Powered by Deep Web Technologies
Note: This page contains sample records for the topic "inventure chemical technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Inventure Chemical Technology | Open Energy Information  

Open Energy Info (EERE)

Inventure Chemical Technology Inventure Chemical Technology Jump to: navigation, search Name Inventure Chemical Technology Address P.O. Box 530 Place Gig Harbor, Washington Zip 98335 Sector Biofuels Product Operates a prototype algae fuel processing plant Year founded 2007 Website http://www.inventurechem.com/ Coordinates 47.3163876°, -122.6151128° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.3163876,"lon":-122.6151128,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

2

Washington's 6th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

Washington's 6th congressional district Clean Tech Trade Alliance Registered Energy Companies in Washington's 6th congressional district Inventure Chemical Technology Structural...

3

ITP Chemicals: Vision 2020 Technology Roadmap for Combinatroial...  

Broader source: Energy.gov (indexed) [DOE]

ITP Chemicals: Vision 2020 Technology Roadmap for Combinatroial Methods; September 2001 ITP Chemicals: Vision 2020 Technology Roadmap for Combinatroial Methods; September 2001...

4

Chemical Engineering and Chemical Technology 1 Faculty of Engineering, Department of  

E-Print Network [OSTI]

Chemical Engineering with Fine Chemicals Processing, run jointly with the Department of Chemistry for chemical engineering graduates with formal training in synthetic chemistry and process developmentChemical Engineering and Chemical Technology 1 Faculty of Engineering, Department of --Chemical

5

Chemical Technology Division annual technical report 1989  

SciTech Connect (OSTI)

Highlights of the Chemical Technology (CMT) Division's activities during 1989 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including high-performance batteries (mainly lithium/iron sulfide and sodium/metal chloride), aqueous batteries (lead-acid and nickel/iron), and advanced fuel cells with molten carbonate and solid oxide electrolytes: (2) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste and for producing {sup 99}Mo from low-enriched uranium targets, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor (the Integral Fast Reactor), and waste management; and (5) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be administratively responsible for and the major user of the Analytical Chemistry Laboratory at Argonne National Laboratory (ANL).

Not Available

1990-03-01T23:59:59.000Z

6

Chemical technology division: Annual technical report 1987  

SciTech Connect (OSTI)

Highlights of the Chemical Technology (CMT) Division's activities during 1987 are presented. In this period, CMT conducted research and development in the following areas: (1) high-performance batteries--mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (5) methods for the electromagnetic continuous casting of steel sheet and for the purification of ferrous scrap; (6) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (7) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor, and waste management; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for liquids and vapors at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; the thermochemistry of various minerals; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 54 figs., 9 tabs.

Not Available

1988-05-01T23:59:59.000Z

7

Chemical Technology Division annual technical report, 1986  

SciTech Connect (OSTI)

Highlights of the Chemical Technology (CMT) Division's activities during 1986 are presented. In this period, CMT conducted research and development in areas that include the following: (1) high-performance batteries - mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants, the technology for fluidized-bed combustion, and a novel concept for CO/sub 2/ recovery from fossil fuel combustion; (5) methods for recovery of energy from municipal waste; (6) methods for the electromagnetic continuous casting of steel sheet; (7) techniques for treatment of hazardous waste such as reactive metals and trichloroethylenes; (8) nuclear technology related to waste management, a process for separating and recovering transuranic elements from nuclear waste, and the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor; and (9) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of catalytic hydrogenation and catalytic oxidation; materials chemistry for associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, surface science, and catalysis; the thermochemistry of zeolites and related silicates; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 127 refs., 71 figs., 8 tabs.

Not Available

1987-06-01T23:59:59.000Z

8

ITP Chemicals: Final Report: Evaluation of Alternative Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ammonia, and Terephthalic Acid, December 2007 ITP Chemicals: Final Report: Evaluation of Alternative Technologies for Ethylene, Caustic-Chlorine, Ethylene Oxide, Ammonia, and...

9

Chemical Technology Division annual technical report, 1993  

SciTech Connect (OSTI)

Chemical Technology (CMT) Division this period, conducted research and development in the following areas: advanced batteries and fuel cells; fluidized-bed combustion and coal-fired magnetohydrodynamics; treatment of hazardous waste and mixed hazardous/radioactive waste; reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; separating and recovering transuranic elements, concentrating radioactive waste streams with advanced evaporators, and producing {sup 99}Mo from low-enriched uranium; recovering actinide from IFR core and blanket fuel in removing fission products from recycled fuel, and disposing removal of actinides in spent fuel from commercial water-cooled nuclear reactors; and physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, thin-film diamond surfaces, effluents from wood combustion, and molten silicates; and the geochemical processes involved in water-rock interactions. The Analytical Chemistry Laboratory in CMT also provides a broad range of analytical chemistry support.

Battles, J.E.; Myles, K.M.; Laidler, J.J.; Green, D.W.

1994-04-01T23:59:59.000Z

10

Clean Energy Technologies a Focus of Chemical Engineers' Annual Meeting |  

Broader source: Energy.gov (indexed) [DOE]

Technologies a Focus of Chemical Engineers' Annual Technologies a Focus of Chemical Engineers' Annual Meeting Clean Energy Technologies a Focus of Chemical Engineers' Annual Meeting October 16, 2012 - 1:00pm Addthis Pittsburgh -- The role of clean energy technologies in building a strong economy and improving quality of life is just one of the wide-ranging topics that will be covered at the 2012 Annual Meeting of the American Institute of Chemical Engineers (AIChE), to be held October 28 through November 2 at the David L. Lawrence Convention Center in Pittsburgh, Pa. The AIChE Annual Meeting is the premier forum for chemical engineers, attended by industry, government, and academic representatives from around the world. The week-long gathering, featuring 12 different topical conferences and more than 750 sessions, provides an intellectual forum that

11

Sandia Researchers Develop Promising Chemical Technology for Energy Storage  

Broader source: Energy.gov (indexed) [DOE]

Researchers Develop Promising Chemical Technology for Energy Researchers Develop Promising Chemical Technology for Energy Storage Sandia Researchers Develop Promising Chemical Technology for Energy Storage March 7, 2012 - 9:50am Addthis DOE-funded researchers at Sandia National Laboratories have developed new chemical technology that could lead to batteries able to cost-effectively store three times more energy than today's batteries. The new family of liquid salt electrolytes, called MetILs, might enable economical and reliable incorporation of large-scale intermittent energy sources, like solar and wind, into the nation's electric grid. The research team is funded by the Department of Energy's Office of Electricity Delivery and Energy Reliability (OE). Imre Gyuk, OE's energy storage systems program manager, notes that the new solution could "lead to

12

New sensor technology detects chemical, biological, nuclear and explosive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New New sensor technology detects chemical, biological, nuclear and explosive materials Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share New sensor technology detects chemical, biological, nuclear and explosive materials Applications for homeland security, emergency planning Instruments in Argonne's Terahertz Test Facility, such as the one Sami Gopalsami is using, can detect trace chemicals at the part-per-billion level.

13

STATEMENT OF CONSIDERATIONS REQUEST BY CHEMICAL INDUSTRY ENVIRONMENTAL TECHNOLOGY  

Broader source: Energy.gov (indexed) [DOE]

CHEMICAL INDUSTRY ENVIRONMENTAL TECHNOLOGY CHEMICAL INDUSTRY ENVIRONMENTAL TECHNOLOGY PROJECTS, LLC (CIETP) FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC02-97CH10895; W(A)-97-032; CH-0935 The Petitioner, CIETP, has requested a waiver of domestic and foreign patent rights for all subject inventions arising under the above referenced cooperative agreement and subcontracts entered thereunder. The cooperative agreement is entitled, "DOE/CIETP Vision 2020." Both the DOE and the Petitioner support programs which offer clean, energy efficient, and environmentally sound technologies. This cooperative agreement is a partnership based on these similar missions and strategies to facilitate collaborative effort within the chemical industry which will benefit the

14

Hybrid Combustion-Gasification Chemical Looping Coal Power Technology Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gasification Gasification Technologies contacts Gary J. stiegel Gasification Technology Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4499 gary.stiegel@netl.doe.gov Ronald Breault Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4486 ronald.breault@netl.doe.gov Herbert E. andrus, Jr. Principal Investigator ALSTOM Power 2000 Day Hill Rd. Windsor, CT 06095 860-285-4770 herbert.e.andrus@power.alstom.com Hybrid Combustion-GasifiCation CHemiCal loopinG Coal power teCHnoloGy development Description Gasification technologies can provide a stable, affordable energy supply for the nation, while also providing high efficiencies and near zero pollutants. With coal

15

Sarah E. Reisman Division of Chemistry and Chemical Engineering California Institute of Technology  

E-Print Network [OSTI]

Sarah E. Reisman Division of Chemistry and Chemical Engineering · California Institute of Chemistry & Chemical Engineering California Institute of Technology, Pasadena, CA. 2008-2014 Assistant Professor of Chemistry Division of Chemistry & Chemical Engineering California Institute of Technology

Stoltz, Brian M.

16

Taiwan International Graduate Program Sustainable Chemical Science and Technology  

E-Print Network [OSTI]

to sustainable energy 2. construction of supramolecular materials for recognition, self- assemblyTaiwan International Graduate Program Sustainable Chemical Science and Technology Taiwan of the Program to offer Ph.D. education programs only in inter-disciplinary areas in the physical sciences

17

Chemical technology news from across RSC Publishing. Printing solar panels  

E-Print Network [OSTI]

Publishing Chemical technology news from across RSC Publishing. Printing solar panels 22 January size) silicon microcells that connect together to form flexible solar panels. By stamping hundreds solar panels 2/8/2010http://www.rsc.org/Publishing/ChemTech/Volume/2010/02/printing_solar.asp #12;Page 2

Rogers, John A.

18

Integrated chemical management system: A tool for managing chemical information at the Rocky Flats Environmental Technology Site  

SciTech Connect (OSTI)

The Integrated Chemical Management System is a computer-based chemical information at the Rocky Flats Environmental Technology Site. Chemical containers are identified by bar code labels and information on the type, quantity and location of chemicals are tracked on individual data bases in separate buildings. Chemical inventories from multiple buildings are uploaded to a central sitewide chemical data base where reports are available from Product, Waste, and Chemical Use modules. Hazardous chemical information is provided by a separate Material Safety Data Sheet module and excess chemicals are traded between chemical owners and users with the aid of the Chemical Exchange Module.

Costain, D. [Kaiser-Hill Co., Golden, CO (United States)

1995-07-01T23:59:59.000Z

19

NETL: Alstom's Chemical Looping Combustion Technology with CO2 Capture  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alstom's Chemical Looping Combustion Technology with CO2 Capture for New and Existing Coal-Fired Power Plants Alstom's Chemical Looping Combustion Technology with CO2 Capture for New and Existing Coal-Fired Power Plants Project No.: DE-FE0009484 Alstom is advancing the development of Limestone Chemical Looping Combustion (LCL-C(tm)) technology. Chemical looping has no direct contact between air and fuel. The looping process usually utilizes oxygen from a metal carrier, but in this case, limestone is used. Economic evaluations will be made of four LCL-C plant configurations. The base configuration plant has already been completed and will be updated from previous reports. A second case will compare the effects of designing the reducer reactor using CFB sizing standards. A third case will investigate the effects of using a pressurized reducer reactor. Pressurizing the reducer reduces the reactor size and reduces the amount of compression required for the CO2 outlet gas stream. A fourth case will investigate the use of an advanced ultra-supercritical (USC) steam cycle. The advanced USC steam cycle should increase overall plant efficiency and lower the cost of electricity. Mass and energy balances will be done for each case. The four LCL-CTM cases will be compared against a supercritical pulverized coal-fired plant without CO2 capture.

20

Biological and chemical technologies research. FY 1995 annual summary report  

SciTech Connect (OSTI)

The annual summary report presents the fiscal year (FY) 1995 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program. This BCTR program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1995 (ASR 95) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization, selected technical and programmatic highlights for 1995; detailed descriptions of individual projects; a listing of program output, including a bibliography of published work; patents; and awards arising from work supported by the BCTR.

None

1996-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "inventure chemical technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

An assessment of nondestructive testing technologies for chemical weapons monitoring  

SciTech Connect (OSTI)

The US Department of Energy (DOE), with the US Army Chemical Research, Development and Engineering Center (CRDEC) under the sponsorship of the Defense Nuclear Agency (DNA), completed testing of Nondestructive Evaluation (NDE) technology on live agent systems. The tests were conducted at Tooele Army Depot during August 1992. The Nondestructive Evaluation systems were tested for potential use in verifying chemical treaty requirements. Five technologies, two neutron and three acoustic, were developed at DOE laboratories. Two systems from the United Kingdom (one neutron and one acoustic) were also included in the field trials. All systems tested showed the ability to distinguish among the VX, GB, and Mustard. Three of the systems (two acoustic and one neutron) were used by On-Site Inspection Agency (OSIA) personnel.

Taylor, T.T.

1993-05-01T23:59:59.000Z

22

Technology Evaluation Workshop Report for Tank Waste Chemical Characterization  

SciTech Connect (OSTI)

A Tank Waste Chemical Characterization Technology Evaluation Workshop was held August 24--26, 1993. The workshop was intended to identify and evaluate technologies appropriate for the in situ and hot cell characterization of the chemical composition of Hanford waste tank materials. The participants were asked to identify technologies that show applicability to the needs and good prospects for deployment in the hot cell or tanks. They were also asked to identify the tasks required to pursue the development of specific technologies to deployment readiness. This report describes the findings of the workshop. Three focus areas were identified for detailed discussion: (1) elemental analysis, (2) molecular analysis, and (3) gas analysis. The technologies were restricted to those which do not require sample preparation. Attachment 1 contains the final workshop agenda and a complete list of attendees. An information package (Attachment 2) was provided to all participants in advance to provide information about the Hanford tank environment, needs, current characterization practices, potential deployment approaches, and the evaluation procedure. The participants also received a summary of potential technologies (Attachment 3). The workshop opened with a plenary session, describing the background and issues in more detail. Copies of these presentations are contained in Attachments 4, 5 and 6. This session was followed by breakout sessions in each of the three focus areas. The workshop closed with a plenary session where each focus group presented its findings. This report summarizes the findings of each of the focus groups. The evaluation criteria and information about specific technologies are tabulated at the end of each section in the report. The detailed notes from each focus group are contained in Attachments 7, 8 and 9.

Eberlein, S.J.

1994-04-01T23:59:59.000Z

23

Quarterly Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: April-June 1998  

SciTech Connect (OSTI)

This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during th eperiod April-June 1998. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications.

Jubin, R.T.

1999-04-01T23:59:59.000Z

24

BCTR: Biological and Chemical Technologies Research 1994 annual summary report  

SciTech Connect (OSTI)

The annual summary report presents the fiscal year (FY) 1994 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). Although the OIT was reorganized in 1991 and AICD no longer exists, this document reports on efforts conducted under the former structure. The annual summary report for 1994 (ASR 94) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization, selected technical and programmatic highlights for 1994; detailed descriptions of individual projects; a listing of program output, including a bibliography of published work; patents, and awards arising from work supported by BCTR.

Petersen, G.

1995-02-01T23:59:59.000Z

25

NEXT GENERATION SURFACTANTS FOR IMPROVED CHEMICAL FLOODING TECHNOLOGY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NEXT GENERATION SURFACTANTS NEXT GENERATION SURFACTANTS FOR IMPROVED CHEMICAL FLOODING TECHNOLOGY FINAL REPORT June 1, 2010 - May 31, 2012 Laura L Wesson, Prapas Lohateeraparp, Jeffrey H. Harwell, and Bor-Jier Shiau October 2012 DE-FE0003537 University of Oklahoma Norman, OK 73019-0430 ii DISCLAIMER This report is prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,

26

TECHNOLOGY VISION 2020: The U.S. Chemical Industry  

Broader source: Energy.gov [DOE]

The chemical industry faces heightened challenges as it enters the 21st century. Five major forces are among those shaping the topography of its business landscape

27

Reactive Dehydration technology for Production of Fuels and Chemicals...  

Broader source: Energy.gov (indexed) [DOE]

Catalytic and Reactive Distillation) for compact, inexpensive production of biomass-based chemicals from complex aqueous mixtures. SeparationPurification of Biomass...

28

NREL: Solar Research - Materials and Chemical Science and Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy and conducts theoretical studies and fundamental experimental research on optoelectronic materials. The center conducts research within three areas: Chemical and molecular...

29

Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: July--September 1997  

SciTech Connect (OSTI)

This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July--September 1997. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within nine major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Biotechnology, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information.

Jubin, R.T.

1998-07-01T23:59:59.000Z

30

Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division, April--June 1997  

SciTech Connect (OSTI)

The Chemical and Energy Research Section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within six major areas of research: Hot Cell Operations, Process Chemistry and thermodynamics, Separations and Materials Synthesis, Solution Thermodynamics, biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information.

Jubin, R.T.

1998-06-01T23:59:59.000Z

31

Carbon Emissions Reduction Potential in the US Chemicals and Pulp and Paper Industries by Applying CHP Technologies, June 1999  

Broader source: Energy.gov [DOE]

Assessment of the potential of CHP technologies to reduce carbon emissions in the US chemicals and pulp and paper industries.

32

ITP Chemicals: Technology Roadmap for Computational Fluid Dynamics, January 1999  

Broader source: Energy.gov [DOE]

As the 21st century approaches, the chemical industry faces considerable economic, environmental and societal challenges. CFD can assist the design and optimization of new and existing processes and products.

33

Coal Technology for Power, Liquid Fuels, and Chemicals  

Science Journals Connector (OSTI)

Several large demonstrations of FBC technology for electric power generation have proven ... -MW(e) atmospheric pressure circulating fluidized-bed boiler at the Colorado-Ute Electric Associations...21].

Burtron H. Davis; James Hower

2012-01-01T23:59:59.000Z

34

NETL: Alstom's Chemical Looping Combustion Technology with CO2 Capture  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxy-Combustion CO2 Emissions Control Oxy-Combustion CO2 Emissions Control Commercialization of the Iron Based Coal Direct Chemical Looping Process for Power Production with in situ CO2 Capture Project No.: DE-FE0009761 CDLC Process Concept CDLC Process Concept (click to enlarge) Babcock & Wilcox Power Generation Group (B&W) is developing the coal direct chemical looping (CDCL) process. The CDCL process consists of a unique moving bed reactor - the reducer - where pulverized coal is fully converted using iron-based oxygen carriers. The oxygen carrier is reduced from Fe2O3 to FeO/Fe and the flue gas is a concentrated stream of CO2 that is available for storage or beneficial use. The reduced FeO/Fe is oxidized to Fe2O3 using air in the combustor, liberating heat to produce steam for a

35

Chemical Plant Energy Efficiency Through Computer Aided Technology  

E-Print Network [OSTI]

. These models have become highly refined. Extensive model verification with plant operation has been completed at many operating points. The entire plant flowsheet can be simulated on workstation class computers in less than ten 4 ESL-AR-98...-04-02 Proceedings from the Twentieth National Industrial Energy Technology Conference, Houston, TX, April 22-23, 1998 minutes elapsed time. Optimization is used to find minimum cost operating conditions. More recently, wide-area plant computer networks have been...

Grassi, V. G.

36

Abstract #679: ChemTech, a platform of integrated technologies for ultra-efficient navigation and exploration of chemical space  

Science Journals Connector (OSTI)

...679: ChemTech, a platform of integrated technologies...navigation and exploration of chemical space Joachim PETIT...biologically-relevant regions of chemical space, while accounting...selectivity. ChemTech, the platform of technologies presented...explore smart, leadlike chemical spaces front-loaded...

Joachim PETIT; Nathalie MEURICE; Christopher Hulme; Gerald Maggiora; and Spyro Mousses

2009-05-01T23:59:59.000Z

37

Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: October-December 1997  

SciTech Connect (OSTI)

This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period October--December 1997. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within six major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information. Activities conducted within the area of Hot Cell Operations included efforts to optimize the processing conditions for Enhanced Sludge Washing of Hanford tank sludge, the testing of candidate absorbers and ion exchangers under continuous-flow conditions using actual supernatant from the Melton Valley Storage Tanks, and attempts to develop a cesium-specific spherical inorganic sorbent for the treatment of acidic high-salt waste solutions. Within the area of Process Chemistry and Thermodynamics, the problem of solids formation in process solutions from caustic treatment of Hanford sludge was addressed and experimental collaborative efforts with Russian scientists to determine the solidification conditions of yttrium barium, and copper oxides from their melts were completed.

Jubin, R.T.

1999-02-01T23:59:59.000Z

38

Supporting technology for enhanced oil recovery: Chemical flood predictive model  

SciTech Connect (OSTI)

The Chemical Flood Predictive Model (CFPM) was developed by Scientific Software-Intercomp for the US Department of Energy and was used in the National Petroleum Council's (NPC) 1984 survey of US enhanced oil recovery potential (NPC, 1984). The CFPM models micellar (surfactant)-polymer (MP) floods in reservoirs which have been previously waterflooded to residual oil saturation. Thus, only true tertiary floods are considered. An option is available in the model which allows a rough estimate of oil recovery by caustic (alkaline) or caustic-polymer processes. This ''caustic'' option, added for the NPC survey, is not modeled as a separate process. Rather, the caustic and caustic-polymer oil recoveries are computed simply as 15% and 40%, respectively, of the MP oil recovery. In the CFPM, an oil rate versus time function for a single pattern is computed and the results are passed to the economic routines. To estimate multi-pattern project behavior, a pattern development schedule must be specified. After-tax cash flow is computed by combining revenues with capital costs for drilling, conversion and upgrading of wells, chemical handling costs, fixed and variable operating costs, injectant costs, depreciation, royalties, severance, state, federal, and windfall profit taxes, cost and price inflation rates, and the discount rate. A lumped parameter uncertainty routine is used to estimate risk, and allows for variation in computed project performance within an 80% confidence interval. The CFPM uses theory and the results of numerical simulation to predict MP oil recovery in five-spot patterns. Oil-bank and surfactant breakthrough and project life are determined from fractional flow theory. A Koval-type factor, based on the Dykstra-Parsons (1950) coefficient, is used to account for the effects of reservoir heterogeneity on surfactant and oil bank velocities. 18 refs., 17 figs., 27 tabs.

Ray, R.M.; Munoz, J.D.

1986-12-01T23:59:59.000Z

39

Quarterly progress report for the Chemical Development Section of the Chemical Technology Division: January--March 1996  

SciTech Connect (OSTI)

This report provides a timely summary of the major activities conducted in the Chemical Development Section of the Chemical Technology Division at the Oak Ridge National Laboratory (ORNL) during the period January--March 1996. The report summarizes ten major tasks conducted with five major areas of research and development within the section. The first major research area--Chemical Processes for Waste Management--includes the following tasks: Comprehensive Supernate Treatment, Partitioning of Sludge Compounds by Caustic Leaching, Studies on Treatment of Dissolved MVST Sludge Using TRUEX Process, ACT{asterisk}DE{asterisk}CON{sup SM} Test Program, Hot Demonstration of Proposed Commercial Nuclide Removal Technology, and Sludge Washing and Dissolution of ORNL Waste: Data for Modeling Sludge Science. The other four tasks are: Reactor fuel chemistry--Technical assistance in review of advanced reactors; Thermodynamics and kinetics of energy-related materials; Processes for waste management--Ion-exchange process for heavy metals removal; and US Army field artillery liquid propellant stability program.

Jubin, R.T.

1996-06-01T23:59:59.000Z

40

Conversion of Wastes into Bioelectricity and Chemicals by Using Microbial Electrochemical Technologies  

Science Journals Connector (OSTI)

...production energy. As shown...Emerging Renewable Energy Technologies...electrical grid energy (62...opportunities and challenges for successful...The main challenge of using...discharge. The integration of METs into...applications such as energy and chemical...electricity from renewable resources . Environ...Oak Ridge National Laboratory...

Bruce E. Logan; Korneel Rabaey

2012-08-10T23:59:59.000Z

Note: This page contains sample records for the topic "inventure chemical technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Methane Steam Reforming Thermally Coupled with Fuel Combustion: Application of Chemical Looping Concept as a Novel Technology  

Science Journals Connector (OSTI)

Methane Steam Reforming Thermally Coupled with Fuel Combustion: Application of Chemical Looping Concept as a Novel Technology ... One of these new methods is chemical looping combustion (CLC). ... Experimental Study of Chemical-Looping Reforming in a Fixed-Bed Reactor: Performance Investigation of Different Oxygen Carriers on Al2O3 and TiO2 Support ...

Mohammad Reza Rahimpour; Marziyeh Hesami; Majid Saidi; Abdolhossein Jahanmiri; Mahdi Farniaei; Mohsen Abbasi

2013-03-14T23:59:59.000Z

42

Chemical Technology Division progress report, October 1, 1989--June 30, 1991  

SciTech Connect (OSTI)

This progress report reviews the mission of the Chemical Technology Division (Chem Tech) and presents a summary of organizational structure, programmatic sponsors, and funding levels for the period October 1, 1988, through June 30, 1991. The report also summarizes the missions and activities of organizations within Chem Tech for the reporting period. Specific projects performed within Chem Tech`s energy research programs, waste and environmental programs, and radiochemical processing programs are highlighted. Other information regarding publications, patents, awards, and conferences organized by Chem Tech staff is also included.

Not Available

1992-04-01T23:59:59.000Z

43

Chemical Technology Division progress report, July 1, 1991--December 31, 1992  

SciTech Connect (OSTI)

This progress report reviews the mission of the Chemical Technology Division (Chem Tech) and presents a summary of organizational structure, programmatic sponsors, and funding levels for the period July 1, 1991, through December 31, 1992. The report also summarizes the missions and activities of organizations within Chem Tech for the reporting period. Specific projects performed within Chem Tech`s energy research programs, waste and environmental programs, and radiochemical processing programs are highlighted. Special programmatic activities conducted by the division are identified and described. Other information regarding publications, patents, awards, and conferences organized by Chem Tech staff is also included.

Genung, R.K.; Hightower, J.R.; Bell, J.T.

1993-05-01T23:59:59.000Z

44

Chemical Technology Division progress report, October 1, 1989--June 30, 1991  

SciTech Connect (OSTI)

This progress report reviews the mission of the Chemical Technology Division (Chem Tech) and presents a summary of organizational structure, programmatic sponsors, and funding levels for the period October 1, 1988, through June 30, 1991. The report also summarizes the missions and activities of organizations within Chem Tech for the reporting period. Specific projects performed within Chem Tech's energy research programs, waste and environmental programs, and radiochemical processing programs are highlighted. Other information regarding publications, patents, awards, and conferences organized by Chem Tech staff is also included.

Not Available

1992-04-01T23:59:59.000Z

45

Biological and Chemical Technologies Research at OIT: Annual Summary Report, FY 1997  

SciTech Connect (OSTI)

The annual summary report presents the fiscal year (FY) 1 997 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program. This BCTR program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1997 (ASR 97) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization; selected technical and programmatic highlights for 1 997; detailed descriptions of individual projects; and a listing of program output, including a bibliography of published work, patents, and awards arising from work supported by the program.

Peterson, G.

1998-03-01T23:59:59.000Z

46

Coupled Physical/Chemical and Biofiltration Technologies to Reduce Air Emissions from Forest Products Industries  

SciTech Connect (OSTI)

The research is a laboratory and bench-scale investigation of a system to concentrate and destroy volatile organic compounds (VOCs), including hazardous air pollutants, formed from the drying of wood and the manufacture of wood board products (e.g., particle board and oriented strandboard). The approach that was investigated involved concentrating the dilute VOCs (<500 ppmv) with a physical/chemical adsorption unit, followed by the treatment of the concentrated voc stream (2,000 to 2,500 ppmv) with a biofiltration unit. The research program lasted three years, and involved three research organizations. Michigan Technological University was the primary recipient of the financial assistance, the USDA Forest Products Laboratory (FPL) and Mississippi State University (MSU) were subcontractors to MTU. The ultimate objective of this research was to develop a pilot-scale demonstration of the technology with sufficient data to provide for the design of an industrial system. No commercialization activities were included in this project.

Gary D. McGinnis

2001-12-31T23:59:59.000Z

47

AICD -- Advanced Industrial Concepts Division Biological and Chemical Technologies Research Program. 1993 Annual summary report  

SciTech Connect (OSTI)

The annual summary report presents the fiscal year (FY) 1993 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1993 (ASR 93) contains the following: A program description (including BCTR program mission statement, historical background, relevance, goals and objectives), program structure and organization, selected technical and programmatic highlights for 1993, detailed descriptions of individual projects, a listing of program output, including a bibliography of published work, patents, and awards arising from work supported by BCTR.

Petersen, G.; Bair, K.; Ross, J. [eds.

1994-03-01T23:59:59.000Z

48

Technology development program for Idaho Chemical Processing Plant spent fuel and waste management  

SciTech Connect (OSTI)

Acidic high-level radioactive waste (HLW) resulting from fuel reprocessing at the Idaho Chemical Processing Plant (ICPP) for the U.S. Department of Energy (DOE) has been solidified to a calcine since 1963 and stored in stainless steel bins enclosed by concrete vaults. Several different types of unprocessed irradiated DOE-owned fuels are also in storage at the ICPP. In April, 1992, DOE announced that spent fuel would no longer be reprocessed to recover enriched uranium and called for a shutdown of the reprocessing facilities at the ICPP. A new Spent Fuel and HLW Technology Development program was subsequently initiated to develop technologies for immobilizing ICPP spent fuels and HLW for disposal, in accordance with the Nuclear Waste Policy Act. The Program elements include Systems Analysis, Graphite Fuel Disposal, Other Spent Fuel Disposal, Sodium-Bearing Liquid Waste Processing, Calcine Immobilization, and Metal Recycle/Waste Minimization. This paper presents an overview of the ICPP radioactive wastes and current spent fuels, and describes the Spent Fuel and HLW Technology program in more detail.

Ermold, L.F.; Knecht, D.A.; Hogg, G.W.; Olson, A.L.

1993-08-01T23:59:59.000Z

49

Preliminary screening of alternative technologies to incineration for treatment of chemical-agent-contaminated soil, Rocky Mountain Arsenal  

SciTech Connect (OSTI)

In support of the U.S. Army`s efforts to determine the best technologies for remediation of soils, water, and structures contaminated with pesticides and chemical agents, Argonne National Laboratory has reviewed technologies for treating soils contaminated with mustard, lewisite, sarin, o-ethyl s-(2- (diisopropylamino)ethyl)methyl-phosphonothioate (VX), and their breakdown products. This report focuses on assessing alternatives to incineration for dealing with these contaminants. For each technology, a brief description is provided, its suitability and constraints on its use are identified, and its overall applicability for treating the agents of concern is summarized. Technologies that merit further investigation are identified.

Shem, L.M.; Rosenblatt, D.H.; Smits, M.P.; Wilkey, P.L.; Ballou, S.W.

1995-12-01T23:59:59.000Z

50

DOE underground storage tank waste remediation chemical processing hazards. Part I: Technology dictionary  

SciTech Connect (OSTI)

This document has been prepared to aid in the development of Regulating guidelines for the Privatization of Hanford underground storage tank waste remediation. The document has been prepared it two parts to facilitate their preparation. Part II is the primary focus of this effort in that it describes the technical basis for established and potential chemical processing hazards associated with Underground Storage Tank (UST) nuclear waste remediation across the DOE complex. The established hazards involve those at Sites for which Safety Analysis Reviews (SARs) have already been prepared. Potential hazards are those involving technologies currently being developed for future applications. Part I of this document outlines the scope of Part II by briefly describing the established and potential technologies. In addition to providing the scope, Part I can be used as a technical introduction and bibliography for Regulatory personnel new to the UST waste remediation, and in particular Privatization effort. Part II of this document is not intended to provide examples of a SAR Hazards Analysis, but rather provide an intelligence gathering source for Regulatory personnel who must eventually evaluate the Privatization SAR Hazards Analysis.

DeMuth, S.F.

1996-10-01T23:59:59.000Z

51

Plant Energy Profiler Tool for the Chemicals Industry (ChemPEP Tool), Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes how the Industrial Technologies Program ChemPEP Tool can help chemical plants assess their plant-wide energy consumption.

Not Available

2008-12-01T23:59:59.000Z

52

Development of Diffusion barrier coatings and Deposition Technologies for Mitigating Fuel Cladding Chemical Interactions (FCCI)  

SciTech Connect (OSTI)

The goal of this project is to develop diffusion barrier coatings on the inner cladding surface to mitigate fuel-cladding chemical interaction (FCCI). FCCI occurs due to thermal and radiation enhanced inter-diffusion between the cladding and fuel materials, and can have the detrimental effects of reducing the effective cladding wall thickness and lowering the melting points of the fuel and cladding. The research is aimed at the Advanced Burner Reactor (ABR), a sodium-cooled fast reactor, in which higher burn-ups will exacerbate the FCCI problem. This project will study both diffusion barrier coating materials and deposition technologies. Researchers will investigate pure vanadium, zirconium, and titanium metals, along with their respective oxides, on substrates of HT-9, T91, and oxide dispersion-strengthened (ODS) steels; these materials are leading candidates for ABR fuel cladding. To test the efficacy of the coating materials, the research team will perform high-temperature diffusion couple studies using both a prototypic metallic uranium fuel and a surrogate?¢????the rare-earth element lanthanum. Ion irradiation experiments will test the stability of the coating and the coating-cladding interface. A critical technological challenge is the ability to deposit uniform coatings on the inner surface of cladding. The team will develop a promising non-line-of-sight approach that uses nanofluids . Recent research has shown the feasibility of this simple yet novel approach to deposit coatings on test flats and inside small sections of claddings. Two approaches will be investigated: 1) modified electrophoretic deposition (MEPD) and 2) boiling nanofluids. The coatings will be evaluated in the as-deposited condition and after sintering.

Sridharan, Kumar; Allen, Todd; Cole, James

2013-02-27T23:59:59.000Z

53

ITP Chemicals: Hybripd Separations/Distillation Technology. Research Opportunities for Energy and Emissions Reduction  

Broader source: Energy.gov [DOE]

Energy used to drive separation processes accounts for approximately sixty percent of the total energy used by the chemical and petroleum industries.

54

Vehicle Technologies Office Merit Review 2014: Chemical Kinetic Models for Advanced Engine Combustion  

Broader source: Energy.gov [DOE]

Presentation given by Lawrence Livermore National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

55

Experimental Research on Low-Temperature Methane Steam Reforming Technology in a Chemically Recuperated Gas Turbine  

Science Journals Connector (OSTI)

Under the operating parameters of a chemically recuperated gas turbine (CRGT), the low-temperature methane steam reforming test bench is designed and built; systematic experimental studies about fuel steam reforming are conducted. Four different reforming ...

Qian Liu; Hongtao Zheng

2014-09-24T23:59:59.000Z

56

ITP Chemicals: Vision 2020 Technology Roadmap for Combinatroial Methods; September 2001  

Broader source: Energy.gov [DOE]

The 21st century brings many economic, environmental and societal challenges to the chemical industry. Major drivers for change include market globalization, societal demand for improved environmental performance, profitability and capital productivity..

57

Editorial biofuel: The butanol perspective and algal biofuel  

Science Journals Connector (OSTI)

Tel Aviv-based Seambiotic and Seattle-based Inventure Chemical in a joint venture plan to use CO2 emissions-fed algae to make ethanol and biodiesel at a biofuel plant in Ashkelon, Israel . In Australia...

Vedpal Singh Malik

2014-10-01T23:59:59.000Z

58

Conversion of Wastes into Bioelectricity and Chemicals by Using Microbial Electrochemical Technologies  

Science Journals Connector (OSTI)

...achieve efficient treatment and excellent water quality are being used...as a part of treatment. Combining METs...Technologies Reverse electrodialysis (RED) is a...fresh and salt water using microbial reverse-electrodialysis electrolysis...

Bruce E. Logan; Korneel Rabaey

2012-08-10T23:59:59.000Z

59

History of Chemical Engineering at the New Jersey Institute of Technology 18811988  

Science Journals Connector (OSTI)

New Jersey Institute of Technology is an outgrowth of the Newark Technical School which was founded in 1881, by an Act of the New Jersey General Assembly, to meet the demands of the industrialization of northe...

Deran Hanesian; Angelo Perna; Joseph Joffe

1989-01-01T23:59:59.000Z

60

Conversion of Wastes into Bioelectricity and Chemicals by Using Microbial Electrochemical Technologies  

Science Journals Connector (OSTI)

...the same mass of H 2...positive energy balance (43...Technologies for Wastewater Treatment? Current...Some wastewater treatment plants using activated...treatment plants for treatment of the sludge...treat the wastewater while substantially...

