Center for Inverse Design: Inverse Design Approach
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Inverse Design Approach This page describes the inverse materials design methodology used by the Center for Inverse Design, which integrates and combines the following: (1) theory, or prediction, (2) synthesis, or realization, and (3) characterization, or validation. The result of this approach is an acceleration-by orders of magnitude-in developing new materials for solar energy technologies. The figure illustrates the research approach, outlined under the three primary steps. Flow diagram that
CID | U.S. DOE Office of Science (SC)
Office of Science (SC) Website
CID Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers CID Print Text Size: A A A FeedbackShare Page Center for Inverse Design Director(s): Alex Zunger (8/2009 - 5/2011); William Tumas (6/2011 - 7/2014) Lead Institution: National Renewable Energy Laboratory Years: 2009-2014 Mission: To revolutionize the discovery of new materials by design with tailored properties through
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Inverse Design EFRC Director: Alex Zunger Lead Institution: National Renewable Energy Laboratory Mission: Achieve the grand challenge of materials and nanostructures by design: Given the desired, target property, find the structure/configuration that has it, and then make the material. Historically, the development of new materials for technological applications has been based to a large extent on trial-and-error searches or accidental discoveries. This pattern is exemplified not only by the
Center for Inverse Design: Organization of the Center for Inverse...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Organization of the Center for Inverse Design This page shows the organizational management structure of the Center for Inverse Design, an Energy Frontier Research Center. It also ...
Center for Inverse Design: About the Center for Inverse Design
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Organization Partner Institutions Principal Investigators Research Thrusts & Subtasks Approach Publications SharePoint Collaboration Tool For research results, information, and discussion board Learn more about some recent research highlights from the Center for Inverse Design Meet some of our principal investigators in the Center for Inverse Design by viewing the short videos Download latest chart of efficiencies determined by certified agencies/labs of best research solar cells worldwide
Center for Inverse Design: Publications
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Center the Inverse Design Highlights Read short descriptions of some recent successes by researchers within the Center for Inverse Design, an Energy Research Frontier Center led by the National Renewable Energy Laboratory. Illustration of Seebeck coefficient mapping instrument showing various components in an "exploded" view. Spatially Resolved Seebeck Coefficient Measurements An instrument for spatially resolved Seebeck coefficient measurements has been developed and applied to test
Center for Inverse Design Home Page
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Center for Inverse Design. Achieving the grand challenge of materials and nanostructures by design. Graphical element on the left-hand edge is a stylized energy-band diagram in ...
Inverse Design Summer School brochure, Sept 2011
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Denver Marriott West * 1717 Denver West Blvd. * Golden, CO 80401 1-888-238-1803 (toll-free) * 303-279-9100 (local) Inverse Design Summer School September 13-14, 2011 The Center for Inverse Design-an Energy Frontier Research Center of the U.S. Department of Energy- is offering a no-cost, two-day summer school on inverse design. We invite you to attend if you are a: * Scientist or engineer interested in materials design and discovery * Technical leader in materials, electronics, or chemical
Center for Inverse Design: Partner Institutions in the Center...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Partner Institutions in the Center for Inverse Design This page provides information about the six institutions that are partners in the Center of Inverse Design: the National ...
Center for Inverse Design: Research Thrusts and Subtasks
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Research Thrusts and Subtasks The Center for Inverse Design creates an unprecedented coupling of theory and experiment to realize the thesis that inverse design can revolutionize ...
Alex Zunger; Tumas, Bill; CID Staff
2011-05-01
'Inverse Design: Playing 'Jeopardy' in Materials Science' was submitted by the Center for Inverse Design (CID) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CID, an EFRC directed by Bill Tumas at the National Renewable Energy Laboratory is a partnership of scientists from five institutions: NREL (lead), Northwestern University, University of Colorado, Stanford University, and Oregon State University. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Inverse Design is 'to replace trial-and-error methods used in the development of materials for solar energy conversion with an inverse design approach powered by theory and computation.' Research topics are: solar photovoltaic, photonic, metamaterial, defects, spin dynamics, matter by design, novel materials synthesis, and defect tolerant materials.
Alex Zunger (former Director, Center for Inverse Design); Tumas, Bill (Director, Center for Inverse Design); CID Staff
2011-11-02
'Inverse Design: Playing 'Jeopardy' in Materials Science' was submitted by the Center for Inverse Design (CID) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CID, an EFRC directed by Bill Tumas at the National Renewable Energy Laboratory is a partnership of scientists from five institutions: NREL (lead), Northwestern University, University of Colorado, Stanford University, and Oregon State University. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Inverse Design is 'to replace trial-and-error methods used in the development of materials for solar energy conversion with an inverse design approach powered by theory and computation.' Research topics are: solar photovoltaic, photonic, metamaterial, defects, spin dynamics, matter by design, novel materials synthesis, and defect tolerant materials.
Center for Inverse Design: EFRC Researchers in Focus (Text Version...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
involved with the Center for Inverse Design-as are the students and postdocs-is the ... But these may or may not be the optimal materials. In the Center for Inverse Design, we ...
Center for Inverse Design: Modality 1 - Inverse Band Structure
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
1: Inverse Band Structure Modality 1 applies to cases where we have a single material system, but an astronomical number of configurations, and where the target properties can be calculated on the fly. The approach is also called Inverse Band Structure (IBS). The IBS approach began a dozen years ago within the Solid-State Theory group at the National Renewable Energy Laboratory (NREL), under support from the U.S. Department of Energy's Office of Basic Energy Sciences. Imagine that you have a
Center for Inverse Design: Need Help?
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Need Help? Use this form to send us your comments and questions, to report problems with the Center for Inverse Design site, or to ask for help in finding information on our site. Enter your name and e-mail address in the boxes provided, then type your message. When you are finished, click "Send Message." If you enter your e-mail address incorrectly, we will be unable to reply. Your name: Your email address: Your message: Send Message Printable Version Content Last Updated: October 09,
CID Gas Recovery Biomass Facility | Open Energy Information
CID Gas Recovery Biomass Facility Jump to: navigation, search Name CID Gas Recovery Biomass Facility Facility CID Gas Recovery Sector Biomass Facility Type Landfill Gas Location...
Center for Inverse Design: Collaboration Tool for the Center...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
If you already have a login and password, go directly to the Center for Inverse Design SharePoint Collaboration Tool. If you have forgotten your password, contact the Webmaster. If ...
Center for Inverse Design: EFRC Researchers in Focus
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
EFRC Researchers in Focus Tom Mason In this video, Dr. Thomas O. Mason, a principal investigator in the Center for Inverse Design, explains the approach and benefits of this Energy Frontier Research Center (EFRC) for materials science research and for students and postdocs. Mason is a professor in Materials Science and Engineering at Northwestern University. Get the Adobe Flash Player to see this video. Text Version Alex Zunger In this video, Dr. Alex Zunger, Chief Scientist for Theory in the
Center for Inverse Design: Modality 3 - Discovery of Missing Materials
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
3: Discovery of Missing Materials Modality 3 applies to yet discovered, currently undocumented materials. This approach is designed for a different class of problems: when the materials we would like to consider are simply undocumented standard compilations, i.e., they have not yet been made. Like the other two modalities, this one also involves a search space. But unlike Modalities 1 and 2, the steps involved in Modality 3 are: Calculate the stable crystal structure of a given hypothetical
Center for Inverse Design: Modality 2 - Design of Materials with Targeted
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Functionality 2: Design of Materials with Targeted Functionality Modality 2 applies to cases where we have numerous-perhaps thousands-of materials, each with a single (usually ground-state) configuration, and the desired target property is complex, so it currently cannot be computed on the fly. In this case, we use "design principles"-derived quantities that can be calculated for each material and which suggest key materials parameters that need to be obtained to get the relevant
Improved crystallization and diffraction of caffeine-induced death suppressor protein 1 (Cid1)
Yates, Luke A. Durrant, Benjamin P.; Barber, Michael; Harlos, Karl; Fleurdépine, Sophie; Norbury, Chris J.; Gilbert, Robert J. C.
2015-02-21
The use of truncation and RNA-binding mutations of caffeine induced death suppressor protein 1 (Cid1) as a means to enhance crystallogenesis leading to an improvement of X-ray diffraction resolution by 1.5 Å is reported. The post-transcriptional addition of uridines to the 3′-end of RNAs is an important regulatory process that is critical for coding and noncoding RNA stability. In fission yeast and metazoans this untemplated 3′-uridylylation is catalysed by a single family of terminal uridylyltransferases (TUTs) whose members are adapted to specific RNA targets. In Schizosaccharomyces pombe the TUT Cid1 is responsible for the uridylylation of polyadenylated mRNAs, targeting them for destruction. In metazoans, the Cid1 orthologues ZCCHC6 and ZCCHC11 uridylate histone mRNAs, targeting them for degradation, but also uridylate microRNAs, altering their maturation. Cid1 has been studied as a model TUT that has provided insights into the larger and more complex metazoan enzyme system. In this paper, two strategies are described that led to improvements both in the crystallogenesis of Cid1 and in the resolution of diffraction by ∼1.5 Å. These advances have allowed high-resolution crystallo@@graphic studies of this TUT system to be initiated.
The Promiscuity of [beta]-Strand Pairing Allows for Rational Design of [beta]-Sheet Face Inversion
Makabe, Koki; Koide, Shohei
2009-06-17
Recent studies suggest the dominant role of main-chain H-bond formation in specifying {beta}-sheet topology. Its essentially sequence-independent nature implies a large degree of freedom in designing {beta}-sheet-based nanomaterials. Here we show rational design of {beta}-sheet face inversions by incremental deletions of {beta}-strands from the single-layer {beta}-sheet of Borrelia outer surface protein A. We show that a {beta}-sheet structure can be maintained when a large number of native contacts are removed and that one can design large-scale conformational transitions of a {beta}-sheet such as face inversion by exploiting the promiscuity of strand-strand interactions. High-resolution X-ray crystal structures confirmed the success of the design and supported the importance of main-chain H-bonds in determining {beta}-sheet topology. This work suggests a simple but effective strategy for designing and controlling nanomaterials based on {beta}-rich peptide self-assemblies.
Inverse Design of Mn-based ternary p-type wide-gap oxides
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
used theory to predict band structure and transport properties for the d 5 transition metal (TM) oxides MnO and Fe 2 O 3 . Significance and Impact This work identified design principles for improving d 5 oxides as a new class of semiconductors with potential applications in energy conversion. Design Principles Demonstrated for Semiconducting d 5 Transition-Metal Oxides with Photovoltaic Applications Potential H. Peng and S. Lany, Phys. Rev. B (Rapid Comm.) 85, 201202(R) (2012). Figure 1:
Inverse Design of Mn-based ternary p-type wide-gap oxides
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
ZnO is an important prototypical wide-gap oxide semiconductor. The discrepancy between band- structure theory and ARPES is removed by a correction for the Zn-d band energy in GW calculations. Significance and Impact The present approach improves the capability for property prediction and design of energy materials. Benchmarking Band-Structure Calculations Against Angular-Resolved Photoemission Spectroscopy (ARPES) for ZnO L.Y. Lim, S. Lany, Y.J. Chang, E. Rotenberg, A. Zunger, M.F. Toney,
CHANDRA HIGH-RESOLUTION OBSERVATIONS OF CID-42, A CANDIDATE RECOILING SUPERMASSIVE BLACK HOLE
Civano, F.; Elvis, M.; Lanzuisi, G.; Aldcroft, T.; Trichas, M.; Fruscione, A.; Bongiorno, A.; Brusa, M.; Blecha, L.; Loeb, A.; Comastri, A.; Gilli, R.; Salvato, M.; Komossa, S.; Koekemoer, A.; Mainieri, V.; Piconcelli, E.; Vignali, C.
2012-06-10
We present Chandra High Resolution Camera observations of CID-42, a candidate recoiling supermassive black hole (SMBH) at z = 0.359 in the COSMOS survey. CID-42 shows two optical compact sources resolved in the HST/ACS image embedded in the same galaxy structure and a velocity offset of {approx}1300 km s{sup -1} between the H{beta} broad and narrow emission line, as presented by Civano et al. Two scenarios have been proposed to explain the properties of CID-42: a gravitational wave (GW) recoiling SMBH and a double Type 1/Type 2 active galactic nucleus (AGN) system, where one of the two is recoiling because of slingshot effect. In both scenarios, one of the optical nuclei hosts an unobscured AGN, while the other one, either an obscured AGN or a star-forming compact region. The X-ray Chandra data allow us to unambiguously resolve the X-ray emission and unveil the nature of the two optical sources in CID-42. We find that only one of the optical nuclei is responsible for the whole X-ray unobscured emission observed and a 3{sigma} upper limit on the flux of the second optical nucleus is measured. The upper limit on the X-ray luminosity plus the analysis of the multiwavelength spectral energy distribution indicate the presence of a star-forming region in the second source rather than an obscured SMBH, thus favoring the GW recoil scenario. However, the presence of a very obscured SMBH cannot be fully ruled out. A new X-ray feature, in a SW direction with respect to the main source, is discovered and discussed.
Sze, L.K.; Cheung, C.S.; Leung, C.W.
2006-01-01
Experiments were carried out to investigate the appearance, temperature distribution, and NO{sub x} emission index of two inverse diffusion flames, one with circumferentially arranged ports (CAPs) and the other with co-axial (CoA) jets, both burning LPG with 70% butane and 30% propane. Flame appearances were investigated first with a fixed fueling rate at different airflow rates equivalent to air jet Reynolds numbers (Re) of 1000 to 4500; and then at a fixed airflow rate with different fueling rates equivalent to overall equivalence ratios (F) of 1.0 to 2.0. The CAP flame is found to consist of two zones: a lower entrainment zone and an upper mixing and combustion zone. The CoA flame in most cases is similar to a diffusion flame. The two-zone structure can be observed only at Re larger than 2500. The temperature distributions of the flames are similar at overall equivalence ratios of 1.0 and 1.2 for Re=2500, except that the corresponding CoA flame is longer. The flame temperature is higher in the CAP flame than the CoA flame at higher overall equivalence ratios. A measurement of centerline oxygen concentrations shows that the oxygen concentration reaches a minimum value at a flame height of 50 mm in the CAP flame but decreases more gradually in the CoA flame. It can be concluded that there is more intense air-fuel mixing in a CAP flame than the CoA flame. Investigation of the emission index of NO{sub x} (EINO{sub x}) for both flames at Re=2500 and overall equivalence ratios of 1.0 to 6.0 reveals that the EINO{sub x} curve of each flame is bell-shaped, with a maximum value of 3.2 g/kg at F=1.2 for the CAP flame and 3 g/kg at F=2.2 for the CoA flame.
Center for Inverse Design: Publications
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Other technical writings and publications may be accessed within this Web site's SharePoint section, which requires a login and password. Published A polarity-induced defect ...
More About Inversions Background
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
About Inversions Background Inversions occur in fluids when a more dense fluid lies beneath a less dense fluid. In the atmosphere, the density is linked to temperature variations with warmer air lying atop colder air. Sounding Analysis - Inversions (Activity) Objective To evaluate radiosonde soundings for inversions. Materials Soundings for the same date and synoptic time (provided or obtained online) Important Points to Understand The soundings here appear on a Stuve diagram. Because the
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Inverse Energy Transfer by Near-Resonant Interactions with a Damped-Wave Spectrum P.W. Terry Center for Magnetic Self Organization in Laboratory and Astrophysical Plasmas and Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 USA (Received 12 January 2004; published 1 December 2004) The interaction of long-wavelength anisotropic drift waves with the plasma turbulence of electron density advection is shown to produce the inverse energy transfer that condenses onto
Center for Inverse Design: Staff Biographies
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
... with screened-exchange LDA," Phys. Rev. B 59, 7486-7492 (1999). A. Wang, J.R. Babcock, N.L. Edleman, A.W. Metz, M.A. Lane, R. Asahi, V.P. Dravid, C.R. Kannewurf, A.J. ...
Stochastic Joint Inversion for Integrated Data Interpretation...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Stochastic Joint Inversion for Integrated Data Interpretation in Geothermal Exploration Stochastic Joint Inversion for Integrated Data Interpretation in Geothermal Exploration ...
Mahan, G. D.
2014-09-21
We calculate the binding energy of an electron bound to a donor in a semiconductor inverse opal. Inverse opals have two kinds of cavities, which we call octahedral and tetrahedral, according to their group symmetry. We put the donor in the center of each of these two cavities and obtain the binding energy. The binding energies become very large when the inverse opal is made from templates with small spheres. For spheres less than 50 nm in diameter, the donor binding can increase to several times its unconfined value. Then electrons become tightly bound to the donor and are unlikely to be thermally activated to the semiconductor conduction band. This conclusion suggests that inverse opals will be poor conductors.
Tomographic inversion techniques incorporating physical constraints...
Office of Scientific and Technical Information (OSTI)
In the case of low signal levels or partial spatial coverage of the plasma cross-section, standard inversion techniques utilizing matrix inversion and linear-regularization often ...
Requirements and Designs for Mars Rover RTGs
Schock, Alfred; Shirbacheh, M; Sankarankandath, V
2012-01-19
The current-generation RTGs (both GPHS and MOD) are designed for operation in a vacuum environment. The multifoil thermal insulation used in those RTGs only functions well in a good vacuum. Current RTGs are designed to operate with an inert cover gas before launch, and to be vented to space vacuum after launch. Both RTGs are sealed with a large number of metallic C-rings. Those seals are adequate for retaining the inert-gas overpressure during short-term launch operations, but would not be adequate to prevent intrusion of the Martian atmospheric gases during long-term operations there. Therefore, for the Mars Rover application, those RTGs just be modified to prevent the buildup of significant pressures of Mars atmosphere or of helium (from alpha decay of the fuel). In addition, a Mars Rover RTG needs to withstand a long-term dynamic environment that is much more severe than that seen by an RTG on an orbiting spacecraft or on a stationary planetary lander. This paper describes a typical Rover mission, its requirements, the environment it imposes on the RTG, and a design approach for making the RTG operable in such an environment. Specific RTG designs for various thermoelectric element alternatives are presented.; Reference CID #9268 and CID #9276.
Pyramidal inversion domain boundaries revisited
Remmele, T.; Albrecht, M.; Irmscher, K.; Fornari, R.; Strassburg, M.
2011-10-03
The structure of pyramidal inversion domain boundaries in GaN:Mg was investigated by aberration corrected transmission electron microscopy. The analysis shows the upper (0001) boundary to consist of a single Mg layer inserted between polarity inverted GaN layers in an abcab stacking. The Mg bound in these defects is at least one order of magnitude lower than the chemical Mg concentration. Temperature dependent Hall effect measurements show that up to 27% of the Mg acceptors is electrically compensated.
INVERSIONS H. Michael Mogil, Certified Consulting Meteorologist
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
SEPTEMBER 2008 INVERSIONS H. Michael Mogil, Certified Consulting Meteorologist In the August 2008 issue of Climate Education Update, we looked at the concept of inversions, situations in which the temperature increases with increasing altitude. This is the opposite of what one would expect in the troposphere, the lowest shell of the atmosphere that is in contact with the Earth. Inversions are always present when fog is present. The most commonly observed inversion is the one found near the
Inverse free-electron laser accelerator development
Fisher, A.; Gallardo, J.; Steenbergen, A. van; Sandweiss, J.; Fang, J.M.
1994-06-01
The study of the Inverse Free-Electron Laser, as a potential mode of electron acceleration, has been pursued at Brookhaven National Laboratory for a number of years. More recent studies focused on the development of a low energy (few GeV), high gradient, multistage linear accelerator. The authors are presently designing a short accelerator module which will make use of the 50 MeV linac beam and high power (2 {times} 10{sup 11} W) CO{sub 2} laser beam of the Accelerator Test Facility (ATF) at the Center for Accelerator Physics (CAP), Brookhaven National Laboratory. These elements will be used in conjunction with a fast excitation (300 {mu}sec pulse duration) variable period wiggler, to carry out an accelerator demonstration stage experiment.
Design and tritium permeation analysis of China HCCB TBM port cell
Jiangfeng, S.; Guoqiang, H.; Zhiyong, H.; Chang'an, C.; Deli, L.
2015-03-15
China is planning to develop a helium-cooled ceramic breeder (HCCB) test blanket module (TBM) on ITER to test key blanket technologies. In this paper, the design and tritium permeation analysis of China HCCB TBM port cell are introduced. A theoretical model has been developed to estimate tritium permeation rates and leak rates from the components and pipes which China has scheduled to house in the port cell. It is shown that on normal working conditions, the permeation and leak rate of the systems in the port cell will be no higher than 1.58 Ci/d without the use of tritium permeation barriers, and 0.10 Ci/d with the use of tritium permeation barriers. It also appears that tritium permeation barriers are necessary for high temperature components such as the reduction bed and the heater.
Tomographic inversion techniques incorporating physical constraints...
Office of Scientific and Technical Information (OSTI)
Tomographic inversion requires the assumption that these measured quantities are flux surface functions, and that a known plasma equilibrium reconstruction is available. In the ...
From Deterministic Inversion to Uncertainty Quantification: Planning...
Office of Scientific and Technical Information (OSTI)
Planning a Long Journey in Ice Sheet Modeling. Citation Details In-Document Search Title: From Deterministic Inversion to Uncertainty Quantification: Planning a Long Journey in ...
Inversion of Airborne Contaminants in a Regional Model
Akcelik, V.; Biros, G.; Draganescu, A.; Ghattas, O.; Hill, J.; van Bloemen Waanders, B.; /SLAC /Pennsylvania U. /Texas U. /Sandia
2007-01-10
We are interested in a DDDAS problem of localization of airborne contaminant releases in regional atmospheric transport models from sparse observations. Given measurements of the contaminant over an observation window at a small number of points in space, and a velocity field as predicted for example by a mesoscopic weather model, we seek an estimate of the state of the contaminant at the beginning of the observation interval that minimizes the least squares misfit between measured and predicted contaminant field, subject to the convection-diffusion equation for the contaminant. Once the ''initial'' conditions are estimated by solution of the inverse problem, we issue predictions of the evolution of the contaminant, the observation window is advanced in time, and the process repeated to issue a new prediction, in the style of 4D-Var. We design an appropriate numerical strategy that exploits the spectral structure of the inverse operator, and leads to efficient and accurate resolution of the inverse problem. Numerical experiments verify that high resolution inversion can be carried out rapidly for a well-resolved terrain model of the greater Los Angeles area.
MODEL SELECTION FOR SPECTROPOLARIMETRIC INVERSIONS
Asensio Ramos, A.; Manso Sainz, R.; Martinez Gonzalez, M. J.; Socas-Navarro, H.; Viticchie, B.
2012-04-01
Inferring magnetic and thermodynamic information from spectropolarimetric observations relies on the assumption of a parameterized model atmosphere whose parameters are tuned by comparison with observations. Often, the choice of the underlying atmospheric model is based on subjective reasons. In other cases, complex models are chosen based on objective reasons (for instance, the necessity to explain asymmetries in the Stokes profiles) but it is not clear what degree of complexity is needed. The lack of an objective way of comparing models has, sometimes, led to opposing views of the solar magnetism because the inferred physical scenarios are essentially different. We present the first quantitative model comparison based on the computation of the Bayesian evidence ratios for spectropolarimetric observations. Our results show that there is not a single model appropriate for all profiles simultaneously. Data with moderate signal-to-noise ratios (S/Ns) favor models without gradients along the line of sight. If the observations show clear circular and linear polarization signals above the noise level, models with gradients along the line are preferred. As a general rule, observations with large S/Ns favor more complex models. We demonstrate that the evidence ratios correlate well with simple proxies. Therefore, we propose to calculate these proxies when carrying out standard least-squares inversions to allow for model comparison in the future.
An Inverse Free-Electron-Laser accelerator
Fisher, A.S.; Gallardo, J.C.; van Steenbergen, A.; Ulc, S.; Woodle, M.; Sandweiss, J.; Fang, Jyan-Min
1993-08-01
Recent work at BNL on electron acceleration using the Inverse Free-Electron Laser (IFEL) has considered a low-energy, high-gradient, multi-stage linear accelerator. Experiments are planned at BNL`s Accelerator Test Facility using its 50-MeV linac and 100-GW CO{sub 2} laser. We have built and tested a fast-excitation wiggler magnet with constant field, tapered period, and overall length of 47 cm. Vanadium-Permendur ferromagnetic laminations are stacked in alternation with copper, eddy-current-induced, field reflectors to achieve a 1.4-T peak field with a 4-mm gap and a typical period of 3 cm. The laser beam will pass through the wiggler in a low-loss, dielectric-coated stainless-steel, rectangular waveguide. The attenuation and transverse mode has been measured in waveguide sections of various lengths, with and without the dielectric. Results of 1-D and 3-D IFEL simulations, including wiggler errors, will be presented for several cases: the initial, single-module experiment with {Delta}E = 39 MeV, a four-module design giving {Delta}E = 100 MeV in a total length of 2 m, and an eight-module IFEL with {Delta}E = 210 MeV.
