National Library of Energy BETA

Sample records for inventure chemical technology

  1. Inventure Chemical Technology | Open Energy Information

    Open Energy Info (EERE)

    Technology Jump to: navigation, search Name: Inventure Chemical Technology Address: P.O. Box 530 Place: Gig Harbor, Washington Zip: 98335 Region: Pacific Northwest Area Sector:...

  2. Inventure Chemicals | Open Energy Information

    Open Energy Info (EERE)

    Place: Tacoma, Washington State Zip: 98421 Product: Developer of technology for creating biodiesel and bioethanol fuels from algae. Coordinates: 47.255135, -122.441654 Show...

  3. Gig Harbor, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Washington. It falls under Washington's 6th congressional district.12 Registered Energy Companies in Gig Harbor, Washington Inventure Chemical Technology Structural...

  4. Sandia Researchers Develop Promising Chemical Technology for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE-funded researchers at Sandia National Laboratories have developed new chemical technology that could lead to batteries able to cost-effectively store three times more energy ...

  5. Korea Research Institute of Chemical Technology KRICT | Open...

    Open Energy Info (EERE)

    of Chemical Technology KRICT Jump to: navigation, search Name: Korea Research Institute of Chemical Technology (KRICT) Place: Yooseong-gu, Daejeon, Korea (Republic) Zip: 305-600...

  6. ITP Chemicals: Hybripd Separations/Distillation Technology. Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybripd SeparationsDistillation Technology. Research Opportunities for Energy and Emissions Reduction ITP Chemicals: Hybripd SeparationsDistillation Technology. Research ...

  7. Chemical sensors technology development planning workshop

    SciTech Connect (OSTI)

    Bastiaans, G.J.; Haas, W.J. Jr.; Junk, G.A.

    1993-03-01

    The workshop participants were asked to: (1) Assess the current capabilities of chemical sensor technologies for addressing US Department of Energy (DOE) Environmental Restoration and Waste Management (EM) needs; (2) Estimate potential near term (one to two years) and intermediate term (three to five years) capabilities for addressing those needs; and (3) Generate a ranked list of specific recommendations on what research and development (R&D) should be funded to provide the necessary capabilities. The needs were described in terms of two pervasive EM problems, the in situ determination of chlorinated volatile organic compounds (VOCs), and selected metals in various matrices at DOE sites. The R&D recommendations were to be ranked according to the estimated likelihood that the product technology will be ready for application within the time frame it is needed and the estimated return on investment. The principal conclusions and recommendations of the workshop are as follows: Chemical sensors capable of in situ determinations can significantly reduce analytical costs; Chemical sensors have been developed for certain VOCs in gases and water but none are currently capable of in situ determination of VOCs in soils; The DOE need for in situ determination of metals in soils cannot be addressed with existing chemical sensors and the prospects for their availability in three to five years are uncertain; Adaptation, if necessary, and field application of laboratory analytical instruments and those few chemical sensors that are already in field testing is the best approach for the near term; The chemical sensor technology development plan should include balanced support for near- and intermediate-term efforts.

  8. Chemical Technology Division. Annual technical report, 1995

    SciTech Connect (OSTI)

    Laidler, J.J.; Myles, K.M.; Green, D.W.; McPheeters, C.C.

    1996-06-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1995 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (3) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (4) processes for separating and recovering selected elements from waste streams, concentrating low-level radioactive waste streams with advanced evaporator technology, and producing {sup 99}Mo from low-enriched uranium; (5) electrometallurgical treatment of different types of spent nuclear fuel in storage at Department of Energy sites; and (6) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems.

  9. ITP Chemicals: Vision 2020 Technology Roadmap for Combinatroial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vision 2020 Technology Roadmap for Combinatroial Methods; September 2001 ITP Chemicals: Vision 2020 Technology Roadmap for Combinatroial Methods; September 2001 PDF icon ...

  10. Chemical Technology Division annual technical report 1997

    SciTech Connect (OSTI)

    1998-06-01

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials and electrified interfaces. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division`s activities during 1997 are presented.

  11. 1998 Chemical Technology Division Annual Technical Report.

    SciTech Connect (OSTI)

    Ackerman, J.P.; Einziger, R.E.; Gay, E.C.; Green, D.W.; Miller, J.F.

    1999-08-06

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division's activities during 1998 are presented.

  12. Chemical Technology Division annual technical report, 1994

    SciTech Connect (OSTI)

    1995-06-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1994 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion; (3) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from waste streams, concentrating radioactive waste streams with advanced evaporator technology, and producing {sup 99}Mo from low-enriched uranium for medical applications; (6) electrometallurgical treatment of the many different types of spent nuclear fuel in storage at Department of Energy sites; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, and impurities in scrap copper and steel; and the geochemical processes involved in mineral/fluid interfaces and water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  13. Chemical Technology Division annual technical report 1989

    SciTech Connect (OSTI)

    Not Available

    1990-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1989 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including high-performance batteries (mainly lithium/iron sulfide and sodium/metal chloride), aqueous batteries (lead-acid and nickel/iron), and advanced fuel cells with molten carbonate and solid oxide electrolytes: (2) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste and for producing {sup 99}Mo from low-enriched uranium targets, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor (the Integral Fast Reactor), and waste management; and (5) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be administratively responsible for and the major user of the Analytical Chemistry Laboratory at Argonne National Laboratory (ANL).

  14. Chemical Technology Division annual technical report, 1986

    SciTech Connect (OSTI)

    Not Available

    1987-06-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1986 are presented. In this period, CMT conducted research and development in areas that include the following: (1) high-performance batteries - mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants, the technology for fluidized-bed combustion, and a novel concept for CO/sub 2/ recovery from fossil fuel combustion; (5) methods for recovery of energy from municipal waste; (6) methods for the electromagnetic continuous casting of steel sheet; (7) techniques for treatment of hazardous waste such as reactive metals and trichloroethylenes; (8) nuclear technology related to waste management, a process for separating and recovering transuranic elements from nuclear waste, and the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor; and (9) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of catalytic hydrogenation and catalytic oxidation; materials chemistry for associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, surface science, and catalysis; the thermochemistry of zeolites and related silicates; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 127 refs., 71 figs., 8 tabs.

  15. Chemical technology division: Annual technical report 1987

    SciTech Connect (OSTI)

    Not Available

    1988-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1987 are presented. In this period, CMT conducted research and development in the following areas: (1) high-performance batteries--mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (5) methods for the electromagnetic continuous casting of steel sheet and for the purification of ferrous scrap; (6) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (7) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor, and waste management; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for liquids and vapors at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; the thermochemistry of various minerals; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 54 figs., 9 tabs.

  16. Chemical Technology Division annual technical report, 1990

    SciTech Connect (OSTI)

    Not Available

    1991-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1990 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for coal- fired magnetohydrodynamics and fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for a high-level waste repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, concentrating plutonium solids in pyrochemical residues by aqueous biphase extraction, and treating natural and process waters contaminated by volatile organic compounds; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the scientific and engineering programs at Argonne National Laboratory (ANL). 66 refs., 69 figs., 6 tabs.

  17. ITP Chemicals: Vision 2020 Technology Roadmap for Combinatroial Methods;

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    September 2001 | Department of Energy Vision 2020 Technology Roadmap for Combinatroial Methods; September 2001 ITP Chemicals: Vision 2020 Technology Roadmap for Combinatroial Methods; September 2001 PDF icon combchemistry_roadmap.pdf More Documents & Publications Combinatorial Approaches for Hydrogen Storage Materials (presentation) ITP Chemicals: Technology Roadmap for Computational Chemistry High Throughput/Combinatorial Screening of Hydrogen Storage Materials: UOP Approaches

  18. Chemical Technology Division annual technical report, 1993

    SciTech Connect (OSTI)

    Battles, J.E.; Myles, K.M.; Laidler, J.J.; Green, D.W.

    1994-04-01

    Chemical Technology (CMT) Division this period, conducted research and development in the following areas: advanced batteries and fuel cells; fluidized-bed combustion and coal-fired magnetohydrodynamics; treatment of hazardous waste and mixed hazardous/radioactive waste; reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; separating and recovering transuranic elements, concentrating radioactive waste streams with advanced evaporators, and producing {sup 99}Mo from low-enriched uranium; recovering actinide from IFR core and blanket fuel in removing fission products from recycled fuel, and disposing removal of actinides in spent fuel from commercial water-cooled nuclear reactors; and physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, thin-film diamond surfaces, effluents from wood combustion, and molten silicates; and the geochemical processes involved in water-rock interactions. The Analytical Chemistry Laboratory in CMT also provides a broad range of analytical chemistry support.

  19. ITP Chemicals: Technology Roadmap for Computational Fluid Dynamics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fluid Dynamics, January 1999 ITP Chemicals: Technology Roadmap for Computational Fluid Dynamics, January 1999 PDF icon cfdroadmap.pdf More Documents & Publications 3-D Combustion ...

  20. ITP Chemicals: Final Report: Evaluation of Alternative Technologies...

    Energy Savers [EERE]

    Ammonia, and Terephthalic Acid, December 2007 ITP Chemicals: Final Report: Evaluation of Alternative Technologies for Ethylene, Caustic-Chlorine, Ethylene Oxide, Ammonia, and...

  1. Sandia Researchers Develop Promising Chemical Technology for Energy Storage

    Broader source: Energy.gov [DOE]

    DOE-funded researchers have developed new chemical technology that could lead to batteries able to cost-effectively store three times more energy than today's batteries.

  2. ITP Chemicals: Hybripd Separations/Distillation Technology. Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities for Energy and Emissions Reduction | Department of Energy Hybripd Separations/Distillation Technology. Research Opportunities for Energy and Emissions Reduction ITP Chemicals: Hybripd Separations/Distillation Technology. Research Opportunities for Energy and Emissions Reduction PDF icon hybrid_separation.pdf More Documents & Publications Review of Historical Membrane Workshop Results Membrane Technology Workshop Summary Report, November 2012 Membrane Technology Workshop

  3. Hot-Wire Chemical Vapor Deposition (HWCVD) technologies - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Photovoltaic Solar Photovoltaic Find More Like This Return to Search Hot-Wire Chemical Vapor Deposition (HWCVD) technologies Rapid, controllable growth of epitaxial silicon films National Renewable Energy Laboratory Contact NREL About This Technology Publications: PDF Document Publication Landry, et al., WO 2011-106624, "Hot Wire Chemical Vaport Deposition (HWCVD) with Carbide Filaments" (1,533 KB) Technology Marketing Summary NREL scientists have discovered a unique way to

  4. ITP Chemicals: Technology Roadmap for Computational Chemistry | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Chemistry ITP Chemicals: Technology Roadmap for Computational Chemistry PDF icon compchemistry_roadmap.pdf More Documents & Publications Summary Report from Theory Focus Session on Hydrogen Storage Materials Volume 4 FY 2014 LDRD Report

  5. DOE Funding Leads to New Technology that is Revolutionizing Chemical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For immediate release DOE Funding Leads to New Technology that is Revolutionizing Chemical Analysis Research funded by the DOE Office of Science has led to the commercialization of a new product, the Polyarc(tm) reactor, which is improving chemical analysis for scientists using gas chromatography (GC) with flame ionization detectors (FID). (NEWARK, DE) November 9, 2015- A universal carbon detection technology discovered by researchers at the Catalysis Center for Energy Innovation (CCEI), an

  6. ITP Chemicals: Final Report: Evaluation of Alternative Technologies for

    Office of Environmental Management (EM)

    Ethylene, Caustic-Chlorine, Ethylene Oxide, Ammonia, and Terephthalic Acid, December 2007 | Department of Energy Chemicals: Final Report: Evaluation of Alternative Technologies for Ethylene, Caustic-Chlorine, Ethylene Oxide, Ammonia, and Terephthalic Acid, December 2007 ITP Chemicals: Final Report: Evaluation of Alternative Technologies for Ethylene, Caustic-Chlorine, Ethylene Oxide, Ammonia, and Terephthalic Acid, December 2007 PDF icon alt_tech_pub.pdf More Documents & Publications ITP

  7. Millimeter Wave Sensor Technologies Track Biometrics; Detect Chemicals,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gases, and Radiation - Energy Innovation Portal Millimeter Wave Sensor Technologies Track Biometrics; Detect Chemicals, Gases, and Radiation Argonne's millimeter wave (mmW) sensor technologies measure a wide range of threat materials remotely Argonne National Laboratory Contact ANL About This Technology <p> <span style="line-height: 115%; font-family: &quot;Calibri&quot;,&quot;sans-serif&quot;; font-size: 11pt; mso-fareast-font-family: Calibri;

  8. Chemical Technology Division annual technical report, 1992

    SciTech Connect (OSTI)

    Battles, J.E.; Myles, K.M.; Laidler, J.J.; Green, D.W.

    1993-06-01

    In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous waste, mixed hazardous/radioactive waste, and municipal solid waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, treating water contaminated with volatile organics, and concentrating radioactive waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (EFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials (corium; Fe-U-Zr, tritium in LiAlO{sub 2} in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel` ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, and molecular sieve structures; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  9. TECHNOLOGY VISION 2020: The U.S. Chemical Industry | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TECHNOLOGY VISION 2020: The U.S. Chemical Industry TECHNOLOGY VISION 2020: The U.S. Chemical Industry PDF icon chem_vision.pdf More Documents & Publications ITP Chemicals: Technology Roadmap for Computational Chemistry Clean Energy Manufacturing Initiative Midwest Regional Summit: Lightweighting Breakout Session Summary TECHNOLOGY VISION 2020: The U.S. Chemical Industry Chapter 6 - Innovating Clean Energy Technologies in Advanced Manufacturing

  10. ITP Chemicals: Technology Roadmap for Computational Fluid Dynamics, January

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1999 | Department of Energy Fluid Dynamics, January 1999 ITP Chemicals: Technology Roadmap for Computational Fluid Dynamics, January 1999 PDF icon cfd_roadmap.pdf More Documents & Publications 3-D Combustion Simulation Strategy Status, Future Potential, and Application Issues A Workshop to Identify Research Needs and Impacts in Predictive Simulation for Internal Combustion Engines (PreSICE) Vehicle Technologies Office Merit Review 2015: Large Eddy Simulation (LES) Applied to Advanced

  11. Clean Energy Technologies a Focus of Chemical Engineers' Annual Meeting

    Broader source: Energy.gov [DOE]

    The role of clean energy technologies in building a strong economy and improving quality of life is just one of the wide-ranging topics that will be covered at the 2012 Annual Meeting of the American Institute of Chemical Engineers, to be held October 28 through November 2 at the David L. Lawrence Convention Center in Pittsburgh, Pa.

  12. Technology Vision 2020 – The U.S. Chemical Industry

    SciTech Connect (OSTI)

    none,

    1996-12-01

    Technology Vision 2020 is a call to action, innovation, and change for the U.S. chemical industry. The body of this report outlines the current state of the industry, a vision for tomorrow, and the technical advances needed to make this vision a reality.

  13. PROTECT: Enhanced Technology to Protect Against Chemical and Biological

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Terrorism - Energy Innovation Portal Energy Analysis Energy Analysis Find More Like This Return to Search PROTECT: Enhanced Technology to Protect Against Chemical and Biological Terrorism Argonne National Laboratory Contact ANL About This Technology <p class="Default" style="margin: 4pt 0in 2pt; line-height: 8.05pt;"> <i><span style="color: windowtext; font-family: &quot;Franklin Gothic Medium&quot;,&quot;sans-serif&quot;; font-size:

  14. Biological and chemical technologies research. FY 1995 annual summary report

    SciTech Connect (OSTI)

    1996-03-01

    The annual summary report presents the fiscal year (FY) 1995 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program. This BCTR program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1995 (ASR 95) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization, selected technical and programmatic highlights for 1995; detailed descriptions of individual projects; a listing of program output, including a bibliography of published work; patents; and awards arising from work supported by the BCTR.

  15. Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: July-December 1998

    SciTech Connect (OSTI)

    Jubin, R.T.

    1999-06-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July-December 1998. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications.

  16. The ORNL Chemical Technology Division, 1950-1994

    SciTech Connect (OSTI)

    Jolley, R.L.; Genung, R.K.; McNeese, L.E.; Mrochek, J.E.

    1994-10-01

    This document attempts to reconstruct the role played by the Chemical Technology Division (Chem Tech) of the Oak Ridge National Laboratory (ORNL) in the atomic era since the 1940`s related to the development and production of nuclear weapons and power reactors. Chem Tech`s early contributions were landmark pioneering studies. Unknown and dimly perceived problems like chemical hazards, radioactivity, and criticality had to be dealt with. New chemical concepts and processes had to be developed to test the new theories being developed by physicists. New engineering concepts had to be developed and demonstrated in order to build facilities and equipment that had never before been attempted. Chem Tech`s role was chemical separations, especially uranium and plutonium, and nuclear fuel reprocessing. With diversification of national and ORNL missions, Chem Tech undertook R&D studies in many areas including biotechnology; clinical and environmental chemistry; nuclear reactors; safety regulations; effective and safe waste management and disposal; computer modeling and informational databases; isotope production; and environmental control. The changing mission of Chem Tech are encapsulated in the evolving activities.

  17. BCTR: Biological and Chemical Technologies Research 1994 annual summary report

    SciTech Connect (OSTI)

    Petersen, G.

    1995-02-01

    The annual summary report presents the fiscal year (FY) 1994 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). Although the OIT was reorganized in 1991 and AICD no longer exists, this document reports on efforts conducted under the former structure. The annual summary report for 1994 (ASR 94) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization, selected technical and programmatic highlights for 1994; detailed descriptions of individual projects; a listing of program output, including a bibliography of published work; patents, and awards arising from work supported by BCTR.

  18. Next Generation Surfactants for Improved Chemical Flooding Technology

    SciTech Connect (OSTI)

    Laura Wesson; Prapas Lohateeraparp; Jeffrey Harwell; Bor-Jier Shiau

    2012-05-31

    The principle objective of this project was to characterize and test current and next generation high performance surfactants for improved chemical flooding technology, focused on reservoirs in the Pennsylvanian-aged (Penn) sands. In order to meet this objective the characteristic curvatures (Cc) of twenty-eight anionic surfactants selected for evaluation for use in chemical flooding formulations were determined. The Cc values ranged from -6.90 to 2.55 with the majority having negative values. Crude oil samples from nine Penn sand reservoirs were analyzed for several properties pertinent to surfactant formulation for EOR application. These properties included equivalent alkane carbon numbers, total acid numbers, and viscosity. The brine samples from these same reservoirs were analyzed for several cations and for total dissolved solids. Surfactant formulations were successfully developed for eight reservoirs by the end of the project period. These formulations were comprised of a tertiary mixture of anionic surfactants. The identities of these surfactants are considered proprietary, but suffice to say the surfactants in each mixture were comprised of varying chemical structures. In addition to the successful development of surfactant formulations for EOR, there were also two successful single-well field tests conducted. There are many aspects that must be considered in the development and implementation of effective surfactant formulations. Taking into account these other aspects, there were four additional studies conducted during this project. These studies focused on the effect of the stability of surfactant formulations in the presence of polymers with an associated examination of polymer rheology, the effect of the presence of iron complexes in the brine on surfactant stability, the potential use of sacrificial agents in order to minimize the loss of surfactant to adsorption, and the effect of electrolytes on surfactant adsorption. In these last four studies the effects of such things as temperature, electrolyte concentration and the effect of different types of electrolytes were taken into consideration.

  19. NREL: Solar Research - Materials and Chemical Science and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Key program areas include solar energy conversion ... for renewable energy technologies, hydrogen production and storage, and ... problem-solving for current and next-generation ...

  20. Chemical Technology Division progress report, April 1, 1983-March 31, 1985

    SciTech Connect (OSTI)

    Not Available

    1985-10-01

    The status of the following programs is reported: fission energy; nuclear and chemical waste management; environmental control technology; basic science and technology; biotechnology programs; transuranium-element processing; Nuclear Regulatory Commission programs; Consolidated Edison Uranium Solidification Project; radioactive materials production; computer 1 engineering applications; and miscellanous programs.

  1. Chemical Technology Division progress report for the period April 1, 1985 to December 31, 1986

    SciTech Connect (OSTI)

    Not Available

    1987-08-01

    This progress report summarizes the research and development efforts conducted in the Chemical Technology Division (Chem Tech) during the period April 1, 1985, through December 31, 1986. The following major areas are covered in the discussion: nuclear and chemical waste management, environmental control technology, basic science and technology, biotechnology research, transuranium-element processing, Nuclear Regulatory Commission programs, radioactive materials production, computer/engineering applications, fission energy, environmental cleanup projects, and various other work activities. As an appendix, the Administrative Summary presents a comprehensive compilation of publications, oral presentations, awards and recognitions, and patents of Chem Tech staff members during this report period. An organization chart, a staffing level and financial summary, and lists of seminars and Chem Tech consultants for the period are also included to provide additional information. 78 figs., 40 tabs.

  2. Quarterly Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: July-September 1999

    SciTech Connect (OSTI)

    Jubin, R.T.