Bruce E. Logan; Korneel Rabaey

2012-08-10T23:59:59.000Z

Note: This page contains sample records for the topic "inventure chemical technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

The PROMISE of 2002 American Chemical Society NOVEMBER 1, 2002 / ENVIRONMENTAL SCIENCE & TECHNOLOGY 423 A  

E-Print Network [OSTI]

The PROMISE of #12;© 2002 American Chemical Society NOVEMBER 1, 2002 / ENVIRONMENTAL SCIENCE on microbe transport during bank filtra- tion a daunting task. Aside from quantifying the effectiveness guidelines to water utilities to help ensure ac- ceptable drinking water quality. In the United States, EPA

Ryan, Joe

62

The generation of singlet Delta oxygen - A technology overview. [For use in chemical oxygen iodine lasers  

SciTech Connect (OSTI)

The rate of generation of O2(1Delta g) using the chlorine-basic-hydrogen-peroxide reaction is a key element to predict the performance of the chemical oxygen iodine laser. O2(1Delta g) carries the energy in the laser, and thus is one of the prime determinants of power in the flow. To predict the performance of O2(1Delta g) generators requires the prediction of the utilization of chlorine, the yield of excited oxygen, and the concentration of potential contaminants in the chemical exhaust of the generator. This paper describes an approach to the analysis of O2(1Delta g) generators. 6 refs.

Mcdermott, W.E. (Rockwell International Corp., Rocketdyne Div., Canoga Park, CA (United States))

1992-07-01T23:59:59.000Z

63

Chlor-syngas: Coupling of Electrochemical Technologies for Production of Commodity Chemicals  

Science Journals Connector (OSTI)

This paper describes a novel electrolysis process called chlor-syngas, where synthesis gas is produced at the cathode and chlorine gas is produced at the anode. ... The process described here, chlor-syngas, produces two commodity gas streams, Cl2 and synthesis gas (syngas), using low-value chemicals, CO2 and HCl. ... The chlor-syngas process could replace two existing processes in current use: (1) chlor-alkali for the production of Cl2 and (2) gasification of fossil sources, such as natural gas or coal, to produce syngas. ...

Tedd E. Lister; Eric J. Dufek

2013-01-18T23:59:59.000Z

64

Federal/Industry Development of Energy-Conserving Technologies for the Chemical and Petroleum Refining Industries  

E-Print Network [OSTI]

-btu gasification of coal or petroleum coke in a petroleum refinery can reduce imports to the refinery of scarce natural gas and can provide additional energy supplies through sale of high-btu refinery fuel gas. The potential gain in national energy supplies... through industry-wide application of this technology is on the order of 0.5-1 quad per year. 2. Depending on the sales price which can be ob tained for refinery fuel gas displaced by coke generated MBG, the economics of coke gasification can appear...

Alston, T. G.; Humphrey, J. L.

1981-01-01T23:59:59.000Z

65

Triboelectric Nanogenerators as New Energy Technology for Self-Powered Systems and as Active Mechanical and Chemical Sensors  

Science Journals Connector (OSTI)

Triboelectric Nanogenerators as New Energy Technology for Self-Powered Systems and as Active Mechanical and Chemical Sensors ... As for this power generation unit, in the inner circuit, a potential is created by the triboelectric effect due to the charge transfer between two thin organic/inorganic films that exhibit opposite tribo-polarity; in the outer circuit, electrons are driven to flow between two electrodes attached on the back sides of the films in order to balance the potential. ... The TENG can be applied to harvest all kinds of mechanical energy that is available but wasted in our daily life, such as human motion, walking, vibration, mechanical triggering, rotating tire, wind, flowing water, and more. ...

Zhong Lin Wang

2013-09-30T23:59:59.000Z

66

Development and Field Trial of Dimpled-Tube Technology for Chemical Industry Process Heaters  

SciTech Connect (OSTI)

Most approaches to increasing heat transfer rates in the convection sections of gas-fired process heaters involve the incorporation of fins, baffles, turbulizers, etc. to increase either the heat transfer surface area or turbulence or both. Although these approaches are effective in increasing the heat transfer rates, this increase is invariably accompanied by an associated increase in convection section pressure drop as well as, for heaters firing dirty fuel mixtures, increased fouling of the tubes both of which are highly undesirable. GTI has identified an approach that will increase heat transfer rates without a significant increase in pressure drop or fouling rate. Compared to other types of heat transfer enhancement approaches, the proposed dimpled tube approach achieves very high heat transfer rates at the lowest pressure drops. Incorporating this approach into convection sections of chemical industry fired process heaters may increase energy efficiency by 3-5%. The energy efficiency increase will allow reducing firing rates to provide the required heating duty while reducing the emissions of CO2 and NOx.

Yaroslav Chudnovsky; Aleksandr Kozlov

2006-10-12T23:59:59.000Z

67

Carbon emissions reduction potential in the US chemicals and pulp and paper industries by applying CHP technologies  

SciTech Connect (OSTI)

The chemical and the pulp/paper industries combined provide 55% of CHP generation in the US industry. Yet, significant potential for new CHP capacities exists in both industries. From the present steam consumption data, the authors estimate about 50 GW of additional technical potential for CHP in both industries. The reduced carbon emissions will be equivalent to 44% of the present carbon emissions in these industries. They find that most of the carbon emissions reductions can be achieved at negative costs. Depending on the assumptions used in calculations, the economic potential of CHP in these industries can be significantly lower, and carbon emissions mitigation costs can be much higher. Using sensitivity analyses, they determine that the largest effect on the CHP estimate have the assumptions in the costs of CHP technology, in the assumed discount rates, in improvements in efficiency of CHP technologies, and in the CHP equipment depreciation periods. Changes in fuel and electricity prices and the growth in the industries' steam demand have less of an effect. They conclude that the lowest carbon mitigation costs are achieved with the CHP facility is operated by the utility and when industrial company that owns the CHP unit can sell extra electricity and steam to the open wholesale market. Based on the results of the analyses they discuss policy implications.

Khrushch, M.; Worrell, E.; Price, L.; Martin, N.; Einstein, D.

1999-07-01T23:59:59.000Z

68

CHEMICAL SENSOR AND FIELD SCREENING TECHNOLOGY DEVELOPMENT: FUELS IN SOILS FIELD SCREENING METHOD VALIDATION  

SciTech Connect (OSTI)

A new screening method for fuel contamination in soils was recently developed as American Society for Testing and Materials (ASTM) Method D-583 1-95, Standard Test Method for Screening Fuels in Soils. This method uses low-toxicity chemicals and can be used to screen organic-rich soils. In addition, it is fast, easy, and inexpensive to perform. The screening method calls for extracting a sample of soil with isopropyl alcohol following treatment with calcium oxide. The resulting extract is filtered, and the ultraviolet absorbance of the extract is measured at 254 nm. Depending on the available information concerning the contaminant fuel type and availability of the contaminant fuel for calibration, the method can be used to determine the approximate concentration of fuel contamination, an estimated value of fuel contamination, or an indication of the presence or absence of fuel contamination. Fuels containing aromatic compounds, such as diesel fuel and gasoline, as well as other aromatic-containing hydrocarbon materials, such as motor oil, crude oil, and coal oil, can be determined. The screening method for fuels in soils was evaluated by conducting a collaborative study on the method and by using the method to screen soil samples at an actual field site. In the collaborative study, a sand and an organic soil spiked with various concentrations of diesel fuel were tested. Data from the collaborative study were used to determine the reproducibility (between participants) and repeatability (within participant) precision of the method for screening the test materials. The collaborative study data also provide information on the performance of portable field equipment versus laboratory equipment for performing the screening method and a comparison of diesel concentration values determined using the screening method versus a laboratory method. Data generated using the method to screen soil samples in the field provide information on the performance of the method in atypical real-world application.

Susan S. Sorini; John F. Schabron

1997-04-01T23:59:59.000Z

69

Technolog  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research in Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from maintaining the safety, security and effectiveness of the nation's nuclear weapons and preventing domestic and interna- tional terrorism to finding innovative clean energy solutions, develop- ing cutting-edge nanotechnology and moving the latest advances to the marketplace. Sandia's expertise includes:

70

Assessing thermal energy storage technologies of concentrating solar plants for the direct coupling with chemical processes. The case of solar-driven biomass gasification  

Science Journals Connector (OSTI)

Abstract Dynamic simulation, design improvements and control issues in solar power plants might compete with special considerations on energy storing techniques. In order to provide the stability in production of power or chemical commodities in spite of discontinuity in the source of energy, i.e., sun, overall concerns in the details of solar power plant, competition and comparison of common storing technologies should be taken into account to ensure the effectiveness and continuity of the supply. This research activity is aimed at extending the study from the power generation purpose to the solar-supplied chemical commodities production, highlighting the limitations of certain well-established thermal energy storage techniques when concentrating solar is directly coupled with chemical processes. The (intrinsically dynamic and closed-loop) simulation of solar power plants and direct thermal energy storage technologies is performed for the direct thermal energy storage technologies and, only for the case of thermocline, it is coupled with computational fluid-dynamic (CFD) studies for the proper assessment of molten salt and steam temperature trends. To investigate benefits/restrictions of the storage technologies, the solar steam generation is integrated with the gasification of biomasses for syngas production. Also, first-principles dynamic model for the biomass gasifier is provided.

Flavio Manenti; Andres R. Leon-Garzon; Zohreh Ravaghi-Ardebili; Carlo Pirola

2014-01-01T23:59:59.000Z

71

In Situ Remediation Integrated Program. In situ physical/chemical treatment technologies for remediation of contaminated sites: Applicability, developing status, and research needs  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) In Situ Remediation Integrated Program (ISR IP) was established in June 1991 to facilitate the development and implementation of in situ remediation technologies for environmental restoration within the DOE complex. Within the ISR IP, four subareas of research have been identified: (1) in situ containment, (2) in situ physical/chemical treatment (ISPCT), (3) in situ bioremediation, and (4) subsurface manipulation/electrokinetics. Although set out as individual focus areas, these four are interrelated, and successful developments in one will often necessitate successful developments in another. In situ remediation technologies are increasingly being sought for environmental restoration due to the potential advantages that in situ technologies can offer as opposed to more traditional ex situ technologies. These advantages include limited site disruption, lower cost, reduced worker exposure, and treatment at depth under structures. While in situ remediation technologies can offer great advantages, many technology gaps exist in their application. This document presents an overview of ISPCT technologies and describes their applicability to DOE-complex needs, their development status, and relevant ongoing research. It also highlights research needs that the ISR IP should consider when making funding decisions.

Siegrist, R.L.; Gates, D.D.; West, O.R.; Liang, L.; Donaldson, T.L.; Webb, O.F.; Corder, S.L.; Dickerson, K.S.

1994-06-01T23:59:59.000Z

72

Proceedings of the 31. intersociety energy conversion engineering conference. Volume 2: Conversion technologies, electro-chemical technologies, Stirling engines, thermal management  

SciTech Connect (OSTI)

The 148 papers contained in Volume 2 are arranged topically as follows -- (A) Conversion Technologies: Superconductivity applications; Advanced cycles; Heat engines; Heat pumps; Combustion and cogeneration; Advanced nuclear reactors; Fusion Power reactors; Magnetohydrodynamics; Alkali metal thermal to electric conversion; Thermoelectrics; Thermionic conversion; Thermophotovoltaics; Advances in electric machinery; and Sorption technologies; (B) Electrochemical Technologies: Terrestrial fuel cell technology; and Batteries for terrestrial power; (C) Stirling Engines: Stirling machine analysis; Stirling machine development and testing; and Stirling component analysis and testing; (D) Thermal Management: Cryogenic heat transfer; Electronic components and power systems; Environmental control systems; Heat pipes; Numeric analysis and code verification; and Two phase heat and mass transfer. Papers within the scope of the data base have been processed separately.

Chetty, P.R.K.; Jackson, W.D.; Dicks, E.B. [eds.

1996-12-31T23:59:59.000Z

73

Chemical Technology Division progress report for the period April 1, 1981-March 31, 1983. [Oak Ridge National Laboratory  

SciTech Connect (OSTI)

Separate abstracts were prepared for eight sections of the report: nuclear waste management; fossil energy; basic science and technology; biotechnology and environmental programs; transuranium-element processing; Nuclear Regulatory Commission programs; Three Mile Island support studies; and miscellaneous programs.

Not Available

1983-09-01T23:59:59.000Z

74

Technology for Treatment of Liquid Radioactive Waste Generated during Uranium and Plutonium Chemical and Metallurgical Manufacturing in FSUE PO Mayak - 13616  

SciTech Connect (OSTI)

Created technological scheme for treatment of liquid radioactive waste generated while uranium and plutonium chemical and metallurgical manufacturing consists of: - Liquid radioactive waste (LRW) purification from radionuclides and its transfer into category of manufacturing waste; - Concentration of suspensions containing alpha-nuclides and their further conversion to safe dry state (calcinate) and moving to long controlled storage. The following technologies are implemented in LRW treatment complex: - Settling and filtering technology for treatment of liquid intermediate-level waste (ILW) with volume about 1500m{sup 3}/year and alpha-activity from 10{sup 6} to 10{sup 8} Bq/dm{sup 3} - Membrane and sorption technology for processing of low-level waste (LLW) of radioactive drain waters with volume about 150 000 m{sup 3}/year and alpha-activity from 10{sup 3} to 10{sup 4} Bq/dm{sup 3}. Settling and filtering technology includes two stages of ILW immobilization accompanied with primary settling of radionuclides on transition metal hydroxides with the following flushing and drying of the pulp generated; secondary deep after settling of radionuclides on transition metal hydroxides with the following solid phase concentration by the method of tangential flow ultrafiltration. Besides, the installation capacity on permeate is not less than 3 m{sup 3}/h. Concentrates generated are sent to calcination on microwave drying (MW drying) unit. Membrane and sorption technology includes processing of averaged sewage flux by the method of tangential flow ultrafiltration with total capacity of installations on permeate not less than 18 m{sup 3}/h and sorption extraction of uranium from permeate on anionite. According to radionuclide contamination level purified solution refers to general industrial waste. Concentrates generated during suspension filtering are evaporated in rotary film evaporator (RFE) in order to remove excess water, thereafter they are dried on infrared heating facility. Solid concentrate produced is sent for long controlled storage. Complex of the procedures carried out makes it possible to solve problems on treatment of LRW generated while uranium and plutonium chemical and metallurgical manufacturing in Federal State Unitary Enterprise (FSUE) Mayak and cease its discharge into open water reservoirs. (authors)

Adamovich, D. [SUE MosSIA Radon, 2/14 7th Rostovsky lane, Moscow, 119121 (Russian Federation)] [SUE MosSIA Radon, 2/14 7th Rostovsky lane, Moscow, 119121 (Russian Federation); Batorshin, G.; Logunov, M.; Musalnikov, A. [FSUE 'PO Mayak', 31 av. Lenin, Ozyorsk, Chelyabinsk region, 456780 (Russian Federation)] [FSUE 'PO Mayak', 31 av. Lenin, Ozyorsk, Chelyabinsk region, 456780 (Russian Federation)

2013-07-01T23:59:59.000Z

75

Membrane Technology Workshop  

Broader source: Energy.gov [DOE]

Presentation by Charles Page (Air Products & Chemicals, Inc.) for the Membrane Technology Workshop held July 24, 2012

76

Technology and Terrorism  

Science Journals Connector (OSTI)

Technology and Terrorism ... The linkage of chemistry and terrorism is an uncomfortable bond for members of the chemical profession. ...

MADELEINE JACOBS

1995-07-24T23:59:59.000Z

77

Subscriber access provided by Nanyang Technological Univ Nano Letters is published by the American Chemical Society. 1155 Sixteenth Street  

E-Print Network [OSTI]

Institute @ NTU (ERI@N), Nanyang Technological University, 50 Nanyang Drive, Singapore 637553 3 Singapore be addressed. Email address: Tzechien@ntu.edu.sg and Qihua@ntu.edu.sg. Page 1 of 21 ACS Paragon Plus to be effectively tackled. Here we demonstrate a new family of planar room-temperature NIR nanolasers based

Xiong, Qihua

78

Subscriber access provided by CARY INST ECOSYSTEM STUDIES Environmental Science & Technology is published by the American Chemical  

E-Print Network [OSTI]

Subscriber access provided by CARY INST ECOSYSTEM STUDIES Environmental Science & Technology density of coal burning power plants (4, 5). Acid precipitation has declined in the northeastern US are controlled by the US Clean Air Act (6-9). A decrease in the amount of precipitation f

Weathers, Kathleen C.

79

A Synergistic Combination of Advanced Separation and Chemical Scale Inhibitor Technologies for Efficient Use of Imparied Water As Cooling Water in Coal-based Power Plants  

SciTech Connect (OSTI)

Nalco Company is partnering with Argonne National Laboratory (ANL) in this project to jointly develop advanced scale control technologies that will provide cost-effective solutions for coal-based power plants to operate recirculating cooling water systems at high cycles using impaired waters. The overall approach is to use combinations of novel membrane separations and scale inhibitor technologies that will work synergistically, with membrane separations reducing the scaling potential of the cooling water and scale inhibitors extending the safe operating range of the cooling water system. The project started on March 31, 2006 and ended in August 30, 2010. The project was a multiyear, multi-phase project with laboratory research and development as well as a small pilot-scale field demonstration. In Phase 1 (Technical Targets and Proof of Concept), the objectives were to establish quantitative technical targets and develop calcite and silica scale inhibitor chemistries for high stress conditions. Additional Phase I work included bench-scale testing to determine the feasibility of two membrane separation technologies (electrodialysis ED and electrode-ionization EDI) for scale minimization. In Phase 2 (Technology Development and Integration), the objectives were to develop additional novel scale inhibitor chemistries, develop selected separation processes, and optimize the integration of the technology components at the laboratory scale. Phase 3 (Technology Validation) validated the integrated system's performance with a pilot-scale demonstration. During Phase 1, Initial evaluations of impaired water characteristics focused on produced waters and reclaimed municipal wastewater effluents. Literature and new data were collected and evaluated. Characteristics of produced waters vary significantly from one site to another, whereas reclaimed municipal wastewater effluents have relatively more uniform characteristics. Assessment to date confirmed that calcite and silica/silicate are two common potential cycle-limiting minerals for using impaired waters. For produced waters, barium sulfate and calcium sulfate are two additional potential cycle-limiting minerals. For reclaimed municipal wastewater effluents, calcium phosphate scaling can be an issue, especially in the co-presence of high silica. Computational assessment, using a vast amount of Nalco's field data from coal fired power plants, showed that the limited use and reuse of impaired waters is due to the formation of deposit caused by the presence of iron, high hardness, high silica and high alkalinity in the water. Appropriate and cost-effective inhibitors were identified and developed - LL99B0 for calcite and gypsum inhibition and TX-15060 for silica inhibition. Nalco's existing dispersants HSP-1 and HSP-2 has excellent efficacy for dispersing Fe and Mn. ED and EDI were bench-scale tested by the CRADA partner Argonne National Laboratory for hardness, alkalinity and silica removal from synthetic make-up water and then cycled cooling water. Both systems showed low power consumption and 98-99% salt removal, however, the EDI system required 25-30% less power for silica removal. For Phase 2, the EDI system's performance was optimized and the length of time between clean-in-place (CIP) increased by varying the wafer composition and membrane configuration. The enhanced EDI system could remove 88% of the hardness and 99% of the alkalinity with a processing flux of 19.2 gal/hr/m{sup 2} and a power consumption of 0.54 kWh/100 gal water. Bench tests to screen alternative silica/silicate scale inhibitor chemistries have begun. The silica/silicate control approaches using chemical inhibitors include inhibition of silicic acid polymerization and dispersion of silica/silicate crystals. Tests were conducted with an initial silica concentration of 290-300 mg/L as SiO{sub 2} at pH 7 and room temperature. A proprietary new chemistry was found to be promising, compared with a current commercial product commonly used for silica/silicate control. Additional pilot cooling tower testing confirmed

Jasbir Gill

2010-08-30T23:59:59.000Z

80

Assessment of the need for dual indoor/outdoor warning systems and enhanced tone alert technologies in the Chemical Stockpile Emergency Preparedness Program  

SciTech Connect (OSTI)

The need for a dual indoor/outdoor warning system as recommended by the program guidance and Alert and Notification (A N) standard for the Chemical Stockpile Emergency Preparedness Program is analyzed in this report. Under the current program standards, the outdoor warning system consists of omnidirectional sirens and the new indoor system would be an enhanced tone alert (TA) radio system. This analysis identifies various tone-alert technologies, distribution options, and alternative siren configurations. It also assesses the costs and benefits of the options and analyzes what appears to best meet program needs. Given the current evidence, it is recommended that a 10-dB siren system and the special or enhanced TA radio be distributed to each residence and special institution in the immediate response zone as preferred the A N standard. This approach minimizes the cost of maintenance and cost of the TA radio system while providing a high degree of reliability for indoor alerting. Furthermore, it reaches the population (residential and institutional) in the greatest need of indoor alerting.

Sorensen, J.H.

1992-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "inventure chemical technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Assessment of the need for dual indoor/outdoor warning systems and enhanced tone alert technologies in the Chemical Stockpile Emergency Preparedness Program  

SciTech Connect (OSTI)

The need for a dual indoor/outdoor warning system as recommended by the program guidance and Alert and Notification (A&N) standard for the Chemical Stockpile Emergency Preparedness Program is analyzed in this report. Under the current program standards, the outdoor warning system consists of omnidirectional sirens and the new indoor system would be an enhanced tone alert (TA) radio system. This analysis identifies various tone-alert technologies, distribution options, and alternative siren configurations. It also assesses the costs and benefits of the options and analyzes what appears to best meet program needs. Given the current evidence, it is recommended that a 10-dB siren system and the special or enhanced TA radio be distributed to each residence and special institution in the immediate response zone as preferred the A&N standard. This approach minimizes the cost of maintenance and cost of the TA radio system while providing a high degree of reliability for indoor alerting. Furthermore, it reaches the population (residential and institutional) in the greatest need of indoor alerting.

Sorensen, J.H.

1992-05-01T23:59:59.000Z

82

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Appendix 2: ITP Emerging Technologies  

Broader source: Energy.gov (indexed) [DOE]

127 DOE Industrial Technologies Program 127 DOE Industrial Technologies Program Appendix 2: ITP Emerging Technologies Aluminum ............................................................................................................................................................................ 130 u Direct Chill Casting Model ................................................................................................................................................................130 Chemicals............................................................................................................................................................................ 130

83

Experimental characterization and chemical kinetics study of chemical looping combustion .  

E-Print Network [OSTI]

??Chemical looping combustion (CLC) is one of the most promising technologies to achieve carbon capture in fossil fuel power generation plants. A novel rotary-bed reactor (more)

Chen, Tianjiao, S.M. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

84

Chemical Looping Combustion  

Science Journals Connector (OSTI)

Chemical looping combustion (CLC) and looping cycles in general represent an important new ... technologies, which can be deployed for direct combustion as well as be used in gasification...2...stream suitable fo...

Edward John (Ben) Anthony

2012-01-01T23:59:59.000Z

85

Chemicals from coal  

SciTech Connect (OSTI)

This chapter contains sections titled: Chemicals from Coke Oven Distillate; The Fischer-Tropsch Reaction; Coal Hydrogenation; Substitute Natural Gas (SNG); Synthesis Gas Technology; Calcium Carbide; Coal and the Environment; and Notes and References

Harold A. Wittcoff; Bryan G. Reuben; Jeffrey S. Plotkin

2004-12-01T23:59:59.000Z

86

Helmerich Advanced Technology Research Center  

E-Print Network [OSTI]

Helmerich Advanced Technology Research Center Chemical Hygiene Plan January 2010 #12;Table Sheets 12 7.7 Procurement of Chemicals 13 7.8 Spill Prevention 13 7.9 Handling and Transportation of Chemicals 14 7.10 Chemical Storage 14 7.11 Prior Approval 16 8. Chemical Waste 16 8.1 Basic Procedures 17 8

Veiga, Pedro Manuel Barbosa

87

Revolution in Microbial Contamination Control ReliOxTM Corporation has licensed a patented chemical production technology from the University of  

E-Print Network [OSTI]

Revolution in Microbial Contamination Control ReliOxTM Corporation has licensed a patented chemical-fashioned way requires many hazardous chemicals such as concentrated acids and volatile, dangerous gases for generating Chlorine Dioxide with an innovative, compact, and simple- to-operate process platform. Reli

Jawitz, James W.

88

Science and Technology of Future Light Sources  

E-Print Network [OSTI]

and Technology of Future Light Sources Far from Equilibrium Chemical Processes in a Functional Solar Cellsolar cell (DSSC). [Source: Michael Graetzel, Swiss Federal Institute of Technology,

Bergmann, Uwe

2009-01-01T23:59:59.000Z

89

Chemical profiles of switchgrass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

profiles profiles of switchgrass Zhoujian Hu a,b , Robert Sykes a,c , Mark F. Davis a,c , E. Charles Brummer a,d , Arthur J. Ragauskas a,b,e, * a BioEnergy Science Center, USA b School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, Atlanta, GA 30332, USA c National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401, USA d Institute for Plant Breeding, Genetics, and Genomics, Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602, USA e Forest Products and Chemical Engineering Department, Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden a r t i c l e i n f o Article history: Received 15 April 2009 Received in revised form 10 December 2009 Accepted 10 December 2009 Available online 13 January 2010 Keywords: Switchgrass Morphological components Chemical

90

Final Report - Development of New Pressure Swing Adsorption (PSA) Technology to Recover High Valued Products from Chemical Plant and Refinery Waste Systems  

SciTech Connect (OSTI)

Project Objective was to extend pressure swing adsorption (PSA) technology into previously under-exploited applications such as polyolefin production vent gas recovery and H2 recovery from refinery waste gases containing significant amounts of heavy hydrocarbons, aromatics, or H2S.

Keith Ludwig

2004-06-14T23:59:59.000Z

91

Development of FRET-based Technologies for Dynamic and Quantitative Measurement of Protein-protein Interactions and High-throughput Screening of Small Chemical Inhibitors of the SUMO Pathway  

E-Print Network [OSTI]

throughput platform to screen small chemical compounds thatscreening platforms to look for small chemical inhibitorsplatform provides a new strategy to identify small chemical

Song, Yang

2011-01-01T23:59:59.000Z

92

Miniature Chemical Sensor  

SciTech Connect (OSTI)

A new chemical detection technology has been realized that addresses DOE environmental management needs. The new technology is based on a variant of the sensitive optical absorption technique, cavity ring-down spectroscopy (CRDS). Termed evanescent-wave cavity ring-down spectroscopy (EW-CRDS), the technology employs a miniature solid-state optical resonator having an extremely high Q-factor as the sensing element, where the high-Q is achieved by using ultra-low-attenuation optical materials, ultra-smooth surfaces, and ultra-high reflectivity coatings, as well as low-diffraction-loss designs. At least one total-internal reflection (TIR) mirror is integral to the resonator permitting the concomitant evanescent wave to probe the ambient environment. Several prototypes have been designed, fabricated, characterized, and applied to chemical detection. Moreover, extensions of the sensing concept have been explored to enhance selectivity, sensitivity, and range of application. Operating primarily in the visible and near IR regions, the technology inherently enables remote detection by optical fiber. Producing 11 archival publications, 5 patents, 19 invited talks, 4 conference proceedings, a CRADA, and a patent-license agreement, the project has realized a new chemical detection technology providing >100 times more sensitivity than comparable technologies, while also providing practical advantages.

Andrew C. R. Pipino

2004-12-13T23:59:59.000Z

93

Overseas investment key to chemical trade surplus  

Science Journals Connector (OSTI)

Paradoxically, investing in new plants overseas can go a long way toward maintaining the U.S. chemical trade surplus, according to a report written by the Commerce Department's Office of Technology Policy and the Chemical Manufacturers Association (CMA)."...

1995-12-18T23:59:59.000Z

94

Gaseous, Chemical, and Other Contaminant Descriptions  

Science Journals Connector (OSTI)

Most contamination control technology considers generalized and often unidentified particulate material as the major contaminant, but there are many situations in which gases, chemical films, microbiological m...

Alvin Lieberman

1992-01-01T23:59:59.000Z

95

Gasification: A Cornerstone Technology  

ScienceCinema (OSTI)

NETL is a leader in the science and technology of gasification - a process for the conversion of carbon-based materials such as coal into synthesis gas (syngas) that can be used to produce clean electrical energy, transportation fuels, and chemicals efficiently and cost-effectively using domestic fuel resources. Gasification is a cornerstone technology of 21st century zero emissions powerplants

Gary Stiegel

2010-01-08T23:59:59.000Z

96

Gasification: A Cornerstone Technology  

SciTech Connect (OSTI)

NETL is a leader in the science and technology of gasification - a process for the conversion of carbon-based materials such as coal into synthesis gas (syngas) that can be used to produce clean electrical energy, transportation fuels, and chemicals efficiently and cost-effectively using domestic fuel resources. Gasification is a cornerstone technology of 21st century zero emissions powerplants

Gary Stiegel

2008-03-26T23:59:59.000Z

97

Chemical decontamination specification preparation  

SciTech Connect (OSTI)

Since the first low-concentration chemical decontamination in the United States at Vermont Yankee in 1979, > 75 decontamination applications have been made at > 20 nuclear electrical generating stations. Chemical decontamination has become a common technique for reducing person-rem exposures. Two vendors are currently offering low-concentration chemical decontamination reagents for application in boiling water reactor and pressurized water reactor systems. All technical aspects associated with the chemical decontamination technology have been commercially tested and are well advanced beyond the research and development stage. Extensive corrosion and material compatibility testing has been performed on the major solvent systems with satisfactory results. The material compatibility testing for the three main solvent systems, CANDECON, CITROX, and LOMI, has been documented in numerous Electric Power Research Institute reports.

Miller, M.A.; Remark, J.F.; Vandergriff, D.M.

1988-01-01T23:59:59.000Z

98

Technologies Available for Licensing | Partnerships | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Licensing Technology Licensing How To License ORNL Technologies Licensing Guidelines NDA(s) and MTA(s) Sample Licensing Agreement Technology Innovation Program Technology Assistance Program Licensing Staff Search For Technologies Available Technologies Analytical Instrumentation Chemicals Detectors and Sensors Energy and Utilities Healthcare and Biology Information Technology and Communications Manufacturing Materials Security and Defense Transportation Licensing Opportunity Announcements Partnerships Home | Connect with ORNL | For Industry | Partnerships | Technology Licensing | Available Technologies SHARE Available Technologies One of the primary missions of the Technology Transfer Division is to move our intellectual property from the research facility to the commercial

99

Manufacturing Science and Technology: Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thin Films Thin Films PDF format (189 kb) Multi Layer Thin Films Multi Layer Thin Films Planetary Sputtering SystemsPlanetary Sputtering Systems Planetary Sputtering Systems The Thin Film laboratory within Manufacturing Science & Technology provides a variety of vapor deposition processes and facilities for cooperative research and development. Available capabilities include electron beam evaporation, sputter deposition, reactive deposition processes, atomic layer deposition (ALD) and specialized techniques such as focused ion beam induced chemical vapor deposition. Equipment can be reconfigured for prototyping or it can be dedicated to long-term research, development and manufacturing. Most sputter and evaporative deposition systems are capable of depositing multiple materials.

100

Nanostructured Oxygen Carriers for Chemical Looping Combustion and Chemical Looping Hydrogen Production.  

E-Print Network [OSTI]

??Chemical looping combustion (CLC) is an emerging technology for clean energy-production. In CLC, an oxygen carrier is periodically oxidized with air and then reduced in (more)

Solunke, Rahul Dushyantrao

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "inventure chemical technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

ENGINEERING TECHNOLOGY Engineering Technology  

E-Print Network [OSTI]

, Mechatronics Technology, and Renewable Energy Technology. Career Opportunities Graduates of four: business administration, wind farm management, aircraft maintenance, tooling production, quality and safety or selected program track focus. Transfer students must talk to their advisor about transferring their courses

102

ENGINEERING TECHNOLOGY Engineering Technology  

E-Print Network [OSTI]

: business administration, energy management, wind farm management, automation and controls, aircraft, Mechatronics Technology, and Renewable Energy Technology. Career Opportunities Graduates of four students must talk to their advisor about transferring their courses over for WSU credit. Laboratory

103

Building Technologies Office: Emerging Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Emerging Technologies Emerging Technologies Printable Version Share this resource Send a link to Building Technologies Office: Emerging Technologies to someone by E-mail Share Building Technologies Office: Emerging Technologies on Facebook Tweet about Building Technologies Office: Emerging Technologies on Twitter Bookmark Building Technologies Office: Emerging Technologies on Google Bookmark Building Technologies Office: Emerging Technologies on Delicious Rank Building Technologies Office: Emerging Technologies on Digg Find More places to share Building Technologies Office: Emerging Technologies on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Technology Research, Standards, & Codes Popular Links Success Stories Previous Next Lighten Energy Loads with System Design.

104

Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry  

E-Print Network [OSTI]

Biomass Gasification Technologies for Fuels, Chemicals andEnergy, National Energy Technology Laboratory. CO ? Solution01GO10621. Industrial Technologies Progarm (ITP). 2006e.

Kong, Lingbo

2014-01-01T23:59:59.000Z

105

Advanced Technologies for Monitoring CO2 Saturation and Pore Pressure in Geologic Formations: Linking the Chemical and Physical Effects to Elastic and Transport Properties  

SciTech Connect (OSTI)

Ultrasonic P- and S-wave velocities were measured over a range of confining pressures while injecting CO2 and brine into the samples. Pore fluid pressure was also varied and monitored together with porosity during injection. Effective medium models were developed to understand the mechanisms and impact of observed changes and to provide the means for implementation of the interpretation methodologies in the field. Ultrasonic P- and S-wave velocities in carbonate rocks show as much as 20-50% decrease after injection of the reactive CO2-brine mixture; the changes were caused by permanent changes to the rock elastic frame associated with dissolution of mineral. Velocity decreases were observed under both dry and fluid-saturated conditions, and the amount of change was correlated with the initial pore fabrics. Scanning Electron Microscope images of carbonate rock microstructures were taken before and after injection of CO2-rich water. The images reveal enlargement of the pores, dissolution of micrite (micron-scale calcite crystals), and pitting of grain surfaces caused by the fluid- solid chemical reactivity. The magnitude of the changes correlates with the rock microtexture tight, high surface area samples showed the largest changes in permeability and smallest changes in porosity and elastic stiffness compared to those in rocks with looser texture and larger intergranular pore space. Changes to the pore space also occurred from flow of fine particles with the injected fluid. Carbonates with grain-coating materials, such as residual oil, experienced very little permanent change during injection. In the tight micrite/spar cement component, dissolution is controlled by diffusion: the mass transfer of products and reactants is thus slow and the fluid is expected to be close to thermodynamical equilibrium with the calcite, leading to very little dissolution, or even precipitation. In the microporous rounded micrite and macropores, dissolution is controlled by advection: because of an efficient mass transfer of reactants and products, the fluid remains acidic, far from thermodynamical equilibrium and the dissolution of calcite is important. These conclusions are consistent with the lab observations. Sandstones from the Tuscaloosa formation in Mississippi were also subjected to injection under representative in situ stress and pore pressure conditions. Again, both P- and S-wave velocities decreased with injection. Time-lapse SEM images indicated permanent changes induced in the sandstone microstructure by chamosite dissolution upon injection of CO2-rich brine. After injection, the sandstone showed an overall cleaner microstructure. Two main changes are involved: (a) clay dissolution between grains and at the grain contact and (b) rearrangement of grains due to compaction under pressure Theoretical and empirical models were developed to quantify the elastic changes associated with injection. Permanent changes to the rock frame resulted in seismic velocity-porosity trends that mimic natural diagenetic changes. Hence, when laboratory measurments are not available for a candidate site, these trends can be estimated from depth trends in well logs. New theoretical equations were developed to predict the changes in elastic moduli upon substitution of pore-filling material. These equations reduce to Gassmanns equations for the case of constant frame properties, low seismic frequencies, and fluid changes in the pore space. The new models also predict the change dissolution or precipitation of mineral, which cannot be described with the conventional Gassmann theory.

Mavko, G.; Vanorio, T.; Vialle, S.; Saxena, N.

2014-03-31T23:59:59.000Z

106

Bioconversion Science & Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BSD BSD EESD ORNL Bioconversion Science and Technology BioSciences Division Home Resources Publications People BST Students Former Members Links Contact Us Research Areas Production of Fuels and Chemicals Genomes to Life Biofuel Cells Bioprocessing of Fossil Fuels Biotreatment and Bioremediation Jonathan Mielenz, leader of the Bioconversion Science and Technology Group in ORNL's Biosciences Division, is studying a microbe that could prove more cost effective than current methods in transforming cellulose from sources such as switchgrass and poplar trees into ethanol. Bioconversion Science & Technology The Bioconversion Science and Technology group performs multidisciplinary R&D for the Department of Energy's (DOE) relevant applications of bioprocessing, especially with biomass. Bioprocessing combines the

107

CHEMICAL MARKETING  

Science Journals Connector (OSTI)

CHEMICAL MARKETING ... The reason, I believe, is that the chemical industry has been blind (until very recently) to the need for paying attention to marketing. ... Its marketing needs are now like those of a matureno longer a growingindustry. ...

