerns due to chemical composition of geothermal waste waters had urged the industry to dispose it underground. In several field applications no interference due to thermal front breakthrough was observed on the other hand some cases are reported where reinjection had caused severe declines in energy production due to unexpected breakthrough of injected water. Several analytical and numerical studies are available where the effect of fractures on the movement of thermal front are discussed. It was shown that when the conduction heat transfer from matrix to fracture dominates, retardation of the thermal front movement will be observed. Bodvarsson and Pruess considered the above problem in a five-spot well pattern. They observed as the amount of fluid injected reaches the amount produced, the long-term energy output of the system increases. Pruess in his study compares the behavior of porous medium and fractured medium in terms of pressure decline due to production. Temperature and pressure profiles are presented between an injector and a producer where heating of the injected water in porous medium and in fractured medium with small fracture spacing was high compared to a larger fracture spacing. Such observations from the numerical studies were checked against some limited field examples. However understanding of the injection effects in fractured reservoirs is limited. This work presents the results of laboratory experiments where effects of reinjection on temperature and pressure behavior of a porous medium and a fractured medium were investigated. The porous medium was a crushed limestone pack, with 10 mm average particle size, packed in a 3-D box model where injection and production ports are located on the diagonal ends simulating a five-spot pattern. The fractured medium was made from uniformly cut marble blocks packed in such a way to permit uniform fracture geometry. The pressure and temperature response of both models are analyzed as a function of (1) depth of injection and production; and (2) injection rate where 20 C injection water is injected into 110 C reservoir.

Okandan, E.; Hosca, H.

1986-01-21T23:59:59.000Z

245

Enthalpy transients in fractured two-phase geothermal systems  

DOE Green Energy (OSTI)

Numerical modeling techniques are used to study the changes in flowing enthalpy of fluids produced from a well completed in a fractured two-phase geothermal reservoir. Complex interactions between different fracture and porous matrix parameters control the enthalpy transients. The results show that the flowing enthalpy is most sensitive to the characteristics of the relative permeability curves, the magnitude of the matrix permeability and the effective fracture porosity. Other parameters such as the thermal conductivity and fracture spacing also significantly affect the flowing enthalpy. In spite of the complex phenomena associated with enthalpy transients in fractured two-phase systems, it is possible to infer useful information about the producing geothermal reservoirs from field data. 15 refs., 13 figs., 2 tabs.

Lippmann, M.J.; Bodvarsson, G.S.; Gaulke, S.W.

1985-03-01T23:59:59.000Z

246

Geothermal Heat Pump Systems in Schools: Construction, Maintenance and Operating Costs  

Science Conference Proceedings (OSTI)

Geothermal heat pumping and cooling systems are still not widely used to heat and cool buildings. They are an unknown to most architects and engineers. The electric utility industry has recognized them as being a very energy-efficient way to heat and cool buildings using electricity. The Tennessee Valley Authority (TVA) has assisted in design and installation of many geothermal systems, particularly in school buildings. With a number of geothermal heat pump systems in schools in operation in the TVA regi...

2000-12-13T23:59:59.000Z

247

An AHP approach for evaluating geothermal district energy systems[Analytical Hierarchy Process  

SciTech Connect

In the rating and design of the geothermal district energy (DE) systems the technology, cost, benefits, and environmental effects of the alternatives need to be carefully compared. This study deals with the evaluation of several alternatives of district energy systems for the city of Denizli. These alternatives vary from the existing geothermal plant to the hybrid cycle, totally integrated geothermal energy system. In the comparative evaluation of the alternative projects, Analytical Hierarchy Process (AHP) was utilized.

Eltez, A.; Kilkis, I.B.; Eltez, M.

1999-07-01T23:59:59.000Z

248

Modeling brine-rock interactions in an enhanced geothermal system deep fractured reservoir at Soultz-Sous-Forets (France): a joint approach using two geochemical codes: frachem and toughreact  

E-Print Network (OSTI)

rock interactions in enhanced geothermal systems (EGS).31 th Workshop on Geothermal Reservoir Engineering, 301998). Computer modeling for geothermal systems: predicting

Andre, Laurent; Spycher, Nicolas; Xu, Tianfu; Vuataz, Francois-D.; Pruess, Karsten.

2006-01-01T23:59:59.000Z

249

An Updated Numerical Model Of The Larderello-Travale Geothermal System,  

Open Energy Info (EERE)

Of The Larderello-Travale Geothermal System, Of The Larderello-Travale Geothermal System, Italy Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Updated Numerical Model Of The Larderello-Travale Geothermal System, Italy Details Activities (0) Areas (0) Regions (0) Abstract: Larderello-Travale is one of the few geothermal systems in the world that is characterized by a reservoir pressure much lower than hydrostatic. This is a consequence of its natural evolution from an initial liquid-dominated to the current steam-dominated system. Beneath a nearly impermeable cover, the geothermal reservoir consists of carbonate-anhydrite formations and, at greater depth, by metamorphic rocks. The shallow reservoir has temperatures in the range of 220-250°C, and pressures of about 20 bar at a depth of 1000 m, while the deep metamorphic reservoir has

250

On the production behavior of enhanced geothermal systems with CO2 as working fluid  

E-Print Network (OSTI)

temperature pressure Production/Injection pattern area (Fig.injection pressure (downhole) production pressure (downhole)On the Production Behavior of Enhanced Geothermal Systems

Pruess, K.

2008-01-01T23:59:59.000Z

251

A New Gold Pan For The West- Discovering Blind Geothermal Systems...  

Open Energy Info (EERE)

blind geothermal systems in Nevada, USA and has helped to define the spatial extent of thermal anomalies at two other locations. At Teels Marsh, two shallow temperature anomalies...

252

A Geothermal District-Heating System and Alternative Energy Research Park  

Open Energy Info (EERE)

Geothermal District-Heating System and Alternative Energy Research Park Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Low Temperature Resources Project Description With prior support from the Department of Energy (GRED III Program), New Mexico Institute of Mining and Technology (NM Tech) has established that this resource likely has sufficient permeability (3000 Darcies) and temperatures (80-112 oC) to develop a campus-wide district heating system.

253

DOE REAL-TIME SEISMIC MONITORING AT ENHANCED GEOTHERMAL SYSTEM SITES | Open  

Open Energy Info (EERE)

REAL-TIME SEISMIC MONITORING AT ENHANCED GEOTHERMAL SYSTEM SITES REAL-TIME SEISMIC MONITORING AT ENHANCED GEOTHERMAL SYSTEM SITES Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: DOE REAL-TIME SEISMIC MONITORING AT ENHANCED GEOTHERMAL SYSTEM SITES Details Activities (6) Areas (6) Regions (0) Abstract: Lawrence Berkeley National Laboratory (LBNL) at the direction of the United States Department of Energy (DOE) Geothermal Technologies EGS Program is installing, operating, and/or interfacing seismic arrays at multiple Enhanced Geothermal Systems (EGS) sites. The overall goal is to gather high resolution seismicity data before, during and after stimulation activities at the EGS projects. This will include both surface and borehole deployments (as necessary in available boreholes) to provide high quality

254

Active Geothermal Systems And Associated Gold Deposits In The Great Basin |  

Open Energy Info (EERE)

Geothermal Systems And Associated Gold Deposits In The Great Basin Geothermal Systems And Associated Gold Deposits In The Great Basin Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Active Geothermal Systems And Associated Gold Deposits In The Great Basin Details Activities (0) Areas (0) Regions (0) Abstract: In western North America, a number of geothermal systems derive their heat from magmas or cooling intrusions. The interior of the Great Basin however, is characterized by widespread amagmatic geothermal activity that owes its existence to high crustal heat flow and active extensional tectonics. Both the magmatically heated and extensional fluid types in the Great Basin have recently, or are currently, depositing gold. Quaternary to Pliocene-aged gold deposits with adjacent high-temperature (≤ 150°C)

255

Geothermal energy  

DOE Green Energy (OSTI)

The following subjects are discussed: areas of ''normal'' geothermal gradient, large areas of higher-than-''normal'' geothermal gradient, hot spring areas, hydrothermal systems of composite type, general problems of utilization, and domestic and world resources of geothermal energy. Almost all estimates and measurements of total heat flow published through 1962 for hot spring areas of the world are tabulated. (MHR)

White, D.E.

1965-01-01T23:59:59.000Z

256

MEMS Materials and Temperature Sensors for Down Hole Geothermal System Monitoring  

E-Print Network (OSTI)

geothermal power plants. US DOE EERE Geothermal Technologieswas made for the US DOE EERE Geothermal Technologies

Wodin-Schwartz, Sarah

2013-01-01T23:59:59.000Z

257

Geophysical logging case history of the Raft River geothermal system, Idaho  

Open Energy Info (EERE)

Geophysical logging case history of the Raft River geothermal system, Idaho Geophysical logging case history of the Raft River geothermal system, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geophysical logging case history of the Raft River geothermal system, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: Drilling to evaluate the geothermal resource in the Raft River Valley began in 1974 and resulted in the discovery of a geothermal reservoir at a depth of approximately 1523 m (500 ft). Several organizations and companies have been involved in the geophysical logging program. There is no comprehensive report on the geophysical logging, nor has there been a complete interpretation. The objectives of this study are to make an integrated interpretation of the available data and compile a case history. Emphasis has been on developing a simple interpretation

258

Geothermal System Overview ASHRAE Headquarters Building  

E-Print Network (OSTI)

and a corridor zone on floor 1 · Heating / cooling area for VRF ­ 18,226 sq. ft. ­ All zones on floor 1 (minus: 288.6 kBtu/hr · All zones on floor 2 and a corridor zone on floor 1 · Loads for VRF system ­ Heating,000.0 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Geo HP vs VRF 2010 System Power (kWh) Geo HP VRF #12

Oak Ridge National Laboratory

259

Engineered Geothermal Systems Energy Return On Energy Investment  

DOE Green Energy (OSTI)

Critical factors in determining the EROI of Engineered Geothermal Systems (EGS) are examined in this work. These include the input energy embodied into the system. Embodied energy includes the energy contained in the materials, as well as, that consumed in each stage of manufacturing from mining the raw materials to assembling the finished system. Also critical are the system boundaries and value of the energy â?? heat is not as valuable as electrical energy. The EROI of an EGS depends upon a number of factors that are currently unknown, for example what will be typical EGS well productivity, as well as, reservoir depth, temperature, and temperature decline rate. Thus the approach developed is to consider these factors as parameters determining EROI as a function of number of wells needed. Since the energy needed to construct a geothermal well is a function of depth, results are provided as a function of well depth. Parametric determination of EGS EROI is calculated using existing information on EGS and US Department of Energy (DOE) targets and is compared to the â??minimumâ? EROI an energy production system should have to be an asset rather than a liability.

Mansure, A J

2012-12-10T23:59:59.000Z

260

Geothermal pump down-hole energy regeneration system  

DOE Patents (OSTI)

Geothermal deep well energy extraction apparatus is provided of the general kind in which solute-bearing hot water is pumped to the earth's surface from a subterranean location by utilizing thermal energy extracted from the hot water for operating a turbine motor for driving an electrical power generator at the earth 3 s surface, the solute bearing water being returned into the earth by a reinjection well. Efficiency of operation of the total system is increased by an arrangement of coaxial conduits for greatly reducing the flow of heat from the rising brine into the rising exhaust of the down-well turbine motor.

Matthews, Hugh B. (Boylston, MA)

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "investigation systems geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Precipitation and scaling in dynamic geothermal systems. [Titanium loop facility  

DOE Green Energy (OSTI)

A dynamic loop facility for studying scaling in simulated geothermal brines--under conditions such as will be encountered in engineering scale heat transfer equipment is being constructed. The first phase of the program consists of two principal efforts: (1) modification of an existing 100 gpm titanium loop to provide the engineering scaling test facility and (2) operation of an approximately 1 gph once-through (experimental) system to provide design data for titanium loop modifications to provide experience with scale formation and characterization. This experience is being used in planning the scaling studies to be conducted in the dynamic loop facility. The status of the project is described.

Bohlmann, E.G.; Shor, A.J.; Berlinski, P.

1976-10-01T23:59:59.000Z

262

Blind Geothermal System Exploration in Active Volcanic Environments...  

Open Energy Info (EERE)

Buildings Clean Energy Economy Coordinated Low Emissions Assistance Network Geothermal Incentives and Policies International Clean Energy Analysis Low Emission Development...

263

Use of an acoustic borehole televiewer to investigate casing corrosion in geothermal wells  

DOE Green Energy (OSTI)

Corrosion of well and surface equipment due to the presence of hot, corrosive brines is one of the major problems facing geothermal operators. For wellbore casing, this problem is complicated by the fact that in-place inspection is difficult at best. In an attempt to improve this situation, a prototype acoustic borehole televiewer designed to operate in geothermal wells was used to study the corrosion damage to casing in three commercial wells. The results of this experiment were promising. The televiewer returns helped to define areas of major corrosion damage and to indicate the extent of the damage. This paper briefly discusses the corrosion problem, describes the acoustic borehole televiewer, and then summarizes the results of the field test of the televiewer's capability for investigating corrosion.

Carson, C.C.; Bauman, T.

1986-03-01T23:59:59.000Z

264

Investigation of ecosystems impacts from geothermal development in Imperial Valley, California  

DOE Green Energy (OSTI)

A summary of three years of field ecological investigation in Imperial Valley Environmental Program is presented. The potential terrestrial habitat impacts of geothermal development are discussed for shorebirds and waterfowl habitat, the endangered clapper rail, powerline corridors, noise effects, animal trace element burdens, and the desert community. Aquatic habitats are discussed in terms of Salton Sea salinity, effects of geothermal brine discharges to the Salton Sea, trace element baselines, and potential toxicity of brine spills in freshwater. Studies of impacts on agriculture involved brine movement in soil, release of trace metals, trace element baselines in soil and plants, water requirements of crops, and H{sub 2}S effects on crop production in the presence of CO{sub 2} and ozone.

Shinn, J.H.; Ireland, R.R.; Kercher, J.R.; Koranda, J.J.; Tompkins, G.A.

1979-07-13T23:59:59.000Z

265

Parametric Analysis of the Factors Controlling the Costs of Sedimentary Geothermal Systems - Preliminary Results (Poster)  

SciTech Connect

Parametric analysis of the factors controlling the costs of sedimentary geothermal systems was carried out using a modified version of the Geothermal Electricity Technology Evaluation Model (GETEM). The sedimentary system modeled assumed production from and injection into a single sedimentary formation.

Augustine, C.

2013-10-01T23:59:59.000Z

266

The Geysers Geothermal Field Update1990/2010  

E-Print Network (OSTI)

in  The  Geysers.   Geothermal Resources Council A  planned  Enhanced  Geothermal  System  demonstration project.   Geothermal  Resources  Council  Transactions 33, 

Brophy, P.

2012-01-01T23:59:59.000Z

267

NREL: Financing Geothermal Power Projects - Planning and Timing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Transfer Technology Deployment Energy Systems Integration Financing Geothermal Power Projects Geothermal Technologies Financing Geothermal Power Projects Search...

268

GEOTHERMAL RESERVOIR ENGINEERING MANGEMENT PROGRAM PLAN (GREMP PLAN)  

E-Print Network (OSTI)

2 Mission of Division of Geothermal Energy . . . . .Coordination with Other Geothermal Programs . . . . . . 6the Behavior of Geothermal Systems . . . . . . . . . 1 6

Bloomster, C.H.

2010-01-01T23:59:59.000Z

269

Vapor-pressure lowering in geothermal systems  

SciTech Connect

The water vapor-pressure lowering phenomenon in porous media was investigated for a range of temperatures by measuring vapor pressure vs. mass of water adsorbed in consolidated sandstone cores and unconsolidated silica sands. Experimental results showed that the mass of water adsorbed on the rock surface is much more than the amount of pore steam. Results also revealed that the water adsorption is caused mainly by micropores in the porous medium. Measurement of the mass of methane and ethane adsorbed on dry rocks showed that the amount of adsorption is not great in comparison with the pore gas. It was found that adsorption data for water/sandstone core studies could be normalized with respect to temperature. Although this appears not to have been reported previously, it does agree in principle with findings for solid powders with micropores. Another interesting result was that reanalysis of previous studies of capillarity in sandstones indicates that experimental data probably were influenced mostly by adsorption.

Hsieh, C.H.; Ramey, H.J. Jr.

1983-02-01T23:59:59.000Z

270

Geothermal investigation in Idaho. Part 14. Geochemical and isotopic investigations of thermal water occurrences of the Boise Front Area, Ada County, Idaho  

DOE Green Energy (OSTI)

A limited chemical and isotopic investigation was undertaken and geological, geophysical, and hydrological data in the literature were reviewed to evaluate the geothermal potential of the Boise area. 68 refs., 12 figs., 4 tabs. (ACR)

Mayo, A.L.; Muller, A.B.; Mitchell, J.C.

1984-12-01T23:59:59.000Z

271

Geothermal Systems are a Breath of Fresh Air for Illinois School District |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Systems are a Breath of Fresh Air for Illinois School Geothermal Systems are a Breath of Fresh Air for Illinois School District Geothermal Systems are a Breath of Fresh Air for Illinois School District May 24, 2010 - 11:01am Addthis Each classroom has a geothermal unit installed. Although large, the units blend into surroundings and don’t produce excess noise. | Photo Courtesy of Sterling Public Schools Each classroom has a geothermal unit installed. Although large, the units blend into surroundings and don't produce excess noise. | Photo Courtesy of Sterling Public Schools Lindsay Gsell Superintendent Tad Everett had two priorities when deciding on a new system to replace the aging oil-based boiler heating and cooling systems for the seven schools in his district: improving learning environments and saving

272

Mercury In Soils Of The Long Valley, California, Geothermal System | Open  

Open Energy Info (EERE)

In Soils Of The Long Valley, California, Geothermal System In Soils Of The Long Valley, California, Geothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Mercury In Soils Of The Long Valley, California, Geothermal System Details Activities (3) Areas (1) Regions (0) Abstract: An evaluation of the Hg distribution in soils of the Long Valley, California, geothermal area, was made. A1-horizon soil samples were collected utilizing a grid system from the resurgent dome area and the Long Valley area. In addition, samples were collected in five traverses across three fault systems and four traverses across east-west-oriented gullies to measure the importance of aspect. Additional samples were collected in an analysis of variance design to evaluate natural variability in soil composition with sampling interval distance. The primary objectives of this

273

Geothermal Systems are a Breath of Fresh Air for Illinois School District |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Systems are a Breath of Fresh Air for Illinois School Geothermal Systems are a Breath of Fresh Air for Illinois School District Geothermal Systems are a Breath of Fresh Air for Illinois School District May 24, 2010 - 11:01am Addthis Each classroom has a geothermal unit installed. Although large, the units blend into surroundings and don’t produce excess noise. | Photo Courtesy of Sterling Public Schools Each classroom has a geothermal unit installed. Although large, the units blend into surroundings and don't produce excess noise. | Photo Courtesy of Sterling Public Schools Lindsay Gsell Superintendent Tad Everett had two priorities when deciding on a new system to replace the aging oil-based boiler heating and cooling systems for the seven schools in his district: improving learning environments and saving

274

Enhanced Geothermal Systems (EGS) R&D Program  

DOE Green Energy (OSTI)

The purpose of this workshop was to develop technical background facts necessary for planning continued research and development of Enhanced Geothermal Systems (EGS). EGS are geothermal reservoirs that require improvement of their permeability or fluid contents in order to achieve economic energy production. The initial focus of this R&D program is devising and testing means to extract additional economic energy from marginal volumes of hydrothermal reservoirs that are already producing commercial energy. By mid-1999, the evolution of the EGS R&D Program, begun in FY 1988 by the U.S. Department of Energy (DOE), reached the stage where considerable expertise had to be brought to bear on what technical goals should be pursued. The main purpose of this Workshop was to do that. The Workshop was sponsored by the Office of Geothermal Technologies of the Department of Energy. Its purpose and timing were endorsed by the EGS National Coordinating Committee, through which the EGS R&D Program receives guidance from members of the U.S. geothermal industry. Section 1.0 of this report documents the EGS R&D Program Review Session. There, managers and researchers described the goals and activities of the program. Recent experience with injection at The Geysers and analysis of downhole conditions at Dixie Valley highlighted this session. Section 2.0 contains a number of technical presentations that were invited or volunteered to illuminate important technical and economic facts and opportunities for research. The emphasis here was on fi.acture creation, detection, and analysis. Section 3.0 documents the initial general discussions of the participants. Important topics that emerged were: Specificity of defined projects, Optimizing cost effectiveness, Main technical areas to work on, Overlaps between EGS and Reservoir Technology R&D areas, Relationship of microseismic events to hydraulic fractures, and Defining criteria for prioritizing research thrusts. Sections 4.0 and 5.0 report the meat of the Workshop. Section 4.0 describes the nomination and clarification of technical thrusts, and Section 5.0 reports the results of prioritizing those thrusts via voting by the participants. Section 6.0 contains two discussions conducted after the work on research thrusts. The topics were ''Simulation'' and ''Stimulation''. A number of technical points that emerged here provide important guidance for both practical field work on EGS systems and for research.