    2001-04-16

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July-September 1999. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within ten major areas of research: Hot Cell Operations, Process Chemistry, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Physical Properties Research, Biochemical Engineering, Separations and Materials Synthesis, Fluid Structures and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information. Activities conducted within the area of the Cell Operations involved the testing of two continuously stirred tank reactors in series to evaluate the Savannah River-developed process of small-tank tetraphenylborate precipitation to remove cesium, strontium and transuranics from supernatant. Within the area of Process Chemistry, various topics related to solids formation in process solutions from caustic treatment of Hanford sludge were addressed. Saltcake dissolution efforts continued, including the development of a predictive algorithm. New initiatives for the section included modeling activities centered on detection of hydrogen in {sup 233}U storage wells and wax formation in petroleum mixtures, as well as support for the Spallation Neutron Source (investigation of transmutation products formed during operation). Other activities involved in situ grouting and evaluation of options for use (i.e., as castable shapes) of depleted uranium. In a continuation of activities of the preceding quarter, MSRE Remediation Studies focused on recovery of {sup 233}U and its conversion to a stable oxide and radiolysis experiments to permit remediation of MSRE fuel salt. Investigation of options for final disposition of the {sup 233}U inventory represents a new initiative within this area. In the area of Chemistry Research, activities included studies relative to molecular imprinting for use in areas such as selective sorption, chemical sensing, and catalysis, as well as spectroscopic investigation into the fundamental interaction between ionic solvents and solutes in both low- and high-temperature ionic liquids.

  3. Chemical Technology Division: Progress report, January 1, 1987--June 30, 1988

    SciTech Connect (OSTI)

    Not Available

    1989-02-01

    This progress report summarizes the research and development efforts conducted in the Chemical Technology Division (Chem Tech) during the period January 1, 1987, to June 30, 1988. The following major areas are covered: waste management and environmental programs, radiochemical and reactor engineering programs, basic science and technology, Nuclear Regulatory Commission programs, and administrative resources and facilities. The Administrative Summary, an appendix, presents a comprehensive listing of publications, oral presentations, awards and recognitions, and patents of Chem Tech staff members during this period. A staffing level and financial summary and lists of seminars and Chem Tech consultants for the period are also included.

  4. Hot-Wire Chemical Vapor Deposition (HWCVD) technologies: Rapid, controllable growth of epitaxial silicon films

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2013-12-27

    NREL scientists have discovered a unique way to quickly grow epitaxial Si using hot-wire chemical vapor deposition (HWCVD), which holds the potential to greatly decrease costs within the manufacturing of Si substrates.  With NREL’s HWCVD technology, Si material use and costs are dramatically reduced with scalable manufacturing and lower deposition temperatures.  NREL’s unique HWCVD technique can easily be integrated into existing manufacturing processes, allowing...

  5. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: January-March 1999

    SciTech Connect (OSTI)

    Jubin, R.T.

    1999-11-01

    This reports summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period January--March 1999. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within eight major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information. Activities conducted within the area of Hot Cell Operations included column loading of cesium from Melton Valley Storage Tank supematants using an engineered form of crystalline silicotitanate. A second task was to design and construct a continuously stirred tank reactor system to test the Savannah River-developed process of small-tank tetraphenylborate precipitation to remove cesium, strontium, and transuranics from supematant. Within the area of Process Chemistry and Thermodynamics, the problem of solids formation in process solutions from caustic treatment of Hanford sludge was addressed, including issues such as pipeline plugging and viscosity measurements. Investigation of solution conditions required to dissolve Hanford saltcake was also continued. MSRE Remediation Studies focused on recovery of {sup 233}U and its transformation into a stable oxide and radiolysis experiments to permit remediation of MSRE fuel salt. In the area of Chemistry Research, activities included studies relative to molecular imprinting for use in areas such as selective sorption, chemical sensing, and catalysis, as well as spectroscopic investigation into the fundamental interaction between ionic solvents and solutes in both low- and high-temperature ionic liquids. In the area of Separations and Materials Synthesis, fundamental studies explored the use of electromagnetic fields to enhance transport processes in multiphase separations; investigated nucleation and particle growth for the synthesis, characterization, application, and processing of ultrafine particles; and examined the use of electric fields to modify phase equilibria in multiphase separations processes. Other efforts involved enhanced oxidation of organic pollutants in aqueous solutions by applying electric fields to form microbubbles and the use of electric fields to improve distillation efficiency. Research was also directed toward the use of ozonation to treat water-soluble organics, the application of electrical and acoustic methods to remediate aerosol problems, and the development of improved means of decontamination using aqueous surfactant cleaners. Fluid Structure and Properties included molecular-based studies of systems with supercritical solvents, a multi-institutional initiative to develop a molecular understanding of reverse miscelles in supercritical carbon dioxide through experimentation and molecular simulation calculations, and molecular-based prediction of the structure and properties of long-chain molecules undergoing shear flow.

  6. ElectroChemical Arsenic Removal (ECAR) for Rural Bangladesh--Merging Technology with Sustainable Implementation

    SciTech Connect (OSTI)

    Addy, Susan E.A.; Gadgil, Ashok J.; Kowolik, Kristin; Kostecki, Robert

    2009-12-01

    Today, 35-77 million Bangladeshis drink arsenic-contaminated groundwater from shallow tube wells. Arsenic remediation efforts have focused on the development and dissemination of household filters that frequently fall into disuse due to the amount of attention and maintenance that they require. A community scale clean water center has many advantages over household filters and allows for both chemical and electricity-based technologies to be beneficial to rural areas. Full cost recovery would enable the treatment center to be sustainable over time. ElectroChemical Arsenic Remediation (ECAR) is compatible with community scale water treatment for rural Bangladesh. We demonstrate the ability of ECAR to reduce arsenic levels> 500 ppb to less than 10 ppb in synthetic and real Bangladesh groundwater samples and examine the influence of several operating parameters on arsenic removal effectiveness. Operating cost and waste estimates are provided. Policy implication recommendations that encourage sustainable community treatment centers are discussed.

  7. Chemical Technology Division progress report, October 1, 1989--June 30, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    This progress report reviews the mission of the Chemical Technology Division (Chem Tech) and presents a summary of organizational structure, programmatic sponsors, and funding levels for the period October 1, 1988, through June 30, 1991. The report also summarizes the missions and activities of organizations within Chem Tech for the reporting period. Specific projects performed within Chem Tech`s energy research programs, waste and environmental programs, and radiochemical processing programs are highlighted. Other information regarding publications, patents, awards, and conferences organized by Chem Tech staff is also included.

  8. Chemical Technology Division progress report, October 1, 1989--June 30, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    This progress report reviews the mission of the Chemical Technology Division (Chem Tech) and presents a summary of organizational structure, programmatic sponsors, and funding levels for the period October 1, 1988, through June 30, 1991. The report also summarizes the missions and activities of organizations within Chem Tech for the reporting period. Specific projects performed within Chem Tech's energy research programs, waste and environmental programs, and radiochemical processing programs are highlighted. Other information regarding publications, patents, awards, and conferences organized by Chem Tech staff is also included.

  9. Coupled Physical/Chemical and Biofiltration Technologies to Reduce Air Emissions from Forest Products Industries

    SciTech Connect (OSTI)

    Gary D. McGinnis

    2001-12-31

    The research is a laboratory and bench-scale investigation of a system to concentrate and destroy volatile organic compounds (VOCs), including hazardous air pollutants, formed from the drying of wood and the manufacture of wood board products (e.g., particle board and oriented strandboard). The approach that was investigated involved concentrating the dilute VOCs (<500 ppmv) with a physical/chemical adsorption unit, followed by the treatment of the concentrated voc stream (2,000 to 2,500 ppmv) with a biofiltration unit. The research program lasted three years, and involved three research organizations. Michigan Technological University was the primary recipient of the financial assistance, the USDA Forest Products Laboratory (FPL) and Mississippi State University (MSU) were subcontractors to MTU. The ultimate objective of this research was to develop a pilot-scale demonstration of the technology with sufficient data to provide for the design of an industrial system. No commercialization activities were included in this project.

  10. Development of Diffusion barrier coatings and Deposition Technologies for Mitigating Fuel Cladding Chemical Interactions (FCCI)

    SciTech Connect (OSTI)

    Sridharan, Kumar; Allen, Todd; Cole, James

    2013-02-27

    The goal of this project is to develop diffusion barrier coatings on the inner cladding surface to mitigate fuel-cladding chemical interaction (FCCI). FCCI occurs due to thermal and radiation enhanced inter-diffusion between the cladding and fuel materials, and can have the detrimental effects of reducing the effective cladding wall thickness and lowering the melting points of the fuel and cladding. The research is aimed at the Advanced Burner Reactor (ABR), a sodium-cooled fast reactor, in which higher burn-ups will exacerbate the FCCI problem. This project will study both diffusion barrier coating materials and deposition technologies. Researchers will investigate pure vanadium, zirconium, and titanium metals, along with their respective oxides, on substrates of HT-9, T91, and oxide dispersion-strengthened (ODS) steels; these materials are leading candidates for ABR fuel cladding. To test the efficacy of the coating materials, the research team will perform high-temperature diffusion couple studies using both a prototypic metallic uranium fuel and a surrogate�¢����the rare-earth element lanthanum. Ion irradiation experiments will test the stability of the coating and the coating-cladding interface. A critical technological challenge is the ability to deposit uniform coatings on the inner surface of cladding. The team will develop a promising non-line-of-sight approach that uses nanofluids . Recent research has shown the feasibility of this simple yet novel approach to deposit coatings on test flats and inside small sections of claddings. Two approaches will be investigated: 1) modified electrophoretic deposition (MEPD) and 2) boiling nanofluids. The coatings will be evaluated in the as-deposited condition and after sintering.

  11. Carbon Dioxide Separation Technology: R&D Needs for the Chemical and Petrochemical Industries

    SciTech Connect (OSTI)

    none,

    2007-11-01

    This report, the second in a series, is designed to summarize and present recommendations for improved CO2 separation technology for industrial processes. This report provides an overview of 1) the principal CO2 producing processes, 2) the current commercial separation technologies and 3) emerging adsorption and membrane technologies for CO2 separation, and makes recommendations for future research.

  12. Vehicle Technologies Office Merit Review 2014: Chemical Kinetic Models for Advanced Engine Combustion

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence Livermore National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  13. Vehicle Technologies Office Merit Review 2015: Chemical Kinetic Models for Advanced Engine Combustion

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence Livermore National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  14. Chemical and biological extraction of metals present in E waste: A hybrid technology

    SciTech Connect (OSTI)

    Pant, Deepak; Joshi, Deepika; Upreti, Manoj K.; Kotnala, Ravindra K.

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Hybrid methodology for E waste management. Black-Right-Pointing-Pointer Efficient extraction of metals. Black-Right-Pointing-Pointer Trace metal extraction is possible. - Abstract: Management of metal pollution associated with E-waste is widespread across the globe. Currently used techniques for the extraction of metals from E-waste by using either chemical or biological leaching have their own limitations. Chemical leaching is much rapid and efficient but has its own environmental consequences, even the future prospects of associated nanoremediation are also uncertain. Biological leaching on the other hand is comparatively a cost effective technique but at the same moment it is time consuming and the complete recovery of the metal, alone by biological leaching is not possible in most of the cases. The current review addresses the individual issues related to chemical and biological extraction techniques and proposes a hybrid-methodology which incorporates both, along with safer chemicals and compatible microbes for better and efficient extraction of metals from the E-waste.

  15. Reactive Dehydration technology for Production of Fuels and Chemicals from Biomass

    Energy Savers [EERE]

    Dr. James R. Kittrell, KSE, Inc. Dr. Carl R. Dupre, KSE, Inc. Dr. Michael F. Malone (Subcontractor) U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 6-7, 2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information. 2 Project Objective Commercialize a novel reactive distillation technology using the iCARD platform (Intensified Catalytic and Reactive Distillation) for compact, inexpensive production of biomass-based

  16. A new generation of refractory concretes colloid-chemical aspect of their technology

    SciTech Connect (OSTI)

    Pivinskii, Y.E.

    1994-09-01

    Some peculiarities of the technology of new refractory concretes (ceramoconcretes, low-cement refractory concretes, and vibrocompacted thixotropic fluid refractory pastes) are analyzed from the standpoint of modern colloid chemistry. Interactions of disperse particles and the aggregation stability of disperse systems are discussed. Using a highly concentrated binding suspension (HCBS) of quartz glass as an example, a diagram of the regions of stability and coagulation of particles depending on the pH index of the suspension has been constructed. The state and form of the bonds of water in disperse systems are analyzed. It is shown for clays and HCBS of a number of materials that the strength properties of binders depend on the electrokinetic potential of the initial disperse system. A correlation between the acid-basic properties of the solid phase and the characteristics of the binder is demonstrated. The effects of heterocoagulation in systems with a mixed solid phase are also discussed.

  17. Development and Field Trial of Dimpled-Tube Technology for Chemical Industry Process Heaters

    SciTech Connect (OSTI)

    Yaroslav Chudnovsky; Aleksandr Kozlov

    2006-10-12

    Most approaches to increasing heat transfer rates in the convection sections of gas-fired process heaters involve the incorporation of fins, baffles, turbulizers, etc. to increase either the heat transfer surface area or turbulence or both. Although these approaches are effective in increasing the heat transfer rates, this increase is invariably accompanied by an associated increase in convection section pressure drop as well as, for heaters firing ‘dirty’ fuel mixtures, increased fouling of the tubes – both of which are highly undesirable. GTI has identified an approach that will increase heat transfer rates without a significant increase in pressure drop or fouling rate. Compared to other types of heat transfer enhancement approaches, the proposed dimpled tube approach achieves very high heat transfer rates at the lowest pressure drops. Incorporating this approach into convection sections of chemical industry fired process heaters may increase energy efficiency by 3-5%. The energy efficiency increase will allow reducing firing rates to provide the required heating duty while reducing the emissions of CO2 and NOx.

  18. JOWOG 22/2 - Actinide Chemical Technology (July 9-13, 2012)

    SciTech Connect (OSTI)

    Jackson, Jay M.; Lopez, Jacquelyn C.; Wayne, David M.; Schulte, Louis D.; Finstad, Casey C.; Stroud, Mary Ann; Mulford, Roberta Nancy; MacDonald, John M.; Turner, Cameron J.; Lee, Sonya M.

    2012-07-05

    The Plutonium Science and Manufacturing Directorate provides world-class, safe, secure, and reliable special nuclear material research, process development, technology demonstration, and manufacturing capabilities that support the nation's defense, energy, and environmental needs. We safely and efficiently process plutonium, uranium, and other actinide materials to meet national program requirements, while expanding the scientific and engineering basis of nuclear weapons-based manufacturing, and while producing the next generation of nuclear engineers and scientists. Actinide Process Chemistry (NCO-2) safely and efficiently processes plutonium and other actinide compounds to meet the nation's nuclear defense program needs. All of our processing activities are done in a world class and highly regulated nuclear facility. NCO-2's plutonium processing activities consist of direct oxide reduction, metal chlorination, americium extraction, and electrorefining. In addition, NCO-2 uses hydrochloric and nitric acid dissolutions for both plutonium processing and reduction of hazardous components in the waste streams. Finally, NCO-2 is a key team member in the processing of plutonium oxide from disassembled pits and the subsequent stabilization of plutonium oxide for safe and stable long-term storage.

  19. Technolog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from

  20. Process Intensification - Chemical Sector Focus

    Energy Savers [EERE]

    Process Intensification - Chemical Sector Focus 1 Technology Assessment 2 Contents 3 1. Introduction ..................................................................................................................................................................... 1 4 2. Technology Assessment and Potential ................................................................................................................. 5 5 2.1 Chemical Industry Focus

  1. Chemicals Industry Vision

    SciTech Connect (OSTI)

    none,

    1996-12-01

    Chemical industry leaders articulated a long-term vision for the industry, its markets, and its technology in the groundbreaking 1996 document Technology Vision 2020 - The U.S. Chemical Industry. (PDF 310 KB).

  2. Chemical Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Science /science-innovation/_assets/images/icon-science.jpg Chemical Science National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Actinide Chemistry» Modeling & Simulation» Synthetic and Mechanistic Chemistry» Chemistry for Measurement and Detection Science» Chemical Researcher Jeff Pietryga shows two vials of

  3. Dow Chemical Company: Assessment Leads to Steam System Energy Savings in a Petrochemical Plant; Industrial Technologies Program (ITP) Save Energy Now Case Study (Brochure)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dow St. Charles Operations in Hahnville, Louisiana Dow Chemical Company: Assessment Leads to Steam System Energy Savings in a Petrochemical Plant Industrial Technologies Program Case Study Benefits * Saves $1.9 million annually * Achieves annual natural gas savings of 272,000 MMBtu * Achieves a simple payback of 1.5 months Key Findings * Quantifying potential energy savings, especially with the assistance of an outside expert, can provide the impetus for management to take action. * Although Dow

  4. Proceedings of the 31. intersociety energy conversion engineering conference. Volume 2: Conversion technologies, electro-chemical technologies, Stirling engines, thermal management

    SciTech Connect (OSTI)

    Chetty, P.R.K.; Jackson, W.D.; Dicks, E.B.

    1996-12-31

    The 148 papers contained in Volume 2 are arranged topically as follows -- (A) Conversion Technologies: Superconductivity applications; Advanced cycles; Heat engines; Heat pumps; Combustion and cogeneration; Advanced nuclear reactors; Fusion Power reactors; Magnetohydrodynamics; Alkali metal thermal to electric conversion; Thermoelectrics; Thermionic conversion; Thermophotovoltaics; Advances in electric machinery; and Sorption technologies; (B) Electrochemical Technologies: Terrestrial fuel cell technology; and Batteries for terrestrial power; (C) Stirling Engines: Stirling machine analysis; Stirling machine development and testing; and Stirling component analysis and testing; (D) Thermal Management: Cryogenic heat transfer; Electronic components and power systems; Environmental control systems; Heat pipes; Numeric analysis and code verification; and Two phase heat and mass transfer. Papers within the scope of the data base have been processed separately.

  5. Kodak: MotorMaster+ Is the Foundation for Energy Efficiency at a Chemical and Imaging Technologies Plant (Revised)

    SciTech Connect (OSTI)

    Not Available

    2007-02-01

    This DOE Industrial Technologies Program spotlight describes how Kodak is saving 5.8 million kWh and $664,000 annually after upgrading or replacing inefficient motors in its Rochester, New York, plant.

  6. Kodak: MotorMaster+ is the Foundation for Energy Efficiency at a Chemical and Imaging Technologies Plant

    SciTech Connect (OSTI)

    2006-10-01

    This DOE Industrial Technologies Program spotlight describes how Kodak is saving 5.8 million kWh and $664,000 annually after upgrading or replacing inefficient motors in its Rochester, New York, plant.

  7. Chemical Technology Division progress report for the period April 1, 1981-March 31, 1983. [Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1983-09-01

    Separate abstracts were prepared for eight sections of the report: nuclear waste management; fossil energy; basic science and technology; biotechnology and environmental programs; transuranium-element processing; Nuclear Regulatory Commission programs; Three Mile Island support studies; and miscellaneous programs.

  8. Technology for Treatment of Liquid Radioactive Waste Generated during Uranium and Plutonium Chemical and Metallurgical Manufacturing in FSUE PO Mayak - 13616

    SciTech Connect (OSTI)

    Adamovich, D. [SUE MosSIA Radon, 2/14 7th Rostovsky lane, Moscow, 119121 (Russian Federation)] [SUE MosSIA Radon, 2/14 7th Rostovsky lane, Moscow, 119121 (Russian Federation); Batorshin, G.; Logunov, M.; Musalnikov, A. [FSUE 'PO Mayak', 31 av. Lenin, Ozyorsk, Chelyabinsk region, 456780 (Russian Federation)] [FSUE 'PO Mayak', 31 av. Lenin, Ozyorsk, Chelyabinsk region, 456780 (Russian Federation)

    2013-07-01

    Created technological scheme for treatment of liquid radioactive waste generated while uranium and plutonium chemical and metallurgical manufacturing consists of: - Liquid radioactive waste (LRW) purification from radionuclides and its transfer into category of manufacturing waste; - Concentration of suspensions containing alpha-nuclides and their further conversion to safe dry state (calcinate) and moving to long controlled storage. The following technologies are implemented in LRW treatment complex: - Settling and filtering technology for treatment of liquid intermediate-level waste (ILW) with volume about 1500m{sup 3}/year and alpha-activity from 10{sup 6} to 10{sup 8} Bq/dm{sup 3} - Membrane and sorption technology for processing of low-level waste (LLW) of radioactive drain waters with volume about 150 000 m{sup 3}/year and alpha-activity from 10{sup 3} to 10{sup 4} Bq/dm{sup 3}. Settling and filtering technology includes two stages of ILW immobilization accompanied with primary settling of radionuclides on transition metal hydroxides with the following flushing and drying of the pulp generated; secondary deep after settling of radionuclides on transition metal hydroxides with the following solid phase concentration by the method of tangential flow ultrafiltration. Besides, the installation capacity on permeate is not less than 3 m{sup 3}/h. Concentrates generated are sent to calcination on microwave drying (MW drying) unit. Membrane and sorption technology includes processing of averaged sewage flux by the method of tangential flow ultrafiltration with total capacity of installations on permeate not less than 18 m{sup 3}/h and sorption extraction of uranium from permeate on anionite. According to radionuclide contamination level purified solution refers to general industrial waste. Concentrates generated during suspension filtering are evaporated in rotary film evaporator (RFE) in order to remove excess water, thereafter they are dried on infrared heating facility. Solid concentrate produced is sent for long controlled storage. Complex of the procedures carried out makes it possible to solve problems on treatment of LRW generated while uranium and plutonium chemical and metallurgical manufacturing in Federal State Unitary Enterprise (FSUE) Mayak and cease its discharge into open water reservoirs. (authors)

  9. Tag: technology transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    17all en CNS, UT chemical sensing technology wins R&D 100 Award http:www.y12.doe.govnewspress-releasescns-ut-chemical-sensing-technology-wins-rd-100-award

  10. Membrane Technology Workshop

    Broader source: Energy.gov [DOE]

    Presentation by Charles Page (Air Products & Chemicals, Inc.) for the Membrane Technology Workshop held July 24, 2012

  11. ITP Chemicals: Chemical Industry of the Future: New Biocatalysts: Essential

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tools for a Sustainable 21st Century Chemical Industry | Department of Energy Chemical Industry of the Future: New Biocatalysts: Essential Tools for a Sustainable 21st Century Chemical Industry ITP Chemicals: Chemical Industry of the Future: New Biocatalysts: Essential Tools for a Sustainable 21st Century Chemical Industry PDF icon biocatalysis_roadmap.pdf More Documents & Publications TECHNOLOGY VISION 2020: The U.S. Chemical Industry Gasoline Biodesulfurization Fact Sheet Breaking the

  12. Nanojunction Sensors for the Detection of chemical and Biological...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Detection of chemical and Biological Species DOE Grant Recipients Arizona Technology Enterprises Contact Arizona Technology Enterprises About This Technology Technology Marketing...