Inversion of normal moveout for monoclinic media
Grechka, V.; Contreras, P.; Tsvankin, I.
2000-05-01
Multiple vertical fracture sets, possibly combined with horizontal fine layering, produce an equivalent medium of monoclinic symmetry with a horizontal symmetry plane. Although monoclinic models may be rather common for fractured formations, they have hardly been used in seismic methods of fracture detection due to the large number of independent elements in the stiffness tensor. Here, the authors show that multicomponent wide-azimuth walkaway VSP surveys provide enough information to invert for all but one anisotropic parameters of monoclinic media. In order to facilitate the inversion procedure, the authors introduce a Thomsen-style parametrization for monoclinic media that includes the vertical velocities of the P-wave and one of the split S-waves and a set of dimensionless anisotropic coefficients. The parameter-estimation algorithm, based on NMO equations valid for any strength of the anisotropy, is designed to obtain anisotropic parameters of monoclinic media by inverting the vertical velocities and NMO ellipses of the P-, S{sub 1}- and S{sub 2}-waves. A Dix-type representation of the NMO velocity of mode-converted waves makes it possible to replace the pure shear modes in reflection surveys with the PS{sub 1}- and PS{sub 2}-waves. Numerical tests show that this method yields stable estimates of all relevant parameters for both a single layer and a horizontally stratified monoclinic medium.
Center for Inverse Design: Principal Investigators in the Center...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
... He received his B.E. in Electrical Engineering from Tsinghua University, China, and his Ph.D. in physics from the Institute of Semiconductors in Chinese Academy of Science, Beijing...
Center for Inverse Design Highlight: Anomalous Surface Conductivity...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
O 3 ) films grown by pulsed laser deposition. This desirable, but unexpected, effect produces conductivities at the surface comparable to intentionally doped commercial materials. ...
Center for Inverse Design Highlight: Enabling Practical p-Type...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
and hence enable unopposed p-type doping in easily grown materials. Reference: J.D. Perkins, T.R. Paudel, A. Zakutayev, P.F. Ndione, P.A. Parilla, D.L. Young, S. Lany, D.S....
Center for Inverse Design: Lost SharePoint Password?
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Lost SharePoint Password? Enter your name and e-mail address in the boxes provided. When you are finished, click "Request Password." If you enter your e-mail address incorrectly, ...
Center for Inverse Design Highlight: Iron Chalcogenide PV Absorbers
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
and experimental study of FeS 2 reveals that coexistence of off-stoichiometric secondary phases is an important factor limiting performance as a thin-film solar absorber. ...
Center for Inverse Design poster for EFRC Summit, May 2011
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Seismic Inversion Methods (Journal Article) | SciTech Connect
Office of Scientific and Technical Information (OSTI)
Title: Seismic Inversion Methods With the rapid advances in sophisticated solar modeling and the abundance of high-quality solar pulsation data, efficient and robust inversion ...
Femtosecond Population Inversion and Stimulated Emission of Dense...
Office of Scientific and Technical Information (OSTI)
Femtosecond Population Inversion and Stimulated Emission of Dense Dirac Fermions in Graphene Citation Details In-Document Search Title: Femtosecond Population Inversion and...
Importance of Elevation and Temperature Inversions for the Interpretat...
with elevation, on which temperature inversions appear superimposed as opposite trends. Such inversions are common and they should be taken into account, along with the...
Joint inversion of electrical and seismic data for Fracture char...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Joint inversion of electrical and seismic data for Fracture char. and Imaging of Fluid Flow in Geothermal Systems Joint inversion of electrical and seismic data for Fracture char. ...
Joint inversion in coupled quasi-static poroelasticity (Journal...
Office of Scientific and Technical Information (OSTI)
Joint inversion in coupled quasi-static poroelasticity Citation Details In-Document Search Title: Joint inversion in coupled quasi-static poroelasticity Authors: Hesse, Marc A. ; ...
Inverse Pm3(-)n cubic micellar lyotropic phases from zwitterionic...
Office of Scientific and Technical Information (OSTI)
Inverse Pm3(-)n cubic micellar lyotropic phases from zwitterionic triazolium gemini surfactants Citation Details In-Document Search Title: Inverse Pm3(-)n cubic micellar lyotropic...
Three-dimensional induced polarization data inversion for complex resistivity
Commer, M.; Newman, G.A.; Williams, K.H.; Hubbard, S.S.
2011-03-15
The conductive and capacitive material properties of the subsurface can be quantified through the frequency-dependent complex resistivity. However, the routine three-dimensional (3D) interpretation of voluminous induced polarization (IP) data sets still poses a challenge due to large computational demands and solution nonuniqueness. We have developed a flexible methodology for 3D (spectral) IP data inversion. Our inversion algorithm is adapted from a frequency-domain electromagnetic (EM) inversion method primarily developed for large-scale hydrocarbon and geothermal energy exploration purposes. The method has proven to be efficient by implementing the nonlinear conjugate gradient method with hierarchical parallelism and by using an optimal finite-difference forward modeling mesh design scheme. The method allows for a large range of survey scales, providing a tool for both exploration and environmental applications. We experimented with an image focusing technique to improve the poor depth resolution of surface data sets with small survey spreads. The algorithm's underlying forward modeling operator properly accounts for EM coupling effects; thus, traditionally used EM coupling correction procedures are not needed. The methodology was applied to both synthetic and field data. We tested the benefit of directly inverting EM coupling contaminated data using a synthetic large-scale exploration data set. Afterward, we further tested the monitoring capability of our method by inverting time-lapse data from an environmental remediation experiment near Rifle, Colorado. Similar trends observed in both our solution and another 2D inversion were in accordance with previous findings about the IP effects due to subsurface microbial activity.
Error handling strategies in multiphase inverse modeling
Finsterle, S.; Zhang, Y.
2010-12-01
Parameter estimation by inverse modeling involves the repeated evaluation of a function of residuals. These residuals represent both errors in the model and errors in the data. In practical applications of inverse modeling of multiphase flow and transport, the error structure of the final residuals often significantly deviates from the statistical assumptions that underlie standard maximum likelihood estimation using the least-squares method. Large random or systematic errors are likely to lead to convergence problems, biased parameter estimates, misleading uncertainty measures, or poor predictive capabilities of the calibrated model. The multiphase inverse modeling code iTOUGH2 supports strategies that identify and mitigate the impact of systematic or non-normal error structures. We discuss these approaches and provide an overview of the error handling features implemented in iTOUGH2.
Optical inverse-square displacement sensor
Howe, Robert D.; Kychakoff, George
1989-01-01
This invention comprises an optical displacement sensor that uses the inverse-square attenuation of light reflected from a diffused surface to calculate the distance from the sensor to the reflecting surface. Light emerging from an optical fiber or the like is directed onto the surface whose distance is to be measured. The intensity I of reflected light is angle dependent, but within a sufficiently small solid angle it falls off as the inverse square of the distance from the surface. At least a pair of optical detectors are mounted to detect the reflected light within the small solid angle, their ends being at different distances R and R+.DELTA.R from the surface. The distance R can then be found in terms of the ratio of the intensity measurements and the separation length as ##EQU1##
Optical inverse-square displacement sensor
Howe, R.D.; Kychakoff, G.
1989-09-12
This invention comprises an optical displacement sensor that uses the inverse-square attenuation of light reflected from a diffused surface to calculate the distance from the sensor to the reflecting surface. Light emerging from an optical fiber or the like is directed onto the surface whose distance is to be measured. The intensity I of reflected light is angle dependent, but within a sufficiently small solid angle it falls off as the inverse square of the distance from the surface. At least a pair of optical detectors are mounted to detect the reflected light within the small solid angle, their ends being at different distances R and R + [Delta]R from the surface. The distance R can then be found in terms of the ratio of the intensity measurements and the separation length as given in an equation. 10 figs.
Pole EXpansion and Selected Inversion (PEXSI)
Energy Science and Technology Software Center (OSTI)
2014-03-01
The Pole EXpansion and Selected Inversion method (PEXSI) is a fast method for evaluating certain selected elements of a matrix function. PEXSI is highly scalable on distributed memory parallel machines. For sparse matrices, the PEXSI method can be more efficient than the widely used diagonalization method for evaluating matrix functions, especially when a relatively large number of eigenpairs are needed to be computed in the diagonalization methond
The inverse problems of wing panel manufacture processes
Oleinikov, A. I.; Bormotin, K. S.
2013-12-16
It is shown that inverse problems of steady-state creep bending of plates in both the geometrically linear and nonlinear formulations can be represented in a variational formulation. Steady-state values of the obtained functionals corresponding to the solutions of the problems of inelastic deformation and springback are determined by applying a finite element procedure to the functionals. Optimal laws of creep deformation are formulated using the criterion of minimizing damage in the functionals of the inverse problems. The formulated problems are reduced to the problems solved by the finite element method using MSC.Marc software. Currently, forming of light metals poses tremendous challenges due to their low ductility at room temperature and their unusual deformation characteristics at hot-cold work: strong asymmetry between tensile and compressive behavior, and a very pronounced anisotropy. We used the constitutive models of steady-state creep of initially transverse isotropy structural materials the kind of the stress state has influence. The paper gives basics of the developed computer-aided system of design, modeling, and electronic simulation targeting the processes of manufacture of wing integral panels. The modeling results can be used to calculate the die tooling, determine the panel processibility, and control panel rejection in the course of forming.
Inverse time-of-flight spectrometer for beam plasma research
Yushkov, Yu. G., E-mail: yuyushkov@gmail.com; Zolotukhin, D. B.; Tyunkov, A. V. [Tomsk State University of Control Systems and Radioelectronics, 40 Lenin Ave., Tomsk 634050 (Russian Federation); Oks, E. M. [Tomsk State University of Control Systems and Radioelectronics, 40 Lenin Ave., Tomsk 634050 (Russian Federation); Institute of High Current Electronics SB RAS, 2/3, Akademichesky Ave., Tomsk 634055 (Russian Federation); Savkin, K. P. [Institute of High Current Electronics SB RAS, 2/3, Akademichesky Ave., Tomsk 634055 (Russian Federation)
2014-08-15
The paper describes the design and principle of operation of an inverse time-of-flight spectrometer for research in the plasma produced by an electron beam in the forevacuum pressure range (520 Pa). In the spectrometer, the deflecting plates as well as the drift tube and the primary ion beam measuring system are at high potential with respect to ground. This provides the possibility to measure the mass-charge constitution of the plasma created by a continuous electron beam with a current of up to 300 mA and electron energy of up to 20 keV at forevacuum pressures in the chamber placed at ground potential. Research results on the mass-charge state of the beam plasma are presented and analyzed.
Elasticity and Inverse Temperature Transition in Elastin
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Perticaroli, Stefania; Ehlers, Georg; Jalarvo, Niina; Katsaras, John; Nickels, Jonathan D.
2015-09-22
Structurally, elastin is protein and biomaterial that provides elasticity and resilience to a range of tissues. This work provides insights into the elastic properties of elastin and its peculiar inverse temperature transition (ITT). These features are dependent on hydration of elastin and are driven by a similar mechanism of hydrophobic collapse to an entropically favorable state. Moreover, when using neutron scattering, we quantify the changes in the geometry of molecular motions above and below the transition temperature, showing a reduction in the displacement of water-induced motions upon hydrophobic collapse at the ITT. Finally, we measured the collective vibrations of elastinmore » gels as a function of elongation, revealing no changes in the spectral features associated with local rigidity and secondary structure, in agreement with the entropic origin of elasticity.« less
Elasticity and Inverse Temperature Transition in Elastin
Perticaroli, Stefania; Ehlers, Georg; Jalarvo, Niina; Katsaras, John; Nickels, Jonathan D.
2015-09-22
Structurally, elastin is protein and biomaterial that provides elasticity and resilience to a range of tissues. This work provides insights into the elastic properties of elastin and its peculiar inverse temperature transition (ITT). These features are dependent on hydration of elastin and are driven by a similar mechanism of hydrophobic collapse to an entropically favorable state. Moreover, when using neutron scattering, we quantify the changes in the geometry of molecular motions above and below the transition temperature, showing a reduction in the displacement of water-induced motions upon hydrophobic collapse at the ITT. Finally, we measured the collective vibrations of elastin gels as a function of elongation, revealing no changes in the spectral features associated with local rigidity and secondary structure, in agreement with the entropic origin of elasticity.
Full waveform inversion of solar interior flows
Hanasoge, Shravan M.
2014-12-10
The inference of flows of material in the interior of the Sun is a subject of major interest in helioseismology. Here, we apply techniques of full waveform inversion (FWI) to synthetic data to test flow inversions. In this idealized setup, we do not model seismic realization noise, training the focus entirely on the problem of whether a chosen supergranulation flow model can be seismically recovered. We define the misfit functional as a sum of L {sub 2} norm deviations in travel times between prediction and observation, as measured using short-distance filtered f and p {sub 1} and large-distance unfiltered p modes. FWI allows for the introduction of measurements of choice and iteratively improving the background model, while monitoring the evolution of the misfit in all desired categories. Although the misfit is seen to uniformly reduce in all categories, convergence to the true model is very slow, possibly because it is trapped in a local minimum. The primary source of error is inaccurate depth localization, which, due to density stratification, leads to wrong ratios of horizontal and vertical flow velocities ({sup c}ross talk{sup )}. In the present formulation, the lack of sufficient temporal frequency and spatial resolution makes it difficult to accurately localize flow profiles at depth. We therefore suggest that the most efficient way to discover the global minimum is to perform a probabilistic forward search, involving calculating the misfit associated with a broad range of models (generated, for instance, by a Monte Carlo algorithm) and locating the deepest minimum. Such techniques possess the added advantage of being able to quantify model uncertainty as well as realization noise (data uncertainty).
Stochastic inverse problems: Models and metrics
Sabbagh, Elias H.; Sabbagh, Harold A.; Murphy, R. Kim; Aldrin, John C.; Annis, Charles; Knopp, Jeremy S.
2015-03-31
In past work, we introduced model-based inverse methods, and applied them to problems in which the anomaly could be reasonably modeled by simple canonical shapes, such as rectangular solids. In these cases the parameters to be inverted would be length, width and height, as well as the occasional probe lift-off or rotation. We are now developing a formulation that allows more flexibility in modeling complex flaws. The idea consists of expanding the flaw in a sequence of basis functions, and then solving for the expansion coefficients of this sequence, which are modeled as independent random variables, uniformly distributed over their range of values. There are a number of applications of such modeling: 1. Connected cracks and multiple half-moons, which we have noted in a POD set. Ideally we would like to distinguish connected cracks from one long shallow crack. 2. Cracks of irregular profile and shape which have appeared in cold work holes during bolt-hole eddy-current inspection. One side of such cracks is much deeper than other. 3. L or C shaped crack profiles at the surface, examples of which have been seen in bolt-hole cracks. By formulating problems in a stochastic sense, we are able to leverage the stochastic global optimization algorithms in NLSE, which is resident in VIC-3D®, to answer questions of global minimization and to compute confidence bounds using the sensitivity coefficient that we get from NLSE. We will also address the issue of surrogate functions which are used during the inversion process, and how they contribute to the quality of the estimation of the bounds.
Inversion of synthetic aperture radar interferograms for sources...
Inversion of synthetic aperture radar interferograms for sources of production-related subsidence at the Dixie Valley geothermal field Jump to: navigation, search OpenEI Reference...
Inverse Modeling of Hydrologic Parameters Using Surface Flux...
Office of Scientific and Technical Information (OSTI)
and illustrated the necessity and possibility of parameter calibration. Two inversion strategies, the deterministic least-square fitting and stochastic Markov-Chain...
Three-dimensional gravity modeling and focusing inversion using...
Office of Scientific and Technical Information (OSTI)
Using synthetic data from models of varying complexity and a field data set, it is demonstrated that, given an adequate depth weighting function, the gravity inversion in the ...
Estimating Bacteria Emissions from Inversion of Atmospheric Transport...
Office of Scientific and Technical Information (OSTI)
Bacteria Emissions from Inversion of Atmospheric Transport: Sensitivity to Modelled Particle Characteristics Citation Details In-Document Search Title: Estimating Bacteria ...
On parameterization of the inverse problem for estimating aquifer...
Office of Scientific and Technical Information (OSTI)
Title: On parameterization of the inverse problem for estimating aquifer properties using tracer data Authors: Kowalsky, M. B. ; Finsterle, S. ; Commer, M. ; Williams, K. H. ; ...
Stochastic Joint Inversion for Integrated Data Interpretation in Geothermal Exploration
Broader source: Energy.gov [DOE]
Stochastic Joint Inversion for Integrated Data Interpretation in Geothermal Exploration presentation at the April 2013 peer review meeting held in Denver, Colorado.
Viscoacoustic wave form inversion of transmission data for velocity...
Office of Scientific and Technical Information (OSTI)
and attenuation. An efficient frequency domain implementation is applied that consists of performing a series of single frequency inversions sweeping from low to high frequency. ...
Inverse Opals, a New Nanomaterial | Solid State Solar Thermal Energy
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Conversion Inverse Opals, a New Nanomaterial Seminar Wednesday Apr 6, 2016 12:00pm Location: 1-150 S3TEC welcomes Prof. Gerald Mahan
A Target-Oriented Magnetotelluric Inversion Approach For Characterizin...
Geothermal Reservoir Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Target-Oriented Magnetotelluric Inversion Approach For...
The Mystery of the Missing Materials
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
The Mystery of the Missing Materials Stay alert, Sherlock Holmes. The Center for Inverse Design is "afoot"! The Center (CID)-an Office of Science Energy Frontier Research Center-is in hot pursuit of new materials with extraordinary properties. And under CID's magnifying glass is the vast materials space containing the promising A 2 BX 4 spinel metal-chalcogenide and ABX half-Heusler tetrahedral compounds, which have great potential for solar-cell and other electronic and optical
Inversion Breakup in Small Rocky Mountain and Alpine Basins
Whiteman, Charles D.; Pospichal, Bernhard; Eisenbach, Stefan; Weihs, P.; Clements, Craig B.; Steinacker, Reinhold; Mursch-Radlgruber, Erich; Dorninger, Manfred
2004-08-01
Comparisons are made between the post-sunrise breakup of temperature inversions in two similar closed basins in quite different climate settings, one in the eastern Alps and one in the Rocky Mountains. The small, high-altitude, limestone sinkholes have both experienced extreme temperature minima below -50C. On undisturbed clear nights, temperature inversions reach to 120 m heights in both sinkholes, but are much stronger in the drier Rocky Mountain basin (24K versus 13K). Inversion destruction takes place 2.6 to 3 hours after sunrise and is accomplished primarily by subsidence warming associated with the removal of air from the base of the inversion by the upslope flows that develop over the sidewalls. Differences in inversion strengths and post-sunrise heating rates are caused by differences in the surface energy budget, with drier soil and a higher sensible heat flux in the Rocky Mountain sinkhole.
Structural inversion: Occurrence, mechanics, and implications for petroleum exploration
Lowell, J.D.
1994-11-01
Structural inversion, defined as the uplift of previously extended, subsiding regions by later contraction, has been recognized on every continent that has been explored for petroleum. The process can occur at the large scale of deformation in orogenic belts, but this presentation focused on inversion affecting sedimentary basins and their associated structures. The mid-continent rift and the Uinta Mountains of northeastern Utah are good examples of basin inversion. Typically, rift and sag basins can be later inverted. Mainly by reactivation of older normal faults, inversion selects rift basins where, in pure shear, weakening because of necking or thinning of lithosphere has occurred, and where, in simple shear, mechanical detachment surfaces are available for subsequent movement. Sag basins can apparently be inverted in the absence of reactivated normal faults, as in the southern altiplano of Bolivia and offshore Sabah, Borneo. Basins can be inverted by dominant strike slip with some convergent component, e.g., offshore northeast Brazil, and by almost direct compression, e.g., Atlas Mountains, Morocco. Structural inversion has important implications for petroleum exploration. Areas of inversion frequently have tighter porosity for a potential reservoir and faster seismic velocity for a particular stratigraphic interval than would be expected for their present depth of burial. Burial history curves characteristically have an upward inflection at the time of inversion, which can affect the hydrocarbon maturation process. Some source rocks may be overmature for present burial depths. In some presently shallow basins, however, maturation would not have occurred had not source rocks once been buried more deeply. Inversion can cause remigration of hydrocarbons. Finally, inversion can create the trapping structures.
Three-Dimensional Inversion of Magnetotelluric Data on a PC,...
Inversion of Magnetotelluric Data on a PC, Methodology and Applications to the Coso Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference...
Time-lapse Joint Inversion of Geophysical Data and its Applications...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Time-lapse Joint Inversion of Geophysical Data and its Applications to Geothermal Prospecting Time-lapse Joint Inversion of Geophysical Data and its Applications to Geothermal ...
Ita, B. I.
2014-11-12
By using the Nikiforov-Uvarov (NU) method, the Schrdinger equation has been solved for the interaction of inversely quadratic Hellmann (IQHP) and inversely quadratic potential (IQP) for any angular momentum quantum number, l. The energy eigenvalues and their corresponding eigenfunctions have been obtained in terms of Laguerre polynomials. Special cases of the sum of these potentials have been considered and their energy eigenvalues also obtained.
Image Appraisal for 2D and 3D Electromagnetic Inversion
Alumbaugh, D.L.; Newman, G.A.
1999-01-28
Linearized methods are presented for appraising image resolution and parameter accuracy in images generated with two and three dimensional non-linear electromagnetic inversion schemes. When direct matrix inversion is employed, the model resolution and posterior model covariance matrices can be directly calculated. A method to examine how the horizontal and vertical resolution varies spatially within the electromagnetic property image is developed by examining the columns of the model resolution matrix. Plotting the square root of the diagonal of the model covariance matrix yields an estimate of how errors in the inversion process such as data noise and incorrect a priori assumptions about the imaged model map into parameter error. This type of image is shown to be useful in analyzing spatial variations in the image sensitivity to the data. A method is analyzed for statistically estimating the model covariance matrix when the conjugate gradient method is employed rather than a direct inversion technique (for example in 3D inversion). A method for calculating individual columns of the model resolution matrix using the conjugate gradient method is also developed. Examples of the image analysis techniques are provided on 2D and 3D synthetic cross well EM data sets, as well as a field data set collected at the Lost Hills Oil Field in Central California.
Our On-Its-Head-and-In-Your-Dreams Approach Leads to Clean Energy
Kazmerski, Lawrence; Gwinner, Don; Hicks, Al
2013-07-18
Representing the Center for Inverse Design (CID), this document is one of the entries in the Ten Hundred and One Word Challenge. As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE: energy. The mission of the CID is to revolutionize the discovery of new materials by design with tailored properties through the development and application of a novel inverse design approach powered by theory guiding experiment with an initial focus on solar energy conversion.
Asymptotic expansions for oscillatory integrals using inverse functions.
Lyness, J. N.; Lottes, J. W.
2009-05-01
We treat finite oscillatory integrals of the form {integral}{sub a}{sup b} F(x)e{sup ikG(x)} dx in which both F and G are real on the real line, are analytic over the open integration interval, and may have algebraic singularities at either or both interval end points. For many of these, we establish asymptotic expansions in inverse powers of k. No appeal to the theories of stationary phase or steepest descent is involved. We simply apply theory involving inverse functions and expansions for a Fourier coefficient {integral}{sub a}{sup b} {phi}(t)e{sup ikt} dt. To this end, we have assembled several results involving inverse functions. Moreover, we have derived a new asymptotic expansion for this integral, valid when {phi}(t) = {Sigma}a{sub j}t{sup {sigma}}j, -1 < {sigma}{sub 1} < {sigma}{sub 2} < {hor_ellipsis}.
Inverse spin Hall effect in Pt/(Ga,Mn)As
Nakayama, H.; Chen, L.; Chang, H. W.; Ohno, H.; Matsukura, F.
2015-06-01
We investigate dc voltages under ferromagnetic resonance in a Pt/(Ga,Mn)As bilayer structure. A part of the observed dc voltage is shown to originate from the inverse spin Hall effect. The sign of the inverse spin Hall voltage is the same as that in Py/Pt bilayer structure, even though the stacking order of ferromagnetic and nonmagnetic layers is opposite to each other. The spin mixing conductance at the Pt/(Ga,Mn)As interface is determined to be of the order of 10{sup 19 }m{sup −2}, which is about ten times greater than that of (Ga,Mn)As/p-GaAs.
Inverse Marx modulators for self-biasing klystron depressed collectors
Kemp, Mark A.
2014-07-31
A novel pulsed depressed collector biasing scheme is proposed. This topology feeds forward energy recovered during one RF pulse for use on the following RF pulse. The presented ''inverse'' Marx charges biasing capacitors in series, and discharges them in parallel. Simulations are shown along with experimental demonstration on a 62kW klystron.
3D electromagnetic inversion for environmental site characterization
Alumbaugh, D.L.; Newman, G.A.