Entingh, Daniel J.

1999-08-18T23:59:59.000Z

275

2nd Quarterly technical progress report for geothermal system temperature-depth database  

DOE Green Energy (OSTI)

At the Southern Methodist University Geothermal Laboratory in Dallas, Texas, the Earth`s surface and internal temperature are studied. With financial support from the U.S. Department of Energy, a data base containing geothermal temperature well information for the United States is being developed. During this calendar quarter, activity with this project has continued involving several different tasks: planning and development of the geothermal system thermal-well data base and temperature-depth data, development of the specifications for the data base, and completion of an initial inventory of the geothermal areas for which data are available.

Blackwell, D.D.

1997-07-30T23:59:59.000Z

276

Investigation of heat exchanger flow arrangement on performance and cost in a geothermal binary cycle  

DOE Green Energy (OSTI)

The performance of an idealized geothermal binary-fluid-cycle energy conversion system is shown to be a function of the temperatures of brine and working fluid leaving the heat exchanger. System power output, heat exchanger area required and initial well and heat exchanger costs are determined for counterflow, single and multi-pass parallel-counterflow exchangers. Results are presented graphically as functions of the brine and working fluid exit temperatures from the exchanger. Use of the system analysis developed is illustrated by showing quantitatively the advantage of the counterflow over the other flow arrangements considered.

Giedt, W.H.

1976-06-15T23:59:59.000Z

277

Development of geothermal logging systems in the United States  

DOE Green Energy (OSTI)

Logging technologies developed for hydrocarbon resource evaluation have not migrated into geothermal applications even though data so obtained would strengthen reservoir characterization efforts. Two causative issues have impeded progress: (1) there is a general lack of vetted, high-temperature instrumentation, and (2) the interpretation of log data generated in a geothermal formation is in its infancy. Memory-logging tools provide a path around the first obstacle by providing quality data at a low cost. These tools feature on-board computers that process and store data, and newer systems may be programmed to make decisions. Since memory tools are completely self-contained, they are readily deployed using the slick line found on most drilling locations. They have proven to be rugged, and a minimum training program is required for operator personnel. Present tools measure properties such as temperature and pressure, and the development of noise, deviation, and fluid conductivity logs based on existing hardware is relatively easy. A more complex geochemical tool aimed at a quantitative analysis of (potassium, uranium and thorium) is in the calibration phase, and it is expandable into all nuclear measurements common in the hydrocarbon industry. A fluid sampling tool is in the design phase. All tools are designed for operation at conditions exceeding 400 C, and for deployment in the slim holes produced by mining-coring operations. Partnerships are being formed between the geothermal industry and scientific drilling programs to define and develop inversion algorithms relating raw tool data to more pertinent information. These cooperative efforts depend upon quality guidelines such as those under development within the international Ocean Drilling Program.

Lysne, P.

1994-04-01T23:59:59.000Z

278

Geothermal energy  

SciTech Connect

Dry hot rock in the Earth's crust represents the largest and most broadly distributed reservoir of usable energy accessible to man. The engineering equipment and methods required to extract and use this energy appear to exist and are now being investigated actively at LASL. At least for deep systems in relatively impermeable rock, not close to active faults, the extraction of energy frtom dry geothermal resertvoirs should involve no significant environmental hazards. The principal environmental effects of such energy systems will be those associated with the surface facilities that use the geothermal heat; these will be visual, in land use, and in the thermal-pollution potential of low-temperature power plants. The energy extraction system itself should be clean; safe, unobtrusive, and economical. (auth)

Smith, M.C.

1973-01-01T23:59:59.000Z

279

Results of investigations at the Zunil geothermal field, Guatemala: Well logging and brine geochemistry  

DOE Green Energy (OSTI)

The well logging team from Los Alamos and its counterpart from Central America were tasked to investigate the condition of four producing geothermal wells in the Zunil Geothermal Field. The information obtained would be used to help evaluate the Zunil geothermal reservoir in terms of possible additional drilling and future power plant design. The field activities focused on downhole measurements in four production wells (ZCQ-3, ZCQ-4, ZCQ-5, and ZCQ-6). The teams took measurements of the wells in both static (shut-in) and flowing conditions, using the high-temperature well logging tools developed at Los Alamos National Laboratory. Two well logging missions were conducted in the Zunil field. In October 1988 measurements were made in well ZCQ-3, ZCQ-5, and ZCQ-6. In December 1989 the second field operation logged ZCQ-4 and repeated logs in ZCQ-3. Both field operations included not only well logging but the collecting of numerous fluid samples from both thermal and nonthermal waters. 18 refs., 22 figs., 7 tabs.

Adams, A.; Dennis, B.; Van Eeckhout, E.; Goff, F.; Lawton, R.; Trujillo, P.E.; Counce, D.; Archuleta, J. (Los Alamos National Lab., NM (USA)); Medina, V. (Instituto Nacional de Electrificacion, Guatemala City (Guatemala). Unidad de Desarollo Geotermico)

1991-07-01T23:59:59.000Z

280

Investigation of Microbial Respirometry for Monitoring Natural Sulfide Abatement in Geothermal Cooling Tower Basins  

DOE Green Energy (OSTI)

Geothermal plant operators are interested in investigating the ability of micro-organisms found in the cooling tower basin to metabolize and cycle sulfide to less toxic sulfur compounds. If the growth or activity of the organisms participating in sulfur-oxidation could be selectively enhanced, then hydrogen sulfide could be naturally abated in the cooling basin, substantially reducing the costs associated with the chemicals used for abatement. The use of respirometry has been proposed as a technique for monitoring the response of the microbial populations found in geothermal cooling towers to various conditions, including the addition of nutrients such as nitrogen and phosphorus. Respiro-metry is a manometric measurement of dissolved gases that are in equilibrium in a con-fined sample volume. Since microbes expire varying amounts of carbon dioxide or oxygen as they metabolize nutrients, this technique can be used to evaluate their activities in process streams. This report describes a series of experiments designed to determine the suitability of respirometry for tracking microbial activity for evaluating and enhancing natural abatement processes in geothermal cooling basins.

Peter A. Pryfogle

2005-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "investigation systems geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

A New Gold Pan For The West- Discovering Blind Geothermal Systems With  

Open Energy Info (EERE)

Gold Pan For The West- Discovering Blind Geothermal Systems With Gold Pan For The West- Discovering Blind Geothermal Systems With Shallow Temperature Surveys Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: A New Gold Pan For The West- Discovering Blind Geothermal Systems With Shallow Temperature Surveys Details Activities (6) Areas (4) Regions (0) Abstract: The use of rapidly deployable 2-meter-deep shallow temperature surveys has led to the discovery of at least two blind geothermal systems in Nevada, USA and has helped to define the spatial extent of thermal anomalies at two other locations. At Teels Marsh, two shallow temperature anomalies with a combined strike length of almost 4 km were identified adjacent to a Quaternary fault on the west side of the playa. At Rhodes Marsh, a thermal anomaly at least 5 km long was located adjacent to

282

Enhanced Geothermal Systems (EGS) well construction technology evaluation report.  

DOE Green Energy (OSTI)

Electricity production from geothermal resources is currently based on the exploitation of hydrothermal reservoirs. Hydrothermal reservoirs possess three ingredients critical to present day commercial extraction of subsurface heat: high temperature, in-situ fluid and high permeability. Relative to the total subsurface heat resource available, hydrothermal resources are geographically and quantitatively limited. A 2006 DOE sponsored study led by MIT entitled 'The Future of Geothermal Energy' estimates the thermal resource underlying the United States at depths between 3 km and 10 km to be on the order of 14 million EJ. For comparison purposes, total U.S. energy consumption in 2005 was 100 EJ. The overwhelming majority of this resource is present in geological formations which lack either in-situ fluid, permeability or both. Economical extraction of the heat in non-hydrothermal situations is termed Enhanced or Engineered Geothermal Systems (EGS). The technologies and processes required for EGS are currently in a developmental stage. Accessing the vast thermal resource between 3 km and 10 km in particular requires a significant extension of current hydrothermal practice, where wells rarely reach 3 km in depth. This report provides an assessment of well construction technology for EGS with two primary objectives: (1) Determining the ability of existing technologies to develop EGS wells. (2) Identifying critical well construction research lines and development technologies that are likely to enhance prospects for EGS viability and improve overall economics. Towards these ends, a methodology is followed in which a case study is developed to systematically and quantitatively evaluate EGS well construction technology needs. A baseline EGS well specification is first formulated. The steps, tasks and tools involved in the construction of this prospective baseline EGS well are then explicitly defined by a geothermal drilling contractor in terms of sequence, time and cost. A task and cost based analysis of the exercise is subsequently conducted to develop a deeper understanding of the key technical and economic drivers of the well construction process. Finally, future research & development recommendations are provided and ranked based on their economic and technical significance.

Capuano, Louis, Jr. (Thermasource Inc.); Huh, Michael; Swanson, Robert (Thermasource Inc.); Raymond, David Wayne; Finger, John Travis; Mansure, Arthur James; Polsky, Yarom; Knudsen, Steven Dell

2008-12-01T23:59:59.000Z

283

Marketing the Klamath Falls Geothermal District Heating system  

DOE Green Energy (OSTI)

The new marketing strategy for the Klamath Falls system has concentrated on offering the customer an attractive and easy to understand rate structure, reduced retrofit cost and complexity for his building along with an attractive package of financing and tax credits. Initial retrofit costs and life-cycle cost analysis have been conducted on 22 buildings to date. For some, the retrofit costs are simply too high for the conversion to make sense at current geothermal rates. For many, however, the prospects are good. At this writing, two new customers are now connected and operating with 5 to 8 more buildings committed to connect this construction season after line extensions are completed. This represents nearly a 60% increase in the number of buildings connected to the system and a 40% increase in system revenue.

Rafferty, K.

1993-06-01T23:59:59.000Z

284

Total Energy Recovery System for Agribusiness. [Geothermally heated]. Final Report  

DOE Green Energy (OSTI)

An engineering and economic study was made to determine a practical balance of selected agribusiness subsystems resulting in realistic estimated produce yields for a geothermally heated system known as the Total Energy Recovery System for Agribusiness. The subsystem cycles for an average application at an unspecified hydrothermal resources site in the western United States utilize waste and by-products from their companion cycles insofar as practicable. Based on conservative estimates of current controlled environment yields, produce wholesale market prices, production costs, and capital investment required, it appears that the family-operation-sized TERSA module presents the potential for marginal recovery of all capital investment costs. In addition to family- or small-cooperative-farming groups, TERSA has potential users in food-oriented corporations and large-cooperative-agribusiness operations. The following topics are considered in detail: greenhouse tomatoes and cucumbers; fish farming; mushroom culture; biogas generation; integration methodology; hydrothermal fluids and heat exchanger selection; and the system. 133 references. (MHR)

Fogleman, S.F.; Fisher, L.A.; Black, A.R.; Singh, D.P.

1977-05-01T23:59:59.000Z

285

Bridgeport Geothermal Energy Project: a heating district and small-scale-electric feasibility investigation. Final report  

SciTech Connect

The Bridgeport Geothermal Project, a proposed community heating district, appears to be feasible. Analysis of the feasibility of the Bridgeport Geothermal Project required three critical assumptions: a successful supply well, a commercially viable wellhead generator, and successfully obtaining simultaneous financing from private investors, a commercial lendor and a granting agency. The geothermal supply well for the Bridgeport Project will be sited near Travertine Hot Springs about 1 1/2 miles southeast of town. The well should yield 1000 gallons per minute at 205/sup 0/F to 240/sup 0/F. The hot brine will be piped (1) to a primary heat exchanger for the heating district which will distribute heat to public and commercial buildings via a fresh water loop, and (2) to an organic Rankine boiler to drive a 500 kW (gross) generator. The institutional structure for the project is well established. The capital cost of the installed project will be about $4.1 million to be raised through equity, commercial debt and grant funding. The system revenues are projected to result in a positive cash flow in the eighth year of operation, and over a 20 year payout are projected to yield an internal rate of return (IRR) of 23/sup +/% to the private investors.

1982-09-01T23:59:59.000Z

286

Geological and Geothermal Investigation of the Lower Wind River Valley, Southwestern Washington Cascade Range  

DOE Green Energy (OSTI)

The Wind River Valley, on the west slope of the Cascade Range, is a northwest-trending drainage that joins the Columbia River near Carson, Washington. The region has been heavily dissected by fluvial and glacial erosion. Ridges have sharp crests and deep subsidiary valleys typical of a mature topography, with a total relief of as much as 900 m. The region is vegetated by fir and hemlock, as well as dense, brushy ground-cover and undergrowth. The lower 8 km of the valley is privately owned and moderately populated. The upper reaches lies within the Gifford Pinchot National Forest, and include several campgrounds and day parks, the Carson National Fish Hatchery, and the Wind River Ranger Station and Wind River Nursery of the US Forest Service. Logging activity is light due to the rugged terrain, and consequently, most valley slopes are not accessible by vehicle. The realization that a potential for significant geothermal resources exists in the Wind River area was brought about by earlier exploration activities. Geologic mapping and interpretation was needed to facilitate further exploration of the resource by providing a knowledge of possible geologic controls on the geothermal system. This report presents the detailed geology of the lower Wind River valley with emphasis on those factors that bear significantly on development of a geothermal resource.

Berri, Dulcy A.; Korosec, Michael A.

1983-01-01T23:59:59.000Z

287

NREL: Geothermal Technologies - News  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Technology Transfer Technology Deployment Energy Systems Integration Geothermal Technologies Search More Search Options Site Map Printable Version Geothermal News...

288

Optimization of non-condensable gas removal system in geothermal power plant  

SciTech Connect

Optimization of non-condensable gas (hereinafter called N.C.G.) removal system in geothermal power station, in a special case that the geothermal steam contains large amount of noncondensable gas, is discussed. Four different alternative N.C.G. removal systems are studied, which are steam jet gas ejectors, centrifugal gas compressors, combined systems of steam ejectors and centrifugal compressors and back pressure turbine-without N.C.G. removal system. This report summarizes the results and gives recommendations as to the most suitable gas removal system and also as to optimum condenser pressure, in cases of large quantity N.C.G. content in geothermal steam.

Tajima, S.; Nomura, M.

1982-10-01T23:59:59.000Z

289

Gravity and magnetic features and their relationship to the geothermal system in southwestern South Dakota  

SciTech Connect

An attempt is made to determine the sources that are responsible for producing geothermal anomalies observed within the southern Black Hills region. Lithologic and structural boundaries residing in the upper crust and their relationship to the geothermal system are discussed. A regional gravity survey was supplemented by a regional aeromagnetic survey.

Hildenbrand, T.G.; Kucks, R.P.

1981-01-01T23:59:59.000Z

290

Geothermal News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System http://energy.gov/articles/nevada-deploys-first-us-commercial-grid-connected-enhanced-geothermal-system geothermal-system" class="title-link">Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System

291

Helium isotopes in geothermal systems- Iceland, The Geysers, Raft River and  

Open Energy Info (EERE)

Helium isotopes in geothermal systems- Iceland, The Geysers, Raft River and Helium isotopes in geothermal systems- Iceland, The Geysers, Raft River and Steamboat Springs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Helium isotopes in geothermal systems- Iceland, The Geysers, Raft River and Steamboat Springs Details Activities (3) Areas (3) Regions (0) Abstract: Helium isotope ratios have been measured in geothermal fluids from Iceland, The Geysers, Raft River, Steamboat Springs and Hawaii. These ratios have been interpreted in terms of the processes which supply He in distinct isotopic ratios (i.e. magmatic He, ~10 Ra; atmospheric He, R,sub>a; and crustal He, ~0.1 Ra) and in terms of the processes which can alter the isotopic ratio (hydrologic mixing, U-Th series alpha production and weathering release of crustal He, magma aging and

292

Optimization of design and control strategies for geothermal space heating systems. Final report  

DOE Green Energy (OSTI)

The efficient design and operation of geothermal space heating systems requires careful analysis and departure from normal design practices. Since geothermal source temperatures are much lower than either fossil fuel or electrical source temperatures, the temperature of the delivered energy becomes more critical. Also, since the geothermal water is rejected after heat exchange, it is necessary to extract all of the energy that is practical in one pass; there is no second change for energy recovery. The present work examines several heating system configurations and describes the desired design and control characteristics for operation on geothermal sources. Specific design methods are outlined as well as several generalized guidelines that should significantly improve the operation of any geothermally heated system.

Batdorf, J.A.; Simmons, G.M.

1984-07-01T23:59:59.000Z

293

Single-Well Enhanced Geothermal System Front-End Engineering and Design: Optimization of a Renewable Geothermal System for Harvesting Heat from Hot, Dry Rock  

Science Conference Proceedings (OSTI)

In 2009, GTherm and the Thayer School of Engineering at Dartmouth College, under an EPRI Polaris grant, evaluated the potential for a GTherm single-well enhanced geothermal system (SWEGS) and bottom-hole HeatNest to produce enough heat from deep geothermal wells to be an effective alternative for generating electric power. The research focused on the thermodynamic properties of the SWEGS design and the optimal geologic conditions. The results indicated that, given the right conditions, the SWEGS can extr...

2011-08-12T23:59:59.000Z

294

Geothermal Resource/Reservoir Investigations Based on Heat Flow and Thermal Gradient Data for the United States  

Science Conference Proceedings (OSTI)

Several activities related to geothermal resources in the western United States are described in this report. A database of geothermal site-specific thermal gradient and heat flow results from individual exploration wells in the western US has been assembled. Extensive temperature gradient and heat flow exploration data from the active exploration of the 1970's and 1980's were collected, compiled, and synthesized, emphasizing previously unavailable company data. Examples of the use and applications of the database are described. The database and results are available on the world wide web. In this report numerical models are used to establish basic qualitative relationships between structure, heat input, and permeability distribution, and the resulting geothermal system. A series of steady state, two-dimensional numerical models evaluate the effect of permeability and structural variations on an idealized, generic Basin and Range geothermal system and the results are described.

D. D. Blackwell; K. W. Wisian; M. C. Richards; J. L. Steele

2000-04-01T23:59:59.000Z

295

Temporary Bridging Agents for use in Drilling and Completion of Enhanced Geothermal Systems  

Science Conference Proceedings (OSTI)

CSI Technologies, in conjunction with Alta Rock Energy and the University of Utah have undergone a study investigating materials and mechanisms with potential for use in Enhanced Geothermal Systems wells as temporary diverters or lost circulation materials. Studies were also conducted with regards to particle size distribution and sealing effectiveness using a lab-scale slot testing apparatus to simulate fractures. From the slot testing a numerical correlation was developed to determine the optimal PSD for a given fracture size. Field trials conducted using materials from this study were also successful.

Watters, Larry; Watters, Jeff; Sutton, Joy; Combs, Kyle; Bour, Daniel; Petty, Susan; Rose, Peter; Mella, Michael

2011-12-21T23:59:59.000Z

296

Life-cycle analysis results of geothermal systems in comparison to other power systems.  

DOE Green Energy (OSTI)

A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's expanded Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies. As a basis of comparison, a similar analysis has been conducted for other power-generating systems, including coal, natural gas combined cycle, nuclear, hydroelectric, wind, photovoltaic, and biomass by expanding the GREET model to include power plant construction for these latter systems with literature data. In this way, the GREET model has been expanded to include plant construction, as well as the usual fuel production and consumption stages of power plant life cycles. For the plant construction phase, on a per-megawatt (MW) output basis, conventional power plants in general are found to require less steel and concrete than renewable power systems. With the exception of the concrete requirements for gravity dam hydroelectric, enhanced geothermal and hydrothermal binary used more of these materials per MW than other renewable power-generation systems. Energy and greenhouse gas (GHG) ratios for the infrastructure and other life-cycle stages have also been developed in this study per kilowatt-hour (kWh) of electricity output by taking into account both plant capacity and plant lifetime. Generally, energy burdens per energy output associated with plant infrastructure are higher for renewable systems than conventional ones. GHG emissions per kWh of electricity output for plant construction follow a similar trend. Although some of the renewable systems have GHG emissions during plant operation, they are much smaller than those emitted by fossil fuel thermoelectric systems. Binary geothermal systems have virtually insignificant GHG emissions compared to fossil systems. Taking into account plant construction and operation, the GREET model shows that fossil thermal plants have fossil energy use and GHG emissions per kWh of electricity output about one order of magnitude higher than renewable power systems, including geothermal power.