  13. Technology for Increasing Geothermal Energy Productivity. Computer Models to Characterize the Chemical Interactions of Goethermal Fluids and Injectates with Reservoir Rocks, Wells, Surface Equiptment

    SciTech Connect (OSTI)

    Nancy Moller Weare

    2006-07-25

    This final report describes the results of a research program we carried out over a five-year (3/1999-9/2004) period with funding from a Department of Energy geothermal FDP grant (DE-FG07-99ID13745) and from other agencies. The goal of research projects in this program were to develop modeling technologies that can increase the understanding of geothermal reservoir chemistry and chemistry-related energy production processes. The ability of computer models to handle many chemical variables and complex interactions makes them an essential tool for building a fundamental understanding of a wide variety of complex geothermal resource and production chemistry. With careful choice of methodology and parameterization, research objectives were to show that chemical models can correctly simulate behavior for the ranges of fluid compositions, formation minerals, temperature and pressure associated with present and near future geothermal systems as well as for the very high PT chemistry of deep resources that is intractable with traditional experimental methods. Our research results successfully met these objectives. We demonstrated that advances in physical chemistry theory can be used to accurately describe the thermodynamics of solid-liquid-gas systems via their free energies for wide ranges of composition (X), temperature and pressure. Eight articles on this work were published in peer-reviewed journals and in conference proceedings. Four are in preparation. Our work has been presented at many workshops and conferences. We also considerably improved our interactive web site (geotherm.ucsd.edu), which was in preliminary form prior to the grant. This site, which includes several model codes treating different XPT conditions, is an effective means to transfer our technologies and is used by the geothermal community and other researchers worldwide. Our models have wide application to many energy related and other important problems (e.g., scaling prediction in petroleum production systems, stripping towers for mineral production processes, nuclear waste storage, CO2 sequestration strategies, global warming). Although funding decreases cut short completion of several research activities, we made significant progress on these abbreviated projects.

  14. Safety and Security Technologies for Radioactive Material Shipments

    Office of Environmental Management (EM)

    Technologies Safety & Security Technologies Study Emerging Technologies 1. Networked RFIDubiquitous sensors and cargo monitoring. 2. Pressure gauges and chemical detection...

  15. Vehicle Technologies Office Merit Review 2015: Mechanistic Modeling Framework for Predicting Extreme Battery Response: Coupled Hierarchical Models for Thermal, Mechanical, Electrical and (Electro)chemical Processes

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about mechanistic...

  16. Plasma technology

    SciTech Connect (OSTI)

    Herlitz, H.G.

    1986-11-01

    This paper describes the uses of plasma technology for the thermal destruction of hazardous wastes such as PCBs, dioxins, hydrocarbons, military chemicals and biological materials; for metals recovery from steel making dusts. One advantage of the process is that destruction of wastes can be carried out on site. Systems in several countries use the excess thermal energy for district heating.

  17. Solutia: Massachusetts Chemical Manufacturer Uses SECURE Methodology to Identify Potential Reductions in Utility and Process Energy Consumption. Industrial Technologies Program (ITP) Chemicals BestPractices Plant-Wide Assessment Case Study (Brochure).

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Program BENEFITS * Identified potential annual cost savings of nearly $3.3 million from reduced resource consumption and improved productivity * Found ways to reduce annual electricity consumption by almost 9.6 million kWh and annual fuel consumption by 338,000 MMBtu * Identified ways to decrease fresh water consumption and wastewater generation * Resulted in short-term plans for immediate benefit, such as steam trap and lighting surveys, and long-term plans for optimizing the

  18. Chemical System Decontamination at PWR Power Stations Biblis A and B by Advanced System Decontamination by Oxidizing Chemistry (ASDOC-D) Process Technology - 13081

    SciTech Connect (OSTI)

    Loeb, Andreas; Runge, Hartmut; Stanke, Dieter; Bertholdt, Horst-Otto; Adams, Andreas; Impertro, Michael; Roesch, Josef

    2013-07-01

    For chemical decontamination of PWR primary systems the so called ASDOC-D process has been developed and qualified at the German PWR power station Biblis. In comparison to other chemical decontamination processes ASDOC-D offers a number of advantages: - ASDOC-D does not require separate process equipment but is completely operated and controlled by the nuclear site installations. Feeding of chemical concentrates into the primary system is done by means of the site's dosing systems. Process control is performed by standard site instrumentation and analytics. - ASDOC-D safely prevents any formation and precipitation of insoluble constituents - Since ASDOC-D is operated without external equipment there is no need for installation of such equipment in high radioactive radiation surrounding. The radioactive exposure rate during process implementation and process performance may therefore be neglected in comparison to other chemical decontamination processes. - ASDOC-D does not require auxiliary hose connections which usually bear high leakage risk. The above mentioned technical advantages of ASDOC-D together with its cost-effectiveness gave rise to Biblis Power station to agree on testing ASDOC-D at the volume control system of PWR Biblis unit A. By involving the licensing authorities as well as expert examiners into this test ASDOC-D received the official qualification for primary system decontamination in German PWR. As a main outcome of the achieved results NIS received contracts for full primary system decontamination of both units Biblis A and B (each 1.200 MW) by end of 2012. (authors)

  19. Characterization of Cerro Negro crude. Part I. Physical and chemical separations. [Project shared by Bartlesville Energy Technology Center, US DOE, and Institute de Tecnologico del Venezolana Petroleo

    SciTech Connect (OSTI)

    Grizzle, P.L.; Green, J.B.; Sanchez, V.; Murgia, E.; Lubkowitz, J.

    1981-09-01

    The scheme couples distillation and ion exchange and solid liquid chromatography in an attempt to prepare narrow-boiling, chemically unique fractions, which can be analyzed further or can supply data for process development. For evaluation of the separation approach, a Cerro Negro crude from the Venezuelan Orinoco basin has been studied in a cooperative program between the United States Department of Energy and the Institute de Tecnologico del Venezolana Petroleo. These fractions may be analyzed by ir, uv, fluorescence, and nuclear magnetic resonance spectroscopy, as well as various mass spectroscopy methods. The approach appears to be promising. 5 figures, 6 tables.

  20. Tag: technology transfer | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology transfer Tag: technology transfer Displaying 1 - 10 of 12... Category: News CNS, UT chemical sensing technology wins R&D 100 Award An inexpensive, small and portable...

  1. Bioenergy Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2015 BETO Project Peer Review - Conversion Area Overview Bryna Guriel, Technology Manager Conversion R&D March 23 rd 2015 2 | Bioenergy Technologies Office eere.energy.gov Introduction to Conversion R&D 3 | Bioenergy Technologies Office eere.energy.gov * The strategic goal of the conversion program is to develop commercially viable technologies for converting feedstocks via biological and chemical routes energy-dense, fungible, finished liquid fuels, such as renewable gasoline, jet, and

  2. Wet Chemical Compositional and Near IR Spectra Data Sets for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Like This Return to Search Wet Chemical Compositional and Near IR Spectra Data Sets for Biomass National Renewable Energy Laboratory Contact NREL About This Technology Technology...

  3. Chemical pressure effects on structural, dielectric and magnetic...

    Office of Scientific and Technical Information (OSTI)

    ... Chemical Technologies and Analytics, Vienna University of Technology, A-1060 Vienna (Austria) Publication Date: 2014-02-01 OSTI Identifier: 22345199 Resource Type: Journal Article ...

  4. Carbon Emissions Reduction Potential in the US Chemicals and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industries by Applying CHP Technologies, June 1999 Carbon Emissions Reduction Potential in the US Chemicals and Pulp and Paper Industries by Applying CHP Technologies, June 1999 ...

  5. Chemical Recycling | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Recycling Chemical Recycling

  6. Symyx Technologies | Open Energy Information

    Open Energy Info (EERE)

    Sunnyvale, California Zip: 94085 Product: Symyx is an energy and chemicals contract research and development company aimed at moving early technology toward...

  7. Supan Technologies | Open Energy Information

    Open Energy Info (EERE)

    Supan Technologies Place: Ontario, Canada Zip: K1C 2W6 Product: Manufactures chemical etching stations, wafer transfer equipment and turnkey PV cell and module production lines....

  8. Gas phase chemical detection with an integrated chemical analysis system

    SciTech Connect (OSTI)

    CASALNUOVO,STEPHEN A.; FRYE-MASON,GREGORY CHARLES; KOTTENSTETTE,RICHARD; HELLER,EDWIN J.; MATZKE,CAROLYN M.; LEWIS,PATRICK R.; MANGINELL,RONALD P.; BACA,ALBERT G.; HIETALA,VINCENT M.

    2000-04-12

    Microfabrication technology has been applied to the development of a miniature, multi-channel gas phase chemical laboratory that provides fast response, small size, and enhanced versatility and chemical discrimination. Each analysis channel includes a sample preconcentrator followed by a gas chromatographic separator and a chemically selective surface acoustic wave detector array to achieve high sensitivity and selectivity. The performance of the components, individually and collectively, is described.

  9. Chemical microsensors

    DOE Patents [OSTI]

    Li, DeQuan (Los Alamos, NM); Swanson, Basil I. (Los Alamos, NM)

    1995-01-01

    An article of manufacture is provided including a substrate having an oxide surface layer and a selective thin film of a cyclodextrin derivative chemically bound upon said substrate, said film is adapted for the inclusion of a selected organic compound therewith. Such an article can be either a chemical sensor capable of detecting a resultant mass change from inclusion of the selected organic compound or a chemical separator capable of reversibly selectively separating a selected organic compound.

  10. Advanced Technologies for Monitoring CO2 Saturation and Pore Pressure in Geologic Formations: Linking the Chemical and Physical Effects to Elastic and Transport Properties

    SciTech Connect (OSTI)

    Mavko, G.; Vanorio, T.; Vialle, S.; Saxena, N.

    2014-03-31

    Ultrasonic P- and S-wave velocities were measured over a range of confining pressures while injecting CO2 and brine into the samples. Pore fluid pressure was also varied and monitored together with porosity during injection. Effective medium models were developed to understand the mechanisms and impact of observed changes and to provide the means for implementation of the interpretation methodologies in the field. Ultrasonic P- and S-wave velocities in carbonate rocks show as much as 20-50% decrease after injection of the reactive CO2-brine mixture; the changes were caused by permanent changes to the rock elastic frame associated with dissolution of mineral. Velocity decreases were observed under both dry and fluid-saturated conditions, and the amount of change was correlated with the initial pore fabrics. Scanning Electron Microscope images of carbonate rock microstructures were taken before and after injection of CO2-rich water. The images reveal enlargement of the pores, dissolution of micrite (micron-scale calcite crystals), and pitting of grain surfaces caused by the fluid- solid chemical reactivity. The magnitude of the changes correlates with the rock microtexture – tight, high surface area samples showed the largest changes in permeability and smallest changes in porosity and elastic stiffness compared to those in rocks with looser texture and larger intergranular pore space. Changes to the pore space also occurred from flow of fine particles with the injected fluid. Carbonates with grain-coating materials, such as residual oil, experienced very little permanent change during injection. In the tight micrite/spar cement component, dissolution is controlled by diffusion: the mass transfer of products and reactants is thus slow and the fluid is expected to be close to thermodynamical equilibrium with the calcite, leading to very little dissolution, or even precipitation. In the microporous rounded micrite and macropores, dissolution is controlled by advection: because of an efficient mass transfer of reactants and products, the fluid remains acidic, far from thermodynamical equilibrium and the dissolution of calcite is important. These conclusions are consistent with the lab observations. Sandstones from the Tuscaloosa formation in Mississippi were also subjected to injection under representative in situ stress and pore pressure conditions. Again, both P- and S-wave velocities decreased with injection. Time-lapse SEM images indicated permanent changes induced in the sandstone microstructure by chamosite dissolution upon injection of CO2-rich brine. After injection, the sandstone showed an overall cleaner microstructure. Two main changes are involved: (a) clay dissolution between grains and at the grain contact and (b) rearrangement of grains due to compaction under pressure Theoretical and empirical models were developed to quantify the elastic changes associated with injection. Permanent changes to the rock frame resulted in seismic velocity-porosity trends that mimic natural diagenetic changes. Hence, when laboratory measurments are not available for a candidate site, these trends can be estimated from depth trends in well logs. New theoretical equations were developed to predict the changes in elastic moduli upon substitution of pore-filling material. These equations reduce to Gassmann’s equations for the case of constant frame properties, low seismic frequencies, and fluid changes in the pore space. The new models also predict the change dissolution or precipitation of mineral, which cannot be described with the conventional Gassmann theory.

  11. Batteryless Chemical Detection - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Advanced Materials Find More Like This Return to Search Batteryless Chemical Detection Lawrence Livermore National Laboratory Contact LLNL About This Technology Publications: PDF Document Publication Advanced Materials, 2011, 23, 117-121. (1,804 KB) Technology Marketing Summary Existing nanosensor technologies employ gas, chemical, and biological detection methods that depend on an external power source (typically a battery) to operate. This limits conventional technologies by

  12. Chemical preconcentrator

    DOE Patents [OSTI]

    Manginell, Ronald P. (Albuquerque, NM); Frye-Mason, Gregory C. (Cedar Crest, NM)

    2001-01-01

    A chemical preconcentrator is disclosed with applications to chemical sensing and analysis. The preconcentrator can be formed by depositing a resistive heating element (e.g. platinum) over a membrane (e.g. silicon nitride) suspended above a substrate. A coating of a sorptive material (e.g. a microporous hydrophobic sol-gel coating or a polymer coating) is formed on the suspended membrane proximate to the heating element to selective sorb one or more chemical species of interest over a time period, thereby concentrating the chemical species in the sorptive material. Upon heating the sorptive material with the resistive heating element, the sorbed chemical species are released for detection and analysis in a relatively high concentration and over a relatively short time period. The sorptive material can be made to selectively sorb particular chemical species of interest while not substantially sorbing other chemical species not of interest. The present invention has applications for use in forming high-sensitivity, rapid-response miniaturized chemical analysis systems (e.g. a "chem lab on a chip").

  13. Chemical sensors

    DOE Patents [OSTI]

    Lowell, J.R. Jr.; Edlund, D.J.; Friesen, D.T.; Rayfield, G.W.

    1991-07-02

    Sensors responsive to small changes in the concentration of chemical species are disclosed. The sensors comprise a mechanochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment. They are operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical response. 9 figures.

  14. Chemicals Industry Profile | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemicals Industry Profile Chemicals Industry Profile Chemical products are essential to the production of a myriad of manufactured products. More than 96% of all manufactured goods are directly touched by the chemicals industry.1 The industry greatly influences our safe water supply, food, shelter, clothing, health care, computer technology, transportation, and almost every other facet of modern life. Economic The United States is the top chemical producer in the world, accounting for nearly

  15. Gas Phase Chemical Detection with an Integrated Chemical Analysis System

    SciTech Connect (OSTI)

    Baca, Albert G.; Casalnuovo, Stephen A.; Frye-Mason, Gregory C.; Heller, Edwin J.; Hietala, Susan L.; Hietala, Vincent M.; Kottenstette, Richard J.; Lewis, Patrick R.; Manginell, Ronald P.; Matzke, Carloyn M.; Reno, John L.; Sasaki, Darryl Y.; Schubert, W. Kent

    1999-07-08

    Microfabrication technology has been applied to the development of a miniature, multi-channel gas phase chemical laboratory that provides fast response, small size, and enhanced versatility and chemical discrimination. Each analysis channel includes a sample concentrator followed by a gas chromatographic separator and a chemically selective surface acoustic wave detector array to achieve high sensitivity and selectivity. The performance of the components, individually and collectively, is described. The design and performance of novel micromachined acoustic wave devices, with the potential for improved chemical sensitivity, are also described.

  16. Gasification: A Cornerstone Technology

    SciTech Connect (OSTI)

    Gary Stiegel

    2008-03-26

    NETL is a leader in the science and technology of gasification - a process for the conversion of carbon-based materials such as coal into synthesis gas (syngas) that can be used to produce clean electrical energy, transportation fuels, and chemicals efficiently and cost-effectively using domestic fuel resources. Gasification is a cornerstone technology of 21st century zero emissions powerplants

  17. Gasification: A Cornerstone Technology

    ScienceCinema (OSTI)

    Gary Stiegel

    2010-01-08

    NETL is a leader in the science and technology of gasification - a process for the conversion of carbon-based materials such as coal into synthesis gas (syngas) that can be used to produce clean electrical energy, transportation fuels, and chemicals efficiently and cost-effectively using domestic fuel resources. Gasification is a cornerstone technology of 21st century zero emissions powerplants

  18. Micromachined chemical jet dispenser

    DOE Patents [OSTI]

    Swierkowski, S.P.

    1999-03-02

    A dispenser is disclosed for chemical fluid samples that need to be precisely ejected in size, location, and time. The dispenser is a micro-electro-mechanical systems (MEMS) device fabricated in a bonded silicon wafer and a substrate, such as glass or silicon, using integrated circuit-like fabrication technology which is amenable to mass production. The dispensing is actuated by ultrasonic transducers that efficiently produce a pressure wave in capillaries that contain the chemicals. The 10-200 {micro}m diameter capillaries can be arranged to focus in one spot or may be arranged in a larger dense linear array (ca. 200 capillaries). The dispenser is analogous to some ink jet print heads for computer printers but the fluid is not heated, thus not damaging certain samples. Major applications are in biological sample handling and in analytical chemical procedures such as environmental sample analysis, medical lab analysis, or molecular biology chemistry experiments. 4 figs.

  19. Micromachined chemical jet dispenser

    DOE Patents [OSTI]

    Swierkowski, Steve P. (Livermore, CA)

    1999-03-02

    A dispenser for chemical fluid samples that need to be precisely ejected in size, location, and time. The dispenser is a micro-electro-mechanical systems (MEMS) device fabricated in a bonded silicon wafer and a substrate, such as glass or silicon, using integrated circuit-like fabrication technology which is amenable to mass production. The dispensing is actuated by ultrasonic transducers that efficiently produce a pressure wave in capillaries that contain the chemicals. The 10-200 .mu.m diameter capillaries can be arranged to focus in one spot or may be arranged in a larger dense linear array (.about.200 capillaries). The dispenser is analogous to some ink jet print heads for computer printers but the fluid is not heated, thus not damaging certain samples. Major applications are in biological sample handling and in analytical chemical procedures such as environmental sample analysis, medical lab analysis, or molecular biology chemistry experiments.

  20. Chemical sensors

    DOE Patents [OSTI]

    Lowell, J.R. Jr.; Edlund, D.J.; Friesen, D.T.; Rayfield, G.W.

    1992-06-09

    Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising a mechanicochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, either operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical or optical response, or adhered to a second inert polymeric strip, or doped with a conductive material. 12 figs.

  1. Chemical Technology Division annual technical report, 1996

    SciTech Connect (OSTI)

    1997-06-01

    CMT is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. It conducts R&D in 3 general areas: development of advanced power sources for stationary and transportation applications and for consumer electronics, management of high-level and low-level nuclear wastes and hazardous wastes, and electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, materials chemistry of electrified interfaces and molecular sieves, and the theory of materials properties. It also operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at ANL and other organizations. Technical highlights of the Division`s activities during 1996 are presented.

  2. Chemical Looping Combustion | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Looping Combustion chemical-looping-combustion.jpg An economical option for using our abundant, domestic coal resources while eliminating CO2 emissions may sound like science fiction, but NETL researchers are working to bring this technology of the future into the present. Chemical looping is the solution. This cost-effective indirect combustion technology has CO2 capture "built in," effectively eradicating greenhouse gas emissions from coal. Although still a few years away

  3. Vehicle Technologies Office: Technologies

    Broader source: Energy.gov [DOE]

    To support DOE's goal to provide clean and secure energy, the Vehicle Technologies Office (VTO) invests in research and development that:

  4. BioRenewable Chemicals and Solvents - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Advanced Materials Advanced Materials Find More Like This Return to Search BioRenewable Chemicals and Solvents National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing SummaryAs a spin-off of NREL's long history of renewable energy research, alternatives to chemicals and solvents have been developed from renewable feedstocks. Traditionally, household and industrial chemicals and solvents are made from the limited

  5. Chemical Occurrences

    Broader source: Energy.gov [DOE]

    Classification of Chemical Occurrence Reports into the following four classes: Occurrences characterized by serious energy release, injury or exposure requiring medical treatment, or severe environmental damage, Occurrences characterized by minor injury or exposure, or reportable environmental release, Occurrences that were near misses including notable safety violations and Minor occurrences.

  6. Chemical Hydrogen Storage Materials | Department of Energy

    Office of Environmental Management (EM)

    Storage » Materials-Based Storage » Chemical Hydrogen Storage Materials Chemical Hydrogen Storage Materials The Fuel Cell Technologies Office's (FCTO's) chemical hydrogen storage materials research focuses on improving the volumetric and gravimetric capacity, transient performance, and efficient, cost-effective regeneration of the spent storage material. Technical Overview The category of chemical hydrogen storage materials generally refers to covalently bound hydrogen in either solid or

  7. Sandia Energy - Brief History of Artificial Lighting Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    light. These difference, in turn, have consequences in each technology's fundamental efficiency. Fire: Chemically fueled blackbody emission The first lighting technology is fire....