1960-12-19T23:59:59.000Z

108

Micromachined chemical jet dispenser  

DOE Patents [OSTI]

A dispenser for chemical fluid samples that need to be precisely ejected in size, location, and time. The dispenser is a micro-electro-mechanical systems (MEMS) device fabricated in a bonded silicon wafer and a substrate, such as glass or silicon, using integrated circuit-like fabrication technology which is amenable to mass production. The dispensing is actuated by ultrasonic transducers that efficiently produce a pressure wave in capillaries that contain the chemicals. The 10-200 .mu.m diameter capillaries can be arranged to focus in one spot or may be arranged in a larger dense linear array (.about.200 capillaries). The dispenser is analogous to some ink jet print heads for computer printers but the fluid is not heated, thus not damaging certain samples. Major applications are in biological sample handling and in analytical chemical procedures such as environmental sample analysis, medical lab analysis, or molecular biology chemistry experiments.

Swierkowski, Steve P. (Livermore, CA)

1999-03-02T23:59:59.000Z

109

Explore Bioenergy Technology Careers | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Bioenergy Technology Careers Bioenergy Technology Careers Explore Bioenergy Technology Careers About Bioenergy Technologies Office Energy from abundant, renewable, domestic biomass can reduce U.S. dependence on oil, lower impacts on climate, and stimulate jobs and economic growth. Photo of a woman tending to plants in a lab. What jobs are available? Feedstocks Farmers Seasonal workers Tree farm workers Mechanical engineers Harvesting equipment mechanics Equipment production workers Chemical engineers Chemical application specialists Chemical production workers Biochemists Aquaculture technicians Agricultural engineers Genetic engineers and scientists Storage facility operators Conversion Microbiologists Clean room technicians Industrial engineers Chemical & mechanical engineers Plant operators

110

Fuel Cell Technologies Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

States Energy Advisory Board (STEAB) States Energy Advisory Board (STEAB) Washington, DC Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 3/14/2012 2 | Fuel Cell Technologies Program Source: US DOE 3/19/2013 eere.energy.gov * Introduction - Technology and Market Overview * DOE Program Overview - Mission & Structure - R&D Progress - Demonstration & Deployments * State Activities - Examples of potential opportunities Outline 3 | Fuel Cell Technologies Program Source: US DOE 3/19/2013 eere.energy.gov Fuel cells - convert chemical energy directly into electrical energy, bypassing inefficiencies associated with thermal energy conversion. Available energy is equal to the Gibbs free energy. Combustion Engines - convert chemical energy into thermal energy and

111

Platts 2nd Annual Renewable Chemicals Conference  

Gasoline and Diesel Fuel Update (EIA)

Sugars, Renewable Chemicals & Fuels Sugars, Renewable Chemicals & Fuels US EIA AEO 2013 Biofuels Worshop Washington, DC March 2013 1 * PROMOTUM is a management consulting firm focused on the chemicals, fuels and materials industries. We help clients analyze markets and technology, develop strategy, and conduct business development. 2 1. Comparison of the first wave of Biotechnology with today's wave of Industrial Biotechnology 2. Where are we status of: C-Sugars, Renewable Chemicals & Advanced Biofuels 3. Derivates as chemical building blocks - butanol an example 3 Sugar, Fuel & Chemical Agenda - Where are we? 4 Aggregate Biotechnology Industry Performance - The First 30 Years 5 "There is little doubt that, since the invention of genetic

112

Chemical and Materials Sciences Building | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Materials Advanced Materials Research Areas Research Highlights Facilities and Capabilities Science to Energy Solutions News & Awards Events and Conferences Supporting Organizations Advanced Materials Home | Science & Discovery | Advanced Materials | Facilities and Capabilities SHARE Chemical and Materials Sciences Building Chemical and Materials Sciences Building, 411 ORNL's Chemical and Materials Sciences Building provides modern laboratory and office space for researchers studying and developing materials and chemical processes for energy-related technologies. The Chemical and Materials Sciences Building is a 160,000 square foot facility that provides modern laboratory and office space for ORNL researchers who are studying and developing materials and chemical

113

Chemical tracking at the Rocky Flats Plant  

SciTech Connect (OSTI)

EG&G Rocky Flats, Inc., has developed a chemical tracking system to support compliance with the Emergency Planning and community Right-to-Know Act (EPCRA) at the Rocky Flats Plant. This system, referred to as the EPCRA Chemical Control system (ECCS), uses bar code technology to uniquely identify and track the receipt, distribution, and use of chemicals. Chemical inventories are conducted using hand-held electronic scanners to update a site wide chemical database on a VAX 6000 computer. Information from the ECCS supports preparation of the EPCRA Tier II and Form R reports on chemical storage and use.

Costain, D.B.

1994-04-01T23:59:59.000Z

114

ITP Chemicals: Technology Roadmap for Computational Chemistry  

Broader source: Energy.gov (indexed) [DOE]

software, coupled with user-friendly graphical user interfaces, access to high performance computing is becoming available to a much broader community of users. In the longer...

115

ITP Chemicals: Technology Roadmap for Computational Chemistry  

Broader source: Energy.gov [DOE]

Computational chemistry can assist in the design and optimization of new and existing processes and products. It can be used to reduce the costs of development, improve energy efficiency and environmental performance...

116

Chemical Looping Air Separation Unit and Methods of Use  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Looping Air Separation Unit and Methods of Use Looping Air Separation Unit and Methods of Use Contact NETL Technology Transfer Group techtransfer@netl.doe.gov October 2012 Opportunity Research is currently active on the patent-pending technology "Chemical Looping Air Separation Unit and Methods of Use" that combines the best attributes of chemical looping and oxy-fuel combustion technologies. Following patent approval, the technology will be available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory. Significance * Combines chemical looping and oxy-fuel technologies * Separates oxygen from air at high efficiencies * Removes CO

117

Advanced Mechanical Heat Pump Technologies for Industrial Applications  

E-Print Network [OSTI]

, advanced chemical and mechanical heat pump technologies are being developed for industrial application. Determining which technologies are appropriate for particular industrial applications and then developing those technologies is a stepped process which...

Mills, J. I.; Chappell, R. N.

118

Technology Transfer: Available Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

test test Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you're interested in, please contact us at TTD@lbl.gov. Energy ENERGY EFFICIENT TECHNOLOGIES Aerosol Sealing Aerosol Remote Sealing System Clog-free Atomizing and Spray Drying Nozzle Air-stable Nanomaterials for Efficient OLEDs Solvent Processed Nanotube Composites OLEDS with Air-stable Structured Electrodes APIs for Online Energy Saving Tools: Home Energy Saver and EnergyIQ Carbon Dioxide Capture at a Reduced Cost Dynamic Solar Glare Blocking System Electrochromic Device Controlled by Sunlight Electrochromic Windows with Multiple-Cavity Optical Bandpass Filter Electrochromic Window Technology Portfolio Universal Electrochromic Smart Window Coating

119

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Appendix 1: ITP-Sponsored Technologies Commercially Available  

Broader source: Energy.gov (indexed) [DOE]

15 DOE Industrial Technologies Program 15 DOE Industrial Technologies Program Appendix 1: ITP-Sponsored Technologies Commercially Available Aluminum ........................................................................................................................................... 19 u Aluminum Reclaimer for Foundry Applications .................................................................................................................................. 20 u Isothermal Melting................................................................................................................................................................................ 21 Chemicals........................................................................................................................................... 23

120

Natural Ores as Oxygen Carriers in Chemical Looping Combustion  

Science Journals Connector (OSTI)

Natural Ores as Oxygen Carriers in Chemical Looping Combustion ... Chemical looping combustion (CLC) is a combustion technology that utilizes oxygen from oxygen carriers (OC), such as metal oxides, instead of air to combust fuels. ...

Hanjing Tian; Ranjani Siriwardane; Thomas Simonyi; James Poston

2013-01-02T23:59:59.000Z

Note: This page contains sample records for the topic "inventure chemical technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Low Temperature Waste Energy Recovery at Chemical Plants and Refineries  

E-Print Network [OSTI]

Technologies to economically recover low-temperature waste energy in chemical plants and refineries are the holy grail of industrial energy efficiency. Low temperature waste energy streams were defined by the Texas Industries of the Future Chemical...

Ferland, K.; papar, R.; Quinn, J.; Kumar, S.

2013-01-01T23:59:59.000Z

122

Technology Transfer: Available Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Please refer to the list of technologies below for licensing and research Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you're interested in, please contact us at TTD@lbl.gov. Biotechnology and Medicine DIAGNOSTICS AND THERAPEUTICS CANCER CANCER PROGNOSTICS 14-3-3 Sigma as a Biomarker of Basal Breast Cancer ANXA9: A Therapeutic Target and Predictive Marker for Early Detection of Aggressive Breast Cancer Biomarkers for Predicting Breast Cancer Patient Response to PARP Inhibitors Breast Cancer Recurrence Risk Analysis Using Selected Gene Expression Comprehensive Prognostic Markers and Therapeutic Targets for Drug-Resistant Breast Cancers Diagnostic Test to Personalize Therapy Using Platinum-based Anticancer Drugs Early Detection of Metastatic Cancer Progenitor Cells

123

Oxygen Carriers for Solid Fuel Chemical Looping Combustion Process...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxygen Carriers for Solid Fuel Chemical Looping Combustion Process Regenerable Mixed Copper-Iron-Inert Support Oxygen Carriers National Energy Technology Laboratory Contact NETL...

124

Chemical Looping Combustion Cold Flow Model commissioning and performance evaluation.  

E-Print Network [OSTI]

?? SINTEF and NTNU are planning to build a 150 kWth Chemical Looping Combustion (CLC) reactor system. This is new technology and the CLC reactor (more)

Tjstheim, Sindre

2010-01-01T23:59:59.000Z

125

Chemical Occurrences  

Broader source: Energy.gov [DOE]

Classification of Chemical Occurrence Reports into the following four classes: Occurrences characterized by serious energy release, injury or exposure requiring medical treatment, or severe environmental damage, Occurrences characterized by minor injury or exposure, or reportable environmental release, Occurrences that were near misses including notable safety violations and Minor occurrences.

126

Technology Transfer: Available Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Software and Information Technologies Software and Information Technologies Algorithm for Correcting Detector Nonlinearites Chatelet: More Accurate Modeling for Oil, Gas or Geothermal Well Production Collective Memory Transfers for Multi-Core Processors Energy Efficiency Software EnergyPlus:Energy Simulation Software for Buildings Tools, Guides and Software to Support the Design and Operation of Energy Efficient Buildings Flexible Bandwidth Reservations for Data Transfer Genomic and Proteomic Software LABELIT - Software for Macromolecular Diffraction Data Processing PHENIX - Software for Computational Crystallography Vista/AVID: Visualization and Allignment Software for Comparative Genomics Geophysical Software Accurate Identification, Imaging, and Monitoring of Fluid Saturated Underground Reservoirs

127

Climate VISION: Private Sector Initiatives: Chemical Manufacturing:  

Office of Scientific and Technical Information (OSTI)

Resources & Links Resources & Links Technical Information Publications Case Studies CD-ROMs Publications The following publications are available for download as Adobe PDF documents. Download Acrobat Reader. Chemicals Annual Report (PDF 509 KB) This report provides a summary of activities and R&D projects in fiscal year 2004. Order the Annual Report from the ITP Clearinghouse at 1-800-862-2086. Chemical Industry of the Future Tools & Publications The Industrial Technologies Program offers a wide array of publications, videos, software, and other information products for improving energy efficiency in the chemical industry. Chemical Bandwidth Study Analyzes Energy Savings Opportunities ITP's Chemicals portfolio works with the chemical industry to develop energy-efficient technologies. Read this report (PDF 1.16 MB)

128

Olefin recovery via chemical absorption  

SciTech Connect (OSTI)

The recovery of fight olefins in petrochemical plants has generally been accomplished through cryogenic distillation, a process which is very capital and energy intensive. In an effort to simplify the recovery process and reduce its cost, BP Chemicals has developed a chemical absorption technology based on an aqueous silver nitrate solution. Stone & Webster is now marketing, licensing, and engineering the technology. The process is commercially ready for recovering olefins from olefin derivative plant vent gases, such as vents from polyethylene, polypropylene, ethylene oxide, and synthetic ethanol units. The process can also be used to debottleneck C{sub 2} or C{sub 3} splinters, or to improve olefin product purity. This paper presents the olefin recovery imp technology, discusses its applications, and presents economics for the recovery of ethylene and propylene.

Barchas, R. [Stone & Webster Engineering Corporation, Houston, TX (United States)

1998-06-01T23:59:59.000Z

129

Emerging Technologies  

Broader source: Energy.gov [DOE]

The Emerging Technologies (ET) Program of the Building Technologies Office (BTO) supports applied research and development (R&D) for technologies, systems, and models that contribute to building energy consumption.

130

Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Transfer Since 1974, the Federal Laboratory Consortium (FLC) Award for Excellence in Technology Transfer has recognized scientists and engineers at federal government...

131

Tools & Technologies  

Broader source: Energy.gov [DOE]

Weprovide leadership for transforming workforce development through the power of technology. It develops corporate educational technology policy and enables the use of learning tools and...

132

Chemical Accelerators The phrase "chemical accelerators"  

E-Print Network [OSTI]

Meetings Chemical Accelerators The phrase "chemical accelerators" is scarcely older than for one or two dozen people grew to include nearly a hundred. Chemical accelerators is a name sug- gested-volt region. Thus chemical accelerators can provide the same type of information for elemen- tary chemical

Zare, Richard N.

133

Technology Transfer: Available Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ion Sources and Beam Technologies Ion Sources and Beam Technologies GENERATORS AND DETECTORS Compact, Safe and Energy Efficient Neutron Generator Fast Pulsed Neutron Generator High Energy Gamma Generator Lithium-Drifted Silicon Detector with Segmented Contacts Low Power, High Energy Gamma Ray Detector Calibration Device Nested Type Coaxial Neutron Generator Neutron and Proton Generators: Cylindrical Neutron Generator with Nested Option, IB-1764 Neutron-based System for Nondestructive Imaging, IB-1794 Mini Neutron Tube, IB-1793a Ultra-short Ion and Neutron Pulse Production, IB-1707 Mini Neutron Generator, IB-1793b Compact Spherical Neutron Generator, IB-1675 Plasma-Driven Neutron/Gamma Generators Portable, Low-cost Gamma Source for Active Interrogation ION SOURCES WITH ANTENNAS External Antenna for Ion Sources

134

Benchmarking Biomass Gasification Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Gasification Technologies for Biomass Gasification Technologies for Fuels, Chemicals and Hydrogen Production Prepared for U.S. Department of Energy National Energy Technology Laboratory Prepared by Jared P. Ciferno John J. Marano June 2002 i ACKNOWLEDGEMENTS The authors would like to express their appreciation to all individuals who contributed to the successful completion of this project and the preparation of this report. This includes Dr. Phillip Goldberg of the U.S. DOE, Dr. Howard McIlvried of SAIC, and Ms. Pamela Spath of NREL who provided data used in the analysis and peer review. Financial support for this project was cost shared between the Gasification Program at the National Energy Technology Laboratory and the Biomass Power Program within the DOE's Office of Energy Efficiency and Renewable Energy.

135

Energy and technology review  

SciTech Connect (OSTI)

Three review articles are presented. The first describes the Lawrence Livermore Laboratory role in the research and development of oil-shale retorting technology through its studies of the relevant chemical and physical processes, mathematical models, and new retorting concepts. Second is a discussion of investigation of properties of dense molecular fluids at high pressures and temperatures to improve understanding of high-explosive behavior, giant-planet structure, and hydrodynamic shock interactions. Third, by totally computerizing the triple-quadrupole mass spectrometer system, the laboratory has produced a general-purpose instrument of unrivaled speed, selectivity, and adaptability for the analysis and identification of trace organic constituents in complex chemical mixtures. (GHT)

Not Available

1983-10-01T23:59:59.000Z

136

Exploration Technologies Technology Needs Assessment  

Broader source: Energy.gov [DOE]

The Exploration Technologies Needs Assessment is a critical component of ongoing technology roadmapping efforts, and will be used to guide the program's research and development.

137

Energy Technologies  

Broader source: Energy.gov [DOE]

Best practices, project resources, and other tools on energy efficiency and renewable energy technologies.

138

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Containing the Effects of Containing the Effects of Chemical and Biological Agents in Buildings Lawrence Berkeley National Laboratory Air Quality Advanced Technologies Building Technologies Energy Analysis Indoor Environment Vol. 3 No. 3 News 1 Containing the Effects of Chemical and Biological Agents in Buildings 3 Laser Ultrasonic Sensor Streamlines Papermaking Process 5 Building a Smarter Light: The IBECS Network/Ballast Interface 6 IPMVP-from a DOE-Funded Iniative to a Not-for-Profit Organization 8 Skylight Well Reduces Solar Heat Gain 9 Research Highlights The mission of the Environmental Energy Technologies Division is to perform research and development leading to better energy technologies and the reduction of adverse energy- related environmental impacts. Environmental Energy Technologies Division

139

Biogenesis (trade name) soil washing technology: Innovative technology evaluation report  

SciTech Connect (OSTI)

Soil washing technologies are designed to transfer contaminants from soil to a liquid phase. The BioGenesis Soil Washing Technology uses soil washing with a proprietary surfactant solution to transfer organic contaminants from soils to wastewater. The BioGenesis soil washing process was evaluated under the SITE program at a refinery where soils were contaminated with crude oil. Results of chemical analyses show that levels of total recoverable petroleum hydrocarbons (TRPH), an indicator of degraded crude oil, decreased by 65 to 73 percent in washed soils. The TRPH in residual soils were allowed to biodegrade for an additional 120 days. Results indicate that soil washing and biodegradation removed 85 to 88 percent of TRPH in treated soils. The Innovative Technology Evaluation Report provides information on the technology applicability, economic analysis, technology limitations, a technology description, process residuals, site requirements, latest performance data, the technology status, vendors claims, and the source of further information.

Bannerjee, P.

1993-09-02T23:59:59.000Z

140

Chemical Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemical Science Chemical Science Compton double ionization of helium in the region of the cross-section maximum B. Krässig, R.W. Dunford, D.S. Gemmell, S. Hasegawa, E.P. Kanter, H. Schmidt-Böcking, W. Schmitt, S.H. Southworth, Th. Weber, and L. Young Crystal structure analysis of microporous Na16Nb12.8Ti3.2O44.8(OH)3.2l8H2O and Na/Nb/Zr/O/H2O phases A. Tripathi, J. Parise, M. Nyman, T.M. Nenoff, and W. Harrison Double K-photoionization of heavy atoms R.W. Dunford, D.S. Gemmell, E.P. Kanter, B. Krässig, and S.H. Southworth Forward-backward asymmetries of atomic photoelectrons S.H. Southworth, B. Krässig, E.P. Kanter, J.C. Bilheux, R.W. Dunford, D.S. Gemmell, S. Hasegawa, and L. Young In situreduction of various iron oxides to form high-surface-area Fe-metal catalysts as studied by high-resolution powder diffraction

Note: This page contains sample records for the topic "inventure chemical technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Alternative Fuels and Chemicals From Synthesis Gas  

SciTech Connect (OSTI)

The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

none

1998-07-01T23:59:59.000Z

142

Alternative fuels and chemicals from synthesis gas  

SciTech Connect (OSTI)

The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

Unknown

1998-08-01T23:59:59.000Z

143

ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS  

SciTech Connect (OSTI)

The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

Unknown

1999-01-01T23:59:59.000Z

144

ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS  

SciTech Connect (OSTI)

The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

Unknown

1998-01-01T23:59:59.000Z

145

ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS  

SciTech Connect (OSTI)

The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

Unknown

2000-10-01T23:59:59.000Z

146

Chemical Looping for Combustion and Hydrogen Production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ChemiCal looping for Combustion and ChemiCal looping for Combustion and hydrogen produCtion Objective The objective of this project is to determine the benefits of chemical looping technology used with coal to reduce CO 2 emissions. Background Chemical looping is a new method to convert coal or gasified coal to energy. In chemical looping, there is no direct contact between air and fuel. The chemical looping process utilizes oxygen from metal oxide oxygen carrier for fuel combustion, or for making hydrogen by "reducing" water. In combustion applications, the products of chemical looping are CO 2 and H 2 O. Thus, once the steam is condensed, a relatively pure stream of CO 2 is produced ready for sequestration. The production of a sequestration ready CO 2 stream does not require any additional separation units

147

Chemical vapor deposition sciences  

SciTech Connect (OSTI)

Chemical vapor deposition (CVD) is a widely used method for depositing thin films of a variety of materials. Applications of CVD range from the fabrication of microelectronic devices to the deposition of protective coatings. New CVD processes are increasingly complex, with stringent requirements that make it more difficult to commercialize them in a timely fashion. However, a clear understanding of the fundamental science underlying a CVD process, as expressed through computer models, can substantially shorten the time required for reactor and process development. Research scientists at Sandia use a wide range of experimental and theoretical techniques for investigating the science of CVD. Experimental tools include optical probes for gas-phase and surface processes, a range of surface analytic techniques, molecular beam methods for gas/surface kinetics, flow visualization techniques and state-of-the-art crystal growth reactors. The theoretical strategy uses a structured approach to describe the coupled gas-phase and gas-surface chemistry, fluid dynamics, heat and mass transfer of a CVD process. The software used to describe chemical reaction mechanisms is easily adapted to codes that model a variety of reactor geometries. Carefully chosen experiments provide critical information on the chemical species, gas temperatures and flows that are necessary for model development and validation. This brochure provides basic information on Sandia`s capabilities in the physical and chemical sciences of CVD and related materials processing technologies. It contains a brief description of the major scientific and technical capabilities of the CVD staff and facilities, and a brief discussion of the approach that the staff uses to advance the scientific understanding of CVD processes.

NONE

1992-12-31T23:59:59.000Z

148

Climate VISION: Private Sector Initiatives: Chemical Manufacturing:  

Office of Scientific and Technical Information (OSTI)

Technology Pathways Technology Pathways U.S. chemical producers recognize that energy efficiency offers a competitive edge in world markets. In 1996 the U.S. industry entered into partnership with ITP to work toward shared goals. Since then, the Chemical Industry of the Future partnership has been feeding the technology pipeline so that U.S. chemical producers will have the technologies they need to achieve their long-term economic, energy, and environmental goals. The DOE's Industries of the Future process helps entire industries articulate their long-term goals and publish them in a unified vision for the future. To achieve that vision, industry leaders jointly define detailed R&D agendas known as roadmaps. ITP relies on roadmap-defined priorities to target cost-shared solicitations and guide development of a

149

Chemical Applications of Electrohydraulic Cavitation for Hazardous Waste Control  

E-Print Network [OSTI]

to the destruction or transformation of hazardous chemical substances such as high-temperature incineration, amended activated sludge digestion, anaerobic digestion and conventional physicochemical treatment. Pulsed-power plasma discharge technology may have.... Current approaches to the treatment of hazardous chemical wastes include high temperature incineration, chemical oxidation with and UV light, membrane separation, activated carbon adsorption, substrate-specific biodegration, electron beam bombardment...

Hoffmann, M. R.

150

Technology Roadmaps  

Broader source: Energy.gov [DOE]

Thispage contains links to DOE's Technology Roadmaps, multi-year plans outlining solid-state lighting goals, research and development initiatives aimed at accelerating technology advances and...

151

Technology Development  

Science Journals Connector (OSTI)

In presenting this chapter on technology development, it must be stated that attempts to make an up-to-date technology survey are restricted, unfortunately, by the proprietary nature of recent advances, detail...

B. E. Conway

1999-01-01T23:59:59.000Z

152

Los Alamos technology to be featured on CSI: NY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

on CSI: NY Los Alamos technology to be featured on CSI: NY The multipurpose "sampler gun" rapidly collects and tracks radiological, chemical, and biological samples in solid,...

153

Ames Laboratory 3D printing technology research taking shape...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3D printing technology research taking shape Contacts: For Release: Sept. 23, 2014 Igor Slowing, Chemical and Biological Sciences, 515-294-1959 Laura Millsaps, Public Affairs,...

154

Chemical Looping | Open Energy Information  

Open Energy Info (EERE)

Looping Looping Jump to: navigation, search Contents 1 Introduction 2 Process Description 3 Benefits 4 Oxygen Carriers 5 Multimedia 6 Patents 7 References 8 External Links Introduction Chemical looping or chemical looping combustion (CLC) is a novel technology that could provide the means to convert fossil fuels to electricity and provide carbon capture without significant efficiency or cost penalties. Chemical looping combustion is very similar to oxy-fuel combustion where there is no direct contact between air and fuel.[1] Oxygen is extracted from air, then the oxygen is reacted with the hydrocarbon fuel producing an exhaust gas composed of carbon dioxide and water vapor.[2] The water vapor is condensed out of the gas resulting in near 100% carbon dioxide stream that could be sequestered in the ground.

155

Temperature effects on chemical reactor  

Science Journals Connector (OSTI)

In this paper we had to study some characteristics of the chemical reactors from which we can understand the reactor operation in different circumstances; from these and the most important factor that has a great effect on the reactor operation is the temperature it is a mathematical processing of a chemical problem that was already studied but it may be developed by introducing new strategies of control; in our case we deal with the analysis of a liquid?gas reactor which can make the flotation of the benzene to produce the ethylene; this type of reactors can be used in vast domains of the chemical industry especially in refinery plants where we find the oil separation and its extractions whether they are gases or liquids which become necessary for industrial technology especially in our century.

M. Azzouzi

2008-01-01T23:59:59.000Z

156

Coal Direct Chemical Looping (CDCL) Process Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Direct Chemical Looping (CDCL) Retrofit to Direct Chemical Looping (CDCL) Retrofit to Pulverized Coal Power Plants for In-Situ CO 2 Capture William G. Lowrie Department of Chemical & Biomolecular Engineering The Ohio State University Columbus, OH 43210 Award #: DE-NT0005289 PI: Liang-Shih Fan Presenter: Samuel Bayham Department of Chemical and Biomolecular Engineering The Ohio State University 2013 NETL CO2 Capture Technology Meeting July 11, 2013 Pittsburgh, PA Clean Coal Research Laboratory at The Ohio State University Sub-Pilot Scale Unit 250kW th Pilot Unit (Wilsonville, Alabama) Syngas Chemical Looping Coal-Direct Chemical Looping Cold Flow Model Sub-Pilot Scale Unit HPHT Slurry Bubble Column 120kW th Demonstration Unit Calcium Looping Process CCR Process Sub-Pilot Unit F-T Process

157

Ion exchange technology assessment report  

SciTech Connect (OSTI)

In the execution of its charter, the SRS Ion Exchange Technology Assessment Team has determined that ion exchange (IX) technology has evolved to the point where it should now be considered as a viable alternative to the SRS reference ITP/LW/PH process. The ion exchange media available today offer the ability to design ion exchange processing systems tailored to the unique physical and chemical properties of SRS soluble HLW's. The technical assessment of IX technology and its applicability to the processing of SRS soluble HLW has demonstrated that IX is unquestionably a viable technology. A task team was chartered to evaluate the technology of ion exchange and its potential for replacing the present In-Tank Precipitation and proposed Late Wash processes to remove Cs, Sr, and Pu from soluble salt solutions at the Savannah River Site. This report documents the ion exchange technology assessment and conclusions of the task team.

Duhn, E.F.

1992-01-01T23:59:59.000Z

158

Ion exchange technology assessment report  

SciTech Connect (OSTI)

In the execution of its charter, the SRS Ion Exchange Technology Assessment Team has determined that ion exchange (IX) technology has evolved to the point where it should now be considered as a viable alternative to the SRS reference ITP/LW/PH process. The ion exchange media available today offer the ability to design ion exchange processing systems tailored to the unique physical and chemical properties of SRS soluble HLW`s. The technical assessment of IX technology and its applicability to the processing of SRS soluble HLW has demonstrated that IX is unquestionably a viable technology. A task team was chartered to evaluate the technology of ion exchange and its potential for replacing the present In-Tank Precipitation and proposed Late Wash processes to remove Cs, Sr, and Pu from soluble salt solutions at the Savannah River Site. This report documents the ion exchange technology assessment and conclusions of the task team.

Duhn, E.F.

1992-12-31T23:59:59.000Z

159

Department of Engineering Technology Technology Education  

E-Print Network [OSTI]

Department of Engineering Technology Technology Education A Teacher Education Program New Jersey Institute of Technology #12;WHAT WILL YOU LEARN? Technology teachers teach problem-based learning utilizing math, science and technology principles. Technological studies involve students: · Designing

Bieber, Michael

160

Summaries of FY 1993 research in the chemical sciences  

SciTech Connect (OSTI)

The summaries in photochemical and radiation sciences, chemical physics, atomic physics, chemical energy, separations and analysis, heavy element chemistry, chemical engineering sciences, and advanced battery technology are arranged according to national laboratories and offsite institutions. Small business innovation research projects are also listed. Special facilities supported wholly or partly by the Division of Chemical Sciences are described. Indexes are provided for selected topics of general interest, institutions, and investigators.

Not Available

1993-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "inventure chemical technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Available Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 News Stories (and older) 6 News Stories (and older) 12.21.2005___________________________________________________________________ Genzyme acquires gene therapy technology invented at Berkeley Lab. Read more here. 07.19.2005 _________________________________________________________________ Symyx, a start up company using Berkeley Lab combinatorial chemistry technology licensed by the Technology Transfer Department and developed by Peter Schultz and colleagues in the Materials Sciences Division, will be honored with Frost & Sullivan's 2005 Technology Leadership Award at their Excellence in Emerging Technologies Awards Banquet for developing enabling technologies and methods to aid better, faster and more efficient R&D. Read more here. 07.11.2005 _________________________________________________________________ Nanosys, Inc., a Berkeley Lab startup, is among the solar nanotech companies investors along Sand Hill Road in Menlo Park hope that thinking small will translate into big profits. Read more here.

162

CAMD Cleanroom Chemical List  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CAMD Cleanroom Chemical List Chemicals on this list are routine use chemicals in the CAMD Cleanroom and are available to users for general use. All others (*) are approved for use...

163

Fuel Technologies  

Broader source: Energy.gov [DOE]

Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

164

Layering Technologies  

Science Journals Connector (OSTI)

Planar technology requires that thin layers of materials be formed and patterned sequentially, commencing with a flat rigid substrate. The key aspects of each layer are its Thi...

Ivor Brodie; Julius J. Muray

1992-01-01T23:59:59.000Z

165

EPA speeds technology implementation  

SciTech Connect (OSTI)

Common barriers block the use of innovative remediation technologies. The Innovative Treatment Remediation Demonstration (ITRD) Program at the US Department of Energy`s (DOE`s) Sandia National Laboratories was initiated in 1993 in cooperation with the US Environmental Protection Agency`s (EPA`s) Technology Innovation Office in an attempt to reduce these barriers and accelerate the implementation of innovative remediation technologies. The innovative technologies considered for evaluation by the ITRD program lack the cost and performance information that would otherwise permit their full consideration as remedial alternatives. These technologies have often shown promise in pilot-scale applications but have limited full-scale data. Some examples in this category include: bioremediation, in situ dynamic stripping, soil washing and soil flushing, solvent and surfactant extraction and chemical treatment, in situ passive treatment, and advanced physical separation techniques. Currently, three ITRD projects are under way. ITRD sites are generally small, and most are characterized sites already scheduled for remediation. Thus, each project can be initiated quickly; additional program costs are minimized; and overall site remediation is accelerated. ITRD projects tend to target sites with typical soil and groundwater contamination problems. Contaminants at such sites include chlorinated solvents and petroleum products; pesticides, polychlorinated biphenyls (PCBs), and dioxins; heavy metals; explosives; and complex or multiconstituent contamination. The paper describes the activities at these three projects located at Pinellas, Mound Laboratory, and Fernald.

Hightower, M.M. [Sandia National Labs., Albuquerque, NM (United States). Environmental Programs Center

1996-04-01T23:59:59.000Z

166

chemical analysis | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

chemical analysis chemical analysis Leads No leads are available at this time. Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. Abstract: As a...

167

TRENDS in Chemical Marketing  

Science Journals Connector (OSTI)

TRENDS in Chemical Marketing ... BEFORE any chemical sales organization, can meet or establish new trends in marketing, it must be completely aware of the problem it faces. ...

W. M. RUSSELL

1955-08-29T23:59:59.000Z

168

Chemical Safety Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Program Home Chemical Safety Topical Committee Library Program Contacts Related Links Site Map Tools 2013 Chemical Safety Workshop Archived Workshops Contact Us Health and Safety HSS Logo Chemical Safety Program logo The Department of Energy's (DOE's) Chemical Safety web pages provide a forum for the exchange of best practices, lessons learned, and guidance in the area of chemical management. This page is supported by the Chemical Safety Topical Committee which was formed to identify chemical safety-related issues of concern to the DOE and pursue solutions to issues identified. Noteworthy products are the Chemical Management Handbooks and the Chemical Lifecycle Cost Analysis Tool, found under the TOOLS menu. Chemical Management Handbook Vol (1) Chemical Management Handbook Vol (2)

169

Glass Technology  

Science Journals Connector (OSTI)

... WE have received from the Department of Glass Technology, University of Sheffield, a copy of vol. ii. of Experimental Researches ... that department. The papers included have already appeared in the Journal of the Society of Glass Technology. They range over a somewhat wide field of the ...

1920-08-23T23:59:59.000Z

170

Chemical preconcentrator with integral thermal flow sensor  

DOE Patents [OSTI]

A chemical preconcentrator with integral thermal flow sensor can be used to accurately measure fluid flow rate in a microanalytical system. The thermal flow sensor can be operated in either constant temperature or constant power mode and variants thereof. The chemical preconcentrator with integral thermal flow sensor can be fabricated with the same MEMS technology as the rest of the microanlaytical system. Because of its low heat capacity, low-loss, and small size, the chemical preconcentrator with integral thermal flow sensor is fast and efficient enough to be used in battery-powered, portable microanalytical systems.

Manginell, Ronald P. (Albuquerque, NM); Frye-Mason, Gregory C. (Cedar Crest, NM)

2003-01-01T23:59:59.000Z

171

NREL: Technology Deployment - Technology Acceleration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

assistance to federal and private industry to help address market barriers to sustainable energy technologies. Learn more about NREL's work in the following areas:...

172

Humanities and Social Relevance for Chemistry and Chemical Engineering Students: The Leonardo Project  

E-Print Network [OSTI]

Humanities and Social Relevance for Chemistry and Chemical Engineering Students: The Leonardo chemistry and chemical-engineering education. Its goal is to prepare educational materials on the interface between chemical technology and society for use by chemical-engineering or chemistry professors

Doudna, Jennifer A.

173

Mercury-control technology-assessment study: D. F. Goldsmith Chemical and Metal Corporation, Evanston, Illinois. In-depth survey report for the site visit of May 4-6, 1982. Final report  

SciTech Connect (OSTI)

An in-depth survey was conducted at the D. F. Goldsmith Chemical and Metal Corporation in Evanston, Illinois; emphasis was placed on the recirculating air unit for control of mercury vapor. Major products were prime virgin mercury, precious metals, and rare inorganic chemicals. Mercury was poured into an open vessel which was subsequently covered, and the mercury treated by agitation with an acidic or caustic solution. Mercury was then transferred to the still where it was batch-distilled. After distillation, mercury was bottled in 1 or 5 pound quantities and packed and shipped. The ventilation system included local exhaust, dilution, and recirculation steps. Local exhaust ventilation was particularly important at the bottle-filling station. Personal protective equipment included respirators, disposable lab coats, vinyl coated cloth gloves, plastic shoe coverings, and barrier creams. Work practices were controlled, and biological and air monitoring were in place. The recirculating unit removed 76% of the mercury vapor in the air stream. The authors recommend that a study be made of the advisability of using a charcoal filter in addition to the manganese oxide precoat bag filter with post filtration.

Telesca, D.R.

1982-09-01T23:59:59.000Z

174

Vehicle Technologies Office: Vehicle Technologies Office Recognizes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vehicle Technologies Vehicle Technologies Office Recognizes Outstanding Researchers to someone by E-mail Share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Facebook Tweet about Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Twitter Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Google Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Delicious Rank Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Digg Find More places to share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on AddThis.com...

175

Vehicle Technologies Office: Graduate Automotive Technology Education  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deployment Deployment Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) to someone by E-mail Share Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on Facebook Tweet about Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on Twitter Bookmark Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on Google Bookmark Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on Delicious Rank Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on Digg Find More places to share Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on AddThis.com...