Sullivan, J. L.; Clark, C. E.; Han, J.; Wang, M.; Energy Systems

2010-10-11T23:59:59.000Z

297

GRR/Section 7-HI-a - Geothermal and Cable System Development Permit | Open  

Open Energy Info (EERE)

GRR/Section 7-HI-a - Geothermal and Cable System Development Permit GRR/Section 7-HI-a - Geothermal and Cable System Development Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 7-HI-a - Geothermal and Cable System Development Permit 07HIAGeothermalAndCableSystemDevelopmentPermitting.pdf Click to View Fullscreen Contact Agencies Hawaii Department of Land and Natural Resources Engineering Division Regulations & Policies Hawaii Revised Statute 196D Hawaii Administrative Rules 13-185 Hawaii Revised Statute 205-3.1 Revised Statute 205-5. Triggers None specified Click "Edit With Form" above to add content 07HIAGeothermalAndCableSystemDevelopmentPermitting.pdf 07HIAGeothermalAndCableSystemDevelopmentPermitting.pdf Error creating thumbnail: Page number not in range.

298

Sales and Use Tax Exemption for Solar and Geothermal Systems | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar and Geothermal Systems Solar and Geothermal Systems Sales and Use Tax Exemption for Solar and Geothermal Systems < Back Eligibility Commercial General Public/Consumer Installer/Contractor Residential Savings Category Energy Sources Buying & Making Electricity Solar Heating & Cooling Commercial Heating & Cooling Heating Water Heating Program Info Start Date 7/1/2007 State Connecticut Program Type Sales Tax Incentive Rebate Amount 100% exemption Provider Connecticut Department of Revenue Services Connecticut enacted legislation in June 2007 (H.B. 7432) that established a sales and use tax exemption for solar energy equipment and geothermal resource systems. H.B. 7432 added passive and active solar water-heating systems, passive and active solar space-heating systems, and solar-electric

299

Investigation of Tunable Diode Spectroscopy for Monitoring Gases in Geothermal Plants  

Science Conference Proceedings (OSTI)

The results of an investigation directed at the development of instrument-tation for the real-time monitoring of gases, such as hydrogen sulfide (H2S) and chloride (HCl), in geothermal process streams is described. The geothermal power industry has an interest in the development of new low maintenance techniques since improved capabilities could lead to considerable cost savings through the optimization of various gas abatement processes. Tunable diode laser spectroscopy was identified as a candidate tech-nology for this application and a commercial instrument was specified and procured for testing. The measurement principle involved the use of solid state diode lasers and frequency modulation techniques. The gallium arsenide diode lasers employed emit light in the 0.7 to 2.0 micron region of the electromagnetic spectrum. This region contains the overtone and combination absorption bands of a number of species of industrial interest, including H2S and HCl. A particular device can be tuned over a small range to match the absorption line by changing its applied temperature and current. The diode current can also be sinusoidally modulated in frequency as it is tuned across the line. This modulation allows measurements to be conducted at frequencies where the laser intensity noise is minimal; and therefore, very high signal-to-noise measurements are possible. The feasibility of using this technology in various types of geothermal process streams has been explored. The results of laboratory and field studies are presented along with new advances in laser technology that could allow more sensitive and selective measurements to be performed.

J. K. Partin

2006-08-01T23:59:59.000Z

300

Materials selection guidelines for geothermal power systems. First edition  

DOE Green Energy (OSTI)

Nine potential power cycles are defined and diagrammed for the generation of electricity from geothermal fluids. General fluid properties that influence the applicability of power cycles to a particular geothermal resource are discussed. The corrosivity of individual process streams in power cycles is described based on variations in chemical composition and temperature. Results of materials performance tests are analyzed based on the chemical composition of the corrosive medium and physical factors such as temperature, duration of exposure, and fluid velocity. The key chemical components in geothermal fluids that are significant in determining corrosivity are identified. Both summarized and detailed results of materials performance tests in U.S. liquid-dominated resources are given. Seven U.S. liquid-dominated KGRA's are classified according to relative corrosiveness and their key chemical components are defined. The various forms and mechanisms of corrosive attack that can occur in geothermal process streams are described. The application of nonmetallic materials in geothermal environments is discussed. The appendices contain information on (1) operating experience at geothermal power plants, (2) corrosion in desalination facilities, (3) reliability of geothermal plants, (4) elastomeric materials, (5) comparative alloy costs, and (6) geothermal equipment manufacturers. (MHR)

DeBerry, D.W.; Ellis, P.F.; Thomas, C.C.

1978-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "investigation systems geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Geothermal energy  

SciTech Connect

The following subjects are discussed: areas of ''normal'' geothermal gradient, large areas of higher-than-''normal'' geothermal gradient, hot spring areas, hydrothermal systems of composite type, general problems of utilization, and domestic and world resources of geothermal energy. Almost all estimates and measurements of total heat flow published through 1962 for hot spring areas of the world are tabulated. (MHR)

White, D.E.

1965-01-01T23:59:59.000Z

302

GEOTHERMAL RESOURCE AND RESERVOIR INVESTIGATIONS OF U.S. BUREAU OF RECLAMATION LEASEHOLDS AT EAST MESA, IMPERIAL VALLEY, CALIFORNIA  

E-Print Network (OSTI)

document. LBL-7094 UC-66~1 GEOTHERMAL RESOURCE AND RESERVOIRInc. , 1976. Study of the geothermal reservoir underlyingtest, 1976, East Mesa geothermal field in California.

2009-01-01T23:59:59.000Z

303

Fracture Propagation and Permeability Change under Poro-thermoelastic Loads & Silica Reactivity in Enhanced Geothermal Systems  

SciTech Connect

Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Therefore, knowledge of the conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fractures are created in the reservoir using hydraulic fracturing. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result, it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have developed advanced poro-thermo-chemo-mechanical fracture models for rock fracture research in support of EGS design. The fracture propagation models are based on a regular displacement discontinuity formulation. The fracture propagation studies include modeling interaction of induced fractures. In addition to the fracture propagation studies, two-dimensional solution algorithms have been developed and used to estimate the impact of pro-thermo-chemical processes on fracture permeability and reservoir pressure. Fracture permeability variation is studied using a coupled thermo-chemical model with quartz reaction kinetics. The model is applied to study quartz precipitation/dissolution, as well as the variation in fracture aperture and pressure. Also, a three-dimensional model of injection/extraction has been developed to consider the impact poro- and thermoelastic stresses on fracture slip and injection pressure. These investigations shed light on the processes involved in the observed phenomenon of injection pressure variation (e.g., in Coso), and allow the assessment of the potential of thermal and chemical stimulation strategies.

Ahmad Ghassemi

2009-10-01T23:59:59.000Z

304

Geochemistry of the Wendel-Amedee Geothermal System-California | Open  

Open Energy Info (EERE)

Geochemistry of the Wendel-Amedee Geothermal System-California Geochemistry of the Wendel-Amedee Geothermal System-California Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geochemistry of the Wendel-Amedee Geothermal System-California Abstract The fluid chemistry of the geothermal system that feed Amedee and Wendel Hot Springs in eastern California is complex. Two thermal fluids have been identified based on the concentrations of the conservative elements C1 and B, fluid enthalpies, and the application of chemical geothermometers. One is characterized by temperatures above 120°C and a TDS content of 1300 ppm, and will be used by GeoProducts Corporation to produce electricity. The second did lower in temperature, 75°C, and has a TDS content of 650 ppm. This fluid may be used fore direct heat application at the Susanville

305

Air-Cooled Condensers in Next-Generation Conversion Systems Geothermal...  

Open Energy Info (EERE)

Air-Cooled Condensers in Next-Generation Conversion Systems Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Air-Cooled...

306

COO-3904-1 I GEOTHERMAL SYSTEMS MATERIALS: A WO RKsHOPlSY MPOSl...  

NLE Websites -- All DOE Office Websites (Extended Search)

563 COO-3904-1 I GEOTHERMAL SYSTEMS MATERIALS: A WO RKsHOPlSY MPOSl U M . Proceedings, May 23-25, 1978 Work Performed Under Contract No. EG-774-04-3904 Radian Corporation Austin,...

307

Method for inhibiting silica precipitation and scaling in geothermal flow systems  

DOE Patents (OSTI)

A method for inhibiting silica scaling and precipitation in geothermal flow systems by on-line injection of low concentrations of cationic nitrogen-containing compounds, particularly polymeric imines, polymeric amines, and quaternary ammonium compounds.

Harrar, Jackson E. (Castro Valley, CA); Lorensen, Lyman E. (Orinda, CA); Locke, Frank E. (Lafayette, CA)

1982-01-01T23:59:59.000Z

308

Method for inhibiting silica precipitation and scaling in geothermal flow systems  

DOE Patents (OSTI)

A method for inhibiting silica scaling and precipitation in geothermal flow systems by on-line injection of low concentrations of cationic nitrogen-containing compounds, particularly polymeric imines, polymeric amines, and quaternary ammonium compounds is described.

Harrar, J.E.; Lorensen, L.E.; Locke, F.E.

1980-06-13T23:59:59.000Z

309

Hydrothermal spallation drilling and advanced energy conversion technologies for Engineered Geothermal Systems  

E-Print Network (OSTI)

The purpose of this research was to study the various factors affecting the economic and technical feasibility of Engineered Geothermal Systems, with a special emphasis on advanced drilling technologies. The first part of ...

Augustine, Chad R

2009-01-01T23:59:59.000Z

310

Geothermal HVAC System Performance in a Quick Service Restaurant: Field Experience From McDonald's Demonstration  

Science Conference Proceedings (OSTI)

This report summarizes the monitored results from a geothermal heat pump system installed at a new McDonald's restaurant in Westland, Michigan, a suburb 23 miles west of Detroit.

1999-12-15T23:59:59.000Z

311

Investigation and Evaluation of Geopressured-Geothermal Wells; Detailed Reentry Prognosis for Geopressure-Geothermal Testing of Alice C. Plantation No. 2 Well  

DOE Green Energy (OSTI)

This Gruy Federal Type II-B, geopressured-geothermal (Geo) prospect was drilled as the Sun Oil Company, No. 2 Alice C. Plantation and is located in Section 2, Township 16-S, Range 10-E, St. mary Parish, Louisiana. The well site is 3,705.61 feet from U.S.C. and G.S. marker ''Foster''. The well site is located in a sugar cane field, and is accessible by approximately 2,500 feet of cane field road. The well was originally drilled to a depth of 19,000 feet and abandoned as a dry hole in December, 1963. The location is shown on the west central area of the USGS topographic sheet, 'North Bend'', Louisiana, in the Gruy Federal report, ''Investigation and Evaluation of Geopressured-Geothermal Wells, prospective Test Wells in the Texas and Louisiana Gulf Coast'', March 20, 1978.

None

1978-05-01T23:59:59.000Z

312

Air-Cooled Condensers in Next-Generation Conversion Systems Geothermal Lab  

Open Energy Info (EERE)

Air-Cooled Condensers in Next-Generation Conversion Systems Geothermal Lab Air-Cooled Condensers in Next-Generation Conversion Systems Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Air-Cooled Condensers in Next-Generation Conversion Systems Project Type / Topic 1 Laboratory Call for Submission of Applications for Research, Development and Analysis of Geothermal Technologies Project Type / Topic 2 Air-Cooling Project Description As the geothermal industry moves to use geothermal resources that are more expensive to develop, there will be increased incentive to use more efficient power plants. Because of increasing demand on finite supplies of water, this next generation of more efficient plants will likely need to reject heat sensibly to the ambient (air-cooling). This will be especially true in western states having higher grade Enhanced Geothermal Systems (EGS) resources, as well as most hydrothermal resources. If one had a choice, an evaporative heat rejection system would be selected because it would provide both cost and performance advantages. The evaporative system, however, consumes a significant amount of water during heat rejection that would require makeup. Though they use no water, air-cooling systems have higher capital costs, reduced power output (heat is rejected at a higher temperature), lower power sales due to higher parasitics (fan power), and greater variability in power output (because of large variation in the dry-bulb temperature).

313

The origin of high-temperature zones in vapor-dominated geothermal systems  

DOE Green Energy (OSTI)

Vapor-dominated geothermal systems are proposed to originate by downward extension (by the ''heat pipe'' mechanism) into hot dry fractured rock above a large cooling igneous intrusion. High temperature zones found by drilling are shallow parts of the original hot dry rock where the penetration of the vapor reservoir was limited, and hot dry rock may extend under much of these reservoirs. An earlier hot water geothermal system may have formed during an early phase of the heating episode.

Truesdell, Alfred H.

1991-01-01T23:59:59.000Z

314

TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID-INCLUSION  

Open Energy Info (EERE)

TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID-INCLUSION TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID-INCLUSION GAS CHEMISTRY Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID-INCLUSION GAS CHEMISTRY Details Activities (1) Areas (1) Regions (0) Abstract: Vein and alteration assemblages from eight Coso wells have been collected and their fluid-inclusion gases analyzed by quadrupole mass spectrometry. Four major types of alteration were sampled: 1) young calcite-hematite-pyrite veins; 2) wairakite or epidote veins and alteration that are spatially associated with deep reservoirs in the main field and eastern wells; 3) older sericite and pyrite wallrock alteration; and 4) stilbite-calcite veins that are common in cooler or marginal portions of

315

Torbett-Hutchings-Smith Memorial Hospital geothermal-system demonstration at Marlin, Texas. Final design report  

SciTech Connect

The final design and economics of the Torbett-Hutchings-Smith (THS) Memorial Hospital geothermal heating system at Marlin, Texas are outlined. A brief description of the existing heating system, an overview of the geothermal retrofit, and the results of an economic analysis are included. It is estimated that the geothermal heating system will displace approximately 84 percent of the hospital's average annual natural gas consumption. In summer conditions, approximately 45 gpm of geothermal fluid will be utilized at a wellhead temperature of 139/sup 0/F. In peak demand winter conditions, approximately 160 gpm will be utilized at a wellhead temperature of 148/sup 0/F. The geothermal fluid temperature drop across the system will range from about 5/sup 0/F in summer to over 45/sup 0/F during winter. Total capital costs for the system are estimated to be $673,000, including the production well, a geothermal equipment room, engineering and architectural costs, and all equipment. The average annual natural gas savings are expected to be $28,200 while average annual operating and maintenance costs are estimated to be $7750. A before tax life cycle economic analysis of the THS system shows the breakeven period (BEP) of 29 years falling slightly below the 30 year expected life. This BEP is significantly influenced by the developmental nature of this project and by its lack of tax incentives.

1980-09-17T23:59:59.000Z

316

Enhanced Geothermal Systems (EGS) R&D Program: Monitoring EGS-Related Research  

DOE Green Energy (OSTI)

This report reviews technologies that could be applicable to Enhanced Geothermal Systems development. EGS covers the spectrum of geothermal resources from hydrothermal to hot dry rock. We monitored recent and ongoing research, as reported in the technical literature, that would be useful in expanding current and future geothermal fields. The literature review was supplemented by input obtained through contacts with researchers throughout the United States. Technologies are emerging that have exceptional promise for finding fractures in nonhomogeneous rock, especially during and after episodes of stimulation to enhance natural permeability.

McLarty, Lynn; Entingh, Daniel; Carwile, Clifton

2000-09-29T23:59:59.000Z

317

Enhanced Geothermal System Development of the AmeriCulture Leasehold in the Animas Valley  

DOE Green Energy (OSTI)

Working under the grant with AmeriCulture, Inc., and its team of geothermal experts, assembled a plan to apply enhanced geothermal systems (EGS) techniques to increase both the temperature and flow rate of the geothermal waters on its leasehold. AmeriCulture operates a commercial aquaculture facility that will benefit from the larger quantities of thermal energy and low cost electric power that EGS technology can provide. The project brought together a team of specialists that, as a group, provided the full range of expertise required to successfully develop and implement the project.

Duchane, David V; Seawright, Gary L; Sewright, Damon E; Brown, Don; Witcher, James c.; Nichols, Kenneth E.

2001-03-02T23:59:59.000Z

318

NUMERICAL SIMULATION OF RESERVOIR COMPACTION IN LIQUID DOMINATED GEOTHERMAL SYSTEMS  

E-Print Network (OSTI)

mathematical models of land subsidence in geothermal areas:2nd Int. Symp. Land Subsidence, Anaheim, Ca. , Dec. 13-17,Symposium on Land Subsidence, Anaheim, CA, December 10-17,

Lippmann, M.J.

2010-01-01T23:59:59.000Z

319

Hybrid Cooling Systems for Low-Temperature Geothermal Power Production  

DOE Green Energy (OSTI)

This paper describes the identification and evaluation of methods by which the net power output of an air-cooled geothermal power plant can be enhanced during hot ambient conditions with a minimal amount of water use.

Ashwood, A.; Bharathan, D.

2011-03-01T23:59:59.000Z

320

Results of investigations of failures of geothermal direct-use well pumps  

DOE Green Energy (OSTI)

Failures of 13 geothermal direct-use well pumps were investigated and information obtained about an additional 5 pumps that have been in service up to 23 years, but have not failed. Pumps with extra long lateral and variable-speed drives had the highest correlation with reduced time in service. There appears to be at least circumstantial evidence that recirculation may be a cause of reduced pump life. If recirculation is a cause of pump failures, pump specifiers will need to be more aware of minimum flow conditions as well as maximum flow conditions when specifying pumps. Over-sizing pumps and the tendency to specify pumps with high flow and low Net Positive Suction Head (NPSH) could lead to increased problems with recirculation.

Culver, G.

1994-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "investigation systems geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

S-cubed geothermal technology and experience  

DOE Green Energy (OSTI)

Summaries of ten research projects are presented. They include: equations describing various geothermal systems, geohydrological environmental effects of geothermal power production, simulation of linear bench-scale experiments, simulation of fluid-rock interactions in a geothermal basin, geopressured geothermal reservoir simulator, user-oriented geothermal reservoir simulator, geothermal well test analyses, geothermal seismic exploration, high resolution seismic mapping of a geothermal reservoir, experimental evaluation of geothermal well logging cables, and list of publications. (MHR)

Not Available

1976-04-01T23:59:59.000Z

322

Investigation of geothermal potential in the Waianae Caldera Area, Western Oahu, Hawaii. Assessment of Geothermal Resources in Hawaii: Number 2  

DOE Green Energy (OSTI)

Studies of Lualualei Valley, Oahu have been conducted to determine whether a thermal anomaly exists in the area and, if so, to identify sites at which subsurface techniques should be utilized to characterize the resource. Geologic mapping identifies several caldera and rift zone structures in the Valley and provides a tentative outline of their boundaries. Clay mineralogy studies indicate that minor geothermal alteration of near-surface rocks has occurred at some period in the history of the area. Schlumberger resistivity soundings indicate the presence of a low resistivity layer beneath the valley floor, which has been tentatively attributed to warm water-saturated basalt. Soil and groundwater chemistry studies outline several geochemical anomalies around the perimeter and within the inferred caldera boundaries. The observed anomalies strongly suggest a subsurface heat source. Recommendations for further exploratory work to confirm the presence of a geothermal reservoir include more intensive surveys in a few selected areas of the valley as well as the drilling of at least three shallow (1000-m) holes for subsurface geochemical, geological and geophysical studies.

Cox, M.E.; Sinton, J.M.; Thomas, D.M.; Mattice, M.D.; Kauahikaua, J.P.; Helstern, D.M.; Fan, P.

1979-09-01T23:59:59.000Z

323

Overview of Geothermal Energy Development  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Energy Geothermal Energy Development Kermit Witherbee Geothermal Geologist/Analyst DOE Office of Indian Energy Webcast: Overview of Geothermal Energy Development Tuesday, January 10, 2012 Geothermal Geology and Resources Environmental Impacts Geothermal Technology - Energy Conversion Geothermal Leasing and Development 2 PRESENTATION OUTLINE GEOTHERMAL GEOLOGY AND RESOURCES 3 Geology - Plate Tectonics 4 Plate Tectonic Processes Schematic Cross-Section "Extensional" Systems- "Rifting" Basin and Range Rio Grand Rift Imperial Valley East Africa Rift Valley "Magmatic" Systems Cascade Range 6 Geothermal Resources(USGS Fact Sheet 2008-3062) 7 State Systems

324

Geothermal programs at Lawrence Livermore National Laboratory  

DOE Green Energy (OSTI)

Lawrence Livermore National Laboratory has a number of geothermal programs supported through two offices in the Department of Energy: the Office of Renewable Technologies, Geothermal Technologies Division, and the Office of Basic Energy Sciences, Division of Engineering, Mathematics and Geosciences. Within these programs, we are carrying out research in injection monitoring, optical instrumentation for geothermal wells, seismic imaging methods, geophysical and drilling investigations of young volcanic systems in California, and fundamental studies of the rock and mineral properties.