1997-04-01
A 3-D non-linear electromagnetic inversion scheme has been developed to produce images of subsurface conductivity structure from electromagnetic geophysical data. The solution is obtained by successive linearized model updates where full forward modeling is employed at each iteration to compute model sensitivities and predicted data. Regularization is applied to the problem to provide stability. Because the inverse part of the problem requires the solution of 10`s to 100`s of thousands of unknowns, and because each inverse iteration requires many forward models to be computed, the code has been implemented on massively parallel computer platforms. The use of the inversion code to image environmental sites is demonstrated on a data set collected with the Apex Parametrics {open_quote}MaxMin I-8S{close_quote} over a section of stacked barrels and metal filled boxes at the Idaho National Laboratory`s {open_quote}Cold Test Pit{close_quote}. The MaxMin is a loop-loop frequency domain system which operates from 440 Hz up to 56 kHz using various coil separations; for this survey coil separations of 15, 30 and 60 feet were employed. The out-of phase data are shown to be of very good quality while the in-phase are rather noisy due to slight mispositioning errors, which cause improper cancellation of the primary free space field in the receiver. Weighting the data appropriately by the estimated noise and applying the inversion scheme is demonstrated to better define the structure of the pit. In addition, comparisons are given for single coil separations and multiple separations to show the benefits of using multiple offset data.
Inverse problems in heterogeneous and fractured media using peridynamics
Turner, Daniel Z.; van Bloemen Waanders, Bart G.; Parks, Michael L.
2015-12-10
The following work presents an adjoint-based methodology for solving inverse problems in heterogeneous and fractured media using state-based peridynamics. We show that the inner product involving the peridynamic operators is self-adjoint. The proposed method is illustrated for several numerical examples with constant and spatially varying material parameters as well as in the context of fractures. We also present a framework for obtaining material parameters by integrating digital image correlation (DIC) with inverse analysis. This framework is demonstrated by evaluating the bulk and shear moduli for a sample of nuclear graphite using digital photographs taken during the experiment. The resulting measured values correspond well with other results reported in the literature. Lastly, we show that this framework can be used to determine the load state given observed measurements of a crack opening. Furthermore, this type of analysis has many applications in characterizing subsurface stress-state conditions given fracture patterns in cores of geologic material.
NN inversion potentials intermediate energy proton-nucleus elastic scattering
Arellano, H.F.; Brieva, F.A.; Love, W.G.; Geramb, H.V. von
1995-10-01
Recently developed nucleon-nucleon interactions using the quantum inverse scattering method shed new fight on the off-shell properties of the internucleon effective force for nucleon-nucleus scattering. Calculations of proton elastic scattering from {sup 40}Ca and {sup 208}Pb in the 500 MeV region show that variations in off-shell contributions are determined to a great extent by the accuracy with which the nucleon-nucleon phase shifts are reproduced. The study is based on the full-folding approach to the nucleon-nucleus optical potential which allows a deep understanding of the interplay between on- and off-shell effects in nucleon scattering. Results and the promising extension offered by the inversion potentials beyond the range of validity of the low-energy internucleon forces will be discussed.
TCAP HYDROGEN ISOTOPE SEPARATION USING PALLADIUM AND INVERSE COLUMNS
Heung, L.; Sessions, H.; Xiao, S.
2010-08-31
The Thermal Cycling Absorption Process (TCAP) was further studied with a new configuration. Previous configuration used a palladium packed column and a plug flow reverser (PFR). This new configuration uses an inverse column to replace the PFR. The goal was to further improve performance. Both configurations were experimentally tested. The results showed that the new configuration increased the throughput by a factor of more than 2.
Stochastic Joint Inversion for Integrated Data Interpretation in Geothermal Exploration
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Stochastic Joint Inversion for Integrated Data Interpretation in Geothermal Exploration Principal Investigator: Robert J. Mellors Lawrence Livermore National Laboratory Track 1: Geophysics Project Officer: Eric Hass Total Project Funding: $890,000 April 24, 2013 This presentation does not contain any proprietary confidential, or otherwise restricted information. Mandatory slide Data Flow models Subsurface permeability and temperatures 2 | US DOE Geothermal Office eere.energy.gov Relevance/Impact
Combined approach to the inverse protein folding problem. Final report
Ruben A. Abagyan
2000-06-01
The main scientific contribution of the project ''Combined approach to the inverse protein folding problem'' submitted in 1996 and funded by the Department of Energy in 1997 is the formulation and development of the idea of the multilink recognition method for identification of functional and structural homologues of newly discovered genes. This idea became very popular after they first announced it and used it in prediction of the threading targets for the CASP2 competition (Critical Assessment of Structure Prediction).
Inverse Design of High-Absorption Thin-Film Photovoltaic Materials
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Administration | (NNSA) Inventory Tracking and Management: Fact Sheet March 23, 2012 Under International Atomic Energy Agency (IAEA) safeguards agreements, States are required to establish a "state system of accounting and control" (SSAC) to keep track of all nuclear material (quantity and type), note changes in material inventories (imports/exports), and monitor all material balance areas (for material use and/or processing) within safeguarded nuclear facilities. States are
Nan, Feng; Shen, Mingrong; Fang, Liang E-mail: lfang@suda.edu.cn; Kang, Zhenhui E-mail: lfang@suda.edu.cn; Wang, Junling
2015-04-13
Carbon quantum dots (CQDs) coated BiVO{sub 4} inverse opal (io-BiVO{sub 4}) structure that shows dramatic improvement of photoelectrochemical hydrogen generation has been fabricated using electrodeposition with a template. The io-BiVO{sub 4} maximizes photon trapping through slow light effect, while maintaining adequate surface area for effective redox reactions. CQDs are then incorporated to the io-BiVO{sub 4} to further improve the photoconversion efficiency. Due to the strong visible light absorption property of CQDs and enhanced separation of the photoexcited electrons, the CQDs coated io-BiVO{sub 4} exhibit a maximum photo-to-hydrogen conversion efficiency of 0.35%, which is 6 times higher than that of the pure BiVO{sub 4} thin films. This work is a good example of designing composite photoelectrode by combining quantum dots and photonic crystal.
Haber, Eldad
2014-03-17
The focus of research was: Developing adaptive mesh for the solution of Maxwell's equations; Developing a parallel framework for time dependent inverse Maxwell's equations; Developing multilevel methods for optimization problems with inequal- ity constraints; A new inversion code for inverse Maxwell's equations in the 0th frequency (DC resistivity); A new inversion code for inverse Maxwell's equations in low frequency regime. Although the research concentrated on electromagnetic forward and in- verse problems the results of the research was applied to the problem of image registration.
Inflation in the generalized inverse power law scenario
Lu, Zhun
2013-11-01
We propose a single field inflationary model by generalizing the inverse power law potential from the intermediate model. We study the implication of our model on the primordial anisotropy of cosmological microwave background radiation. Specifically, we apply the slow-roll approximation to calculate the scalar spectral tilt n{sub s} and the tensor-to-scalar ratio r. The results are compared with the recent data measured by the Planck satellite. We find that by choosing proper values for the parameters, our model can well describe the Planck data.
Seismic Attenuation Inversion with t* Using tstarTomog.
Preston, Leiph
2014-09-01
Seismic attenuation is defined as the loss of the seismic wave amplitude as the wave propagates excluding losses strictly due to geometric spreading. Information gleaned from seismic waves can be utilized to solve for the attenuation properties of the earth. One method of solving for earth attenuation properties is called t*. This report will start by introducing the basic theory behind t* and delve into inverse theory as it pertains to how the algorithm called tstarTomog inverts for attenuation properties using t* observations. This report also describes how to use the tstarTomog package to go from observed data to a 3-D model of attenuation structure in the earth.
Sneutrino inflation in supersymmetric B - L with inverse seesaw
Khalil, Shaaban; Sil, Arunansu
2012-07-27
We have shown that inflation in the supersymmetric B - L extension of the Standard Model can be realized where one of the associated right-handed sneutrinos can provide a non-trivial inflationary trajectory at tree level (hence breaking B - L during inflation). As soon as the inflation ends, the right-handed sneutrino falls into the supersymmetric vacuum, with a vanishing vacuum expectation value, so that B - L symmetry is restored. The B - L gauge symmetry will be radiatively broken at a TeV scale and light neutrino masses are generated through the inverse seesaw mechanism.
Zhang, Z. F.; Ward, Andy L.; Gee, Glendon W.
2002-12-10
As the Hanford Site transitions into remediation of contaminated soil waste sites and tank farm closure, more information is needed about the transport of contaminants as they move through the vadose zone to the underlying water table. The hydraulic properties must be characterized for accurate simulation of flow and transport. This characterization includes the determination of soil texture types, their three-dimensional distribution, and the parameterization of each soil texture. This document describes a method to estimate the soil hydraulic parameter using the parameter scaling concept (Zhang et al. 2002) and inverse techniques. To this end, the Groundwater Protection Program Science and Technology Project funded vadose zone transport field studies, including analysis of the results to estimate field-scale hydraulic parameters for modeling. Parameter scaling is a new method to scale hydraulic parameters. The method relates the hydraulic-parameter values measured at different spatial scales for different soil textures. Parameter scaling factors relevant to a reference texture are determined using these local-scale parameter values, e.g., those measured in the lab using small soil cores. After parameter scaling is applied, the total number of unknown variables in hydraulic parameters is reduced by a factor equal to the number of soil textures. The field-scale values of the unknown variables can then be estimated using inverse techniques and a well-designed field experiment. Finally, parameters for individual textures are obtained through inverse scaling of the reference values using an a priori relationship between reference parameter values and the specific values for each texture. Inverse methods have the benefits of 1) calculating parameter values that produce the best-fit between observed and simulated values, 2) quantifying the confidence limits in parameter estimates and the predictions, 3) providing diagnostic statistics that quantify the quality of
Waveform inversion of acoustic waves for explosion yield estimation
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Kim, K.; Rodgers, A. J.
2016-07-08
We present a new waveform inversion technique to estimate the energy of near-surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source-receiver distance. In this study, three-dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosionmore » yield based on a standard air blast model. The technique was applied to local explosions (<10 km) and provided reasonable yield estimates (<~30% error) in the presence of realistic topography and atmospheric structure. In conclusion, the presented method can be extended to explosions recorded at far distance provided proper meteorological specifications.« less
Inverse problems in heterogeneous and fractured media using peridynamics
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Turner, Daniel Z.; van Bloemen Waanders, Bart G.; Parks, Michael L.
2015-12-10
The following work presents an adjoint-based methodology for solving inverse problems in heterogeneous and fractured media using state-based peridynamics. We show that the inner product involving the peridynamic operators is self-adjoint. The proposed method is illustrated for several numerical examples with constant and spatially varying material parameters as well as in the context of fractures. We also present a framework for obtaining material parameters by integrating digital image correlation (DIC) with inverse analysis. This framework is demonstrated by evaluating the bulk and shear moduli for a sample of nuclear graphite using digital photographs taken during the experiment. The resulting measuredmore » values correspond well with other results reported in the literature. Lastly, we show that this framework can be used to determine the load state given observed measurements of a crack opening. Furthermore, this type of analysis has many applications in characterizing subsurface stress-state conditions given fracture patterns in cores of geologic material.« less
Inversion of seismic reflection traveltimes using a nonlinear optimization scheme
Pullammanappallil, S.K.; Louie, J.N. (Univ. of Nevada, Reno, NV (United States). Mackay School of Mines)
1993-11-01
The authors present the use of a nonlinear optimization scheme called generalized simulated annealing to invert seismic reflection times for velocities, reflector depths, and lengths. A finite-difference solution of the eikonal equation computes reflection traveltimes through the velocity model and avoids ray tracing. They test the optimization scheme on synthetic models and compare it with results from a linearized inversion. The synthetic tests illustrate that, unlike linear inversion schemes, the results obtained by the optimization scheme are independent of the initial model. The annealing method has the ability to produce a suite of models that satisfy the data equally well. They make use of this property to determine the uncertainties associated with the model parameters obtained. Synthetic examples demonstrate that allowing the reflector length to vary, along with its position, helps the optimization process obtain a better solution. The authors put this to use in imaging the Garlock fault, whose geometry at depth is poorly known. They use reflection times picked from shot gathers recorded along COCORP Mojave Line 5 to invert for the Garlock fault and velocities within the Cantil Basin below Fremont Valley, California. The velocities within the basin obtained by their optimization scheme are consistent with earlier studies, though their results suggest that the basin might extend 1--2 km further south. The reconstructed reflector seems to suggest shallowing of the dip of the Garlock fault at depth.
Balancing aggregation and smoothing errors in inverse models
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Turner, A. J.; Jacob, D. J.
2015-01-13
Inverse models use observations of a system (observation vector) to quantify the variables driving that system (state vector) by statistical optimization. When the observation vector is large, such as with satellite data, selecting a suitable dimension for the state vector is a challenge. A state vector that is too large cannot be effectively constrained by the observations, leading to smoothing error. However, reducing the dimension of the state vector leads to aggregation error as prior relationships between state vector elements are imposed rather than optimized. Here we present a method for quantifying aggregation and smoothing errors as a function ofmore » state vector dimension, so that a suitable dimension can be selected by minimizing the combined error. Reducing the state vector within the aggregation error constraints can have the added advantage of enabling analytical solution to the inverse problem with full error characterization. We compare three methods for reducing the dimension of the state vector from its native resolution: (1) merging adjacent elements (grid coarsening), (2) clustering with principal component analysis (PCA), and (3) applying a Gaussian mixture model (GMM) with Gaussian pdfs as state vector elements on which the native-resolution state vector elements are projected using radial basis functions (RBFs). The GMM method leads to somewhat lower aggregation error than the other methods, but more importantly it retains resolution of major local features in the state vector while smoothing weak and broad features.« less
Jurassic extension and Alpine inversion of the northern Morocco
Zizi, M. )
1993-09-01
The lower Mesozoic half grabens of northern Morocco form part of an extensional system that is related to the opening of the western Tethys. They appear to be somewhat younger than the Triassic-Jurassic systems associated with the opening the Atlantic Ocean. During the Tertiary and as consequence of the Alpine collision of Africa with Europe, these half graben systems were inverted as shown by the High and the Middle Atlas mountains. Seismic illustrations of similar but smaller inversion structures are available from the Guercif area and the [open quotes]Rides Prerifaines[close quotes] of northern Morocco. These seismic profiles serve as small models for the much larger Atlas Mountains. In the Guercif area, the inversions are limited in scope, but in the [open quotes]Ride Prerifaines[close quotes] are extensive decollement systems that sole out in the Triassic evaporites. These systems evolve into complex thrust faults and associated lateral ramps that are strongly influenced by the configuration of the Jurassic transtensional systems. Significant hydrocarbon accumulation have been known for some time from the [open quotes]Rides Prerifaines.[close quotes] A review of the geometry of the inverted half-graben systems, combined with detailed stratigraphic studies, is likely to lead to the discovery of additional reserves in the area.
Balancing aggregation and smoothing errors in inverse models
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Turner, A. J.; Jacob, D. J.
2015-06-30
Inverse models use observations of a system (observation vector) to quantify the variables driving that system (state vector) by statistical optimization. When the observation vector is large, such as with satellite data, selecting a suitable dimension for the state vector is a challenge. A state vector that is too large cannot be effectively constrained by the observations, leading to smoothing error. However, reducing the dimension of the state vector leads to aggregation error as prior relationships between state vector elements are imposed rather than optimized. Here we present a method for quantifying aggregation and smoothing errors as a function ofmore » state vector dimension, so that a suitable dimension can be selected by minimizing the combined error. Reducing the state vector within the aggregation error constraints can have the added advantage of enabling analytical solution to the inverse problem with full error characterization. We compare three methods for reducing the dimension of the state vector from its native resolution: (1) merging adjacent elements (grid coarsening), (2) clustering with principal component analysis (PCA), and (3) applying a Gaussian mixture model (GMM) with Gaussian pdfs as state vector elements on which the native-resolution state vector elements are projected using radial basis functions (RBFs). The GMM method leads to somewhat lower aggregation error than the other methods, but more importantly it retains resolution of major local features in the state vector while smoothing weak and broad features.« less
Solution accelerators for large scale 3D electromagnetic inverse problems
Newman, Gregory A.; Boggs, Paul T.
2004-04-05
We provide a framework for preconditioning nonlinear 3D electromagnetic inverse scattering problems using nonlinear conjugate gradient (NLCG) and limited memory (LM) quasi-Newton methods. Key to our approach is the use of an approximate adjoint method that allows for an economical approximation of the Hessian that is updated at each inversion iteration. Using this approximate Hessian as a preconditoner, we show that the preconditioned NLCG iteration converges significantly faster than the non-preconditioned iteration, as well as converging to a data misfit level below that observed for the non-preconditioned method. Similar conclusions are also observed for the LM iteration; preconditioned with the approximate Hessian, the LM iteration converges faster than the non-preconditioned version. At this time, however, we see little difference between the convergence performance of the preconditioned LM scheme and the preconditioned NLCG scheme. A possible reason for this outcome is the behavior of the line search within the LM iteration. It was anticipated that, near convergence, a step size of one would be approached, but what was observed, instead, were step lengths that were nowhere near one. We provide some insights into the reasons for this behavior and suggest further research that may improve the performance of the LM methods.
On the computational complexity of sequence design problems
Hart, W.E. [Sandia National Labs., Albuquerque, NM (United States)
1997-12-01
Inverse protein folding concerns the identification of an amino acid sequence that folds to a given structure. Sequence design problems attempt to avoid the apparant difficulty of inverse protein folding by defining an energy that can be minimized to find protein-like sequences. We evaluate the practical relevance of two sequence design problems by analyzing their computational complexity. We show that the canonical method of sequence design is intractable and describe approximation algorithms for this problem. We also describe an efficient algorithm that exactly solves the grand canonical method. Our analysis shows how sequence design problems can fail to reduce the difficulty of the inverse protein folding problem and highlights the need to analyze these problems to evaluate their practical relevance. 10 refs., 8 figs.
On the computational complexity of sequence design problems
Hart, W.E. [Sandia National Labs., Albuquerque, NM (United States). Algorithms and Discrete Mathematics Dept.
1996-12-31
Inverse protein folding concerns the identification of an amino acid sequence that folds to a given structure. Sequence design problems attempt to avoid the apparent difficulty of inverse protein folding by defining an energy that can be minimized to find protein-like sequences. The authors evaluate the practical relevance of two sequence design problems by analyzing their computation complexity. They show that the canonical method of sequence design is intractable, and describe approximation algorithms for this problem. The authors also describe an efficient algorithm that exactly solves the grand canonical method. The analysis shows how sequence design problems can fail to reduce the difficulty of the inverse protein folding problem, and highlights the need to analyze these problems to evaluate their practical relevance.
Grindinger, C.M.
1992-05-01
This study uses Hawaiian Rainband Project (HaRP) data, from the summer of 1991, to show a boundary layer wind profiler can be used to measure the trade wind inversion. An algorithm has been developed for the profiler that objectively measures the depth of the moist oceanic boundary layer. The Hilo inversion, measured by radiosonde, is highly correlated with the moist oceanic boundary layer measured by the profiler at Paradise Park. The inversion height on windward Hawaii is typically 2253 + or - 514 m. The inversion height varies not only on a daily basis, but on less than an hourly basis. It has a diurnal, as well as a three to four day cycle. There appears to be no consistent relationship between inversion height and precipitation. Currently, this profiler is capable of making high frequency (12 minute) measurements of the inversion base variation, as well as other features.
Chirped pulse inverse free-electron laser vacuum accelerator
Hartemann, Frederic V.; Baldis, Hector A.; Landahl, Eric C.
2002-01-01
A chirped pulse inverse free-electron laser (IFEL) vacuum accelerator for high gradient laser acceleration in vacuum. By the use of an ultrashort (femtosecond), ultrahigh intensity chirped laser pulse both the IFEL interaction bandwidth and accelerating gradient are increased, thus yielding large gains in a compact system. In addition, the IFEL resonance condition can be maintained throughout the interaction region by using a chirped drive laser wave. In addition, diffraction can be alleviated by taking advantage of the laser optical bandwidth with negative dispersion focusing optics to produce a chromatic line focus. The combination of these features results in a compact, efficient vacuum laser accelerator which finds many applications including high energy physics, compact table-top laser accelerator for medical imaging and therapy, material science, and basic physics.
Unified dark energy-dark matter model with inverse quintessence
Ansoldi, Stefano; Guendelman, Eduardo I. E-mail: guendel@bgu.ac.il
2013-05-01
We consider a model where both dark energy and dark matter originate from the coupling of a scalar field with a non-canonical kinetic term to, both, a metric measure and a non-metric measure. An interacting dark energy/dark matter scenario can be obtained by introducing an additional scalar that can produce non constant vacuum energy and associated variations in dark matter. The phenomenology is most interesting when the kinetic term of the additional scalar field is ghost-type, since in this case the dark energy vanishes in the early universe and then grows with time. This constitutes an ''inverse quintessence scenario'', where the universe starts from a zero vacuum energy density state, instead of approaching it in the future.
Zeroth-order inversion of transient head observations
Vasco, D.W.
2007-08-15
A high-frequency, asymptotic solution for transient head,appropriate for a medium containing smoothly varying heterogeneity,provides a basis for efficient inverse modeling. The semi analyticsolution is trajectory based, akin to ray methods used in modeling wavepropagation, and may be constructed by post processing the output of anumerical simulator. For high frequencies, the amplitude sensitivities,the relationship between changes in flow properties and changes in headampliude, are dominated by the phase term which may be computed directlyfrom the output of the simulator. Thus, transient head waveforms may beinverted with little more computation than is required to invert arrivaltimes. An applicatino to synthetic head values indicates that thetechnique can be used to improve the fit to waveforms. An application totransient head data from the Migration experiment in Switzerland revealsa narrow, high conductivity pathway within a 0.5 m thick zone offracturing.
Classical and quantum dynamics in an inverse square potential
Guillaumn-Espaa, Elisa; Nez-Ypez, H. N.; Salas-Brito, A. L.
2014-10-15
The classical motion of a particle in a 3D inverse square potential with negative energy, E, is shown to be geodesic, i.e., equivalent to the particle's free motion on a non-compact phase space manifold irrespective of the sign of the coupling constant. We thus establish that all its classical orbits with E < 0 are unbounded. To analyse the corresponding quantum problem, the Schrdinger equation is solved in momentum space. No discrete energy levels exist in the unrenormalized case and the system shows a complete fall-to-the-center with an energy spectrum unbounded by below. Such behavior corresponds to the non-existence of bound classical orbits. The symmetry of the problem is SO(3) SO(2, 1) corroborating previously obtained results.
Source-independent full waveform inversion of seismic data
Lee, Ki Ha
2006-02-14
A set of seismic trace data is collected in an input data set that is first Fourier transformed in its entirety into the frequency domain. A normalized wavefield is obtained for each trace of the input data set in the frequency domain. Normalization is done with respect to the frequency response of a reference trace selected from the set of seismic trace data. The normalized wavefield is source independent, complex, and dimensionless. The normalized wavefield is shown to be uniquely defined as the normalized impulse response, provided that a certain condition is met for the source. This property allows construction of the inversion algorithm disclosed herein, without any source or source coupling information. The algorithm minimizes the error between data normalized wavefield and the model normalized wavefield. The methodology is applicable to any 3-D seismic problem, and damping may be easily included in the process.
n-dimensional Statistical Inverse Graphical Hydraulic Test Simulator
Energy Science and Technology Software Center (OSTI)
2012-09-12
nSIGHTS (n-dimensional Statistical Inverse Graphical Hydraulic Test Simulator) is a comprehensive well test analysis software package. It provides a user-interface, a well test analysis model and many tools to analyze both field and simulated data. The well test analysis model simulates a single-phase, one-dimensional, radial/non-radial flow regime, with a borehole at the center of the modeled flow system. nSIGHTS solves the radially symmetric n-dimensional forward flow problem using a solver based on a graph-theoretic approach.more » The results of the forward simulation are pressure, and flow rate, given all the input parameters. The parameter estimation portion of nSIGHTS uses a perturbation-based approach to interpret the best-fit well and reservoir parameters, given an observed dataset of pressure and flow rate.« less
Fast full-wave seismic inversion using source encoding.
Ho Cha, Young; Baumstein, Anatoly; Lee, Sunwoong; Hinkley, David; Anderson, John E.; Neelamani, Ramesh; Krebs, Jerome R.; Lacasse, Martin-Daniel
2010-05-01
Full Wavefield Seismic Inversion (FWI) estimates a subsurface elastic model by iteratively minimizing the difference between observed and simulated data. This process is extremely compute intensive, with a cost on the order of at least hundreds of prestack reverse time migrations. For time-domain and Krylov-based frequency-domain FWI, the cost of FWI is proportional to the number of seismic sources inverted. We have found that the cost of FWI can be significantly reduced by applying it to data processed by encoding and summing individual source gathers, and by changing the encoding functions between iterations. The encoding step forms a single gather from many input source gathers. This gather represents data that would have been acquired from a spatially distributed set of sources operating simultaneously with different source signatures. We demonstrate, using synthetic data, significant cost reduction by applying FWI to encoded simultaneous-source data.