  8. 2011 DOE Hydrogen Program and Vehicle Technologies Office Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of DOE Vehicle Technologies Office Davis Program Manager, DOE Vehicle Technologies ... Perfluoro Aryl Boronic Esters as Chemical Shuttle Additives Patterson EnerDel, Inc. JCS ...

  9. Chemical tracking at the Rocky Flats Plant

    SciTech Connect (OSTI)

    Costain, D.B.

    1994-04-01

    EG&G Rocky Flats, Inc., has developed a chemical tracking system to support compliance with the Emergency Planning and community Right-to-Know Act (EPCRA) at the Rocky Flats Plant. This system, referred to as the EPCRA Chemical Control system (ECCS), uses bar code technology to uniquely identify and track the receipt, distribution, and use of chemicals. Chemical inventories are conducted using hand-held electronic scanners to update a site wide chemical database on a VAX 6000 computer. Information from the ECCS supports preparation of the EPCRA Tier II and Form R reports on chemical storage and use.

  10. Chemical Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Sciences - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  11. New Technologies | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fabricated to fit various turnstile models. Chemical Agent DetectorInterrogator This gun-like tool is an example of innovative technology - a true breakthrough for law...

  12. Chemical Management

    Office of Environmental Management (EM)

    DOE-HDBK-1139/1-2006 May 2006 DOE HANDBOOK CHEMICAL MANAGEMENT (Volume 1 of 3) U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S.

  13. InEnTec Chemical LLC | Open Energy Information

    Open Energy Info (EERE)

    LLC Jump to: navigation, search Name: InEnTec Chemical LLC Place: Florida Zip: 32003 Product: US-based plasma gasification technology developer. References: InEnTec Chemical LLC1...

  14. Collaborating for Multi-Scale Chemical Science

    SciTech Connect (OSTI)

    William H. Green

    2006-07-14

    Advanced model reduction methods were developed and integrated into the CMCS multiscale chemical science simulation software. The new technologies were used to simulate HCCI engines and burner flames with exceptional fidelity.

  15. Nanomechanical Sensor Detects and Identifies Chemical Analytes - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Nanomechanical Sensor Detects and Identifies Chemical Analytes Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryORNL researchers developed a cost-efficient nanomechanical sensor that can detect chemicals adsorbed to a surface and then quickly analyze and identify those chemicals. The device is a significant improvement over current detection technologies, which are not able to perform reliable identification. Rapid identification

  16. Industries & Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Industries & Technologies Industries & Technologies The Advanced Manufacturing Office (AMO) emphasizes innovative technologies to increase manufacturing agility and open new markets. AMO also maintains a range of projects, analyses, protocols, and strategies to reduce industrial energy intensity and carbon emissions in specific industries and technology areas: Industries Aluminum Chemicals Forest Products Glass Metal Casting Mining Other Industries Petroleum

  17. Olefin recovery via chemical absorption

    SciTech Connect (OSTI)

    Barchas, R.

    1998-06-01

    The recovery of fight olefins in petrochemical plants has generally been accomplished through cryogenic distillation, a process which is very capital and energy intensive. In an effort to simplify the recovery process and reduce its cost, BP Chemicals has developed a chemical absorption technology based on an aqueous silver nitrate solution. Stone & Webster is now marketing, licensing, and engineering the technology. The process is commercially ready for recovering olefins from olefin derivative plant vent gases, such as vents from polyethylene, polypropylene, ethylene oxide, and synthetic ethanol units. The process can also be used to debottleneck C{sub 2} or C{sub 3} splinters, or to improve olefin product purity. This paper presents the olefin recovery imp technology, discusses its applications, and presents economics for the recovery of ethylene and propylene.

  18. Fuels Technologies

    Office of Environmental Management (EM)

    Fuels Technologies Program Mission To develop more energy efficient and environmentally friendly highway transportation technologies that enable America to use less petroleum. --EERE Strategic Plan, October 2002-- Kevin Stork, Team Leader Fuel Technologies & Technology Deployment Vehicle Technologies Program Energy Efficiency and Renewable Energy U.S. Department of Energy DEER 2008 August 6, 2008 Presentation Outline n Fuel Technologies Research Goals Fuels as enablers for advanced engine

  19. Oxygen Carriers for Solid Fuel Chemical Looping Combustion Process - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Oxygen Carriers for Solid Fuel Chemical Looping Combustion Process Regenerable Mixed Copper-Iron-Inert Support Oxygen Carriers National Energy Technology Laboratory Contact NETL About This Technology Publications: PDF Document Publication 13159553.pdf (405 KB) Technology Marketing Summary This patent-pending technology, "Regenerable Mixed Copper-Iron-Inert Support Oxygen Carriers for Solid Fuel Chemical Looping Combustion Process," provides a metal-oxide oxygen

  20. Exploration Technologies - Technology Needs Assessment

    SciTech Connect (OSTI)

    Greene, Amanda I.; Thorsteinsson, Hildigunnur; Reinhardt, Tim; Solomon, Samantha; James, Mallory

    2011-06-01

    This assessment is a critical component of ongoing technology roadmapping efforts, and will be used to guide the Geothermal Technology Program's research and development.

  1. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    SciTech Connect (OSTI)

    1999-10-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  2. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    SciTech Connect (OSTI)

    Peter J. Tijrn

    2000-03-31

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  3. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    SciTech Connect (OSTI)

    Unknown

    1999-04-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  4. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    SciTech Connect (OSTI)

    Unknown

    2000-10-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  5. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    SciTech Connect (OSTI)

    Peter J. Tijrn

    2000-09-30

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  6. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    SciTech Connect (OSTI)

    Unknown

    1999-01-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  7. Alternative Fuels and Chemicals from Synthesis Gas

    SciTech Connect (OSTI)

    Peter Tijrn

    2003-01-02

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  8. NREL: Technology Transfer - Technology Partnership Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ombuds. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Agreements for Commercializing Technology CRADAs Work for...

  9. High Impact Technology Catalyst: Technology Deployment Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalyst: Technology Deployment Strategies High Impact Technology Catalyst: Technology Deployment Strategies The Energy Department released the High Impact Technology Catalyst: ...

  10. Energy and technology review

    SciTech Connect (OSTI)

    Not Available

    1983-10-01

    Three review articles are presented. The first describes the Lawrence Livermore Laboratory role in the research and development of oil-shale retorting technology through its studies of the relevant chemical and physical processes, mathematical models, and new retorting concepts. Second is a discussion of investigation of properties of dense molecular fluids at high pressures and temperatures to improve understanding of high-explosive behavior, giant-planet structure, and hydrodynamic shock interactions. Third, by totally computerizing the triple-quadrupole mass spectrometer system, the laboratory has produced a general-purpose instrument of unrivaled speed, selectivity, and adaptability for the analysis and identification of trace organic constituents in complex chemical mixtures. (GHT)

  11. Vehicle Technologies Office - Materials Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Materials Technologies Ed Owens Jerry Gibbs Will Joost eere.energy.gov 2 | Vehicle Technologies Program Materials Technologies Materials Technologies $36.9 M Lightweight Materials $28.0 M Values are FY14 enacted Propulsion Materials $8.9 M Properties and Manufacturing Multi-Material Enabling Modeling & Computational Mat. Sci. Engine Materials, Cast Al & Fe High Temp Alloys Exhaust Sys. Materials, Low T Catalysts Lightweight Propulsion FY13 Enacted $27.5 M

  12. Chemical Kinetic Modeling of Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels Chemical Kinetic Modeling of Fuels 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ft010_pitz_2010_o.pdf More Documents & Publications Chemical Kinetic Modeling of Non-Petroleum Based Fuels Chemical Kinetic Modeling of Non-Petroleum Based

  13. New Oxygen-Production Technology Proving Successful

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy's National Energy Technology Laboratory has partnered with Air Products and Chemicals Inc. of Allentown, Penn. to develop the Ion Transport Membrane (ITM) Oxygen, a revolutionary new oxygen-production technology that requires less energy and offers lower capital costs than conventional technologies.

  14. tcbiomass2015: Technology for the Bioeconomy

    Broader source: Energy.gov [DOE]

    The tcbiomass2015: Technology for the Bioeconomy Conference will be held from November 2–5, 2015 in Chicago, Illinois, and will be a global forum for experts in the science of thermochemical conversion of biomass to fuels, chemicals, and energy products. Bioenergy Technologies Office Conversion Program Manager Kevin Craig and Technology Manager Liz Moore will be in attendance.

  15. Microfluidic chemical reaction circuits

    DOE Patents [OSTI]

    Lee, Chung-cheng (Irvine, CA); Sui, Guodong (Los Angeles, CA); Elizarov, Arkadij (Valley Village, CA); Kolb, Hartmuth C. (Playa del Rey, CA); Huang, Jiang (San Jose, CA); Heath, James R. (South Pasadena, CA); Phelps, Michael E. (Los Angeles, CA); Quake, Stephen R. (Stanford, CA); Tseng, Hsian-rong (Los Angeles, CA); Wyatt, Paul (Tipperary, IE); Daridon, Antoine (Mont-Sur-Rolle, CH)

    2012-06-26

    New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.

  16. Sandia Energy - Chemical Dynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Dynamics Home Transportation Energy Predictive Simulation of Engines Combustion Chemistry Chemical Dynamics Chemical DynamicsAshley Otero2015-10-28T02:45:37+00:00...

  17. Available Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    application. Search Our Technologies submit Advanced Materials Advanced Materials Biotechnology Biotechnology Chemistry Chemistry Energy Energy High Performance Computing:...

  18. Licensing Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Licensing Technology Licensing Technology The primary function of Los Alamos Licensing Program is to move Los Alamos technology to the marketplace for the benefit of the U.S. economy. Our intellectual property may be licensed for commercial use, research applications, and U.S. government use. Contact thumbnail of Marcus Lucero Head of Licensing Marcus Lucero Richard P. Feynman Center for Innovation (505) 665-6569 Email Although Los Alamos's primary mission is national security, our technologies

  19. Technology Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intellectual Property » Technology Opportunities Technology Opportunities We deliver innovation through an integrated portfolio of R&D work across our key national security sponsoring agencies, enhanced by the ideas developed through our strategic internal investments. Contact Business Development Team Richard P. Feynman Center for Innovation (505) 665-9090 Email Periodically, the Laboratory notifies the public of technologies and capabilities that may be of interest. These technologies may

  20. Technology Partnering

    Energy Savers [EERE]

    on Technology Transfer and Related Technology Partnering Activities at the National Laboratories and Other Facilities Fiscal Years 2009-2013 Report to Congress May 2015 United States Department of Energy Washington, DC 20585 Message from the Secretary The Report on Technology Transfer and Related Partnering Activities at the National Laboratories and Other Facilities for Fiscal Year 2009-2013 is prepared in accordance with the requirements of the Technology Transfer and Commercialization Act of

  1. Energy Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies Our Vision National User Facilities Research Areas In Focus Global Solutions ⇒ Navigate Section Our Vision National User Facilities Research Areas In Focus Global Solutions Energy Technologies Area (ETA) Building Technology & Urban Systems Energy Analysis & Environmental Impacts Energy Storage & Distributed Resources

  2. Technology Assessment

    Energy Savers [EERE]

    - FOR OFFICIAL USE ONLY - DRAFT 1 Advanced Composites Materials and their Manufacture 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ................................................................................................ 2 4 2. Technology Potential and Assessment .................................................................................................. 4 5 2.1 The Potential for Advanced Composites for Clean Energy Application Areas

  3. Chemical Management System

    Energy Science and Technology Software Center (OSTI)

    1998-10-30

    CMS provides an inventory of all chemicals on order or being held in the laboratory, to provide a specific location for all chemical containers, to ensure that health and safety regulatory codes are being upheld, and to provide PNNL staff with hazardous chemical information to better manage their inventories. CMS is comprised of five major modules: 1) chemical purchasing, 2) chemical inventory, 3) chemical names, properties, and hazard groups, 4) reporting, and 5) system administration.

  4. Chemical Industry Corrosion Management

    SciTech Connect (OSTI)

    2003-02-01

    Improved Corrosion Management Could Provide Significant Cost and Energy Savings for the Chemical Industry. In the chemical industry, corrosion is often responsible for significant shutdown and maintenance costs.

  5. Institute of Chemical Engineering and High Temperature Chemical...

    Open Energy Info (EERE)

    Chemical Engineering and High Temperature Chemical Processes ICEHT Jump to: navigation, search Name: Institute of Chemical Engineering and High Temperature Chemical Processes...

  6. ITP Chemicals: Chemical Industry of the Future: New Biocatalysts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemical Industry of the Future: New Biocatalysts: Essential Tools for a Sustainable 21st Century Chemical Industry ITP Chemicals: Chemical Industry of the Future: New...

  7. Systems analysis of past, present, and future chemical terrorism scenarios.

    SciTech Connect (OSTI)

    Hoette, Trisha Marie

    2012-03-01

    Throughout history, as new chemical threats arose, strategies for the defense against chemical attacks have also evolved. As a part of an Early Career Laboratory Directed Research and Development project, a systems analysis of past, present, and future chemical terrorism scenarios was performed to understand how the chemical threats and attack strategies change over time. For the analysis, the difficulty in executing chemical attack was evaluated within a framework of three major scenario elements. First, historical examples of chemical terrorism were examined to determine how the use of chemical threats, versus other weapons, contributed to the successful execution of the attack. Using the same framework, the future of chemical terrorism was assessed with respect to the impact of globalization and new technologies. Finally, the efficacy of the current defenses against contemporary chemical terrorism was considered briefly. The results of this analysis justify the need for continued diligence in chemical defense.

  8. Technology '90

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The US Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as US industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology '90, is the latest in a series that is intended to communicate some of the many opportunities available for US industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology '90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report.

  9. BETO Project Improves Production of Renewable Chemical from Cellulosic

    Office of Environmental Management (EM)

    Feedstocks | Department of Energy Project Improves Production of Renewable Chemical from Cellulosic Feedstocks BETO Project Improves Production of Renewable Chemical from Cellulosic Feedstocks October 13, 2015 - 1:43pm Addthis Renewable chemical company Genomatica made significant progress toward increasing the range of feedstocks that can be used to commercially produce high-quality bio-based chemicals, in a project funded by the Energy Department's Bioenergy Technologies Office (BETO).

  10. Scientist Named an American Chemical Society Fellow - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientist Named an American Chemical Society Fellow September 1, 2010 Helena Chum Dr. Helena Chum was named a 2010 Fellow by the American Chemical Society. Dr. Helena Chum, research fellow at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL), was recently named a 2010 Fellow by the American Chemical Society (ACS). Dr. Chum's work includes the development of technologies for the conversion of biomass and organic wastes into liquid and gaseous fuels, chemicals and

  11. Summaries of FY 1993 research in the chemical sciences

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    The summaries in photochemical and radiation sciences, chemical physics, atomic physics, chemical energy, separations and analysis, heavy element chemistry, chemical engineering sciences, and advanced battery technology are arranged according to national laboratories and offsite institutions. Small business innovation research projects are also listed. Special facilities supported wholly or partly by the Division of Chemical Sciences are described. Indexes are provided for selected topics of general interest, institutions, and investigators.

  12. BETO Project Improves Production of Renewable Chemical from Cellulosic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Feedstocks | Department of Energy BETO Project Improves Production of Renewable Chemical from Cellulosic Feedstocks BETO Project Improves Production of Renewable Chemical from Cellulosic Feedstocks October 20, 2015 - 11:18am Addthis Renewable chemical company Genomatica made significant progress toward increasing the range of feedstocks that can be used to commercially produce high-quality bio-based chemicals, in a project funded by the Energy Department's Bioenergy Technologies Office

  13. Chemical Management Contacts

    Broader source: Energy.gov [DOE]

    Contacts for additional information on Chemical Management and brief description on Energy Facility Contractors Group

  14. PINS chemical identification software

    DOE Patents [OSTI]

    Caffrey, Augustine J.; Krebs, Kennth M.

    2004-09-14

    An apparatus and method for identifying a chemical compound. A neutron source delivers neutrons into the chemical compound. The nuclei of chemical elements constituting the chemical compound emit gamma rays upon interaction with the neutrons. The gamma rays are characteristic of the chemical elements constituting the chemical compound. A spectrum of the gamma rays is generated having a detection count and an energy scale. The energy scale is calibrated by comparing peaks in the spectrum to energies of pre-selected chemical elements in the spectrum. A least-squares fit completes the calibration. The chemical elements constituting the chemical compound can be readily determined, which then allows for identification of the chemical compound.

  15. Chemicals | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemicals Chemicals The U.S. chemicals industry is maturing and optimizing its business portfolio for more competitive global markets. Over the past decade, the industry has reduced its energy use, shifting its status from the largest to the second-largest energy user among U.S. industries. The chemicals industry has worked in partnership with AMO to develop a range of resources for improving energy efficiency. Some current R&D projects and Energy Management resources will benefit chemicals

  16. Chemical Sector Analysis | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NISACChemical Sector Analysis content top Chemical Supply Chain Analysis Posted by Admin on Mar 1, 2012 in | Comments 0 comments Chemical Supply Chain Analysis NISAC has developed a range of capabilities for analyzing the consequences of disruptions to the chemical manufacturing industry. Each capability provides a different but complementary perspective on the questions of interest-questions like Given an event, will the entire chemical sector be impacted or just parts? Which chemicals, plants,

  17. Huazhong Science Technology University Yongtai Science Technology...

    Open Energy Info (EERE)

    Huazhong Science Technology University Yongtai Science Technology Co Ltd Jump to: navigation, search Name: Huazhong Science & Technology University Yongtai Science & Technology Co...

  18. Preliminary Notice of Violation, Lockheed Martin Idaho Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Idaho Technologies Company related to Unplanned Internal Radiation Exposures at the Chemical Processing Plant at the Idaho National Engineering and Environmental Laboratory,...

  19. Resin Wafer Electrodeionization Technology Reduces the Cost of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Resin Wafer Electrodeionization Technology Reduces the Cost of Clean Energy, Chemicals, and...

  20. Chemical Kinetic Research on HCCI & Diesel Fuels | Department of Energy

    Office of Environmental Management (EM)

    3 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace013_pitz_2013_o.pdf More Documents & Publications Chemical Kinetic Research on HCCI & Diesel Fuels Vehicle Technologies Office Merit Review 2014: Chemical Kinetic Models for Advanced Engine Combustion Chemical Kinetic Modeling of Non-Petroleum Based Fuels

  1. Chemical preconcentrator with integral thermal flow sensor

    DOE Patents [OSTI]

    Manginell, Ronald P. (Albuquerque, NM); Frye-Mason, Gregory C. (Cedar Crest, NM)

    2003-01-01

    A chemical preconcentrator with integral thermal flow sensor can be used to accurately measure fluid flow rate in a microanalytical system. The thermal flow sensor can be operated in either constant temperature or constant power mode and variants thereof. The chemical preconcentrator with integral thermal flow sensor can be fabricated with the same MEMS technology as the rest of the microanlaytical system. Because of its low heat capacity, low-loss, and small size, the chemical preconcentrator with integral thermal flow sensor is fast and efficient enough to be used in battery-powered, portable microanalytical systems.

  2. NREL: Technology Deployment - Technology Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Acceleration NREL offers technology-specific assistance to federal and private industry to help address market barriers to sustainable energy technologies. Learn more about NREL's work in the following areas: Biopower and Waste-to-Energy Biopower and Waste-to-Energy Buildings Buildings Fuels, Vehicles, & Transportation Fuels, Vehicles, and Transportation Microgrid Design Microgrid Design Solar Solar Wind Wind Contact Us For more information on NREL's market transformation work,

  3. Thermally activated technologies: Technology Roadmap

    SciTech Connect (OSTI)

    None, None

    2003-05-01

    The purpose of this Technology Roadmap is to outline a set of actions for government and industry to develop thermally activated technologies for converting America’s wasted heat resources into a reservoir of pollution-free energy for electric power, heating, cooling, refrigeration, and humidity control. Fuel flexibility is important. The actions also cover thermally activated technologies that use fossil fuels, biomass, and ultimately hydrogen, along with waste heat.

  4. Technology Assessment

    Energy Savers [EERE]

    Roll to Roll (R2R) Processing 1 Technology Assessment 2 3 Contents 4 1. Introduction to the Technology/System ............................................................................................... 2 5 1.1. Introduction to R2R Processing..................................................................................................... 2 6 1.2. R2R Processing Mechanisms ......................................................................................................... 3 7 2.

  5. Technology Commercialization Showcase 2008 Vehicle Technologies Program

    SciTech Connect (OSTI)

    Davis, Patrick B.

    2009-06-19

    Presentation illustrating various technology commercialization opportunities and unexploited investment gaps for the Vehicle Technologies Program.

  6. Evaluation Of Electrochemical Machining Technology For Surface Improvements

    Office of Scientific and Technical Information (OSTI)

    In Additive Manufactured Components (Technical Report) | SciTech Connect Evaluation Of Electrochemical Machining Technology For Surface Improvements In Additive Manufactured Components Citation Details In-Document Search Title: Evaluation Of Electrochemical Machining Technology For Surface Improvements In Additive Manufactured Components ORNL Manufacturing Demonstration Facility worked with ECM Technologies LLC to investigate the use of precision electro-chemical machining technology to

  7. Today`s steel technology

    SciTech Connect (OSTI)

    1996-01-01

    AISI members have made significant advances in steelmaking technology over the past several years. This report details the alloy developments and processes that have made steel an engineered material suitable for an expanding range of applications. Improved processes involve casting, rolling, welding, forging, chemical composition and computerized control. Applications cover a broad range including automobile, buildings and bridges.