Kasameyer, P.W.; Younker, L.W.

1987-07-10T23:59:59.000Z

325

Energy Returned On Investment of Engineered Geothermal Systems Annual Report FY2010  

Science Conference Proceedings (OSTI)

Energy Return On Investment (EROI) is an important figure of merit for assessing the viability of energy alternatives. EROI analyses of geothermal energy are either out of date or presented online with little supporting documentation. Often comparisons of energy systems inappropriately use 'efficiency' when EROI would be more appropriate. For geothermal electric power generation, EROI is determined by the electric energy delivered to the consumer compared to the energy consumed to build, operate, and decommission the facility.

Mansure, A.J.

2010-12-31T23:59:59.000Z

326

Program on Technology Innovation: Modeling of Single-Well Closed-Loop Enhanced Geothermal Systems  

Science Conference Proceedings (OSTI)

Conventional enhanced geothermal systems (EGSs) include one production well and one injection well to use hydrothermal resources to generate electricity. However, the high initial cost of drilling EGS wells is one of the main factors that hurt its competitiveness with other energy sources. The single-well closed-loop EGS (SWCLEGS) is a new type of geothermal power generation technology that aims to eliminate the need for natural hydrothermal resources with a relatively low drilling cost. The objective of...

2012-02-28T23:59:59.000Z

327

Wind energy/geothermic/solar heating system. Final report  

SciTech Connect

I've observed three distinct ''camps'' of renewable energy resources; WIND, Geothermic, and Solar. None of the three are completely adequate for the NE by themselves. I observe little effort to combine them to date. My objective has been to demonstrate that the three can be combined in a practical system. To mitagate the high cost and poor payback for individual residences, I believe neighborhoods of 4 to 5 homes, apartment complexes or condominiums could form an Energy Association alloting a piece of ground (could be a greenbelt) which would contain the well or wells, solar boosted underground water storage and the Solar banks. These are the high cost items which could be prorated and ammortized by the Association. Easements would permit each residence underground insulated water lines for individual heat pump conversions to existing forced air furnaces. Where regulations permit, an individual home could erect his own windmill to belt drive his freon compressor. With or without the optional windmill the water to freon heat pump with its solar boosts on the well water, will enjoy COP's (coefficient of Performances or times better than electric resistance heat) beyond anything on the market today. In a neighborhood energy association, all trenching could be done together all plumbing could be one contract and they could qualify for quantity discounts on heat pump units, chillers and components and installation.

Not Available

1981-01-01T23:59:59.000Z

328

[Geothermal resource/reservoir investigations based on heat flow and thermal gradient data for the US]. 1. quarterly technical progress report  

SciTech Connect

The activities that have been carried out so far include planning for the development of the geothermal system data base that will be one of the main contract results. At this time the author is developing the specifications of the data base. He is also inventorying the geothermal areas for which data are available in the literature (published and open file) and the quantity of such data available. A map is enclosed with this report that gives the preliminary location of sites where multiple wells in individual geothermal systems are available in the literature as of 1990 and the location of individual wells in the data base that are classed as geothermal.

Blackwell, D.D.

1997-05-14T23:59:59.000Z

329

Geothermal Direct Use | Open Energy Information  

Open Energy Info (EERE)

Direct Use Direct Use Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF [edit] Geothermal Direct Use Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps Direct Use Links Related documents and websites EERE's Direct Use Report National Institute of Building Science's Whole Building Design Guide Policy Makers' Guidebook for Geothermal Heating and Cooling Dictionary.png Geothermal Direct Use: Low- to moderate-temperature water from geothermal reservoirs can be used to provide heat directly to buildings, or other applications that require

330

Active metasomatism in the Cerro Prieto geothermal system, Baja California, Mexico: a telescoped low pressure/temperature metamorphic facies series  

DOE Green Energy (OSTI)

In the Cerro Prieto geothermal field, carbonate-cemented, quartzofeldspathic sediments of the Colorado River delta are being actively metasomatized into calc-silicate metamorphic rocks by reaction with alkali chloride brines between 200/sup 0/ and 370/sup 0/C, low fluid and lithostatic pressures, and low oxygen fugacities. Petrologic investigations of drill cores and cutting from over 50 wells in this field identified a prograde series of calc-silicate mineral zones which include as index minerals: wairakite, epidote, prehnite, and clinopyroxene. Associated divariant mineral assemblages are indicative of a very low pressure/temperature metamorphic facies series which encompasses the clay-carbonate, zeolite, greenschist, and amphibolite facies. This hydrothermal metamorphic facies series, which is becoming increasingly recognized in other active geothermal systems, is characterized by temperature-telescoped dehydration and decarbonation mineral equilibria. Its equivalent should now be sought in fossil hydrothermal systems.

Schiffman, P.; Elders, W.A.; Williams, A.E.; McDowell, S.D.; Bird, D.K.

1983-01-01T23:59:59.000Z

331

Assessment of the Geothermal System Near Stanley, Idaho  

SciTech Connect

The City of Stanley, Idaho (population 63) is situated in the Salmon River valley of the central Idaho highlands. Due to its location and elevation (6270 feet amsl) it is one of the coldest locales in the continental U.S., on average experiencing frost 290 days of the year as well as 60 days of below zero (oF) temperatures. Because of high snowfall (76 inches on average) and the fact that it is at the terminus of its rural grid, the city also frequently endures extended power outages during the winter. To evaluate its options for reducing heating costs and possible local power generation, the city obtained a rural development grant from the USDA and commissioned a feasibility study through author Roy Mink to determine whether a comprehensive site characterization and/or test drilling program was warranted. Geoscience students and faculty at Idaho State University (ISU), together with scientists from the Idaho Geological Survey (IGS) and Idaho National Laboratory (INL) conducted three field data collection campaigns between June, 2011 and November, 2012 with the assistance of author Beckwith who arranged for food, lodging and local property access throughout the field campaigns. Some of the information collected by ISU and the IGS were compiled by author Mink and Boise State University in a series of progress reports (Makovsky et al., 2011a, b, c, d). This communication summarizes all of the data collected by ISU including data that were compiled as part of the IGS’s effort for the National Geothermal Data System’s (NGDS) data compilation project funded by the Department of Energy and coordinated by the Arizona Geological Survey.

Trent Armstrong; John Welhan; Mike McCurry

2012-06-01T23:59:59.000Z

332

Creation of an Enhanced Geothermal System through Hydraulic and Thermal Stimulation  

SciTech Connect

This report describes a 10-year DOE-funded project to design, characterize and create an Engineered Geothermal System (EGS) through a combination of hydraulic, thermal and chemical stimulation techniques. Volume 1 describes a four-year Phase 1 campaign, which focused on the east compartment of the Coso geothermal field. It includes a description of the geomechanical, geophysical, hydraulic, and geochemical studies that were conducted to characterize the reservoir in anticipation of the hydraulic stimulation experiment. Phase 1 ended prematurely when the drill bit intersected a very permeable fault zone during the redrilling of target stimulation well 34-9RD2. A hydraulic stimulation was inadvertently achieved, however, since the flow of drill mud from the well into the formation created an earthquake swarm near the wellbore that was recorded, located, analyzed and interpreted by project seismologists. Upon completion of Phase 1, the project shifted focus to a new target well, which was located within the southwest compartment of the Coso geothermal field. Volume 2 describes the Phase 2 studies on the geomechanical, geophysical, hydraulic, and geochemical aspects of the reservoir in and around target-stimulation well 46A-19RD, which is the deepest and hottest well ever drilled at Coso. Its total measured depth exceeding 12,000 ft. It spite of its great depth, this well is largely impermeable below a depth of about 9,000 ft, thus providing an excellent target for stimulation. In order to prepare 46A-19RD for stimulation, however, it was necessary to pull the slotted liner. This proved to be unachievable under the budget allocated by the Coso Operating Company partners, and this aspect of the project was abandoned, ending the program at Coso. The program then shifted to the EGS project at Desert Peak, which had a goal similar to the one at Coso of creating an EGS on the periphery of an existing geothermal reservoir. Volume 3 describes the activities that the Coso team contributed to the Desert Peak project, focusing largely on a geomechanical investigation of the Desert Peak reservoir, tracer testing between injectors 21-2 and 22-22 and the field�s main producers, and the chemical stimulation of target well 27-15.

Rose, Peter Eugene [Energy and Geoscience Institute at the Univerity of Utah] [Energy and Geoscience Institute at the Univerity of Utah

2013-04-15T23:59:59.000Z

333

Creation of an Enhanced Geothermal System through Hydraulic and Thermal Stimulation  

SciTech Connect

This report describes a 10-year DOE-funded project to design, characterize and create an Engineered Geothermal System (EGS) through a combination of hydraulic, thermal and chemical stimulation techniques. Volume 1 describes a four-year Phase 1 campaign, which focused on the east compartment of the Coso geothermal field. It includes a description of the geomechanical, geophysical, hydraulic, and geochemical studies that were conducted to characterize the reservoir in anticipation of the hydraulic stimulation experiment. Phase 1 ended prematurely when the drill bit intersected a very permeable fault zone during the redrilling of target stimulation well 34-9RD2. A hydraulic stimulation was inadvertently achieved, however, since the flow of drill mud from the well into the formation created an earthquake swarm near the wellbore that was recorded, located, analyzed and interpreted by project seismologists. Upon completion of Phase 1, the project shifted focus to a new target well, which was located within the southwest compartment of the Coso geothermal field. Volume 2 describes the Phase 2 studies on the geomechanical, geophysical, hydraulic, and geochemical aspects of the reservoir in and around target-stimulation well 46A-19RD, which is the deepest and hottest well ever drilled at Coso. Its total measured depth exceeding 12,000 ft. It spite of its great depth, this well is largely impermeable below a depth of about 9,000 ft, thus providing an excellent target for stimulation. In order to prepare 46A-19RD for stimulation, however, it was necessary to pull the slotted liner. This proved to be unachievable under the budget allocated by the Coso Operating Company partners, and this aspect of the project was abandoned, ending the program at Coso. The program then shifted to the EGS project at Desert Peak, which had a goal similar to the one at Coso of creating an EGS on the periphery of an existing geothermal reservoir. Volume 3 describes the activities that the Coso team contributed to the Desert Peak project, focusing largely on a geomechanical investigation of the Desert Peak reservoir, tracer testing between injectors 21-2 and 22-22 and the field�������¢����������������s main producers, and the chemical stimulation of target well 27-15.

Rose, Peter Eugene [Energy and Geoscience Institute at the University of Utah] [Energy and Geoscience Institute at the University of Utah

2013-04-15T23:59:59.000Z

334

The Role of Boron-Chloride and Noble Gas Isotope Ratios in TVZ Geothermal Systems  

DOE Green Energy (OSTI)

The model of the geothermal system in which deep circulating groundwater containing noble gases, at air saturated water concentrations, mixes with hot fluids of mantle origin at depth, is extended to include the effect of interaction of the ascending fluid with both solid and gaseous phases of basement (or other) rocks en route to the surface. It is demonstrated that this interaction is responsible for most of the CO{sub 2} in the Taupo Volcanic Zone (TVZ) geothermal systems. It is proposed that the modeling of this interaction might be accomplished by techniques similar to those used for the understanding of the oxygen isotope shift found in geothermal systems. The water rock interaction experiments of Ellis and Mahon (1964, 1967) provides some data on the kinetic rates for B and Cl dissolution from rocks likely to be encountered in the geothermal system, but further information on the behavior of B may be needed. If these problems can be overcome this modeling technique has promise for the estimation of the recharge of geothermal systems and hence the sustainability of these systems.

Hulston, J.R.

1995-01-01T23:59:59.000Z

335

Geothermal: Sponsored by OSTI -- Creation of an Enhanced Geothermal...  

Office of Scientific and Technical Information (OSTI)

Creation of an Enhanced Geothermal System through Hydraulic and Thermal Stimulation Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

336

Generic Guide Specification for Geothermal Heat Pump Systems  

SciTech Connect

The attached Geothermal (Ground-Source) Heat Pump (GHP) Guide Specifications have been developed by Oak Ridge National Laboratory (ORNL) with the intent to assist federal agency sites and engineers in the preparation of construction specifications for GHP projects. These specifications have been developed in the industry-standard Construction Specification Institute (CSI) format and cover several of the most popular members of the family of GHP systems. These guide specifications are applicable to projects whether the financing is with conventional appropriations, arranged by GHP specialty ESCOs under the U.S. Department of Energy's Technology-Specific GHP Super ESPCs, arranged by utilities under Utility Energy Service Contracts (UESCs) or arranged by generalist ESCOs under the various regional ESPCs. These specifications can provide several benefits to the end user that will help ensure successful GHP system installations. GHP guide specifications will help to streamline the specification development, review, and approval process because the architecture and engineering (AE) firm will be working from the familiar CSI format instead of developing the specifications from other sources. The guide specifications help to provide uniformity, standardization, and consistency in both the construction specifications and system installations across multiple federal sites. This standardization can provide future benefits to the federal sites in respect to both maintenance and operations. GHP guide specifications can help to ensure that the agency is getting its money's worth from the GHP system by preventing the use of marginal or inferior components and equipment. The agency and its AE do not have to start from scratch when developing specifications and can use the specification as a template and/or a checklist in developing both the design and the contract documents. The guide specifications can save project costs by reducing the engineering effort required during the design development phase. Use of this guide specification for any project is strictly optional and at the discretion of the responsible party in charge. If used as a construction specification master template for GHP systems, this guide specification must, in all cases, be edited to apply to the specific project in question and to reflect the site-specific conditions relevant to the project. There is no guarantee of accuracy or applicability with respect to any portion of this specification and the user assumes all risk associated with the application of the information contained in this document.

Thomas, WKT

2000-04-12T23:59:59.000Z

337

Session 1: Geothermal Pumping Systems and Two-Phase Flow Studies  

DOE Green Energy (OSTI)

Improvements in electric submersible pumping systems have resulted in a demonstrated downhole running life of one year for low horsepower units operating in 180 C brine. The implementation of a prototype pressurized lubrication system to prevent brine intrusion and loss of lubricating oil from the motor and protector sections has been successfully tested. Second generation pressurized lubrication systems have been designed and fabricated and will be utilized in downhole production pumping tests during FY84. Pumping system lifetime is currently limited by available power cable designs that are degraded by high-temperature brine. A prototype metal-sheathed power cable has been designed and fabricated and is currently undergoing destructive and nondestructive laboratory testing. This cable design has the potential for eliminating brine intrusion into the power delivery system through the use of a hermatically sealed cable from the surface to the downhole motor. The two-phase flow program is directed at understanding the hydrodynamics of two-phase flows. The two-phase flow regime is characterized by a series of flow patterns that are designated as bubble, slug, churn, and annular flow. Churn flow has received very little scientific attention. This lack of attention cannot be justified because calculations predict that the churn flow pattern will exist over a substantial portion of the two-phase flow zone in producing geothermal wells. The University of Houston is experimentally investigating the dynamics of churn flow and is measuring the holdup over the full range of flow space for which churn flow exists. These experiments are being conducted in an air/water vertical two-phase flow loop. Brown University has constructed and is operating a unique two-phase flow research facility specifically designed to address flow problems of relevance to the geothermal industry. An important feature of the facility is that it is dedicated to two-phase flow of a single substance (including evaporation and condensation) as opposed to the case of a two-component two-phase flow. This facility can be operated with horizontal or vertical test sections of constant diameter or with step changes in diameter to simulate a geothermal well profile.

Hanold, R.J.

1983-12-01T23:59:59.000Z

338

Investigation of the geothermal potential of the UK. A preliminary assessment. Final report  

Science Conference Proceedings (OSTI)

Geologically, Britain is an extremely stable area without active volcanism. In this situation the development of geothermal resources depends upon the occurrence of permeable rocks in deep sedimentary basins or the successful development of the hot dry rock concept. The average geothermal gradient is about 25C/km, but two belts of above average heat flow extend across northern and south-western England. In these areas the gradient can be 30C/km or more. The principal aquifers occur in the Mesozoic and the greatest geothermal potential is in sandstones of the Permo-Triassic where their occurrence at depth coincides with the high heat flow belts.

Not Available

1982-01-01T23:59:59.000Z

339

Development of a Distributed Control System (DCS) for Geothermal Steamfield Operations at Kawerau, NZ  

DOE Green Energy (OSTI)

A distributed control system (DCS) has been developed for operation of the Kawerau geothermal field. The DCS functions include steam pressure control, steam flow billing, flow and pressure monitoring, remote well flow control and auto paging field operators. The system has evolved over a number of years from paper chart recorders to dataloggers to a desktop PC system to an industrial DCS.

Koorey, K.J.

1995-01-01T23:59:59.000Z

340

Near-Surface CO2 Monitoring And Analysis To Detect Hidden Geothermal Systems  

E-Print Network (OSTI)

flux at the Dixie Valley geothermal field, Nevada; relationssurface phenomena and the geothermal reservoir”, Chemicalapplication to volcanic- geothermal areas and landfills”,

Lewicki, Jennifer L.; Oldenburg, Curtis M.

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "investigation systems geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

On the production behavior of enhanced geothermal systems with CO2 as working fluid  

E-Print Network (OSTI)

Twenty-Fifth Workshop on Geothermal Reservoir Engineering,and clay swelling in a fractured geothermal reservoir,Transactions, Geothermal Resources Council, Vol. 28, pp.

Pruess, K.

2008-01-01T23:59:59.000Z

342

Enhanced Geothermal Systems (EGS) comparing water with CO2 as heat transmission fluids  

E-Print Network (OSTI)

and Clay Swelling in a Fractured Geothermal Reservoir,Transactions, Geothermal Resources Council, Vol. 28, pp.the 5-km Deep Enhanced Geothermal Reservoir at Soultz-sous-

Pruess, Karsten

2007-01-01T23:59:59.000Z

343

The effect of expansion-ratio limitations on positive-displacement, total-flow geothermal power systems  

DOE Green Energy (OSTI)

Combined steam-turbine/positive-displacement engine (PDE) geothermal power systems are analyzed thermodynamically and compared with optimized reference flash-steam plants. Three different configurations of combined systems are considered. Treated separately are the cases of self-flowing and pumped wells. Two strategies are investigated that help overcome the inherent expansion-ratio limitation of PDE's: pre-flashing and pre-mixing. Parametrically-obtained results show the required minimum PDE efficiency for the combined system to match the reference plant for various sets of design conditions.

DiPippo, R.

1982-02-01T23:59:59.000Z

344

Efficient Finite Element Modeling of Shallow Geothermal Systems  

Science Conference Proceedings (OSTI)

This paper presents a finite element modeling technique for double U-tube borehole heat exchangers (BHE) and the surrounding soil mass. Focus is placed on presenting numerical analyses describing the capability of a BHE model, previously introduced by ... Keywords: Geothermic, BHE, Heat transfer

Rafid Al-Khoury

2009-12-01T23:59:59.000Z

345

Floating power optimization studies for the cooling system of a geothermal power plant  

DOE Green Energy (OSTI)

The floating power concept was studied for a geothermal power plant as a method of increasing the plant efficiency and decreasing the cost of geothermal power. The stored cooling concept was studied as a method of reducing the power fluctuations of the floating power concept. The studies include parametric and optimization studies for a variety of different types of cooling systems including wet and dry cooling towers, direct and indirect cooling systems, forced and natural draft cooling towers, and cooling ponds. The studies use an indirect forced draft wet cooling tower cooling system as a base case design for comparison purposes.

Shaffer, C.J.

1977-08-01T23:59:59.000Z

346

Investigations and activities of Imperial County geothermal staff: 1982-83. Summary report  

SciTech Connect

Research projects initiated, in progress, or completed; County/Industry cooperative efforts; and reports related to geothermal development issued by the County between October 1982 and December 1983 are described.

1984-01-01T23:59:59.000Z

347

Direct utilization of geothermal heat in cascade application to aquaculture and greenhouse systems at Navarro College. Annual report, January 1984-September 1984  

DOE Green Energy (OSTI)

Progress is reported on a project to use the 130/sup 0/F geothermal resource in central Texas. The system for cascading geothermal energy through aquaculture and greenhouse systems was completed and the first shrimp harvest was held. (MHR)

Smith, K.

1984-09-01T23:59:59.000Z

348

Life-cycle analysis results for geothermal systems in comparison to other power systems: Part II.  