Rapid Evaluation of Particle Properties using Inverse SEM Simulations
Bekar, Kursat B.; Miller, Thomas Martin; Patton, Bruce W.; Weber, Charles F.
2016-01-01
This report is the final deliverable of a 3 year project whose purpose was to investigate the possibility of using simulations of X-ray spectra generated inside a scanning electron microscope (SEM) as a means to perform quantitative analysis of the sample imaged in the SEM via an inverse analysis methodology. Using the nine point Technology Readiness Levels (TRL) typically used by the US Department of Defense (DOD) and the National Aeronautics and Space Administration (NASA), this concept is now at a TRL of 3. In other words, this work has proven the feasibility of this concept and is ready to be further investigated to address some of the issues highlighted by this initial proof of concept.
Spherical Resorcinol-Formaldehyde Synthesis by Inverse Suspension Polymerization
Ray, Robert J.; Scrivens, Walter A.; Nash, Charles
2005-10-21
Base catalyzed sol-gel polycondensation of resorcinol (1,3-dihydroxybenzene) with formaldehyde by inverse suspension polymerization leads to the formation of uniform, highly cross-linked, translucent, spherical gels, which have increased selectivity and capacity for cesium ion removal from high alkaline solutions. Because of its high selectivity for cesium ion, resorcinol-formaldehyde (R-F) resins are being considered for process scale column radioactive cesium removal by ion-exchange at the Waste Treatment and Immobilization Plant (WTP), which is now under construction at the Hanford site. Other specialty resins such as Superlig{reg_sign} 644 have been ground and sieved and column tested for process scale radioactive cesium removal but show high pressure drops across the resin bed during transition from column regeneration to loading and elution. Furthermore, van Deemter considerations indicate better displacement column chromatography by the use of spherical particle beads rather than irregularly shaped ground or granular particles. In our studies batch contact equilibrium experiments using a high alkaline simulant show a definite increase in cesium loading onto spherical R-F resin. Distribution coefficient (Kd) values ranged from 777 to 429 mL/g in the presence of 0.1M and 0.7M potassium ions, respectively. Though other techniques for making R-F resins have been employed, to our knowledge no one has made spherical R-F resins by inverse suspension polymerization. Moreover, in this study we discuss the data comparisons to known algebraic isotherms used to evaluate ion-exchange resins for WTP plant scale cesium removal operations.
Atmospheric Inverse Estimates of Methane Emissions from Central California
Zhao, Chuanfeng; Andrews, Arlyn E.; Bianco, Laura; Eluszkiewicz, Janusz; Hirsch, Adam; MacDonald, Clinton; Nehrkorn, Thomas; Fischer, Marc L.
2008-11-21
Methane mixing ratios measured at a tall-tower are compared to model predictions to estimate surface emissions of CH{sub 4} in Central California for October-December 2007 using an inverse technique. Predicted CH{sub 4} mixing ratios are calculated based on spatially resolved a priori CH{sub 4} emissions and simulated atmospheric trajectories. The atmospheric trajectories, along with surface footprints, are computed using the Weather Research and Forecast (WRF) coupled to the Stochastic Time-Inverted Lagrangian Transport (STILT) model. An uncertainty analysis is performed to provide quantitative uncertainties in estimated CH{sub 4} emissions. Three inverse model estimates of CH{sub 4} emissions are reported. First, linear regressions of modeled and measured CH{sub 4} mixing ratios obtain slopes of 0.73 {+-} 0.11 and 1.09 {+-} 0.14 using California specific and Edgar 3.2 emission maps respectively, suggesting that actual CH{sub 4} emissions were about 37 {+-} 21% higher than California specific inventory estimates. Second, a Bayesian 'source' analysis suggests that livestock emissions are 63 {+-} 22% higher than the a priori estimates. Third, a Bayesian 'region' analysis is carried out for CH{sub 4} emissions from 13 sub-regions, which shows that inventory CH{sub 4} emissions from the Central Valley are underestimated and uncertainties in CH{sub 4} emissions are reduced for sub-regions near the tower site, yielding best estimates of flux from those regions consistent with 'source' analysis results. The uncertainty reductions for regions near the tower indicate that a regional network of measurements will be necessary to provide accurate estimates of surface CH{sub 4} emissions for multiple regions.
Discovery of a Single Topological Dirac Fermion in the Strong Inversion
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Asymmetric Compound BiTeCl | Stanford Synchrotron Radiation Lightsource Discovery of a Single Topological Dirac Fermion in the Strong Inversion Asymmetric Compound BiTeCl Friday, January 31, 2014 Topological insulators comprise a new state of quantum matter that has been predicted theoretically and realized experimentally in the past few years. Every topological insulator discovered so far in experiments has been inversion symmetric - except for strained HgTe, which has weak inversion
Gao Yajun
2008-08-15
A previously established Hauser-Ernst-type extended double-complex linear system is slightly modified and used to develop an inverse scattering method for the stationary axisymmetric general symplectic gravity model. The reduction procedures in this inverse scattering method are found to be fairly simple, which makes the inverse scattering method applied fine and effective. As an application, a concrete family of soliton double solutions for the considered theory is obtained.
Joint inversion of electrical and seismic data for Fracture char. and
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Imaging of Fluid Flow in Geothermal Systems | Department of Energy Joint inversion of electrical and seismic data for Fracture char. and Imaging of Fluid Flow in Geothermal Systems Joint inversion of electrical and seismic data for Fracture char. and Imaging of Fluid Flow in Geothermal Systems Joint inversion of electrical and seismic data for Fracture char. and Imaging of Fluid Flow in Geothermal Systems presentation at the April 2013 peer review meeting held in Denver, Colorado.
Kouri, Donald J.; Vijay, Amrendra; Zhang, Haiyan; Zhang, Jingfeng; Hoffman, David K.
2007-05-01
A method and system for solving the inverse acoustic scattering problem using an iterative approach with consideration of half-off-shell transition matrix elements (near-field) information, where the Volterra inverse series correctly predicts the first two moments of the interaction, while the Fredholm inverse series is correct only for the first moment and that the Volterra approach provides a method for exactly obtaining interactions which can be written as a sum of delta functions.
Modified Inverse First Order Reliability Method (I-FORM) for Predicting Extreme Sea States.
Eckert-Gallup, Aubrey Celia; Sallaberry, Cedric Jean-Marie; Dallman, Ann Renee; Neary, Vincent Sinclair
2014-09-01
Environmental contours describing extreme sea states are generated as the input for numerical or physical model simulation s as a part of the stand ard current practice for designing marine structure s to survive extreme sea states. Such environmental contours are characterized by combinations of significant wave height ( ) and energy period ( ) values calculated for a given recurrence interval using a set of data based on hindcast simulations or buoy observations over a sufficient period of record. The use of the inverse first - order reliability method (IFORM) i s standard design practice for generating environmental contours. In this paper, the traditional appli cation of the IFORM to generating environmental contours representing extreme sea states is described in detail and its merits and drawbacks are assessed. The application of additional methods for analyzing sea state data including the use of principal component analysis (PCA) to create an uncorrelated representation of the data under consideration is proposed. A reexamination of the components of the IFORM application to the problem at hand including the use of new distribution fitting techniques are shown to contribute to the development of more accurate a nd reasonable representations of extreme sea states for use in survivability analysis for marine struc tures. Keywords: In verse FORM, Principal Component Analysis , Environmental Contours, Extreme Sea State Characteri zation, Wave Energy Converters
FELIX: advances in modeling forward and inverse ice-sheet problems...
Office of Scientific and Technical Information (OSTI)
Title: FELIX: advances in modeling forward and inverse ice-sheet problems. Abstract not provided. Authors: Salinger, Andrew G. ; Perego, Mauro ; Hoffman, Mattew ; Leng, Wei ; ...
Entropy-Bayesian Inversion of Time-Lapse Tomographic GPR data...
Office of Scientific and Technical Information (OSTI)
the Bayesian estimates from the previous inversion (as a memory function) with new data. ... Country of Publication: United States Language: English Subject: 58 GEOSCIENCES ...
Time-lapse Joint Inversion of Geophysical Data and its Applications to Geothermal Prospecting
Broader source: Energy.gov [DOE]
Time-lapse Joint Inversion of Geophysical Data and its Applications to Geothermal Prospecting presentation at the April 2013 peer review meeting held in Denver, Colorado.
NuSTAR Observations of the Bullet Cluster: Constraints on Inverse...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
of the Bullet Cluster: Constraints on Inverse Compton Emission Wik, Daniel R.; NASA, Goddard Johns Hopkins U.; Hornstrup, A.; Denmark, Tech. U.; Molendi, S.; IASF,...
Entropy-Bayesian Inversion of Time-Lapse Tomographic GPR data...
Office of Scientific and Technical Information (OSTI)
of Time-Lapse Tomographic GPR data for Monitoring Dielectric Permittivity and Soil ... Title: Entropy-Bayesian Inversion of Time-Lapse Tomographic GPR data for Monitoring ...
Inverse Cascade of Non-helical Magnetic Turbulence in a Relativistic...
Office of Scientific and Technical Information (OSTI)
Title: Inverse Cascade of Non-helical Magnetic Turbulence in a Relativistic Fluid Authors: Zrake, Jonathan ; KIPAC, Menlo Park Publication Date: 2014-10-23 OSTI Identifier: ...
NuSTAR Observations of the Bullet Cluster: Constraints on Inverse...
Office of Scientific and Technical Information (OSTI)
the Bullet Cluster: Constraints on Inverse Compton Emission Authors: Wik, Daniel R. ; NASA, Goddard Johns Hopkins U. ; Hornstrup, A. ; Denmark, Tech. U. ; Molendi, S. ; IASF,...
Entropy-Bayesian Inversion of Time-Lapse Tomographic GPR data...
Office of Scientific and Technical Information (OSTI)
data for Monitoring Dielectric Permittivity and Soil Moisture Variations Citation Details In-Document Search Title: Entropy-Bayesian Inversion of Time-Lapse Tomographic GPR data ...
Microsoft Word - NRAP-TRS-III-00X-2016_Coupled Inversion of Hydrologic...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Coupled Inversion of Hydrological and Geophysical Data for Improved Prediction of ... Cover Illustration: Schematic of time-lapse hydrological and geophysical monitoring data ...
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Pablant, N. A.; Bell, R. E.; Bitter, M.; Delgado-Aparicio, L.; Hill, K. W.; Lazerson, S.; Morita, S.
2014-08-08
Accurate tomographic inversion is important for diagnostic systems on stellarators and tokamaks which rely on measurements of line integrated emission spectra. A tomographic inversion technique based on spline optimization with enforcement of constraints is described that can produce unique and physically relevant inversions even in situations with noisy or incomplete input data. This inversion technique is routinely used in the analysis of data from the x-ray imaging crystal spectrometer (XICS) installed at LHD. The XICS diagnostic records a 1D image of line integrated emission spectra from impurities in the plasma. Through the use of Doppler spectroscopy and tomographic inversion, XICSmore » can provide pro file measurements of the local emissivity, temperature and plasma flow. Tomographic inversion requires the assumption that these measured quantities are flux surface functions, and that a known plasma equilibrium reconstruction is available. In the case of low signal levels or partial spatial coverage of the plasma cross-section, standard inversion techniques utilizing matrix inversion and linear-regularization often cannot produce unique and physically relevant solutions. The addition of physical constraints, such as parameter ranges, derivative directions, and boundary conditions, allow for unique solutions to be reliably found. The constrained inversion technique described here utilizes a modifi ed Levenberg-Marquardt optimization scheme, which introduces a condition avoidance mechanism by selective reduction of search directions. The constrained inversion technique also allows for the addition of more complicated parameter dependencies, for example geometrical dependence of the emissivity due to asymmetries in the plasma density arising from fast rotation. The accuracy of this constrained inversion technique is discussed, with an emphasis on its applicability to systems with limited plasma coverage.« less
Pablant, N. A.; Bell, R. E.; Bitter, M.; Delgado-Aparicio, L.; Hill, K. W.; Lazerson, S.; Morita, S.
2014-11-01
Accurate tomographic inversion is important for diagnostic systems on stellarators and tokamaks which rely on measurements of line integrated emission spectra. A tomographic inversion technique based on spline optimization with enforcement of constraints is described that can produce unique and physically relevant inversions even in situations with noisy or incomplete input data. This inversion technique is routinely used in the analysis of data from the x-ray imaging crystal spectrometer (XICS) installed at LHD. The XICS diagnostic records a 1D image of line integrated emission spectra from impurities in the plasma. Through the use of Doppler spectroscopy and tomographic inversion, XICS can provide pro#12;file measurements of the local emissivity, temperature and plasma flow. Tomographic inversion requires the assumption that these measured quantities are flux surface functions, and that a known plasma equilibrium reconstruction is available. In the case of low signal levels or partial spatial coverage of the plasma cross-section, standard inversion techniques utilizing matrix inversion and linear-regularization often cannot produce unique and physically relevant solutions. The addition of physical constraints, such as parameter ranges, derivative directions, and boundary conditions, allow for unique solutions to be reliably found. The constrained inversion technique described here utilizes a modifi#12;ed Levenberg-Marquardt optimization scheme, which introduces a condition avoidance mechanism by selective reduction of search directions. The constrained inversion technique also allows for the addition of more complicated parameter dependencies, for example geometrical dependence of the emissivity due to asymmetries in the plasma density arising from fast rotation. The accuracy of this constrained inversion technique is discussed, with an emphasis on its applicability to systems with limited plasma coverage.
Solving Inverse Detection Problems Using Passive Radiation Signatures
Favorite, Jeffrey A.; Armstrong, Jerawan C.; Vaquer, Pablo A.
2012-08-15
The ability to reconstruct an unknown radioactive object based on its passive gamma-ray and neutron signatures is very important in homeland security applications. Often in the analysis of unknown radioactive objects, for simplicity or speed or because there is no other information, they are modeled as spherically symmetric regardless of their actual geometry. In these presentation we discuss the accuracy and implications of this approximation for decay gamma rays and for neutron-induced gamma rays. We discuss an extension of spherical raytracing (for uncollided fluxes) that allows it to be used when the exterior shielding is flat or cylindrical. We revisit some early results in boundary perturbation theory, showing that the Roussopolos estimate is the correct one to use when the quantity of interest is the flux or leakage on the boundary. We apply boundary perturbation theory to problems in which spherically symmetric systems are perturbed in asymmetric nonspherical ways. We apply mesh adaptive direct search (MADS) algorithms to object reconstructions. We present a benchmark test set that may be used to quantitatively evaluate inverse detection methods.
Negative terahertz conductivity in disordered graphene bilayers with population inversion
Svintsov, D.; Otsuji, T.; Ryzhii, V.; Mitin, V.; Shur, M. S.
2015-03-16
The gapless energy band spectra make the structures based on graphene and graphene bilayer with the population inversion to be promising media for the interband terahertz (THz) lasing. However, a strong intraband absorption at THz frequencies still poses a challenge for efficient THz lasing. In this paper, we show that in the pumped graphene bilayer, the indirect interband radiative transitions accompanied by scattering of carriers by disorder can provide a substantial negative contribution to the THz conductivity (together with the direct interband transitions). In the graphene bilayer on high-? substrates with point charged defects, these transitions substantially compensate the losses due to the intraband (Drude) absorption. We also demonstrate that the indirect interband contribution to the THz conductivity in a graphene bilayer with the extended defects (such as the charged impurity clusters) can surpass by several times the fundamental limit associated with the direct interband transitions, and the Drude conductivity as well. These predictions can affect the strategy of the graphene-based THz laser implementation.
Self-annihilation of inversion domains by high energy defects in III-Nitrides
Koukoula, T.; Kioseoglou, J. Kehagias, Th.; Komninou, Ph.; Ajagunna, A. O.; Georgakilas, A.
2014-04-07
Low-defect density InN films were grown on Si(111) by molecular beam epitaxy over an ?1??m thick GaN/AlN buffer/nucleation layer. Electron microscopy observations revealed the presence of inverse polarity domains propagating across the GaN layer and terminating at the sharp GaN/InN (0001{sup }) interface, whereas no inversion domains were detected in InN. The systematic annihilation of GaN inversion domains at the GaN/InN interface is explained in terms of indium incorporation on the Ga-terminated inversion domains forming a metal bonded In-Ga bilayer, a structural instability known as the basal inversion domain boundary, during the initial stages of InN growth on GaN.
Iterative electromagnetic Born inversion applied to earth conductivity imaging
Alumbaugh, D.L.
1993-08-01
This thesis investigates the use of a fast imaging technique to deduce the spatial conductivity distribution in the earth from low frequency (< 1 MHz), cross well electromagnetic (EM) measurements. The theory embodied in this work is the extension of previous strategies and is based on the Born series approximation to solve both the forward and inverse problem. Nonlinear integral equations are employed to derive the series expansion which accounts for the scattered magnetic fields that are generated by inhomogeneities embedded in either a homogenous or a layered earth. A sinusoidally oscillating, vertically oriented magnetic dipole is employed as a source, and it is assumed that the scattering bodies are azimuthally symmetric about the source dipole axis. The use of this model geometry reduces the 3-D vector problem to a more manageable 2-D scalar form. The validity of the cross well EM method is tested by applying the imaging scheme to two sets of field data. Images of the data collected at the Devine, Texas test site show excellent correlation with the well logs. Unfortunately there is a drift error present in the data that limits the accuracy of the results. A more complete set of data collected at the Richmond field station in Richmond, California demonstrates that cross well EM can be successfully employed to monitor the position of an injected mass of salt water. Both the data and the resulting images clearly indicate the plume migrates toward the north-northwest. The plausibility of these conclusions is verified by applying the imaging code to synthetic data generated by a 3-D sheet model.
An inverse free electron laser accelerator: Experiment and theoretical interpretation
Fang, Jyan-Min
1997-06-01
Experimental and numerical studies of the Inverse Free Electron Laser using a GW-level 10.6 {mu}m CO{sub 2} laser have been carried out at Brookhaven`s Accelerator Test Facility. An energy gain of 2.5 % ({Delta}E/E) on a 40 MeV electron beam has been observed E which compares well with theory. The effects on IFEL acceleration with respect to the variation of the laser electric field, the input electron beam energy, and the wiggler magnetic field strength were studied, and show the importance of matching the resonance condition in the IFEL. The numerical simulations were performed under various conditions and the importance of the electron bunching in the IFEL is shown. The numerical interpretation of our IFEL experimental results was examined. Although good numerical agreement with the experimental results was obtained, there is a discrepancy between the level of the laser power measured in the experiment and used in the simulation, possibly due to the non-Gaussian profile of the input high power laser beam. The electron energy distribution was studied numerically and a smoothing of the energy spectrum by the space charge effect at the location of the spectrometer was found, compared with the spectrum at the exit of the wiggler. The electron bunching by the IFEL and the possibility of using the IFEL as an electron prebuncher for another laser-driven accelerator were studied numerically. We found that bunching of the electrons at 1 meter downstream from the wiggler can be achieved using the existing facility. The simulation shows that there is a fundamental difference between the operating conditions for using the IFEL as a high gradient accelerator, and as a prebuncher for another accelerator.
Bledsoe, Keith C.
2015-04-01
The DiffeRential Evolution Adaptive Metropolis (DREAM) method is a powerful optimization/uncertainty quantification tool used to solve inverse transport problems in Los Alamos National Laboratorys INVERSE code system. The DREAM method has been shown to be adept at accurate uncertainty quantification, but it can be very computationally demanding. Previously, the DREAM method in INVERSE performed a user-defined number of particle transport calculations. This placed a burden on the user to guess the number of calculations that would be required to accurately solve any given problem. This report discusses a new approach that has been implemented into INVERSE, the Gelman-Rubin convergence metric. This metric automatically detects when an appropriate number of transport calculations have been completed and the uncertainty in the inverse problem has been accurately calculated. In a test problem with a spherical geometry, this method was found to decrease the number of transport calculations (and thus time required) to solve a problem by an average of over 90%. In a cylindrical test geometry, a 75% decrease was obtained.
Whistler turbulence forward vs. inverse cascade: Three-dimensional particle-in-cell simulations
Chang, Ouliang; Gary, S. Peter; Wang, Joseph
2015-02-12
In this study, we present the results of the first fully three-dimensional particle-in-cell simulations of decaying whistler turbulence in a magnetized, homogeneous, collisionless plasma in which both forward cascades to shorter wavelengths, and inverse cascades to longer wavelengths are allowed to proceed. For the electron beta ?_{e} = 0.10 initial value considered here, the early-time rate of inverse cascade is very much smaller than the rate of forward cascade, so that at late times the fluctuation energy in the regime of the inverse cascade is much weaker than that in the forward cascade regime. Similarly, the wavevector anisotropy in the inverse cascade regime is much weaker than that in the forward cascade regime.
THERMAL EXPANSION AND PHASE INVERSION OF RARE-EARTH OXIDES (Technical...
Office of Scientific and Technical Information (OSTI)
Thermal expansion and phase inversion measurements are reported on oxides of Sc, Y, La, and 12 lanthanide series elements up to 1350 deg C. (J.R.D.) Authors: Stecura, S. ; Campbell...
Methods to control phase inversions and enhance mass transfer in liquid-liquid dispersions
Tsouris, Constantinos; Dong, Junhang
2002-01-01
The present invention is directed to the effects of applied electric fields on liquid-liquid dispersions. In general, the present invention is directed to the control of phase inversions in liquid-liquid dispersions. Because of polarization and deformation effects, coalescence of aqueous drops is facilitated by the application of electric fields. As a result, with an increase in the applied voltage, the ambivalence region is narrowed and shifted toward higher volume fractions of the dispersed phase. This permits the invention to be used to ensure that the aqueous phase remains continuous, even at a high volume fraction of the organic phase. Additionally, the volume fraction of the organic phase may be increased without causing phase inversion, and may be used to correct a phase inversion which has already occurred. Finally, the invention may be used to enhance mass transfer rates from one phase to another through the use of phase inversions.
Whistler turbulence forward vs. inverse cascade. Three-dimensional particle-in-cell simulations
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Chang, Ouliang; Gary, S. Peter; Wang, Joseph
2015-02-12
In this study, we present the results of the first fully three-dimensional particle-in-cell simulations of decaying whistler turbulence in a magnetized, homogeneous, collisionless plasma in which both forward cascades to shorter wavelengths, and inverse cascades to longer wavelengths are allowed to proceed. For the electron beta βe = 0.10 initial value considered here, the early-time rate of inverse cascade is very much smaller than the rate of forward cascade, so that at late times the fluctuation energy in the regime of the inverse cascade is much weaker than that in the forward cascade regime. Similarly, the wavevector anisotropy in themore » inverse cascade regime is much weaker than that in the forward cascade regime.« less
Sapphire decomposition and inversion domains in N-polar aluminum nitride
Hussey, Lindsay White, Ryan M.; Kirste, Ronny; Bryan, Isaac; Guo, Wei; Osterman, Katherine; Haidet, Brian; Bryan, Zachary; Bobea, Milena; Collazo, Ramn; Sitar, Zlatko; Mita, Seiji
2014-01-20
Transmission electron microscopy (TEM) techniques and potassium hydroxide (KOH) etching confirmed that inversion domains in the N-polar AlN grown on c-plane sapphire were due to the decomposition of sapphire in the presence of hydrogen. The inversion domains were found to correspond to voids at the AlN and sapphire interface, and transmission electron microscopy results showed a V-shaped, columnar inversion domain with staggered domain boundary sidewalls. Voids were also observed in the simultaneously grown Al-polar AlN, however no inversion domains were present. The polarity of AlN grown above the decomposed regions of the sapphire substrate was confirmed to be Al-polar by KOH etching and TEM.
Application Of 3D Inversion To Magnetotelluric Data In The Ogiri...
3D Inversion To Magnetotelluric Data In The Ogiri Geothermal Area, Japan Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Application Of 3D...
3-D Inversion Of Borehole-To-Surface Electrical Data Using A...
Inversion Of Borehole-To-Surface Electrical Data Using A Back-Propagation Neural Network Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: 3-D...