176

Building Technologies Office: Emerging Technologies Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Emerging Technologies Emerging Technologies Activities to someone by E-mail Share Building Technologies Office: Emerging Technologies Activities on Facebook Tweet about Building Technologies Office: Emerging Technologies Activities on Twitter Bookmark Building Technologies Office: Emerging Technologies Activities on Google Bookmark Building Technologies Office: Emerging Technologies Activities on Delicious Rank Building Technologies Office: Emerging Technologies Activities on Digg Find More places to share Building Technologies Office: Emerging Technologies Activities on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research

177

Characteristics of the NiO/hexaaluminate for chemical looping combustion  

Science Journals Connector (OSTI)

Chemical looping combustion technology has drawn much attention due to...x formation and simple CO2...separation. The thermally stable oxygen carrier in the redox cycle at 1,0001,400 K is necessary for the chemical

Kwang Sup Song; Yong Seog Seo; Hyung Kee Yoon

2003-05-01T23:59:59.000Z

178

Chemical Management Contacts  

Broader source: Energy.gov [DOE]

Contacts for additional information on Chemical Management and brief description on Energy Facility Contractors Group

179

MSTC - Microsystems Science, Technology, and Components - Contacts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contacts Contacts Microsystems Home Custom Microsystems Solutions Microsystems R&D Services Capabilities and Technologies Facilities Trusted Microsystems General Info About Us Awards Contacts Doing Business with Us Fact Sheets MESA News CONTACT US card file image ASIC Custom Solutions email: ASIC Custom Solutions Biological Microsensor Technologies Biosensors and Nanomaterials email: Biosensors and Nanomaterials Chemical Microsensors and Sensor Microsystems Chemical sensors and integrated sensor-based microsystems email: Chemical Microsensors and Sensor Microsystems Custom Components COTS, Capacitors, Magnetics, Cables and Interconnects email: Custom Components Failure Analysis Root Cause and Failure Analysis email: Failure Analysis Integrated Photonics Photonic Crystals, Nano Photonics, Micro Optics

180

About Chemical Hazards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemical Hazards Chemical Hazards What Is a Chemical Hazard? chemical hazards.jpg A chemical hazard is any substance that can cause harm, primarily to people. Chemicals of all kinds are stored in our homes and can result in serious injuries if not properly handled. Household items such as bleach can result in harmful chlorine gas or hydrochloric acid if carelessly used. Gasoline fumes from containers for lawnmowers or boats can result in major health hazards if inhaled. DOE Oak Ridge uses thousands of chemicals in its varied research and other operations. New chemicals are or can be created as a result of the research or other activities. DOE follows national safety requirements in storing and handling these chemicals to minimize the risk of injuries from its chemical usage. However, accidents can occur despite careful attention to proper handling and storage procedures.

Note: This page contains sample records for the topic "inventure chemical technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Building Technologies Office: Emerging Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Creating the Next Generation of Energy Efficient Technology Creating the Next Generation of Energy Efficient Technology The Emerging Technologies team partners with national laboratories, industry, and universities to advance research, development, and commercialization of energy efficient and cost effective building technologies. These partnerships help foster American ingenuity to develop cutting-edge technologies that have less than 5 years to market readiness, and contribute to the goal to reduce energy consumption by at least 50%. Sandia Cooler's innovative, compact design combines a fan and a finned metal heat sink into a single element, efficiently transferring heat in microelectronics and reducing energy use. Supporting Innovative Research to Help Reduce Energy Use and Advance Manufacturing Learn More

182

Oil shale technology  

SciTech Connect (OSTI)

Oil shale is undoubtedly an excellent energy source that has great abundance and world-wide distribution. Oil shale industries have seen ups and downs over more than 100 years, depending on the availability and price of conventional petroleum crudes. Market forces as well as environmental factors will greatly affect the interest in development of oil shale. Besides competing with conventional crude oil and natural gas, shale oil will have to compete favorably with coal-derived fuels for similar markets. Crude shale oil is obtained from oil shale by a relatively simple process called retorting. However, the process economics are greatly affected by the thermal efficiencies, the richness of shale, the mass transfer effectiveness, the conversion efficiency, the design of retort, the environmental post-treatment, etc. A great many process ideas and patents related to the oil shale pyrolysis have been developed; however, relatively few field and engineering data have been published. Due to the vast heterogeneity of oil shale and to the complexities of physicochemical process mechanisms, scientific or technological generalization of oil shale retorting is difficult to achieve. Dwindling supplied of worldwide petroleum reserves, as well as the unprecedented appetite of mankind for clean liquid fuel, has made the public concern for future energy market grow rapidly. the clean coal technology and the alternate fuel technology are currently of great significance not only to policy makers, but also to process and chemical researchers. In this book, efforts have been made to make a comprehensive text for the science and technology of oil shale utilization. Therefore, subjects dealing with the terminological definitions, geology and petrology, chemistry, characterization, process engineering, mathematical modeling, chemical reaction engineering, experimental methods, and statistical experimental design, etc. are covered in detail.

Lee, S. (Akron Univ., OH (United States). Dept. of Chemical Engineering)

1991-01-01T23:59:59.000Z

183

Liquid fossil fuel technology  

SciTech Connect (OSTI)

Progress reports are presented under the following headings: (1) extraction (technology assessment, oil research, gas research); (2) liquid processing (characterization, thermodynamics, processing technology); (3) utilization (energy conservation); and (4) project integration and technology transfer. BETC publications are also listed. Some of the highlights for this period are: the Bartlesville Energy Technology Center was converted into NIPER, the National Institute for Petroleum and Energy Research on October 1, 1983; modelling of enthalpies, heat capacities and volumes of aqueous surfactant solutions began using a mass action model; a series of experiments were run on upgrading by hydrogenation SRC-II coal liquid at different degrees of severity and the products have been analyzed; heavy crude oil extracts were separated into fraction with high performance liquid chromatography by Lawrence Berkeley Laboratory and the mass spectra and electron spin resonance were determin ed; and particulates from exhaust gases of diesel engines using fire fuel types are being collected and will be analyzed by chemical methods and results will be compared with those obtained by biological assay. (ATT)

Not Available

1983-01-01T23:59:59.000Z

184

Total-Internal-Reflection Platforms for Chemical and Biological Sensing Applications  

Science Journals Connector (OSTI)

Sensing platforms based on the principle of total internal ... food and water safety, environmental monitoring, and chemical and biological warfare agent detection. The technologies ... of the underlying principl...

Kim E. Sapsford

2009-01-01T23:59:59.000Z

185

Bio-based C-3 Platform Chemical: Biotechnological Production and -Conversion of 3-Hydroxypropionaldehyde.  

E-Print Network [OSTI]

??Demands for efficient, greener, economical and sustainable production of chemicals, materials and energy have led to development of industrial biotechnology as a key technology area (more)

Rezaei, Roya

2013-01-01T23:59:59.000Z

186

Reducible Oxide Based Oxygen Carriers for Chemical Looping Combustion and Partial Oxidation of Methane.  

E-Print Network [OSTI]

??Chemical looping combustion (CLC) is a novel combustion technology that offers a highly efficient route towards clean combustion of fuel with inherent CO2 capture. In (more)

Bhavsar, Saurabh

2014-01-01T23:59:59.000Z

187

Conversion of Waste CO2 and Shale Gas to High-Value Chemicals  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

acid using known technologies or combined with Schematic illustrating the NovomerPraxair semi-integrated process to produce high- value chemical intermediates. Graphic image...

188

Technology Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

* Heavy Vehicle Technologies * Heavy Vehicle Technologies * Multi-Path Transportation Futures * Idling Studies * EDrive Vehicle Monthly Sales Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Technology Analysis truck Heavy vehicle techologies are one subject of study. Research Reducing Greenhouse Gas Emissions from U.S. Transportation Heavy Vehicle Technologies Multi-Path Transportation Futures Study Idling Studies Light Duty Electric Drive Vehicles Monthly Sales Updates Lithium-Ion Battery Recycling and Life Cycle Analysis Reports Propane Vehicles: Status, Challenges, and Opportunities (pdf; 525 kB) Natural Gas Vehicles: Status, Barriers, and Opportunities (pdf; 696 kB) Regulatory Influences That Will Likely Affect Success of Plug-in Hybrid and Battery Electric Vehicles (pdf; 1.02 MB)

189

Coal Technology  

Science Journals Connector (OSTI)

Several large demonstrations of FBC technology for electrical power generation have proven ... -MW(e) atmospheric pressure circulating fluidized-bed boiler at the ColoradoUte Electric Association's...14 ...

2003-01-01T23:59:59.000Z

190

Guide to treatment technology for contaminated soils  

SciTech Connect (OSTI)

This document is a guide for the screening of alternative treatment technologies for contaminated soils. The contents of this guide are organized into: 1. Introduction, II. Utilizing the table, III. Tables: Contamination Versus Technology, TV. Contaminant Waste Groups, and V. References. The four Contaminations Versus Technology tables are designed to identify the effectiveness and/or potential applicability of technologies to some or all compounds within specific waste groups. The tables also present limitations and special use considerations for the particular treatment technology. The phase of development of the technology is also included in the table. The phases are: Available, Innovative, and Emerging technologies. The technologies presented in this guide are organized according to the method of treatment. The four (4) treatment methods are Biological, Solidification/Stabilization, Thermal, and Chemical/Physical Treatment. There are several processing methods; some are well developed and proven, and others are in the development stage.

Tran, H.; Aylward, R.

1992-08-04T23:59:59.000Z

191

20 - Chemical looping combustion (CLC)  

Science Journals Connector (OSTI)

Abstract: Chemical-looping combustion (CLC) is a new combustion technology with inherent separation of the greenhouse gas CO2. The technology involves the use of a metal oxide as an oxygen carrier which transfers oxygen from combustion air to the fuel, and hence a direct contact between air and fuel is avoided. Two inter-connected fluidized beds, i.e. fuel reactor and air reactor, are used in the process. The outlet gas from the fuel reactor consists ideally of CO2 and H2O, and the latter is easily removed by condensation. This chapter presents the basic principles, gives an overview of oxygen-carrier materials and operational experiences, discusses the application to gaseous, liquid and solid fuels, and the use for combustion as well as for hydrogen production.

A. Lyngfelt

2013-01-01T23:59:59.000Z

192

Process modeling aspects of chemical-looping with oxygen uncoupling and chemical-looping combustion for solid fuels.  

E-Print Network [OSTI]

??Chemical-looping combustion (CLC) is one of the candidate technologies that is currently being explored to reduce the energy penalty associated with capturing CO2 from coal-fired (more)

Sahir, Asad Hasan

2013-01-01T23:59:59.000Z

193

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program  

E-Print Network [OSTI]

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program publication is funded by the Division to them in California. TECHNOLOGY TRANSFER PROGRAM MAY 2011, VOL. 3, NO. 1 California's Transition

California at Berkeley, University of

194

Diverse Applications of Pinch Technology Within the Process Industries  

E-Print Network [OSTI]

design and retrofit processes. The technology offers a new approach to process integration based on the applic?tion of the pinch principle. Early applications were mostly in the petrochemical and bulk chemical industries. In this paper we report... mostly confined to petrochemical or bulk chemical plants. The technology has now been proven in many more successful projects and this paper describes some of the latest results which demonstrate the applicability of pinch technology in a wide range...

Spriggs, H. D.; Ashton, G.

195

Climate VISION: Private Sector Initiatives: Chemical Manufacturing:  

Office of Scientific and Technical Information (OSTI)

Federal/State Programs Federal/State Programs DOE Chemical Industry of the Future The DOE Chemical Industry of the Future program is a set of collaborative R&D partnerships between DOE Industrial Technologies Program and industry to maximize technology investments. Texas Industries of the Future The Texas Industries of the Future program facilitates the development, demonstration and adoption of advanced technologies and adoption of best practices that reduce industrial energy usage, emissions, and associated costs, resulting in improved competitive performance. See all Federal/State Programs DOE State Activities For information on activities, financial assistance, and solicitations within your state, please refer to the DOE Office of Energy Efficiency and Renewable Energy State Specific Information website.

196

Composites Technology for Hydrogen Pipelines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Composites Technology Composites Technology for Hydrogen Pipelines Barton Smith, Barbara Frame, Larry Anovitz and Cliff Eberle Oak Ridge National Laboratory Pipeline Working Group Meeting Pipeline Working Group Meeting Aiken, South Carolina Aiken, South Carolina September 25-26, 2007 September 25-26, 2007 Managed by UT-Battelle for the Department of Energy 2 Managed by UT Battelle for the Department of Energy Presentation name - _ Composites Technology for Hydrogen Pipelines Fiber-reinforced polymer pipe Project Overview: Investigate application of has excellent burst and collapse composite, fiber-reinforced polymer pipeline pressure ratings, large tensile technology for hydrogen transmission and and compression strengths, and distribution. superior chemical and corrosion resistance. Long lengths can be

197

Control technology assessment of hazardous waste disposal operations in chemicals manufacturing: walk-through survey report of E. I. Du Pont de Nemours and Company, Chambers Works, Deepwater, New Jersey  

SciTech Connect (OSTI)

A walk through survey was conducted to assess control technology for hazardous wastes disposal operations at du Pont de Nemours and Company (SIC-2800), Deepwater, New Jersey in November 1981. Hazardous wastes generated at the facility were disposed of by incineration, wastewater and thermal treatment, and landfilling. Engineering controls for the incineration process and at the landfill were noted. At the landfill, water from a tank trailer was sprayed periodically to suppress dust generation. Vapor control devices, such as spot scrubbers, were used during transfer of organic wastes from trailers and drums to storage prior to incineration. Wastes were also recirculated to prevent build up of grit in the strainers. The company conducted area monitoring for nitrobenzene (98953) and amines at the landfill and personal monitoring for chloramines at the incinerator. Half mask dust respirators were worn by landfill operators. Operators who unloaded and emptied drums at the incinerator were required to wear face masks, rubber gloves, and boots. The author concludes that disposal of hazardous wastes at the facility is state of the art. An in depth survey is recommended.

Anastas, M.

1984-01-01T23:59:59.000Z

198

Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Efficiency & Renewable and Energy - Commercialization Energy Efficiency & Renewable and Energy - Commercialization Deployment SBIR/STTR - Small Business Innovation Research and Small Business Technology Transfer USEFUL LINKS Contract Opportunities: FBO.gov FedConnect.net Grant Opportunities DOE Organization Chart Association of University Technology Managers (AUTM) Federal Laboratory Consortium (FLC) Feedback Contact us about Tech Transfer: Mary.McManmon@science.doe.gov Mary McManmon, 202-586-3509 link to Adobe PDF Reader link to Adobe Flash player Licensing Guide and Sample License The Technology Transfer Working Group (TTWG), made up of representatives from each DOE Laboratory and Facility, recently created a Licensing Guide and Sample License [762-KB PDF]. The Guide will serve to provide a general understanding of typical contract terms and provisions to help reduce both

199

Technology Application Centers: Facilitating Technology Transfer  

E-Print Network [OSTI]

transfer plus technology application. A&C Enercom has learned from experience that technology deployment will not occur unless utilities achieve both technology transfer (e.g, the dissemination of information) and technology application (e.g., the direct...

Kuhel, G. J.

200

Capacitive chemical sensor  

DOE Patents [OSTI]

A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

Manginell, Ronald P; Moorman, Matthew W; Wheeler, David R

2014-05-27T23:59:59.000Z

Note: This page contains sample records for the topic "inventure chemical technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Chemicals from Metabolic Pathways  

Science Journals Connector (OSTI)

A few basic raw materials, petroleum, natural gas, +S from oil or natural gas, and O2 + N2 from air, generate first primary (or platform) chemicals, next secondary (commodity) chemicals, then intermediates, and f...

John Villadsen; Jens Nielsen; Gunnar Lidn

2011-01-01T23:59:59.000Z

202

Chemistry 455 Chemical Nanotechnology  

E-Print Network [OSTI]

Chemistry 455 Chemical Nanotechnology 4 units Prof. Richard Brutchey, Fall 2014 (Lecture = 12:00�12:50 pm MWF) CHEM 455 is an upper-division undergraduate course in Chemical Nanotechnology. The intent

Rohs, Remo

203

Chemicals and health  

Science Journals Connector (OSTI)

Chemicals and health ... I must add here that some chemicals are indeed dangerous in the environment, largely because they persist, they don't break down, and they can therefore build up in the food chain. ...

1980-11-03T23:59:59.000Z

204

Manufacturing technology  

SciTech Connect (OSTI)

The specific goals of the Manufacturing Technology thrust area are to develop an understanding of fundamental fabrication processes, to construct general purpose process models that will have wide applicability, to document our findings and models in journals, to transfer technology to LLNL programs, industry, and colleagues, and to develop continuing relationships with industrial and academic communities to advance our collective understanding of fabrication processes. Advances in four projects are described here, namely Design of a Precision Saw for Manufacturing, Deposition of Boron Nitride Films via PVD, Manufacturing and Coating by Kinetic Energy Metallization, and Magnet Design and Application.

Blaedel, K.L.

1997-02-01T23:59:59.000Z

205

Biobased Chemicals Without Biomass  

Science Journals Connector (OSTI)

Unlike most other companies using biology to make chemicals, LanzaTech does not rely on biomass feedstocks. ...

MELODY BOMGARDNER

2012-08-27T23:59:59.000Z

206

Evaluation of nitrate and nitrite destruction/separation technologies  

SciTech Connect (OSTI)

This report describes and evaluates four types of nitrate and nitrite destruction and separation technologies that could be used to treat the aqueous, alkaline, nitrate-bearing mixed waste that is generated by the In-Tank Precipitation (ITP) process at the Savannah River Site (SRS). The technologies considered in this report include thermal, hydrothermal, chemical, and electrochemical technologies.

Hobbs, D.T.

1997-08-29T23:59:59.000Z

207

Institute of Chemical Engineering and High Temperature Chemical...  

Open Energy Info (EERE)

Chemical Processes ICEHT Jump to: navigation, search Name: Institute of Chemical Engineering and High Temperature Chemical Processes (ICEHT) Place: Hellas, Greece Zip:...

208

HARVARD UNIVERSITY CHEMICAL BIOLOGY  

E-Print Network [OSTI]

HARVARD UNIVERSITY CHEMICAL BIOLOGY PHD PROGRAM 2013-2014 Student Handbook #12;Program Contacts at the beginning of each semester. Laboratory Rotations Students in the Chemical Biology Program are expected an interest in having Chemical Biology Program Students in their labs. Students may rotate in the labs

Church, George M.

209

Computational Chemical Materials Engineering  

E-Print Network [OSTI]

: Thermal barrier coatings, wear resistance coatings, radiation resistant materials · Materials for opticalHome Computational Chemical and Materials Engineering Tahir Cagin Chemical Engineering Department to understand behavior and properties of materials as a function of ­ Chemical constitution ­ Composition

210

FEMP/NTDP Technology Focus New Technology  

E-Print Network [OSTI]

FEMP/NTDP Technology Focus New Technology Demonstration Program Technology Focus FEMPFederal Energy Management Program Trends in Energy Management Technology: BCS Integration Technologies ­ Open Communications into a complete EMCIS. The first article [1] covered enabling technologies for emerging energy management systems

211

(Environmental technology)  

SciTech Connect (OSTI)

The traveler participated in a conference on environmental technology in Paris, sponsored by the US Embassy-Paris, US Environmental Protection Agency (EPA), the French Environmental Ministry, and others. The traveler sat on a panel for environmental aspects of energy technology and made a presentation on the potential contributions of Oak Ridge National Laboratory (ORNL) to a planned French-American Environmental Technologies Institute in Chattanooga, Tennessee, and Evry, France. This institute would provide opportunities for international cooperation on environmental issues and technology transfer related to environmental protection, monitoring, and restoration at US Department of Energy (DOE) facilities. The traveler also attended the Fourth International Conference on Environmental Contamination in Barcelona. Conference topics included environmental chemistry, land disposal of wastes, treatment of toxic wastes, micropollutants, trace organics, artificial radionuclides in the environment, and the use biomonitoring and biosystems for environmental assessment. The traveler presented a paper on The Fate of Radionuclides in Sewage Sludge Applied to Land.'' Those findings corresponded well with results from studies addressing the fate of fallout radionuclides from the Chernobyl nuclear accident. There was an exchange of new information on a number of topics of interest to DOE waste management and environmental restoration needs.

Boston, H.L.

1990-10-12T23:59:59.000Z

212

COMMERCIALIZING TECHNOLOGIES &  

E-Print Network [OSTI]

measurement." Dan Gillings President Applied Technology Associates NMSBA reduced my manufacturing costs by 20 a patent for a revolutionary new, even more shock absorbent mouthguard they will manufacture from material including a new additive. 2 Animated Talking Toys Heilbron Associates had acquired rights to a fiber optic

213

Powering the planet: Chemical challenges in solar energy utilization  

Science Journals Connector (OSTI)

...Chemical challenges in solar energy utilization 10...Department of Chemistry, Massachusetts Institute of Technology...renewable energy resources, solar energy is by far the...Future of Nuclear Power ( Massachusetts Institute of Technology...Washington, DC ). 13 Solar Energy Utilization Workshop...

Nathan S. Lewis; Daniel G. Nocera

2006-01-01T23:59:59.000Z

214

NETL: News Release - Novel Pollution Control Technology Recognized  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

November 17, 2005 November 17, 2005 Novel Pollution Control Technology Recognized NETL-funded Technology Honored for Chemical Engineering Achievement PITTSBURGH, PA - Praxair Inc.'s Oxygen Enhanced Combustion (OEC) system for controlling emissions of nitrogen oxides (NOx) was recently recognized as one of five 2005 finalists for Chemical Engineering magazine's prestigious Kirkpatrick Award for Chemical Engineering Achievement. The system was developed under the National Energy Technology Laboratory's Innovations for Existing Plants program, which advances technologies to improve the environmental performance of America's existing coal-fired power plants. MORE INFO Read June 26, 2002 TechLine Chemical Engineering magazine, published by Chemical Week Associates, grants the Kirkpatrick Award biennially to honor the most outstanding

215

Vacuum Technology  

SciTech Connect (OSTI)

The environmental condition called vacuum is created any time the pressure of a gas is reduced compared to atmospheric pressure. On earth we typically create a vacuum by connecting a pump capable of moving gas to a relatively leak free vessel. Through operation of the gas pump the number of gas molecules per unit volume is decreased within the vessel. As soon as one creates a vacuum natural forces (in this case entropy) work to restore equilibrium pressure; the practical effect of this is that gas molecules attempt to enter the evacuated space by any means possible. It is useful to think of vacuum in terms of a gas at a pressure below atmospheric pressure. In even the best vacuum vessels ever created there are approximately 3,500,000 molecules of gas per cubic meter of volume remaining inside the vessel. The lowest pressure environment known is in interstellar space where there are approximately four molecules of gas per cubic meter. Researchers are currently developing vacuum technology components (pumps, gauges, valves, etc.) using micro electro mechanical systems (MEMS) technology. Miniature vacuum components and systems will open the possibility for significant savings in energy cost and will open the doors to advances in electronics, manufacturing and semiconductor fabrication. In conclusion, an understanding of the basic principles of vacuum technology as presented in this summary is essential for the successful execution of all projects that involve vacuum technology. Using the principles described above, a practitioner of vacuum technology can design a vacuum system that will achieve the project requirements.

Biltoft, P J

2004-10-15T23:59:59.000Z

216

Plant Optimization Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Science & Innovation » Clean Coal » Crosscutting Research » Science & Innovation » Clean Coal » Crosscutting Research » Plant Optimization Technologies Plant Optimization Technologies The Plant Optimization Technologies Program is a diverse, scientifically oriented research and development program that addresses issues affecting the way coal is used. The program's primary emphasis is to support the development of advanced technologies that use coal with near-zero emissions. To provide this support, the program identifies scientific and technological needs and develops a basic understanding of the underlying chemical and physical processes that, unless resolved, could create a technological barrier to these new coal-based concepts. The program serves as a bridge between basic science and the fabrication and testing of new technologies. Currently researchers supported by this

217

Review of nonconventional bioreactor technology  

SciTech Connect (OSTI)

Biotechnology will significantly affect many industrial sectors in the future. Industrial sectors that will be affected include pharmaceutical, chemical, fuel, agricultural, and environmental remediation. Future research is needed to improve bioprocessing efficiency and cost-effectiveness in order to compete with traditional technologies. This report describes recent advances in bioprocess technologies and bioreactor designs and relates them to problems encountered in many industrial bioprocessing operations. The primary focus is directed towards increasing gas and vapor transfer for enhanced bioprocess kinetics as well as unproved by-product separation and removal. The advantages and disadvantages of various conceptual designs such as hollow-fiber, gas-phase, hyperbaric/hypobaric, and electrochemical bioreactors are also discussed. Specific applications that are intended for improved bioprocesses include coal desulfurization, coal liquefaction, soil bioremediation, biomass conversion to marketable chemicals, biomining, and biohydrometallurgy as well as bioprocessing of gases and vapors.

Turick, C.E.; Mcllwain, M.E.

1993-09-01T23:59:59.000Z

218

American Chemical Society-Chinese Chemical Society Alliance  

Science Journals Connector (OSTI)

American Chemical Society-Chinese Chemical Society Alliance ... The American Chemical Society and the Chinese Chemical Society (CCS) formed a three-year collaborative alliance in 2010 to address shared global concerns. ...

MARINDA LI WU; YAO JIANNIAN

2013-01-07T23:59:59.000Z

219

Chemical exchange program analysis.  

SciTech Connect (OSTI)

As part of its EMS, Sandia performs an annual environmental aspects/impacts analysis. The purpose of this analysis is to identify the environmental aspects associated with Sandia's activities, products, and services and the potential environmental impacts associated with those aspects. Division and environmental programs established objectives and targets based on the environmental aspects associated with their operations. In 2007 the most significant aspect identified was Hazardous Materials (Use and Storage). The objective for Hazardous Materials (Use and Storage) was to improve chemical handling, storage, and on-site movement of hazardous materials. One of the targets supporting this objective was to develop an effective chemical exchange program, making a business case for it in FY07, and fully implementing a comprehensive chemical exchange program in FY08. A Chemical Exchange Program (CEP) team was formed to implement this target. The team consists of representatives from the Chemical Information System (CIS), Pollution Prevention (P2), the HWMF, Procurement and the Environmental Management System (EMS). The CEP Team performed benchmarking and conducted a life-cycle analysis of the current management of chemicals at SNL/NM and compared it to Chemical Exchange alternatives. Those alternatives are as follows: (1) Revive the 'Virtual' Chemical Exchange Program; (2) Re-implement a 'Physical' Chemical Exchange Program using a Chemical Information System; and (3) Transition to a Chemical Management Services System. The analysis and benchmarking study shows that the present management of chemicals at SNL/NM is significantly disjointed and a life-cycle or 'Cradle-to-Grave' approach to chemical management is needed. This approach must consider the purchasing and maintenance costs as well as the cost of ultimate disposal of the chemicals and materials. A chemical exchange is needed as a mechanism to re-apply chemicals on site. This will not only reduce the quantity of unneeded chemicals and the amount spent on new purchases, but will also avoid disposal costs. If SNL/NM were to realize a 5 percent reduction in chemical inventory and a 10 percent reduction in disposal of unused chemicals the total savings would be $189, 200 per year.

Waffelaert, Pascale

2007-09-01T23:59:59.000Z

220

Manufacturing Science and Technology: Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electro Microfluidic Dual In-line Package (EMDIP) Electro Microfluidic Dual In-line Package (EMDIP) PDF format (115 kb) EMDIP diagram EMDIP Diagram Microfluidics is experiencing explosive growth in new product developments. Already there are many commercial applications for electro microfluidic devices such as chemical sensors, biological sensors, and drop ejectors for both printing and chemical analysis. The number of surface micromachined microfluidic devices is likely to increase. Manufacturing efficiency and integration of microfluidics with electronics will become important. In order to realize applications for these devices, an efficient method for packaging microfluidic devices is needed. Responding to this need, researchers at Sandia developed the Electro Microfluidic Dual In-Line Package (EMDIP) and the Fluidic Printed Wiring Board (FPWB).

Note: This page contains sample records for the topic "inventure chemical technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Applications of solar reforming technology  

SciTech Connect (OSTI)

Research in recent years has demonstrated the efficient use of solar thermal energy for driving endothermic chemical reforming reactions in which hydrocarbons are reacted to form synthesis gas (syngas). Closed-loop reforming/methanation systems can be used for storage and transport of process heat and for short-term storage for peaking power generation. Open-loop systems can be used for direct fuel production; for production of syngas feedstock for further processing to specialty chemicals and plastics and bulk ammonia, hydrogen, and liquid fuels; and directly for industrial processes such as iron ore reduction. In addition, reforming of organic chemical wastes and hazardous materials can be accomplished using the high-efficiency destruction capabilities of steam reforming. To help identify the most promising areas for future development of this technology, we discuss in this paper the economics and market potential of these applications.

Spiewak, I. [Weizmann Inst. of Science, Rehovoth (Israel); Tyner, C.E. [Sandia National Labs., Albuquerque, NM (United States); Langnickel, U. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Koeln (Germany)

1993-11-01T23:59:59.000Z

222

Development of Computational Approaches for Simulation and Advanced Controls for Hybrid Combustion-Gasification Chemical Looping  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Computational Approaches Computational Approaches for Simulation and Advanced Controls for Hybrid Combustion-Gasification Chemical Looping Background The United States Department of Energy (DOE) National Energy Technology Laboratory (NETL) develops affordable and clean energy from coal and other fossil fuels to secure a sustainable energy economy. To further this mission, NETL funds research and development of advanced control technologies, including chemical looping (CL)

223

TECHNOLOGY TRANSFER  

Broader source: Energy.gov (indexed) [DOE]

404-NOV. 1, 2000 404-NOV. 1, 2000 TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 VerDate 11-MAY-2000 04:52 Nov 16, 2000 Jkt 089139 PO 00000 Frm 00001 Fmt 6579 Sfmt 6579 E:\PUBLAW\PUBL404.106 APPS27 PsN: PUBL404 114 STAT. 1742 PUBLIC LAW 106-404-NOV. 1, 2000 Public Law 106-404 106th Congress An Act To improve the ability of Federal agencies to license federally owned inventions. Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, SECTION 1. SHORT TITLE. This Act may be cited as the ''Technology Transfer Commer- cialization Act of 2000''. SEC. 2. FINDINGS. The Congress finds that- (1) the importance of linking our unparalleled network of over 700 Federal laboratories and our Nation's universities with United States industry continues to hold great promise

224

Review of encapsulation technologies  

SciTech Connect (OSTI)

The use of encapsulation technology to produce a compliant waste form is an outgrowth from existing polymer industry technology and applications. During the past 12 years, the Department of Energy (DOE) has been researching the use of this technology to treat mixed wastes (i.e., containing hazardous and radioactive wastes). The two primary encapsulation techniques are microencapsulation and macroencapsulation. Microencapsulation is the thorough mixing of a binding agent with a powdered waste, such as incinerator ash. Macroencapsulation coats the surface of bulk wastes, such as lead debris. Cement, modified cement, and polyethylene are the binding agents which have been researched the most. Cement and modified cement have been the most commonly used binding agents to date. However, recent research conducted by DOE laboratories have shown that polyethylene is more durable and cost effective than cements. The compressive strength, leachability, resistance to chemical degradation, etc., of polyethylene is significantly greater than that of cement and modified cement. Because higher waste loads can be used with polyethylene encapsulant, the total cost of polyethylene encapsulation is significantly less costly than cement treatment. The only research lacking in the assessment of polyethylene encapsulation treatment for mixed wastes is pilot and full-scale testing with actual waste materials. To date, only simulated wastes have been tested. The Rocky Flats Environmental Technology Site had planned to conduct pilot studies using actual wastes during 1996. This experiment should provide similar results to the previous tests that used simulated wastes. If this hypothesis is validated as anticipated, it will be clear that polyethylene encapsulation should be pursued by DOE to produce compliant waste forms.

Shaulis, L.

1996-09-01T23:59:59.000Z

225

Emerging technologies  

SciTech Connect (OSTI)

The mission of the Emerging Technologies thrust area at Lawrence Livermore National Laboratory is to help individuals establish technology areas that have national and commercial impact, and are outside the scope of the existing thrust areas. We continue to encourage innovative ideas that bring quality results to existing programs. We also take as our mission the encouragement of investment in new technology areas that are important to the economic competitiveness of this nation. In fiscal year 1992, we have focused on nine projects, summarized in this report: (1) Tire, Accident, Handling, and Roadway Safety; (2) EXTRANSYT: An Expert System for Advanced Traffic Management; (3) Odin: A High-Power, Underwater, Acoustic Transmitter for Surveillance Applications; (4) Passive Seismic Reservoir Monitoring: Signal Processing Innovations; (5) Paste Extrudable Explosive Aft Charge for Multi-Stage Munitions; (6) A Continuum Model for Reinforced Concrete at High Pressures and Strain Rates: Interim Report; (7) Benchmarking of the Criticality Evaluation Code COG; (8) Fast Algorithm for Large-Scale Consensus DNA Sequence Assembly; and (9) Using Electrical Heating to Enhance the Extraction of Volatile Organic Compounds from Soil.

Lu, Shin-yee

1993-03-01T23:59:59.000Z

226

Argonne Chemical Sciences & Engineering - About CSE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fundamental Interactions Fundamental Interactions Catalysis & Energy Conversion Electrochemical Energy Storage Nuclear & Environmental Processes National Security Institute for Atom-Efficient Chemical Transformations Center for Electrical Energy Storage: Tailored Interfaces Computational Postdoctoral Fellowships Contact Us CSE Intranet About CSE Director Emilio Brunel Director Emilio Bunel The Chemical Sciences and Engineering Division (CSE) is a science-based research, development, and early-stage engineering organization that conducts both fundamental and applied research using experimental, theoretical, and computational approaches. CSE research and development is distinguished by the development and application of fundamental understanding to yield transformational solutions that address issues of scientific and technological importance to

227

Argonne Chemical Sciences & Engineering - People - Nuclear and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Technology Nuclear Technology Mark A. Williamson, Chemist and Department Head phone: 630/252-9627, fax: 630/252-5246, e-mail: williamson@anl.gov Pyroprocess Development James L. Willit, Physical Chemist and Group Leader Phone: 630/252-4384, fax 630/972-4416, e-mail: willit@anl.gov Ph.D., Physical Chemistry, North Carolina State University Molten salt electrochemistry High-temperature actinide chemistry Electrochemical separations chemistry Pyroprocess development Robert J. Blaskovitz, Engineering Specialist phone: 630/252-4441, fax: 630/972-4421, blaskovitz@anl.gov Javier Figueroa, Chemical Engineer phone: 630/252-4248, fax 630/52-9917, e-mail: figueroa@anl.gov M.S., Chemical Engineering, Illinois Institute of Technology Pyroprocessing technology Plant modeling Terry R. Johnson, STA, Senior Chemical Engineer

228

Novel Reactor Design for Solid Fuel Chemical Looping Combustion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Novel Reactor Design for Solid Fuel Novel Reactor Design for Solid Fuel Chemical Looping Combustion Opportunity Research is active on the patent pending technology, titled "Apparatus and Method for Solid Fuel Chemical Looping Combustion." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory. Overview The removal of CO2 from power plants is challenging because existing methods to separate CO2 from the gas mixture requires a significant fraction of the power plant output. Chemical-looping combustion (CLC) is a novel technology that utilizes a metal oxide oxygen carrier to transport oxygen to the fuel thereby avoiding direct contact between fuel and air. The use of CLC has the advantages of reducing the energy penalty while

229

Evaluation of CuAl2O4 as an Oxygen Carrier in Chemical-Looping Combustion  

Science Journals Connector (OSTI)

Evaluation of CuAl2O4 as an Oxygen Carrier in Chemical-Looping Combustion ... Department of Chemical and Biological Engineering, Division of Environmental Inorganic Chemistry, Chalmers University of Technology, SE-412 96 Gteborg, Sweden ...

Mehdi Arjmand; Abdul-Majeed Azad; Henrik Leion; Tobias Mattisson; Anders Lyngfelt

2012-10-03T23:59:59.000Z

230

Building Technologies Office: About Emerging Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Emerging Technologies Emerging Technologies The Emerging Technologies team funds the research and development of cost-effective, energy-efficient building technologies within five years of commercialization. Learn more about the: Key Technologies Benefits Results Key Technologies Specific technologies pursued within the Emerging Technologies team include: Lighting: advanced solid-state lighting systems, including core technology research and development, manufacturing R&D, and market development Heating, ventilation, and air conditioning (HVAC): heat pumps, heat exchangers, and working fluids Building Envelope: highly insulating and dynamic windows, cool roofs, building thermal insulation, façades, daylighting, and fenestration Water Heating: heat pump water heaters and solar water heaters

231

Advanced Oxidation Technology for Pulp Mill Effluent  

E-Print Network [OSTI]

parameters. The dissolved solids consist of the chemicals derived from the wood material plus the chemicals added to the specific pulping process. No one technology can adequately treat these effluent streams, rather a combination of treatment methods... suspended or dissolved solids. We are herein considering only the treatment of the dissolved solids portion, assuming the removal of the suspended material by some other means. Dependent upon the nature of the pulping process and the particular...