DOE Green Energy (OSTI)

A study has been conducted on the material demand and life-cycle energy and emissions performance of power-generating technologies in addition to those reported in Part I of this series. The additional technologies included concentrated solar power, integrated gasification combined cycle, and a fossil/renewable (termed hybrid) geothermal technology, more specifically, co-produced gas and electric power plants from geo-pressured gas and electric (GPGE) sites. For the latter, two cases were considered: gas and electricity export and electricity-only export. Also modeled were cement, steel and diesel fuel requirements for drilling geothermal wells as a function of well depth. The impact of the construction activities in the building of plants was also estimated. The results of this study are consistent with previously reported trends found in Part I of this series. Among all the technologies considered, fossil combustion-based power plants have the lowest material demand for their construction and composition. On the other hand, conventional fossil-based power technologies have the highest greenhouse gas (GHG) emissions, followed by the hybrid and then two of the renewable power systems, namely hydrothermal flash power and biomass-based combustion power. GHG emissions from U.S. geothermal flash plants were also discussed, estimates provided, and data needs identified. Of the GPGE scenarios modeled, the all-electric scenario had the highest GHG emissions. Similar trends were found for other combustion emissions.

Sullivan, J.L.; Clark, C.E.; Yuan, L.; Han, J.; Wang, M. (Energy Systems)

2012-02-08T23:59:59.000Z

349

Geothermal Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Blog Blog Geothermal Blog RSS October 23, 2013 This diagram shows how electricity is produced using enhanced geothermal systems. | Energy Department Geothermal Energy: A Glance Back and a Leap Forward This year marks the centennial of the first commercial electricity production from geothermal resources. As geothermal technologies advance, the Energy Department is working to improve, and lower the cost of, enhanced geothermal systems. April 12, 2013 Learn the basics of enhanced geothermal systems technology. I Infographic by Sarah Gerrity. Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate Sustainable Power Innovative clean energy project is up and running in Nevada.

350

[Geothermal system temperature-depth database and model for data analysis]. 5. quarterly technical progress report  

SciTech Connect

During this first quarter of the second year of the contract activity has involved several different tasks. The author has continued to work on three tasks most intensively during this quarter: the task of implementing the data base for geothermal system temperature-depth, the maintenance of the WWW site with the heat flow and gradient data base, and finally the development of a modeling capability for analysis of the geothermal system exploration data. The author has completed the task of developing a data base template for geothermal system temperature-depth data that can be used in conjunction with the regional data base that he had already developed and is now implementing it. Progress is described.

Blackwell, D.D.

1998-04-25T23:59:59.000Z

351

Heat and mass transfer in the Klamath Falls, Oregon, geothermal system  

DOE Green Energy (OSTI)

Over the last 50 years significant amounts of data have been obtained from the Klamath Falls geothermal resource. To date, the complexity of the system has perplexed researchers, leading to the development of only very generalized hydrogeologic and geothermal models of the area. Based on reevaluation of all available data, a detailed conceptual model for the Klamath Falls geothermal resource is proposed. A comprehensive 3-dimensional numerical model, based on the proposed conceptual model is also presented. This numerical model incorporates all of the main reservoir characteristics. Hot water recharge flows from depth, along a large normal fault, and flows into near surface permeable strata where it loses heat to surrounding beds and to mixing with cold regional groundwaters introduced from the north. By matching calculated and measured temperatures and pressures, hot and cold water recharge rates and the permeability distribution for the geothermal system are estimated. A semi-analytic solution and simple lumped parameter methods are also compared to the numerical analysis. Results suggest that the flow patterns within the geothermal system at Klamath Falls are complex and intimately associated with the permeability distribution and the pressures and temperatures at depth, within the faults.

Prucha, R.H.

1987-05-01T23:59:59.000Z

352

Wine Valley Inn: A mineral water spa in Calistoga, California. Geothermal-energy-system conceptual design and economic feasibility  

DOE Green Energy (OSTI)

The purpose of this study is to determine the engineering and economic feasibility for utilizing geothermal energy for air conditioning and service water heating at the Wine Valley Inn, a mineral water spa in Calistoga, California. The study evaluates heating, ventilating, air conditioning and water heating systems suitable for direct heat geothermal application. Due to the excellent geothermal temperatures available at this site, the mechanics and economics of a geothermally powered chilled water cooling system are evaluated. The Wine Valley Inn has the resource potential to have one of the few totally geothermal powered air conditioning and water heating systems in the world. This total concept is completely developed. A water plan was prepared to determine the quantity of water required for fresh water well development based on the special requirements of the project. An economic evaluation of the system is included to justify the added capital investment needed to build the geothermally powered mineral spa. Energy payback calculations are presented. A thermal cascade system is proposed to direct the geothermal water through the energy system to first power the chiller, then the space heating system, domestic hot water, the two spas and finally to heat the swimming pool. The Energy Management strategy required to automatically control this cascade process using industrial quality micro-processor equipment is described. Energy Management controls are selected to keep equipment sizing at a minimum, pump only the amount of geothermal water needed and be self balancing.

Not Available

1981-10-26T23:59:59.000Z

353

Market survey of geothermal wellhead power generation systems. Final report, March 1978  

DOE Green Energy (OSTI)

The purpose of this study was to assess the market potential for a portable geothermal wellhead power conversion device (1-10 MW generating capacity). Major study objectives included identifying the most promising applications for such a system, the potential impediments confronting their industrialization, and the various government actions needed to overcome these impediments. The heart of the study was a series of structured interviews with key decision-making individuals in the various disciplines of the geothermal community. In addition, some technical and economic analyses of a candidate system were performed to support the feasibility of the basic concept.

Leeds, M.W.; Evensizer, J.

1979-04-01T23:59:59.000Z

354

Geothermal direct applications hardware systems development and testing. 1979 summary report  

DOE Green Energy (OSTI)

Activities performed during calendar year 1979 for the hardware system development and testing task are presented. The fluidized bed technology was applied to the drying of potato by-products and to the exchange of heat to air in the space heating experiment. Geothermal water was flashed to steam and also used as the prime energy source in the steam distillation of peppermint oil. Geothermal water temperatures as low as 112.8/sup 0/C were utilized to distill alcohol from sugar beet juice, and lower temperature water provided air conditioning through an absorption air conditioning system. These experiments are discussed.

Keller, J.G.

1980-03-01T23:59:59.000Z

355

Vertical arrays for fracture mapping in geothermal systems  

DOE Green Energy (OSTI)

In collaboration with UNOCAL Geothermal Operations, Los Alamos National Laboratory assessed the feasibility of using vertical arrays of borehole seismic sensors for mapping of microseismicity in The Geysers geothermal field. Seismicity which arises from minute displacements along fracture or fault surfaces has been shown in studies of seismically active oil reservoirs to be useful in identifying fractures affected by and possibly contributing to production. Use of retrievable borehole seismic packages at The Geysers was found to reduce the threshold for detection of microearthquakes by an estimated 2--3 orders of magnitude in comparison to surface-based sensors. These studies led to the design, materials selection, fabrication, and installation of a permanent array of geophones intended for long term seismic monitoring and mapping of fractures in the vicinity of the array at The Geysers.

Albright, J.N. [Los Alamos National Lab., NM (United States); Rutledge, J.T.; Fairbanks, T.D. [Nambe Geophysics, Inc. (United States); Thomson, J.C. [Lithos Inc. (United States); Stevenson, M.A. [Petroleum Geo-Services (United States)

1998-12-01T23:59:59.000Z

356

Development of Models to Simulate Tracer Behavior in Enhanced Geothermal Systems  

DOE Green Energy (OSTI)

A recent report found that power and heat produced from engineered (or enhanced) geothermal systems (EGSs) could have a major impact on the United States while incurring minimal environmental impacts. EGS resources differ from high-grade hydrothermal resources in that they lack sufficient temperature distributions, permeability/porosity, fluid saturation, or recharge of reservoir fluids. Therefore, quantitative characterization of temperature distributions and the surface area available for heat transfer in EGS is necessary for commercial development of geothermal energy. The goal of this project is to provide integrated tracer and tracer interpretation tools to facilitate this characterization. Modeling capabilities are being developed as part of this project to support laboratory and field testing to characterize engineered geothermal systems in single- and multi-well tests using tracers. The objective of this report is to describe the simulation plan and the status of model development for simulating tracer tests for characterizing EGS.

Williams, Mark D.; Vermeul, Vincent R.; Reimus, P. W.; Newell, D.; Watson, Tom B.

2010-06-01T23:59:59.000Z

357

Geothermal investigations in Idaho. Part 8. Heat flow study of the Snake River Plain region, Idaho  

DOE Green Energy (OSTI)

The Snake River Plain of Idaho has recent lava flows and a large number of thermal springs and wells. A heat flow study was initiated which, together with available geological and geophysical information, allows a better definition of the geothermal resource and evaluation of the geothermal potential. Local geothermal anomalies were not the objects of this study and have not been studied in detail. The quality of the heat flow values obtained varies as interpretation was necessary to determine geothermal gradients for many of the holes which had disturbances. A major problem in determining the heat flow values is the lack of knowledge of the in situ porosity of the rocks. The heat flow values obtained for the Eastern Snake River Plain are from shallow wells (< 200 m), hence the heat flow there is low (< 0.5 HFU) because of the water movement in the Snake Plain aquifer. The anomalous regional heat flow pattern around the Snake River Plain, together with other geophysical and geological data, suggest the presence of a major crustal heat source. With the exception of the area of the Snake Plain aquifer, high geothermal gradients were found in all areas of southern Idaho (40 to 100/sup 0/C/km). Temperatures hot enough for space heating can be found most anywhere in the Plain at relatively shallow depths (1 to 2 km). Temperatures hot enough for electrical power generation (200/sup 0/C) can be found beneath southern Idaho almost anywhere at depths of 3 to 4 kilometers. The Plain is fault bounded and hot water circulating along the fault zones from depths can be a very important geothermal resource at shallow depths. The margins of the Plain have the highest heat flow values, are the most faulted, and have possibly the highest geothermal resource potential.

Brott, C.A.; Blackwell, D.D.; Mitchell, J.C.

1976-09-01T23:59:59.000Z

358

Aluto-Langano Geothermal Field, Ethiopian Rift Valley- Physical  

Open Energy Info (EERE)

Aluto-Langano Geothermal Field, Ethiopian Rift Valley- Physical Aluto-Langano Geothermal Field, Ethiopian Rift Valley- Physical Characteristics And The Effects Of Gas On Well Performance Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Aluto-Langano Geothermal Field, Ethiopian Rift Valley- Physical Characteristics And The Effects Of Gas On Well Performance Details Activities (0) Areas (0) Regions (0) Abstract: This study, which focuses on the Aluto-Langano geothermal field, is part of the ongoing investigations of the geothermal systems in the Ethiopian Rift Valley. Aluto-Langano is a water-dominated gas-rich geothermal field, with a maximum temperature close to 360°C, in the Lakes District region of the Ethiopian Rift Valley. The upflow zone for the system lies along a deep, young NNE trending fault and is characterized by

359

Daemen Alternative Energy/Geothermal Technologies Demonstration Program Erie County  

NLE Websites -- All DOE Office Websites (Extended Search)

US DOE Geothermal Program US DOE Geothermal Program eere.energy.gov Public Service of Colorado Ponnequin Wind Farm Geothermal Technologies Program 2010 Peer Review Daemen Alternative Energy/Geothermal Technologies Demonstration Program Erie County Robert C. Beiswanger, Jr. Daemen College May 20, 2010 This presentation does not contain any proprietary confidential, or otherwise restricted information. Insert photo of your choice 2 | US DOE Geothermal Program eere.energy.gov DAEMEN COLLEGE Open Loop, Geo-exchange System Geothermal Technologies Program 2010 Peer Review May 20, 2010 3 | US DOE Geothermal Program eere.energy.gov DAEMEN COLLEGE Open Loop, Geo-exchange System Principal Investigators Robert C. Beiswanger Jr. Vice President for Business Affairs and Treasurer Dr. Edwin G. Clausen Vice President for Academic Affairs and Dean of the College

360

Selected data for low-temperature (less than 90{sup 0}C) geothermal systems in the United States: reference data for US Geological Survey Circular 892  

DOE Green Energy (OSTI)

Supporting data are presented for the 1982 low-temperature geothermal resource assessment of the United States. Data are presented for 2072 geothermal sites which are representative of 1168 low-temperature geothermal systems identified in 26 States. The low-temperature geothermal systems consist of 978 isolated hydrothermal-convection systems, 148 delineated-area hydrothermal-convection systems, and 42 delineated-area conduction-dominated systems. The basic data and estimates of reservoir conditions are presented for each geothermal system, and energy estimates are given for the accessible resource base, resource, and beneficial heat for each isolated system.

Reed, M.J.; Mariner, R.H.; Brook, C.A.; Sorey, M.L.

1983-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "investigation systems geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Modern Geothermal Features | Open Energy Information  

Open Energy Info (EERE)

Modern Geothermal Features Modern Geothermal Features Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Modern Geothermal Features Dictionary.png Modern Geothermal Features: Active geothermal manifestations such as hot springs, fumaroles, steaming ground, mud pots, mud pools, mud volcanoes, or geysers. Other definitions:Wikipedia Reegle When geothermal systems have conduits available to the surface, they cause surface manifestations (or geothermal features). These features may vary between steam seeps (fumaroles) or pure fluid manifestations (geysers and hot springs) causing spectacular mineral formations (e.g. sinter terraces, tufa mounds). These types of manifestations are clear indications of an underlying geothermal system. Geothermal systems with no modern surface

362

An experimental study of adsorption in vapor-dominated geothermal systems  

DOE Green Energy (OSTI)

We report results of steam adsorption experiments conducted for rock samples from vapor-dominated geothermal reservoirs. We examine the effect of the temperature on the adsorption/desorption isotherms. We find that the temperature effect is only important on the desorption such that the hysteresis becomes more pronounced as the temperature increases. The scanning behavior within the steam sorption hysteresis loop is also studied to investigate the behavior during repressurization. Collection of sets of data on the sorption behavior of The Geysers geothermal field in California is presented.

Satik, Cengiz; Horne, Roland N.

1995-01-26T23:59:59.000Z

363

Fluid Imaging of Enhanced Geothermal Systems through Joint 3D Geophysical  

Open Energy Info (EERE)

Imaging of Enhanced Geothermal Systems through Joint 3D Geophysical Imaging of Enhanced Geothermal Systems through Joint 3D Geophysical Inverse Modeling Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Fluid Imaging of Enhanced Geothermal Systems through Joint 3D Geophysical Inverse Modeling Project Type / Topic 1 Laboratory Call for Submission of Applications for Research, Development and Analysis of Geothermal Technologies Project Type / Topic 2 Fluid Imaging Project Description EGS has been defined as enhanced reservoirs that have been created to extract economical amounts of heat from low permeability and/or porosity geothermal resources. Critical to the success of EGS is the successful manipulation of fluids in the subsurface to enhance permeability. Knowledge in the change in volume and location of fluids in the rocks and fractures (both natural and induced) will be needed to manage injection strategies such as the number and location of step out wells, in-fill wells and the ratio of injection to production wells. The key difficulty in manipulating fluids has been our inability to reliably predict their locations, movements and concentrations. We believe combining data from MEQ and electrical surveys has the potential to overcome these problems and can meet many of the above needs, economically. Induced seismicity is currently viewed as one of the essential methods for inferring the success of creating fracture permeability and fluid paths during large scale EGS injections. Fluids are obviously playing a critical role in inducing the seismicity, however, other effects such as thermal, geochemical and stress redistribution, etc. may also play a role.

364

Investigation and Evaluation of Geopressured-Geothermal Wells; Detailed Reentry Prognosis for Geopressure-Geothermal Testing of The Watkins-Miller No. 1 Well, Cameron Parish, Louisiana  

DOE Green Energy (OSTI)

This Gruy Federal Type II-B prospect was drilled as the Superior Oil Company No. 1 Watkins-Miller, API designation 17-023-20501 and is located in Section 5, T15S, R5W, Cameron Parish, Louisiana. The well site is just north of lot 39 on Indian Point Island and is readily accessible from state highway Route 82 and a shell road in good condition. Superior Oil completed this well in late 1970 as a dual gas producer in sands between 11,150 and 11,250 feet but eventually abandoned the well in December, 1974. The cellar of the well is still visible on the site. This location is shown on the lower portion of USGS topographic sheet ''Grand Lake West'' in the map pocket of the Gruy Federal report ''Investigation and Evaluation of Geopressured-Geothermal Wells, Prospective Test Wells in the Texas and Louisiana Gulf Coast'', February 28, 1978.

None

1978-04-13T23:59:59.000Z

365

A materials and equipment review of selected US geothermal district heating systems  

DOE Green Energy (OSTI)

This collection of information was assembled for the benefit of future geothermal system designers and existing system operators. It is intended to provide insight into the experience gained from the operation of 13 major geothermal systems over the past several years. Each chapter contains six or seven sections depending upon the type of system: introduction, production facilities, distribution, customer connections, metering and disposal. Some chapters, covering systems which incorporate a closed distribution design include a section on the central mechanical room. Each section details the original equipment and materials installed in that portion of the system. Following each section is a discussion of the subsequent problems, solutions and modifications relating to the equipment. The extent to which information was available varied from system to system. This is reflected in the length and level of detail of the chapters.

Rafferty, K.D.

1989-07-01T23:59:59.000Z

366

Great Western Malting Company geothermal project, Pocatello, Idaho. Final report  

DOE Green Energy (OSTI)

The Great Western Malting Company recently constructed a barley malting facility in Pocatello, Idaho, designed to produce 6.0 million bushels per year of brewing malt. This facility uses natural gas to supply the energy for germination and kilning processes. The escalating cost of natural gas has prompted the company to look at alternate and more economical sources of energy. Trans Energy Systems has investigated the viabiity of using geothermal energy at the new barley processing plant. Preliminary investigations show that a geothermal resource probably exists, and payback on the installation of a system to utilize the resource will occur in under 2 years. The Great Western Malting plant site has geological characteristics which are similar to areas where productive geothermal wells have been established. Geological investigations indicate that resource water temperatures will be in the 150 to 200/sup 0/F range. Geothermal energy of this quality will supply 30 to 98% of the heating requirements currently supplied by natural gas for this malting plant. Trans Energy Systems has analyzed several systems of utilizing the geothermal resource at the Great Western barley malting facility. These systems included: direct use of geothermal water; geothermal energy heating process water through an intermediary heat exchanger; coal or gas boosted geothermal systems; and heat pump boosted geothermal system. The analysis examined the steps that are required to process the grain.

Christensen, N.T.; McGeen, M.A.; Corlett, D.F.; Urmston, R.

1981-12-23T23:59:59.000Z

367

Economic impact of corrosion and scaling problems in geothermal energy systems  

SciTech Connect

Corrosion and scaling problems have a significant impact on geothermal plant economics. A power plant must amortize the capital investment over a 20-year period and achieve satisfactory operating efficiency to achieve financial success. Corrosion and scale incrustations have been encountered in all geothermal plants, and to various degrees, adversely affected plant life times and power output. Using published data this report analyzes known geothermal corrosion and scaling phenomena for significant cost impacts on plant design and operation. It has been necessary to speculate about causes and mechanisms in order to estimate impacts on conceptual geothermal plants. Silica is highly soluble in hot geothermal water and solubility decreases as water is cooled in a geothermal power plant. Calculations indicate as much as 30,000 tons/year could pass through a 100 MWe water cycle plant. The major cost impact will be on the reinjection well system where costs of 1 to 10 mills/kwhr of power produced could accrue to waste handling alone. On the other hand, steam cycle geothermal plants have a definite advantage in that significant silica problems will probably only occur in hot dry rock concepts, where steam above 250 C is produced. Calculation methods are given for estimating the required size and cost impact of a silica filtration plant and for sizing scrubbers. The choice of materials is significantly affected by the pH of the geothermal water, temperature, chloride, and H{sub s} contents. Plant concepts which attempt to handle acid waters above 180 C will be forced to use expensive corrosion resistant alloys or develop specialized materials. On the other hand, handling steam up to 500 C, and pH 9 water up to 180 C appears feasible using nominal cost steels, typical of today's geothermal plants. A number of factors affecting plant or component availability have been identified. The most significant is a corrosion fatigue problem in geothermal turbines at the Geyser's geothermal plant which is presently reducing plant output by about 10%. This is equivalent to over $3 million per year in increased oil consumption to replace the power. In the course of assessing the cost implications of corrosion and scaling problems, a number of areas of technological uncertainty were identified which should be considered in R and D planning in support of geothermal energy. Materials development with both laboratory and field testing will be necessary. The economic analysis on which this report is based was done in support of an AEC Division of Applied Technology program to assess the factors affecting geothermal plant economics. The results of this report are to be used to develop computer models of overall plant economics, of which corrosion and scaling problems are only a part. The translation of the economic analysis to the report which appears here, was done on AEC Special Studies Funds.

Shannon, D.W.