Schuh, Andrew E.; Lauvaux, Thomas; West, Tristram O.; Denning, A.; Davis, Kenneth J.; Miles, Natasha; Richardson, S. J.; Uliasz, Marek; Lokupitiya, Erandathie; Cooley, Dan; Andrews, Arlyn; Ogle, Stephen
2013-05-01
An intensive regional research campaign was conducted by the North American Carbon Program (NACP) in 2005 to study the carbon cycle of the highly productive agricultural regions of the Midwestern United States. Forty-_ve di_erent associated projects were spawned across _ve U.S. agencies over the course of nearly a decade involving hundreds of researchers. The primary objective of the project was to investigate the ability of atmospheric inversion techniques to use highly calibrated CO2 mixing ratio data to estimate CO2 exchange over the major croplands of the U.S. Statistics from densely monitored crop production, consisting primarily corn and soybeans, provided the backbone of a well-studied\\bottom up"flux estimate that was used to evaluate the atmospheric inversion results. Three different inversion systems, representing spatial scales varying from high resolution mesoscale, to continental, to global, coupled to different transport models and optimization techniques were compared to the bottom up" inventory estimates. The mean annual CO2-C sink for 2007 from the inversion systems ranged from 120 TgC to 170 TgC, when viewed across a wide variety of inversion setups, with the best" point estimates ranging from 145 TgC to 155 TgC. Inversion-based mean C sink estimates were generally slightly stronger, but statistically indistinguishable,from the inventory estimate whose mean C sink was 135 TgC. The inversion results showed temporal correlations at seasonal lengths while week to week correlations remained low. Comparisons were made between atmospheric transport yields of the two regional inversion systems, which despite having different influence footprints in space and time due to differences in underlying transport models and external forcings, showed similarity when aggregated in space and time.
Entropy-Bayesian Inversion of Time-Lapse Tomographic GPR data for
Office of Scientific and Technical Information (OSTI)
Monitoring Dielectric Permittivity and Soil Moisture Variations (Technical Report) | SciTech Connect Entropy-Bayesian Inversion of Time-Lapse Tomographic GPR data for Monitoring Dielectric Permittivity and Soil Moisture Variations Citation Details In-Document Search Title: Entropy-Bayesian Inversion of Time-Lapse Tomographic GPR data for Monitoring Dielectric Permittivity and Soil Moisture Variations In this study, we evaluate the possibility of monitoring soil moisture variation using
Entropy-Bayesian Inversion of Time-Lapse Tomographic GPR data for
Office of Scientific and Technical Information (OSTI)
Monitoring Dielectric Permittivity and Soil Moisture Variations (Technical Report) | SciTech Connect Entropy-Bayesian Inversion of Time-Lapse Tomographic GPR data for Monitoring Dielectric Permittivity and Soil Moisture Variations Citation Details In-Document Search Title: Entropy-Bayesian Inversion of Time-Lapse Tomographic GPR data for Monitoring Dielectric Permittivity and Soil Moisture Variations In this study, we evaluate the possibility of monitoring soil moisture variation using
Time-lapse Joint Inversion of Geophysical Data and its Applications to
Office of Scientific and Technical Information (OSTI)
Geothermal Prospecting - GEODE (Technical Report) | SciTech Connect Time-lapse Joint Inversion of Geophysical Data and its Applications to Geothermal Prospecting - GEODE Citation Details In-Document Search Title: Time-lapse Joint Inversion of Geophysical Data and its Applications to Geothermal Prospecting - GEODE The objectives of this project were to develop new algorithms to decrease the cost of drilling for geothermal targets during the exploration phase of a hydrothermal field and to
Efficient Inversion of Mult-frequency and Multi-Source Electromagnetic Data
Gary D. Egbert
2007-03-22
The project covered by this report focused on development of efficient but robust non-linear inversion algorithms for electromagnetic induction data, in particular for data collected with multiple receivers, and multiple transmitters, a situation extremely common in eophysical EM subsurface imaging methods. A key observation is that for such multi-transmitter problems each step in commonly used linearized iterative limited memory search schemes such as conjugate gradients (CG) requires solution of forward and adjoint EM problems for each of the N frequencies or sources, essentially generating data sensitivities for an N dimensional data-subspace. These multiple sensitivities allow a good approximation to the full Jacobian of the data mapping to be built up in many fewer search steps than would be required by application of textbook optimization methods, which take no account of the multiplicity of forward problems that must be solved for each search step. We have applied this idea to a develop a hybrid inversion scheme that combines features of the iterative limited memory type methods with a Newton-type approach using a partial calculation of the Jacobian. Initial tests on 2D problems show that the new approach produces results essentially identical to a Newton type Occam minimum structure inversion, while running more rapidly than an iterative (fixed regularization parameter) CG style inversion. Memory requirements, while greater than for something like CG, are modest enough that even in 3D the scheme should allow 3D inverse problems to be solved on a common desktop PC, at least for modest (~ 100 sites, 15-20 frequencies) data sets. A secondary focus of the research has been development of a modular system for EM inversion, using an object oriented approach. This system has proven useful for more rapid prototyping of inversion algorithms, in particular allowing initial development and testing to be conducted with two-dimensional example problems, before
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Lin, Youzuo; O'Malley, Daniel; Vesselinov, Velimir V.
2016-08-19
Inverse modeling seeks model parameters given a set of observations. However, for practical problems because the number of measurements is often large and the model parameters are also numerous, conventional methods for inverse modeling can be computationally expensive. We have developed a new, computationally-efficient parallel Levenberg-Marquardt method for solving inverse modeling problems with a highly parameterized model space. Levenberg-Marquardt methods require the solution of a linear system of equations which can be prohibitively expensive to compute for moderate to large-scale problems. Our novel method projects the original linear problem down to a Krylov subspace, such that the dimensionality of themore » problem can be significantly reduced. Furthermore, we store the Krylov subspace computed when using the first damping parameter and recycle the subspace for the subsequent damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved using these computational techniques. We apply this new inverse modeling method to invert for random transmissivity fields in 2D and a random hydraulic conductivity field in 3D. Our algorithm is fast enough to solve for the distributed model parameters (transmissivity) in the model domain. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). By comparing with Levenberg-Marquardt methods using standard linear inversion techniques such as QR or SVD methods, our Levenberg-Marquardt method yields a speed-up ratio on the order of ~101 to ~102 in a multi-core computational environment. Furthermore, our new inverse modeling method is a powerful tool for characterizing subsurface heterogeneity for moderate- to large-scale problems.« less
Carbon Dioxide (CO2) Capture Project Phase 2 (CCP2) - Storage...
Clean Fossil Energy Topics: System & Application Design Website: www.sciencedirect.comscience?obMiamiImageURL&cid277910&user10& Equivalent URI: cleanenergysolutions.org...
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Tran, Anh Phuong; Dafflon, Baptiste; Hubbard, Susan S.; Kowalsky, Michael B.; Long, Philip; Tokunaga, Tetsu K.; Williams, Kenneth H.
2016-08-31
Improving our ability to estimate the parameters that control water and heat fluxes in the shallow subsurface is particularly important due to their strong control on recharge, evaporation and biogeochemical processes. The objectives of this study are to develop and test a new inversion scheme to simultaneously estimate subsurface hydrological, thermal and petrophysical parameters using hydrological, thermal and electrical resistivity tomography (ERT) data. The inversion scheme – which is based on a nonisothermal, multiphase hydrological model – provides the desired subsurface property estimates in high spatiotemporal resolution. A particularly novel aspect of the inversion scheme is the explicit incorporation of themore » dependence of the subsurface electrical resistivity on both moisture and temperature. The scheme was applied to synthetic case studies, as well as to real datasets that were autonomously collected at a biogeochemical field study site in Rifle, Colorado. At the Rifle site, the coupled hydrological-thermal-geophysical inversion approach well predicted the matric potential, temperature and apparent resistivity with the Nash–Sutcliffe efficiency criterion greater than 0.92. Synthetic studies found that neglecting the subsurface temperature variability, and its effect on the electrical resistivity in the hydrogeophysical inversion, may lead to an incorrect estimation of the hydrological parameters. The approach is expected to be especially useful for the increasing number of studies that are taking advantage of autonomously collected ERT and soil measurements to explore complex terrestrial system dynamics.« less
Elastic-Waveform Inversion with Compressive Sensing for Sparse Seismic Data
Lin, Youzuo; Huang, Lianjie
2015-01-26
Accurate velocity models of compressional- and shear-waves are essential for geothermal reservoir characterization and microseismic imaging. Elastic-waveform inversion of multi-component seismic data can provide high-resolution inversion results of subsurface geophysical properties. However, the method requires seismic data acquired using dense source and receiver arrays. In practice, seismic sources and/or geophones are often sparsely distributed on the surface and/or in a borehole, such as 3D vertical seismic profiling (VSP) surveys. We develop a novel elastic-waveform inversion method with compressive sensing for inversion of sparse seismic data. We employ an alternating-minimization algorithm to solve the optimization problem of our new waveform inversion method. We validate our new method using synthetic VSP data for a geophysical model built using geologic features found at the Raft River enhanced-geothermal-system (EGS) field. We apply our method to synthetic VSP data with a sparse source array and compare the results with those obtained with a dense source array. Our numerical results demonstrate that the velocity mode ls produced with our new method using a sparse source array are almost as accurate as those obtained using a dense source array.
Office of Energy Efficiency and Renewable Energy (EERE)
Breakout Session 2: Frontiers and Horizons Session 2-A: Synthetic Biology and the Promise of Biofuels Pablo Rabinowicz, Program Manager, Biosystems Design Program, Biological and Environmental Research (BER), U.S. Department of Energy
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Lee, Jonghyun; Yoon, Hongkyu; Kitanidis, Peter K.; Werth, Charles J.; Valocchi, Albert J.
2016-06-09
When characterizing subsurface properties is crucial for reliable and cost-effective groundwater supply management and contaminant remediation. With recent advances in sensor technology, large volumes of hydro-geophysical and geochemical data can be obtained to achieve high-resolution images of subsurface properties. However, characterization with such a large amount of information requires prohibitive computational costs associated with “big data” processing and numerous large-scale numerical simulations. To tackle such difficulties, the Principal Component Geostatistical Approach (PCGA) has been proposed as a “Jacobian-free” inversion method that requires much smaller forward simulation runs for each iteration than the number of unknown parameters and measurements needed inmore » the traditional inversion methods. PCGA can be conveniently linked to any multi-physics simulation software with independent parallel executions. In our paper, we extend PCGA to handle a large number of measurements (e.g. 106 or more) by constructing a fast preconditioner whose computational cost scales linearly with the data size. For illustration, we characterize the heterogeneous hydraulic conductivity (K) distribution in a laboratory-scale 3-D sand box using about 6 million transient tracer concentration measurements obtained using magnetic resonance imaging. Since each individual observation has little information on the K distribution, the data was compressed by the zero-th temporal moment of breakthrough curves, which is equivalent to the mean travel time under the experimental setting. Moreover, only about 2,000 forward simulations in total were required to obtain the best estimate with corresponding estimation uncertainty, and the estimated K field captured key patterns of the original packing design, showing the efficiency and effectiveness of the proposed method. This article is protected by copyright. All rights reserved.« less
Mernild, Sebastian Haugard [Los Alamos National Laboratory; Liston, Glen [COLORADO STATE UNIV.
2009-01-01
In many applications, a realistic description of air temperature inversions is essential for accurate snow and glacier ice melt, and glacier mass-balance simulations. A physically based snow-evolution modeling system (SnowModel) was used to simulate eight years (1998/99 to 2005/06) of snow accumulation and snow and glacier ice ablation from numerous small coastal marginal glaciers on the SW-part of Ammassalik Island in SE Greenland. These glaciers are regularly influenced by inversions and sea breezes associated with the adjacent relatively low temperature and frequently ice-choked fjords and ocean. To account for the influence of these inversions on the spatiotemporal variation of air temperature and snow and glacier melt rates, temperature inversion routines were added to MircoMet, the meteorological distribution sub-model used in SnowModel. The inversions were observed and modeled to occur during 84% of the simulation period. Modeled inversions were defined not to occur during days with strong winds and high precipitation rates due to the potential of inversion break-up. Field observations showed inversions to extend from sea level to approximately 300 m a.s.l., and this inversion level was prescribed in the model simulations. Simulations with and without the inversion routines were compared. The inversion model produced air temperature distributions with warmer lower elevation areas and cooler higher elevation areas than without inversion routines due to the use of cold sea-breeze base temperature data from underneath the inversion. This yielded an up to 2 weeks earlier snowmelt in the lower areas and up to 1 to 3 weeks later snowmelt in the higher elevation areas of the simulation domain. Averaged mean annual modeled surface mass-balance for all glaciers (mainly located above the inversion layer) was -720 {+-} 620 mm w.eq. y{sup -1} for inversion simulations, and -880 {+-} 620 mm w.eq. y{sup -1} without the inversion routines, a difference of 160 mm w.eq. y
Measurement of an inverse Compton scattering source local spectrum using k-edge filters
Golosio, Bruno; Oliva, Piernicola; Carpinelli, Massimo; Endrizzi, Marco; Delogu, Pasquale; Pogorelsky, Igor; Yakimenko, Vitaly
2012-04-16
X-ray sources based on the inverse Compton scattering process are attracting a growing interest among scientists, due to their extremely fast pulse, quasi-monochromatic spectrum, and relatively high intensity. The energy spectrum of the x-ray beam produced by inverse Compton scattering sources in a fixed observation direction is a quasi-monochromatic approximately Gaussian distribution. The mean value of this distribution varies with the scattering polar angle between the electron beam direction and the x-ray beam observation direction. Previous works reported experimental measurements of the mean energy as a function of the polar angle. This work introduces a method for the measurement of the whole local energy spectrum (i.e., the spectrum in a fixed observation direction) of the x-ray beam yielded by inverse Compton scattering sources, based on a k-edge filtering technique.
Shan, L.; Vincent, J.; Brunzelle, J.S.; Dussault, I.; Lin, M.; Ianculescu, I.; Sherman, M.A.; Forman, B.M.; Fernandez, E.
2010-03-08
The nuclear receptor CAR is a xenobiotic responsive transcription factor that plays a central role in the clearance of drugs and bilirubin while promoting cocaine and acetaminophen toxicity. In addition, CAR has established a 'reverse' paradigm of nuclear receptor action where the receptor is active in the absence of ligand and inactive when bound to inverse agonists. We now report the crystal structure of murine CAR bound to the inverse agonist androstenol. Androstenol binds within the ligand binding pocket, but unlike many nuclear receptor ligands, it makes no contacts with helix H12/AF2. The transition from constitutive to basal activity (androstenol bound) appears to be associated with a ligand-induced kink between helices H10 and H11. This disrupts the previously predicted salt bridge that locks H12 in the transcriptionally active conformation. This mechanism of inverse agonism is distinct from traditional nuclear receptor antagonists thereby offering a new approach to receptor modulation.
Using a derivative-free optimization method for multiple solutions of inverse transport problems
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Armstrong, Jerawan C.; Favorite, Jeffrey A.
2016-01-14
Identifying unknown components of an object that emits radiation is an important problem for national and global security. Radiation signatures measured from an object of interest can be used to infer object parameter values that are not known. This problem is called an inverse transport problem. An inverse transport problem may have multiple solutions and the most widely used approach for its solution is an iterative optimization method. This paper proposes a stochastic derivative-free global optimization algorithm to find multiple solutions of inverse transport problems. The algorithm is an extension of a multilevel single linkage (MLSL) method where a meshmore » adaptive direct search (MADS) algorithm is incorporated into the local phase. Furthermore, numerical test cases using uncollided fluxes of discrete gamma-ray lines are presented to show the performance of this new algorithm.« less
Inversion of salt diapirs and sedimentary bed observations: Gulf Coast case histories
Petersen, K.; Lerche, I. )
1993-09-01
An inverse procedure is used to remove sediments from around salt diapirs in a manner consistent with evolution of the salt diapir, which also is determined self-consistently by the inverse procedure. The corresponding evolving stress and strain of the sediments are then calculated from use of specified Lame constants, and the times and spatial domains identified where the Coulomb-Mohr rock failure criterion is satisfied, thereby yielding estimates of fault and fracture locations. In addition, the combined evolutionary picture is used to assess thermal focusing by the highly conductive evolving salt, so that thermal anomalies in relation to hydrocarbon maturation around the evolving salt and structural development of sediment bed upturning and salt overhang evolution can be timed better relative to hydrocarbon emplacement. Several examples from the Gulf of Mexico are analyzed using this new inversion procedure.
High-Power Laser Pulse Recirculation for Inverse Compton Scattering-Produced Gamma-Rays
Jovanovic, I; Shverdin, M; Gibson, D; Brown, C
2007-04-17
Inverse Compton scattering of high-power laser pulses on relativistic electron bunches represents an attractive method for high-brightness, quasi-monoenergetic {gamma}-ray production. The efficiency of {gamma}-ray generation via inverse Compton scattering is severely constrained by the small Thomson scattering cross section. Furthermore, repetition rates of high-energy short-pulse lasers are poorly matched with those available from electron accelerators, resulting in low repetition rates for generated {gamma}-rays. Laser recirculation has been proposed as a method to address those limitations, but has been limited to only small pulse energies and peak powers. Here we propose and experimentally demonstrate an alternative method for laser pulse recirculation that is uniquely capable of recirculating short pulses with energies exceeding 1 J. Inverse Compton scattering of recirculated Joule-level laser pulses has a potential to produce unprecedented peak and average {gamma}-ray brightness in the next generation of sources.
Use of traveltime skips in refraction analysis to delineate velocity inversion
Tewari, H.C.; Dixit, M.M.; Murty, P.R.K.
1995-08-01
First arrival refraction data does not normally provide any indication of the velocity inversion problem. However, under certain favorable circumstances, when the low-velocity layer (LVL) is considerably thicker than the overlying higher-velocity layer (HVL), the velocity inversion can be seen in the form of a traveltime skip. Model studies show that in such cases the length of the HVL traveltime branch can be used to determine the thickness of the HVL and the magnitude of the traveltime skip in order to determine the thickness of the LVL. This is also applicable in the case of field data.
Analysis of forward and inverse problems in chemical dynamics and spectroscopy
Rabitz, H.
1993-12-01
The overall scope of this research concerns the development and application of forward and inverse analysis tools for problems in chemical dynamics and chemical kinetics. The chemical dynamics work is specifically associated with relating features in potential surfaces and resultant dynamical behavior. The analogous inverse research aims to provide stable algorithms for extracting potential surfaces from laboratory data. In the case of chemical kinetics, the focus is on the development of systematic means to reduce the complexity of chemical kinetic models. Recent progress in these directions is summarized below.
Biondini, Gino; Kova?i?, Gregor
2014-03-15
The inverse scattering transform for the focusing nonlinear Schrdinger equation with non-zero boundary conditions at infinity is presented, including the determination of the analyticity of the scattering eigenfunctions, the introduction of the appropriate Riemann surface and uniformization variable, the symmetries, discrete spectrum, asymptotics, trace formulae and the so-called theta condition, and the formulation of the inverse problem in terms of a Riemann-Hilbert problem. In addition, the general behavior of the soliton solutions is discussed, as well as the reductions to all special cases previously discussed in the literature.
Hart, K.A.
1994-01-01
During the Intensive Observation Period (IOP), several periods of water vapor and temperature inversions near the 0 deg C level were observed. Satellite and radiosonde data from TOGA COARE are used to document the large-scale conditions and thermodynamic and kinematic structures present during three extended periods in which moisture and temperature inversions near the freezing level were very pronounced. Observations from each case are synthesized into schematics which represent typical structures of the inversion phenomena. Frequency distributions of the inversion phenomena along with climatological humidity and temperature profiles are calculated for the four-month IOP.
Balanced-activity improved inverse emulsion to inhibit brittle lutite hydration in oil fields
Olmedo, E. P.; de J. Hernandez Alvarez, R.; Barrera, C. D.; Ramos, J. D. G.
1984-10-02
An improved inverse emulsion for use as a drilling fluid that inhibits brittle lutite hydration. The emulsion includes a heavy oil; brine; a viscosity agent with thermostabilizing properties; an emulsifying agent; a thickening agent; a gelatinizing additive; and an alkaline earth metal hydroxide. The emulsion avoids hole collapsing and improves well gage stability.
Ry, Rexha Verdhora; Nugraha, Andri Dian
2015-04-24
Observation of earthquakes is routinely used widely in tectonic activity observation, and also in local scale such as volcano tectonic and geothermal activity observation. It is necessary for determining the location of precise hypocenter which the process involves finding a hypocenter location that has minimum error between the observed and the calculated travel times. When solving this nonlinear inverse problem, simulated annealing inversion method can be applied to such global optimization problems, which the convergence of its solution is independent of the initial model. In this study, we developed own program codeby applying adaptive simulated annealing inversion in Matlab environment. We applied this method to determine earthquake hypocenter using several data cases which are regional tectonic, volcano tectonic, and geothermal field. The travel times were calculated using ray tracing shooting method. We then compared its results with the results using Geiger’s method to analyze its reliability. Our results show hypocenter location has smaller RMS error compared to the Geiger’s result that can be statistically associated with better solution. The hypocenter of earthquakes also well correlated with geological structure in the study area. Werecommend using adaptive simulated annealing inversion to relocate hypocenter location in purpose to get precise and accurate earthquake location.
Ginzburg-Landau theory for skyrmions in inversion-symmetric magnets with competing interactions
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Lin, Shi-Zeng; Hayami, Satoru
2016-02-01
Magnetic skyrmions have attracted considerable attention recently for their huge potential in spintronic applications. Generally skyrmions are big compared to the atomic lattice constant, which allows for the Ginzburg-Landau type description in the continuum limit. This description successfully captures the main experimental observations on skyrmions in B20 compound without inversion symmetry. Skyrmions can also exist in inversion-symmetric magnets with competing interactions. Here, we derive a general Ginzburg-Landau theory for skyrmions in these magnets valid in the long-wavelength limit. We study the unusual static and dynamical properties of skyrmions based on the derived Ginzburg-Landau theory. We show that an easy axismore » spin anisotropy is sufficient to stabilize a skyrmion lattice. Interestingly, the skyrmion in inversion-symmetric magnets has a new internal degree of freedom associated with the rotation of helicity, i.e., the “spin” of the skyrmion as a particle, in addition to the usual translational motion of skyrmions (orbital motion). The orbital and spin degree of freedoms of an individual skyrmion can couple to each other, and give rise to unusual behavior that is absent for the skyrmions stabilized by the Dzyaloshinskii-Moriya interaction. Finally, the derived Ginzburg-Landau theory provides a convenient and general framework to discuss skyrmion physics and will facilitate the search for skyrmions in inversion-symmetric magnets.« less
Thermoelectric properties of highly doped n-type polysilicon inverse opals
Ma, J; Sinha, S
2012-10-01
Nanostructured single-crystal silicon exhibits a remarkable increase in the figure of merit for thermoelectric energy conversion. Here we theoretically investigate a similar enhancement for polycrystalline silicon inverse opals. An inverse opal provides nanoscale grains and a thin-film like geometry to scatter phonons preferentially over electrons. Using solutions to the Boltzmann transport equation for electrons and phonons, we show that the figure of merit at 300 K is fifteen times that of bulk single-crystal silicon. Our models predict that grain boundaries are more effective than surfaces in enhancing the figure of merit. We provide insight into this effect and show that preserving a grain size smaller than the shell thickness of the inverse opal increases the figure of merit by as much as 50% when the ratio between the two features is a third. At 600 K, the figure of merit is as high as 0.6 for a shell thickness of 10 nm. This work advances the fundamental understanding of charge and heat transport in nanostructured inverse opals. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4758382
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Lin, Junhao; Pantelides, Sokrates T.; Zhou, Wu
2015-04-23
Sixty degree grain boundaries in semiconducting transition-metal dichalcogenide (TMDC) monolayers have been shown to act as conductive channels that have profound influence on both the transport properties and exciton behavior of the monolayers. We show that annealing TMDC monolayers at high temperature induces the formation of large-scale inversion domains surrounded by such 60° grain boundaries. To study the formation mechanism of such inversion domains, we use the electron beam in a scanning transmission electron microscope to activate the dynamic process within pristine TMDC monolayers. Moreover, the electron beam acts to generate chalcogen vacancies in TMDC monolayers and provide energy formore » them to undergo structural evolution. We directly visualize the nucleation and growth of such inversion domains and their 60° grain boundaries atom-by-atom within a MoSe2 monolayer and explore their formation mechanism. Combined with density functional theory, we conclude that the nucleation of the inversion domains and migration of their 60° grain boundaries are driven by the collective evolution of Se vacancies and subsequent displacement of Mo atoms, where such a dynamical process reduces the vacancy-induced lattice shrinkage and stabilizes the system. Our results can help to understand the performance of such materials under severe conditions (e.g., high temperature).« less
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Ray, J.; Lee, J.; Yadav, V.; Lefantzi, S.; Michalak, A. M.; van Bloemen Waanders, B.