Hart, J. R.

232

Research in the chemical sciences: Summaries of FY 1994  

SciTech Connect (OSTI)

This summary book is published annually on research supported by DOE`s Division of Chemical Sciences in the Office of Energy Research. Research in photochemical and radiation sciences, chemical physics, atomic physics, chemical energy, separations and analysis, heavy element chemistry, chemical engineering sciences, and advanced batteries is arranged according to national laboratories, offsite institutions, and small businesses. Goal is to add to the knowledge base on which existing and future efficient and safe energy technologies can evolve. The special facilities used in DOE laboratories are described. Indexes are provided (topics, institution, investigator).

Not Available

1994-12-01T23:59:59.000Z

233

PNNL Chemical Hydride Capabilities  

Broader source: Energy.gov (indexed) [DOE]

and surface reactions * High resolution transmission and analytical electron microscopy * Hydrogen charging system - Microchannel reformer technology for enhancing reaction...

234

Chemical Structure and Dynamics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2154-3 2154-3 UC-400 Annual Report 2000 Chemical Structure and Dynamics Steven D. Colson, Associate Director Robin S. McDowell, Program Manager and the Staff of the Chemical Structure and Dynamics Program April 2001 Prepared for the U.S. Department of Energy under Contract DE-AC06-76RL01830 Chemical Structure and Dynamics 2000 Annual Report Contents Chemical Structure and Dynamics 2000 Annual Report Chemical Structure and Dynamics 2000 Annual Report 1. Introduction Chemical Structure and Dynamics Program......................................................... 1-3 2. Reaction Mechanisms at Liquid Interfaces Structure and Reactivity of Ice Surfaces and Interfaces G. A. Kimmel, Z. Dohnálek, K. P. Stevenson, R. S. Smith,

235

Chemicals from Coal  

Science Journals Connector (OSTI)

...Mas-sachusetts Institute of Technology, 1974; J. B. Howard...Petras, in Coal Pro-cessing Technology (American Institute of Chem-ical...with the solidifcation of a fluid bituminous coal as it undergoes...Policy Analyst, Science and Technology Policy Office (Staff to the...

Arthur M. Squires

1976-02-20T23:59:59.000Z

236

Manufacturing Science and Technology: Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Meso-Machining Meso-Machining PDF format (182 kb) Sandia's Micro-Electro Discharge Machine (Micro-EDM) (above). On the upper right inset is the Micro-EDM electode in copper that was made with the LIGA (electroforming) process. On the lower right inset is a screen fabricated into .006 inch kovar sheet using the Micro-EDM electrode. The walls of the screen are .002 inch wide by .006 inch deep. Meso-machining technologies being developed at Sandia National Laboratories will help manufacturers improve a variety of production processes, tools, and components. Meso-machining will benefit the aerospace, automotive, biomedical, and defense industries by creating feature sizes from the 1 to 50 micron range. Sandia's Manufacturing Science and Technology Center is developing the

237

Manufacturing Science and Technology: Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LTCC multi-chip module LTCC multi-chip module A high density LTCC multi-chip module Electronic Packaging PDF format (150 kb) The Electronic Packaging technologies in the Thin Film, Vacuum, & Packaging Department are a resource for all aspects of microelectronic packaging. From design and layout to fabrication of prototype samples, the staff offers partners the opportunity for concurrent engineering and development of a variety of electronic packaging concepts. This includes assistance in selecting the most appropriate technology for manufacturing, analysis of performance characteristics and development of new and unique processes. Capabilities: Network Fabrication Low Temperature Co-Fired Ceramic (LTCC) Thick Film Thin Film Packaging and Assembly Chip Level Packaging MEMs Packaging

238

Reduce NOx and Improve Energy Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes how the Industrial Technologies Program NOx and Energy Assessment Tool (NxEAT) can help petroleum refining and chemical plants improve energy efficiency.

Not Available

2008-12-01T23:59:59.000Z

239

CHEMICAL UNIONS FORM ALLIANCE  

Science Journals Connector (OSTI)

CHEMICAL UNIONS FORM ALLIANCE ... The Paper, Allied-Industrial, Chemical & Energy "Workers International Union (PACE) and the United Steelworkers of America (USWA) are industrial unions that have similar histories and many chemical and petroleum industry members, say union officials. ... PACE has created strategic alliances with several companies, said PACE President Boydlfoung in a statement, adding that it made sense to try the same thing with other unions. ...

2004-03-15T23:59:59.000Z

240

Chemicals (2010 MECS)  

Broader source: Energy.gov [DOE]

Manufacturing Energy and Carbon Footprint for Chemicals Sector (NAICS 325) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014

Note: This page contains sample records for the topic "inventure chemical technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Biomass pyrolysis for chemicals.  

E-Print Network [OSTI]

??Biomass Pyrolysis for Chemicals The problems associated with the use of fossil fuels demand a transition to renewable sources (sun, wind, water, geothermal, biomass) for (more)

Wild, Paul de

2011-01-01T23:59:59.000Z

242

CHEMICAL MARKET PRICES  

Science Journals Connector (OSTI)

CHEMICAL MARKET PRICES ... Compiled from weekly current price listings in the Oil, Paint and Drug Reporter , with permission of the publisher under its copyright. ...

1941-11-10T23:59:59.000Z

243

CHEMICAL MARKET PRICES  

Science Journals Connector (OSTI)

CHEMICAL MARKET PRICES ... Compiled from weakly current price listings in the Oil, Paint and Drug Reporter, with permission of the publisher under its copyright. ...

1941-01-10T23:59:59.000Z

244

Chemical Market Prices  

Science Journals Connector (OSTI)

Chemical Market Prices ... Compiled from weekly current price listings in the Oil, Paint and Drug Reporter with permission of the publisher under its copyright. ...

1945-01-10T23:59:59.000Z

245

CHEMICAL MARKET PRICES  

Science Journals Connector (OSTI)

CHEMICAL MARKET PRICES ... Compiled from weekly current price listings in the Oil, Paint and Drug Reporter, with permission of the publisher under its copyright. ...

1941-10-10T23:59:59.000Z

246

CHEMICAL MARKET PRICES  

Science Journals Connector (OSTI)

CHEMICAL MARKET PRICES ... Compiled from weekly current price listings in the Oil, Paint and Drug Reporter , with permission of the publisher under its copyright. ...

1941-02-10T23:59:59.000Z

247

CHEMICAL MARKET PRICES  

Science Journals Connector (OSTI)

CHEMICAL MARKET PRICES ... Compiled from weekly current price listings in the Oil, Paint and Drug Reporter , with permission of the publisher under its copyright. ...

1941-03-10T23:59:59.000Z

248

Molecular Science and Technology (MST) Program The Taiwan International Graduate Program (TIGP), Academia Sinica  

E-Print Network [OSTI]

Molecular Science and Technology (MST) Program The Taiwan International Graduate Program (TIGP Science and Technology (MST) graduate program: (1) Chemical dynamics and molecular spectroscopy, and transient species, and covers mechanisms involved in photodissociation, reactive scattering, energy transfer

249

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology  

SciTech Connect (OSTI)

Objectives are listed and technical progress is summarized for contracts for field projects and supporting research on: chemical flooding, carbon dioxide injection, thermal/heavy oil, extraction technology, improved drilling technology, residual oil, and microbial enhanced oil recovery. (DLC)

Linville, B. (ed.)

1980-10-01T23:59:59.000Z

250

TECHNOLOGY LICENSE APPLICATION Office of Technology Transfer  

E-Print Network [OSTI]

Page 1 TECHNOLOGY LICENSE APPLICATION Office of Technology Transfer UT-Battelle, LLC (UT. One of the functions of UT-BATTELLE's Office of Technology Transfer is to negotiate license agreements

Pennycook, Steve

251

COMPARISON OF NICKEL AND IRON-BASED OXYGEN CARRIERS SUPPORTED ON ALUMINA IN SYNGAS-FUELED CHEMICAL LOOPING COMBUSTION.  

E-Print Network [OSTI]

??Chemical looping is considered as a novel technology capable of resolving both energy and environmental problems in combustion process. The possibility of using oxides of (more)

Najjarpour Jabbary, Farzin

2014-01-01T23:59:59.000Z

252

Hydrogen Technologies Group  

SciTech Connect (OSTI)

The Hydrogen Technologies Group at the National Renewable Energy Laboratory advances the Hydrogen Technologies and Systems Center's mission by researching a variety of hydrogen technologies.

Not Available

2008-03-01T23:59:59.000Z

253

Information Technology and Libraries  

E-Print Network [OSTI]

Sue Chesley Perry 196 INFORMATION TECHNOLOGY AND LIBRARIES |LITA - Library & Information Technology Association). Two of the 190 INFORMATION TECHNOLOGY AND LIBRARIES |

Hubble, Ann; Murphy, Deborah A.; Perry, Susan Chesley

2011-01-01T23:59:59.000Z

254

CHEMICAL ABBREVIATION KEY ABBREVIATION CHEMICAL NAME HAZARDS  

E-Print Network [OSTI]

Irritant destain Methanol,acetic acid,H2O Flammable, Corrosive - acid DI H2O Deionized water DCM Nitric acid Corrosive - acid KAc Potassium acetate Irritant KCl Potassium chloride Irritant K2H PO4 Corrosive - base LiCl Lithium chloride Harmful MeOH Methanol Flammable #12;CHEMICAL ABBREVIATION KEY

Pawlowski, Wojtek

255

Technology Transfer: Success Stories: Licensed Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Licensed Technologies Licensed Technologies Here are some of our licensees and the technologies they are commercializing; see our Start-Up Company page for more of our technology licenses. Company (Licensee) Technology Life Technologies Corp. Cell lines for breast cancer research Bristol Myers Squibb; Novartis; Plexxikon Inc.; Wyeth Research; GlaxoSmithKline; Johnson & Johnson; Boehringer Ingelheim Pharmaceuticals, Inc.; Genzyme Software for automated macromolecular crystallography Shell International Exploration and Production; ConnocoPhillips Company; StatOil ASA; Schlumburger Technology Corportation; BHP Billiton Ltd.; Chevron Energy Technology Company; EniTecnologie S.p.A. Geo-Hydrophysical modeling software Microsoft Home Energy Saver software distribution Kalinex Colorimetric bioassay

256

Vehicle Technologies Office: 2008 Advanced Vehicle Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

8 Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2008 Advanced...

257

Vehicle Technologies Office: 2009 Advanced Vehicle Technology...  

Office of Environmental Management (EM)

Vehicle Technologies Office: 2009 Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle...

258

Bulk chemicals from biomass Jacco van Haveren, Agrotechnology and Food Innovations B.V., Wageningen, The Netherlands  

E-Print Network [OSTI]

41 Review Bulk chemicals from biomass Jacco van Haveren, Agrotechnology and Food Innovations B production, and available biomass conversion technologies, biomass-based routes are expected to make and -caprolactam. Technologies involving direct isolation of aromatic building blocks from biomass

Grossmann, Ignacio E.

259

A Novel Chemical Nitrate Destruction Process  

SciTech Connect (OSTI)

Nitrates represent one of the most significant pollutant discharged to the Baltic Sea by the Sliiamae hydrometallurgical plant. This article contains a brief overview of the existing nitrate destruction technologies followed by the description of a new process developed by the authors. The new chemical process for nitrate destruction is cost effective and simple to operate. It converts the nitrate to nitrogen gas which goes to the atmosphere.

Dziewinski, J.; Marczak, S.

1999-03-01T23:59:59.000Z

260

Chemical modeling of exoplanet atmospheres  

E-Print Network [OSTI]

The past twenty years have revealed the diversity of planets that exist in the Universe. It turned out that most of exoplanets are different from the planets of our Solar System and thus, everything about them needs to be explored. Thanks to current observational technologies, we are able to determine some information about the atmospheric composition, the thermal structure and the dynamics of these exoplanets, but many questions remain still unanswered. To improve our knowledge about exoplanetary systems, more accurate observations are needed and that is why the Exoplanet Characterisation Observatory (EChO) is an essential space mission. Thanks to its large spectral coverage and high spectral resolution, EChO will provide exoplanetary spectra with an unprecedented accuracy, allowing to improve our understanding of exoplanets. In this work, we review what has been done to date concerning the chemical modeling of exoplanet atmospheres and what are the main characteristics of warm exoplanet atmospheres, which a...

Venot, Olivia

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "inventure chemical technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Separation technologies: Marketing factors  

SciTech Connect (OSTI)

The chemical and petroleum industries consume approximately 5.8 quads per year of energy. Within these industries, 43% of the energy is used by separation processes to recover and purify products. With 40,000 distillation columns in operation, distillation is used to make 95% of all separations in these two industries. Although separations are identified which are amenable to advanced separation technologies (that make distillation more energy-efficient), they are not implemented because of commercial barriers. The focus of this work was on barriers which can by overcome by implementing advanced separation-related technologies. Barriers were screened and prioritized, and Return On Investment (ROI) was calculated for each project designed to overcome a high priority barrier. Economic analyses were based on specific separations such as ethylene-ethane, propylene-propane, ethyl benzene-styrene, and ethanol-water. These separations were selected because they consume significant amounts of energy for separation. Thus, conclusions are based on a limited number of case studies; an approach necessary to complete this project within a reasonable time frame. Recommended projects are discussed and summarized.

Humphrey, J.L.; Seibert, A.F.; Goodpastor, C.V.

1991-12-01T23:59:59.000Z

262

THE AMERICAN CHEMICAL SOCIETY  

Science Journals Connector (OSTI)

...Reed, of the Illinois Geological Survey...Virginia-Carolina Chemical Corporation, Richmond...Board of Health, Madison, Wis. Division...Pennsylvania. Division of Chemical Education: Chairman...the University of Illinois; on execu-tive...from 10 or more plants were macerated...

1939-02-17T23:59:59.000Z

263

Chemical Signals Production  

E-Print Network [OSTI]

Chemical Signals · Types · Production · Transmission · Reception · Reading: Ch 10 except boxes 10.1 and 10.2 #12;What is chemical communication? · Movement of molecules from sender to receiver · Methods compounds are volatile. - 5-20 carbon compounds - carbon (MW=12) + hydrogen is less dense than oxygen (MW

Wilkinson, Gerald S.

264

Chemical Engineering Andrew Zydney  

E-Print Network [OSTI]

;ChE Employment (2003 at PSU) Merck Dow ExxonMob Air Products Amgen PPG Sunoco Kraft Foods NRC Procter, microelectronics, consumer products, biotechnology, fuels / energy, environmental engineering, etc. ·Chemical Engineers focus on the processes involved in making new products, including chemical reactions

Maranas, Costas

265

CHEMICAL SAFETY Emergency Numbers  

E-Print Network [OSTI]

- 1 - CHEMICAL SAFETY MANUAL 2010 #12;- 2 - Emergency Numbers UNBC Prince George Campus Security Prince George Campus Chemstores 6472 Chemical Safety 6472 Radiation Safety 5530 Biological Safety 5530 Risk and Safety Manager 5535 Security 7058 #12;- 3 - FOREWORD This reference manual outlines the safe

Bolch, Tobias

266

Manufacturing Science and Technology: Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Molding, Thermoforming & Compounding Molding, Thermoforming & Compounding PDF format (89 kb) The Manufacturing Science & Technology Center helps customers choose the best materials and techniques for their product by providing a variety of conformal coatings, thermoforming, and compounding materials using established or custom designed processes. The department provides consulting services for injection molding and rubber compounding projects. Capabilities: Thermoforming: Processing thermoplastics such as polycarbonate, polymethyl methacrylate, polypropylene polystyrene, and ABS; producing holding trays, protective caps, and custom covers Injection Molding Consultation: Designing your part to be injection molded, helping you choose the best material for your application, and supporting your interface with injection molding companies

267

Microreactor technology : scale-up of multiphase continuous flow chemistries  

E-Print Network [OSTI]

Microreactors have been demonstrated to provide many advantages over conventional process technologies for the synthesis of chemical compounds and kinetic studies at the laboratory scale. High heat and mass transfer rates, ...

Nieves Remacha, Mara Jos

2014-01-01T23:59:59.000Z

268

Enhanced Chemical Cleaning  

Broader source: Energy.gov (indexed) [DOE]

Chemical Cleaning Chemical Cleaning Renee H. Spires Enhanced Chemical Cleaning Project Manager July 29, 2009 Tank Waste Corporate Board 2 Objective Provide an overview of the ECC process and plan 3 Chemical Cleaning * Oxalic Acid can get tanks clean - Tank 16 set a standard in 1982 - Tanks 5-6 Bulk OA cleaning results under evaluation * However, the downstream flowsheet and financial impacts of handling the spent acid were unacceptable Before After Tank 16 Tank 16 4 Oxalic Acid Flowsheet Impacts Evap Sludge Washing Evap Feed/Drop Tank 8 Wt% Oxalic Acid Neutralization Tank Solids Liquid High oxalate concentration Negligible oxalate concentration * Oxalates from chemical cleaning impact salt processing * A process change was needed Evaporator Saltstone Vaults DWPF Filled Canisters 5 Vision * Eliminate the impacts to the Tank Farm

269

Technology Name  

Broader source: Energy.gov (indexed) [DOE]

Development Development DE-EM0000598 D&D KM-IT For the deployment of Information Technology for D&D knowledge management Page 1 of 2 Florida International University Florida D&D Knowledge Management Information Tool Challenge Deactivation and decommissioning (D&D) work is a high priority across the DOE Complex. The D&D community associated with the various DOE sites has gained extensive knowledge and experience over the years. To prevent the D&D knowledge and expertise from being lost over time an approach is needed to capture and maintain this valuable information in a universally available and easily usable system. Technical Solution The D&D KM-IT serves as a centralized repository

270

CSIR TECHNOLOGY AWARDS -2013  

E-Print Network [OSTI]

CSIR TECHNOLOGY AWARDS - 2013 GUIDELINES & PROFORMAE FOR NOMINATIONS Planning and Performance 2013 #12;CSIR TECHNOLOGY AWARDS BRIEF DETAILS ,,CSIR Technology Awards were instituted in 1990 to encourage multi-disciplinary in- house team efforts and external interaction for technology development

Jayaram, Bhyravabotla

271

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 21, quarter ending December 31, 1979  

SciTech Connect (OSTI)

Individual report are presented of contracts for field projects and supporting research on chemical flooding, CO/sub 2/ injection, thermal/heavy oil, resource assessment technology, improved drilling technology, residual oil, environment, and petroleum technology. (DLC)

Linville, B. (ed.)

1980-04-01T23:59:59.000Z

272

Lab Visits on DOE Technology Roadmap and the Technology Advisory...  

Office of Environmental Management (EM)

DOE Technology Roadmap and the Technology Advisory Board OCIO Technology Summit: High Performance Computing Lab Visits on DOE Technology Roadmap and the Technology Advisory Board...

273

Hydrogen Education Curriculum Path at Michigan Technological University  

SciTech Connect (OSTI)

The objective of this project was four-fold. First, we developed new courses in alternative energy and hydrogen laboratory and update existing courses in fuel cells. Secondly, we developed hydrogen technology degree programs. Thirdly, we developed hydrogen technology related course material for core courses in chemical engineering, mechanical engineering, and electrical engineering. Finally, we developed fuel cell subject material to supplement the Felder & Rousseau and the Geankoplis chemical engineering undergraduate textbooks.

Keith, Jason; Crowl, Daniel; Caspary, David; Naber, Jeff; Allen, Jeff; Mukerjee, Abhijit; Meng, Desheng; Lukowski, John; Solomon, Barry; Meldrum, Jay

2012-01-03T23:59:59.000Z

274

INL Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Transfer Through collaboration with industry partners, INL's Technology Deployment office makes available to American agencies and international organizations unique...

275

Energy Technology Solutions  

Broader source: Energy.gov [DOE]

Public-private partnerships transforming industry and list of commercialized technologies, knowledge-based results, and promising technologies

276

California Institute of Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

California Institute of Technology o Ivan Celanovic, Principal Research Scientist, Massachusetts Institute of Technology o Geoffrey Kinsey, Director, Photovoltaic...

277

Technology Validation Fact Sheet  

Broader source: Energy.gov [DOE]

Fact sheet produced by the Fuel Cell Technologies Office describing hydrogen and fuel cell technology validation efforts.

278

ITP Chemicals: Vision 2020 Technology Roadmap for Combinatroial...  

Broader source: Energy.gov (indexed) [DOE]

significantly limited as a tool for informatics, and human interface with visualization media is poor. Vendors have not shown much interest in developing different techniques and...

279

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program  

E-Print Network [OSTI]

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program publication is funded by the Division of asphalt pavements. TECHNOLOGY TRANSFER PROGRAM JULY 2010, VOL. 2, NO. 1 Warm Mix Asphalt Hits the Road, and California LTAP Field Engineer, Technology Transfer Program, Institute of Transportation Studies, UC Berkeley

California at Berkeley, University of

280

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program  

E-Print Network [OSTI]

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program publication is funded by the Division solve the very serious problem of waste tire disposal. TECHNOLOGY TRANSFER PROGRAM SEPTEMBER 2009, VOL, University of California Pavement Research Center, and California LTAP Field Engineer, Technology Transfer

California at Berkeley, University of

Note: This page contains sample records for the topic "inventure chemical technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Venus Technology Plan Venus Technology Plan  

E-Print Network [OSTI]

Venus Technology Plan May 2014 #12; ii Venus Technology Plan At the Venus Exploration a Roadmap for Venus Exploration (RVE) that is consistent with VEXAG priorities as well as Planetary Decadal Survey priorities, and (3) develop a Technology Plan for future Venus missions (after a Technology

Rathbun, Julie A.

282

NREL: Technology Transfer - Technology Partnership Agreements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Partnership Agreements Technology Partnership Agreements Through technology partnership agreements, NREL provides partners with technical support to help commercialize and deploy energy technologies and products. We do not fund any projects under a technology partnership agreement. The partner provides the necessary resources and covers our costs of providing technical services. NREL does provide funding opportunities through competitively placed contracts. For more information, see our business opportunities. Process The technology partnership agreement process basically includes 11 steps. See the NREL Technology Partnership Agreement Process flowchart. We are committed to working through these steps in a timely manner. Experience suggests that the fastest means to reach an agreement is through

283

Chemical process hazards analysis  

SciTech Connect (OSTI)

The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

NONE

1996-02-01T23:59:59.000Z

284

Specimen Curriculum for Chemical Engineering Focus Area: Chemical Engineering  

E-Print Network [OSTI]

Chemistry Chem 220B 3 hours Physical Chemistry Chem 230 3 hours Chemical Reactor Engineering ChBE 225 3Specimen Curriculum for Chemical Engineering Focus Area: Chemical Engineering Semester hours SOPHOMORE YEAR FALL SPRING Chem 219A

Bordenstein, Seth

285

Manufacturing Science and Technology: Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sol-Gel Glasses Sol-Gel Glasses PDF format (74 kb) Sol Gel Sol Gel Coating with Sol-Gel Glasses Coating with Sol-Gel Glasses The Manufacturing Science & Technology Center conducts process development and scale-up of ceramic and glass materials prepared by the sol-gel process. Sol-gel processing uses solutions prepared at low temperature rather than high temperature powder processing to make materials with controlled properties. A precursor sol-gel solution (sol) is either poured into a mold and allowed to gel or is diluted and applied to a substrate by spinning, dipping, spraying, electrophoresis, inkjet printing or roll coating. Controlled drying of the wet gel results in either a ceramic or glass bulk part or a thin film on a glass, plastic, ceramic or metal substrate.

286

Manufacturing Science and Technology: Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ion Beam Manufacture Ion Beam Manufacture PDF format (113 kb) Example sine wave FIB sputtered into initially planar Si substrate Example sine wave FIB sputtered into initially planar Si substrate Sandia Manufacturing Science & Technology's Focused Ion Beam (FIB) laboratory provides an opportunity for research, development and prototyping. Currently, our scientists are developing methods for ion beam sculpting microscale tools, components and devices. This includes shaping of specialty tools such as end-mills, turning tools and indenters. Many of these have been used in ultra-precision machining DOE applications. Additionally, staff are developing the capability to ion mill geometrically-complex features and substrates. This includes the ability to sputter predetermined curved shapes of various symmetries and

287

Manufacturing Science and Technology: Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 foot diameter cyanate ester / fiberglass laminated antenna 3 foot diameter cyanate ester / fiberglass laminated antenna 3 foot diameter cyanate ester / fiberglass laminated antenna Composites PDF format (145 kb) Polymer composite materials are composed of fibers in an organic matrix and can be useful in applications that require a high strength-to-weight ratio. Sandia's MS&T staff will work with you from part design, through mold and tooling design, and on through fabrication. The department is capable of fabricating small and large complex parts and will help you choose the most economical technique for your composite needs. Capabilities: The Center has a comprehensive program on the mechanical engineering design, tooling and fixturing, lay-out, complete processing of the composite structure, and technology transfer of composite structures for a

288

Manufacturing Science and Technology: Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laser Engineered Net Shaping(tm) Laser Engineered Net Shaping(tm) PDF format (140 kb) picture of processing blade Processing Blade Sandia National Laboratories has developed a new technology to fabricate three-dimensional metallic components directly from CAD solid models. This process, called Laser Engineered Net ShapingT (LENS®), exhibits enormous potential to revolutionize the way in which metal parts, such as complex prototypes, tooling, and small-lot production items, are produced. The process fabricates metal parts directly from the Computer Aided Design (CAD) solid models using a metal powder injected into a molten pool created by a focused, high-powered laser beam. Simultaneously, the substrate on which the deposition is occurring is scanned under the beam/powder interaction zone to fabricate the desired

289

massachusetts institute of technology your Door to  

E-Print Network [OSTI]

,200 | 1.5 ceus Overview of principles and technologies of continuous synthesis and purification of small and Purification of Pharmaceuticals and Fine Chemicals lead instructors: T. Jamison, K. Jensen July 8-10, 2013 | $2 between continuous or batch methods for a particular problem, automation, and scale-up strategies

Jackson, Daniel

290

Argonne Chemical Sciences & Engineering - People - Fundamental Interactions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemical Dynamics Chemical Dynamics Stephen T. Pratt, Senior Chemist and Group Leader phone: 630/252-4199, fax: 630/252-9292, e-mail: stpratt@anl.gov Michael J. Davis, Senior Chemist phone: 630/252-4802, fax: 630/252-9292, e-mail: davis@tcg.anl.gov Yuri Georgievski, Computational Chemistry Specialist phone: 630/252-3706, e-mail: ygeorgi@anl.gov Lawrence B. Harding, Argonne Distinguished Fellow phone: 630/252-3591, fax: 630/252-9292, email: harding@anl.gov Ph.D., Chemistry, California Institute of Technology Applications of ab initio electronic structure theory Theoretical chemical kinetics Stephen J. Klippenstein, Argonne Distinguished Fellow phone: 630/252-3596, fax: 630/252-9292, e-mail: sjk@anl.gov Ph.D., Theoretical Chemistry, California Institute of Technology Theoretical chemical kinetics

291

American Institute of Chemical Engineers Honors DOE Researcher | Department  

Broader source: Energy.gov (indexed) [DOE]

American Institute of Chemical Engineers Honors DOE Researcher American Institute of Chemical Engineers Honors DOE Researcher American Institute of Chemical Engineers Honors DOE Researcher August 6, 2009 - 1:00pm Addthis Washington, DC - For his efforts in modeling and simulating fluid-particle flows, a researcher at the Office of Fossil Energy's National Energy Technology Laboratory (NETL) has been selected to receive the American Institute of Chemical Engineers' (AIChE) Fluidized Processing Recognition Award. AIChE presents the award every two years to an AIChE member "who has made significant contribution to the science and technology of fluidization or fluidized processes and who has shown leadership in the engineering community." This year the award goes to Dr. Madhava Syamlal, Focus Area Leader for Computational and Basic Sciences at NETL. Dr. Syamlal will

292

American Institute of Chemical Engineers Honors DOE Researcher | Department  

Broader source: Energy.gov (indexed) [DOE]

American Institute of Chemical Engineers Honors DOE Researcher American Institute of Chemical Engineers Honors DOE Researcher American Institute of Chemical Engineers Honors DOE Researcher August 6, 2009 - 1:00pm Addthis Washington, DC - For his efforts in modeling and simulating fluid-particle flows, a researcher at the Office of Fossil Energy's National Energy Technology Laboratory (NETL) has been selected to receive the American Institute of Chemical Engineers' (AIChE) Fluidized Processing Recognition Award. AIChE presents the award every two years to an AIChE member "who has made significant contribution to the science and technology of fluidization or fluidized processes and who has shown leadership in the engineering community." This year the award goes to Dr. Madhava Syamlal, Focus Area Leader for Computational and Basic Sciences at NETL. Dr. Syamlal will

293

Chemical Evolution and Chemical State of the Long Valley Magma...  

Open Energy Info (EERE)

Magma Chamber Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Chemical Evolution and Chemical State of the Long Valley Magma Chamber Abstract...

294

Surface Chemical Dynamics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Surface Chemical Dynamics Surface Chemical Dynamics The goal of the Surface Chemical Dynamics Program is to elucidate the underlying physical processes that determine the products (selectivity) and yield (efficiency) of chemical transformations relevant to energy-related chemistry on catalytic and nanostructured surfaces. Achieving this end requires understanding the evolution of the reactant-molecule/surface complex as molecules adsorb, bonds dissociate, surface species diffuse, new bonds form and products desorb. The pathways and time scales of these processes are ultimately determined by a multidimensional potential energy surface that is a function of the geometric and electronic structures of the surface and the reactant, product, intermediate and transition-state molecular and atomic species.

295

Chemicals from Biomass  

Science Journals Connector (OSTI)

...Added Chemicals from Biomass. Volume I: Results of Screening for Potential Candidates from Sugars and Synthesis Gas (www1.eere.energy.gov/biomass/pdfs/35523.pdf) . 6. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical...

David R. Dodds; Richard A. Gross

2007-11-23T23:59:59.000Z

296

Western Chemical Information  

Science Journals Connector (OSTI)

Western Chemical Information ... For the most part, the units are small because production is geared to the needs of the 11 states, Washington, Oregon, California, Idaho, Nevada, Montana, Wyoming, Colorado, Utah, New Mexico, and Arizona, not to the entire country. ...

FREDERICK G. SAWYER

1949-10-17T23:59:59.000Z

297

Hybrid Combustion-Gasification Chemical Looping  

SciTech Connect (OSTI)

For the past several years Alstom Power Inc. (Alstom), a leading world-wide power system manufacturer and supplier, has been in the initial stages of developing an entirely new, ultra-clean, low cost, high efficiency power plant for the global power market. This new power plant concept is based on a hybrid combustion-gasification process utilizing high temperature chemical and thermal looping technology The process consists of the oxidation, reduction, carbonation, and calcination of calcium-based compounds, which chemically react with coal, biomass, or opportunity fuels in two chemical loops and one thermal loop. The chemical and thermal looping technology can be alternatively configured as (i) a combustion-based steam power plant with CO{sub 2} capture, (ii) a hybrid combustion-gasification process producing a syngas for gas turbines or fuel cells, or (iii) an integrated hybrid combustion-gasification process producing hydrogen for gas turbines, fuel cells or other hydrogen based applications while also producing a separate stream of CO{sub 2} for use or sequestration. In its most advanced configuration, this new concept offers the promise to become the technology link from today's Rankine cycle steam power plants to tomorrow's advanced energy plants. The objective of this work is to develop and verify the high temperature chemical and thermal looping process concept at a small-scale pilot facility in order to enable AL to design, construct and demonstrate a pre-commercial, prototype version of this advanced system. In support of this objective, Alstom and DOE started a multi-year program, under this contract. Before the contract started, in a preliminary phase (Phase 0) Alstom funded and built the required small-scale pilot facility (Process Development Unit, PDU) at its Power Plant Laboratories in Windsor, Connecticut. Construction was completed in calendar year 2003. The objective for Phase I was to develop the indirect combustion loop with CO{sub 2} separation, and also syngas production from coal with the calcium sulfide (CaS)/calcium sulfate (CaSO{sub 4}) loop utilizing the PDU facility. The results of Phase I were reported in Reference 1, 'Hybrid Combustion-Gasification Chemical Looping Coal Power Development Technology Development Phase I Report' The objective for Phase II was to develop the carbonate loop--lime (CaO)/calcium carbonate (CaCO{sub 3}) loop, integrate it with the gasification loop from Phase I, and ultimately demonstrate the feasibility of hydrogen production from the combined loops. The results of this program were reported in Reference 3, 'Hybrid Combustion-Gasification Chemical Looping Coal Power Development Technology Development Phase II Report'. The objective of Phase III is to operate the pilot plant to obtain enough engineering information to design a prototype of the commercial Chemical Looping concept. The activities include modifications to the Phase II Chemical Looping PDU, solids transportation studies, control and instrumentation studies and additional cold flow modeling. The deliverable is a report making recommendations for preliminary design guidelines for the prototype plant, results from the pilot plant testing and an update of the commercial plant economic estimates.

Herbert Andrus; Gregory Burns; John Chiu; Gregory Lijedahl; Peter Stromberg; Paul Thibeault

2009-01-07T23:59:59.000Z

298

IEEE NANOSCIENCE and TECHNOLOGY BROWN BAG  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PLEASE PLEASE JOIN US! NANOSCIENCE and TECHNOLOGY BROWN BAG Friday, 7 November 2008 Noon - 1 pm Columbia River Room (public access available) PNNL, ETB Building (Q Avenue, Richland, WA) speaker Dr. Meyya Meyyappan Chief Scientist for Exploration Technology, NASA Ames Research Center & IEEE Electron Devices Society Distinguished Lecturer presenting Nanotechnology in Chemical and Bio Sensor Systems Abstract: There are strong research programs in nanotechnology related to chemical sensors, electromechanical devices, actuators, biosensors, and other nanodevices in leading laboratories across the world which use nanomaterials and other molecularly-engineered approaches. In many cases, practical systems demand seamless integration of the nanodevice with higher order structures, for example, MEMS. Examples of this using carbon nanotube based chemical and biosensors

299

Biomass Technology Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biomass Technology Basics Biomass Technology Basics Biomass Technology Basics August 14, 2013 - 11:31am Addthis Photo of a pair of hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic matter such as plants, residue from agriculture and forestry, and the organic component of municipal and industrial wastes-that can now be used to produce fuels, chemicals, and power. Wood has been used to provide heat for thousands of years. This flexibility has resulted in increased use of biomass technologies. According to the Energy Information Administration, 53% of all renewable energy consumed in the United States was biomass-based in 2007. Biomass technologies break down organic matter to release stored energy from the sun. The process used depends on the type of biomass and its

300

Biomass Technology Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biomass Technology Basics Biomass Technology Basics Biomass Technology Basics August 14, 2013 - 11:31am Addthis Photo of a pair of hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic matter such as plants, residue from agriculture and forestry, and the organic component of municipal and industrial wastes-that can now be used to produce fuels, chemicals, and power. Wood has been used to provide heat for thousands of years. This flexibility has resulted in increased use of biomass technologies. According to the Energy Information Administration, 53% of all renewable energy consumed in the United States was biomass-based in 2007. Biomass technologies break down organic matter to release stored energy from the sun. The process used depends on the type of biomass and its

Note: This page contains sample records for the topic "inventure chemical technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1, No. 4 [http://eetd.lbl.gov/newsletter/nl43/] 1, No. 4 [http://eetd.lbl.gov/newsletter/nl43/] Environmental Energy Technologies Division News [http://eetd.lbl.gov/newsletter/] ©2013 Environmental Energy Technologies Division [http://eetd.lbl.gov/] E.O. Lawrence Berkeley National Laboratory [http://www.lbl.gov/] Disclaimer [http://www.lbl.gov/Disclaimers.html] SPRING 2013: VOL. 11, NO. 4 Deep Energy Retrofits Health-Based Ventilation Standard-Interview with Max Sherman Energy-Efficient School Districts Guide Nanometer Laser-Based Chemical Sensing Demand-to-Grid Lab Research Highlights Sources and Credits Research that examines how homes can save 70 percent or more of their energy use is this issue's cover story. EETD researchers studied several northern California homes whose owners implemented their own plans to make extreme reductions in energy consumption and found that

302

Pollution prevention drives membrane technologies  

SciTech Connect (OSTI)

Currently, such membrane technologies as crossflow micro-, ultra-, and nanofiltration, reverse osmosis, electrodialysis and pervaporation offer interesting possibilities, each tackling a specific aspect of pollution control. Although none of these methods can, on its own, alter or break down pollutants, each has the ability to separate, fractionate and concentrate contaminants. In addition, they: permit continuous, uninterrupted processing via automatic control; use far less energy than traditional treatment methods; require only minimal temperature changes and no chemical additives; exert no impact on contaminants, and keep them physically separated from the stream; and are easy to install, either alone or combined with other treatment systems, since they are modular and contain few moving parts. The paper discusses the benefits and disadvantages of membrane technology and recommends thorough testing.