  8. Chemical Industry Bandwidth Study

    SciTech Connect (OSTI)

    none,

    2006-12-01

    The Chemical Bandwidth Study provides a snapshot of potentially recoverable energy losses during chemical manufacturing. The advantage of this study is the use of "exergy" analysis as a tool for pinpointing inefficiencies.

  9. Capacitive chemical sensor

    DOE Patents [OSTI]

    Manginell, Ronald P; Moorman, Matthew W; Wheeler, David R

    2014-05-27

    A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

  10. Robotics crosscutting program: Technology summary

    SciTech Connect (OSTI)

    1996-08-01

    The Office of Environmental Management (EM) is responsible for cleaning up the legacy of radioactive and chemically hazardous waste at contaminated sites and facilities throughout the U.S. Department of Energy (DOE) nuclear weapons complex, preventing further environmental contamination, and instituting responsible environmental management. Initial efforts to achieve this mission resulted in the establishment of environmental restoration and waste management programs. However, as EM began to execute its responsibilities, decision makers became aware that the complexity and magnitude of this mission could not be achieved efficiently, affordably, safely, or reasonably with existing technology. Once the need for advanced cleanup technologies became evident, EM established an aggressive, innovative program of applied research and technology development. The Office of Technology Development (OTD) was established in November 1989 to advance new and improved environmental restoration and waste management technologies that would reduce risks to workers, the public, and the environment; reduce cleanup costs; and devise methods to correct cleanup problems that currently have no solutions. In 1996, OTD added two new responsibilities - management of a Congressionally mandated environmental science program and development of risk policy, requirements, and guidance. OTD was renamed the Office of Science and Technology (OST). This documents presents information concerning robotics tank waste retrieval overview, robotic chemical analysis automation, robotics decontamination and dismantlement, and robotics crosscutting and advanced technology.

  11. Chemical Hydrogen Storage Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Troy A. Semelsberger Los Alamos National Laboratory Hydrogen Storage Summit Jan 27-29, 2015 Denver, CO Chemical Hydrogen Storage Materials 2 Objectives 1. Assess chemical hydrogen storage materials that can exceed 700 bar compressed hydrogen tanks 2. Status (state-of-the-art) of chemical hydrogen storage materials 3. Identify key material characteristics 4. Identify obstacles, challenges and risks for the successful deployment of chemical hydrogen materials in a practical on-board hydrogen

  12. Alternative Fuels and Chemicals from Synthesis Gas

    SciTech Connect (OSTI)

    1998-12-02

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE?s LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  13. Tag: technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tags 

    technology<...

  14. Technology Validation

    Broader source: Energy.gov [DOE]

    To reduce solar technology risks, DOE and its partners evaluate the performance and reliability of novel photovoltaic (PV) hardware and systems through laboratory and field testing. The focus of...

  15. Oil shale technology

    SciTech Connect (OSTI)

    Lee, S. (Akron Univ., OH (United States). Dept. of Chemical Engineering)

    1991-01-01

    Oil shale is undoubtedly an excellent energy source that has great abundance and world-wide distribution. Oil shale industries have seen ups and downs over more than 100 years, depending on the availability and price of conventional petroleum crudes. Market forces as well as environmental factors will greatly affect the interest in development of oil shale. Besides competing with conventional crude oil and natural gas, shale oil will have to compete favorably with coal-derived fuels for similar markets. Crude shale oil is obtained from oil shale by a relatively simple process called retorting. However, the process economics are greatly affected by the thermal efficiencies, the richness of shale, the mass transfer effectiveness, the conversion efficiency, the design of retort, the environmental post-treatment, etc. A great many process ideas and patents related to the oil shale pyrolysis have been developed; however, relatively few field and engineering data have been published. Due to the vast heterogeneity of oil shale and to the complexities of physicochemical process mechanisms, scientific or technological generalization of oil shale retorting is difficult to achieve. Dwindling supplied of worldwide petroleum reserves, as well as the unprecedented appetite of mankind for clean liquid fuel, has made the public concern for future energy market grow rapidly. the clean coal technology and the alternate fuel technology are currently of great significance not only to policy makers, but also to process and chemical researchers. In this book, efforts have been made to make a comprehensive text for the science and technology of oil shale utilization. Therefore, subjects dealing with the terminological definitions, geology and petrology, chemistry, characterization, process engineering, mathematical modeling, chemical reaction engineering, experimental methods, and statistical experimental design, etc. are covered in detail.

  16. Carbon Emissions Reduction Potential in the US Chemicals and Pulp and Paper

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industries by Applying CHP Technologies, June 1999 | Department of Energy Carbon Emissions Reduction Potential in the US Chemicals and Pulp and Paper Industries by Applying CHP Technologies, June 1999 Carbon Emissions Reduction Potential in the US Chemicals and Pulp and Paper Industries by Applying CHP Technologies, June 1999 The purpose of this 1999 paper is to estimate the remaining CHP potential in the chemicals and pulp/paper industries by capacity size, and estimate energy savings and

  17. Nuclear Technology Programs

    SciTech Connect (OSTI)

    Harmon, J.E.

    1990-10-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1988. These programs involve R D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission-product {sup 99}Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories.

  18. Ionic Liquid Pretreatment Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ionic Liquid Pretreatment Technologies Ionic Liquid Pretreatment Technologies These slides were used as a presentation by Dr. Blake Simmons on June 24, 2013, for the bimonthly BETO webinar. PDF icon june2013_snl_webinar.pdf More Documents & Publications 2015 Peer Review Presentations-Biochemical Conversion Innovative Topics for Advanced Biofuels Biochemical Conversion: Using Hydrolysis, Fermentation, and Catalysis to Make Fuels and Chemicals

  19. The Formation of Pioneer Plant Projects in Chemical Processing Firms |

    Office of Environmental Management (EM)

    Department of Energy The Formation of Pioneer Plant Projects in Chemical Processing Firms The Formation of Pioneer Plant Projects in Chemical Processing Firms This report should provide DOE and the general reader with some insight into the workings of the corporate innovation process. The policy implications of our findings apply to the government role, especially to the Department of Energy, in encouraging innovative technologies, in estimating the cost and timing of technology

  20. Improving Combustion Software to Solve Detailed Chemical Kinetics for HECC

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Combustion Software to Solve Detailed Chemical Kinetics for HECC Improving Combustion Software to Solve Detailed Chemical Kinetics for HECC 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace076_mcnenly_2012_o.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2014: Improved Solvers for Advanced Engine Combustion Simulation Improved Solvers for Advanced Engine

  1. Mild, Nontoxic Production of Fuels and Chemicals from Biomass - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Mild, Nontoxic Production of Fuels and Chemicals from Biomass Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing Summary Fossil fuel resources supply almost 90 percent of the world's energy and the vast majority of its organic chemicals. This dependency is insupportable in light of rising emissions, demand and diminishing access. Abundant, renewable biomass is an emerging alternative. But if biomass is to supplant oil, coal and

  2. Technology Roadmap Analysis 2013: Assessing Automotive Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap Analysis 2013: Assessing Automotive Technology R&D Relevant to DOE Power Electronics Cost Targets Technology Roadmap Analysis 2013: Assessing Automotive Technology R&D ...

  3. National Energy Technology Laboratory Technology Marketing Summaries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Energy Technology Laboratory Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the National Energy...

  4. American Institute of Chemical Engineers Honors DOE Researcher | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy American Institute of Chemical Engineers Honors DOE Researcher American Institute of Chemical Engineers Honors DOE Researcher August 6, 2009 - 1:00pm Addthis Washington, DC - For his efforts in modeling and simulating fluid-particle flows, a researcher at the Office of Fossil Energy's National Energy Technology Laboratory (NETL) has been selected to receive the American Institute of Chemical Engineers' (AIChE) Fluidized Processing Recognition Award. AIChE presents the award every

  5. Chemical Industry Vision 2020. Annual Report 2004 (Technical Report) |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SciTech Connect Chemical Industry Vision 2020. Annual Report 2004 Citation Details In-Document Search Title: Chemical Industry Vision 2020. Annual Report 2004 This publication is an annual report on the activities of the Chemical Industry Vision 2020 Technology Partnership. Authors: None, None Publication Date: 2005-06-01 OSTI Identifier: 1218618 Resource Type: Technical Report Research Org: EERE Publication and Product Library Sponsoring Org: USDOE Office of Energy Efficiency and Renewable

  6. Enhanced Chemical Cleaning

    Office of Environmental Management (EM)

    Enhanced Chemical Cleaning Renee H. Spires Enhanced Chemical Cleaning Project Manager July 29, 2009 Tank Waste Corporate Board 2 Objective Provide an overview of the ECC process and plan 3 Chemical Cleaning * Oxalic Acid can get tanks clean - Tank 16 set a standard in 1982 - Tanks 5-6 Bulk OA cleaning results under evaluation * However, the downstream flowsheet and financial impacts of handling the spent acid were unacceptable Before After Tank 16 Tank 16 4 Oxalic Acid Flowsheet Impacts Evap

  7. Chemical Sciences Project Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling & Simulation Data Analysis and Modeling & Simulation for the Chemical Sciences Project Description Almos every scientific activity at Los Alamos involves data analysis and modeling. From a chemical sciences point of view, such work transforms "raw" data into a form that provides useful information that is predictive, confirmatory, or exploratory. The key to understanding the world around us is the ability to put the chemical data we collect into a meaningful context

  8. Manufacturing technologies

    SciTech Connect (OSTI)

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  9. (Environmental technology)

    SciTech Connect (OSTI)

    Boston, H.L.

    1990-10-12

    The traveler participated in a conference on environmental technology in Paris, sponsored by the US Embassy-Paris, US Environmental Protection Agency (EPA), the French Environmental Ministry, and others. The traveler sat on a panel for environmental aspects of energy technology and made a presentation on the potential contributions of Oak Ridge National Laboratory (ORNL) to a planned French-American Environmental Technologies Institute in Chattanooga, Tennessee, and Evry, France. This institute would provide opportunities for international cooperation on environmental issues and technology transfer related to environmental protection, monitoring, and restoration at US Department of Energy (DOE) facilities. The traveler also attended the Fourth International Conference on Environmental Contamination in Barcelona. Conference topics included environmental chemistry, land disposal of wastes, treatment of toxic wastes, micropollutants, trace organics, artificial radionuclides in the environment, and the use biomonitoring and biosystems for environmental assessment. The traveler presented a paper on The Fate of Radionuclides in Sewage Sludge Applied to Land.'' Those findings corresponded well with results from studies addressing the fate of fallout radionuclides from the Chernobyl nuclear accident. There was an exchange of new information on a number of topics of interest to DOE waste management and environmental restoration needs.

  10. American Chemical Society Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory (LANL) scientist Kristin Omberg was named as an American Chemical Society (ACS) Fellow for her contributions to national security as a "technical leader in detecting...

  11. Apparatus for chemical synthesis

    DOE Patents [OSTI]

    Kong, Peter C.; Herring, J. Stephen; Grandy, Jon D.

    2011-05-10

    A method and apparatus for forming a chemical hydride is described and which includes a pseudo-plasma-electrolysis reactor which is operable to receive a solution capable of forming a chemical hydride and which further includes a cathode and a movable anode, and wherein the anode is moved into and out of fluidic, ohmic electrical contact with the solution capable of forming a chemical hydride and which further, when energized produces an oxygen plasma which facilitates the formation of a chemical hydride in the solution.

  12. Field emission chemical sensor

    DOE Patents [OSTI]

    Panitz, J.A.

    1983-11-22

    A field emission chemical sensor for specific detection of a chemical entity in a sample includes a closed chamber enclosing two field emission electrode sets, each field emission electrode set comprising (a) an electron emitter electrode from which field emission electrons can be emitted when an effective voltage is connected to the electrode set; and (b) a collector electrode which will capture said electrons emitted from said emitter electrode. One of the electrode sets is passive to the chemical entity and the other is active thereto and has an active emitter electrode which will bind the chemical entity when contacted therewith.

  13. Vehicle Technologies Office: Graduate Automotive Technology Education

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (GATE) | Department of Energy Education & Workforce Development » Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) DOE established the Graduate Automotive Technology Education (GATE) Centers of Excellence to provide future generations of engineers and scientists with knowledge and skills in advanced automotive technologies. By funding curriculum development and expansion as well as

  14. Roadmap for Process Heating Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap for Process Heating Technology Roadmap for Process Heating Technology This roadmap identifies priority research & development goals and near-term non-research goals to improve industrial process heating. PDF icon Roadmap for Process Heating Technology (March 2001) More Documents & Publications Process Heating Roadmap to Help U.S. Industries Be Competitive ITP Chemicals: Vision 2020 Technology Roadmap for Combinatroial Methods; September 2001 ITP Aluminum: Alumina Technology

  15. Tortuous path chemical preconcentrator

    DOE Patents [OSTI]

    Manginell, Ronald P. (Albuquerque, NM); Lewis, Patrick R. (Albuquerque, NM); Adkins, Douglas R. (Albuquerque, NM); Wheeler, David R. (Albuquerque, NM); Simonson, Robert J. (Cedar Crest, NM)

    2010-09-21

    A non-planar, tortuous path chemical preconcentrator has a high internal surface area having a heatable sorptive coating that can be used to selectively collect and concentrate one or more chemical species of interest from a fluid stream that can be rapidly released as a concentrated plug into an analytical or microanalytical chain for separation and detection. The non-planar chemical preconcentrator comprises a sorptive support structure having a tortuous flow path. The tortuosity provides repeated twists, turns, and bends to the flow, thereby increasing the interfacial contact between sample fluid stream and the sorptive material. The tortuous path also provides more opportunities for desorption and readsorption of volatile species. Further, the thermal efficiency of the tortuous path chemical preconcentrator is comparable or superior to the prior non-planar chemical preconcentrator. Finally, the tortuosity can be varied in different directions to optimize flow rates during the adsorption and desorption phases of operation of the preconcentrator.

  16. Technology disrupted

    SciTech Connect (OSTI)

    Papatheodorou, Y.

    2007-02-15

    Three years ago, the author presented a report on power generation technologies which in summary said 'no technology available today has the potential of becoming transformational or disruptive in the next five to ten years'. In 2006 the company completed another strategic view research report covering the electric power, oil, gas and unconventional energy industries and manufacturing industry. This article summarises the strategic view findings and then revisits some of the scenarios presented in 2003. The cost per megawatt-hour of the alternatives is given for plants ordered in 2005 and then in 2025. The issue of greenhouse gas regulation is dealt with through carbon sequestration and carbon allowances or an equivalent carbon tax. Results reveal substantial variability through nuclear power, hydro, wind, geothermal and biomass remain competitive through every scenario. Greenhouse gas scenario analysis shows coal still be viable, albeit less competitive against nuclear and renewable technologies. A carbon tax or allowance at $24 per metric ton has the same effect on IGCC cost as a sequestration mandate. However, the latter would hurt gas plants much more than a tax or allowance. Sequestering CO{sub 2} from a gas plant is almost as costly per megawatt-hour as for coal. 5 refs., 5 figs., 5 tabs.

  17. Building Technologies Office Overview

    SciTech Connect (OSTI)

    2013-04-01

    Building Technologies Office Overview Presentation for the 2013 Building Technologies Office's Program Peer Review

  18. Reactive Dehydration technology for Production of Fuels and Chemicals...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    experimentation for thermodynamic data * Aspen-based process design using thermodynamic data * Existing plant retrofit: less than 2 year payout Desalination * ...

  19. Technology Vision 2020 - The U.S. Chemical Industry

    SciTech Connect (OSTI)

    1996-12-01

    The body of this report outlines the current state of the industry, a vision for tomorrow, and the technical advances needed to make this vision a reality.

  20. Chemical process hazards analysis

    SciTech Connect (OSTI)

    1996-02-01

    The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

  1. Selecting chemical treatment programs

    SciTech Connect (OSTI)

    Miller, J.E. )

    1988-09-01

    Many process equipment performance and reliability problems can be solved economically by the proper selection and application of chemical treatment programs. It is important to choose an experienced chemical vendor and to work closely with the vendor to develop a good chemical treatment program. This requires devoting sufficient manpower to ensure that the treatment program development is thorough and timely. After the treatment program is installed, the system operation and performance should be routinely monitored to ensure that expected benefits are achieved and unexpected problems do not develop.

  2. Technology Name

    Energy Savers [EERE]

    Tech Fact Sheet Site Project & Identifier Tech Stage: Development DE-EM0000598 D&D KM-IT For the deployment of Information Technology for D&D knowledge management Page 1 of 2 Florida International University Florida D&D Knowledge Management Information Tool Challenge Deactivation and decommissioning (D&D) work is a high priority across the DOE Complex. The D&D community associated with the various DOE sites has gained extensive knowledge and experience over the years. To

  3. Technology Name

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tech Fact Sheet Site Project & Identifier Tech Stage: Development DE-EM0000598 D&D KM-IT For the deployment of Information Technology for D&D knowledge management Page 1 of 2 Florida International University Florida D&D Knowledge Management Information Tool Challenge Deactivation and decommissioning (D&D) work is a high priority across the DOE Complex. The D&D community associated with the various DOE sites has gained extensive knowledge and experience over the years. To

  4. TECHNOLOGY TRANSFER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    404-NOV. 1, 2000 TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 VerDate 11-MAY-2000 04:52 Nov 16, 2000 Jkt 089139 PO 00000 Frm 00001 Fmt 6579 Sfmt 6579 E:\PUBLAW\PUBL404.106 APPS27 PsN: PUBL404 114 STAT. 1742 PUBLIC LAW 106-404-NOV. 1, 2000 Public Law 106-404 106th Congress An Act To improve the ability of Federal agencies to license federally owned inventions. Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, SECTION 1. SHORT

  5. Applications of solar reforming technology

    SciTech Connect (OSTI)

    Spiewak, I.; Tyner, C.E.; Langnickel, U.

    1993-11-01

    Research in recent years has demonstrated the efficient use of solar thermal energy for driving endothermic chemical reforming reactions in which hydrocarbons are reacted to form synthesis gas (syngas). Closed-loop reforming/methanation systems can be used for storage and transport of process heat and for short-term storage for peaking power generation. Open-loop systems can be used for direct fuel production; for production of syngas feedstock for further processing to specialty chemicals and plastics and bulk ammonia, hydrogen, and liquid fuels; and directly for industrial processes such as iron ore reduction. In addition, reforming of organic chemical wastes and hazardous materials can be accomplished using the high-efficiency destruction capabilities of steam reforming. To help identify the most promising areas for future development of this technology, we discuss in this paper the economics and market potential of these applications.

  6. Research in the chemical sciences: Summaries of FY 1994

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    This summary book is published annually on research supported by DOE`s Division of Chemical Sciences in the Office of Energy Research. Research in photochemical and radiation sciences, chemical physics, atomic physics, chemical energy, separations and analysis, heavy element chemistry, chemical engineering sciences, and advanced batteries is arranged according to national laboratories, offsite institutions, and small businesses. Goal is to add to the knowledge base on which existing and future efficient and safe energy technologies can evolve. The special facilities used in DOE laboratories are described. Indexes are provided (topics, institution, investigator).

  7. Technology transfer in the petrochemical industry

    SciTech Connect (OSTI)

    Tanaka, M.

    1994-01-01

    The paper deals with the development of the Japanese petrochemical industry from the 1950s through the 1960s solely from the standpoint of the process of technology transplantation. The Japanese petrochemical industry in this period is interesting as it relates to technology transfer to Japan because: (1) It was an industry at the core of the heavy and chemical industries, which were an important pillar of Japan's industrial policy; (2) It was a new technical field with no past history; and (3) Unraveling of technology was successfully pursued, with the result that Japan became a petrochemical technology-exporting country in the 1960s.

  8. High Efficiency Modular Chemical Processes (HEMCP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - ADVANCED MANUFACTURING OFFICE High Efficiency Modular Chemical Processes (HEMCP) Modular Process Intensification Framework for R&D Targets Advanced Manufacturing Office September 27, 2014 Dickson Ozokwelu, Technology Manager Presentation Outline 1. What is Process Intensification? 2. DOE's !pproach to Process Intensification 3. Opportunity for Cross-Cutting High-Impact Research 4. Goals of the Process Intensification Institute 5. Addressing the 5 EERE Core Questions 2 | Advanced

  9. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NETL Issues Licenses for its Arc Position Sensing Technology Success Story The U.S. Department of Energy's National Energy Technology Laboratory (NETL) has issued two licenses involving its Arc Position Sensing (APS) technology to KW Associates LLC , an Oregon-based company founded by the technology's inventors. APS technology is a patented, award- winning measurement technology developed for the specialty metals industry to identify arc distribution conditions during arc melting. The unique

  10. NREL: Technology Transfer - Technologies Available for Licensing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies Available for Licensing Photo of NREL scientist in the NREL Hydrogen Lab. NREL's scientists and engineers develop award-winning technologies available for licensing. NREL scientists and engineers produce breakthrough and award-winning renewable energy and energy efficiency technologies that are available for licensing. We have many licensing opportunities for NREL-developed technologies, including our featured LED technologies. To see all our technologies available for licensing,

  11. Distributed Energy Technology Characterization (Desiccant Technologies),

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 2004 | Department of Energy Characterization (Desiccant Technologies), January 2004 Distributed Energy Technology Characterization (Desiccant Technologies), January 2004 The purpose of this report is to characterize desiccant technology and applications, and to show how these technologies can be designed to utilize the available thermal energy from a combined heat and power (CHP) system. This technology characterization is intended to provide decision-makers and system developers

  12. High Impact Technology Catalyst: Technology Deployment Strategies |

    Energy Savers [EERE]

    Department of Energy Catalyst: Technology Deployment Strategies High Impact Technology Catalyst: Technology Deployment Strategies The Energy Department released the High Impact Technology Catalyst: Technology Deployment Strategies to serve as an overview of the HIT Catalyst program activities, including a summary of the selection process undertaken to identify, evaluate and prioritize the current HITs, descriptions of the technologies and markets for each HIT, and plans for deployment. PDF

  13. NETL Technologies Recognized for Technology Development, Transfer |

    Office of Environmental Management (EM)

    Department of Energy Recognized for Technology Development, Transfer NETL Technologies Recognized for Technology Development, Transfer October 25, 2013 - 1:31pm Addthis Did you know? The Federal Laboratory Consortium for Technology Transfer is the nationwide network of federal laboratories that provides the forum to develop strategies and opportunities for linking laboratory mission technologies and expertise with the marketplace. In consonance with the Federal Technology Transfer Act of

  14. ITP Chemicals: Chemical Bandwidth Study - Energy Analysis: A...

    Broader source: Energy.gov (indexed) [DOE]

    Ethylene Oxide, Ammonia, and Terephthalic Acid, December 2007 Bandwidth Study U.S. Chemical Manufacturing ITP Chemicals: Energy and Environmental Profile of the U.S....