2015-04-29
Atmospheric inversions are frequently used to estimate fluxes of atmospheric greenhouse gases (e.g., biospheric CO2 flux fields) at Earth's surface. These inversions typically assume that flux departures from a prior model are spatially smoothly varying, which are then modeled using a multi-variate Gaussian. When the field being estimated is spatially rough, multi-variate Gaussian models are difficult to construct and a wavelet-based field model may be more suitable. Unfortunately, such models are very high dimensional and are most conveniently used when the estimation method can simultaneously perform data-driven model simplification (removal of model parameters that cannot be reliably estimated) and fitting.more » Such sparse reconstruction methods are typically not used in atmospheric inversions. In this work, we devise a sparse reconstruction method, and illustrate it in an idealized atmospheric inversion problem for the estimation of fossil fuel CO2 (ffCO2) emissions in the lower 48 states of the USA. Our new method is based on stagewise orthogonal matching pursuit (StOMP), a method used to reconstruct compressively sensed images. Our adaptations bestow three properties to the sparse reconstruction procedure which are useful in atmospheric inversions. We have modified StOMP to incorporate prior information on the emission field being estimated and to enforce non-negativity on the estimated field. Finally, though based on wavelets, our method allows for the estimation of fields in non-rectangular geometries, e.g., emission fields inside geographical and political boundaries. Our idealized inversions use a recently developed multi-resolution (i.e., wavelet-based) random field model developed for ffCO2 emissions and synthetic observations of ffCO2 concentrations from a limited set of measurement sites. We find that our method for limiting the estimated field within an irregularly shaped region is about a factor of 10 faster than conventional approaches. It also
Schock, Alfred; Or, Chuen T; Kumar, Vasanth
1994-06-01
A companion paper analyzed the effect on source modules for three specific fuel options, and compared the predicted power output with JPL's latest goals for the Pluto Fast Flyby (PFF) mission. The results showed that a 5-module RTG cannot fully meet JPL's goals with any of the available fuels; and that a 6-module RTG more than meets those goals with Russian fuel, almost meets them with U.S. (Cassini-type) fuel, but still falls far short of meeting them with the depleted fuel from the aged (1982) Galileo spare RTG. The inadequacy of the aged fuel was disappointing,because heat source modules made from it already exist, and their use in PFF could result in substantial cost savings. The present paper describes additional analyses which showed that a six-module RTG with the aged fuel can meet JPL's stipulated power margin with a relatively simple design modification, that a second design modification makes it possible to recover all of the mass and size penalty for going from five to six heat source modules, and that a third modification could raise the EOM power margin to 16%. There are four copies in the file. Cross Reference ESD Files FSC-ESD-217-94-531 (CID #8572)
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
control design - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear
Foxall, W; Cunningham, C; Mellors, R; Templeton, D; Dyer, K; White, J
2012-02-27
Many clandestine development and production activities can be conducted underground to evade surveillance. The purpose of the study reported here was to develop a technique to detect underground facilities by broad-area search and then to characterize the facilities by inversion of the collected data. This would enable constraints to be placed on the types of activities that would be feasible at each underground site, providing a basis the design of targeted surveillance and analysis for more complete characterization. Excavation of underground cavities causes deformation in the host material and overburden that produces displacements at the ground surface. Such displacements are often measurable by a variety of surveying or geodetic techniques. One measurement technique, Interferometric Synthetic Aperture Radar (InSAR), uses data from satellite-borne (or airborne) synthetic aperture radars (SARs) and so is ideal for detecting and measuring surface displacements in denied access regions. Depending on the radar frequency and the acquisition mode and the surface conditions, displacement maps derived from SAR interferograms can provide millimeter- to centimeter-level measurement accuracy on regional and local scales at spatial resolution of {approx}1-10 m. Relatively low-resolution ({approx}20 m, say) maps covering large regions can be used for broad-area detection, while finer resolutions ({approx}1 m) can be used to image details of displacement fields over targeted small areas. Surface displacements are generally expected to be largest during or a relatively short time after active excavation, but, depending on the material properties, measurable displacement may continue at a decreasing rate for a considerable time after completion. For a given excavated volume in a given geological setting, the amplitude of the surface displacements decreases as the depth of excavation increases, while the area of the discernable displacement pattern increases. Therefore, the
Shook, Richard; /Marquette U. /SLAC
2010-08-25
The particle beam of the SXR (soft x-ray) beam line in the LCLS (Linac Coherent Light Source) has a high intensity in order to penetrate through samples at the atomic level. However, the intensity is so high that many experiments fail because of severe damage. To correct this issue, attenuators are put into the beam line to reduce this intensity to a level suitable for experimentation. Attenuation is defined as 'the gradual loss in intensity of any flux through a medium' by [1]. It is found that Beryllium and Boron Carbide can survive the intensity of the beam. At very thin films, both of these materials work very well as filters for reducing the beam intensity. Using a total of 12 filters, the first 9 being made of Beryllium and the rest made of Boron Carbide, the beam's energy range of photons can be attenuated between 800 eV and 9000 eV. The design of the filters allows attenuation for different beam intensities so that experiments can obtain different intensities from the beam if desired. The step of attenuation varies, but is relative to the thickness of the filter as a power function of 2. A relationship for this is f(n) = x{sub 0}2{sup n} where n is the step of attenuation desired and x{sub 0} is the initial thickness of the material. To allow for this desired variation, a mechanism must be designed within the test chamber. This is visualized using a 3D computer aided design modeling tool known as Solid Edge.
Energy Science and Technology Software Center (OSTI)
2000-03-20
Given the space-independent, one energy group reactor kinetics equations and the initial conditions, this prgram determines the time variation of reactivity required to produce the given input of flux-time data.
SOUND-SPEED INVERSION OF THE SUN USING A NONLOCAL STATISTICAL CONVECTION THEORY
Zhang Chunguang; Deng Licai; Xiong Darun; Christensen-Dalsgaard, Jorgen
2012-11-01
Helioseismic inversions reveal a major discrepancy in sound speed between the Sun and the standard solar model just below the base of the solar convection zone. We demonstrate that this discrepancy is caused by the inherent shortcomings of the local mixing-length theory adopted in the standard solar model. Using a self-consistent nonlocal convection theory, we construct an envelope model of the Sun for sound-speed inversion. Our solar model has a very smooth transition from the convective envelope to the radiative interior, and the convective energy flux changes sign crossing the boundaries of the convection zone. It shows evident improvement over the standard solar model, with a significant reduction in the discrepancy in sound speed between the Sun and local convection models.
Encapsulation of nanoclusters in dried gel materials via an inverse micelle/sol gel synthesis
Martino, Anthony; Yamanaka, Stacey A.; Kawola, Jeffrey S.; Showalter, Steven K.; Loy, Douglas A.
1998-01-01
A dried gel material sterically entrapping nanoclusters of a catalytically active material and a process to make the material via an inverse micelle/sol-gel synthesis. A surfactant is mixed with an apolar solvent to form an inverse micelle solution. A salt of a catalytically active material, such as gold chloride, is added along with a silica gel precursor to the solution to form a mixture. To the mixture are then added a reducing agent for the purpose of reducing the gold in the gold chloride to atomic gold to form the nanoclusters and a condensing agent to form the gel which sterically entraps the nanoclusters. The nanoclusters are normally in the average size range of from 5-10 nm in diameter with a monodisperse size distribution.
Encapsulation of nanoclusters in dried gel materials via an inverse micelle/sol gel synthesis
Martino, A.; Yamanaka, S.A.; Kawola, J.S.; Showalter, S.K.; Loy, D.A.
1998-09-29
A dried gel material sterically entrapping nanoclusters of a catalytically active material and a process to make the material via an inverse micelle/sol-gel synthesis are disclosed. A surfactant is mixed with an apolar solvent to form an inverse micelle solution. A salt of a catalytically active material, such as gold chloride, is added along with a silica gel precursor to the solution to form a mixture. To the mixture are then added a reducing agent for the purpose of reducing the gold in the gold chloride to atomic gold to form the nanoclusters and a condensing agent to form the gel which sterically entraps the nanoclusters. The nanoclusters are normally in the average size range of from 5--10 nm in diameter with a monodisperse size distribution. 1 fig.
Non-linear Conjugate Gradient Time-Domain Controlled Inversion Source
Energy Science and Technology Software Center (OSTI)
2006-11-16
Software that simulates and inverts time-domain electromagnetic field data for subsurface electrical properties (electrical conductivity) of geological media. The software treats data produced by a step-wise source signal from either galvanic (grounded wires) or inductive (magnetic loops) sources. The inversion process is carried inductive (magnetic loops) sources. The inversion process is carried out using a non-linear conjugate gradient optimization scheme, which minimizes the misfit between field data and model data using a least squares criteria.more » The software is an upgrade from the code TEM3D ver. 2.0. The upgrade includes the following components: (1) Improved (faster)memory access during gradient computation. (2) Data parellelization scheme: Multiple transmitters (sources) can be distributed accross several banks of processors (daa-planes). Similarly, the receivers of each source are also distributed accross the corresponding data-plane. (3) Improved data-IO.« less
Experimental Observation of the Inverse Spin Hall Effect at Room Temperature
Liu, Baoli; Shi, Junren; Wang, Wenxin; Zhao, Hongming; Li, Dafang; Zhang, Shoucheng; Xue, Qikun; Chen, Dongmin; /Beijing, Inst. Phys.
2010-03-16
We observe the inverse spin Hall effect in a two-dimensional electron gas confined in Al-GaAs/InGaAs quantum wells. Specifically, they find that an inhomogeneous spin density induced by the optical injection gives rise to an electric current transverse to both the spin polarization and its gradient. The spin Hall conductivity can be inferred from such a measurement through the Einstein relation and the onsager relation, and is found to have the order of magnitude of 0.5(e{sup 2}/h). The observation is made at the room temperature and in samples with macroscopic sizes, suggesting that the inverse spin Hall effects is a robust macroscopic transport phenomenon.
Markov Chain Monte Carlo Sampling Methods for 1D Seismic and EM Data Inversion
Energy Science and Technology Software Center (OSTI)
2008-09-22
This software provides several Markov chain Monte Carlo sampling methods for the Bayesian model developed for inverting 1D marine seismic and controlled source electromagnetic (CSEM) data. The current software can be used for individual inversion of seismic AVO and CSEM data and for joint inversion of both seismic and EM data sets. The structure of the software is very general and flexible, and it allows users to incorporate their own forward simulation codes and rockmore » physics model codes easily into this software. Although the softwae was developed using C and C++ computer languages, the user-supplied codes can be written in C, C++, or various versions of Fortran languages. The software provides clear interfaces for users to plug in their own codes. The output of this software is in the format that the R free software CODA can directly read to build MCMC objects.« less
Co-crystal structure guided array synthesis of PPAR[gamma] inverse agonists
Trump, Ryan P.; Cobb, Jeffrey E.; Shearer, Barry G.; Lambert, Millard H.; Nolte, Robert T.; Willson, Timothy M.; Buckholz, Richard G.; Zhao, Sumin M.; Leesnitzer, Lisa M.; Iannone, Marie A.; Pearce, Kenneth H.; Billin, Andrew N.; Hoekstra, William J.
2008-10-02
PPAR{gamma}-activating thiazolidinediones and carboxylic acids such as farglitazar exert their anti-diabetic effects in part in PPAR{gamma} rich adipose. Both pro- and anti-adipogenic PPAR{gamma} ligands promote glucose and lipid lowering in animal models of diabetes. Herein, we disclose representatives of an array of 160 farglitazar analogues with atypical inverse agonism of PPAR{gamma} in mature adipocytes.
Time-lapse Joint Inversion of Geophysical Data and its Applications to Geothermal Prospecting
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Time-lapse Joint Inversion of Geophysical Data and its Applications to Geothermal Prospecting - GEODE Principal Investigators: Andre Revil and Mike Batzle (Colorado School of Mines) Ezra Zemach (ORMAT) Project Officer: Mark Ziegenbein Total Project Funding: $635,000 This presentation does not contain any proprietary confidential, or otherwise restricted information. April 22, 2013 DE-EE0005513 Component Technologies R&D: 2 | US DOE Geothermal Office eere.energy.gov Relevance/Impact of
Park, Young-Ho; Lee, Soo Heyong; Park, Sang Eon; Lee, Ho Seong; Kwon, Taeg Yong [Korea Research Institute of Standards and Science, Daejeon 305-340 (Korea, Republic of)
2007-04-23
The authors report on a method to determine the Rabi frequency and transit time distribution of atoms that are essential for proper operation of atomic beam frequency standards. Their method, which employs alternative regularized inverse on two Ramsey spectra measured at different microwave powers, can be used for the frequency standards with short Ramsey cavity as well as long ones. The authors demonstrate that uncertainty in Rabi frequency obtained from their method is 0.02%.
Mark A. Meadows
2006-03-31
Injection of carbon dioxide (CO2) into subsurface aquifers for geologic storage/sequestration, and into subsurface hydrocarbon reservoirs for enhanced oil recovery, has become an important topic to the nation because of growing concerns related to global warming and energy security. In this project we developed new ways to predict and quantify the effects of CO2 on seismic data recorded over porous reservoir/aquifer rock systems. This effort involved the research and development of new technology to: (1) Quantitatively model the rock physics effects of CO2 injection in porous saline and oil/brine reservoirs (both miscible and immiscible). (2) Quantitatively model the seismic response to CO2 injection (both miscible and immiscible) from well logs (1D). (3) Perform quantitative inversions of time-lapse 4D seismic data to estimate injected CO2 distributions within subsurface reservoirs and aquifers. This work has resulted in an improved ability to remotely monitor the injected CO2 for safe storage and enhanced hydrocarbon recovery, predict the effects of CO2 on time-lapse seismic data, and estimate injected CO2 saturation distributions in subsurface aquifers/reservoirs. We applied our inversion methodology to a 3D time-lapse seismic dataset from the Sleipner CO2 sequestration project, Norwegian North Sea. We measured changes in the seismic amplitude and traveltime at the top of the Sleipner sandstone reservoir and used these time-lapse seismic attributes in the inversion. Maps of CO2 thickness and its standard deviation were generated for the topmost layer. From this information, we estimated that 7.4% of the total CO2 injected over a five-year period had reached the top of the reservoir. This inversion approach could also be applied to the remaining levels within the anomalous zone to obtain an estimate of the total CO2 injected.
Manoli, Gabriele; Rossi, Matteo; Pasetto, Damiano; Deiana, Rita; Ferraris, Stefano; Cassiani, Giorgio; Putti, Mario
2015-02-15
The modeling of unsaturated groundwater flow is affected by a high degree of uncertainty related to both measurement and model errors. Geophysical methods such as Electrical Resistivity Tomography (ERT) can provide useful indirect information on the hydrological processes occurring in the vadose zone. In this paper, we propose and test an iterated particle filter method to solve the coupled hydrogeophysical inverse problem. We focus on an infiltration test monitored by time-lapse ERT and modeled using Richards equation. The goal is to identify hydrological model parameters from ERT electrical potential measurements. Traditional uncoupled inversion relies on the solution of two sequential inverse problems, the first one applied to the ERT measurements, the second one to Richards equation. This approach does not ensure an accurate quantitative description of the physical state, typically violating mass balance. To avoid one of these two inversions and incorporate in the process more physical simulation constraints, we cast the problem within the framework of a SIR (Sequential Importance Resampling) data assimilation approach that uses a Richards equation solver to model the hydrological dynamics and a forward ERT simulator combined with Archie's law to serve as measurement model. ERT observations are then used to update the state of the system as well as to estimate the model parameters and their posterior distribution. The limitations of the traditional sequential Bayesian approach are investigated and an innovative iterative approach is proposed to estimate the model parameters with high accuracy. The numerical properties of the developed algorithm are verified on both homogeneous and heterogeneous synthetic test cases based on a real-world field experiment.
Inversion for Eigenvalues and Modes Using Sierra-SD and ROL.
Walsh, Timothy; Aquino, Wilkins; Ridzal, Denis; Kouri, Drew Philip
2015-12-01
In this report we formulate eigenvalue-based methods for model calibration using a PDE-constrained optimization framework. We derive the abstract optimization operators from first principles and implement these methods using Sierra-SD and the Rapid Optimization Library (ROL). To demon- strate this approach, we use experimental measurements and an inverse solution to compute the joint and elastic foam properties of a low-fidelity unit (LFU) model.
COLLOQUIUM: Seismic Imaging and Inversion Based on Spectral-Element and
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Adjoint Methods | Princeton Plasma Physics Lab February 6, 2013, 4:15pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: Seismic Imaging and Inversion Based on Spectral-Element and Adjoint Methods Professor Jeroen Tromp Princeton University Presentation: Office presentation icon WC06FEB2013_JTromp.ppt Harnessing high-performance computers and accurate numerical methods to better constrain physical properties of Earth's interior is rapidly becoming one of the most important research topics in
Integration of Noise and Coda Correlation Data into Kinematic and Waveform Inversions
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Noise and Coda Correlation Data into Kinematic and Waveform Inversions Daniel R.H. O'Connell, PhD Fugro Consultants Modeling Project Officer: William Vandermeer Total Project Funding: $1,406,745 April 24, 2013 This presentation does not contain any proprietary confidential, or otherwise restricted information. 2 | US DOE Geothermal Office eere.energy.gov Relevance/Impact of Research Project Objectives * Obtain high-accuracy (10 m or less) absolute geothermal field earthquake locations and
Pahn, T.; Jonkman, J.; Rolges, R.; Robertson, A.
2012-11-01
Physically measuring the dynamic responses of wind turbine support structures enables the calculation of the applied loads using an inverse procedure. In this process, inverse means deriving the inputs/forces from the outputs/responses. This paper presents results of a numerical verification of such an inverse load calculation. For this verification, the comprehensive simulation code FAST is used. FAST accounts for the coupled dynamics of wind inflow, aerodynamics, elasticity and turbine controls. Simulations are run using a 5-MW onshore wind turbine model with a tubular tower. Both the applied loads due to the instantaneous wind field and the resulting system responses are known from the simulations. Using the system responses as inputs to the inverse calculation, the applied loads are calculated, which in this case are the rotor thrust forces. These forces are compared to the rotor thrust forces known from the FAST simulations. The results of these comparisons are presented to assess the accuracy of the inverse calculation. To study the influences of turbine controls, load cases in normal operation between cut-in and rated wind speed, near rated wind speed and between rated and cut-out wind speed are chosen. The presented study shows that the inverse load calculation is capable of computing very good estimates of the rotor thrust. The accuracy of the inverse calculation does not depend on the control activity of the wind turbine.
New analysis indicates no thermal inversion in the atmosphere of HD 209458b
Diamond-Lowe, Hannah; Stevenson, Kevin B.; Bean, Jacob L.; Line, Michael R.; Fortney, Jonathan J.
2014-11-20
An important focus of exoplanet research is the determination of the atmospheric temperature structure of strongly irradiated gas giant planets, or hot Jupiters. HD 209458b is the prototypical exoplanet for atmospheric thermal inversions, but this assertion does not take into account recently obtained data or newer data reduction techniques. We reexamine this claim by investigating all publicly available Spitzer Space Telescope secondary-eclipse photometric data of HD 209458b and performing a self-consistent analysis. We employ data reduction techniques that minimize stellar centroid variations, apply sophisticated models to known Spitzer systematics, and account for time-correlated noise in the data. We derive new secondary-eclipse depths of 0.119% 0.007%, 0.123% 0.006%, 0.134% 0.035%, and 0.215% 0.008% in the 3.6, 4.5, 5.8, and 8.0 ?m bandpasses, respectively. We feed these results into a Bayesian atmospheric retrieval analysis and determine that it is unnecessary to invoke a thermal inversion to explain our secondary-eclipse depths. The data are well fitted by a temperature model that decreases monotonically between pressure levels of 1 and 0.01 bars. We conclude that there is no evidence for a thermal inversion in the atmosphere of HD 209458b.
Quantum states for quantum processes: A toy model for ammonia inversion spectra
Arteca, Gustavo A. [Departement de Chimie et Biochimie and Biomolecular Sciences Programme, Laurentian University, Ramsey Lake Road, Sudbury, Ontario, Canada P3E 2C6 (Canada); Department of Physical Chemistry, Uppsala University, A ring ngstroemlaboratoriet, Box 259, S-751 05 Uppsala (Sweden); Tapia, O. [Department of Physical Chemistry, Uppsala University, A ring ngstroemlaboratoriet, Box 259, S-751 05 Uppsala (Sweden)
2011-07-15
Chemical transformations are viewed here as quantum processes modulated by external fields, that is, as shifts in reactant to product amplitudes within a quantum state represented by a linear (coherent) superposition of electronuclear basis functions; their electronic quantum numbers identify the ''chemical species.'' This basis set can be mapped from attractors built from a unique electronic configurational space that is invariant with respect to the nuclear geometry. In turn, the quantum numbers that label these basis functions and the semiclassical potentials for the electronic attractors may be used to derive reaction coordinates to monitor progress as a function of the applied field. A generalization of Feynman's three-state model for the ammonia inversion process illustrates the scheme; to enforce symmetry for the entire inversion process model and ensure invariance with respect to nuclear configurations, the three attractors and their basis functions are computed with a grid of fixed floating Gaussian functions. The external-field modulation of the effective inversion barrier is discussed within this conceptual approach. This analysis brings the descriptions of chemical processes near modern technologies that employ molecules to encode information by means of confinement and external fields.
Top-gate organic depletion and inversion transistors with doped channel and injection contact
Liu, Xuhai; Kasemann, Daniel Leo, Karl
2015-03-09
Organic field-effect transistors constitute a vibrant research field and open application perspectives in flexible electronics. For a commercial breakthrough, however, significant performance improvements are still needed, e.g., stable and high charge carrier mobility and on-off ratio, tunable threshold voltage, as well as integrability criteria such as n- and p-channel operation and top-gate architecture. Here, we show pentacene-based top-gate organic transistors operated in depletion and inversion regimes, realized by doping source and drain contacts as well as a thin layer of the transistor channel. By varying the doping concentration and the thickness of the doped channel, we control the position of the threshold voltage without degrading on-off ratio or mobility. Capacitance-voltage measurements show that an inversion channel can indeed be formed, e.g., an n-doped channel can be inverted to a p-type inversion channel with highly p-doped contacts. The Cytop polymer dielectric minimizes hysteresis, and the transistors can be biased for prolonged cycles without a shift of threshold voltage, indicating excellent operation stability.
Method for the preparation of metal colloids in inverse micelles and product preferred by the method
Wilcoxon, Jess P.
1992-01-01
A method is provided for preparing catalytic elemental metal colloidal particles (e.g. gold, palladium, silver, rhodium, iridium, nickel, iron, platinum, molybdenum) or colloidal alloy particles (silver/iridium or platinum/gold). A homogeneous inverse micelle solution of a metal salt is first formed in a metal-salt solvent comprised of a surfactant (e.g. a nonionic or cationic surfactant) and an organic solvent. The size and number of inverse micelles is controlled by the proportions of the surfactant and the solvent. Then, the metal salt is reduced (by chemical reduction or by a pulsed or continuous wave UV laser) to colloidal particles of elemental metal. After their formation, the colloidal metal particles can be stabilized by reaction with materials that permanently add surface stabilizing groups to the surface of the colloidal metal particles. The sizes of the colloidal elemental metal particles and their size distribution is determined by the size and number of the inverse micelles. A second salt can be added with further reduction to form the colloidal alloy particles. After the colloidal elemental metal particles are formed, the homogeneous solution distributes to two phases, one phase rich in colloidal elemental metal particles and the other phase rich in surfactant. The colloidal elemental metal particles from one phase can be dried to form a powder useful as a catalyst. Surfactant can be recovered and recycled from the phase rich in surfactant.
Nalpas, T.; Brun, J.P. ); Le Douaran, S. ); Richert, J.P. )
1993-09-01
The southern North Sea presents spectacular examples of basin inversion, which have been documented by numerous projects of the oil industry. Some basic inversion patterns identified through wells and seismic data were used to prepare a laboratory modeling investigation. Models are built with sand and silicone putty, respectively, which represent the frictional behavior of Mesozoic cover and Paleozoic basement and the viscous behavior of the decollement layer, mainly Permian salt, between them. They are scaled to fit natural configurations observed in the Broad Fourteens basin. All experiments are done in two steps: (1) graben formation with synkinematic sedimentation and (2) compression oblique to the graben. The experiments show that structures generated by or reactivated during inversion are strongly dependent on the strength of the decollement layer at the base of the sedimentary cover, which is itself dependent on the silicone viscosity, the layer thickness, and the displacement velocity applied at model boundaries; and the strength of the sedimentary cover, which is solely dependent on its thickness. This work is in progress. Preliminary results will be compared with examples from the Broad Fourteens basin on the basis of both seismic data and structural maps.