Cartwright, P.

1994-09-01T23:59:59.000Z

303

PhD Chemical Engineering MS Chemical Engineering  

E-Print Network [OSTI]

: Challenges for Chemistry and Chemical Engineering", National Academies Press, Washington, DC, 2003. #12;2 B1 PhD Chemical Engineering MS Chemical Engineering Bylaws Gene and Linda Voiland School of Chemical Engineering and Bioengineering College of Engineering and Architecture Approved by Voiland School faculty

Collins, Gary S.

304

Sandia National Labs: Physical, Chemical and Nano Sciences Center (PCNSC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home Home About Us Departments News Partnering Research J. Charles Barbour J. Charles Barbour Director Beverly Eppinga Beverly A. Eppinga Sr. Mgt. Asst. DOI Research Briefs CINT Physical, Chemical, and Nano Sciences Center The Physical, Chemical, and Nano Sciences Center supports Sandia's mission by providing new scientific knowledge.We have two key activities: Support the National Nuclear Security Administration's (NNSA) mission with our unique expertise in science-based solutions Perform long-term research, particularly in the physical, chemical, and nano sciences that will enable future microsystems We focus on five technical thrusts: Science-Based Solutions for NNSA Mission Needs Collective Hierarchical Systems Compound Semiconductor Science and Technology Nanosciences

305

National toxicology program chemical nomination and selection process  

SciTech Connect (OSTI)

The National Toxicology Program (NTP) was organized to support national public health programs by initiating research designed to understand the physiological, metabolic, and genetic basis for chemical toxicity. The primary mandated responsibilities of NTP were in vivo and vitro toxicity testing of potentially hazardous chemicals; broadening the spectrum of toxicological information on known hazardous chemicals; validating current toxicological assay systems as well as developing new and innovative toxicity testing technology; and rapidly communicating test results to government agencies with regulatory responsibilities and to the medical and scientific communities. 2 figs.

Selkirk, J.K. [National Institute of Environmental Health Sciences, Research Triangle Park, NC (United States)

1990-12-31T23:59:59.000Z

306

NETL Technologies Recognized for Technology Development, Transfer |  

Broader source: Energy.gov (indexed) [DOE]

Recognized for Technology Development, Transfer Recognized for Technology Development, Transfer NETL Technologies Recognized for Technology Development, Transfer October 25, 2013 - 1:31pm Addthis Did you know? The Federal Laboratory Consortium for Technology Transfer is the nationwide network of federal laboratories that provides the forum to develop strategies and opportunities for linking laboratory mission technologies and expertise with the marketplace. In consonance with the Federal Technology Transfer Act of 1986 and related federal policy, the mission of the FLC is to promote and facilitate the rapid movement of federal laboratory research results and technologies into the mainstream of the U.S. economy. Learn more about the FLC. A great invention that sits on a shelf, gathering dust, benefits no one.

307

NREL: Technology Transfer - Technologies Available for Licensing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technologies Available for Licensing Technologies Available for Licensing Photo of NREL scientist in the NREL Hydrogen Lab. NREL's scientists and engineers develop award-winning technologies available for licensing. NREL scientists and engineers produce breakthrough and award-winning renewable energy and energy efficiency technologies that are available for licensing. We have many licensing opportunities for NREL-developed technologies, including our featured LED technologies. To see all our technologies available for licensing, visit the EERE Innovation Portal and search for NREL. Learn about our licensing agreement process. Contact For more information about licensing NREL-developed technologies, contact Eric Payne, 303-275-3166. Ombuds NREL strives to quickly resolve any issue or concern you may have regarding

308

Radiation and Chemical Risk Management [EVS Program Area]  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radiation and Chemical Risk Management Radiation and Chemical Risk Management EVS helps meet the challenge of protecting human health and the environment through the management of risk associated with radiation and chemicals in the environment. Protecting human health, welfare, and the environment in a world affected by energy production and technology is a global challenge. EVS helps to meet this challenge through research and analysis on the management of risk associated with radiation and chemicals in the environment. To improve the management of risk associated with nuclear and chemical materials and wastes at contaminated sites, we develop information and tools that support decision making related to health, safety, environmental, economic, and social-cultural concerns. Nuclear Materials and Waste Disposition

309

NREL: Energy Sciences - Chemical and Materials Science Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemical and Materials Science Staff Chemical and Materials Science Staff The Chemical and Materials Science staff members at the National Renewable Energy Laboratory work within one of five groups: the Chemical and Nanoscale Science Group, the Theoretical Materials Science Group, the Materials Science Group, the Process Technology and Advanced Concepts Group, and the Fuel Cells Group. Access the staff members' background, areas of expertise, and contact information below. Jao van de Lagemaat Director Marisa Howe Project Specialist Chemical & Nanoscale Science Group Nicole Campos Administrative Professional Paul Ackerman Natalia Azarova Brian Bailey Matthew C. Beard Matt Bergren Raghu N. Bhattacharya Julio Villanueva Cab Rebecca Callahan Russ Cormier Ryan Crisp Alex Dixon Andrew J. Ferguson Arthur J. Frank

310

Chemical Engineering Division research highlights, 1979  

SciTech Connect (OSTI)

In 1979, CEN conducted research and development in the following areas: (1) high-temperature, rechargeable lithium/iron sulfide batteries for electric vehicles and electric utility load leveling; (2) ambient-temperature batteries - improved lead-acid, nickel/zinc, and nickel/iron - for electric vehicles; (3) molten carbonate fuel cells for use by electric utilities; (4) coal technology - mainly fluidized-bed combustion of coal in the presence of SO/sub 2/ sorbent of limestone; (5) heat- and seed- recovery technology for open-cycle magnetohydrodynamic systems; (6) solar energy collectors and thermal energy storage; (7) fast breeder reactor chemistry research - chemical support of reactor safety studies, chemistry of irradiated fuels, and sodium technology; (8) fuel cycle technology - reprocessing of nuclear fuels, management of nuclear wastes, geologic migration studies, and proof-of-breeding studies for the Light Water Breeder Reactor; (9) magnetic fusion research - lithium processing technology and materials research; and (10) basic energy sciences - homogeneous catalysis, thermodynamics of inorganic and organic materials, environmental chemistry, electrochemistry, and physical properties of salt vapors. Separate abstracts were prepared for each of these areas.

None

1980-06-01T23:59:59.000Z

311

Fujita LaboratoryTokyo Instituteof Technology Tokyo Instituteof Technology  

E-Print Network [OSTI]

Fujita LaboratoryTokyo Instituteof Technology Tokyo Instituteof Technology Fujita LaboratoryTokyo Institute of Technology Tokyo Institute of Technology 231 #12;Fujita LaboratoryTokyo Instituteof Technology Tokyo Instituteof Technology 2 IT #12;Fujita LaboratoryTokyo Instituteof

312

Chemical Energy Storage  

Science Journals Connector (OSTI)

The oldest and most commonly practiced method to store solar energy is sensible heat storage. The underlying technology is well developed and the basic storage materials, water and rocks, are available ... curren...

H. P. Garg; S. C. Mullick; A. K. Bhargava

1985-01-01T23:59:59.000Z

313

Carbon Emissions: Chemicals Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Chemicals Industry Chemicals Industry Carbon Emissions in the Chemicals Industry The Industry at a Glance, 1994 (SIC Code: 28) Total Energy-Related Emissions: 78.3 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 21.1% -- Nonfuel Emissions: 12.0 MMTC Total First Use of Energy: 5,328 trillion Btu -- Pct. of All Manufacturers: 24.6% Energy Sources Used As Feedstocks: 2,297 trillion Btu -- LPG: 1,365 trillion Btu -- Natural Gas: 674 trillion Btu Carbon Intensity: 14.70 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 78.3 Natural Gas 32.1

314

Chemical Cleaning Program Review  

Broader source: Energy.gov (indexed) [DOE]

Chemical Cleaning Chemical Cleaning Program Review Neil Davis Deputy Program Manager Waste Removal & Tank Closure July 29, 2009 SRR-STI-2009-00464 2 Contents Regulatory drivers Process overview Preliminary results Lessons learned Path forward 3 Regulatory Drivers The Federal Facilities Agreement establishes milestones for the removal of bulk waste and closure of each non-compliant tank Per the Dispute Resolution: - "DOE shall complete operational closure of Tanks 19 and 18 by 12/31/2012" - "DOE shall complete operational closure of 4 tanks by 9/30/2015" SRR intention to close 4 tanks by 9/30/2010, or as soon as possible Tanks 5 & 6 will be 2 of the 4 tanks 4 Tank Closure Process Bulk Waste Removal Mechanical Heel Removal Chemical Cleaning Annulus

315

Chemical Label Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemical Label Information Chemical Label Information Chemical Name CAS No. NFPA 704 Label Data Hazard Information Health Fire Reactivity Other acetone 67641 1 3 0 Eye, skin and mucous membrane irritatiion. Central nervous system depression. chloroform 67663 2 0 0 CAR [1] and TERAT [2] Liver and kidney disorders. Eye and skin irritation. Central nervous system depression. Cardiac arrythmia. ethanol 64175 0 3 0 Skin and eye irritation. ethyl alcohol 64175 0 3 0 Skin and eye irritation. hydrofluoric acid 7664393 4 0 0 Acute [3] - Skin contact can lead to bone damage. Skin, eye and mucous membrane irritation. hydrogen peroxide (35 to 52%) 7722841 2 0 1 OX Very irritating to the skin, eye and respiratory tract. hydrogen peroxide (> 52%) 7722841 2 0 3 OX Extremely irritating to the skin, eye and respiratory tract.

316

Chemical Storage-Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage - Storage - Overview Ali T-Raissi, FSEC Hydrogen Storage Workshop Argonne National Laboratory, Argonne, Illinois August 14-15, 2002 Hydrogen Fuel - Attributes * H 2 +½ O 2 → H 2 O (1.23 V) * High gravimetric energy density: 27.1 Ah/g, based on LHV of 119.93 kJ/g * 1 wt % = 189.6 Wh/kg (0.7 V; i.e. η FC = 57%) * Li ion cells: 130-150 Wh/kg Chemical Hydrides - Definition * They are considered secondary storage methods in which the storage medium is expended - primary storage methods include reversible systems (e.g. MHs & C-nanostructures), GH 2 & LH 2 storage Chemical Hydrides - Definition (cont.) * The usual chemical hydride system is reaction of a reactant containing H in the "-1" oxidation state (hydride) with a reactant containing H in the "+1" oxidation

317

Modern Biomass Conversion Technologies  

Science Journals Connector (OSTI)

This article gives an overview of the state-of-the-art of key biomass conversion technologies currently deployed and technologies that may...2...capture and sequestration technology (CCS). In doing so, special at...

Andre Faaij

2006-03-01T23:59:59.000Z

318

Building Technologies Research and  

E-Print Network [OSTI]

Building Technologies Research and Integration Center Breaking new ground in energy efficiency #12;Building Technologies Research To enjoy a sustainable energy and environmental future, America must these enormous challenges. Today, through the Building Technologies and Research Integration Center (BTRIC

Oak Ridge National Laboratory

319

MHK Technologies/Pulse Stream 100 | Open Energy Information  

Open Energy Info (EERE)

Pulse Stream 100 Pulse Stream 100 < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Pulse Stream 100.jpg Technology Profile Primary Organization Pulse Tidal Ltd Project(s) where this technology is utilized *MHK Projects/Pulse Stream 100 Demonstration Project Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The 100kW Humber prototype system uses tidal streams to oscillate horizontal blades rather than extracting energy in the same way as a wind turbine through rotary blades. This mode of operation is the key to the device's unique access to shallow water and has so far shown that it can harness enough energy to power 70 homes. The device is connected to the national grid through nearby industrial process plant Millennium Inorganic Chemicals and Ethernet connected through neighbouring resin manufacturing company Cray Valley.

320

New Oxygen-Production Technology Proving Successful | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Oxygen-Production Technology Proving Successful Oxygen-Production Technology Proving Successful New Oxygen-Production Technology Proving Successful April 22, 2009 - 1:00pm Addthis Washington, DC -- The Office of Fossil Energy's National Energy Technology Laboratory (NETL) has partnered with Air Products and Chemicals Inc. of Allentown, Penn. to develop the Ion Transport Membrane (ITM) Oxygen, a revolutionary new oxygen-production technology that requires less energy and offers lower capital costs than conventional technologies. ITM Oxygen will enhance the performance of integrated gasification combined cycle (IGCC) power plants, as well as other gasification-based processes. The technology will also enhance the economics of oxy-fired combustion technologies, making it an attractive option for the capture of carbon

Note: This page contains sample records for the topic "inventure chemical technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Physical and Chemical Applications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

data image data image Physical and Chemical Applications Research in this area includes: Chemical analysis (femtosecond laser ablation). Advanced sensors (laser ultrasonics). Advanced materials and nanotechnology for clean energy- hydrogen storage, nanostructured organic light-emitting diodes, nanowires, and nanoparticles). Photons to fuels (biosynthetic pathways for generating hydrocarbon biofuels in photosynthetic organisms). Advanced Sensor Development Sensor-based control of industrial processes can help companies: Decrease production costs; Reduce waste of raw materials on manufacturing lines; Lower manufacturing downtime from equipment maintenance; Increase the energy efficiency of manufacturing processes; Detect equipment failure early, before it becomes a major liability;

322

Chemical Logging | Open Energy Information  

Open Energy Info (EERE)

Chemical Logging Chemical Logging Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Chemical Logging Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Well Log Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Presence and geochemical composition of fluid producing zones Thermal: Calcium-alkalinity ratios versus depth assist in defining warm and hot water aquifers Dictionary.png Chemical Logging: Chemical logging produces a chemical profile of the formation fluid within a well based on the measurement of changes in the chemical composition of the drilling fluid during drilling operations.

323

An Overview of Stationary Fuel Cell Technology  

SciTech Connect (OSTI)

Technology developments occurring in the past few years have resulted in the initial commercialization of phosphoric acid (PA) fuel cells. Ongoing research and development (R and D) promises further improvement in PA fuel cell technology, as well as the development of proton exchange membrane (PEM), molten carbonate (MC), and solid oxide (SO) fuel cell technologies. In the long run, this collection of fuel cell options will be able to serve a wide range of electric power and cogeneration applications. A fuel cell converts the chemical energy of a fuel into electrical energy without the use of a thermal cycle or rotating equipment. In contrast, most electrical generating devices (e.g., steam and gas turbine cycles, reciprocating engines) first convert chemical energy into thermal energy and then mechanical energy before finally generating electricity. Like a battery, a fuel cell is an electrochemical device, but there are important differences. Batteries store chemical energy and convert it into electrical energy on demand, until the chemical energy has been depleted. Depleted secondary batteries may be recharged by applying an external power source, while depleted primary batteries must be replaced. Fuel cells, on the other hand, will operate continuously, as long as they are externally supplied with a fuel and an oxidant.

DR Brown; R Jones

1999-03-23T23:59:59.000Z

324

Vehicle Technologies Office Merit Review 2014: Carbon Fiber Technology...  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Technologies Office Merit Review 2014: Carbon Fiber Technology Facility Vehicle Technologies Office Merit Review 2014: Carbon Fiber Technology Facility Presentation given...

325

Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Technologies Technologies Technologies October 7, 2013 - 10:20am Addthis The Federal Energy Management Program (FEMP) offers information about energy-efficient and renewable energy technologies through the following areas. Energy-Efficient Product Procurement: Find energy-efficient product requirements and technology, purchasing specifications, energy cost savings calculators, model contract language, and resources. Technology Deployment: Look up information about developing, measuring, and implementing new and underutilized technologies for energy management in the Federal Government. Renewable Energy: Read about renewable energy requirements, resources and technologies, project planning, purchasing renewable power, and more. See FEMP's other program areas. Addthis FEMP Home

326

Emerging Technologies Program  

Broader source: Energy.gov (indexed) [DOE]

Emerging Technologies Program Emerging Technologies Program Pat Phelan Program Manager patrick.phelan@ee.doe.gov (202)287-1906 April 2, 2013 Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov How ET Fits into BTO Research & Development * Develop technology roadmaps * Prioritize opportunities * Solicit and select innovative technology solutions * Collaborate with researchers * Solve technical barriers and test innovations to prove effectiveness * Measure and validate energy savings ET Mission: Accelerate the research, development and commercialization of emerging, high impact building technologies that are five years or less to market ready. 3 | Building Technologies Office eere.energy.gov

327

Partnerships and Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Partnerships and Technology Transfer User Facilities Visiting Us Contact Us Home About Us Success Stories Events News ORNL Inventors (internal only) Find a Technology Search go...

328

Technology Transfer Ombudsman Program  

Broader source: Energy.gov [DOE]

The Technology Transfer Commercialization Act of 2000, Public Law 106-404 (PDF) was enacted in November 2000. Pursuant to Section 11, Technology Partnerships Ombudsman, each DOE national...

329

Vehicle Technologies Office: News  

Broader source: Energy.gov [DOE]

EERE intends to issue, on behalf of its Fuel Cell Technologies Office, a Funding Opportunity Announcement (FOA) entitled "Fuel Cell Technologies Incubator: Innovations in Fuel Cell and Hydrogen...

330

Sandia Science & Technology Park  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

search this site Sandia Science & Technology Park An internationally recognized technology community Home Properties Center for Collaboration & Commercialization (C3) Available...

331

Window industry technology roadmap  

SciTech Connect (OSTI)

Technology roadmap describing technology vision, barriers, and RD and D goals and strategies compiled by window industry stakeholders and government agencies.

Brandegee

2000-04-27T23:59:59.000Z

332

Technology Partnering Mechanisms  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

expand a business with INL technologies, or require business support our Technology Transfer team is available to discuss the following contractual mechanisms: Cooperative...

333

Hydropower Program Technology Overview  

SciTech Connect (OSTI)

New fact sheets for the DOE Office of Power Technologies (OPT) that provide technology overviews, description of DOE programs, and market potential for each OPT program area.

Not Available

2001-10-01T23:59:59.000Z

334

Green Purchasing & Green Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Purchasing & Technology Goals 6 & 7: Green Purchasing & Green Technology Our goal is to purchase and use environmentally sustainable products whenever possible and to implement...

335

Technology and energy supply  

U.S. Energy Information Administration (EIA) Indexed Site

2010 Energy Conference Energy and the Economy Technology and Energy Transformation Science and Technology + Economics and Business + Society and Environment + Policy and...

336

Building Technologies Office Overview  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

data * Utilize energy performance data to inform decision making * Improve measurement and track and analyze results TECHNOLOGY TO MARKET TECHNOLOGY DEVELOPMENT 5...

337

Geothermal Technologies Subject Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

alike at: Introducing The Geothermal Technologies Subject Portal is sponsored by the Geothermal Technologies Program, DOE Energy Efficiency and Renewable Energy (EERE), and is...

338

Geothermal Technologies Legacy Collection  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

sponsored by DOE The Geothermal Technologies Subject Portal founding sponsorship by the Geothermal Technologies Program, DOE Energy Efficiency and Renewable Energy (EERE), and...

339

Technology Readiness Assessment Report  

Broader source: Energy.gov [DOE]

This document has been developed to guide individuals and teams that will be involved in conducting Technology Readiness Assessments (TRAs) and developing Technology Maturation Plans (TMPs) for the...

340

Technology Integration Overview  

Broader source: Energy.gov (indexed) [DOE]

Technology Integration Overview Dennis A. Smith - Clean Cities Deployment Connie Bezanson - Vehicle Education June 17, 2014 VEHICLE TECHNOLOGIES OFFICE This presentation does not...

Note: This page contains sample records for the topic "inventure chemical technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Integrated Technology Deployment  

Office of Energy Efficiency and Renewable Energy (EERE)

Integrated technology deployment is a comprehensive approach to implementing solutions that increase the use of energy efficiency and renewable energy technologies. Federal, state, and local...

342

Morgantown Energy Technology Center, technology summary  

SciTech Connect (OSTI)

This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Morgantown Energy Technology Center (METC). Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. METC`s R&D programs are focused on commercialization of technologies that will be carried out in the private sector. META has solicited two PRDAs for EM. The first, in the area of groundwater and soil technologies, resulted in twenty-one contact awards to private sector and university technology developers. The second PRDA solicited novel decontamination and decommissioning technologies and resulted in eighteen contract awards. In addition to the PRDAs, METC solicited the first EM ROA in 1993. The ROA solicited research in a broad range of EM-related topics including in situ remediation, characterization, sensors, and monitoring technologies, efficient separation technologies, mixed waste treatment technologies, and robotics. This document describes these technology development activities.

Not Available

1994-06-01T23:59:59.000Z

343

A New Generation Chemical Flooding Simulator  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NEW GENERATION CHEMICAL FLOODING SIMULATOR NEW GENERATION CHEMICAL FLOODING SIMULATOR Final Report for the Period Sept. 2001 - Aug. 2004 Semi-Annual Report for the Period April1, 2004 - August 30, 2004 by Gary A. Pope, Kamy Sepehrnoori, and Mojdeh Delshad January 2005 Work Performed under Contract No. DE-FC-26-00BC15314 Sue Mehlhoff, Project Manager U.S. Dept of Energy National Petroleum Technology Office One West Third Street, Suite 1400 Tulsa, OK 74103-3159 Prepared by Center for Petroleum and Geosystems Engineering The University of Texas at Austin Austin, TX 78712 ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal

344

Climate VISION: Private Sector Initiatives: Chemical Manufacturing:  

Office of Scientific and Technical Information (OSTI)

Resources & Links Resources & Links Software Tools Chemical Industry of the Future Tools & Publications The Industrial Technologies Program offers a wide array of publications, videos, software, and other information products for improving energy efficiency in the chemical industry. DOE BestPractices Software Tools DOE BestPractices offers a range of software tools and databases that help manufacturers assess their plant's steam, compressed air, motor, and process heating systems. DOE Plant Energy Profiler Industry experience has shown that many plant utility personnel do not have an adequate understanding of their energy cost structure and where the major focus should be for any energy savings program. This tool will address this need and enable an engineer assigned to a plant utility to

345

Chemical Methods for Ugnu Viscous Oils  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemical Methods for Ugnu Viscous Oils Chemical Methods for Ugnu Viscous Oils Project Number: DE-NT0006556 Final Report Period Covered: October, 2008-March, 2012 for U. S. Department of Energy National Energy Technology Laboratory Principal Investigator: Kishore K. Mohanty Department of Petroleum & Geosystems Engineering University of Texas at Austin CPE-3.168, 1 University Station, Mail Code C0300 Austin, Texas 78712 512-471-3077 (phone), 512-471-9605 (fax) mohanty@mail.utexas.edu June 5, 2012 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or

346

NETL: News Release - From Coal to Chemicals  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

May 13, 2003 May 13, 2003 From Coal to Chemicals... Successful Clean Coal-to-Methanol Project Boosts Prospects For "Multi-Product" Coal Plant - The Liquid Phase Methanol Plant at the Eastman Chemicals-from-Coal Complex - The Kingsport, Tenn., clean coal project operated virtually flawlessly throughout its demonstration period and continues its steady operations today. - KINGSPORT, TN - It was 35 years ago that a single word in the smash hit, coming-of-age movie The Graduate made cinema history: "plastics." As a baby-faced Dustin Hoffman learned, the future was "plastics." Now, largely because of one of the Department of Energy's most successful Clean Coal Technology projects, in the next 35 years, the future may well be "plastics?from coal."

347

Chemical Management (Volume 3 of 3)  

Broader source: Energy.gov (indexed) [DOE]

DOE-HDBK-1139/3-2005 April 2005 DOE HANDBOOK CHEMICAL MANAGEMENT (Volume 3 of 3) Consolidated Chemical User Safety and Health Requirements U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-HDBK-1139/3-2005 i This document has been reproduced directly from the best available copy. It is available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. It is available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161;

348

Dow Chemical Co | Open Energy Information  

Open Energy Info (EERE)

Co Co Jump to: navigation, search Name Dow Chemical Co Place Midland, Michigan Zip 48674 Sector Hydro, Hydrogen Product Michigan-based global chemical, plastic and agricultural products maker, working on hydrogen production technology with General Motors. Coordinates 38.597065°, -77.723064° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.597065,"lon":-77.723064,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

349

DECONTAMINATION TECHNOLOGIES FOR FACILITY REUSE  

SciTech Connect (OSTI)

As nuclear research and production facilities across the U.S. Department of Energy (DOE) nuclear weapons complex are slated for deactivation and decommissioning (D&D), there is a need to decontaminate some facilities for reuse for another mission or continued use for the same mission. Improved technologies available in the commercial sector and tested by the DOE can help solve the DOE's decontamination problems. Decontamination technologies include mechanical methods, such as shaving, scabbling, and blasting; application of chemicals; biological methods; and electrochemical techniques. Materials to be decontaminated are primarily concrete or metal. Concrete materials include walls, floors, ceilings, bio-shields, and fuel pools. Metallic materials include structural steel, valves, pipes, gloveboxes, reactors, and other equipment. Porous materials such as concrete can be contaminated throughout their structure, although contamination in concrete normally resides in the top quarter-inch below the surface. Metals are normally only contaminated on the surface. Contamination includes a variety of alpha, beta, and gamma-emitting radionuclides and can sometimes include heavy metals and organic contamination regulated by the Resource Conservation and Recovery Act (RCRA). This paper describes several advanced mechanical, chemical, and other methods to decontaminate structures, equipment, and materials.

Bossart, Steven J.; Blair, Danielle M.

2003-02-27T23:59:59.000Z

350

Experimental Program for the validation of the design of a 150KWth Chemical looping Combustion reactor system with main focus on the reactor flexibility and operability.  

E-Print Network [OSTI]

?? Chemical Looping Combustion is one of the most promising way to limit the CO2 release to the atmosphere among the other technologies for Carbon (more)

Ghorbaniyan, Masoud

2011-01-01T23:59:59.000Z

351

3 - Chemically derived graphene  

Science Journals Connector (OSTI)

Abstract: The synthesis of graphene via chemical functionalisation of graphite is reviewed, including investigations that unravelled the atomic structure of resulting graphene oxide (GO) sheets in the suspension. The fundamental properties of GO are discussed and a summary of recent advances in device applications is provided.

R.S. Sundaram

2014-01-01T23:59:59.000Z

352

Design for chemical recycling  

Science Journals Connector (OSTI)

...than design. Life-cycle assessment (LCA), resource envi- ronmental profile analysis...product from cradle to grave. Although LCA is considered to be an evaluation tool and...polyol from oil. 7. The design check using LCA In order to check that chemical recycling...

1997-01-01T23:59:59.000Z

353

Germany's Chemical Plans  

Science Journals Connector (OSTI)

THE DIRECTION OF PROPOSED PLANT investments in the German Federal Republic is on the brink of significant change, according to the 1956 picture of capital expenditure projects. Leading German chemical companies are spending less on new plants in L956 than ...

1956-07-23T23:59:59.000Z

354

Chemical Plant Expansion  

Science Journals Connector (OSTI)

Despite $4 billion of capital expenditure for plant expansion over the past seven years, a high level of construction activity is expected to continue ... A marked increase in capital expenditures of t h e six largest chemical companies too place in 1951 over 1950. ...

JOHN M. WEISS

1952-06-09T23:59:59.000Z

355

NETL - Chemical Looping Reactor  

ScienceCinema (OSTI)

NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

None

2014-06-26T23:59:59.000Z

356

Chemicals from Coal Coking  

Science Journals Connector (OSTI)

Chemicals from Coal Coking ... Since 2009, she has been at INCAR-CSIC, researching the preparation and characterization of carbon materials (cokes and fibers) and nanomaterials (nanotubes and graphenes) and their catalytic, environmental, and energy applications. ... He then joined the Fundamental Studies Section of the British Coke (later Carbonization) Research Association, eventually becoming Head of Fundamental Studies. ...

Marcos Granda; Clara Blanco; Patricia Alvarez; John W. Patrick; Rosa Menndez

2013-09-30T23:59:59.000Z

357

Chevron, GE form Technology Alliance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chevron, GE form Technology Alliance Chevron, GE form Technology Alliance The Chevron GE Technology Alliance will develop and commercialize valuable technologies to solve critical...

358

Recent Developments in the Conversion of Biomass to Renewable Fuels and Chemicals  

Science Journals Connector (OSTI)

The rapid and ongoing increase in consumption of petroleum for transportation fuels, chemicals and energy is not sustainable. Therefore, development of technology that uses agricultural, animal, forestry and muni...

Leo E. Manzer

2010-09-01T23:59:59.000Z

359

Study on modification of Cu-based oxygen carrier for chemical looping combustion  

Science Journals Connector (OSTI)

Chemical looping combustion (CLC) is a promising technology for...2O4...spinel, formed after the first few redox cycles, which is responsible for promoting the thermal stability of the oxygen carriers. SEM result...

Hou-yin Zhao; Yan Cao; William Orndorff

2013-09-01T23:59:59.000Z

360

Separation of carbon dioxide with the use of chemical-looping combustion and gasification of fuels  

Science Journals Connector (OSTI)

Matters regarding using new technology for chemical-looping combustion of fuels for solving the problem of...2 (CO2 sequestration) are discussed. The primary results of investigations and possible schemes for imp...

G. A. Ryabov; O. M. Folomeev; D. S. Litun; D. A. Sankin

2009-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "inventure chemical technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Plasma Enhanced Chemical Vapor Deposition on Living Substrates: Development, Characterization, and Biological Applications  

E-Print Network [OSTI]

This dissertation proposed the idea of plasma-enhanced chemical vapor deposition on living substrates (PECVD on living substrates) to bridge the gap between the thin film deposition technology and the biological and living substrates. This study...

Tsai, Tsung-Chan 1982-

2012-12-05T23:59:59.000Z

362

Rotary bed reactor for chemical-looping combustion with carbon capture  

E-Print Network [OSTI]

Chemical-looping combustion (CLC) is a novel and promising technology for power generation with inherent CO2 capture. Currently almost all the research has been focused on developing CLC based inter-connected fluidized bed ...

Zhao, Zhenlong

2012-01-01T23:59:59.000Z

363

Chemical and enzymatic tools to study proteins in their native cellular environment  

E-Print Network [OSTI]

A detailed understating of living systems requires methods to probe molecular processes in cells and whole organisms. A set of technologies that combines chemical and genetic probes have been developed to address the need ...

Yao, Jennifer Zhengzheng

2013-01-01T23:59:59.000Z

364

The Department of Chemical Engineering and Materials Science Michigan State University  

E-Print Network [OSTI]

environmental impacts and the highest efficiency of any chemical-to-electrical energy conversion technology the various factors affecting oxygen surface exchange. Persons with disabilities have the right to request

365

MIT Chemical Engineering http://web.mit.edu/cheme/  

E-Print Network [OSTI]

, Executive Officer, Hoyt C. Hottel Professor whgreen@mit.edu 25 Ames St. Building 66 Massachusetts Institute of Technology 77 Massachusetts Ave. Cambridge MA 02142 web.mit.edu/cheme/ MITChemEng MITChemE #12;MIT Chemical of solar cells printed on a sheet of paper. Recent News The MIT ChemE current and emeriti faculty includes

Barton, Paul I.

366

Hydraulic Fracturing Technology | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Oil & Gas » Shale Gas » Hydraulic Oil & Gas » Shale Gas » Hydraulic Fracturing Technology Hydraulic Fracturing Technology Image taken from "Shale Gas: Applying Technology to Solve America's Energy Challenges," NETL, 2011. Image taken from "Shale Gas: Applying Technology to Solve America's Energy Challenges," NETL, 2011. Hydraulic fracturing is a technique in which large volumes of water and sand, and small volumes of chemical additives are injected into low-permeability subsurface formations to increase oil or natural gas flow. The injection pressure of the pumped fluid creates fractures that enhance gas and fluid flow, and the sand or other coarse material holds the fractures open. Most of the injected fluid flows back to the wellbore and is pumped to the surface.

367

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

7, 2012 7, 2012 CX-009374: Categorical Exclusion Determination Development of a Carbon Dioxide Chemical Sensor for Downhole Carbon Dioxide Monitoring in Carbon Sequestration CX(s) Applied: B3.6 Date: 09/17/2012 Location(s): New Mexico Offices(s): National Energy Technology Laboratory September 17, 2012 CX-009373: Categorical Exclusion Determination Testing of an Advanced Dry Cooling Technology for Power Plants CX(s) Applied: B3.6 Date: 09/17/2012 Location(s): North Dakota Offices(s): National Energy Technology Laboratory September 17, 2012 CX-009372: Categorical Exclusion Determination Small Scale Coal-Biomass to Liquids Using Highly Selective Fischer-Tropsch Synthesis CX(s) Applied: A9 Date: 09/17/2012 Location(s): California Offices(s): National Energy Technology Laboratory

368

Fluidized Bed Technology - Overview | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Science & Innovation » Clean Coal » Advanced Combustion Science & Innovation » Clean Coal » Advanced Combustion Technologies » Fluidized Bed Technology - Overview Fluidized Bed Technology - Overview Fluidized beds suspend solid fuels on upward-blowing jets of air during the combustion process. The result is a turbulent mixing of gas and solids. The tumbling action, much like a bubbling fluid, provides more effective chemical reactions and heat transfer. Fluidized-bed combustion evolved from efforts to find a combustion process able to control pollutant emissions without external emission controls (such as scrubbers). The technology burns fuel at temperatures of 1,400 to 1,700 degrees F, well below the threshold where nitrogen oxides form (at approximately 2,500 degrees F, the nitrogen and oxygen atoms in the

369

Clean Diesel Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Diesel Technologies Inc Diesel Technologies Inc Jump to: navigation, search Name Clean Diesel Technologies Inc Place Stamford, Connecticut Zip 6901 Product Clean Diesel Technologies Inc is a specialty chemical company with patented products that reduce emissions from diesel engines while simultaneously improving fuel economy and power. Coordinates 42.75294°, -73.068531° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.75294,"lon":-73.068531,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

370

American Chemical Society Award Winners, Chicago, III.  

Science Journals Connector (OSTI)

American Chemical Society Award Winners, Chicago, III. ... Copyright 1970 American Chemical Society ...

1970-10-01T23:59:59.000Z

371

National Spill Test Technology Database  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Western Research Institute established, and ACRC continues to maintain, the National Spill Technology database to provide support to the Liquified Gaseous Fuels Spill Test Facility (now called the National HAZMAT Spill Center) as directed by Congress in Section 118(n) of the Superfund Amendments and Reauthorization Act of 1986 (SARA). The Albany County Research Corporation (ACRC) was established to make publicly funded data developed from research projects available to benefit public safety. The founders since 1987 have been investigating the behavior of toxic chemicals that are deliberately or accidentally spilled, educating emergency response organizations, and maintaining funding to conduct the research at the DOEs HAZMAT Spill Center (HSC) located on the Nevada Test Site. ACRC also supports DOE in collaborative research and development efforts mandated by Congress in the Clean Air Act Amendments. The data files are results of spill tests conducted at various times by the Silicones Environmental Health and Safety Council (SEHSC) and DOE, ANSUL, Dow Chemical, the Center for Chemical Process Safety (CCPS) and DOE, Lawrence Livermore National Laboratory (LLNL), OSHA, and DOT; DuPont, and the Western Research Institute (WRI), Desert Research Institute (DRI), and EPA. Each test data page contains one executable file for each test in the test series as well as a file named DOC.EXE that contains information documenting the test series. These executable files are actually self-extracting zip files that, when executed, create one or more comma separated value (CSV) text files containing the actual test data or other test information.