  15. Chemical Kinetic Modeling of Non-Petroleum Based Fuels | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ft010_pitz_2012_o.pdf More Documents & Publications Chemical Kinetic Modeling of Non-Petroleum Based Fuels Chemical Kinetic Modeling of Fuels Chemical Kinetic Research on HCCI & Diesel Fuels

  16. Chemical Kinetic Modeling of Non-Petroleum Based Fuels | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ft010_pitz_2011_o.pdf More Documents & Publications Chemical Kinetic Modeling of Non-Petroleum Based Fuels Chemical Kinetic Modeling of Fuels Simulation of High Efficiency Clean Combustion Engines and Detailed Chemical Kinetic Mechanisms Development

  17. Chemical Kinetic Research on HCCI & Diesel Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ace013_pitz_2011_o.pdf More Documents & Publications Chemical Kinetic Research on HCCI & Diesel Fuels Chemical Kinetics Research on HCCI and Diesel Fuels Chemical Kinetic Research on HCCI & Diesel Fuels

  18. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2009 Advanced Vehicle ...

  19. Vehicle Technologies Office: 2008 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2008 Advanced Vehicle ...

  20. Distributed Energy Technology Characterization (Desiccant Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    applications, and to show how these technologies can be designed to utilize the available thermal energy from a combined heat and power (CHP) system. This technology...

  1. Nuclear Science & Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science & Technology Nuclear Science & Technology1354608000000Nuclear Science & TechnologySome of these resources are LANL-only and will require Remote Access. No...

  2. Chemical Kinetic Research on HCCI & Diesel Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace013_pitz_2012_o.pdf More Documents & Publications Simulation of High Efficiency Clean Combustion Engines and Detailed Chemical Kinetic Mechanisms Development Chemical Kinetic Research on HCCI & Diesel Fuels Vehicle Technologies Office Merit Review 2014: Chemical Kinetic Models for Advanced Engine Combustion

  3. Chemical Kinetic Research on HCCI & Diesel Fuels | Department of Energy

    Office of Environmental Management (EM)

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ace013_pitz_2010_o.pdf More Documents & Publications Chemical Kinetics Research on HCCI and Diesel Fuels Chemical Kinetic Research on HCCI & Diesel Fuels Vehicle Technologies Office Merit Review 2014: Chemical Kinetic Models for Advanced Engine Combustion

  4. Enforcement Letter, National Security Technologies, LLC | Department of

    Energy Savers [EERE]

    Energy Enforcement Letter, National Security Technologies, LLC Enforcement Letter, National Security Technologies, LLC February 22, 2016 Worker Safety and Health Enforcement Letter issued to National Security Technologies, LLC On February 22, 2016, the U.S. Department of Energy Office of Enterprise Assessments' Office of Enforcement issued an Enforcement Letter (WEL-2016-01) to National Security Technologies, LLC for deficiencies associated with the improper storage of hazardous chemicals

  5. Hybrid Combustion-Gasification Chemical Looping

    SciTech Connect (OSTI)

    Herbert Andrus; Gregory Burns; John Chiu; Gregory Lijedahl; Peter Stromberg; Paul Thibeault

    2009-01-07

    For the past several years Alstom Power Inc. (Alstom), a leading world-wide power system manufacturer and supplier, has been in the initial stages of developing an entirely new, ultra-clean, low cost, high efficiency power plant for the global power market. This new power plant concept is based on a hybrid combustion-gasification process utilizing high temperature chemical and thermal looping technology The process consists of the oxidation, reduction, carbonation, and calcination of calcium-based compounds, which chemically react with coal, biomass, or opportunity fuels in two chemical loops and one thermal loop. The chemical and thermal looping technology can be alternatively configured as (i) a combustion-based steam power plant with CO{sub 2} capture, (ii) a hybrid combustion-gasification process producing a syngas for gas turbines or fuel cells, or (iii) an integrated hybrid combustion-gasification process producing hydrogen for gas turbines, fuel cells or other hydrogen based applications while also producing a separate stream of CO{sub 2} for use or sequestration. In its most advanced configuration, this new concept offers the promise to become the technology link from today's Rankine cycle steam power plants to tomorrow's advanced energy plants. The objective of this work is to develop and verify the high temperature chemical and thermal looping process concept at a small-scale pilot facility in order to enable AL to design, construct and demonstrate a pre-commercial, prototype version of this advanced system. In support of this objective, Alstom and DOE started a multi-year program, under this contract. Before the contract started, in a preliminary phase (Phase 0) Alstom funded and built the required small-scale pilot facility (Process Development Unit, PDU) at its Power Plant Laboratories in Windsor, Connecticut. Construction was completed in calendar year 2003. The objective for Phase I was to develop the indirect combustion loop with CO{sub 2} separation, and also syngas production from coal with the calcium sulfide (CaS)/calcium sulfate (CaSO{sub 4}) loop utilizing the PDU facility. The results of Phase I were reported in Reference 1, 'Hybrid Combustion-Gasification Chemical Looping Coal Power Development Technology Development Phase I Report' The objective for Phase II was to develop the carbonate loop--lime (CaO)/calcium carbonate (CaCO{sub 3}) loop, integrate it with the gasification loop from Phase I, and ultimately demonstrate the feasibility of hydrogen production from the combined loops. The results of this program were reported in Reference 3, 'Hybrid Combustion-Gasification Chemical Looping Coal Power Development Technology Development Phase II Report'. The objective of Phase III is to operate the pilot plant to obtain enough engineering information to design a prototype of the commercial Chemical Looping concept. The activities include modifications to the Phase II Chemical Looping PDU, solids transportation studies, control and instrumentation studies and additional cold flow modeling. The deliverable is a report making recommendations for preliminary design guidelines for the prototype plant, results from the pilot plant testing and an update of the commercial plant economic estimates.

  6. Fluidized Bed Technology - Overview | Department of Energy

    Office of Environmental Management (EM)

    Overview Fluidized Bed Technology - Overview Fluidized beds suspend solid fuels on upward-blowing jets of air during the combustion process. The result is a turbulent mixing of gas and solids. The tumbling action, much like a bubbling fluid, provides more effective chemical reactions and heat transfer. Fluidized-bed combustion evolved from efforts to find a combustion process able to control pollutant emissions without external emission controls (such as scrubbers). The technology burns fuel at

  7. Equilibria in Chemical Systems

    Energy Science and Technology Software Center (OSTI)

    1992-01-01

    SOLGASMIX-PV calculates equilibrium relationships in complex chemical systems. Chemical equilibrium calculations involve finding the system composition, within certain constraints, which contains the minimum free energy. The constraints are the preservation of the masses of each element present and either constant pressure or volume. SOLGASMIX-PV can calculate equilibria in systems containing a gaseous phase, condensed phase solutions, and condensed phases of invariant and variable stoichiometry. Either a constant total gas volume or a constant total pressuremore » can be assumed. Unit activities for condensed phases and ideality for solutions are assumed, although nonideal systems can be handled provided activity coefficient relationships are available.« less

  8. Reduce NOx and Improve Energy Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01

    This fact sheet describes how the Industrial Technologies Program NOx and Energy Assessment Tool (NxEAT) can help petroleum refining and chemical plants improve energy efficiency.

  9. Science and Technology Review March 2012 Nikolic, R J 30 DIRECT...

    Office of Scientific and Technical Information (OSTI)

    electrogenic bacteria and microbial fuel cell technologies can produce clean, renewable energy and purify water; and (6) Chemical Sensor Is All Wires, No Batteries - Livermore's...

  10. Vehicle Technologies Office Propulsion Materials Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Propulsion Materials Technologies Jerry Gibbs eere.energy.gov 2 | Vehicle Technologies Program Materials Technologies Materials Technologies $35.6 M Lightweight Materials $28.5 M Values are FY15 enacted Propulsion Materials $7.1 M Properties and Manufacturing Multi-Material Enabling Modeling & Computational Mat. Sci. Engine Materials, Cast Al & Fe High Temp Alloys Exhaust Sys. Materials, Low T Catalysts Lightweight Propulsion FY13 Enacted $27.5 M $11.9 M FY14

  11. NETL - Chemical Looping Reactor

    SciTech Connect (OSTI)

    2013-07-24

    NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

  12. NETL - Chemical Looping Reactor

    ScienceCinema (OSTI)

    None

    2014-06-26

    NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

  13. Plasma-chemical waste treatment of acid gases

    SciTech Connect (OSTI)

    Harkness, J.B.L.; Doctor, R.D.; Daniels, E.J.

    1993-09-01

    The research to date has shown that a H{sub 2}S waste-treatment process based on plasma-chemical dissociation technology is compatible with refinery and high-carbon-oxide acid-gas streams. The minor amounts of impurities produced in the plasma-chemical reactor should be treatable by an internal catalytic reduction step. Furthermore, the plasma-chemical technology appears to be more efficient and more economical than the current technology. The principal key to achieving high conversions with relatively low energies of dissociation is the concept of the high-velocity, cyclonic-flow pattern in the plasma reaction zone coupled with the recycling of unconverted hydrogen sulfide. Future work will include testing the effects of components that might be carried over to the plasma reactor by ``upset`` conditions in the amine purification system of a plant and testing the plasma-chemical process on other industrial wastes streams that contain potentially valuable chemical reagents. The strategy for the commercialization of this technology is to form a Cooperative Research and Development Agreement with the Institute of Hydrogen Energy and Plasma Technology of the Russian Scientific Center/Kurchatov Institute and with an American start-up company to develop an ``American`` version of the process and to build a commercial-scale demonstration unit in the United States. The timetable proposed would involve building a ``field test`` facility which would test the plasma-chemical reactor and sulfur recovery unit operations on an industrial hydrogen sulfide waste s at a scale large enough to obtain the energy and material balance data required for a final analysis of the commercial potential of this technology. The field test would then be followed by construction of a commercial demonstration unit in two to three years. The commercial demonstration unit would be a fully integrated plant consisting of one commercial-scale module.

  14. Category:Chemical Logging | Open Energy Information

    Open Energy Info (EERE)

    Chemical Logging Jump to: navigation, search Geothermalpower.jpg Looking for the Chemical Logging page? For detailed information on Chemical Logging, click here. Category:Chemical...

  15. Perfluoro Aryl Boronic Esters as Chemical Shuttle Additives | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Perfluoro Aryl Boronic Esters as Chemical Shuttle Additives Perfluoro Aryl Boronic Esters as Chemical Shuttle Additives 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon es107_hunt_2011_p.pdf More Documents & Publications Develop & Evaluate Materials & Additives that Enhance Thermal & Overcharge Abuse Develop & evaluate materials & additives that enhance thermal & overcharge abuse

  16. Project Profile: Predictive Physico-Chemical Modeling of Intrinsic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Degradation Mechanisms for Advanced Reflector Materials | Department of Energy Predictive Physico-Chemical Modeling of Intrinsic Degradation Mechanisms for Advanced Reflector Materials Project Profile: Predictive Physico-Chemical Modeling of Intrinsic Degradation Mechanisms for Advanced Reflector Materials NREL logo NREL, under the Physics of Reliability: Evaluating Design Insights for Component Technologies in Solar (PREDICTS) Program will be developing a physics-based computational

  17. Flywheel Energy Storage technology workshop

    SciTech Connect (OSTI)

    O`Kain, D.; Howell, D.

    1993-12-31

    Advances in recent years of high strength/lightweight materials, high performance magnetic bearings, and power electronics technology has spurred a renewed interest by the transportation, utility, and manufacturing industries in Flywheel Energy Storage (FES) technologies. FES offers several advantages over conventional electro-chemical energy storage, such as high specific energy and specific power, fast charging time, long service life, high turnaround efficiency (energy out/energy in), and no hazardous/toxic materials or chemicals are involved. Potential applications of FES units include power supplies for hybrid and electric vehicles, electric vehicle charging stations, space systems, and pulsed power devices. Also, FES units can be used for utility load leveling, uninterruptable power supplies to protect electronic equipment and electrical machinery, and for intermittent wind or photovoltaic energy sources. The purpose of this workshop is to provide a forum to highlight technologies that offer a high potential to increase the performance of FES systems and to discuss potential solutions to overcome present FES application barriers. This document consists of viewgraphs from 27 presentations.

  18. Chemical Supply Chain Analysis | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NISACCapabilitiesChemical Supply Chain Analysis content top Chemical Supply Chain Analysis NISAC has developed a range of capabilities for analyzing the consequences of disruptions to the chemical manufacturing industry. Each capability provides a different but complementary perspective on the questions of interest-questions like Given an event, will the entire chemical sector be impacted or just parts? Which chemicals, plants, and complexes could be impacted? In which regions of the country?

  19. Chemical Resources | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Resources Chemical Inventory All Sample Preparation Labs are stocked with an assortment of common solvents, acids, bases, buffers, and other reagents. See our Chemical Inventories for a list of available reagents. If you need large quantities of any chemicals, please order or bring your own supply (see below). Chemical Inventories Standard Operating Procedures (SOPs) If you will be working with any samples or reagents that are significantly toxic, reactive, corrosive, flammable, or

  20. Chemical Engineering Division research highlights, 1979

    SciTech Connect (OSTI)

    Burris, L.; Webster, D. S.; Barney, D. L.; Cafasso, F. A.; Steindler, M. J.

    1980-06-01

    In 1979, CEN conducted research and development in the following areas: (1) high-temperature, rechargeable lithium/iron sulfide batteries for electric vehicles and electric utility load leveling; (2) ambient-temperature batteries - improved lead-acid, nickel/zinc, and nickel/iron - for electric vehicles; (3) molten carbonate fuel cells for use by electric utilities; (4) coal technology - mainly fluidized-bed combustion of coal in the presence of SO/sub 2/ sorbent of limestone; (5) heat- and seed- recovery technology for open-cycle magnetohydrodynamic systems; (6) solar energy collectors and thermal energy storage; (7) fast breeder reactor chemistry research - chemical support of reactor safety studies, chemistry of irradiated fuels, and sodium technology; (8) fuel cycle technology - reprocessing of nuclear fuels, management of nuclear wastes, geologic migration studies, and proof-of-breeding studies for the Light Water Breeder Reactor; (9) magnetic fusion research - lithium processing technology and materials research; and (10) basic energy sciences - homogeneous catalysis, thermodynamics of inorganic and organic materials, environmental chemistry, electrochemistry, and physical properties of salt vapors. Separate abstracts were prepared for each of these areas.

  1. Hydrogen Education Curriculum Path at Michigan Technological University

    SciTech Connect (OSTI)

    Keith, Jason; Crowl, Daniel; Caspary, David; Naber, Jeff; Allen, Jeff; Mukerjee, Abhijit; Meng, Desheng; Lukowski, John; Solomon, Barry; Meldrum, Jay

    2012-01-03

    The objective of this project was four-fold. First, we developed new courses in alternative energy and hydrogen laboratory and update existing courses in fuel cells. Secondly, we developed hydrogen technology degree programs. Thirdly, we developed hydrogen technology related course material for core courses in chemical engineering, mechanical engineering, and electrical engineering. Finally, we developed fuel cell subject material to supplement the Felder & Rousseau and the Geankoplis chemical engineering undergraduate textbooks.

  2. Science & Technology Review March 2010

    SciTech Connect (OSTI)

    Bearinger, J P

    2010-01-29

    This month's issue has the following articles: (1) Countering the Growing Chem-Bio Threat -- Commentary by Penrose (Parney) C. Albright; (2) Responding to a Terrorist Attack Involving Chemical Warfare Agents -- Livermore scientists are helping the nation strengthen plans to swiftly respond to an incident involving chemical warfare agents; (3) Revealing the Secrets of a Deadly Disease -- A Livermore-developed system helps scientists better understand how plague bacteria infect healthy host cells; (4) A New Application for a Weapons Code -- Simulations reveal for the first time how blast waves cause traumatic brain injuries; (5) Testing Valuable National Assets for X-Ray Damage -- Experiments at the National Ignition Facility are measuring the effects of radiation on critical systems; and (6) An Efficient Way to Harness the Sun's Power -- New solar thermal technology is designed to supply residential electric power at nearly half of the current retail price.

  3. National toxicology program chemical nomination and selection process

    SciTech Connect (OSTI)

    Selkirk, J.K.

    1990-12-31

    The National Toxicology Program (NTP) was organized to support national public health programs by initiating research designed to understand the physiological, metabolic, and genetic basis for chemical toxicity. The primary mandated responsibilities of NTP were in vivo and vitro toxicity testing of potentially hazardous chemicals; broadening the spectrum of toxicological information on known hazardous chemicals; validating current toxicological assay systems as well as developing new and innovative toxicity testing technology; and rapidly communicating test results to government agencies with regulatory responsibilities and to the medical and scientific communities. 2 figs.

  4. Sandians Published in American Chemical Society's Environmental Science &

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Published in American Chemical Society's Environmental Science & Technology - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery

  5. Sandians published in American Chemical Society's Environmental Science &

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology published in American Chemical Society's Environmental Science & Technology - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery

  6. COLLOQUIUM: Renewable Fuels and Chemicals | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    19, 2014, 4:00pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: Renewable Fuels and Chemicals Professor Dion Vlachos University of Delaware We will discuss modern technologies that rely on biomass degradation to simple derivatives, such as sugars, followed by a number of reactions, such as isomerization, acid-based chemistry, and etherification to convert sugars to valuable intermediates, such as furans and green monomers. Cross-cutting technologies, including hierarchical multiscale materials

  7. Electro-Chemical Processes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electro-Chemical Processes - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  8. Innovative Technologies for Bioenergy Technologies Incubator...

    Broader source: Energy.gov (indexed) [DOE]

    00PM EDT Online The Innovative Technologies for Bioenergy Technologies Incubator 2 FOA Informational Webinar will be held Wednesday, September 2, 1:00 p.m.-2:00 p.m. ET. Standard...

  9. Geothermal Technologies Office - Webmaster | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office - Webmaster Geothermal Technologies Office - Webmaster

  10. Bridging the Gap between Chemical Flooding and Independent Oil Producers

    SciTech Connect (OSTI)

    Stan McCool; Tony Walton; Paul Whillhite; Mark Ballard; Miguel Rondon; Kaixu Song; Zhijun Liu; Shahab Ahmed; Peter Senior

    2012-03-31

    Ten Kanas oil reservoirs/leases were studied through geological and engineering analysis to assess the potential performance of chemical flooding to recover oil. Reservoirs/leases that have been efficiently waterflooded have the highest performance potential for chemical flooding. Laboratory work to identify efficient chemical systems and to test the oil recovery performance of the systems was the major effort of the project. Efficient chemical systems were identified for crude oils from nine of the reservoirs/leases. Oil recovery performance of the identified chemical systems in Berea sandstone rocks showed 90+ % recoveries of waterflood residual oil for seven crude oils. Oil recoveries increased with the amount of chemical injected. Recoveries were less in Indiana limestone cores. One formulation recovered 80% of the tertiary oil in the limestone rock. Geological studies for nine of the oil reservoirs are presented. Pleasant Prairie, Trembley, Vinland and Stewart Oilfields in Kansas were the most favorable of the studied reservoirs for a pilot chemical flood from geological considerations. Computer simulations of the performance of a laboratory coreflood were used to predict a field application of chemical flooding for the Trembley Oilfield. Estimates of field applications indicated chemical flooding is an economically viable technology for oil recovery.

  11. Plasma technology directory

    SciTech Connect (OSTI)

    Ward, P.P.; Dybwad, G.L.

    1995-03-01

    The Plasma Technology Directory has two main goals: (1) promote, coordinate, and share plasma technology experience and equipment within the Department of Energy; and (2) facilitate technology transfer to the commercial sector where appropriate. Personnel are averaged first by Laboratory and next by technology area. The technology areas are accelerators, cleaning and etching deposition, diagnostics, and modeling.

  12. Forest products technologies

    SciTech Connect (OSTI)

    None, None

    2006-07-18

    Report highlights DOE Industrial Technology Program co-funded R&D resulting in commercial energy-efficient technologies and emerging technologies helping the forest products industry save energy.