Gu, Dasa; Wang, Yuhang; Smeltzer, Charles; Boersma, K. Folkert
2014-06-27
Inverse modeling using satellite observations of nitrogen dioxide (NO2) columns has been extensively used to estimate nitrogen oxides (NOx) emissions in China. Recently, the Global Ozone Monitoring Experiment-2 (GOME-2) and Ozone Monitoring Instrument (OMI) provide independent global NO2 column measurements on a nearly daily basis at around 9:30 and 13:30 local time across the equator, respectively. Anthropogenic NOx emission estimates by applying previously developed monthly inversion (MI) or daily inversion (DI) methods to these two sets of measurements show substantial differences. We improve the DI method by conducting model simulation, satellite retrieval, and inverse modeling sequentially on a daily basis. After each inversion, we update anthropogenic NOx emissions in the model simulation with the newly obtained a posteriori results. Consequently, the inversion-optimized emissions are used to compute the a priori NO2 profiles for satellite retrievals. As such, the a priori profiles used in satellite retrievals are now coupled to inverse modeling results. The improved procedure was applied to GOME-2 and OMI NO2 measurements in 2011. The new daily retrieval-inversion (DRI) method estimates an average NOx emission of 6.9 Tg N/yr over China, and the difference between using GOME-2 and OMI measurements is 0.4 Tg N/yr, which is significantly smaller than the difference of 1.3 Tg N/yr using the previous DI method. Using the more consistent DRI inversion results, we find that anthropogenic NOx emissions tend to be higher in winter and summer than spring (and possibly fall) and the weekday-to-weekend emission ratio tends to increase with NOx emission in China.
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Joint inversion of electrical and seismic data for Fracture char. and Imaging of Fluid Flow in Geothermal Systems Michael Batzle, PI Colorado School of Mines Track Name: Fluid Imaging Project Officer: Eric Hess Total Project Funding: $1,246, 579 April 22, 2013 This presentation does not contain any proprietary confidential, or otherwise restricted information. 2 | US DOE Geothermal Office eere.energy.gov Relevance/Impact of Research Project objectives * Use combined inversion of geophysical data
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Ray, J.; Lee, J.; Yadav, V.; Lefantzi, S.; Michalak, A. M.; van Bloemen Waanders, B.
2014-08-20
We present a sparse reconstruction scheme that can also be used to ensure non-negativity when fitting wavelet-based random field models to limited observations in non-rectangular geometries. The method is relevant when multiresolution fields are estimated using linear inverse problems. Examples include the estimation of emission fields for many anthropogenic pollutants using atmospheric inversion or hydraulic conductivity in aquifers from flow measurements. The scheme is based on three new developments. Firstly, we extend an existing sparse reconstruction method, Stagewise Orthogonal Matching Pursuit (StOMP), to incorporate prior information on the target field. Secondly, we develop an iterative method that uses StOMP tomore » impose non-negativity on the estimated field. Finally, we devise a method, based on compressive sensing, to limit the estimated field within an irregularly shaped domain. We demonstrate the method on the estimation of fossil-fuel CO2 (ffCO2) emissions in the lower 48 states of the US. The application uses a recently developed multiresolution random field model and synthetic observations of ffCO2 concentrations from a limited set of measurement sites. We find that our method for limiting the estimated field within an irregularly shaped region is about a factor of 10 faster than conventional approaches. It also reduces the overall computational cost by a factor of two. Further, the sparse reconstruction scheme imposes non-negativity without introducing strong nonlinearities, such as those introduced by employing log-transformed fields, and thus reaps the benefits of simplicity and computational speed that are characteristic of linear inverse problems.« less
Generalized Uncertainty Quantification for Linear Inverse Problems in X-ray Imaging
Fowler, Michael James
2014-04-25
In industrial and engineering applications, X-ray radiography has attained wide use as a data collection protocol for the assessment of material properties in cases where direct observation is not possible. The direct measurement of nuclear materials, particularly when they are under explosive or implosive loading, is not feasible, and radiography can serve as a useful tool for obtaining indirect measurements. In such experiments, high energy X-rays are pulsed through a scene containing material of interest, and a detector records a radiograph by measuring the radiation that is not attenuated in the scene. One approach to the analysis of these radiographs is to model the imaging system as an operator that acts upon the object being imaged to produce a radiograph. In this model, the goal is to solve an inverse problem to reconstruct the values of interest in the object, which are typically material properties such as density or areal density. The primary objective in this work is to provide quantitative solutions with uncertainty estimates for three separate applications in X-ray radiography: deconvolution, Abel inversion, and radiation spot shape reconstruction. For each problem, we introduce a new hierarchical Bayesian model for determining a posterior distribution on the unknowns and develop efficient Markov chain Monte Carlo (MCMC) methods for sampling from the posterior. A Poisson likelihood, based on a noise model for photon counts at the detector, is combined with a prior tailored to each application: an edge-localizing prior for deconvolution; a smoothing prior with non-negativity constraints for spot reconstruction; and a full covariance sampling prior based on a Wishart hyperprior for Abel inversion. After developing our methods in a general setting, we demonstrate each model on both synthetically generated datasets, including those from a well known radiation transport code, and real high energy radiographs taken at two U. S. Department of Energy
Porter, Troy A.; Moskalenko, Igor V.; Strong, Andrew W.; /Garching, Max Planck Inst., MPE
2006-08-01
The evidence for particle acceleration in supernova shells comes from electrons whose synchrotron emission is observed in radio and X-rays. Recent observations by the HESS instrument reveal that supernova remnants also emit TeV {gamma}-rays; long awaited experimental evidence that supernova remnants can accelerate cosmic rays up to the ''knee'' energies. Still, uncertainty exists whether these {gamma}-rays are produced by electrons via inverse Compton scattering or by protons via {pi}{sup 0}-decay. The multi-wavelength spectra of supernova remnants can be fitted with both mechanisms, although a preference is often given to {pi}{sup 0}-decay due to the spectral shape at very high energies. A recent study of the interstellar radiation field indicates that its energy density, especially in the inner Galaxy, is higher than previously thought. In this paper we evaluate the effect of the interstellar radiation field on the inverse Compton emission of electrons accelerated in a supernova remnant located at different distances from the Galactic Centre. We show that contribution of optical and infra-red photons to the inverse Compton emission may exceed the contribution of cosmic microwave background and in some cases broaden the resulted {gamma}-ray spectrum. Additionally, we show that if a supernova remnant is located close to the Galactic Centre its {gamma}-ray spectrum will exhibit a ''universal'' cutoff at very high energies due to the Klein-Nishina effect and not due to the cut-off of the electron spectrum. As an example, we apply our calculations to the supernova remnants RX J1713.7-3946 and G0.9+0.1 recently observed by HESS.
Control of the spin to charge conversion using the inverse Rashba-Edelstein effect
Sangiao, S.; De Teresa, J. M.; Morellon, L.; Martinez-Velarte, M. C.; Lucas, I.; Viret, M.
2015-04-27
We show here that using spin orbit coupling interactions at a metallic interface it is possible to control the sign of the spin to charge conversion in a spin pumping experiment. Using the intrinsic symmetry of the “Inverse Rashba Edelstein Effect” (IREE) in a Bi/Ag interface, the charge current changes sign when reversing the order of the Ag and Bi stacking. This confirms the IREE nature of the conversion of spin into charge in these interfaces and opens the way to tailoring the spin sensing voltage by an appropriate trilayer sequence.
Takes Electric or Magnetic field data through Inversion process a 2D Distributon
Energy Science and Technology Software Center (OSTI)
2008-05-01
Program images 2D distributions in electrical conductivity for geophysical applications. The program can treat surface based and cross well measurement geometries, including inductive and grounded source antennas in the quasi-static limit. The algorithm using Krylov iterative methods to solve for the predicted data and model sensitivities. The model update is achieved using a Gauss-newton optimization process for stability. A new line search capability is now included in the algorithm to insure global convergence of themore » inversion iteration.« less
Dirac or inverse seesaw neutrino masses with B L gauge symmetry and S? flavor symmetry
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Ma, Ernest; Srivastava, Rahul
2015-02-01
Many studies have been made on extensions of the standard model with B L gauge symmetry. The addition of three singlet (right-handed) neutrinos renders it anomaly-free. It has always been assumed that the spontaneous breaking of B L is accomplished by a singlet scalar field carrying two units of B L charge. This results in a very natural implementation of the Majorana seesaw mechanism for neutrinos. However, there exists in fact another simple anomaly-free solution which allows Dirac or inverse seesaw neutrino masses. We show for the first time these new possibilities and discuss an application tomoreneutrino mixing with S? flavor symmetry.less
Bendib, A.; Tahraoui, A.; Bendib, K.; Mohammed El Hadj, K.; Hueller, S.
2005-03-01
The transport coefficients of fully ionized plasmas under the influence of a high-frequency electric field are derived solving numerically the electron Fokker-Planck equation using a perturbation method, parametrized as a function of the electron mean-free-path {lambda}{sub ei} compared to the spatial scales L. The isotropic and anisotropic contributions of the inverse bremsstrahlung heating are considered. Electron-electron collision terms are kept in the analysis, which allows us to consider with sufficient accuracy to describe plasmas with arbitrary atomic number Z. Practical numerical fits of the transport coefficients are proposed as functions of Z and the collisionality parameter {lambda}{sub ei}/L.
High-resolution inverse Raman and resonant-wave-mixing spectroscopy
Rahn, L.A.
1993-12-01
These research activities consist of high-resolution inverse Raman spectroscopy (IRS) and resonant wave-mixing spectroscopy to support the development of nonlinear-optical techniques for temperature and concentration measurements in combustion research. Objectives of this work include development of spectral models of important molecular species needed to perform coherent anti-Stokes Raman spectroscopy (CARS) measurements and the investigation of new nonlinear-optical processes as potential diagnostic techniques. Some of the techniques being investigated include frequency-degenerate and nearly frequency-degenerate resonant four-wave-mixing (DFWM and NDFWM), and resonant multi-wave mixing (RMWM).
TeV-scale gauged B-L symmetry with inverse seesaw mechanism
Khalil, Shaaban
2010-10-01
We propose a modified version of the TeV-scale B-L extension of the standard model, where neutrino masses are generated through the inverse seesaw mechanism. We show that heavy neutrinos in this model can be accessible via clean signals at the LHC. The search for the extra gauge boson Z{sub B-L}{sup '} through the decay into dileptons or two dileptons plus missing energy is studied. We also show that the B-L extra Higgs boson can be directly probed at the LHC via a clean dilepton and missing energy signal.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Eckert-Gallup, Aubrey C.; Sallaberry, Cédric J.; Dallman, Ann R.; Neary, Vincent S.
2016-01-06
Environmental contours describing extreme sea states are generated as the input for numerical or physical model simulations as a part of the standard current practice for designing marine structures to survive extreme sea states. These environmental contours are characterized by combinations of significant wave height (Hs) and either energy period (Te) or peak period (Tp) values calculated for a given recurrence interval using a set of data based on hindcast simulations or buoy observations over a sufficient period of record. The use of the inverse first-order reliability method (I-FORM) is a standard design practice for generating environmental contours. This papermore » develops enhanced methodologies for data analysis prior to the application of the I-FORM, including the use of principal component analysis (PCA) to create an uncorrelated representation of the variables under consideration as well as new distribution and parameter fitting techniques. As a result, these modifications better represent the measured data and, therefore, should contribute to the development of more realistic representations of environmental contours of extreme sea states for determining design loads for marine structures.« less
An adaptive importance sampling algorithm for Bayesian inversion with multimodal distributions
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Li, Weixuan; Lin, Guang
2015-03-21
Parametric uncertainties are encountered in the simulations of many physical systems, and may be reduced by an inverse modeling procedure that calibrates the simulation results to observations on the real system being simulated. Following Bayes’ rule, a general approach for inverse modeling problems is to sample from the posterior distribution of the uncertain model parameters given the observations. However, the large number of repetitive forward simulations required in the sampling process could pose a prohibitive computational burden. This difficulty is particularly challenging when the posterior is multimodal. We present in this paper an adaptive importance sampling algorithm to tackle thesemore » challenges. Two essential ingredients of the algorithm are: 1) a Gaussian mixture (GM) model adaptively constructed as the proposal distribution to approximate the possibly multimodal target posterior, and 2) a mixture of polynomial chaos (PC) expansions, built according to the GM proposal, as a surrogate model to alleviate the computational burden caused by computational-demanding forward model evaluations. In three illustrative examples, the proposed adaptive importance sampling algorithm demonstrates its capabilities of automatically finding a GM proposal with an appropriate number of modes for the specific problem under study, and obtaining a sample accurately and efficiently representing the posterior with limited number of forward simulations.« less
Full-waveform inversion in the time domain with an energy-weighted gradient
Zhang, Zhigang; Huang, Lianjie; Lin, Youzuo
2011-01-01
When applying full-waveform inversion to surface seismic reflection data, one difficulty is that the deep region of the model is usually not reconstructed as well as the shallow region. We develop an energy-weighted gradient method for the time-domain full-waveform inversion to accelerate the convergence rate and improve reconstruction of the entire model without increasing the computational cost. Three different methods can alleviate the problem of poor reconstruction in the deep region of the model: the layer stripping, depth-weighting and pseudo-Hessian schemes. The first two approaches need to subjectively choose stripping depths and weighting functions. The third one scales the gradient with only the forward propagation wavefields from sources. However, the Hessian depends on wavefields from both sources and receivers. Our new energy-weighted method makes use of the energies of both forward and backward propagated wavefields from sources and receivers as weights to compute the gradient. We compare the reconstruction of our new method with those of the conjugate gradient and pseudo-Hessian methods, and demonstrate that our new method significantly improves the reconstruction of both the shallow and deep regions of the model.
An adaptive importance sampling algorithm for Bayesian inversion with multimodal distributions
Li, Weixuan; Lin, Guang
2015-03-21
Parametric uncertainties are encountered in the simulations of many physical systems, and may be reduced by an inverse modeling procedure that calibrates the simulation results to observations on the real system being simulated. Following Bayes rule, a general approach for inverse modeling problems is to sample from the posterior distribution of the uncertain model parameters given the observations. However, the large number of repetitive forward simulations required in the sampling process could pose a prohibitive computational burden. This difficulty is particularly challenging when the posterior is multimodal. We present in this paper an adaptive importance sampling algorithm to tackle these challenges. Two essential ingredients of the algorithm are: 1) a Gaussian mixture (GM) model adaptively constructed as the proposal distribution to approximate the possibly multimodal target posterior, and 2) a mixture of polynomial chaos (PC) expansions, built according to the GM proposal, as a surrogate model to alleviate the computational burden caused by computational-demanding forward model evaluations. In three illustrative examples, the proposed adaptive importance sampling algorithm demonstrates its capabilities of automatically finding a GM proposal with an appropriate number of modes for the specific problem under study, and obtaining a sample accurately and efficiently representing the posterior with limited number of forward simulations.
Vasco, D.W.; Ferretti, Alessandro; Novali, Fabrizio
2008-05-01
Transient pressure variations within a reservoir can be treated as a propagating front and analyzed using an asymptotic formulation. From this perspective one can define a pressure 'arrival time' and formulate solutions along trajectories, in the manner of ray theory. We combine this methodology and a technique for mapping overburden deformation into reservoir volume change as a means to estimate reservoir flow properties, such as permeability. Given the entire 'travel time' or phase field, obtained from the deformation data, we can construct the trajectories directly, there-by linearizing the inverse problem. A numerical study indicates that, using this approach, we can infer large-scale variations in flow properties. In an application to Interferometric Synthetic Aperture (InSAR) observations associated with a CO{sub 2} injection at the Krechba field, Algeria, we image pressure propagation to the northwest. An inversion for flow properties indicates a linear trend of high permeability. The high permeability correlates with a northwest trending fault on the flank of the anticline which defines the field.
An adaptive importance sampling algorithm for Bayesian inversion with multimodal distributions
Li, Weixuan; Lin, Guang
2015-03-21
Parametric uncertainties are encountered in the simulations of many physical systems, and may be reduced by an inverse modeling procedure that calibrates the simulation results to observations on the real system being simulated. Following Bayes’ rule, a general approach for inverse modeling problems is to sample from the posterior distribution of the uncertain model parameters given the observations. However, the large number of repetitive forward simulations required in the sampling process could pose a prohibitive computational burden. This difficulty is particularly challenging when the posterior is multimodal. We present in this paper an adaptive importance sampling algorithm to tackle these challenges. Two essential ingredients of the algorithm are: 1) a Gaussian mixture (GM) model adaptively constructed as the proposal distribution to approximate the possibly multimodal target posterior, and 2) a mixture of polynomial chaos (PC) expansions, built according to the GM proposal, as a surrogate model to alleviate the computational burden caused by computational-demanding forward model evaluations. In three illustrative examples, the proposed adaptive importance sampling algorithm demonstrates its capabilities of automatically finding a GM proposal with an appropriate number of modes for the specific problem under study, and obtaining a sample accurately and efficiently representing the posterior with limited number of forward simulations.
Advancing Inverse Sensitivity/Uncertainty Methods for Nuclear Fuel Cycle Applications
Arbanas, Goran; Williams, Mark L; Leal, Luiz C; Dunn, Michael E; Khuwaileh, Bassam A.; Wang, C; Abdel-Khalik, Hany
2015-01-01
The inverse sensitivity/uncertainty quantification (IS/UQ) method has recently been implemented in the Inverse Sensitivity/UnceRtainty Estimiator (INSURE) module of the AMPX system [1]. The IS/UQ method aims to quantify and prioritize the cross section measurements along with uncer- tainties needed to yield a given nuclear application(s) target response uncertainty, and doing this at a minimum cost. Since in some cases the extant uncertainties of the differential cross section data are already near the limits of the present-day state-of-the-art measurements, requiring significantly smaller uncertainties may be unrealistic. Therefore we have incorporated integral benchmark exper- iments (IBEs) data into the IS/UQ method using the generalized linear least-squares method, and have implemented it in the INSURE module. We show how the IS/UQ method could be applied to systematic and statistical uncertainties in a self-consistent way. We show how the IS/UQ method could be used to optimize uncertainties of IBE s and differential cross section data simultaneously.
Self-similar inverse cascade of magnetic helicity driven by the chiral anomaly
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Hirono, Yuji; Kharzeev, Dmitri E.; Yin, Yi
2015-12-28
For systems with charged chiral fermions, the imbalance of chirality in the presence of magnetic field generates an electric current—this is the chiral magnetic effect (CME). We study the dynamical real-time evolution of electromagnetic fields coupled by the anomaly to the chiral charge density and the CME current by solving the Maxwell-Chern-Simons equations. We find that the CME induces the inverse cascade of magnetic helicity toward the large distances, and that at late times this cascade becomes self-similar, with universal exponents. We also find that in terms of gauge field topology the inverse cascade represents the transition from linked electricmore » and magnetic fields (Hopfions) to the knotted configuration of magnetic field (Chandrasekhar-Kendall states). The magnetic reconnections are accompanied by the pulses of the CME current directed along the magnetic field lines. In conclusion, we devise an experimental signature of these phenomena in heavy ion collisions, and speculate about implications for condensed matter systems.« less
Inverse transport problem solvers based on regularized and compressive sensing techniques
Cheng, Y.; Cao, L.; Wu, H.; Zhang, H.
2012-07-01
According to the direct exposure measurements from flash radiographic image, regularized-based method and compressive sensing (CS)-based method for inverse transport equation are presented. The linear absorption coefficients and interface locations of objects are reconstructed directly at the same time. With a large number of measurements, least-square method is utilized to complete the reconstruction. Owing to the ill-posedness of the inverse problems, regularized algorithm is employed. Tikhonov method is applied with an appropriate posterior regularization parameter to get a meaningful solution. However, it's always very costly to obtain enough measurements. With limited measurements, CS sparse reconstruction technique Orthogonal Matching Pursuit (OMP) is applied to obtain the sparse coefficients by solving an optimization problem. This paper constructs and takes the forward projection matrix rather than Gauss matrix as measurement matrix. In the CS-based algorithm, Fourier expansion and wavelet expansion are adopted to convert an underdetermined system to a well-posed system. Simulations and numerical results of regularized method with appropriate regularization parameter and that of CS-based agree well with the reference value, furthermore, both methods avoid amplifying the noise. (authors)
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Miller, Scot M.; Commane, Roisin; Melton, Joe R.; Andrews, Arlyn E.; Benmergui, Joshua; Dlugokencky, Edward J.; Janssens-Maenhout, Greet; Michalak, Anna M.; Sweeney, Colm; Worthy, Doug E. J.
2016-03-02
Existing estimates of methane (CH4) fluxes from North American wetlands vary widely in both magnitude and distribution. In light of these differences, this study uses atmospheric CH4 observations from the US and Canada to analyze seven different bottom-up, wetland CH4 estimates reported in a recent model comparison project. We first use synthetic data to explore whether wetland CH4 fluxes are detectable at atmospheric observation sites. We find that the observation network can detect aggregate wetland fluxes from both eastern and western Canada but generally not from the US. Based upon these results, we then use real data and inverse modelingmore » results to analyze the magnitude, seasonality, and spatial distribution of each model estimate. The magnitude of Canadian fluxes in many models is larger than indicated by atmospheric observations. Many models predict a seasonality that is narrower than implied by inverse modeling results, possibly indicating an oversensitivity to air or soil temperatures. The LPJ-Bern and SDGVM models have a geographic distribution that is most consistent with atmospheric observations, depending upon the region and season. Lastly, these models utilize land cover maps or dynamic modeling to estimate wetland coverage while most other models rely primarily on remote sensing inundation data.« less
Inverse neutrinoless double beta decay revisited: Neutrinos, Higgs triplets, and a muon collider
Rodejohann, Werner [Max-Planck-Institut fuer Kernphysik, Postfach 103980, D-69029 Heidelberg (Germany)
2010-06-01
We revisit the process of inverse neutrinoless double beta decay (e{sup -}e{sup -{yields}}W{sup -}W{sup -}) at future linear colliders. The cases of Majorana neutrino and Higgs triplet exchange are considered. We also discuss the processes e{sup -{mu}-{yields}}W{sup -}W{sup -} and {mu}{sup -{mu}-{yields}}W{sup -}W{sup -}, which are motivated by the possibility of muon colliders. For heavy neutrino exchange, we show that masses up to 10{sup 6} (10{sup 5}) GeV could be probed for ee and e{mu} machines, respectively. The stringent limits for mixing of heavy neutrinos with muons render {mu}{sup -{mu}-{yields}}W{sup -}W{sup -} less promising, even though this process is not constrained by limits from neutrinoless double beta decay. If Higgs triplets are responsible for inverse neutrinoless double beta decay, observable signals are only possible if a very narrow resonance is met. We also consider unitarity aspects of the process in case both Higgs triplets and neutrinos are exchanged. An exact seesaw relation connecting low energy data with heavy neutrino and triplet parameters is found.
Rotatable spin-polarized electron source for inverse-photoemission experiments
Stolwijk, S. D. Wortelen, H.; Schmidt, A. B.; Donath, M.
2014-01-15
We present a ROtatable Spin-polarized Electron source (ROSE) for the use in spin- and angle-resolved inverse-photoemission (SR-IPE) experiments. A key feature of the ROSE is a variable direction of the transversal electron beam polarization. As a result, the inverse-photoemission experiment becomes sensitive to two orthogonal in-plane polarization directions, and, for nonnormal electron incidence, to the out-of-plane polarization component. We characterize the ROSE and test its performance on the basis of SR-IPE experiments. Measurements on magnetized Ni films on W(110) serve as a reference to demonstrate the variable spin sensitivity. Moreover, investigations of the unoccupied spin-dependent surface electronic structure of Tl/Si(111) highlight the capability to analyze complex phenomena like spin rotations in momentum space. Essentially, the ROSE opens the way to further studies on complex spin-dependent effects in the field of surface magnetism and spin-orbit interaction at surfaces.
Alumbaugh, D.L.; Glass, R.J.; Yeh, T.C.; LaBrecque, D.
1998-06-01
'The objective of this study is to develop and field test a new, integrated Hybrid Hydrologic-Geophysical Inverse Technique (HHGIT) for characterization of the vadose zone at contaminated sites. This new approach to site characterization and monitoring can provide detailed maps of hydrogeological heterogeneity and the extent of contamination by combining information from electric resistivity tomography (ERT) surveys, statistical information about heterogeneity and hydrologic processes, and sparse hydrologic data. Because the electrical conductivity of the vadose zone (from the ERT measurements) can be correlated to the fluid saturation and/or contaminant concentration, the hydrologic and geophysical measurements are related. As of the 21st month of a 36-month project, a three-dimensional stochastic hydrologic inverse model for heterogeneous vadose zones has been developed. This model employs pressure and moisture content measurements under both transient and steady flow conditions to estimate unsaturated hydraulic parameters. In this model, an innovative approach to sequentially condition the estimate using temporal measurements has been incorporated. This allows us to use vast amounts of pressure and moisture content information measured at different times while keeping the computational effort manageable. Using this model the authors have found that the relative importance of the pressure and moisture content measurements in defining the different vadose zone parameters depends on whether the soil is wet or dry. They have also learned that pressure and moisture content measurements collected during steady state flow provide the best characterization of heterogeneity compared to other types of hydrologic data. These findings provide important guidance to the design of sampling scheme of the field experiment described below.'
Disorder dependent half-metallicity in Mn{sub 2}CoSi inverse Heusler alloy
Singh, Mukhtiyar; Saini, Hardev S.; Thakur, Jyoti; Reshak, Ali H.; Kashyap, Manish K.