Sheesley, David (Western Research Institute)

372

Argonne Chemical Sciences & Engineering - 2002 Awards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Awards 2 Awards American Nuclear Society Outstanding Achievement Award, ANS Materials Science and Technology Division, James Laidler Chicago Innovation Award for rapid commercialization of I-125 Implant Seeds for prostate cancer, Chicago Innovation Awards LLC (Chicago Sun Times), Michael Kaminski and Luis Nunez FLC Award for Technology Transfer for the Argonne Autothermal Reforming Catalyst for Fuel Processors, Federal Laboratory Consortium, John Kopasz, Romesh Kumar, Shabbir Ahmed, Joong-Myeon Bae, John David Carter, Michael Krumpelt The University of Chicago Distinguished Performance Award, U of C, Eddie Gay "Exemplary Success" Award, Council for Chemical Research - Action Network for Research Collaboration for rapid commercialization of I-125 Implant Seeds for prostate cancer, Argonne National Laboratory

373

CSD: Research Programs: Chemical Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CSD: Research: Chemical Physics CSD: Research Programs: Chemical Physics CSD: Research: Chemical Physics CSD: Research Programs: Chemical Physics LBL Logo A-Z CSD Research Highlights CSD Directory Chemical Sciences Division A-Z Index Phone Book Search Berkeley Lab INTRODUCTION TO CSD NATIONAL FACILITIES & CENTERS RESEARCH PROGRAMS Atomic, Molecular & Optical Sciences Catalytic Science Chemical Physics The Glenn T. Seaborg Center (GTSC) STUDENT & POSTDOCTORAL OPPORTUNITIES NEWS & EVENTS CSD CONTACTS LBNL HOME Privacy & Security Notice DOE UC Berkeley CSD > Research Programs > Chemical Physics The Chemical Physics Program of the Chemical Science Division of LBNL is concerned with the development of both experimental and theoretical methodologies for studying molecular structure and dynamical processes at the most fundamental level, and with the application of these to specific

374

Work Practices for Chemical Fumehoods  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Practices for Chemical Fumehoods Practices for Chemical Fumehoods (Reviewed May 16, 2011) Always use a chemical fumehood when working with toxic and/or volatile chemicals, not on an open bench. Chemical fumehoods are designed to provide protection for the user from chemical and radiological contaminants. However, they do not absolutely eliminate exposure, even under ideal conditions. Careless work practices can result in considerable exposure to users who may believe they are protected. To optimize the performance of the chemical hood, adhere to the following work practices: 1. Ensure that your chemical hood has a current inspection sticker (dated within the last year). The face velocity should be between 80 and 120 linear feet per minute (lfpm). 2. Verify that the chemical hood is drawing air.

375

Additive Manufacturing Technologies  

Science Journals Connector (OSTI)

Rapid Prototyping is the construction of complex three-dimensional parts using additive manufacturing technology.

Jrgen Stampfl; Markus Hatzenbichler

2014-01-01T23:59:59.000Z

376

Calculus For Technology II  

E-Print Network [OSTI]

MA 22200, Spring 2012. Calculus For Technology II ... Other Information. Emergency procedures Exam info (A Hoffman)...

377

Tracers and Exploration Technologies  

Broader source: Energy.gov [DOE]

Below are the project presentations and respective peer review results for Tracers and Exploration Technologies.

378

The Technology & Innovation Centre  

E-Print Network [OSTI]

The Technology & Innovation Centre #12;The Technology and Innovation Centre revolutionises the way in Scotland and further afield ­ including power and energy, renewable technologies, photonics and sensors, for industry, the Technology and Innovation Centre has already attracted major partners including Scottish

Mottram, Nigel

379

UNIVERSITY of STRATHCLYDE TECHNOLOGY &  

E-Print Network [OSTI]

UNIVERSITY of STRATHCLYDE TECHNOLOGY & INNOVATION CENTRE #12;#12;#12;The Technology and Innovation HEALTH TECHNOLOGIES ADVANCED MANUFACTURING #12;Inspiring research and innovation with industry-by-side on innovative technology programmes aimed at addressing major challenges in: Low Carbon Power and Energy

Mottram, Nigel

380

General com Technology community  

E-Print Network [OSTI]

Campus IT General com m unity Technology community ITsystem owners Campus Council for Information Technology (CCFIT) · ~30 members · Advisory evaluation and review role · Input from faculty, staff, students formal representation on steering team and subcommittees Technology Support Program · Technology support

Ferrara, Katherine W.

Note: This page contains sample records for the topic "inventure chemical technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Predictive Maintenance Technologies  

Broader source: Energy.gov [DOE]

Several diagnostic technologies and best practices are available to assist Federal agencies with predictive maintenance programs.

382

DOE-Supported Project Advances Clean Coal, Carbon Capture Technology |  

Broader source: Energy.gov (indexed) [DOE]

DOE-Supported Project Advances Clean Coal, Carbon Capture DOE-Supported Project Advances Clean Coal, Carbon Capture Technology DOE-Supported Project Advances Clean Coal, Carbon Capture Technology January 29, 2013 - 12:00pm Addthis Washington, DC - Researchers at The Ohio State University (OSU) have successfully completed more than 200 hours of continuous operation of their patented Coal-Direct Chemical Looping (CDCL) technology - a one-step process to produce both electric power and high-purity carbon dioxide (CO2). The test, led by OSU Professor Liang-Shih Fan, represents the longest integrated operation of chemical looping technology anywhere in the world to date. The test was conducted at OSU's 25 kilowatt thermal (kWt) CDCL combustion sub-pilot unit under the auspices of DOE's Carbon Capture Program, which is developing innovative environmental control technologies to foster the

383

DOE-Supported Project Advances Clean Coal, Carbon Capture Technology |  

Broader source: Energy.gov (indexed) [DOE]

DOE-Supported Project Advances Clean Coal, Carbon Capture DOE-Supported Project Advances Clean Coal, Carbon Capture Technology DOE-Supported Project Advances Clean Coal, Carbon Capture Technology January 29, 2013 - 12:00pm Addthis Washington, DC - Researchers at The Ohio State University (OSU) have successfully completed more than 200 hours of continuous operation of their patented Coal-Direct Chemical Looping (CDCL) technology - a one-step process to produce both electric power and high-purity carbon dioxide (CO2). The test, led by OSU Professor Liang-Shih Fan, represents the longest integrated operation of chemical looping technology anywhere in the world to date. The test was conducted at OSU's 25 kilowatt thermal (kWt) CDCL combustion sub-pilot unit under the auspices of DOE's Carbon Capture Program, which is developing innovative environmental control technologies to foster the

384

Technology Transfer: About the Technology Transfer Department  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About the Technology Transfer and Intellectual Property Management About the Technology Transfer and Intellectual Property Management Department The Technology Transfer Department helps move technologies from the Lab to the marketplace to benefit society and the U. S. economy. We accomplish this through developing and managing an array of partnerships with the private and public sectors. What We Do We license a wide range of cutting-edge technologies to companies that have the financial, R & D, manufacturing, marketing, and managerial capabilities to successfully commercialize Lab inventions. In addition, we manage lab-industry research partnerships, ensure that inventions receive appropriate patent or copyright protection, license technology to start-up companies, distribute royalties to the Lab and to inventors and serve as

385

NREL: Technology Transfer - About Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About Technology Transfer About Technology Transfer Through technology partnerships, NREL seeks to reduce private sector risk and enable investment in the adoption of renewable energy and energy efficiency technologies. The transfer of these technologies to the marketplace helps displace oil, reduce carbon emissions, and increase U.S. industry competitiveness. Principles NREL develops and implements technology partnerships based on the standards established by the following principles: Balancing Public and Private Interest Form partnerships that serve the public interest and advance U.S. Department of Energy goals. Demonstrate appropriate stewardship of publicly funded assets, yielding national benefits. Provide value to the commercial partner. Focusing on Outcomes Develop mutually beneficial collaborations through processes, which are

386

Building Technologies Office: Webinars  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Webinars Webinars Printable Version Share this resource Send a link to Building Technologies Office: Webinars to someone by E-mail Share Building Technologies Office: Webinars on Facebook Tweet about Building Technologies Office: Webinars on Twitter Bookmark Building Technologies Office: Webinars on Google Bookmark Building Technologies Office: Webinars on Delicious Rank Building Technologies Office: Webinars on Digg Find More places to share Building Technologies Office: Webinars on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program Building Energy Software Tools Directory High Performance Buildings Database

387

Building Technologies Office: Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resources to someone by Resources to someone by E-mail Share Building Technologies Office: Resources on Facebook Tweet about Building Technologies Office: Resources on Twitter Bookmark Building Technologies Office: Resources on Google Bookmark Building Technologies Office: Resources on Delicious Rank Building Technologies Office: Resources on Digg Find More places to share Building Technologies Office: Resources on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Partner Log In Become a Partner Criteria Partner Locator Resources Housing Innovation Awards Events Guidelines for Home Energy Professionals Technology Research, Standards, & Codes

388

Soil washing technology evaluation  

SciTech Connect (OSTI)

Environmental Restoration Engineering (ERE) continues to review innovative, efficient, and cost effective technologies for SRS soil and/or groundwater remediation. As part of this effort, this technical evaluation provides review and the latest information on the technology for SRS soil remediation. Additional technology evaluation reports will be issued periodically to update these reports. The purpose of this report is to review the soil washing technology and its potential application to SRS soil remediation. To assess whether the Soil Washing technology is a viable option for SRS soil remediation, it is necessary to review the technology/process, technology advantages/limitations, performance, applications, and cost analysis.

Suer, A.

1995-04-01T23:59:59.000Z

389

Detection of concealed and buried chemicals by using multifrequency excitations  

SciTech Connect (OSTI)

In this paper, we present a new type of concealed and buried chemical detection system by stimulating and enhancing spectroscopic signatures with multifrequency excitations, which includes a low frequency gradient dc electric field, a high frequency microwave field, and higher frequency infrared (IR) radiations. Each excitation frequency plays a unique role. The microwave, which can penetrate into the underground and/or pass through the dielectric covers with low attenuation, could effectively transform its energy into the concealed and buried chemicals and increases its evaporation rate from the sample source. Subsequently, a gradient dc electric field, generated by a Van De Graaff generator, not only serves as a vapor accelerator for efficiently expediting the transportation process of the vapor release from the concealed and buried chemicals but also acts as a vapor concentrator for increasing the chemical concentrations in the detection area, which enables the trace level chemical detection. Finally, the stimulated and enhanced vapors on the surface are detected by the IR spectroscopic fingerprints. Our theoretical and experimental results demonstrate that more than sixfold increase in detection signal can be achieved by using this proposed technology. The proposed technology can also be used for standoff detection of concealed and buried chemicals by adding the remote IR and/or thermal spectroscopic and imaging detection systems.

Gao Yaohui; Chen, Meng-Ku; Yang, Chia-En; Chang, Yun-Ching; Yao, Jim; Cheng Jiping; Yin, Stuart [Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Hui Rongqing [Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, Kansas 66045 (United States); Ruffin, Paul; Brantley, Christina; Edwards, Eugene [US Army Aviation and Missile Research Development and Engineering Center Redstone Arsenal, Alabama 35898 (United States); Luo, Claire [General Opto Solutions, LLC State College, Pennsylvania 16803 (United States)

2010-08-15T23:59:59.000Z

390

Survey of Alternative Feedstocks for Commodity Chemical Manufacturing  

SciTech Connect (OSTI)

The current high prices for petroleum and natural gas have spurred the chemical industry to examine alternative feedstocks for the production of commodity chemicals. High feedstock prices have driven methanol and ammonia production offshore. The U.S. Chemical Industry is the largest user of natural gas in the country. Over the last 30 years, alternatives to conventional petroleum and natural gas feedstocks have been developed, but have limited, if any, commercial implementation in the United States. Alternative feedstocks under consideration include coal from unconventional processing technologies, such as gasification and liquefaction, novel resources such as biomass, stranded natural gas from unconventional reserves, and heavy oil from tar sands or oil shale. These feedstock sources have been evaluated with respect to the feasibility and readiness for production of the highest volume commodity chemicals in the United States. Sources of organic compounds, such as ethanol from sugar fermentation and bitumen-derived heavy crude are now being primarily exploited for fuels, rather than for chemical feedstocks. Overall, government-sponsored research into the use of alternatives to petroleum feedstocks focuses on use for power and transportation fuels rather than for chemical feedstocks. Research is needed to reduce cost and technical risk. Use of alternative feedstocks is more common outside the United States R&D efforts are needed to make these processes more efficient and less risky before becoming more common domestically. The status of alternative feedstock technology is summarized.

McFarlane, Joanna [ORNL; Robinson, Sharon M [ORNL

2008-02-01T23:59:59.000Z

391

10 Questions for a Chemical Engineer: Steven Sherman | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

10 Questions for a Chemical Engineer: Steven Sherman 10 Questions for a Chemical Engineer: Steven Sherman 10 Questions for a Chemical Engineer: Steven Sherman May 19, 2011 - 4:18pm Addthis Chemical Engineer Steven Sherman | Photo Courtesy of SRNL Chemical Engineer Steven Sherman | Photo Courtesy of SRNL Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs "These projects support the development and technological advancement of new ways to make the fuels and electrical power that we need to enable our way of life and to provide more environ-mentally sustainable ways of supporting ourselves." Dr. Steven Sherman, chemical engineer Hailing from Savannah River National Laboratory, Dr. Steven Sherman recently shared how he's working to develop bioenergy and nuclear energy technologies and how he's helping South Carolina advance its leadership

392

Chemically graftedChemically grafted nanoparticlesnanoparticles Quantum dot Nanoparticle  

E-Print Network [OSTI]

Chemically graftedChemically grafted nanoparticlesnanoparticles Quantum dot Nanoparticle (~ 5nm Pb atomic force microscope tip: tether nanoparticle to oxide dot, or H-terminated pit after HF etch Ebeam

Plotkin, Steven S.

393

Pretreatment Technology Plan  

SciTech Connect (OSTI)

This technology plan presents a strategy for the identification, evaluation, and development of technologies for the pretreatment of radioactive wastes stored in underground storage tanks at the Hanford Site. This strategy includes deployment of facilities and process development schedules to support the other program elements. This document also presents schedule information for alternative pretreatment systems: (1) the reference pretreatment technology development system, (2) an enhanced pretreatment technology development system, and (3) alternative pretreatment technology development systems.

Barker, S.A. [Westinghouse Hanford Co., Richland, WA (US); Thornhill, C.K.; Holton, L.K. Jr. [Pacific Northwest Lab., Richland, WA (US)

1993-03-01T23:59:59.000Z

394

NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Novel...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alloy for the Manufacture of Improved Coronary Stents Success Story NETL Technology Transfer Group techtransfer@netl.doe.gov Contact Partners A coronary stent is a small,...

395

NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Basic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Basic Immobilized Amine Sorbent (BIAS) Process Success Story NETL Technology Transfer Group techtransfer@netl.doe.gov Contact Capturing carbon dioxide (CO 2 ) from the flue or...

396

MSTC - Microsystems Science, Technology, and Components - Custom  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Custom Microsystems Solutions Custom Microsystems Solutions Microsystems Home Custom Microsystems Solutions Microsystems R&D Services Capabilities and Technologies Facilities Trusted Microsystems General Info About Us Awards Contacts Doing Business with Us Fact Sheets MESA News Custom Microsystems Solutions ASICS Chemical/Bio Sensors Custom Discretes MEMS Compound Semiconductors The breadth and depth of expertise, capabilities and facilities allows Sandia's Microsystems Center the flexibility to provide custom microsystem-based solutions. By integrating a diverse base of technologies, design expertise, and fabrication options we are able to develop unique solutions for the challenging and wide-ranging problems of today. Application-Specific Integrated Circuits (ASICs) Digital ASIC Mixed-Signal ASIC

397

Continuation of Crosscutting Technology Development at Cast  

SciTech Connect (OSTI)

This Final Technical Report describes progress made on the sub-projects awarded in the Cooperative Agreement DE-FC26-05NT42457: Continuation of Crosscutting Technology Development at Center for Advanced Separation Technologies (CAST). The final reports for each sub-project are attached in the appendix. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: a) Solid-solid separation b) Solid-liquid separation c) Chemical/Biological Extraction d) Modeling and Control, and e) Environmental Control.

Yoon, Roe-Hoan

2012-03-31T23:59:59.000Z

398

Hydrogen Technology Research at SRNL  

SciTech Connect (OSTI)

The Savannah River National Laboratory (SRNL) is a U.S. Department of Energy research and development laboratory located at the Savannah River Site (SRS) near Aiken, South Carolina. SRNL has over 50 years of experience in developing and applying hydrogen technology, both through its national defense activities as well as through its recent activities with the DOE Hydrogen Programs. The hydrogen technical staff at SRNL comprises over 90 scientists, engineers and technologists. SRNL has ongoing R&D initiatives in a variety of hydrogen storage areas, including metal hydrides, complex hydrides, chemical hydrides and carbon nanotubes. SRNL has over 25 years of experience in metal hydrides and solid-state hydrogen storage research, development and demonstration. As part of its defense mission at SRS, SRNL developed, designed, demonstrated and provides ongoing technical support for the largest hydrogen processing facility in the world based on the integrated use of metal hydrides for hydrogen storage, separation, and compression. The SRNL has been active in teaming with academic and industrial partners to advance hydrogen technology. A primary focus of SRNL's R&D has been hydrogen storage using metal and complex hydrides. SRNL and its Hydrogen Technology Research Laboratory have been very successful in leveraging their defense infrastructure, capabilities and investments to help solve this country's energy problems. SRNL has participated in projects to convert public transit and utility vehicles for operation using hydrogen fuel. Two major projects include the H2Fuel Bus and an Industrial Fuel Cell Vehicle (IFCV) also known as the GATOR{trademark}. Both of these projects were funded by DOE and cost shared by industry. These are discussed further in Section 3.0, Demonstration Projects. In addition to metal hydrides technology, the SRNL Hydrogen group has done extensive R&D in other hydrogen technologies, including membrane filters for H2 separation, doped carbon nanotubes, storage vessel design and optimization, chemical hydrides, hydrogen compressors and hydrogen production using nuclear energy. Several of these are discussed further in Section 2, SRNL Hydrogen Research and Development.

Danko, E.

2011-02-13T23:59:59.000Z

399

Chemical Sciences Division: Directory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

INTRODUCTION INTRODUCTION TO CSD NATIONAL FACILITIES & CENTERS RESEARCH STUDENT & POSTDOCTORAL OPPORTUNITIES NEWS & EVENTS CSD CONTACTS LBNL HOME Privacy & Security Notice DOE UC Berkeley CSD Directory A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A Rebecca Abergel CSD Project Scientist; The Glenn T. Seaborg Center. Musahid Ahmed CSD Staff Scientist, Chemical Physics Program/Chemical Dynamics Beamline Publications Richard A. Andersen Professor of Chemistry, UC Berkeley; CSD Senior Faculty Scientist, The Glenn T. Seaborg Center Publications John Arnold Professor of Chemistry, UC Berkeley; CSD Faculty Scientist, Catalytic Science Program Publications B Ali Belkacem CSD Deputy and Senior Staff Scientist; Atomic, Molecular and Optical Sciences Program Leader

400

Production of renewable jet fuel range alkanes and commodity chemicals from integrated catalytic  

E-Print Network [OSTI]

, carbohydrate hydrolysis and dehydration, and catalytic upgrading of platform chemicals. The technology centersProduction of renewable jet fuel range alkanes and commodity chemicals from integrated catalytic and subsequently upgrading these two platforms into a mixture of branched, linear, and cyclic alkanes of molecular

California at Riverside, University of

Note: This page contains sample records for the topic "inventure chemical technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Volatilities of Actinide and Lanthanide N,NDimethylaminodiboranate Chemical Vapor Deposition  

E-Print Network [OSTI]

, Supercomputing Institute, and Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Switzerland § The School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 South Mathews for technological applications such as capacitors, field effect transistors, displays, thermoelectric devices, light

Girolami, Gregory S.

402

Chemical composition of melanin  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemical composition of melanin Chemical composition of melanin Name: Peggy M Siemers Status: N/A Age: N/A Location: N/A Country: N/A Date: N/A Question: What is the chemical composition of Melanin by specific amino acids, or the DNA code for melanin? Replies: This is a good question! The answer is somewhat complex and I'm sure I don't have all the details but here goes... First, there is not a specific DNA code for melanin because like many biomolecules, it is not the result of a single gene product. People that are deficient in melanin are oculo/dermal albinos and I believe there have been seven different types of mutations. These different mutations reflect the multiple steps required to produce melanin. The original building block for melanin is tyrosine, one of the amino acids. This amino acid is modified by enzymes to produce the building block (monomer) for melanin synthesis by a process called polymerization that is also controlled by an enzyme. The polymers ,I believe, can attain diff3erent lengths and they can also form aggregates of different sizes alone and in combination with other molecules such as proteins. This is in part responsible for differences in coloration seen within and between individuals. NEWTON RULES

403

NETL: 2013 Conference Proceedings - 2013 NETL CO2 Capture Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2013 NETL CO2 Capture Technology Meeting 2013 NETL CO2 Capture Technology Meeting July 8-11, 2013 Previous Proceedings 2012: NETL CO2 Capture Technology Meeting 2011: NETL CO2 Capture Technology Meeting 2010: NETL CO2 Capture Technology Meeting 2009: Annual NETL CO2 Capture Technology for Existing Plants R&D Meeting Proceedings of the 2013 NETL CO2 Capture Technology Meeting Table of Contents Presentations Monday, July 8 Opening/Overview Post-Combustion Sorbent-Based Capture Tuesday, July 9 Post-Combustion Solvent-Based Capture CO2 Compression Wednesday, July 10 Post-Combustion Membrane-Based Capture Pre-Combustion Capture Projects Thursday, July 11 ARPA-E Capture Projects System Studies and Modeling Oxy-Combustion and Chemical Looping Posters PRESENTATIONS Monday, July 8, 2013 Opening/Overview Introduction [PDF-MB]

404

chemicals | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

coal-to-chemicals facilities in South Africa. To put chemicals production from coalpetcoke into context, refer to Figure 1, which shows the many potential products that can be...

405

CHEMICAL MAKERS INVEST IN SOLAR  

Science Journals Connector (OSTI)

CHEMICAL MAKERS INVEST IN SOLAR ... CAPACITY BOOST: New projects target raw materials and research ... The projects will increase capacity and advance research for chemical components of both traditional polysilicon solar cells and newer thin-film modules. ...

MELODY VOITH

2008-12-22T23:59:59.000Z

406

Marine and Hydrokinetic Technology Glossary  

Broader source: Energy.gov [DOE]

Learn about the basic technologies and key terms used to describe marine and hydrokinetic technologies.

407

Vehicle Technologies Office: News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News News Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: News to someone by E-mail Share Vehicle Technologies Office: News on Facebook Tweet about Vehicle Technologies Office: News on Twitter Bookmark Vehicle Technologies Office: News on Google Bookmark Vehicle Technologies Office: News on Delicious Rank Vehicle Technologies Office: News on Digg Find More places to share Vehicle Technologies Office: News on AddThis.com... Vehicle Technologies News Blog Newsletters Information for Media Subscribe to News Updates News December 18, 2013 USDA Offers $118 Million for Renewable Energy, Smart Grid Projects The U.S. Department of Agriculture (USDA) announced $73 million in funding for renewable energy projects and $45 million for smart grid technology as

408

Crosscutting Technology Development at the Center for Advanced Separation Technologies  

SciTech Connect (OSTI)

The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium -- Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno - that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/biological extraction; (4) Modeling and control; and (5) Environmental control. Distribution of funds is handled via competitive solicitation of research proposals through Site Coordinators at the seven member universities. These were first reviewed and ranked by a group of technical reviewers (selected primarily from industry). Based on these reviews, and an assessment of overall program requirements, the CAST Technical Committee made an initial selection/ranking of proposals and forwarded these to the DOE/NETL Project Officer for final review and approval. The successful projects are listed by category, along with brief abstracts of their aims and objectives.

Christopher Hull

2009-10-31T23:59:59.000Z

409

BUILDING A CHEMICAL LASER WEAPON  

Science Journals Connector (OSTI)

BUILDING A CHEMICAL LASER WEAPON ... Under fire, Airborne Laser program director confronts challenges of revolutionary weapons system ...

WILLIAM G. SCHULZ

2004-12-20T23:59:59.000Z

410

LLNL Chemical Kinetics Modeling Group  

SciTech Connect (OSTI)

The LLNL chemical kinetics modeling group has been responsible for much progress in the development of chemical kinetic models for practical fuels. The group began its work in the early 1970s, developing chemical kinetic models for methane, ethane, ethanol and halogenated inhibitors. Most recently, it has been developing chemical kinetic models for large n-alkanes, cycloalkanes, hexenes, and large methyl esters. These component models are needed to represent gasoline, diesel, jet, and oil-sand-derived fuels.

Pitz, W J; Westbrook, C K; Mehl, M; Herbinet, O; Curran, H J; Silke, E J

2008-09-24T23:59:59.000Z

411

Naming chemical compounds: Calculator drill  

Science Journals Connector (OSTI)

36. Bits and pieces, 13. A calculator can be programmed to drill students on chemical compound naming rules.

David Holdsworth; Evelyn Lacanienta

1983-01-01T23:59:59.000Z

412

Argonne Chemical Sciences & Engineering - People - Catalysis and Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Management and Support Management and Support Heterogeneous Catalysis Homogeneous Catalysis Fuel Cell Engineering Hydrogen and Fuel Cell Materials Ceramic Electrochemistry Electrochemical Projects Support Management and Support Theodore R. Krause, Chemical Engineer and Department Manager phone: 630/252-4356, fax: 630/972-4463, e-mail: krauset@anl.gov PhD, Chemical Engineering, University of Delaware Catalyst formulations and characterization Reaction kinetics Catalyst fundamentals Hydrogen production technologies Laurie A. Carbaugh, Administrative Secretary phone: 630/252-7556, fax: 630/252-9917, e-mail: laurie.carbaugh@anl.gov Romesh Kumar, Senior Chemical Engineer phone: 630/252-4342, fax: 630/252-4176, e-mail: kumar@anl.gov PhD, Chemical Engineering, University of California, Berkeley

413

Argonne Chemical Sciences & Engineering - People - Nuclear and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemical Analysis and Research Chemical Analysis and Research John F. Schneider, Analytical Chemist and Group Leader phone: 630/252-8923, fax: 630/252-4886, e-mail: jschneider@anl.gov M.S., Analytical Chemistry, Northern Illinois University Chemical sensor systems Spectroscopy, chromatography Environmental chemistry Analytical instrument development Laura R. Skubal, Environmental Engineer phone: 630/252-0931, e-mail: lskubal@anl.gov Ph.D., Environmental Engineering Chemical detection technology development Photochemistry applications Sensor development Water/soil/hazardous waste chemistry Michelle S. Applebee, STA, Faculty Appointee phone: 630/252-1735, e-mail: mapplebee@anl.gov Dean A. Bass, STA, Chemist phone: 630/252-1735, e-mail: bass@anl.gov Kenneth L. Brubaker, STA, Physical Chemist phone: 630/252-7585, e-mail: kbrubaker@anl.gov

414

Molecular Dynamics Simulations of Solutions at Constant Chemical Potential  

E-Print Network [OSTI]

Molecular Dynamics studies of chemical processes in solution are of great value in a wide spectrum of applications, that range from nano-technology to pharmaceutical chemistry. However, these calculations are affected by severe finite-size effects, such as the solution being depleted as the chemical process proceeds, that influence the outcome of the simulations. To overcome these limitations, one must allow the system to exchange molecules with a macroscopic reservoir, thus sampling a Grand-Canonical ensemble. Despite the fact that different remedies have been proposed, this still represents a key challenge in molecular simulations. In the present work we propose the C$\\mu$MD method, which introduces an external force that controls the environment of the chemical process of interest. This external force, drawing molecules from a finite reservoir, maintains the chemical potential constant in the region where the process takes place. We have applied the C$\\mu$MD method to the paradigmatic case of urea crystall...

Perego, Claudio; Parrinello, Michele

2015-01-01T23:59:59.000Z

415

Micropyrolyzer for chemical analysis of liquid and solid samples  

DOE Patents [OSTI]

A micropyrolyzer has applications to pyrolysis, heated chemistry, and thermal desorption from liquid or solid samples. The micropyrolyzer can be fabricated from semiconductor materials and metals using standard integrated circuit technologies. The micropyrolyzer enables very small volume samples of less than 3 microliters and high sample heating rates of greater than 20.degree. C. per millisecond. A portable analyzer for the field analysis of liquid and solid samples can be realized when the micropyrolyzer is combined with a chemical preconcentrator, chemical separator, and chemical detector. Such a portable analyzer can be used in a variety of government and industrial applications, such as non-proliferation monitoring, chemical and biological warfare detection, industrial process control, water and air quality monitoring, and industrial hygiene.

Mowry, Curtis D. (Albuquerque, NM); Morgan, Catherine H. (Ann Arbor, MI); Manginell, Ronald P. (Albuquerque, NM); Frye-Mason, Gregory C. (Cedar Crest, NM)

2006-07-18T23:59:59.000Z

416

NREL: Technology Transfer - Agreements for Commercializing Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Agreements for Commercializing Technology Agreements for Commercializing Technology NREL uses Agreements for Commercializing Technology (ACT) when a partner seeks highly-specialized or technical services to complete a project. An ACT agreement also authorizes participating contractor-operated DOE laboratories, such as NREL, to partner with businesses using more flexible terms that are aligned with industry practice. The agreement type used depends on the business, and the specific partnership selected is determined on a case-by-case basis. Benefits The benefits of Agreements for Commercializing Technology include: Intellectual Property Rights. ACT provides a more flexible framework for negotiation of intellectual property rights to facilitate moving technology from the laboratory to the marketplace as quickly as possible.

417

ANALYTICAL METHODS in CHEMICAL ECOLOGY  

E-Print Network [OSTI]

ANALYTICAL METHODS in CHEMICAL ECOLOGY a post graduate course (doktorandkurs) when: February 10 ­ 28, 2014 where: Chemical Ecology, Plant Protection Biology, Swedish University of Agriculture (SLU to modern analytical methods used in Chemical Ecological and Ecotoxicological research, such as: methods

418

Nuclear Science & Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Science & Technology Nuclear Science & Technology Nuclear Science & Technology1354608000000Nuclear Science & TechnologySome of these resources are LANL-only and will require Remote Access. /No/ Nuclear Science & Technology Some of these resources are LANL-only and will require Remote Access. Key Resources Databases Organizations Journals Key Resources International Atomic Energy Agency IAEA scientific and technical publications cover areas of nuclear power, radiation therapy, nuclear security, nuclear law, and emergency repose. Search under Publications/Books and Reports for scientific books, standards, technical guides and reports National Nuclear Data Center Nuclear physics data for basic nuclear research and for applied nuclear technologies, operated by Brookhaven.

419

Building Technologies Office Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Roland Risser Roland Risser Director, Building Technologies Office Building Technologies Office Energy Efficiency Starts Here. 2 Building Technologies Office Integrated Approach: Improving Building Performance Research & Development Developing High Impact Technologies Standards & Codes Locking in the Savings Market Stimulation Accelerating Tech-to- Market 3 Building Technologies Office Goal: Reduce building energy use by 50% (compared to a 2010 baseline) 4 Building Technologies Office Working to Overcome Challenges Information Access * Develop building performance tools, techniques, and success stories, such as case studies * Form market partnerships and programs to share best practices * Solution Centers * Certify the workforce to ensure quality work

420

Vehicle Technologies Office: Ambassadors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ambassadors to someone Ambassadors to someone by E-mail Share Vehicle Technologies Office: Ambassadors on Facebook Tweet about Vehicle Technologies Office: Ambassadors on Twitter Bookmark Vehicle Technologies Office: Ambassadors on Google Bookmark Vehicle Technologies Office: Ambassadors on Delicious Rank Vehicle Technologies Office: Ambassadors on Digg Find More places to share Vehicle Technologies Office: Ambassadors on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness Workforce Development Plug-in Electric Vehicle Basics Ambassadors Workplace Charging Challenge Clean Cities Coalitions Clean Cities logo. Clean Cities National: A network of nearly 100 Clean Cities coalitions, supported by the

Note: This page contains sample records for the topic "inventure chemical technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

ASPECT Emergency Response Chemical and Radiological Mapping  

SciTech Connect (OSTI)

A unique airborne emergency response tool, ASPECT is a Los Alamos/U.S. Environmental Protection Agency project that can put chemical and radiological mapping tools in the air over an accident scene. The name ASPECT is an acronym for Airborne Spectral Photometric Environmental Collection Technology. Update, Sept. 19, 2008: Flying over storm-damaged refineries and chemical factories, a twin-engine plane carrying the ASPECT (Airborne Spectral Photometric Environmental Collection Technology) system has been on duty throughout the recent hurricanes that have swept the Florida and Gulf Coast areas. ASPECT is a project of the U.S. U.S. Environmental Protection Agencys National Decontamination Team. Los Alamos National Laboratory leads a science and technology program supporting the EPA and the ASPECT aircraft. Casting about with a combination of airborne photography and infrared spectroscopy, the highly instrumented plane provides emergency responders on the ground with a clear concept of where danger lies, and the nature of the sometimes-invisible plumes that could otherwise kill them. ASPECT is the nations only 24/7 emergency response aircraft with chemical plume mapping capability. Bob Kroutil of Bioscience Division is the project leader, and while he said the team has put in long hours, both on the ground and in the air, its a worthwhile effort. The plane flew over 320 targeted sites in four days, he noted. Prior to the deployment to the Gulf Coast, the plane had been monitoring the Democratic National Convention in Denver, Colorado. Los Alamos National Laboratory Divisions that are supporting ASPECT include, in addition to B-Division, CTN-5: Networking Engineering and IRM-CAS: Communication, Arts, and Services. Leslie Mansell, CTN-5, and Marilyn Pruitt, IRM-CAS, were recognized the the U.S. EPA for their outstanding support to the hurricane response of Gustav in Louisiana and Ike in Texas. The information from the data collected in the most recent event, Hurricane Ike, was sent to the EPA Region 6 Rapid Needs Assessment and the State of Texas Joint Field Office in Austin, Texas. It appears that though there is considerable damage in Galveston and Texas City, there are fewer chemical leaks than during either hurricanes Katrina or Rita. Specific information gathered from the data was reported out to the U.S. Environmental Protection Agency Headquarters, the Federal Emergency Management Agency, the Department of Homeland Security, and the State of Texas Emergency Management Agency.

LANL

2008-05-12T23:59:59.000Z

422

5 - Introduction to Coal Utilization Technologies  

Science Journals Connector (OSTI)

Publisher Summary The primary applications for coal use became electricity generation and the production of iron and steel. Coal has varied uses in the industrial sector for producing steam and electricity and also some chemicals are produced from coal. This chapter introduces the technologies and explains the processes for generating power, heat, coke, and chemicals including carbonization, combustion, liquefaction and gasification. These are referred to as grand processes in coal utilization and are explained in detail under separate sections. A brief history on the history of the processes and designs are provided with figures. The modern designs and processes are explained further with diagrams and the different boiler types and their relevance in technologies are available. The chemical processes involved in coal combustion, the involved and characteristics are summarized in table. Emphasis is also made on coal combustion and sets the stage for further reading on clean coal technologies in later portion of the book. Several direct liquefaction processes are introduced in this chapter. Although these are important, however, there are other processes conceived and researched.

Bruce G. Miller

2011-01-01T23:59:59.000Z

423

Chapter 5 - Technologies for Coal Utilization  

Science Journals Connector (OSTI)

Publisher Summary This chapter deals with the technologies for coal utilization. Coal use in the United States had been primarily for iron and steel production, locomotives for transportation, and household heat. In addition, many chemicals, including medicines, dyes, flavorings, ammonia, and explosives were produced from coal. Coal is used in the industrial sector for producing steam and to a lesser extent electricity, and some chemicals are produced from coal. The chapter explores the technologies used for generating power, heat, coke, and chemicals and includes combustion, carbonization, gasification, and liquefaction, which have been referred to as the four grand processes of coal utilization. Advances in materials of construction, system designs, and fuel firing have led to increasing capacity and higher steam operating temperatures and pressures. In the United States, utilities typically choose between two basic pulverized coal-fired watertube steam generators: subcritical drum-type boilers with nominal operating pressures of either 1900 or 2600 psig or once-through supercritical units operating at 3800 psig advances. The chapter concludes by emphasizing on coal combustion, as this technology is the single largest user of coal.

Bruce G. Miller

2005-01-01T23:59:59.000Z

424

Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training & Technology Solutions  

E-Print Network [OSTI]

Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training & Technology Solutions 718-997-4875 ~ training@qc.cuny.edu ~ I-Bldg 214 Advisor Center Navigation: Login #12;Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training

Johnson Jr.,, Ray

425

Chemical kinetics modeling  

SciTech Connect (OSTI)

This project emphasizes numerical modeling of chemical kinetics of combustion, including applications in both practical combustion systems and in controlled laboratory experiments. Elementary reaction rate parameters are combined into mechanisms which then describe the overall reaction of the fuels being studied. Detailed sensitivity analyses are used to identify those reaction rates and product species distributions to which the results are most sensitive and therefore warrant the greatest attention from other experimental and theoretical research programs. Experimental data from a variety of environments are combined together to validate the reaction mechanisms, including results from laminar flames, shock tubes, flow systems, detonations, and even internal combustion engines.