  13. Technology Transfer Plan

    SciTech Connect (OSTI)

    1998-12-31

    BPF developed the concept of a mobile, on-site NORM remediation and disposal process in late 1993. Working with Conoco and receiving encouragement born the Department of Energy, Metarie Office, and the Texas Railroad Commission the corporation conducted extensive feasibility studies on an on-site disposal concept. In May 1994, the Department of Energy issued a solicitation for cooperative agreement proposal for, "Development and Testing of a Method for Treatment and Underground Disposal of Naturally Occurring Radioactive Materials (NORM)". BPF submitted a proposal to the solicitation in July 1994, and was awarded a cooperative agreement in September 1995. BPF proposed and believed that proven equipment and technology could be incorporated in to a mobile system. The system would allow BPF to demonstrate an environmentally sound and commercially affordable method for treatment and underground disposal of NORM. The key stop in the BPF process incorporates injection of the dissolved radioactive materials into a water injection or disposal well. Disposal costs in the BPF proposal of July 1995 were projected to range from $1000 to $5000 per cubic yard. The process included four separate steps. (1) De-oiling (2) Volume Reduction (3) Chemical Dissolution of the Radium (4) Injection

  14. Building Technologies Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roland Risser Director, Building Technologies Office Building Technologies Office Energy Efficiency Starts Here. 2 Building Technologies Office Integrated Approach: Improving Building Performance Research & Development Developing High Impact Technologies Standards & Codes Locking in the Savings Market Stimulation Accelerating Tech-to- Market 3 Building Technologies Office Goal: Reduce building energy use by 50% (compared to a 2010 baseline) 4 Building Technologies Office Working to

  15. Devices for collecting chemical compounds

    DOE Patents [OSTI]

    Scott, Jill R; Groenewold, Gary S

    2013-12-24

    A device for sampling chemical compounds from fixed surfaces and related methods are disclosed. The device may include a vacuum source, a chamber and a sorbent material. The device may utilize vacuum extraction to volatilize the chemical compounds from a fixed surface so that they may be sorbed by the sorbent material. The sorbent material may then be analyzed using conventional thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS) instrumentation to determine presence of the chemical compounds. The methods may include detecting release and presence of one or more chemical compounds and determining the efficacy of decontamination. The device may be useful in collection and analysis of a variety of chemical compounds, such as residual chemical warfare agents, chemical attribution signatures and toxic industrial chemicals.

  16. CHEMICAL STORAGE: MYTHS VERSUS REALITY

    SciTech Connect (OSTI)

    Simmons, F

    2007-03-19

    A large number of resources explaining proper chemical storage are available. These resources include books, databases/tables, and articles that explain various aspects of chemical storage including compatible chemical storage, signage, and regulatory requirements. Another source is the chemical manufacturer or distributor who provides storage information in the form of icons or color coding schemes on container labels. Despite the availability of these resources, chemical accidents stemming from improper storage, according to recent reports (1) (2), make up almost 25% of all chemical accidents. This relatively high percentage of chemical storage accidents suggests that these publications and color coding schemes although helpful, still provide incomplete information that may not completely mitigate storage risks. This manuscript will explore some ways published storage information may be incomplete, examine the associated risks, and suggest methods to help further eliminate chemical storage risks.

  17. Effects of Advanced Combustion Technologies on Particulate Matter Emissions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characteristics | Department of Energy Advanced Combustion Technologies on Particulate Matter Emissions Characteristics Effects of Advanced Combustion Technologies on Particulate Matter Emissions Characteristics Findings of important implications for aftertreatment devices such as EGR coolers and diesel particulate filters, of physico-chemical changes observed in particulate matter during advanced combustion. PDF icon deer08_storey.pdf More Documents & Publications Measurement and

  18. TECHNOLOGY READINESS ASSESSMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOENETL-20151710 U.S. Department of Energy 2014 TECHNOLOGY READINESS ASSESSMENT-CLEAN COAL RESEARCH PROGRAM 2 2014 TECHNOLOGY READINESS ASSESSMENT-CLEAN COAL RESEARCH PROGRAM ...

  19. Geothermal Technologies Office: Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Technologies Office Details Bookmark & Share View Related Welcome to the Energy Department's Geothermal Technologies Office Publication and Product Library. Here...

  20. Technology Selection Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technologies, including Technical Advisory Groups and the Energy Efficiency Technology Roadmap. Technical Advisory Groups E3T engages stakeholders of electric power industries in...

  1. Hydropower Program Technology Overview

    SciTech Connect (OSTI)

    Not Available

    2001-10-01

    New fact sheets for the DOE Office of Power Technologies (OPT) that provide technology overviews, description of DOE programs, and market potential for each OPT program area.

  2. Green Purchasing & Green Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Purchasing & Technology Goals 6 & 7: Green Purchasing & Green Technology Our goal is to purchase and use environmentally sustainable products whenever possible and to implement...

  3. Promising Technologies List

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    about promising new and underutilized energy-saving technologies available for Federal and commercial building sector deployment. To identify promising technologies,...

  4. NREL: Technology Transfer - Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    you may have about NREL's technology transfer opportunities. Partnering with NREL Anne Miller, 303-384-7353 Licensing NREL Technologies Eric Payne, 303-275-3166 Printable Version...

  5. Science and Technology Day

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Technology Day Science and Technology Day February 24, 2015 Tuesday, Feb. 24 Berkeley Lab Building 50 Auditorium Attendance is open to anyone. Remote streaming is...

  6. Science & Technology - 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology Science & Technology - 2015 October HAPLS Completes Phase 1 Energy-Ramping Campaign Shaping NIF's Beams for Direct-Drive Experiments September A Pioneering Betatron...

  7. Vehicle Technologies Office: News

    Broader source: Energy.gov [DOE]

    EERE intends to issue, on behalf of its Fuel Cell Technologies Office, a Funding Opportunity Announcement (FOA) entitled "Fuel Cell Technologies Incubator: Innovations in Fuel Cell and Hydrogen...

  8. TECHNOLOGY READINESS ASSESSMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pathway for readying the next generation of affordable clean energy technology -Carbon ... developed to be applicable to nuclear-fuel- waste technology, provides a ...

  9. Chemical kinetics modeling

    SciTech Connect (OSTI)

    Westbrook, C.K.; Pitz, W.J.

    1993-12-01

    This project emphasizes numerical modeling of chemical kinetics of combustion, including applications in both practical combustion systems and in controlled laboratory experiments. Elementary reaction rate parameters are combined into mechanisms which then describe the overall reaction of the fuels being studied. Detailed sensitivity analyses are used to identify those reaction rates and product species distributions to which the results are most sensitive and therefore warrant the greatest attention from other experimental and theoretical research programs. Experimental data from a variety of environments are combined together to validate the reaction mechanisms, including results from laminar flames, shock tubes, flow systems, detonations, and even internal combustion engines.

  10. Chemical sensing flow probe

    DOE Patents [OSTI]

    Laguna, George R. (Albuquerque, NM); Peter, Frank J. (Albuquerque, NM); Butler, Michael A. (Albuquerque, NM)

    1999-01-01

    A new chemical probe determines the properties of an analyte using the light absorption of the products of a reagent/analyte reaction. The probe places a small reaction volume in contact with a large analyte volume. Analyte diffuses into the reaction volume. Reagent is selectively supplied to the reaction volume. The light absorption of the reaction in the reaction volume indicates properties of the original analyte. The probe is suitable for repeated use in remote or hostile environments. It does not require physical sampling of the analyte or result in significant regent contamination of the analyte reservoir.

  11. Chemical sensor system

    DOE Patents [OSTI]

    Darrow, Christopher B. (Pleasanton, CA); Satcher, Jr., Joe H. (Modesto, CA); Lane, Stephen M. (Oakland, CA); Lee, Abraham P. (Walnut Creek, CA); Wang, Amy W. (Berkeley, CA)

    2002-01-01

    An implantable chemical sensor system for medical applications is described which permits selective recognition of an analyte using an expandable biocompatible sensor, such as a polymer, that undergoes a dimensional change in the presence of the analyte. The expandable polymer is incorporated into an electronic circuit component that changes its properties (e.g., frequency) when the polymer changes dimension. As the circuit changes its characteristics, an external interrogator transmits a signal transdermally to the transducer, and the concentration of the analyte is determined from the measured changes in the circuit. This invention may be used for minimally invasive monitoring of blood glucose levels in diabetic patients.

  12. Chemical sensing flow probe

    DOE Patents [OSTI]

    Laguna, G.R.; Peter, F.J.; Butler, M.A.

    1999-02-16

    A new chemical probe determines the properties of an analyte using the light absorption of the products of a reagent/analyte reaction. The probe places a small reaction volume in contact with a large analyte volume. Analyte diffuses into the reaction volume. Reagent is selectively supplied to the reaction volume. The light absorption of the reaction in the reaction volume indicates properties of the original analyte. The probe is suitable for repeated use in remote or hostile environments. It does not require physical sampling of the analyte or result in significant regent contamination of the analyte reservoir. 7 figs.

  13. Chemical Processing Qualification Standard

    Office of Environmental Management (EM)

    6-2010 February 2010 DOE STANDARD CHEMICAL PROCESSING QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1176-2010 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/ns/techstds DOE-STD-1176-2010 iv INTENTIONALLY BLANK DOE-STD-1176-2010 v

  14. LLNL Chemical Kinetics Modeling Group

    SciTech Connect (OSTI)

    Pitz, W J; Westbrook, C K; Mehl, M; Herbinet, O; Curran, H J; Silke, E J

    2008-09-24

    The LLNL chemical kinetics modeling group has been responsible for much progress in the development of chemical kinetic models for practical fuels. The group began its work in the early 1970s, developing chemical kinetic models for methane, ethane, ethanol and halogenated inhibitors. Most recently, it has been developing chemical kinetic models for large n-alkanes, cycloalkanes, hexenes, and large methyl esters. These component models are needed to represent gasoline, diesel, jet, and oil-sand-derived fuels.

  15. Ultra-Fast Chemical Conversion Surfaces | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon pm027_erdemir_2011_p.pdf More Documents & Publications Ultra-Fast Chemical Conversion Surfaces Lubricant-Friendly, Superhard and Low-Friction Coatings by Design Low-Friction Hard Coatings

  16. Alternative, Renewable and Novel Feedstocks for Producing Chemicals

    SciTech Connect (OSTI)

    none,

    2007-07-01

    Vision2020 and ITP directed the Alternative, Renewable and Novel Feedstocks project to identify industrial options and to determine the work required to make alternative, renewable and novel feedstock options attractive to the U.S. chemicals industry. This report presents the Alternative, Renewable and Novel Feedstocks project findings which were based on a technology review and industry workshop.

  17. Technology Readiness Assessment (TRA)/Technology Maturation Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Readiness Assessment (TRA)Technology Maturation Plan (TMP) Process Guide Technology Readiness Assessment (TRA)Technology Maturation Plan (TMP) Process Guide This...

  18. DOE Vehicle Technologies Program 2009 Merit Review Report - Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Integration and Education DOE Vehicle Technologies Program 2009 Merit Review Report - Technology Integration and Education Merit review of DOE Vehicle Technologies...

  19. Blue Spark Technologies formerly Thin Battery Technologies Inc...

    Open Energy Info (EERE)

    Spark Technologies formerly Thin Battery Technologies Inc Jump to: navigation, search Name: Blue Spark Technologies (formerly Thin Battery Technologies Inc.) Place: Westlake, Ohio...

  20. Sun Materials Technology aka Shanyang Technology | Open Energy...

    Open Energy Info (EERE)

    Technology aka Shanyang Technology Jump to: navigation, search Name: Sun Materials Technology (aka Shanyang Technology) Place: Yilan County, Taiwan Product: A US-Taiwan JV company...

  1. GT Solar Technologies formerly GT Equipment Technologies | Open...

    Open Energy Info (EERE)

    Technologies formerly GT Equipment Technologies Jump to: navigation, search Name: GT Solar Technologies (formerly GT Equipment Technologies) Place: Merrimack, New Hampshire...

  2. Quantum Fuel Systems Technologies Worldwide Inc Quantum Technologies...

    Open Energy Info (EERE)

    Fuel Systems Technologies Worldwide Inc Quantum Technologies Jump to: navigation, search Name: Quantum Fuel Systems Technologies Worldwide Inc (Quantum Technologies) Place: Irvine,...

  3. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard

    1981-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  4. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard

    1984-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  5. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard

    1984-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to faciliate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  6. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard

    1984-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate intallation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  7. DOE-Supported Project Advances Clean Coal, Carbon Capture Technology |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Supported Project Advances Clean Coal, Carbon Capture Technology DOE-Supported Project Advances Clean Coal, Carbon Capture Technology January 29, 2013 - 12:00pm Addthis Washington, DC - Researchers at The Ohio State University (OSU) have successfully completed more than 200 hours of continuous operation of their patented Coal-Direct Chemical Looping (CDCL) technology - a one-step process to produce both electric power and high-purity carbon dioxide (CO2). The test, led

  8. Techniques and Technologies for Field Detection of Asbestos Containing

    Energy Savers [EERE]

    Materials | Department of Energy Techniques and Technologies for Field Detection of Asbestos Containing Materials Techniques and Technologies for Field Detection of Asbestos Containing Materials Asbestos has been used in numerous applications at DOE sites including sprayed-on fireproofing, asphalt and vinyl floor tile, and asbestos-cement (transite) siding. PDF icon Techniques and Technologies for Field Detection of Asbestos Containing Materials More Documents & Publications Chemical and

  9. Chapter 6 - Innovating Clean Energy Technologies in Advanced

    Office of Environmental Management (EM)

    Manufacturing | Department of Energy 6 - Innovating Clean Energy Technologies in Advanced Manufacturing Chapter 6 - Innovating Clean Energy Technologies in Advanced Manufacturing Chapter 6 - Innovating Clean Energy Technologies in Advanced Manufacturing Clean energy manufacturing involves the minimization of the energy and environmental impacts of the production, use, and disposal of manufactured goods, which range from fundamental commodities such as metals and chemicals to sophisticated

  10. DECONTAMINATION TECHNOLOGIES FOR FACILITY REUSE

    SciTech Connect (OSTI)

    Bossart, Steven J.; Blair, Danielle M.

    2003-02-27

    As nuclear research and production facilities across the U.S. Department of Energy (DOE) nuclear weapons complex are slated for deactivation and decommissioning (D&D), there is a need to decontaminate some facilities for reuse for another mission or continued use for the same mission. Improved technologies available in the commercial sector and tested by the DOE can help solve the DOE's decontamination problems. Decontamination technologies include mechanical methods, such as shaving, scabbling, and blasting; application of chemicals; biological methods; and electrochemical techniques. Materials to be decontaminated are primarily concrete or metal. Concrete materials include walls, floors, ceilings, bio-shields, and fuel pools. Metallic materials include structural steel, valves, pipes, gloveboxes, reactors, and other equipment. Porous materials such as concrete can be contaminated throughout their structure, although contamination in concrete normally resides in the top quarter-inch below the surface. Metals are normally only contaminated on the surface. Contamination includes a variety of alpha, beta, and gamma-emitting radionuclides and can sometimes include heavy metals and organic contamination regulated by the Resource Conservation and Recovery Act (RCRA). This paper describes several advanced mechanical, chemical, and other methods to decontaminate structures, equipment, and materials.

  11. NREL: Technology Transfer - Commercialization Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    303-275-3051. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements...

  12. Summaries of FY 1979 research in the chemical sciences

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    The purpose of this report is to help those interested in research supported by the Department of Energy's Division of Chemical Sciences, which is one of six Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. Chemists, physicists, chemical engineers and others who are considering the possibility of proposing research for support by this Division wll find the booklet useful for gauging the scope of the program in basic research, and the relationship of their interests to the overall program. These smmaries are intended to provide a rapid means for becoming acquainted with the Chemical Sciences program for members of the scientific and technological public, and interested persons in the Legislative and Executive Branches of the Government, in order to indicate the areas of research supported by the Division and energy technologies which may be advanced by use of basic knowledge discovered in this program. Scientific excellence is a major criterion applied in the selection of research supported by Chemical Sciences. Another important consideration is the identifying of chemical, physical and chemical engineering subdisciplines which are advancing in ways which produce new information related to energy, needed data, or new ideas.

  13. Survey of Alternative Feedstocks for Commodity Chemical Manufacturing

    SciTech Connect (OSTI)

    McFarlane, Joanna; Robinson, Sharon M

    2008-02-01

    The current high prices for petroleum and natural gas have spurred the chemical industry to examine alternative feedstocks for the production of commodity chemicals. High feedstock prices have driven methanol and ammonia production offshore. The U.S. Chemical Industry is the largest user of natural gas in the country. Over the last 30 years, alternatives to conventional petroleum and natural gas feedstocks have been developed, but have limited, if any, commercial implementation in the United States. Alternative feedstocks under consideration include coal from unconventional processing technologies, such as gasification and liquefaction, novel resources such as biomass, stranded natural gas from unconventional reserves, and heavy oil from tar sands or oil shale. These feedstock sources have been evaluated with respect to the feasibility and readiness for production of the highest volume commodity chemicals in the United States. Sources of organic compounds, such as ethanol from sugar fermentation and bitumen-derived heavy crude are now being primarily exploited for fuels, rather than for chemical feedstocks. Overall, government-sponsored research into the use of alternatives to petroleum feedstocks focuses on use for power and transportation fuels rather than for chemical feedstocks. Research is needed to reduce cost and technical risk. Use of alternative feedstocks is more common outside the United States R&D efforts are needed to make these processes more efficient and less risky before becoming more common domestically. The status of alternative feedstock technology is summarized.

  14. Separation of Corn Fiber and Conversion to Fuels and Chemicals: Pilot-Scale Operation

    SciTech Connect (OSTI)

    None

    2006-04-01

    This project focuses on the development and pilot-scale testing of technologies that will enable the development of a biorefinery capable of economically deriving high-value chemicals and oils from lower value corn fiber.

  15. Layered ZIF-Polymer Membranes Through On-Polymer Chemical Transformations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Colloidal Nanocrystal Films | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Layered ZIF-Polymer Membranes Through On-Polymer Chemical Transformations of Colloidal Nanocrystal Films

  16. NIPER/DOE Chemical EOR Workshop. Final report

    SciTech Connect (OSTI)

    Gall, B.L.; Llave, F.M.; Tham, Min K.

    1993-10-01

    A Chemical EOR Workshop was held on June 23--24, 1993 in Houston, Texas. The objectives of this workshop were to evaluate the potential for chemical Enhanced Oil Recovery (EOR) to repower significant quantities of remaining domestic oil, to assess the role of the Department of Energy (DOE) and petroleum industry to achieve this potential, and to assess the research needs in chemical EOR. Fifty-six research engineers and scientists from major oil companies, independent oil companies, academic institutes, research institutes, and DOE attended this workshop. Opening remarks were given by Alex Crawley from DOE Bartlesville Project Office and Thomas E. Burchfield of the National Institute for Petroleum and Energy Research (NIPER). The keynote address was delivered by Donald Juckett, Acting Deputy Assistant Secretary for Gas and Petroleum Technology. Ten papers on the state-of-the-art in chemical EOR technologies and recent field test experience were presented on the first day. Two workshops, one on surfactant/alkali flooding and the other on profile modification/polymer flooding, were held on the second day. It was concluded that chemical EOR has the potential of recovering significant quantities of remaining oil, and it is the only method that has the potential of economically recovering residual oil from reservoirs of shallow and medium depth. It is recommended that funding of support research in chemical EOR be continued and sustained to provide continuity and expertise for future advanced oil recovery technologies. Selected papers are being indexed separately for inclusion in the Energy Science and Technology Database.

  17. Hydrogen delivery technology roadmap

    SciTech Connect (OSTI)

    None, None

    2005-11-15

    Document describing plan for research into and development of hydrogen delivery technology for transportation applications.

  18. Crosscutting Technology Research FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crosscutting Technology Research FAQs faq-header-big.jpg CROSSCUTTING - BASICS Q: What is the Crosscutting Technology Research Program? A: The Crosscutting Technology Research Program focuses on enabling technologies that foster transformational developments across multiple disciplines to support energy system platforms in power system design, construction, and operation for highly efficient operation and superior environmental performance. By bridging the gap between fundamental research and

  19. Innovative Process Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovative Process Technologies Fact Sheets Research Team Members Key Contacts Innovative Process Technologies Innovative Process Technologies is concerned with the development of innovative costeffective technologies that promote efficiency, environmental performance, availability of advanced energy systems, and the development of computational tools that shorten development timelines of advanced energy systems. NETL, working with members of the NETL-Regional University Alliance (NETL-RUA),

  20. Tracers and Exploration Technologies

    Broader source: Energy.gov [DOE]

    Below are the project presentations and respective peer review results for Tracers and Exploration Technologies.

  1. National Spill Test Technology Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sheesley, David [Western Research Institute

    Western Research Institute established, and ACRC continues to maintain, the National Spill Technology database to provide support to the Liquified Gaseous Fuels Spill Test Facility (now called the National HAZMAT Spill Center) as directed by Congress in Section 118(n) of the Superfund Amendments and Reauthorization Act of 1986 (SARA). The Albany County Research Corporation (ACRC) was established to make publicly funded data developed from research projects available to benefit public safety. The founders since 1987 have been investigating the behavior of toxic chemicals that are deliberately or accidentally spilled, educating emergency response organizations, and maintaining funding to conduct the research at the DOEÆs HAZMAT Spill Center (HSC) located on the Nevada Test Site. ACRC also supports DOE in collaborative research and development efforts mandated by Congress in the Clean Air Act Amendments. The data files are results of spill tests conducted at various times by the Silicones Environmental Health and Safety Council (SEHSC) and DOE, ANSUL, Dow Chemical, the Center for Chemical Process Safety (CCPS) and DOE, Lawrence Livermore National Laboratory (LLNL), OSHA, and DOT; DuPont, and the Western Research Institute (WRI), Desert Research Institute (DRI), and EPA. Each test data page contains one executable file for each test in the test series as well as a file named DOC.EXE that contains information documenting the test series. These executable files are actually self-extracting zip files that, when executed, create one or more comma separated value (CSV) text files containing the actual test data or other test information.