1975-01-01T23:59:59.000Z

368

Economic impact of corrosion and scaling problems in geothermal energy systems  

DOE Green Energy (OSTI)

Corrosion and scaling problems have a significant impact on geothermal plant economics. A power plant must amortize the capital investment over a 20-year period and achieve satisfactory operating efficiency to achieve financial success. Corrosion and scale incrustations have been encountered in all geothermal plants, and to various degrees, adversely affected plant life times and power output. Using published data this report analyzes known geothermal corrosion and scaling phenomena for significant cost impacts on plant design and operation. It has been necessary to speculate about causes and mechanisms in order to estimate impacts on conceptual geothermal plants. Silica is highly soluble in hot geothermal water and solubility decreases as water is cooled in a geothermal power plant. Calculations indicate as much as 30,000 tons/year could pass through a 100 MWe water cycle plant. The major cost impact will be on the reinjection well system where costs of 1 to 10 mills/kwhr of power produced could accrue to waste handling alone. On the other hand, steam cycle geothermal plants have a definite advantage in that significant silica problems will probably only occur in hot dry rock concepts, where steam above 250 C is produced. Calculation methods are given for estimating the required size and cost impact of a silica filtration plant and for sizing scrubbers. The choice of materials is significantly affected by the pH of the geothermal water, temperature, chloride, and H{sub s} contents. Plant concepts which attempt to handle acid waters above 180 C will be forced to use expensive corrosion resistant alloys or develop specialized materials. On the other hand, handling steam up to 500 C, and pH 9 water up to 180 C appears feasible using nominal cost steels, typical of today's geothermal plants. A number of factors affecting plant or component availability have been identified. The most significant is a corrosion fatigue problem in geothermal turbines at the Geyser's geothermal plant which is presently reducing plant output by about 10%. This is equivalent to over $3 million per year in increased oil consumption to replace the power. In the course of assessing the cost implications of corrosion and scaling problems, a number of areas of technological uncertainty were identified which should be considered in R and D planning in support of geothermal energy. Materials development with both laboratory and field testing will be necessary. The economic analysis on which this report is based was done in support of an AEC Division of Applied Technology program to assess the factors affecting geothermal plant economics. The results of this report are to be used to develop computer models of overall plant economics, of which corrosion and scaling problems are only a part. The translation of the economic analysis to the report which appears here, was done on AEC Special Studies Funds.

Shannon, D.W.

1975-01-01T23:59:59.000Z

369

36Cl/Cl ratios in geothermal systems: preliminary measurements from the Coso Field  

DOE Green Energy (OSTI)

The {sub 36}Cl/Cl isotopic composition of chlorine in geothermal systems can be a useful diagnostic tool in characterizing hydrologic structure, in determining the origins and age of waters within the systems, and in differentiating the sources of chlorine (and other solutes) in the thermal waters. The {sub 36}Cl/Cl values for several geothermal water samples and reservoir host rock samples from the Coso, California geothermal field have been measured for these purposes. The results indicate that most of the chlorine is not derived from the dominant granitoid that host the geothermal system. If the chlorine was originally input into the Coso subsurface through meteoric recharge, that input occurred at least 1-1.25 million years ago. The results suggest that the thermal waters could be connate waters derived from sedimentary formations, presumably underlying and adjacent top the granitic rocks, which have recently migrated into the host rocks. Alternatively, most of the chlorine but not the water, may have recently input into the system from magmatic sources. In either case, the results indicate that most of the chlorine in the thermal waters has existed within the granitoid host rocks for no more than about 100,00-200,00 years. this residence time for the chlorine is similar to residence times suggested by other researchers for chlorine in deep groundwaters of the Mono Basin north of the Coso field.

Nimz, G.J.; Moore, J.N.; Kasameyer, P.W.

1997-07-01T23:59:59.000Z

370

A Case Study of Wide Diameter Casing for Geothermal Systems  

SciTech Connect

Three wells have been drilled in the central resistivity area of a geothermal field in the Taupo Volcanic Zone, New Zealand. Using a well bore simulator, WELL SIM V3.0, reservoir conditions and well characteristics are evaluated to determine the increase in output by increasing production casing diameters from either 8-5/8 inches OD or 9-5/8 inches OD to 13-3/8 inches OD. Increases in well drilling costs are determined to provide a commentary on the economics. While open hole size is effectively doubled, well costs increase by 10% and, in this study, output increases by an average of 18%.

King, T.R.; Freeston, D.H.; Winmill, R.L.

1995-01-01T23:59:59.000Z

371

OpenEI:Old Geothermal Gateway | Open Energy Information  

Open Energy Info (EERE)

Gateway Gateway Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermalpower.jpg GeoInfo.png Geothermal Information Geothermal Energy Overview Types of Geothermal Resources Energy Conversion Technologies Cooling Technologies Exploration Techniques Reference Materials GeoModels.png Geothermal Models & Tools GETEM SAM Geothermal Prospector Exploration Cost and Time Metric Georesource.png Resource Assessments USGS Maps (2008) Geothermal Resource Potential Map Geothermal Areas Geothermal Regions Installed.png Installed & Planned Capacity Geothermal Generation Installed Capacity Planned Capacity Geofinancing.png Geothermal Financing Developers' Financing Handbook RE Project Finance CREST HOMER REFTI GeoR&D.png Geothermal RD&D Enhanced Geothermal Systems

372

Geothermal data | OpenEI  

Open Energy Info (EERE)

91 91 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142278991 Varnish cache server Geothermal data Dataset Summary Description This dataset corresponds to the final report on a screening study to compare six methods of removing noncondensable gases from direct-use geo-thermal steam power plants. This report defines the study methodologies and compares the performance and economics of selected gas-removal systems. Recommendations are presented for follow-up investigations and implementation of some of the technologies discussed. Source NREL Date Released Unknown Date Updated Unknown Keywords geothermal Geothermal data NREL solar Data application/vnd.ms-excel icon Download data (xls, 1.4 MiB)

373

Report of the workshop on advanced geothermal drilling and completion systems  

DOE Green Energy (OSTI)

The discussions, conclusions, and recommendations of the Workshop on Advanced Geothermal Drilling and Completion Systems are summarized. The purpose of the workshop was to identify new drilling and completion systems that have the potential for significantly reducing the cost of geothermal wells, and to provide recommendations as to the research and development tasks that are required to develop these advanced systems. Participants in the workshop included representatives from private industry, universities, and government who were organized into four working groups as follows: Rock Drilling Technology, Surface Technology, Borehole Technology, and Directional Drilling Technology. The Panel on Rock Drilling Technology was charged with identifying advanced concepts for breaking rock that could result in instantaneous penetration rates three to five times higher than those of conventional rotary drilling. The Panel on Surface Technology discussed improvements in surface equipment and operating procedures that could contribute to reduced well costs. The Panel on Borehole Technology discussed problems associated with establishing and maintaining a stable borehole for the long-term production of geothermal wells. The Panel on Directional Drilling Technology addressed problems encountered in drilling deviated wells in geothermal reservoirs.

Varnado, S.G. (ed.)

1979-06-01T23:59:59.000Z

374

The Occurrence of Pyrrhotite in the Ngawha Geothermal System, New Zealand  

DOE Green Energy (OSTI)

The Ngawha geothermal system is low in all sulfide minerals, but in comparison to systems in the Taupo Volcanic Zone it contains more widely distributed pyrrhotite which is currently depositing, mainly in fractures. This reflects the high proportion of vapor in the Ngawha system. Pyrrhotite is most common in the upper part of the reservoir and lower part of the aquitard. The Ngawha pyrrhotite is of monoclinic and monoclinic + hexagonal structure.

Cox, M.E.; Browne, P.R.L.

1995-01-01T23:59:59.000Z

375

Geochemistry of sericite and chlorite in well 14-2 Roosevelt Hot Springs geothermal system and in mineralized hydrothermal systems  

DOE Green Energy (OSTI)

Chemical compositions of chlorite and sericite from one production well in the Roosevelt geothermal system have been determined by electron probe methods and compared with compositions of chlorite and sericite from porphyry copper deposits. Modern system sericite and chlorite occur over a depth interval of 2 km and a temperature interval of 250/sup 0/C.

Ballantyne, J.M.

1980-06-01T23:59:59.000Z

376

Near-Surface Co2 Monitoring And Analysis To Detect Hidden Geothermal  

Open Energy Info (EERE)

Near-Surface Co2 Monitoring And Analysis To Detect Hidden Geothermal Near-Surface Co2 Monitoring And Analysis To Detect Hidden Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Near-Surface Co2 Monitoring And Analysis To Detect Hidden Geothermal Systems Details Activities (5) Areas (1) Regions (0) Abstract: Hidden geothermal systems are systems devoid of obvious surface hydrothermal manifestations. Emissions of moderate-to-low solubility gases may be one of the primary near-surface signals from these systems. We investigate the potential for CO2 detection and monitoring below and above ground in the near-surface environment as an approach to exploration targeting hidden geothermal systems. We focus on CO2 because it is the dominant noncondensible gas species in most geothermal systems and has

377

Development of Models to Simulate Tracer Tests for Characterization of Enhanced Geothermal Systems  

Science Conference Proceedings (OSTI)

A recent report found that power and heat produced from enhanced (or engineered) geothermal systems (EGSs) could have a major impact on the U.S energy production capability while having a minimal impact on the environment. EGS resources differ from high-grade hydrothermal resources in that they lack sufficient temperature distribution, permeability/porosity, fluid saturation, or recharge of reservoir fluids. Therefore, quantitative characterization of temperature distributions and the surface area available for heat transfer in EGS is necessary for the design and commercial development of the geothermal energy of a potential EGS site. The goal of this project is to provide integrated tracer and tracer interpretation tools to facilitate this characterization. This project was initially focused on tracer development with the application of perfluorinated tracer (PFT) compounds, non-reactive tracers used in numerous applications from atmospheric transport to underground leak detection, to geothermal systems, and evaluation of encapsulated PFTs that would release tracers at targeted reservoir temperatures. After the 2011 midyear review and subsequent discussions with the U.S. Department of Energy Geothermal Technology Program (GTP), emphasis was shifted to interpretive tool development, testing, and validation. Subsurface modeling capabilities are an important component of this project for both the design of suitable tracers and the interpretation of data from in situ tracer tests, be they single- or multi-well tests. The purpose of this report is to describe the results of the tracer and model development for simulating and conducting tracer tests for characterizing EGS parameters.

Williams, Mark D.; Reimus, Paul; Vermeul, Vincent R.; Rose, Peter; Dean, Cynthia A.; Watson, Tom B.; Newell, D.; Leecaster, Kevin; Brauser, Eric

2013-05-01T23:59:59.000Z

378

Technical and cost analysis of rock-melting systems for producing geothermal wells. [GEOWELL  

DOE Green Energy (OSTI)

The drilling of wells makes up a large fraction of the costs of geothermal energy-extraction plants, and billions of dollars for wells will be needed before geothermal energy is nationally significant. Technical and economic systems studies are summarized regarding the application of the Subterrene concept, i.e., excavating and penetrating rocks or soils by melting, to the production of deep wells such as may be used for dry hot rock or geopressurized geothermal energy-extraction systems. Technically, it was found that Subterrene features are compatible with those of current rotary drilling practices. In fact, some special features could lead to improved well production techniques. These include the buildup of a glass lining along the borehole wall which provides structural resistance to collapse; close control of hole geometry; the existence of a barrier between the drilling fluids and the formations being penetrated; nonrotation; potentially better bit life; and faster rates of penetration in deep, hard rock. A typical optimum-cost well would be rotary-drilled in the upper regions and then rock-melted to total depth. Indicated cost savings are significant: a 30 percent or 3.9 million dollar (1975 $) reduction from rotary-drilled well costs are estimated for a 10-km depth well with a bottom hole temperature of 673 K. Even for relatively cool normal geothermal gradient conditions, the savings for the 1..pi..-km well are estimated as 23 percent of 2.1 million dollars.

Altseimer, J.H.

1976-11-01T23:59:59.000Z

379

Geothermal Today: 2003 Geothermal Technologies Program Highlights (Revised)  

DOE Green Energy (OSTI)

This outreach publication highlights milestones and accomplishments of the DOE Geothermal Technologies Program for 2003. Included in this publication are discussions of geothermal fundamentals, enhanced geothermal systems, direct-use applications, geothermal potential in Idaho, coating technology, energy conversion R&D, and the GeoPowering the West initiative.

Not Available

2004-05-01T23:59:59.000Z

380

Federal Geothermal Research Program Update, FY 2000  

DOE Green Energy (OSTI)

The Department of Energy's Geothermal Program serves two broad purposes: 1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and 2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermal systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.

Renner, Joel Lawrence

2001-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "investigation systems geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Effect of non condensable gases on the performance of geothermal steam power systems  

DOE Green Energy (OSTI)

The influencce of dissolved carbon dioxide on the thermodynamic performance of geothermal steam systems is analyzed. The system is divided into its main component: the flash tank, the turbine, the condenser and the gas extraction system, and the effect of non condensables is studied for each. The effect of the noncondensable gas on the output of the whole system is deduced from its effect on the individual components. The analysis of actual systems is preceded by an analysis of an ideal system. The optimum condenser pressure for actual systems is obtained for different gas extraction system efficiencies. Economic considerations, however, are only qualitatively addressed.

Khalifa, H.E.; Michaelides, E.

1978-11-01T23:59:59.000Z

382

Geothermal applications on the Madison (Pahasapa) aquifer system in South Dakota. Final report, October 1, 1976--September 30, 1977  

DOE Green Energy (OSTI)

Pertinent geologic, hydrologic, and chemical data for the Madison Formation underlying western South Dakota are presented in text and in graphic form. A temperature anomaly in west central South Dakota makes 130 to 160/sup 0/F water available at depths of less than 3500 ft. A central geothermal space heating system designed for Midland, South Dakota indicates that by 1980 geothermal heat will be competitive with existing energy sources. Preliminary tests indicate the superiority of 304 or 316 stainless steel for fabrication of equipment to utilize the warm, corrosive Madison water. South Dakota has no statutes governing geothermal resources; under existing water law, geothermal water would be classified as a top priority domestic use. Suggestions are made for state legislation pertaining to the development of geothermal energy.

Gries, J.P.

1977-09-01T23:59:59.000Z

383

Prelimiary investigation desalting of geothermal brines in the Imperial Valley of California  

SciTech Connect

The Imperial Valley Project is an applied research program to provide geologic, hydrologic, engineering, and economic information necessary for development of the geothermal resources of the delta of the lower Colorado River. It is suggested that a desalting pilot plant be associated with the project to develop an economic desalting process if 2 to 3% geothermal brine is produced. The process will be unconventional in that waste heat must be rejected to atmosphere in wet or dry cooling towers. The presence of large amounts of CO/sub 2/, H/sub 2/S, and silica will require gas removal and silicascale control equipment. The plant would process up to 75,000 gallons of brine per day. (MCW)

Spiewak, I.; Hise, E.C.; Reed, S.A.; Thompson, S.A.

1970-03-01T23:59:59.000Z

384

Subsurface and seismic investigation of the geopressured-geothermal potential of south Louisiana. Final report  

DOE Green Energy (OSTI)

Specific sites (areas) for geopressured-geothermal energy potential have been evaluated: (1) Abbeville Area, (2) Chloe Area, (3) Turtle Bayou Field-Kent Bayou Field Area and (4) Lirette-Chauvin-Lake Boudreaux Area. To arrive at geologic conclusions concerning the geopressured-geothermal energy potential of each area, the following factors have been considered in this study: (1) depth of geopressured sands, (2) geopressured sand volumes, (3) porosities, (4) permeabilities, (5) temperatures, (6) salinities, (7) dissolved gas content, (8) structure - especially as it relates to continuity of reservoirs, and (9) petroleum prodution - espeially if the geopressured fluids are driving mechanisms for current petroleum prodution. To evaluate these parameters the most useful source of information has been petroleum well logs which most commonly are a continuous depth survey of the spontaneous potential (SP) and the electrical resistivity of the subsurface formations. A separate thesis for each of the above four areas was processed separately.

Kinsland, G.L.; Paine, W.R.; Duhon, M.P.; Dungan, J.R.; Kurth, R.J.; Moore, D.R.; Lyons, W.S.

1983-09-01T23:59:59.000Z

385

Geothermal district heating and cooling system for the city of Calistoga, California  

DOE Green Energy (OSTI)

Calistoga has long been known for having moderate (270/sup 0/F maximum) hydrothermal deposits. The economic feasibility of a geothermal heating and cooling district for a portion of the downtown commercial area and city-owned building was studied. Descriptions of existing and proposed systems for each building in the block are presented. Heating and cooling loads for each building, retrofit costs, detailed cost estimates, system schematics, and energy consumption data for each building are included. (MHR)

Frederick, J.

1982-01-01T23:59:59.000Z

386

Modeling of thermodynamic and chemical changes in low-temperature geothermal systems  

DOE Green Energy (OSTI)

A method was developed to incorporate the transport of several chemical components into a model of the transport of fluid mass and heat within a geothermal system. It was demonstrated that the use of coupled hydrological, thermal and chemical data allows for the determination of field porosities, amounts and regions of cool recharge into the system as well as field permeabilities and the hot reservoir volume. With the additional information a reliable prediction of the long-term cooling rate can be made.

Spencer, A.L.

1986-12-01T23:59:59.000Z

387

Geothermal energy resource investigations in the Eastern Copper River Basin, Alaska  

DOE Green Energy (OSTI)

This report consists of a review of the geological, geochemical and geophysical data available for the Eastern Copper River basin with emphasis on the mud volcanoes, and the results of geophysical and geochemical studies carried out in the summers of 1982 and 1984. The purpose was to determine if there are geothermal energy resources in the Copper River Basin. The Eastern Copper River basin is situated on the flanks of a major volcano, Mt. Drum, which was active as late as 200,000 years ago and which is thought to have retained significant amounts of residual heat at high levels. Mt. Wrangell, farther to the east, has been volcanically active up to the present time. The 1982 geophysical and geochemical surveys located three principal areas of possible geothermal interest, one near Tazlina and two near the Klawasi mud volcanoes. The intensive survey work of 1984 was concentrated on those areas. We have integrated the results of soil helium, soil mercury, gravity, aeromagnetic, electrical, self-potential, and controlled-source audio magnetotelluric (CSAMT) surveys to evaluate the geothermal potential of the areas studied. 36 figs.

Wescott, E.M.; Turner, D.L.

1985-06-01T23:59:59.000Z

388

Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis  

Science Conference Proceedings (OSTI)

This report highlights the work that was done to characterize fractured geothermal reservoirs using production data. That includes methods that were developed to infer characteristic functions from production data and models that were designed to optimize reinjection scheduling into geothermal reservoirs, based on these characteristic functions. The characterization method provides a robust way of interpreting tracer and flow rate data from fractured reservoirs. The flow-rate data are used to infer the interwell connectivity, which describes how injected fluids are divided between producers in the reservoir. The tracer data are used to find the tracer kernel for each injector-producer connection. The tracer kernel describes the volume and dispersive properties of the interwell flow path. A combination of parametric and nonparametric regression methods were developed to estimate the tracer kernels for situations where data is collected at variable flow-rate or variable injected concentration conditions. The characteristic functions can be used to calibrate thermal transport models, which can in turn be used to predict the productivity of geothermal systems. This predictive model can be used to optimize injection scheduling in a geothermal reservoir, as is illustrated in this report.

Roland N. Horne, Kewen Li, Mohammed Alaskar, Morgan Ames, Carla Co, Egill Juliusson, Lilja Magnusdottir

2012-06-30T23:59:59.000Z

389

Development of an Enhanced Two-Phase Production System at the Geysers Geothermal Field  

DOE Green Energy (OSTI)

A method was developed to enhance geothermal steam production from two-phase wells at THE Geysers Geothermal Field. The beneficial result was increased geothermal production that was easily and economically delivered to the power plant.

Steven Enedy

2001-12-14T23:59:59.000Z

390

Enhanced geothermal systems (EGS) using CO2 as working fluid - Anovelapproach for generating renewable energy with simultaneoussequestration of carbon  

Science Conference Proceedings (OSTI)

Responding to the need to reduce atmospheric emissions of carbon dioxide, Donald Brown (2000) proposed a novel enhanced geothermal systems (EGS) concept that would use CO{sub 2} instead of water as heat transmission fluid, and would achieve geologic sequestration of CO{sub 2} as an ancillary benefit. Following up on his suggestion, we have evaluated thermophysical properties and performed numerical simulations to explore the fluid dynamics and heat transfer issues in an engineered geothermal reservoir that would be operated with CO{sub 2}. We find that CO{sub 2} is superior to water in its ability to mine heat from hot fractured rock. CO{sub 2} also has certain advantages with respect to wellbore hydraulics, where larger compressibility and expansivity as compared to water would increase buoyancy forces and would reduce the parasitic power consumption of the fluid circulation system. While the thermal and hydraulic aspects of a CO{sub 2}-EGS system look promising, major uncertainties remain with regard to chemical interactions between fluids and rocks. An EGS system running on CO{sub 2} has sufficiently attractive features to warrant further investigation.