2013-12-15
Heusler alloys based thin-films often exhibit a degree of atomic disorder which leads to the lowering of spin polarization in spintronic devices. We present ab-initio calculations of atomic disorder effects on spin polarization and half-metallicity of Mn{sub 2}CoSi inverse Heusler alloy. The five types of disorder in Mn{sub 2}CoSi have been proposed and investigated in detail. The A2{sub a}-type and B2-type disorders destroy the half-metallicity whereas it sustains for all disorders concentrations in DO{sub 3a}- and A2{sub b}-type disorder and for smallest disorder concentration studied in DO{sub 3b}-type disorder. Lower formation energy/atom for A2{sub b}-type disorder than other four disorders in Mn{sub 2}CoSi advocates the stability of this disorder. The total magnetic moment shows a strong dependence on the disorder and the change in chemical environment. The 100% spin polarization even in the presence of disorders explicitly supports that these disorders shall not hinder the use of Mn{sub 2}CoSi inverse Heusler alloy in device applications. - Graphical abstract: Minority-spin gap (E{sub g↓}) and HM gap (E{sub sf}) as a function of concentrations of various possible disorder in Mn{sub 2}CoSi inverse Heusler alloy. The squares with solid line (black color)/dotted line (blue color)/dashed line (red color) reperesents E{sub g↓} for DO{sub 3a}-/DO{sub 3b}-/A2{sub b}-type disorder in Mn{sub 2}CoSi and the spheres with solid line (black color)/dottedline (blue color)/dashed line (red color) represents E{sub sf} for DO{sub 3a}-/DO{sub 3b}-/A2{sub b}-type disorder in Mn{sub 2}CoSi. - Highlights: • The DO{sub 3}- and A2-type disorders do not affect the half-metallicity in Mn{sub 2}CoSi. • The B2-type disorder solely destroys half-metallicity in Mn{sub 2}CoSi. • The A2-type disorder most probable to occur out of all three types. • The total spin magnetic moment strongly depends on the disorder concentrations.
SU-E-J-161: Inverse Problems for Optical Parameters in Laser Induced Thermal Therapy
Fahrenholtz, SJ; Stafford, RJ; Fuentes, DT
2014-06-01
Purpose: Magnetic resonance-guided laser-induced thermal therapy (MRgLITT) is investigated as a neurosurgical intervention for oncological applications throughout the body by active post market studies. Real-time MR temperature imaging is used to monitor ablative thermal delivery in the clinic. Additionally, brain MRgLITT could improve through effective planning for laser fiber's placement. Mathematical bioheat models have been extensively investigated but require reliable patient specific physical parameter data, e.g. optical parameters. This abstract applies an inverse problem algorithm to characterize optical parameter data obtained from previous MRgLITT interventions. Methods: The implemented inverse problem has three primary components: a parameter-space search algorithm, a physics model, and training data. First, the parameter-space search algorithm uses a gradient-based quasi-Newton method to optimize the effective optical attenuation coefficient, ?-eff. A parameter reduction reduces the amount of optical parameter-space the algorithm must search. Second, the physics model is a simplified bioheat model for homogeneous tissue where closed-form Green's functions represent the exact solution. Third, the training data was temperature imaging data from 23 MRgLITT oncological brain ablations (980 nm wavelength) from seven different patients. Results: To three significant figures, the descriptive statistics for ?-eff were 1470 m{sup ?1} mean, 1360 m{sup ?1} median, 369 m{sup ?1} standard deviation, 933 m{sup ?1} minimum and 2260 m{sup ?1} maximum. The standard deviation normalized by the mean was 25.0%. The inverse problem took <30 minutes to optimize all 23 datasets. Conclusion: As expected, the inferred average is biased by underlying physics model. However, the standard deviation normalized by the mean is smaller than literature values and indicates an increased precision in the characterization of the optical parameters needed to plan MRgLITT procedures. This
Weglein, Arthur B.; Stolt, Bob H.
2012-03-01
Extracting information from seismic data requires knowledge of seismic wave propagation and reflection. The commonly used method involves solving linearly for a reflectivity at every point within the Earth, but this book follows an alternative approach which invokes inverse scattering theory. By developing the theory of seismic imaging from basic principles, the authors relate the different models of seismic propagation, reflection and imaging - thus providing links to reflectivity-based imaging on the one hand and to nonlinear seismic inversion on the other. The comprehensive and physically complete linear imaging foundation developed presents new results at the leading edge of seismic processing for target location and identification. This book serves as a fundamental guide to seismic imaging principles and algorithms and their foundation in inverse scattering theory and is a valuable resource for working geoscientists, scientific programmers and theoretical physicists.
Anti-site disorder and improved functionality of Mn?NiX (X = Al, Ga, In, Sn) inverse Heusler alloys
Paul, Souvik; Kundu, Ashis; Ghosh, Subhradip; Sanyal, Biplab
2014-10-07
Recent first-principles calculations have predicted Mn?NiX (X = Al, Ga, In, Sn) alloys to be magnetic shape memory alloys. Moreover, experiments on Mn?NiGa and Mn?NiSn suggest that the alloys deviate from the perfect inverse Heusler arrangement and that there is chemical disorder at the sublattices with tetrahedral symmetry. In this work, we investigate the effects of such chemical disorder on phase stabilities and magnetic properties using first-principles electronic structure methods. We find that except Mn?NiAl, all other alloys show signatures of martensitic transformations in presence of anti-site disorder at the sublattices with tetrahedral symmetry. This improves the possibilities of realizing martensitic transformations at relatively low fields and the possibilities of obtaining significantly large inverse magneto-caloric effects, in comparison to perfect inverse Heusler arrangement of atoms. We analyze the origin of such improvements in functional properties by investigating electronic structures and magnetic exchange interactions.
X-ray phase-contrast imaging with an Inverse Compton Scattering source
Endrizzi, M.; Carpinelli, M.; Oliva, P.; Golosio, B.; Delogu, P.; Stefanini, A.; Gureyev, T. E.; Bottigli, U.
2010-07-23
Single-shot in-line phase-contrast imaging with the Inverse Compton Scattering X-ray source available at ATF (Accelerator Test Facility) at Brookhaven National Laboratory is experimentally demonstrated. Phase-contrast images of polymer wires are obtained with a single X-ray pulse whose time length is about 1 picosecond. The edge-enhancement effect is clearly visible in the images and simulations show a quantitative agreement with experimental data. A phase-retrieval step in the image processing leads to a accurate estimation of the projected thickness of our samples. Finally, a single-shot image of a wasp is presented as an example of a biological sample.
Levander, Alan Richard; Zelt, Colin A.
2015-03-17
The work plan for this project was to develop and apply advanced seismic reflection and wide-angle processing and inversion techniques to high resolution seismic data for the shallow subsurface to seismically characterize the shallow subsurface at hazardous waste sites as an aid to containment and cleanup activities. We proposed to continue work on seismic data that we had already acquired under a previous DoE grant, as well as to acquire additional new datasets for analysis. The project successfully developed and/or implemented the use of 3D reflection seismology algorithms, waveform tomography and finite-frequency tomography using compressional and shear waves for high resolution characterization of the shallow subsurface at two waste sites. These two sites have markedly different near-surface structures, groundwater flow patterns, and hazardous waste problems. This is documented in the list of refereed documents, conference proceedings, and Rice graduate theses, listed below.
Re-Inversion of Surface Electrical Resistivity Tomography Data from the Hanford Site B-Complex
Johnson, Timothy C.; Wellman, Dawn M.
2013-05-01
This report documents the three-dimensional (3D) inversion results of surface electrical resistivity tomography (ERT) data collected over the Hanford Site B-Complex. The data were collected in order to image the subsurface distribution of electrically conductive vadose zone contamination resulting from both planned releases of contamination into subsurface infiltration galleries (cribs, trenches, and tile fields), as well as unplanned releases from the B, BX, and BY tank farms and/or associated facilities. Electrically conductive contaminants are those which increase the ionic strength of pore fluids compared to native conditions, which comprise most types of solutes released into the subsurface B-Complex. The ERT data were collected and originally inverted as described in detail in report RPP-34690 Rev 0., 2007, which readers should refer to for a detailed description of data collection and waste disposal history. Although the ERT imaging results presented in that report successfully delineated the footprint of vadose zone contamination in areas outside of the tank farms, imaging resolution was not optimized due to the inability of available inversion codes to optimally process the massive ERT data set collected at the site. Recognizing these limitations and the potential for enhanced ERT characterization and time-lapse imaging at contaminated sites, a joint effort was initiated in 2007 by the U.S. Department of Energy – Office of Science (DOE-SC), with later support by the Office of Environmental Management (DOE-EM), and the U.S. Department of Defense (DOD), to develop a high-performance distributed memory parallel 3D ERT inversion code capable of optimally processing large ERT data sets. The culmination of this effort was the development of E4D (Johnson et al., 2010,2012) In 2012, under the Deep Vadose Zone Applied Field Research Initiative (DVZ-AFRI), the U.S. Department of Energy – Richland Operations Office (DOE-RL) and CH2M Hill Plateau Remediation
Temperature dependence of inverse Rashba-Edelstein effect at metallic interface
Nomura, Akiyo; Tashiro, Takaharu; Nakayama, Hiroyasu; Ando, Kazuya
2015-05-25
We report temperature evolution of spin-charge conversion through the inverse Rashba-Edelstein effect (IREE) in a metallic heterostructure. The IREE was induced in a Ag/Bi junction by spin pumping, dynamical spin injection from a ferromagnetic metal; nonequilibrium spin accumulation created in the Ag/Bi junction is converted into a charge current at the interface. By measuring the charge current arising from the IREE at different temperatures, we found that the spin-charge conversion efficiency is almost independent of temperature. This method offers a versatile route for probing the spin-orbit coupling at metallic interfaces under various conditions, promising further development of spin-orbit physics and spin-based technologies.
Observation of inverse spin Hall effect in ferromagnetic FePt alloys using spin Seebeck effect
Seki, Takeshi Takanashi, Koki; Uchida, Ken-ichi; Kikkawa, Takashi; Qiu, Zhiyong; Saitoh, Eiji
2015-08-31
We experimentally observed the inverse spin Hall effect (ISHE) of ferromagnetic FePt alloys. Spin Seebeck effect due to the temperature gradient generated the spin current (J{sub s}) in the FePt|Y{sub 3}Fe{sub 5}O{sub 12} (YIG) structure, and J{sub s} was injected from YIG to FePt and converted to the charge current through ISHE of FePt. The significant difference in magnetization switching fields for FePt and YIG led to the clear separation of the voltage of ISHE from that of anomalous Nernst effect in FePt. We also investigated the effect of ordering of FePt crystal structure on the magnitude of ISHE voltage in FePt.
Spin pumping and inverse spin Hall effects—Insights for future spin-orbitronics (invited)
Zhang, Wei Jungfleisch, Matthias B.; Jiang, Wanjun; Fradin, Frank Y.; Pearson, John E.; Hoffmann, Axel; Sklenar, Joseph; Ketterson, John B.
2015-05-07
Quantification of spin-charge interconversion has become increasingly important in the fast-developing field of spin-orbitronics. Pure spin current generated by spin pumping acts as a sensitive probe for many bulk and interface spin-orbit effects, which has been indispensable for the discovery of many promising new spin-orbit materials. We apply spin pumping and inverse spin Hall effect experiments, as a useful metrology, and study spin-orbit effects in a variety of metals and metal interfaces. We quantify the spin Hall effects in Ir and W using the conventional bilayer structures and discuss the self-induced voltage in a single layer of ferromagnetic permalloy. Finally, we extend our discussions to multilayer structures and quantitatively reveal the spin current flow in two consecutive normal metal layers.
First experimental results of the BNL inverse free electron laser accelerator
Steenbergen, A. van; Gallardo, J.; Babzien, M.; Skaritka, J.; Wang, X.J.; Sandweiss, J.; Fang, J.M.; Qiu, X.
1996-10-01
A 40 MeV electron beam, using the inverse3e free-electron laser interaction, has been accelerated by {Delta}E/E = 2.5% over a distance of 0.47 m. The electrons interact with a 1--2 GW CO{sub 2} laser beam bounded by a 2.8 mm ID sapphire circular waveguide in the presence of a tapered wiggler with Bmax {approx} 1 T and a period 2.89 cm {le} {lambda}{sub w} {le} 3.14 cm. The experimental results of {Delta}E/E as a function of electron energy E, peak magnetic field Bw and laser power W{sub 1} compare well with analytical and 1-D numerical simulations and permit scaling to higher laser power and electron energy.
Exploring parameter constraints on quintessential dark energy: The inverse power law model
Yashar, Mark; Bozek, Brandon; Abrahamse, Augusta; Albrecht, Andreas; Barnard, Michael
2009-05-15
We report on the results of a Markov chain Monte Carlo analysis of an inverse power law (IPL) quintessence model using the Dark Energy Task Force (DETF) simulated data sets as a representation of future dark energy experiments. We generate simulated data sets for a {lambda}CDM background cosmology as well as a case where the dark energy is provided by a specific IPL fiducial model, and present our results in the form of likelihood contours generated by these two background cosmologies. We find that the relative constraining power of the various DETF data sets on the IPL model parameters is broadly equivalent to the DETF results for the w{sub 0}-w{sub a} parametrization of dark energy. Finally, we gauge the power of DETF 'stage 4' data by demonstrating a specific IPL model which, if realized in the universe, would allow stage 4 data to exclude a cosmological constant at better than the 3{sigma} level.
Mediavilla, E.; Lopez, P.; Gonzalez-Morcillo, C.; Jimenez-Vicente, J.
2011-11-01
We derive an exact solution (in the form of a series expansion) to compute gravitational lensing magnification maps. It is based on the backward gravitational lens mapping of a partition of the image plane in polygonal cells (inverse polygon mapping, IPM), not including critical points (except perhaps at the cell boundaries). The zeroth-order term of the series expansion leads to the method described by Mediavilla et al. The first-order term is used to study the error induced by the truncation of the series at zeroth order, explaining the high accuracy of the IPM even at this low order of approximation. Interpreting the Inverse Ray Shooting (IRS) method in terms of IPM, we explain the previously reported N {sup -3/4} dependence of the IRS error with the number of collected rays per pixel. Cells intersected by critical curves (critical cells) transform to non-simply connected regions with topological pathologies like auto-overlapping or non-preservation of the boundary under the transformation. To define a non-critical partition, we use a linear approximation of the critical curve to divide each critical cell into two non-critical subcells. The optimal choice of the cell size depends basically on the curvature of the critical curves. For typical applications in which the pixel of the magnification map is a small fraction of the Einstein radius, a one-to-one relationship between the cell and pixel sizes in the absence of lensing guarantees both the consistence of the method and a very high accuracy. This prescription is simple but very conservative. We show that substantially larger cells can be used to obtain magnification maps with huge savings in computation time.
Elyasi, Mehrdad; Bhatia, Charanjit S.; Yang, Hyunsoo
2015-02-14
We have proposed a method to synchronize multiple spin-transfer torque oscillators based on spin pumping, inverse spin Hall, and spin Hall effects. The proposed oscillator system consists of a series of nano-magnets in junction with a normal metal with high spin-orbit coupling, and an accumulative feedback loop. We conduct simulations to demonstrate the effect of modulated charge currents in the normal metal due to spin pumping from each nano-magnet. We show that the interplay between the spin Hall effect and inverse spin Hall effect results in synchronization of the nano-magnets.
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
» Design Design Earth-sheltered homes, like the one pictured, are a unique option for efficiently designed homes. No matter the type of home you choose, energy efficient design strategies will save you money and energy. | Photo courtesy of Pamm McFadden/NREL. Earth-sheltered homes, like the one pictured, are a unique option for efficiently designed homes. No matter the type of home you choose, energy efficient design strategies will save you money and energy. | Photo courtesy of Pamm
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Design Design Earth-sheltered homes, like the one pictured, are a unique option for efficiently designed homes. No matter the type of home you choose, energy efficient design strategies will save you money and energy. | Photo courtesy of Pamm McFadden/NREL. Earth-sheltered homes, like the one pictured, are a unique option for efficiently designed homes. No matter the type of home you choose, energy efficient design strategies will save you money and energy. | Photo courtesy of Pamm
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
preliminary design - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... SunShot Grand Challenge: Regional Test Centers NRT preliminary design HomeTag:NRT ...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Aerodynamic Design - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Twitter Google + Vimeo GovDelivery SlideShare Rotor Aerodynamic Design HomeStationary ...
Franta, G.; Baylin, F.; Crowther, R.; Dubin, F.; Grace, A., Griffith, J.W.; Holtz, M.; Kutscher, C.; Nordham, D.; Selkowitz, S.; Villecco, M.
1981-06-01
This Solar Design Workbook presents solar building design applications for commercial buildir^s. The book is divided into four sections. The first section describes the variety of solar applications in buildings including conservation aspects, solar fundamentals, passive systems, active systems, daylighting, and other solar options. Solar system design evaluation techniques including considerations for building energy requirements, passive systems, active systems, and economics are presented in Section II. The third section attempts to assist the designer in the building design process for energy conservation and solar applications including options and considerations for pre-design, design, and post-design phases. The information required for the solar design proee^ has not been fully developed at this time. Therefore, Section III is incomplete, but an overview of the considerations with some of the design proces elements is presented. Section IV illustrates ease studies that utilize solar applications in the building design.
Ita, B. I.; Anake, T. A.
2014-11-12
The Schrdinger equation with the interaction of inversely quadratic effective and Mie-type potential has been solved for any angular momentum quantum number l using the Nikiforov-Uvarov method. The bound state energy eigenvalues and the corresponding un-normalized eigenfunctions are obtained in terms of the Laguerre polynomials. Several cases of the potential are also considered and their eigen values obtained.
Parchevsky, K. V.; Zhao, J.; Hartlep, T.; Kosovichev, A. G.
2014-04-10
We performed three-dimensional numerical simulations of the solar surface acoustic wave field for the quiet Sun and for three models with different localized sound-speed perturbations in the interior with deep, shallow, and two-layer structures. We used the simulated data generated by two solar acoustics codes that employ the same standard solar model as a background model, but utilize different integration techniques and different models of stochastic wave excitation. Acoustic travel times were measured using a time-distance helioseismology technique, and compared with predictions from ray theory frequently used for helioseismic travel-time inversions. It is found that the measured travel-time shifts agree well with the helioseismic theory for sound-speed perturbations, and for the measurement procedure with and without phase-speed filtering of the oscillation signals. This testing verifies the whole measuring-filtering-inversion procedure for static sound-speed anomalies with small amplitude inside the Sun outside regions of strong magnetic field. It is shown that the phase-speed filtering, frequently used to extract specific wave packets and improve the signal-to-noise ratio, does not introduce significant systematic errors. Results of the sound-speed inversion procedure show good agreement with the perturbation models in all cases. Due to its smoothing nature, the inversion procedure may overestimate sound-speed variations in regions with sharp gradients of the sound-speed profile.
Burrows, Susannah M.; Rayner, Perter; Butler, T.; Lawrence, M.
2013-06-04
Model-simulated transport of atmospheric trace components can be combined with observed concentrations to obtain estimates of ground-based sources using various inversion techniques. These approaches have been applied in the past primarily to obtain source estimates for long-lived trace gases such as CO2. We consider the application of similar techniques to source estimation for atmospheric aerosols, by using as a case study the estimation of bacteria emissions from different ecosystem regions in the global atmospheric chemistry and climate model ECHAM5/MESSy-Atmospheric Chemistry (EMAC). Simulated particle concentrations in the tropopause region and at high latitudes, as well as transport of particles to tundra and land ice regions are shown to be highly sensitive to scavenging in mixed-phase clouds, which is poorly characterized in most global climate models. This may be a critical uncertainty in correctly simulating the transport of aerosol particles to the Arctic. Source estimation via Monte Carlo Markov Chain is applied to a suite of sensitivity simulations and the global mean emissions are estimated. We present an analysis of the partitioning of uncertainties in the global mean emissions that are attributable to particle size, CCN activity, the ice nucleation scavenging ratios for mixed-phase and cold clouds, and measurement error. Uncertainty due to CCN activity or to a 1 um error in particle size is typically between 10% and 40% of the uncertainty due to data uncertainty, as measured by the 5%-ile to 95%-ile range of the Monte Carlo ensemble. Uncertainty attributable to the ice nucleation scavenging ratio in mized-phase clouds is as high as 10% to 20% of the data uncertainty. Taken together, the four model 20 parameters examined contribute about half as much to the uncertainty in the estimated emissions as do the measurements. This was a surprisingly large contribution from model uncertainty in light of the substantial data uncertainty, which ranges from 81
Dosimetric aspects of inverse-planned modulated-arc total-body irradiation
Held, Mareike; Kirby, Neil; Morin, Olivier; Pouliot, Jean
2012-08-15
Purpose: To develop optimal beam parameters and to verify the dosimetric aspects of the recently developed modulated-arc total-body irradiation (MATBI) technique, which delivers an inverse-planned dose to the entire body using gantry rotation. Methods: The patient is positioned prone and supine underneath the gantry at about 2 m source-to-surface distance (SSD). Then, up to 28 beams irradiate the patient from different gantry angles. Based on full-body computed-tomography (CT) images of the patient, the weight of each beam is optimized, using inverse planning, to create a uniform body dose. This study investigates how to best simulate patients and the ideal beam setup parameters, such as field size, number of beams, and beam geometry, for treatment time and dose homogeneity. In addition, three anthropomorphic water phantoms were constructed and utilized to verify the accuracy of dose delivery, with both diode array and ion chamber measurements. Furthermore, to improve the accuracy of the new technique, a beam model is created specifically for the extended-SSD positioning for MATBI. Results: Low dose CT scans can be utilized for dose calculations without affecting the accuracy. The largest field size of 40 Multiplication-Sign 40 cm{sup 2} was found to deliver the most uniform dose in the least amount of time. Moreover, a higher number of beams improves dose homogeneity. The average dose discrepancy between ion chamber measurements and extended-SSD beam model calculations was 1.2%, with the largest discrepancy being 3.2%. This average dose discrepancy was 1.4% with the standard beam model for delivery at isocenter. Conclusions: The optimum beam setup parameters, regarding dose uniformity and treatment duration, are laid out for modulated-arc TBI. In addition, the presented dose measurements show that these treatments can be delivered accurately. These measurements also indicated that a new beam model did not significantly improve the accuracy of dose calculations
DOE handbook: Design considerations
1999-04-01
The Design Considerations Handbook includes information and suggestions for the design of systems typical to nuclear facilities, information specific to various types of special facilities, and information useful to various design disciplines. The handbook is presented in two parts. Part 1, which addresses design considerations, includes two sections. The first addresses the design of systems typically used in nuclear facilities to control radiation or radioactive materials. Specifically, this part addresses the design of confinement systems and radiation protection and effluent monitoring systems. The second section of Part 1 addresses the design of special facilities (i.e., specific types of nonreactor nuclear facilities). The specific design considerations provided in this section were developed from review of DOE 6430.1A and are supplemented with specific suggestions and considerations from designers with experience designing and operating such facilities. Part 2 of the Design Considerations Handbook describes good practices and design principles that should be considered in specific design disciplines, such as mechanical systems and electrical systems. These good practices are based on specific experiences in the design of nuclear facilities by design engineers with related experience. This part of the Design Considerations Handbook contains five sections, each of which applies to a particular engineering discipline.
Ray, Jaideep; Lee, Jina; Lefantzi, Sophia; Yadav, Vineet; Michalak, Anna M.; van Bloemen Waanders, Bart Gustaaf; McKenna, Sean Andrew
2013-04-01
The estimation of fossil-fuel CO2 emissions (ffCO2) from limited ground-based and satellite measurements of CO2 concentrations will form a key component of the monitoring of treaties aimed at the abatement of greenhouse gas emissions. To that end, we construct a multiresolution spatial parametrization for fossil-fuel CO2 emissions (ffCO2), to be used in atmospheric inversions. Such a parametrization does not currently exist. The parametrization uses wavelets to accurately capture the multiscale, nonstationary nature of ffCO2 emissions and employs proxies of human habitation, e.g., images of lights at night and maps of built-up areas to reduce the dimensionality of the multiresolution parametrization. The parametrization is used in a synthetic data inversion to test its suitability for use in atmospheric inverse problem. This linear inverse problem is predicated on observations of ffCO2 concentrations collected at measurement towers. We adapt a convex optimization technique, commonly used in the reconstruction of compressively sensed images, to perform sparse reconstruction of the time-variant ffCO2 emission field. We also borrow concepts from compressive sensing to impose boundary conditions i.e., to limit ffCO2 emissions within an irregularly shaped region (the United States, in our case). We find that the optimization algorithm performs a data-driven sparsification of the spatial parametrization and retains only of those wavelets whose weights could be estimated from the observations. Further, our method for the imposition of boundary conditions leads to a 10computational saving over conventional means of doing so. We conclude with a discussion of the accuracy of the estimated emissions and the suitability of the spatial parametrization for use in inverse problems with a significant degree of regularization.