Westbrook, C.K.; Pitz, W.J. [Lawrence Livermore National Laboratory, CA (United States)

1993-12-01T23:59:59.000Z

426

Chemical sensing flow probe  

DOE Patents [OSTI]

A new chemical probe determines the properties of an analyte using the light absorption of the products of a reagent/analyte reaction. The probe places a small reaction volume in contact with a large analyte volume. Analyte diffuses into the reaction volume. Reagent is selectively supplied to the reaction volume. The light absorption of the reaction in the reaction volume indicates properties of the original analyte. The probe is suitable for repeated use in remote or hostile environments. It does not require physical sampling of the analyte or result in significant regent contamination of the analyte reservoir.

Laguna, George R. (Albuquerque, NM); Peter, Frank J. (Albuquerque, NM); Butler, Michael A. (Albuquerque, NM)

1999-01-01T23:59:59.000Z

427

Chemical Hydrogen Storage Research and Development | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Chemical Hydrogen Storage Research and Development Chemical Hydrogen Storage Research and Development DOE's chemical hydrogen storage R&D is focused on developing low-cost...

428

Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Technologies Technologies Technologies November 1, 2013 - 11:40am Addthis Distributed energy (DE) technologies consist primarily of energy generation and storage systems placed at or near the point of use. DE provides consumers with greater reliability, adequate power quality, and the possibility to participate in competitive electric power markets. DE also has the potential to mitigate congestion in transmission lines, control price fluctuations, strengthen energy security, and provide greater stability to the electricity grid. The use of DE technologies can lead to lower emissions and, particularly in combined heat and power (CHP) applications, to improved efficiency. Example of a thermally activated energy conversion technology (TAT) -- a type of distributed energy technology. Distributed energy technologies consist primarily of energy generation and storage systems placed at or near the point of use. This gas engine-driven heat pump is operating on a rooftop.

429

Vehicle Technologies Office: Lubricants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lubricants to someone by Lubricants to someone by E-mail Share Vehicle Technologies Office: Lubricants on Facebook Tweet about Vehicle Technologies Office: Lubricants on Twitter Bookmark Vehicle Technologies Office: Lubricants on Google Bookmark Vehicle Technologies Office: Lubricants on Delicious Rank Vehicle Technologies Office: Lubricants on Digg Find More places to share Vehicle Technologies Office: Lubricants on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Fuel Effects on Combustion Lubricants Natural Gas Research Biofuels End-Use Research Materials Technologies Lubricants As most vehicles are on the road for more than 15 years before they are retired, investigating technologies that will improve today's vehicles is

430

Diversity and Technological Progress  

E-Print Network [OSTI]

This paper proposes a tractable model to study the equilibrium diversity of technological progress and shows that equilibrium technological progress may exhibit too little diversity (too much conformity), in particular ...

Acemoglu, Daron

2011-12-15T23:59:59.000Z

431

Technology Readiness Assessment Guide  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Guide assists individuals and teams involved in conducting Technology Readiness Assessments (TRAs) and developing Technology Maturation Plans (TMPs) for the DOE capital asset projects subject to DOE O 413.3B. Cancels DOE G 413.3-4.

2011-09-15T23:59:59.000Z

432

Review: Web Server Technology  

Science Journals Connector (OSTI)

......The introduction to this section discusses artificial intelligent and object technology. Two applications, both from the Boeing Defense and Space Group, were large complex developments which combined object technology and artificial intelligence. The......

Jon Crowcroft

1997-02-01T23:59:59.000Z

433

Chemical Resources | Sample Preparation Laboratories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemical Resources Chemical Resources Chemical Inventory All Sample Preparation Labs are stocked with an assortment of common solvents, acids, bases, buffers, and other reagents. See our Chemical Inventories for a list of available reagents. If you need large quantities of any chemicals, please order or bring your own supply (see below). Chemical Inventories Standard Operating Procedures (SOPs) If you will be working with any samples or reagents that are significantly toxic, reactive, corrosive, flammable, or otherwise especially hazardous, we may require an approved SOP before you can begin work. Examples: Reagents with an NFPA Rating of 3 or 4 in any category, nanomaterials, heavy metals, pyrophoric materials, water reactive materials. BLANK SOP SSRL BLANK SOP LCLS Ordering Chemicals

434

High Temperature Syngas Cleanup Technology Scale-up  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RECOVERY ACT: Scale-Up of RECOVERY ACT: Scale-Up of High-Temperature Syngas Cleanup Technology Background Coal gasification generates a synthesis gas (syngas)-predominantly a mixture of carbon monoxide (CO) and hydrogen (H 2 )-that can be used for chemical production of hydrogen, methanol, substitute natural gas (SNG), and many other industrial chemicals, or for electric power generation. Conventional integrated gasification combined cycle (IGCC) power plants use this syngas as a fuel for a combustion

435

Chalmers University of Technology INFNGNING AV KOLDIOXID MED  

E-Print Network [OSTI]

Chalmers University of Technology INF?NGNING AV KOLDIOXID MED KEMCYKLISK F?RBR?NNING Chemical-Looping förbränning respiration ~2 000 000 000 f.Kr förbränning ~500 000 f.Kr. bränslecell 1839 chemical-looping Combustion (CLC) Anders Lyngfelt Chalmers Göteborg Chalmers Energidag 14 december 2012 #12;Chalmers

Lemurell, Stefan

436

Technology Performance Exchange  

Broader source: Energy.gov (indexed) [DOE]

Technology Performance Exchange Technology Performance Exchange TDM - Jason Koman (BTO) TDM - Dave Catarious (FEMP) William Livingood National Renewable Energy Laboratory William.Livingood@nrel.gov 303-384-7490 April 2, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem: Perceived fiscal risk associated with the installation of unfamiliar technologies impedes adoption rates for cost-effective, energy-saving products. Impact of Project: Enable end users to quickly and

437

Safeguards over sensitive technology  

Broader source: Energy.gov (indexed) [DOE]

Safeguards Over Sensitive Technology Safeguards Over Sensitive Technology DOE/IG-0635 January 2004 Program Results and Cost Details of Finding ....................................................................... 1 Recommendations and Comments ........................................... 6 Appendices Prior Reports .............................................................................. 9 Objective, Scope, and Methodology ........................................ 11 Management Comments .......................................................... 12 SAFEGUARDS OVER SENSITIVE TECHNOLOGY TABLE OF CONTENTS Page 1 Background Aspects of sensitive technology protection, along with related impacts on national security, have been addressed in various formats by the Department of Energy and several other Federal agencies. For example:

438

Long Term Innovative Technologies  

Broader source: Energy.gov [DOE]

Presentation by Bryan Pivovar on DOE's Hydrogen and Fuel Cell Technologies, Fuel Cell Presolicitation Workshop - Lakewood, CO March 16, 2010

439

Consumer Vehicle Technology Data  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

440

Geothermal drilling technology update  

SciTech Connect (OSTI)

Sandia National Laboratories conducts a comprehensive geothermal drilling research program for the US Department of Energy, Office of Geothermal Technologies. The program currently includes seven areas: lost circulation technology, hard-rock drill bit technology, high-temperature instrumentation, wireless data telemetry, slimhole drilling technology, Geothermal Drilling Organization (GDO) projects, and drilling systems studies. This paper describes the current status of the projects under way in each of these program areas.

Glowka, D.A.

1997-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "inventure chemical technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Deployment of Emerging Technologies  

Broader source: Energy.gov [DOE]

Presentation covers the FUPWG Deployment of Emerging Technologies. Presented by Brad Gustafson, Department of Energy, held on November 1, 2006.

442

Carbon Fiber Technology Facility  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

443

States & Emerging Energy Technologies  

Broader source: Energy.gov [DOE]

This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on States & Emerging Energy Technologies.

444

Chemical Looping Combustion Kinetics  

SciTech Connect (OSTI)

One of the most promising methods of capturing CO{sub 2} emitted by coal-fired power plants for subsequent sequestration is chemical looping combustion (CLC). A powdered metal oxide such as NiO transfers oxygen directly to a fuel in a fuel reactor at high temperatures with no air present. Heat, water, and CO{sub 2} are released, and after H{sub 2}O condensation the CO{sub 2} (undiluted by N{sub 2}) is ready for sequestration, whereas the nickel metal is ready for reoxidation in the air reactor. In principle, these processes can be repeated endlessly with the original nickel metal/nickel oxide participating in a loop that admits fuel and rejects ash, heat, and water. Our project accumulated kinetic rate data at high temperatures and elevated pressures for the metal oxide reduction step and for the metal reoxidation step. These data will be used in computational modeling of CLC on the laboratory scale and presumably later on the plant scale. The oxygen carrier on which the research at Utah is focused is CuO/Cu{sub 2}O rather than nickel oxide because the copper system lends itself to use with solid fuels in an alternative to CLC called 'chemical looping with oxygen uncoupling' (CLOU).

Edward Eyring; Gabor Konya

2009-03-31T23:59:59.000Z

445

Chemical heat pump  

DOE Patents [OSTI]

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to faciliate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

446

Chemical heat pump  

DOE Patents [OSTI]

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

447

Chemical heat pump  

DOE Patents [OSTI]

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate intallation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

448

Chemical heat pump  

DOE Patents [OSTI]

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1981-01-01T23:59:59.000Z

449

ENHANCED CHEMICAL CLEANING: A NEW PROCESS FOR CHEMICALLY CLEANING SAVANNAH RIVER WASTE TANKS  

SciTech Connect (OSTI)

The Savannah River Site (SRS) has 49 high level waste (HLW) tanks that must be emptied, cleaned, and closed as required by the Federal Facilities Agreement. The current method of chemical cleaning uses several hundred thousand gallons per tank of 8 weight percent (wt%) oxalic acid to partially dissolve and suspend residual waste and corrosion products such that the waste can be pumped out of the tank. This adds a significant quantity of sodium oxalate to the tanks and, if multiple tanks are cleaned, renders the waste incompatible with the downstream processing. Tank space is also insufficient to store this stream given the large number of tanks to be cleaned. Therefore, a search for a new cleaning process was initiated utilizing the TRIZ literature search approach, and Chemical Oxidation Reduction Decontamination--Ultraviolet (CORD-UV), a mature technology currently used for decontamination and cleaning of commercial nuclear reactor primary cooling water loops, was identified. CORD-UV utilizes oxalic acid for sludge dissolution, but then decomposes the oxalic acid to carbon dioxide and water by UV treatment outside the system being treated. This allows reprecipitation and subsequent deposition of the sludge into a selected container without adding significant volume to that container, and without adding any new chemicals that would impact downstream treatment processes. Bench top and demonstration loop measurements on SRS tank sludge stimulant demonstrated the feasibility of applying CORD-UV for enhanced chemical cleaning of SRS HLW tanks.

Ketusky, E; Neil Davis, N; Renee Spires, R

2008-01-17T23:59:59.000Z

450

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4: 4: Vol. 5, No. 4 Cool Colors Project: Improved Materials for Cooler Roofs BVAMP: Simplifying Assessment of Building Vulnerability NARAC Expands its Reach: Minimize Chemical-Biological Weapons Casualties How to Buy Green Power New Federal Efficiency Standards for Residential Furnaces and Boilers: EETD Researchers Estimate Potential Impacts Research Highlights Sources and Credits PDF of EETD News Cool Colors Project: Improved Materials for Cooler Roofs Drawing of a house with a cool roof Roofs and the rainbow of colors used in roofing materials are getting cooler and cooler, thanks to research by scientists in the Lawrence Berkeley National Laboratory (Berkeley Lab) Environmental Energy Technologies Division (EETD). The cooler roofs get, the more energy and money they save. A new research program in cool materials is developing the

451

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

rogress in understanding contaminant concentrations observed in remote locations requires the development of a computer simulation model that can link these con- centrations with long-range transport potential at a continental scale. Researchers at Trent University's Canadian Environmen- tal Modeling Center and Berkeley Lab's Environmental Energy Technologies Division are now developing such a model, the Berkeley-Trent North American contaminant fate model (BETR North America). BETR is a regionally segmented multi-compartment, continen- tal-scale, mass balance chemical fate model. The model's frame- work links contaminant fate models of individual regions that encompass a larger, spatially heterogeneous area. It models North America's environment as a group of 24 ecological regions with

452

Oil & Natural Gas Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

May -October, 2009 May -October, 2009 Submitted by: Rice University, University of Texas, and Oklahoma State University George J. Hirasaki and Walter Chapman, Chemical and Biomolecular Engineering Gerald R. Dickens, Colin A. Zelt, and Brandon E. Dugan, Earth Science Kishore K. Mohanty, University of Texas Priyank Jaiswal, Oklahoma State University November, 2009 DOE Award No.: DE-FC26-06NT42960 John Terneus, Program Officer Rice University - MS 362 6100 Main St. Houston, TX 77251-1892 Phone: 713-348-5416; FAX: 713-348-5478; Email: gjh@rice.edu Prepared for: United States Department of Energy National Energy Technology Laboratory Office of Fossil Energy 2 Table of Contents Disclaimer .......................................................................................................... 3

453

Energy Technology Engineering Center  

Broader source: Energy.gov (indexed) [DOE]

Technology Engineering Center Technology Engineering Center 41 00 Guardian Street, Suite # 160 Simi Valley, CA 93063 Memorandum for: Gregory H. Woods General Council January 30, 2013 FROM: John Jones EL\= Federal Proje� irector Energy Technology Engineering Center (ETEC) Project Office SUBJECT: Annual National Environmental Policy Act {NEPA) Planning Summary Attached is the 2013 Annual NEPA Planning Summary for the ETEC Project Office.

454

Argonne superconductor technology licensed  

Science Journals Connector (OSTI)

Argonne superconductor technology licensed ... American Superconductor Corp. of Cambridge, Mass., has obtained the exclusive rights to develop and market high-temperature superconductor technology developed at the Department of Energy's Argonne National Laboratory. ... The Argonne technology produces superconducting ceramic coatings by oxidizing an appropriate metallic precursor. ...

RON DAGANI

1988-10-17T23:59:59.000Z

455

Federal Laboratory Technology Transfer  

E-Print Network [OSTI]

Federal Laboratory Technology Transfer Fiscal Year 2007 Prepared by: National Institute to present to the President and the Congress this Federal Laboratory Technology Transfer Report summarizing the achievements of Federal technology transfer and partnering programs of the Federal research and development

Perkins, Richard A.

456

Federal Laboratory Technology Transfer  

E-Print Network [OSTI]

Federal Laboratory Technology Transfer Fiscal Year 2009 Prepared by: National Institute to submit this fiscal year 2009 Technology Transfer Summary Report to the President and the Congress in accordance with 15 USC Sec 3710(g)(2) for an annual summary on the implementation of technology transfer

Perkins, Richard A.

457

Federal Laboratory Technology Transfer  

E-Print Network [OSTI]

Federal Laboratory Technology Transfer Fiscal Year 2008 Prepared by: National Institute to submit this fiscal year 2008 Technology Transfer Summary Report to the President and the Congress transfer authorities established by the Technology Transfer Commercialization Act of 2000 (P.L. 106

Perkins, Richard A.

458

Science, Technology and Civilization  

Science Journals Connector (OSTI)

... THE rise of science and technology is a unique element of our civilization. In earlier times, technology played ... element of our civilization. In earlier times, technology played a relatively small part, and science almost none; and it is worth briefly looking at the two ancient civilizations, those ...

R. V. JONES

1962-06-30T23:59:59.000Z

459

Science &Technology Facilities Council  

E-Print Network [OSTI]

and Science & Technology Facilities Council invite you to The ESA Technology Transfer Network SpaceTech2012Science &Technology Facilities Council Innovations Issue 31 October 2012 This issue: 1 STFC International prize for `no needles' breast cancer diagnosis technique 6 CEOI Challenge Workshop ­ Current

460

Department of Energy Technology  

E-Print Network [OSTI]

Reservoir Models 42 #12;Page 2.21. Energy Storage 43 2.22. Focusing Solar Collector 43 2.23. Digitizing technology towa^ls energy technology problems in general, at Risø and in the Depart- ment, was made manifestRisa-R-482 Department of Energy Technology Annual Progress Report 1 January - 31 December 1982 Ris

Note: This page contains sample records for the topic "inventure chemical technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Review: LAN Technologies Explained  

Science Journals Connector (OSTI)

...Book Review Review: LAN Technologies Explained Reviewed by Peter...Glamorgan University LAN Technologies Explained Philip Miller and...data to HTML, building an intranet, creating a single and multi-source...Networks Star rating ??? LAN Technologies Explained Philip Miller and......

Peter Hodson

2001-01-01T23:59:59.000Z

462

SPACE TECHNOLOGY Actual Estimate  

E-Print Network [OSTI]

SPACE TECHNOLOGY TECH-1 Actual Estimate Budget Authority (in $ millions) FY 2011 FY 2012 FY 2013 FY.7 247.0 Exploration Technology Development 144.6 189.9 202.0 215.5 215.7 214.5 216.5 Notional SPACE TECHNOLOGY OVERVIEW .............................. TECH- 2 SBIR AND STTR

463

Department of Science, Technology, &  

E-Print Network [OSTI]

Developing Leaders of Innovation Department of Science, Technology, & Society #12;Understanding the relationship between technology and society is crucial to becoming a successful leader in any field. #12;Our Students The University of Virginia Department of Science, Technology, and Society offers a comprehensive

Acton, Scott

464

New Technology Demonstration Program  

E-Print Network [OSTI]

New Technology Demonstration Program Technical Brief FEMPFederal Energy Management Program Tom for saving energy in refrigerated walk-in coolers, and to evaluate the potential for this technology in Federal facilities. The focus of this study was on a single manufacturer of the technology, Nevada Energy

465

Technology Forecasting Scenario Development  

E-Print Network [OSTI]

Technology Forecasting and Scenario Development Newsletter No. 2 October 1998 Systems Analysis was initiated on the establishment of a new research programme entitled Technology Forecasting and Scenario and commercial applica- tion of new technology. An international Scientific Advisory Panel has been set up

466

Building Technologies Office: Subscribe to Building Technologies Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Webinars Webinars Printable Version Share this resource Send a link to Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates to someone by E-mail Share Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Facebook Tweet about Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Twitter Bookmark Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Google Bookmark Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Delicious Rank Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Digg

467

Vehicle Technologies Office Merit Review 2014: Technology and...  

Broader source: Energy.gov (indexed) [DOE]

Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Vehicle Technologies Office Merit Review 2014: Technology and System Level...

468

EM Engineering & Technology Roadmap and Major Technology Demonstration...  

Office of Environmental Management (EM)

Steven L. Krahn Director, Waste Processing Office of Engineering and Technology April 2008 EM Engineering & Technology Roadmap and Major Technology Demonstrations Introduction ...

469

Technology Readiness Assessment (TRA)/Technology Maturation Plan...  

Broader source: Energy.gov (indexed) [DOE]

(TRA)Technology Maturation Plan (TMP) Process Guide Technology Readiness Assessment (TRA)Technology Maturation Plan (TMP) Process Guide This document is a guide for those...

470

Carbon Capture Technology | Open Energy Information  

Open Energy Info (EERE)

Technology Technology Jump to: navigation, search This information is taken from DOE's information on Carbon Capture Carbon Capture Research Before carbon dioxide (CO2) gas can be sequestered from power plants and other point sources, it must be captured as a relatively pure gas. On a mass basis, CO2 is the 19th largest commodity chemical in the United States, and CO2 is routinely separated and captured as a by-product from industrial processes such as synthetic ammonia production, H2 production, and limestone calcination. Existing capture technologies, however, are not cost-effective when considered in the context of sequestering CO2 from power plants. Most power plants and other large point sources use air-fired combustors, a process that exhausts CO2 diluted with nitrogen. Flue gas from coal-fired power

471

GEO2 Technologies | Open Energy Information  

Open Energy Info (EERE)

GEO2 Technologies GEO2 Technologies Jump to: navigation, search Name GEO2 Technologies Address 12-R Cabot Road Place Woburn, Massachusetts Zip 01801 Product Materials science company working in advanced filtration and complex chemical reactions Website http://www.geo2tech.com/ Coordinates 42.509246°, -71.134124° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.509246,"lon":-71.134124,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

472

Subwog 12-D tritium technology meeting  

SciTech Connect (OSTI)

The first Subwog 12-D Tritium Technology Meeting was held at the Westinghouse Savannah River Site during the week of May 21, 1990. Subwog 12-D was created as a subwog of JOWOG 12 to address the need to understand tritium applications throughout the entire weapons complex. This includes weapons related concerns, but is primarily intended to cover tritium production and handling, environmental, safety and health issues, compatibility with materials in general; and facility design, commissioning and decommissioning activities. Tritium technology issues discussed included the physical and chemical properties, kinetics, storage, reservoir loading techniques, isotope exchange, radiolysis/aging, process and handling technology, compatibility, purification and filtering, analysis, monitoring methods, function testing, packaging and shipping, environmental and operational safety, facility design and safety, glovebox atmosphere clean-up systems, glovebox/facility decommissioning, tritium production target materials, and tritium recovery. This document provides a collection of most of the unclassified extended abstracts and abstracts presented at Subwog 12-D.

Parker, M.J.; Addis, R.P.

1991-01-01T23:59:59.000Z

473

Subwog 12-D tritium technology meeting. Abstracts  

SciTech Connect (OSTI)

The first Subwog 12-D Tritium Technology Meeting was held at the Westinghouse Savannah River Site during the week of May 21, 1990. Subwog 12-D was created as a subwog of JOWOG 12 to address the need to understand tritium applications throughout the entire weapons complex. This includes weapons related concerns, but is primarily intended to cover tritium production and handling, environmental, safety and health issues, compatibility with materials in general; and facility design, commissioning and decommissioning activities. Tritium technology issues discussed included the physical and chemical properties, kinetics, storage, reservoir loading techniques, isotope exchange, radiolysis/aging, process and handling technology, compatibility, purification and filtering, analysis, monitoring methods, function testing, packaging and shipping, environmental and operational safety, facility design and safety, glovebox atmosphere clean-up systems, glovebox/facility decommissioning, tritium production target materials, and tritium recovery. This document provides a collection of most of the unclassified extended abstracts and abstracts presented at Subwog 12-D.

Parker, M.J.; Addis, R.P.

1991-12-31T23:59:59.000Z

474

Chemical & EngChemical/Engineering Materials Division | Neutron Science |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemical and Engineering Materials Division Chemical and Engineering Materials Division SHARE Chemical and Engineering Materials Division CEMD Director Mike Simonson The Chemical and Engineering Materials Division (CEMD) supports neutron-based research at SNS and HFIR in understanding the structure and dynamics of chemical systems and novel engineering materials. The user community takes advantage of division-supported capabilities of neutron scattering for measurements over wide ranges of experimental and operating conditions, including studies of chemical and physical changes in situ. User experiments with diffraction, small-angle scattering, inelastic and quasielastic scattering, and neutron imaging instruments address a range of problems in chemistry and in engineering materials research. Current areas of research supported by the division include the structure

475

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 26, quarter ending March 31, 1981  

SciTech Connect (OSTI)

Objectives and technical progress are summarized for field projects and supporting research in chemical flooding, CO/sub 2/ injection, thermal/heavy oil recovery, resource assessment, extraction technology, microbial enhanced oil recovery, and improved drilling technology. (DLC)

Linville, B. (ed.)

1981-07-01T23:59:59.000Z

476

CHEMICAL SENSORS School of Chemistry and Biochemistry  

E-Print Network [OSTI]

CHEMICAL SENSORS CHEM 6282 School of Chemistry and Biochemistry Chemical sensors theory of chemical recognition, electrochemical, optical, mass sensors and data reduction. Text: J. Janata, "Principles of Chemical Sensors", 2010 Springer NOTE: GT Library purchased an e

Sherrill, David

477

NETL: News Release - New Oxygen-Production Technology Proving Successful  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

22, 2009 22, 2009 New Oxygen-Production Technology Proving Successful Ceramic Membrane Enables Efficient, Cost-Effective Co-Production of Power and Oxygen Washington, D.C. -The Office of Fossil Energy's National Energy Technology Laboratory (NETL) has partnered with Air Products and Chemicals Inc. of Allentown, Penn. to develop the Ion Transport Membrane (ITM) Oxygen, a revolutionary new oxygen-production technology that requires less energy and offers lower capital costs than conventional technologies. ITM Oxygen will enhance the performance of integrated gasification combined cycle (IGCC) power plants, as well as other gasification-based processes. The technology will also enhance the economics of oxy-fired combustion technologies, making it an attractive option for the capture of carbon dioxide from existing coal-fired power plants.

478

NETL: IEP – Post-Combustion CO2 Emissions Control - Coal Direct Chemical  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- Oxy-Combustion CO2 Emissions Control - Oxy-Combustion CO2 Emissions Control Coal Direct Chemical Looping Retrofit for Pulverized Coal-Fired Power Plants with In-Situ CO2 Capture Project No.: DE-NT0005289 Ohio State chemical looping metal carrier. Ohio State chemical looping metal carrier. The Ohio State University Research Foundation will further develop coal direct chemical looping (CDCL) technology. CDCL uses a patented iron oxide-based composite oxygen carrier and can be retrofit to existing coal-fired power plants. The development of the CDCL system will be conducted through experimental testing under bench- and sub-pilot scales. Related Papers and Publications: Coal Direct Chemical Looping Retrofit to Pulverized Coal Power Plants for In-Situ CO2 Capture [PDF-2.43MB] (July 2013) Presented by Samuel Bayham of the Ohio State University Research Foundation at the 2013 NETL CO2 Capture Technology Meeting.

479

Technology, legal knowledge and citizenship  

E-Print Network [OSTI]

through adjustment. Science, Technology and Human Values 31(3 Technology, legal knowledge and citizenship On the care ofhelp of these adaptive technologies, Jose had become able to

Dominguez Rubio, Fernando; Lezaun, Javier

2014-01-01T23:59:59.000Z

480

2012 Wind Technologies Market Report  

E-Print Network [OSTI]

Colorado: Xcel Energy. 2012 Wind Technologies Market ReportOperator. 2012 Wind Technologies Market Report Chadbourne &Power Company. 2012 Wind Technologies Market Report EnerNex

Wiser, Ryan

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "inventure chemical technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

2008 Solar Technologies Market Report  

E-Print Network [OSTI]

Department of Energy. Solar Technologies Program and LoanRenewable Energy 2008 SOLAR TECHNOLOGIES MARKET REPORTinvestments by solar technology 108 Figure 5.4.

Price, S.

2010-01-01T23:59:59.000Z

482

Development of Additive Manufacturing Technology  

Science Journals Connector (OSTI)

Additive Manufacturing (AM) technology came about as a ... of different technology sectors. Like with many manufacturing technologies, improvements in computing power and reduction...

Dr. Ian Gibson; Dr. David W. Rosen

2010-01-01T23:59:59.000Z

483

Fuel Cell Technologies Office: Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cell Technologies Office HOME ABOUT PROGRAM AREAS INFORMATION RESOURCES FINANCIAL OPPORTUNITIES TECHNOLOGIES MARKET TRANSFORMATION NEWS EVENTS EERE Fuel Cell Technologies...

484

Technology Validation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology Validation Technology Validation 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 --...

485

Technology Benchmarking | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology Benchmarking Technology Benchmarking Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland....

486

Technology Integration | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Program Annual Merit Review and Peer Evaluation Vehicle Technologies Plenary vtpn02smithti2011o.pdf More Documents & Publications Technology Integration Overview Technology...

487

NIST's Advanced Technology Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NIST's Advanced NIST's Advanced Technology Program NIST's Advanced Technology Program DOE Workshop on Hydrogen Separation and Purification Technologies Arlington, VA, Sept. 8-9, 2004 Jason Huang 301-975-4197 National Institute of Standards and Technology 100 Bureau Drive Stop 4730 Gaithersburg, MD 20899-4730 http://www.atp.nist.gov National Institute of Standards and Technology * Technology Administration * U.S. Department of Commerce ATP is part of NIST Helping America Measure Up NIST Mission ATP is part of NIST NIST Mission: Strengthen the U.S. economy and improve the quality of life by working with industry to develop and apply technology, measurements, and standards. * * * * * * 3,000 employees $771 million annual budget 2,000 field agents 1,800 guest researchers $2.2 billion co-funding of

488

Energy Efficient Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Efficient Technologies Energy Efficient Technologies Energy efficient technologies are available now! Many of the vehicles currently on display in dealer showrooms boast new performance-enhancing, fuel-saving technologies that can save you money. Engine Technologies Transmission Technologies All Engine Technology Average Efficiency Increase Variable Valve Timing & Lift improve engine efficiency by optimizing the flow of fuel & air into the engine for various engine speeds. 5% Cylinder Deactivation saves fuel by deactivating cylinders when they are not needed. 7.5% Turbochargers & Superchargers increase engine power, allowing manufacturers to downsize engines without sacrificing performance or to increase performance without lowering fuel economy. 7.5% Integrated Starter/Generator (ISG) Systems automatically turn the engine on/off when the vehicle is stopped to reduce fuel consumed during idling. 8%

489

Vehicle Technologies Office: Deployment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deployment Deployment Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: Deployment to someone by E-mail Share Vehicle Technologies Office: Deployment on Facebook Tweet about Vehicle Technologies Office: Deployment on Twitter Bookmark Vehicle Technologies Office: Deployment on Google Bookmark Vehicle Technologies Office: Deployment on Delicious Rank Vehicle Technologies Office: Deployment on Digg Find More places to share Vehicle Technologies Office: Deployment on AddThis.com... Energy Policy Act (EPAct) Clean Cities Educational Activities Deployment Our nation's energy security depends on the efficiency of our transportation system and on which fuels we use. Transportation in the United States already consumes much more oil than we produce here at home

490

Vehicle Technologies Office: Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Batteries to someone by Batteries to someone by E-mail Share Vehicle Technologies Office: Batteries on Facebook Tweet about Vehicle Technologies Office: Batteries on Twitter Bookmark Vehicle Technologies Office: Batteries on Google Bookmark Vehicle Technologies Office: Batteries on Delicious Rank Vehicle Technologies Office: Batteries on Digg Find More places to share Vehicle Technologies Office: Batteries on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Batteries Battery Systems Applied Battery Research Long-Term Exploratory Research Ultracapacitors Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Materials Technologies Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various

491

Chemical comminution of coal  

SciTech Connect (OSTI)

The objective of the present research is to study the chemical reactivity of a mixture of methyl alcohol and aqueous sodium hydroxide solution in the temperature range 298 to 363 K, and a caustic concentration of 0 to 10 wt. %, on an Iowa bituminous coal. The sample studied was collected from coal zone 4, equivalent to most historical references to Laddsdale coal. The coals in this zone are typical high-sulfur, high-ash middle Pennsylvania Cherokee group coals. The apparent rank is high-volatile C bituminous coal. The relatively high content of sulfur and 23 other elements in these coals is related to near neutral (6-8) pH conditions in the depositional and early diagenetic environments, and to postdepositional sphalerite/calcite/pyrite/kaolinite/barite mineralization.

Mamaghani, A.H.; Beddow, J.K.; Vetter, A.F.

1987-02-01T23:59:59.000Z

492

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 29, quarter ending December 31, 1981  

SciTech Connect (OSTI)

Highlights of progress accomplished during the quarter ending December, 1981, are summarized in this report. Discussion is presented under the following headings: chemical flooding - field projects; chemical flooding - supporting research; carbon dioxide injection - field projects; carbon dioxide injection - supporting research; thermal/heavy oil - field projects and supporting research; resource assessment technology; extraction technology; environmental aspects; petroleum processing technology; microbial enhanced oil recovery; and improved drilling technology. (DMC)

Linville, B. (ed.)

1982-05-01T23:59:59.000Z

493

Environmental Technology Verification of Mobile Sources Control...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Environmental Technology Verification of Mobile Sources Control Technologies Environmental Technology Verification of Mobile Sources Control Technologies 2005 Diesel Engine...

494

Recommended inorganic chemicals for calibration  

SciTech Connect (OSTI)

All analytical techniques depend on the use of calibration chemicals to relate analyte concentration to an instrumental parameter. A fundamental component in the preparation of calibration solutions is the weighing of a pure chemical or metal before preparing a solution standard. The analyst must be assured that the purity, stoichiometry, and assay of the chemical are known. These terms have different meanings, and each has an important influence. This report is intended to assist the analyst in the selection and use of chemical standards for instrumental calibration. Purity, stoichiometry, and preparation of solutions for different purposes are discussed, and a critical evaluation of the best materials available for each element is presented for use in preparing solutions or calibration standards. Information on the chemical form, source, purity, drying, and appropriate precautions is given. In some cases, multiple sources or chemical forms are available. Certain radioactive elements, the transuranic elements, and the noble gases are not considered.

Moody, J.R.; Greenberg, R.R.; Pratt, K.W.; Rains, T.C.

1988-11-01T23:59:59.000Z

495

MHK Technologies/Oregon State University Columbia Power Technologies Direct  

Open Energy Info (EERE)

State University Columbia Power Technologies Direct State University Columbia Power Technologies Direct Drive Point Absorber < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Oregon State University Columbia Power Technologies Direct Drive Point Absorber.jpg Technology Profile Primary Organization Oregon State University OSU Project(s) where this technology is utilized *MHK Projects/OSU Direct Drive Power Generation Buoys Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description When the coil experiences a changing magnetic field created by the heaving magnets voltage is generated Technology Dimensions

496

Neutron Technologies for Bioenergy Research  

SciTech Connect (OSTI)

Neutron scattering is a powerful technique that can be used to probe the structures and dynamics of complex systems. It can provide a fundamental understanding of the processes involved in the production of biofuels from lignocellulosic biomass. A variety of neutron scattering technologies are available to elucidate both the organization and deconstruction of this complex composite material and the associations and morphology of the component polymers and the enzymes acting on them, across multiple length scales ranging from Angstroms to micrometers and time scales from microseconds to picoseconds. Unlike most other experimental techniques, neutron scattering is uniquely sensitive to hydrogen (and its isotope deuterium), an atom abundantly present throughout biomass and a key effector in many biological, chemical, and industrial processes for producing biofuels. Sensitivity to hydrogen, the ability to replace hydrogen with deuterium to alter scattering levels, the fact that neutrons cause little or no direct radiation damage, and the ability of neutrons to exchange thermal energies with materials, provide neutron scattering technologies with unique capabilities for bioenergy research. Further, neutrons are highly penetrating, making it possible to employ sample environments that are not suitable for other techniques. The true power of neutron scattering is realized when it is combined with computer simulation and modeling and contrast variation techniques enabled through selective deuterium labeling.

Langan, Paul [ORNL

2012-01-01T23:59:59.000Z

497

David Robertson Argonne National Laboratory Chemical Sciences and Engineering Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Robertson Robertson Argonne National Laboratory Chemical Sciences and Engineering Division 9700 South Cass Avenue, Building 205 Argonne, IL 60439-4837 Phone: 630/252-7906; fax: 630/972-4468 e-mail: robertsond@anl.gov Professional Experience * May 2010-present: Argonne National Laboratory, Argonne, IL: Engineering Specialist, Electrochemical Analysis and Diagnostics Laboratory, Testing of advanced battery technologies, DOE contract deliverables, benchmarking of foreign battery technologies * July 2007-May 2010: LGCPI, Troy, MI: Electrical Engineering Manager, Lead the development, validation and integration of Battery Management and Control systems, electrical interfaces, wiring systems and sensing interfaces of large format lithium ion batteries for automotive and other applications.

498

Synthesis of Metallic Nanostructures Using Chemical Fluid Deposition  

Science Journals Connector (OSTI)

Department of Chemical Engineering, and Department of Physics and Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China ... A solubility study of the platinum precursor, platinum(II) dimethylcyclooctadiene, in the supercritical carbon dioxide was carried out to obtain a phase diagram in order to optimize the operating parameters required for the metal deposition process. ... Korgel and Hanrath and co-workers had also published work on synthesizing nanowires of semiconducting materials, such as silicon, germanium, and gallium arsenide(22-25) using gold seeding particles. ...

Candy S. Lin; Frank Leung-Yuk Lam; Xijun Hu; Wing Yim Tam; Ka M. Ng

2008-06-18T23:59:59.000Z

499

Center for Catalytic Science and Technology Recent Highlights from the Center for  

E-Print Network [OSTI]

for Catalytic Science and Technology CCST Research Areas Electrocatalysts and hydrogen processing for PEM fuel cells Selective oxidation and selective hydrogenation Biomass to fuels and chemicals phosphates prepared in ionic liquids A straightforward, cost-effective and scalable synthesis

Firestone, Jeremy

500

Chemical Engineering | More Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemical and Engineering Materials Clean Energy Nuclear Sciences Computer Science Earth and Atmospheric Sciences Materials Science and Engineering Mathematics Physics More Science Home | Science & Discovery | More Science | Engineering SHARE Engineering Engineering at ORNL is integrated with nearly all of the scientific research areas and user facilities. In particular, ORNL has core capabilities chemical engineering and systems engineering. Chemical engineering moves knowledge gained from fundamental chemical research toward applications. For example, this capability supports the development of fuel reprocessing techniques and enables radioisotope production, isotope separation, and development of isotope applications. This capacity also contributes to advances in energy efficiency, renewable