Pruess, Karsten

2006-06-07T23:59:59.000Z

391

Energy Returned On Investment of Engineered Geothermal Systems Annual Report FY2011  

SciTech Connect

Energy Return On Investment (EROI) is an important figure of merit for assessing the viability of energy alternatives. For geothermal electric power generation, EROI is determined by the electricity delivered to the consumer compared to the energy consumed to construct, operate, and decommission the facility. Critical factors in determining the EROI of Engineered Geothermal Systems (EGS) are examined in this work. These include the input energy embodied into the system. The embodied energy includes the energy contained in the materials, as well as, that consumed in each stage of manufacturing from mining the raw materials to assembling the finished plant. Also critical are the system boundaries and value of the energy - heat is not as valuable as electrical energy.

Mansure, A.J.

2011-12-31T23:59:59.000Z

392

Strategies for Detecting Hidden Geothermal Systems by Near-Surface Gas Monitoring  

E-Print Network (OSTI)

Conceptual models of the Dixie Valley, Nevada Geothermaldioxide flux at the Dixie Valley geothermal field, Nevada;by faulting. At the Dixie Valley Geothermal Field, USA, CO 2

Lewicki, Jennifer L.; Oldenburg, Curtis M.

2004-01-01T23:59:59.000Z

393

Geothermal Literature Review At Medicine Lake Geothermal Area (1984) | Open  

Open Energy Info (EERE)

Geothermal Area (1984) Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Medicine Lake Geothermal Area (1984) Exploration Activity Details Location Medicine Lake Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1984 Usefulness not indicated DOE-funding Unknown Notes The melt zones of volcanic clusters was analyzed with recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. References Goldstein, N. E.; Flexser, S. (1 December 1984) Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences

394

Geothermal Literature Review At Salton Trough Geothermal Area (1984) | Open  

Open Energy Info (EERE)

Trough Geothermal Area (1984) Trough Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Salton Trough Geothermal Area (1984) Exploration Activity Details Location Salton Trough Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1984 Usefulness not indicated DOE-funding Unknown Notes The melt zones of volcanic clusters was analyzed with recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. References Goldstein, N. E.; Flexser, S. (1 December 1984) Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences

395

BSU GHP District Heating and Cooling System (PHASE I) Geothermal Project |  

Open Energy Info (EERE)

BSU GHP District Heating and Cooling System (PHASE I) Geothermal Project BSU GHP District Heating and Cooling System (PHASE I) Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title BSU GHP District Heating and Cooling System (PHASE I) Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 1: Technology Demonstration Projects Project Description The Project will result in the construction of the largest ground source geothermal-based closed loop GHP heating and cooling system in America. Phase I of the Project began with the design, competitive bidding, and contract award for the drilling and "looping" of 1,800 boreholes in sports fields and parking lots on the north side of campus. The components of the entire Project include: (1) 4,100 four hundred feet deep boreholes spread over about 25 acres of sport fields and parking lots (Phase I will involve 1,800 boreholes spread over about 8 acres); (2) Each Phase will require a district energy station (about 9,000 sq. feet) that will each contain (A) two 2,500 ton heat pump chillers (which can produce 150 degree (F) water for heating purposes and 42 degree (F) water for cooling purposes); and (B) a variety of water pumps, electrical and other control systems; (3) a closed loop piping system that continuously circulates about 20,000 gallons of water (no anti-freeze) per minute through the boreholes, energy stations, a (two pipe) hot water loop and a (two pipe) chilled water loop (no water is drawn from the aquifer at any point in the operation); and (4) hot/chilled water-to-air heat exchangers in each of the buildings.

396

Seismological investigation of crack formation in hydraulic rock fracturing experiments and in natural geothermal environments. Progress report, September 1, 1978-August 31, 1979  

DOE Green Energy (OSTI)

An interpretation theory based on the fluid-filled crack model of geothermal systems is being developed and tested against a variety of data from various geothermal areas. Progress is reported on the following subjects: (1) analysis and interpretation of seismic data obtained from the bore holes at the LASL Hot Dry Rock geothermal site. (2) Collection, analysis and interpretation of data on deep volcanic tremors at the USGS Hawaii Volcano Observatory. (3) Development of a new method for determining seismic attenuation at frequencies higher than 1HZ, and initiation of a cooperative work with Mexican seismologists on the attenuation measurements at various geothermal areas in Baja, California using the method. (4) Installation of 3-component digital event-recorders at four stations in the Newberry Peak volcano, Oregon. (5) Developing a computer program for calculating seismic motion generated by the vibration of fluid-filled crack in a layered medium.

Aki, K.

1979-09-01T23:59:59.000Z

397

Systems Study Of Drilling For Installation Of Geothermal Heat Pumps  

E-Print Network (OSTI)

Geothermal, or ground-source, heat pumps (GHP) are much more efficient than air-source units such as conventional air conditioners. A major obstacle to their use is the relatively high initial cost of installing the heat-exchange loops into the ground. In an effort to identify drivers which influence installation cost, a number of site visits were made during 1996 to assess the state-of-the-art in drilling for GHP loop installation. As an aid to quantifying the effect of various drilling-process improvements, we constructed a spread-sheet based on estimated time and material costs for all the activities required in a typical loop-field installation. By substituting different (improved) values into specific activity costs, the effect on total project costs can be easily seen. This report contains brief descriptions of the site visits, key points learned during the visits, copies of the spread-sheet, recommendations for further work, and sample results from sensitivity analysis using the...

John Finger William; William N. Sullivan; Ronald D. Jacobson; Kenneth G. Pierce

1997-01-01T23:59:59.000Z

398

Systems study of drilling for installation of geothermal heat pumps  

DOE Green Energy (OSTI)

Geothermal, or ground-source, heat pumps (GHP) are much more efficient than air-source units such as conventional air conditioners. A major obstacle to their use is the relatively high initial cost of installing the heat-exchange loops into the ground. In an effort to identify drivers which influence installation cost, a number of site visits were made during 1996 to assess the state-of-the-art in drilling for GHP loop installation. As an aid to quantifying the effect of various drilling-process improvements, we constructed a spread-sheet based on estimated time and material costs for all the activities required in a typical loop-field installation. By substituting different (improved) values into specific activity costs, the effect on total project costs can be easily seen. This report contains brief descriptions of the site visits, key points learned during the visits, copies of the spread-sheet, recommendations for further work, and sample results from sensitivity analysis using the spread-sheet.

Finger, J.T.; Sullivan, W.N.; Jacobson, R.D.; Pierce, K.G.

1997-09-01T23:59:59.000Z

399

GEOLOGIC FRAMEWORK OF THE EAST FLANK, COSO GEOTHERMAL FIELD: IMPLICATIONS  

Open Energy Info (EERE)

GEOLOGIC FRAMEWORK OF THE EAST FLANK, COSO GEOTHERMAL FIELD: IMPLICATIONS GEOLOGIC FRAMEWORK OF THE EAST FLANK, COSO GEOTHERMAL FIELD: IMPLICATIONS FOR EGS DEVELOPMENT Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: GEOLOGIC FRAMEWORK OF THE EAST FLANK, COSO GEOTHERMAL FIELD: IMPLICATIONS FOR EGS DEVELOPMENT Details Activities (1) Areas (1) Regions (0) Abstract: The Coso Geothermal Field is a large, high temperature system located in eastern California on the western edge of the Basin and Range province. The East Flank of this field is currently under study as a DOE-funded Enhanced Geothermal Systems (EGS) project. This paper summarizes petrologic and geologic investigations on two East Flank wells, 34A-9 and 34-9RD2 conducted as part of a continuing effort to better understand how the rocks will behave during hydraulic and thermal stimulation. Well 34A-9

400

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University-mail: sass@geo.tu-darmstadt.de ABSTRACT The investigation and exploration of potential deep geothermal important in the exploration of potentially engineered geothermal systems and of mid to low enthalpy

Stanford University

Note: This page contains sample records for the topic "investigation systems geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Beneficial effects of groundwater entry into liquid-dominated geothermal systems  

DOE Green Energy (OSTI)

In all active liquid-dominated geothermal systems there is continuous circulation of mass and transfer of heat, otherwise they would slowly cool and fade away. In the natural state these systems are in dynamic equilibrium with the surrounding colder groundwater aquifers. The ascending geothermal fluids cool conductively, boil, or mix with groundwaters, and ultimately may discharge at the surface as fumaroles or hot springs. With the start of fluid production and the lowering of reservoir pressure, the natural equilibrium is disrupted and cooler groundwater tends to enter the reservoir. Improperly constructed or damaged wells, and wells located near the margins of the geothermal system, exhibit temperature reductions (and possibly scaling from mixing of chemically distinct fluids) as the cooler-water moves into the reservoir. These negative effects, especially in peripheral wells are, however, compensated by the maintenance of reservoir pressure and a reduction in reservoir boiling that might result in mineral precipitation in the formation pores and fractures. The positive effect of cold groundwater entry on the behavior of liquid-dominated system is illustrated by using simple reservoir models. The simulation results show that even though groundwater influx into the reservoir causes cooling of fluids produced from wells located near the cold-water recharge area, it also reduces pressure drawdown and boiling in the exploited zone, and sweeps the heat stored in the reservoir rocks toward production wells, thus increasing the productive life of the wells and field. 9 refs.

Lippmann, M.J. (Lawrence Berkeley Lab., CA (USA)); Truesdell, A.H. (Geological Survey, Menlo Park, CA (USA))

1990-04-01T23:59:59.000Z

402

Interaction of cold-water aquifers with exploited reservoirs of the Cerro Prieto geothermal system  

DOE Green Energy (OSTI)

Cerro Prieto geothermal reservoirs tend to exhibit good hydraulic communication with adjacent cool groundwater aquifers. Under natural state conditions the hot fluids mix with the surrounding colder waters along the margins of the geothermal system, or discharge to shallow levels by flowing up fault L. In response to exploitation reservoir pressures decrease, leading to changes in the fluid flow pattern in the system and to groundwater influx. The various Cerro Prieto reservoirs have responded differently to production, showing localized near-well or generalized boiling, depending on their access to cool-water recharge. Significant cooling by dilution with groundwater has only been observed in wells located near the edges of the field. In general, entry of cool water at Cerro Prieto is beneficial because it tends to maintain reservoir pressures, restrict boiling, and lengthen the life and productivity of wells. 15 refs., 10 figs., 1 tab.

Truesdell, A.H. (Geological Survey, Menlo Park, CA (USA)); Lippmann, M.J. (Lawrence Berkeley Lab., CA (USA))

1990-04-01T23:59:59.000Z

403

Enhanced Geothermal Systems Project Development Solicitation - Final Report - 09/30/2000 - 02/01/2001  

DOE Green Energy (OSTI)

The Enhanced Geothermal System concept is to develop the technology required to extract energy from the reduced permeability zones that underlie all high-temperature geothermal systems. Our concept is that injection wells will be drilled into the high temperature zone. The wells will identify fractures that are only poorly connected to the overlying reservoir. Water injected into these fractures will cause them to propagate through thermal contraction, increase in hydrostatic pressure, and reduction of effective stress. The fractures will connect with the overlying normal temperature reservoir, and steam will be produced from existing production wells. The injection water will generate high thermal quality steam while mitigating problems relating to high gas and chloride.

Nielson, Dennis L.

2001-05-07T23:59:59.000Z

404

Experience with the EM-60 electromagnetic system for geothermal exploration in Nevada  

DOE Green Energy (OSTI)

Lawrence Berkeley Laboratory (LBL) conducted controlled-source electromagnetic (EM) surveys at three geothermal prospects in northern Nevada. Over 40 soundings were made in Panther Canyon (Grass Valley), near Winnemucca; Soda Lakes, near Fallon; and McCoy, west of Austin, to test and demonstrate the applicability of LBL's EM-60 system to geothermal exploration. The EM-60 is a frequency-domain system using three-component magnetic detection. Typically, +-65 A is applied to an 100-m-diameter four-turn horizontal loop, generating a dipole moment >10/sup 6/ MKS over the frequency range 10/sup -3/ to 10/sup -3/ Hz. With such a source loop, soundings were made, at transmitter-receiver separations of up to 4 km, providing a maximum depth of penetration of 4 km.

Wilt, M.; Goldstein, N.E.; Stark, M.; Haught, J.R.; Morrison, H.F.

1981-09-01T23:59:59.000Z

405

Temporal changes in noble gas compositions within the Aidlinsector ofThe Geysers geothermal system  

Science Conference Proceedings (OSTI)

The use of nonreactive isotopic tracers coupled to a full thermal-hydrological reservoir simulation allows for an improved method of investigating how reservoir fluids contained within matrix and fractures contribute over time to fluids produced from geothermal systems. A combined field and modeling study has been initiated to evaluate the effects of injection, production, and fracture-matrix interaction on produced noble gas contents and isotopic ratios. Gas samples collected periodically from the Aidlin steam field at The Geysers, California, between 1997 and 2006 have been analyzed for their noble gas compositions, and reveal systematic shifts in abundance and isotopic ratios over time. Because of the low concentrations of helium dissolved in the injection waters, the injectate itself has little impact on the helium isotopic composition of the reservoir fluids over time. However, the injection process may lead to fracturing of reservoir rocks and an increase in diffusion-controlled variations in noble gas compositions, related to gases derived from fluids within the rock matrix.

Dobson, Patrick; Sonnenthal, Eric; Kennedy, Mack; van Soest,Thijs; Lewicki, Jennifer

2006-05-03T23:59:59.000Z

406

Geothermal Technologies Office: Geothermal Maps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

407

Geothermal Investigations of California Submerged Lands and Spherical Flow in Naturally Fractured Reservoirs  

DOE Green Energy (OSTI)

A large portion of California State-owned land is the tidal and submerged land along the coastline and around the islands that extends seaward for three geographical miles. Other large areas of State-owned lands form the beds of lakes and navigable rivers. Some evidence, such as the proximity of hot springs, indicates there may be important geothermal potential on these lands. The purpose of this project is to develop methods, tools, and interpretive techniques to explore for and evaluate geothermal resources on submerged lands. Presently, the state of the art is primitive because there has been little interest or effort in assessing the resource potential of submerged lands, and the limited work carried out thus far has been for scientific purposes. There has been a moderate amount of water temperature measuring for oceanographic or limnologic studies and fairly reliable techniques exist. There have been limited measurements of the temperature, thermal gradient, and heat flow in bottom sediment of the ocean area off California and from the lakes. Probably less than a dozen data points exist for State-owned land. This work was done using large equipment, such as piston corers with outrigger-mounted thermistors arrayed along the core barrels. To achieve penetration, such equipment requires heavy weights, strong cable, heavy duty winches, large crews and oceanographic research-type vessels or large barges, and this entails considerable expenses and logistical problems. Clearly, many hundreds, or thousands of data points are required for a remotely reliable evaluation of the resources. The first problem is to assess existing methods and develop others that will enable economical and efficient exploration for geothermal resources on submerged lands.

Northup, William F.; Everitts, D.J.; Eaton, C.F.; Welday, E.E.; Martin, Roger C.; Ershaghi, Iraj; Wilde, P.; Oldson, J.C.; Case, C.W.

1976-01-01T23:59:59.000Z

408

Sperry Low Temperature Geothermal Conversion System, Phase 1 and Phase II. Final report. Volume III. Systems description  

DOE Green Energy (OSTI)

The major fraction of hydrothermal resources that have the prospect of being economically useful for the generation of electricity are in the 300/sup 0/F to 425/sup 0/F temperature range. Cost-effective conversion of the geothermal energy to electricity requires the conception and reduction to practice of new ideas to improve conversion efficiency, enhance brine flow, reduce plant costs, increase plant availability, and shorten the time between investment and return. The problems addressed during past activities are those inherent in the geothermal environment, in the binary fluid cycle, in the difficulty of efficiently converting the energy of a low-temperature resource, and in geothermal economics. Explained in detail in this document, some of these problems are: the energy expended by the down-hole pump; the difficulty in designing reliable down-hole equipment; fouling of heat-exchanger surfaces by geothermal fluids; the unavailability of condenser cooling water at most geothermal sites; the large portion of the available energy used by the feed pump in a binary system; the pinch effect - a loss in available energy in transferring heat from water to an organic fluid; flow losses in fluids that carry only a small amount of useful energy to begin with; high heat-exchanger costs - the lower the temperature interval of the cycle, the higher the heat exchanger costs in $/kW (actually, more than inversely proportional); the complexity and cost of the many auxiliary elements of proposed geothermal plants; and the unfortunate cash flow vs. investment curve caused by the many years of investment required to bring a field into production before any income is realized.

Matthews, H.B.

1984-01-01T23:59:59.000Z

409

Geological and geothermal investigation of the lower Wind River valley, southwestern Washington Cascade Range  

DOE Green Energy (OSTI)

The detailed geology of the lower Wind River valley is presented with emphasis on those factors that bear significantly on development of a geothermal resource. The lower Wind River drainage consists primarily of the Ohanapecosh Formation, an Oligocene unit that is recognized across the entire southern Washington Cascade Range. The formation is at least 300 m thick in the Wind River valley area. It consists largely of volcaniclastic sediments, with minor massive pyroclastic flows, volcanic breccias and lava flows. Low grade zeolite facies metamorphism during the Miocene led to formation of hydrothermal minerals in Ohanapecosh strata. Metamorphism probably occurred at less than 180{sup 0}C.

Berri, D.A.; Korosec, M.A.

1983-01-01T23:59:59.000Z

410

Geothermal systems of the Mono Basin-Long Valley region, eastern California and western Nevada  

DOE Green Energy (OSTI)

The region that includes Mono Basin, Long Valley, the Bridgeport-Bodie Hills area, and Aurora, in eastern California and western Nevada was studied to determine the possible causes and interactions of the geothermal anomalies in the Mono Basin-Long Valley region as a whole. A special goal of the study was to locate possible shallow bodies of magma and to determine their influence on the hydrothermal systems in the region. (ACR)

Higgins, C.T.; Flynn, T.; Chapman, R.H.; Trexler, D.T.; Chase, G.R.; Bacon, C.F.; Ghusn, G. Jr.

1985-01-01T23:59:59.000Z

411

Circulating pump impeller: Presbyterian Intercommunity Hospital, Klamath Falls, Oregon, geothermal heating system. Failure analysis report  

DOE Green Energy (OSTI)

The Presbyterian Intercommunity Hospital located in Klamath Falls, Oregon utilizes geothermal fluid pumped from its own well to provide space heat and domestic hot water. During an inspection of the heating system after a chemical cleaning of the heat exchangers, the circulating pump was dismantled to replace its seals which were found to be leaking. At that time, the impeller was found to contain many cracks. The analysis of those cracks and a scale sample removed from the impeller is presented. (MHR)

Mitchell, D.A.; Ellis, P.F.

1979-11-30T23:59:59.000Z

412

Simulation of water-rock interaction in the Yellowstone geothermal system using TOUGHREACT  

DOE Green Energy (OSTI)

The Yellowstone geothermal system provides an ideal opportunity to test the ability of reactive transport models to simulate the chemical and hydrological effects of water-rock interaction. Previous studies of the Yellowstone geothermal system have characterized water-rock interaction through analysis of rocks and fluids obtained from both surface and downhole samples. Fluid chemistry, rock mineralogy, permeability, porosity, and thermal data obtained from the Y-8 borehole in Upper Geyser Basin were used to constrain a series of reactive transport simulations of the Yellowstone geothermal system using TOUGHREACT. Three distinct stratigraphic units were encountered in the 153.4 m deep Y-8 drill core: volcaniclastic sandstone, perlitic rhyolitic lava, and nonwelded pumiceous tuff. The main alteration phases identified in the Y-8 core samples include clay minerals, zeolites, silica polymorphs, adularia, and calcite. Temperatures observed in the Y-8 borehole increase with depth from sub-boiling conditions at the surface to a maximum of 169.8 C at a depth of 104.1 m, with near-isothermal conditions persisting down to the well bottom. 1-D models of the Y-8 core hole were constructed to simulate the observed alteration mineral assemblage given the initial rock mineralogy and observed fluid chemistry and temperatures. Preliminary simulations involving the perlitic rhyolitic lava unit are consistent with the observed alteration of rhyolitic glass to form celadonite.

Dobson, Patrick F.; Salah, Sonia; Spycher, Nicolas; Sonnenthal, Eric L.

2003-04-28T23:59:59.000Z

413

Simulation of water-rock interaction in the yellowstone geothermal system using TOUGHREACT  

DOE Green Energy (OSTI)

The Yellowstone geothermal system provides an ideal opportunity to test the ability of reactive transport models to accurately simulate water-rock interaction. Previous studies of the Yellowstone geothermal system have characterized water-rock interaction through analysis of rocks and fluids obtained from both surface and downhole samples. Fluid chemistry, rock mineralogy, permeability, porosity, and thermal data obtained from the Y-8 borehole in Upper Geyser Basin were used to constrain a series of reactive transport simulations of the Yellowstone geothermal system using TOUGHREACT. Three distinct stratigraphic units were encountered in the 153.4 m deep Y-8 drill core: volcaniclastic sandstone, perlitic rhyolitic lava, and nonwelded pumiceous tuff. The main alteration phases identified in the Y-8 core samples include clay minerals, zeolites, silica polymorphs, adularia, and calcite. Temperatures observed in the Y-8 borehole increase with depth from sub-boiling conditions at the surface to a maximum of 169.8 C at a depth of 104.1 m, with near-isothermal conditions persisting down to the well bottom. 1-D models of the Y-8 core hole were constructed to determine if TOUGHREACT could accurately predict the observed alteration mineral assemblage given the initial rock mineralogy and observed fluid chemistry and temperatures. Preliminary simulations involving the perlitic rhyolitic lava unit are consistent with the observed alteration of rhyolitic glass to form celadonite.

Dobson, P.F.; Salah, S.; Spycher, N.; Sonnenthal, E.

2003-04-28T23:59:59.000Z

414

Feasibility study of geothermal energy for heating greenhouses. Final report  

SciTech Connect

The technical feasibility of heating greenhouses with geothermal heat is established. Off-the-shelf equipment suitable for geothermal heating is readily available. A procedure is given to economically examine a geothermal site for its suitability. Generally, geothermal heating systems are capital intensive. Where the geothermal energy is free the geothermal system is very attractive and where the cost of geothermal heat is the same as other energy, Btu/$, geothermal heat is unattractive.

LaFrance, L.J.

1979-06-01T23:59:59.000Z

415

Multi-use geothermal energy system with augmentation for enhanced utilization. Non-electric application of geothermal energy in Susanville, California. Final report  

DOE Green Energy (OSTI)

Aeroject Energy Conversion Company has completed a site specific engineering and economic study of multi-use, augmented geothermal space/water heating and cooling systems in cooperation with the City of Susanville, California. The overall benefits to the City of Susanville, in both the public and private sectors, of using low temperature (150/sup 0/F to 240/sup 0/F) geothermal resources are explored. Options considered, alone and in combination, include heat pumps, fossil-fuel peaking, user load balancing, and cascading from the geothermal system serving the public buildings into a private Park of Commerce development. A range of well temperatures, depths, flow rates, and drilling costs are considered to provide system cost sensitivites and to make the study more widely useful to other sites. A planned development is emphasized for ease of financing and expansion. A preliminary design of Phase A of a Susanville Public Building Energy System and a conceptual design of an integrated park of Commerce, Phase I, are included. This system was designed for a 150/sup 0/F resource and can be used as a model for other communities with similar resource temperatures.

Olsonn, G.K.; Benner-Drury, D.L.; Cunnington, G.R.

1979-02-01T23:59:59.000Z

416

Multi-use geothermal-energy system with augmentation for enhanced utilization: a non-electric application of geothermal energy in Susanville, California. Final report  

DOE Green Energy (OSTI)

A site specific engineering and economic study of multi-use, augmented geothermal space/water heating and cooling systems was completed. The overall benefits to the City of Susanville, in both the public and private sectors, of using low temperature (150/sup 0/F to 240/sup 0/F) geothermal resources are explored. Options considered, alone and in combination, include heat pumps, fossil-fuel peaking, user load balancing, and cascading from the geothermal system serving the public buildings into a private Park of Commerce development. A range of well temperatures, depths, flow rates, and drilling costs are considered to provide system cost sensitivities and to make the study more widely useful to other sites. A planned development is emphasized for ease of financing of expansion. A preliminary design of Phase A of a Susanville Public Building Energy System and a conceptual design of an integrated Park of Commerce, Phase I, are included. This system was designed for a 150/sup 0/F resource and can be used as a model for other communities with similar resource temperatures.

Olson, G.K.; Benner-Drury, D.L.; Cunnington, G.R.

1979-02-01T23:59:59.000Z

417

Multielement geochemistry of solid materials in geothermal systems and its applications. Part 1. Hot-water system at the Roosevelt Hot Springs KGRA, Utah  

DOE Green Energy (OSTI)

Geochemical studies of the geothermal system at Roosevelt Hot Springs, Utah, have led to development of chemical criteria for recognition of major features of the system and to a three-dimensional model for chemical zoning in the system. Based on this improved level of understanding several new or modified geochemical exploration and assessment techniques have been defined and are probably broadly applicable to evaluation of hot-water geothermal systems. The main purpose of this work was the development or adaptation of solids geochemical exploration techniques for use in the geothermal environment. (MHR)

Bamford, R.W.; Christensen, O.D.; Capuano, R.M.

1980-02-01T23:59:59.000Z

418

On modeling of chemical stimulation of an enhanced geothermal system using a high pH solution with chelating agent  

SciTech Connect

Dissolution of silica and calcite in the presence of a chelating agent (NTA) at a high pH was successfully demonstrated in laboratory experiments using a high-temperature flow reactor. (Note that the term 'silica' used here includes amorphous silica, quartz, and silicate glass bead). The mineral dissolution and associated porosity enhancement in the experiments were reproduced by reactive transport modeling using TOUGHREACT. The chemical stimulation method was applied by numerical modeling to a field geothermal injection well system to investigate its effectiveness. Parameters applicable to the quartz monzodiorite unit at the Enhanced Geothermal Systems (EGS) site at Desert Peak (Nevada) were used. Results indicate that the injection of a high pH chelating solution results in dissolution of both calcite and plagioclase, while avoiding precipitation of calcite at high temperature conditions. Consequently reservoir porosity and permeability can be enhanced especially near the injection well. Injection at a lower temperature of 120 C (over 160 C in the base-case) results in a porosity increase that is smaller close to the injection point, but extends to a larger radial distance. A slower kinetic rate results in less aggressive mineral dissolution close to the injection point and larger extent along the flow path, which is favorable for chemical stimulation.

Xu, T.; Rose, P.; Fayer, S.; Pruess, K.

2009-05-01T23:59:59.000Z

419

Cuttings Analysis At International Geothermal Area, Philippines (Laney,  

Open Energy Info (EERE)

Cuttings Analysis At International Geothermal Area Cuttings Analysis At International Geothermal Area Philippines (Laney, 2005) Exploration Activity Details Location International Geothermal Area Philippines Exploration Technique Cuttings Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Improving Exploration Models of Andesite-Hosted Geothermal Systems, Allis, Browne, Bruton, Christensen, Hulen, Lutz, Mindenhall, Nemcok, Norman, Powell and Stimac. The approach we are using is to characterize the petrology, geochemistry and fractures in core and cuttings samples and then integrate these data with measured downhole temperatures and pressures and with the compositions of the reservoir fluids. Our investigations represent cooperative efforts with the Karaha-Bodas Co. LLC (a subsidiary of

420

Compound and Elemental Analysis At International Geothermal Area, Indonesia  

Open Energy Info (EERE)

Indonesia Indonesia (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At International Geothermal Area Indonesia (Laney, 2005) Exploration Activity Details Location International Geothermal Area Indonesia Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Improving Exploration Models of Andesite-Hosted Geothermal Systems, Allis, Browne, Bruton, Christensen, Hulen, Lutz, Mindenhall, Nemcok, Norman, Powell and Stimac. The approach we are using is to characterize the petrology, geochemistry and fractures in core and cuttings samples and then integrate these data with measured downhole temperatures and pressures and with the compositions of the reservoir fluids. Our investigations represent

Note: This page contains sample records for the topic "investigation systems geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Magnetotellurics At International Geothermal Area, Indonesia (Laney, 2005)  

Open Energy Info (EERE)

(Laney, 2005) (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At International Geothermal Area Indonesia (Laney, 2005) Exploration Activity Details Location International Geothermal Area Indonesia Exploration Technique Magnetotellurics Activity Date Usefulness useful DOE-funding Unknown Notes Improving Exploration Models of Andesite-Hosted Geothermal Systems, Allis, Browne, Bruton, Christensen, Hulen, Lutz, Mindenhall, Nemcok, Norman, Powell and Stimac. The approach we are using is to characterize the petrology, geochemistry and fractures in core and cuttings samples and then integrate these data with measured downhole temperatures and pressures and with the compositions of the reservoir fluids. Our investigations represent

422

Geothermal instrumentation development activities at Sandia  

DOE Green Energy (OSTI)

A major element of Sandia's Geothermal Technology Development Program is the effort directed toward development of instrumentation. This effort has two aspects, the development of high temperature components and prototype tools and the investigation of new concepts and capabilities. The focus of these activities is the acquisition of information to make geothermal drilling and resource development more efficient. Several projects of varying nature and scope make up the instrumentation development element, and this element will expand as the program emphasis on development of an advanced geothermal drilling system and the need for improved information grow. 13 refs.

Carson, C.C.

1985-03-01T23:59:59.000Z

423

Fine-grained clay fraction (,0.2 {mu}m): An interesting tool to approach the present thermal and permeability state in active geothermal systems  

DOE Green Energy (OSTI)

We have investigated by X-ray diffraction the very fine grained secondary minerals (< 0.2 {micro}m) developed in geothermal systems, in relation with their present thermal and permeability state. Because the smallest particles are the most reactive part of a rock, they are the youngest mineral phases of the geothermal fields. This study has been performed on two active geothermal fields: Milos field, Greece (130 < T < 320 C) and Chipilapa field, Salvador (90 < T < 215 C). In the Milos field, the mineralogical composition of the < 0.2 {micro}m clay fraction observed in the reservoir strongly differs from the overlying altered metamorphic schists in the presence of abundant quantities of saponite and talc/saponite interstratified minerals at unusually high temperature. These phases are considered to be kinetically control-led ''metastable'' minerals which rapidly evolve towards actinolite and talc for present temperatures higher than 300 C. Their occurrence is a good indicator of discharge in highly permeable zones. In the geothermal field of Chipilapa, the mineralogical composition of the < 0.2 {micro}m clay fractions fairly agrees with the temperatures presently measured in the wells, whereas several discrepancies may be pointed out from the compositions of coarser clay fractions (< 5 {micro}m) which contain minerals inherited from higher temperature stages. Permeable zones may be evidenced from an increase of expandable components in the interstratified minerals and a decrease of the coherent domain of the unexpandable clay particles (chlorite).

Patrier, P.; Papapanagiotou, P.; Beaufort, D.; Traineau, H.; Bril, H.

1992-01-01T23:59:59.000Z

424

Insights From Laboratory Experiments On Simulated Faults With Application To Fracture Evolution In Geothermal Systems  

Science Conference Proceedings (OSTI)

Laboratory experiments provide a wealth of information related to mechanics of fracture initiation, fracture propagation processes, factors influencing fault strength, and spatio-temporal evolution of fracture properties. Much of the existing literature reports on laboratory studies involving a coupling of thermal, hydraulic, mechanical, and/or chemical processes. As these processes operate within subsurface environments exploited for their energy resource, laboratory results provide insights into factors influencing the mechanical and hydraulic properties of geothermal systems. I report on laboratory observations of strength and fluid transport properties during deformation of simulated faults. The results show systematic trends that vary with stress state, deformation rate, thermal conditions, fluid content, and rock composition. When related to geophysical and geologic measurements obtained from engineered geothermal systems (e.g. microseismicity, wellbore studies, tracer analysis), laboratory results provide a means by which the evolving thermal reservoir can be interpreted in terms of physico-chemical processes. For example, estimates of energy release and microearthquake locations from seismic moment tensor analysis can be related to strength variations observed from friction experiments. Such correlations between laboratory and field data allow for better interpretations about the evolving mechanical and fluid transport properties in the geothermal reservoir – ultimately leading to improvements in managing the resource.

Stephen L. Karner, Ph.D

2006-06-01T23:59:59.000Z

425

NREL: Geothermal Technologies - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Technology Transfer Technology Deployment Energy Systems Integration Geothermal Technologies Search More Search Options Site Map Printable Version Projects The NREL...

426

NREL: Geothermal Technologies - Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Technology Transfer Technology Deployment Energy Systems Integration Geothermal Technologies Search More Search Options Site Map Printable Version Capabilities The...

427

Enhanced Geothermal Systems (EGS) with CO2 as Heat Transmission Fluid  

Open Energy Info (EERE)

with CO2 as Heat Transmission Fluid with CO2 as Heat Transmission Fluid Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Enhanced Geothermal Systems (EGS) with CO2 as Heat Transmission Fluid Project Type / Topic 1 Laboratory Call for Submission of Applications for Research, Development and Analysis of Geothermal Technologies Project Type / Topic 2 Supercritical Carbon Dioxide / Reservoir Rock Chemical Interactions Project Description Previous and current attempts to develop EGS in the U.S., Japan, Europe and Australia have all employed water as a heat transmission fluid. Water has many properties that make it a favorable medium for heat extraction, but it also has serious drawbacks. The use of supercritical CO2 (scCO2) instead of water as heat extraction fluid was suggested by Donald Brown of Los Alamos National Laboratory as a "game changing" alternative that can avoid the problems of aqueous fluids, make heretofore inaccessible energy resources available for human use, and provide ancillary benefits by using and storing CO2.

428

Laboratory testing and modeling to evaluate perfluorocarbon compounds as tracers in geothermal systems  

Science Conference Proceedings (OSTI)

The thermal stability and adsorption characteristics of three perfluorinated hydrocarbon compounds were evaluated under geothermal conditions to determine the potential to use these compounds as conservative or thermally-degrading tracers in Engineered (or Enhanced) Geothermal Systems (EGS). The three compounds tested were perfluorodimethyl-cyclobutane (PDCB), perfluoromethylcyclohexane (PMCH), and perfluorotrimethylcyclohexane (PTCH), which are collectively referred to as perfluorinated tracers, or PFTs. Two sets of duplicate tests were conducted in batch mode in gold-bag reactors, with one pair of reactors charged with a synthetic geothermal brine containing the PFTs and a second pair was charged with the brine-PFT mixture plus a mineral assemblage chosen to be representative of activated fractures in an EGS reservoir. A fifth reactor was charged with deionized water containing the three PFTs. The experiments were conducted at {approx}100 bar, with temperatures ranging from 230 C to 300 C. Semi-analytical and numerical modeling was also conducted to show how the PFTs could be used in conjunction with other tracers to interrogate surface area to volume ratios and temperature profiles in EGS reservoirs. Both single-well and cross-hole tracer tests are simulated to illustrate how different suites of tracers could be used to accomplish these objectives. The single-well tests are especially attractive for EGS applications because they allow the effectiveness of a stimulation to be evaluated without drilling a second well.

Reimus, Paul W [Los Alamos National Laboratory

2011-01-21T23:59:59.000Z

429

Geobotanical characterization of a geothermal system using hyperspectral imagery: Long Valley Caldera, CA  

SciTech Connect

We have analyzed hyperspectral Airborne Visible-Infrared Imaging System (AVIRIS) imagery taken in September of 1992 in Long Valley Caldera, CA, a geothermally active region expressed surficially by hot springs and fumaroles. Geological and vegetation mapping are attempted through spectral classification of imagery. Particular hot spring areas in the caldera are targeted for analysis. The data is analyzed for unique geobotanical patterns in the vicinity of hot springs as well as gross identification of dominant plant and mineral species. Spectra used for the classifications come from a vegetation spectral library created for plant species found to be associated with geothermal processes. This library takes into account the seasonality of vegetation by including spectra for species on a monthly basis. Geological spectra are taken from JPL and USGS mineral libraries. Preliminary classifications of hot spring areas indicate some success in mineral identification and less successful vegetation species identification. The small spatial extent of individual plants demands either sub-pixel analysis or increased spatial resolution of imagery. Future work will also include preliminary analysis of a hyperspectral thermal imagery dataset and a multitemporal air photo dataset. The combination of these remotely sensed datasets for Long Valley will yield a valuable product for geothermal exploration efforts in other regions.

Carter, M R; Cochran, S A; Martini, B A; Pickles, W L; Potts, D C; Priest, R E; Silver, E A; Wayne, B A; White, W T

1998-12-01T23:59:59.000Z

430

[Geothermal system temperature-depth database and model for data analysis]. 4. quarterly technical progress report  

DOE Green Energy (OSTI)

The activities that have been carried out this quarter include continued planning and development of the geothermal system thermal-well data-base that will be one of the main contract results. The authors are continuing to modify the specifications of the database and continuing initial input. They have added several additional areas to their inventory of the geothermal areas for which data are available in the literature (published and open file) and on open file as described in the third quarterly report. A map was enclosed with the second quarterly report that gave the preliminary location of sites of various categories of wells. They will include a revised map with the next quarterly report when all of the sites, including the new ones described below, have been located and added to the index map. In particular in the last quarter the authors have added about 100 wells in west Texas in the transPecos region from a previously proprietary report that they recently obtained. In addition they have made arrangements to obtain thermal data collected by AMAX Geothermal during their exploration activities. The number of wells is large, several hundred, and the sites are spread throughout the western US from New Mexico and Colorado to California and Oregon.

Blackwell, D.D.

1998-02-19T23:59:59.000Z

431

Comparative cost analyses: total flow vs other power conversion systems for the Salton Sea Geothermal Resource  

SciTech Connect

Cost studies were done for Total Flow, double flash, and multistage flash binary systems for electric Energy production from the Salton Sea Geothermal Resource. The purpose was to provide the Department of energy's Division of Geothermal Energy with information by which to judge whether to continue development of the Total Flow system. Results indicate that the Total Flow and double flash systems have capital costs of $1,135 and $1,026 /kW with energy costs of 40.9 and 39.7 mills/kW h respectively. The Total Flow and double flash systems are not distinguishable on a cost basis alone; the multistage flash binary system, with capital cost of $1,343 /kW and energy cost of 46.9 mills/kW h, is significantly more expensive. If oil savings are considered in the total analysis, the Total Flow system could save 30% more oil than the double flash system, $3.5 billion at 1978 oil prices.

Wright, G.W.

1978-09-18T23:59:59.000Z

432

Comparative cost analyses: total flow vs other power conversion systems for the Salton Sea Geothermal Resource  

DOE Green Energy (OSTI)

Cost studies were done for Total Flow, double flash, and multistage flash binary systems for electric Energy production from the Salton Sea Geothermal Resource. The purpose was to provide the Department of energy's Division of Geothermal Energy with information by which to judge whether to continue development of the Total Flow system. Results indicate that the Total Flow and double flash systems have capital costs of $1,135 and $1,026 /kW with energy costs of 40.9 and 39.7 mills/kW h respectively. The Total Flow and double flash systems are not distinguishable on a cost basis alone; the multistage flash binary system, with capital cost of $1,343 /kW and energy cost of 46.9 mills/kW h, is significantly more expensive. If oil savings are considered in the total analysis, the Total Flow system could save 30% more oil than the double flash system, $3.5 billion at 1978 oil prices.

Wright, G.W.

1978-09-18T23:59:59.000Z

433

Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984)  

Open Energy Info (EERE)

Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984) Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1984 Usefulness not indicated DOE-funding Unknown Notes The melt zones of volcanic clusters was analyzed with recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. References Goldstein, N. E.; Flexser, S. (1 December 1984) Melt zones beneath five volcanic complexes in California: an assessment of shallow

434

Feasibility investigation and design study of optical well logging methods for high temperature geothermal wells. Final report  

DOE Green Energy (OSTI)

The results are reported of a one-year program designed to investigate the feasibility of optical techniques applied to well-logging, to extend measurement capabilities in high-temperature geothermal boreholes. The basic concept is shown schematically. It makes use of a special armored cable containing fiber optic wave guides, connected to passive, downhole optical transducers. The latter modulate an optical carrier in response to borehole parameters. The optical carrier is a beam of infrared light transmitted from an optical source at the surface over an optical fiber. The modulated beam from the transducer is then returned to the surface over a second fiber, where conventional optical communications techniques are used to detect and decode the down hole information. (MHR)

Swanson, R.K.; Anderson, R.E.; Ash, J.I.; Beissner, R.E.; Smith, V.D.

1977-12-01T23:59:59.000Z

435

Definition of requirements for geothermal power conversion system studies  

DOE Green Energy (OSTI)

Candidate power conversion systems and criteria for comparing these systems are listed. The elements of each conceptual design and standard approaches to equipment design are described. The methods used to calculate heat and mass balances and the data used in the calculations are described. The method used in developing the economics of each system is described and factors such as construction wage rates common