  2. National Spill Test Technology Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sheesley, David [Western Research Institute

    Western Research Institute established, and ACRC continues to maintain, the National Spill Technology database to provide support to the Liquified Gaseous Fuels Spill Test Facility (now called the National HAZMAT Spill Center) as directed by Congress in Section 118(n) of the Superfund Amendments and Reauthorization Act of 1986 (SARA). The Albany County Research Corporation (ACRC) was established to make publicly funded data developed from research projects available to benefit public safety. The founders since 1987 have been investigating the behavior of toxic chemicals that are deliberately or accidentally spilled, educating emergency response organizations, and maintaining funding to conduct the research at the DOEÆs HAZMAT Spill Center (HSC) located on the Nevada Test Site. ACRC also supports DOE in collaborative research and development efforts mandated by Congress in the Clean Air Act Amendments. The data files are results of spill tests conducted at various times by the Silicones Environmental Health and Safety Council (SEHSC) and DOE, ANSUL, Dow Chemical, the Center for Chemical Process Safety (CCPS) and DOE, Lawrence Livermore National Laboratory (LLNL), OSHA, and DOT; DuPont, and the Western Research Institute (WRI), Desert Research Institute (DRI), and EPA. Each test data page contains one executable file for each test in the test series as well as a file named DOC.EXE that contains information documenting the test series. These executable files are actually self-extracting zip files that, when executed, create one or more comma separated value (CSV) text files containing the actual test data or other test information.

  3. Apparatus and method for extraction of chemicals from aquifer remediation effluent water

    DOE Patents [OSTI]

    McMurtrey, Ryan D. (Idaho Falls, ID); Ginosar, Daniel M. (Idaho Falls, ID); Moor, Kenneth S. (Idaho Falls, ID); Shook, G. Michael (Idaho Falls, ID); Moses, John M. (Dedham, MA); Barker, Donna L. (Idaho Falls, ID)

    2002-01-01

    An apparatus and method for extraction of chemicals from an aquifer remediation aqueous effluent are provided. The extraction method utilizes a critical fluid for separation and recovery of chemicals employed in remediating aquifers contaminated with hazardous organic substances, and is particularly suited for separation and recovery of organic contaminants and process chemicals used in surfactant-based remediation technologies. The extraction method separates and recovers high-value chemicals from the remediation effluent and minimizes the volume of generated hazardous waste. The recovered chemicals can be recycled to the remediation process or stored for later use.

  4. Method and system for extraction of chemicals from aquifer remediation effluent water

    DOE Patents [OSTI]

    McMurtrey, Ryan D. (Idaho Falls, ID); Ginosar, Daniel M. (Idaho Falls, ID); Moor, Kenneth S. (Idaho Falls, ID); Shook, G. Michael (Idaho Falls, ID); Barker, Donna L. (Idaho Falls, ID)

    2003-01-01

    A method and system for extraction of chemicals from an groundwater remediation aqueous effluent are provided. The extraction method utilizes a critical fluid for separation and recovery of chemicals employed in remediating groundwater contaminated with hazardous organic substances, and is particularly suited for separation and recovery of organic contaminants and process chemicals used in surfactant-based remediation technologies. The extraction method separates and recovers high-value chemicals from the remediation effluent and minimizes the volume of generated hazardous waste. The recovered chemicals can be recycled to the remediation process or stored for later use.

  5. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Novel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Novel PlatinumChromium Alloy for the Manufacture of Improved Coronary Stents Success Story NETL Technology Transfer Group techtransfer@netl.doe.gov Contact Partners A coronary...

  6. Vehicle Technologies Office: 2014 Electric Drive Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Past year's reports are listed on the Annual Progress Reports page. PDF icon FY14EDTAnnualReport.pdf More Documents & Publications Vehicle Technologies Office: 2013 Advanced ...

  7. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer NETL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sorbent Technologies Licensed for Use in Biomass-to- Biofuel Conversion Process with ... as part of its spinout MG Fuels' integrated biomass-to-biofuel conversion process. ...

  8. Energy Technology Division Energy Technology Division Energy...

    Office of Scientific and Technical Information (OSTI)

    constitute or imply its endorsement, recommendation, or favoring by the United States ... sensor. 4. Technology, or the basic physical phenomena that the sensor uses to do its job. ...

  9. Volatile chemical reagent detector

    DOE Patents [OSTI]

    Chen, Liaohai; McBranch, Duncan; Wang, Rong; Whitten, David

    2004-08-24

    A device for detecting volatile chemical reagents based on fluorescence quenching analysis that is capable of detecting neutral electron acceptor molecules. The device includes a fluorescent material, a contact region, a light source, and an optical detector. The fluorescent material includes at least one polymer-surfactant complex. The polymer-surfactant complex is formed by combining a fluorescent ionic conjugated polymer with an oppositely charged surfactant. The polymer-surfactant complex may be formed in a polar solvent and included in the fluorescent material as a solution. Alternatively, the complex may be included in the fluorescent material as a thin film. The use of a polymer-surfactant complex in the fluorescent material allows the device to detect both neutral and ionic acceptor molecules. The use of a polymer-surfactant complex film allows the device and the fluorescent material to be reusable after exposing the fluorescent material to a vacuum for limited time.

  10. Alternative technologies for cooling and refrigeration equipment

    SciTech Connect (OSTI)

    Matchett, J.

    1995-12-01

    Significant national and international attention has focused on the role that chlorofluorocarbons (CFCs) play in stratospheric ozone depletion. The Clean Air Act of 1990 calls for the production of the most harmful CFCs to completely cease by December 31, 1995. This production phaseout affects many CFC-refrigerants which are commonly used in commercial, residential, and industrial cooling processes. The production phaseout of CFCs will require owners of CFC-based refrigeration equipment to make plans to replace their equipment. Many equipment owners find themselves in a {open_quotes}rut{close_quotes}replacing CFCs with another chemical coolant, rather than a new cooling process. Since many of the chemical alternatives are structurally similar to CFCs (i.e., HCFCs, HFCs, and blends) they require minimal changes to current equipment. However, these substances are also believed to affect the global climate. Hence, they may not be the most environmentally sound alternative and probable are subject to other Federal regulations. There are other HVAC/R alternatives which are less environmentally damaging than these chemicals and may actually be more cost-effective and energy efficient and than the {open_quotes}traditional{close_quotes} CFC chemical substitutes. Alternative cooling technologies include absorption systems, desiccant cooling, evaporative cooling, and ammonia vapor compression. These alternative technologies are proven alternatives and are commercially available. Further, significant technological developments in recent years have made these technologies feasible alternatives for applications previously believed to be unacceptable. This paper describes these alternative technologies and the conditions in which they are viable alternatives to CFC-based equipment. Additionally, energy efficiency and life-cycle cost analysis considerations are addressed to provide a more completes analysis of cooling equipment alternatives.

  11. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard

    1980-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

  12. ASPECT Emergency Response Chemical and Radiological Mapping

    ScienceCinema (OSTI)

    LANL

    2009-09-01

    A unique airborne emergency response tool, ASPECT is a Los Alamos/U.S. Environmental Protection Agency project that can put chemical and radiological mapping tools in the air over an accident scene. The name ASPECT is an acronym for Airborne Spectral Photometric Environmental Collection Technology. Update, Sept. 19, 2008: Flying over storm-damaged refineries and chemical factories, a twin-engine plane carrying the ASPECT (Airborne Spectral Photometric Environmental Collection Technology) system has been on duty throughout the recent hurricanes that have swept the Florida and Gulf Coast areas. ASPECT is a project of the U.S. U.S. Environmental Protection Agencys National Decontamination Team. Los Alamos National Laboratory leads a science and technology program supporting the EPA and the ASPECT aircraft. Casting about with a combination of airborne photography and infrared spectroscopy, the highly instrumented plane provides emergency responders on the ground with a clear concept of where danger lies, and the nature of the sometimes-invisible plumes that could otherwise kill them. ASPECT is the nations only 24/7 emergency response aircraft with chemical plume mapping capability. Bob Kroutil of Bioscience Division is the project leader, and while he said the team has put in long hours, both on the ground and in the air, its a worthwhile effort. The plane flew over 320 targeted sites in four days, he noted. Prior to the deployment to the Gulf Coast, the plane had been monitoring the Democratic National Convention in Denver, Colorado. Los Alamos National Laboratory Divisions that are supporting ASPECT include, in addition to B-Division, CTN-5: Networking Engineering and IRM-CAS: Communication, Arts, and Services. Leslie Mansell, CTN-5, and Marilyn Pruitt, IRM-CAS, were recognized the the U.S. EPA for their outstanding support to the hurricane response of Gustav in Louisiana and Ike in Texas. The information from the data collected in the most recent event, Hurricane Ike, was sent to the EPA Region 6 Rapid Needs Assessment and the State of Texas Joint Field Office in Austin, Texas. It appears that though there is considerable damage in Galveston and Texas City, there are fewer chemical leaks than during either hurricanes Katrina or Rita. Specific information gathered from the data was reported out to the U.S. Environmental Protection Agency Headquarters, the Federal Emergency Management Agency, the Department of Homeland Security, and the State of Texas Emergency Management Agency.

  13. ASPECT Emergency Response Chemical and Radiological Mapping

    SciTech Connect (OSTI)

    LANL

    2008-05-12

    A unique airborne emergency response tool, ASPECT is a Los Alamos/U.S. Environmental Protection Agency project that can put chemical and radiological mapping tools in the air over an accident scene. The name ASPECT is an acronym for Airborne Spectral Photometric Environmental Collection Technology. Update, Sept. 19, 2008: Flying over storm-damaged refineries and chemical factories, a twin-engine plane carrying the ASPECT (Airborne Spectral Photometric Environmental Collection Technology) system has been on duty throughout the recent hurricanes that have swept the Florida and Gulf Coast areas. ASPECT is a project of the U.S. U.S. Environmental Protection Agencys National Decontamination Team. Los Alamos National Laboratory leads a science and technology program supporting the EPA and the ASPECT aircraft. Casting about with a combination of airborne photography and infrared spectroscopy, the highly instrumented plane provides emergency responders on the ground with a clear concept of where danger lies, and the nature of the sometimes-invisible plumes that could otherwise kill them. ASPECT is the nations only 24/7 emergency response aircraft with chemical plume mapping capability. Bob Kroutil of Bioscience Division is the project leader, and while he said the team has put in long hours, both on the ground and in the air, its a worthwhile effort. The plane flew over 320 targeted sites in four days, he noted. Prior to the deployment to the Gulf Coast, the plane had been monitoring the Democratic National Convention in Denver, Colorado. Los Alamos National Laboratory Divisions that are supporting ASPECT include, in addition to B-Division, CTN-5: Networking Engineering and IRM-CAS: Communication, Arts, and Services. Leslie Mansell, CTN-5, and Marilyn Pruitt, IRM-CAS, were recognized the the U.S. EPA for their outstanding support to the hurricane response of Gustav in Louisiana and Ike in Texas. The information from the data collected in the most recent event, Hurricane Ike, was sent to the EPA Region 6 Rapid Needs Assessment and the State of Texas Joint Field Office in Austin, Texas. It appears that though there is considerable damage in Galveston and Texas City, there are fewer chemical leaks than during either hurricanes Katrina or Rita. Specific information gathered from the data was reported out to the U.S. Environmental Protection Agency Headquarters, the Federal Emergency Management Agency, the Department of Homeland Security, and the State of Texas Emergency Management Agency.

  14. Materials Science and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MST Materials Science and Technology Providing world-leading, innovative, and agile materials science and technology solutions for national security missions. MST is metallurgy. The Materials Science and Technology Division provides scientific and technical leadership in materials science and technology for Los Alamos National Laboratory. READ MORE MST is engineered materials. The Materials Science and Technology Division provides scientific and technical leadership in materials science and

  15. Emerging Technologies Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emerging Technologies Program Pat Phelan Program Manager patrick.phelan@ee.doe.gov (202)287-1906 April 2, 2013 Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov How ET Fits into BTO Research & Development * Develop technology roadmaps * Prioritize opportunities * Solicit and select innovative technology solutions * Collaborate with researchers * Solve technical barriers and test innovations to prove effectiveness * Measure and validate energy

  16. TECHNOLOGY TRANSFER COORDINATORS

    Broader source: Energy.gov [DOE]

    Mark Hartney, Director of the Office of Strategic Planning, SLAC, discussed technology transfer at SLAC. Bob Hwang, Director, Transportation Energy Center, Combustion Research Facility, SNL presented on technology transfer at SNL. Elsie Quaite-Randall, Chief Technology Transfer Officer, Innovation and Partnerships Office, LBNL, presented on technology transfer at LBNL. Richard A. Rankin, Director, Industrial Partnerships Office and Economic Development Office (Interim), LLNL, presented on technology transfer at LLNL.

  17. Biogas to Liquid Fuels and Chemicals Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biogas to Liquid Fuels and Chemicals Using a Methanotrophic Microorganism WBS 2.3.2.102 2015 DOE BioEnergy Technologies Office (BETO) Project Peer Review March 24, 2015 Technology Area: Biochemical Conversion Principal Investigator: Michael T. Guarnieri Organization: National Renewable Energy Laboratory 2 Goal Statement Goals 1. Demonstrate proof of concept for a biogas-to-liquid fuels and chemicals process. 2. Enhance carbon conversion efficiency from methane to biomass and products. Outcome:

  18. Atlanta Chemical Engineering LLC | Open Energy Information

    Open Energy Info (EERE)

    Atlanta Chemical Engineering LLC Jump to: navigation, search Logo: Atlanta Chemical Engineering LLC Name: Atlanta Chemical Engineering LLC Place: Marietta, Georgia Country: United...

  19. Shanghai TL Chemical Company | Open Energy Information

    Open Energy Info (EERE)

    Shanghai TL Chemical Company Place: Shanghai, China Zip: 200240 Product: Focuses on novel chemical structure PEM and PE Resin, PEM FC materials and parts, Key chemical...

  20. chemical_methods | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Methods Chemical methods focus mainly on alkaline-surfactant-polymer (ASP) processes that involve the injection of micellar-polymers into the reservoir. Chemical flooding...

  1. Corsicana Chemical Company | Open Energy Information

    Open Energy Info (EERE)

    Corsicana Chemical Company Jump to: navigation, search Name: Corsicana Chemical Company Place: Corsicana, Texas Zip: 75110 Product: Chemical company and biodiesel producer in...

  2. Micropyrolyzer for chemical analysis of liquid and solid samples

    DOE Patents [OSTI]

    Mowry, Curtis D.; Morgan, Catherine H.; Manginell, Ronald P.; Frye-Mason, Gregory C.

    2006-07-18

    A micropyrolyzer has applications to pyrolysis, heated chemistry, and thermal desorption from liquid or solid samples. The micropyrolyzer can be fabricated from semiconductor materials and metals using standard integrated circuit technologies. The micropyrolyzer enables very small volume samples of less than 3 microliters and high sample heating rates of greater than 20.degree. C. per millisecond. A portable analyzer for the field analysis of liquid and solid samples can be realized when the micropyrolyzer is combined with a chemical preconcentrator, chemical separator, and chemical detector. Such a portable analyzer can be used in a variety of government and industrial applications, such as non-proliferation monitoring, chemical and biological warfare detection, industrial process control, water and air quality monitoring, and industrial hygiene.

  3. 2010 DOE EERE Vehicle Technologies Program Merit Review … Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration | Department of Energy … Technology Integration 2010 DOE EERE Vehicle Technologies Program Merit Review … Technology Integration Technology integration merit review results PDF icon 2010_amr_08.pdf More Documents & Publications 2012 Annual Merit Review Results Report - Technology Integration 2011 Annual Merit Review Results Report - Technology Integration DOE Vehicle Technologies Program 2009 Merit Review Report - Technology Integration and Education

  4. Hydrogen Technology Research at SRNL

    SciTech Connect (OSTI)

    Danko, E.

    2011-02-13

    The Savannah River National Laboratory (SRNL) is a U.S. Department of Energy research and development laboratory located at the Savannah River Site (SRS) near Aiken, South Carolina. SRNL has over 50 years of experience in developing and applying hydrogen technology, both through its national defense activities as well as through its recent activities with the DOE Hydrogen Programs. The hydrogen technical staff at SRNL comprises over 90 scientists, engineers and technologists. SRNL has ongoing R&D initiatives in a variety of hydrogen storage areas, including metal hydrides, complex hydrides, chemical hydrides and carbon nanotubes. SRNL has over 25 years of experience in metal hydrides and solid-state hydrogen storage research, development and demonstration. As part of its defense mission at SRS, SRNL developed, designed, demonstrated and provides ongoing technical support for the largest hydrogen processing facility in the world based on the integrated use of metal hydrides for hydrogen storage, separation, and compression. The SRNL has been active in teaming with academic and industrial partners to advance hydrogen technology. A primary focus of SRNL's R&D has been hydrogen storage using metal and complex hydrides. SRNL and its Hydrogen Technology Research Laboratory have been very successful in leveraging their defense infrastructure, capabilities and investments to help solve this country's energy problems. SRNL has participated in projects to convert public transit and utility vehicles for operation using hydrogen fuel. Two major projects include the H2Fuel Bus and an Industrial Fuel Cell Vehicle (IFCV) also known as the GATOR{trademark}. Both of these projects were funded by DOE and cost shared by industry. These are discussed further in Section 3.0, Demonstration Projects. In addition to metal hydrides technology, the SRNL Hydrogen group has done extensive R&D in other hydrogen technologies, including membrane filters for H2 separation, doped carbon nanotubes, storage vessel design and optimization, chemical hydrides, hydrogen compressors and hydrogen production using nuclear energy. Several of these are discussed further in Section 2, SRNL Hydrogen Research and Development.

  5. Tank 48 - Chemical Destruction

    SciTech Connect (OSTI)

    Simner, Steven P.; Aponte, Celia I.; Brass, Earl A.

    2013-01-09

    Small tank copper-catalyzed peroxide oxidation (CCPO) is a potentially viable technology to facilitate the destruction of tetraphenylborate (TPB) organic solids contained within the Tank 48H waste at the Savannah River Site (SRS). A maturation strategy was created that identified a number of near-term development activities required to determine the viability of the CCPO process, and subsequent disposition of the CCPO effluent. Critical activities included laboratory-scale validation of the process and identification of forward transfer paths for the CCPO effluent. The technical documentation and the successful application of the CCPO process on simulated Tank 48 waste confirm that the CCPO process is a viable process for the disposition of the Tank 48 contents.

  6. SHARED TECHNOLOGY TRANSFER PROGRAM

    SciTech Connect (OSTI)

    GRIFFIN, JOHN M. HAUT, RICHARD C.

    2008-03-07

    The program established a collaborative process with domestic industries for the purpose of sharing Navy-developed technology. Private sector businesses were educated so as to increase their awareness of the vast amount of technologies that are available, with an initial focus on technology applications that are related to the Hydrogen, Fuel Cells and Infrastructure Technologies (Hydrogen) Program of the U.S. Department of Energy. Specifically, the project worked to increase industry awareness of the vast technology resources available to them that have been developed with taxpayer funding. NAVSEA-Carderock and the Houston Advanced Research Center teamed with Nicholls State University to catalog NAVSEA-Carderock unclassified technologies, rated the level of readiness of the technologies and established a web based catalog of the technologies. In particular, the catalog contains technology descriptions, including testing summaries and overviews of related presentations.

  7. Biotechnology for producing fuels and chemicals from biomass. Volume II. Fermentation chemicals from biomass

    SciTech Connect (OSTI)

    Villet, R.

    1981-02-01

    The technological and economic feasibility of producing some selected chemicals by fermentation is discussed: acetone, butanol, acetic acid, citric acid, 2,3-butanediol, and propionic acid. The demand for acetone and butanol has grown considerably. They have not been produced fermentatively for three decades, but instead by the oxo and aldol processes. Improved cost of fermentative production will hinge on improving yields and using cellulosic feedstocks. The market for acetic acid is likely to grow 5% to 7%/yr. A potential process for production is the fermentation of hydrolyzed cellulosic material to ethanol followed by chemical conversion to acetic acid. For about 50 years fermentation has been the chief process for citric acid production. The feedstock cost is 15% to 20% of the overall cost of production. The anticipated 5%/yr growth in demand for citric acid could be enhanced by using it to displace phosphates in detergent manufacture. A number of useful chemicals can be derived from 2,3-butanediol, which has not been produced commercially on a large scale. R and D are needed to establish a viable commercial process. The commercial fermentative production of propionic acid has not yet been developed. Recovery and purification of the product require considerable improvement. Other chemicals such as lactic acid, isopropanol, maleic anhydride, fumarate, and glycerol merit evaluation for commercial fermentative production in the near future.

  8. Continuation of Crosscutting Technology Development at Cast

    SciTech Connect (OSTI)

    Yoon, Roe-Hoan

    2012-03-31

    This Final Technical Report describes progress made on the sub-projects awarded in the Cooperative Agreement DE-FC26-05NT42457: Continuation of Crosscutting Technology Development at Center for Advanced Separation Technologies (CAST). The final reports for each sub-project are attached in the appendix. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: a) Solid-solid separation b) Solid-liquid separation c) Chemical/Biological Extraction d) Modeling and Control, and e) Environmental Control.

  9. Biomass Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Technology Basics Biomass Technology Basics August 14, 2013 - 11:31am Addthis Photo of a pair of hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic matter such as plants, residue from agriculture and forestry, and the organic component of municipal and industrial wastes-that can now be used to produce fuels, chemicals, and power. Wood has been used to provide heat for thousands of years. This flexibility has resulted in increased use of

  10. ARM - Measurement - Inorganic chemical composition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsInorganic chemical composition ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Inorganic chemical composition The chemical composition of an aerosol, with the exception of those with hydrocarbons, and usually including carbides, oxides of carbon, metallic carbonates, carbon sulfur compounds, and carbon nitrogen compounds. Categories Aerosols Instruments The above measurement is

  11. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    SciTech Connect (OSTI)

    Christopher Hull

    2009-10-31

    The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium -- Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno - that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/biological extraction; (4) Modeling and control; and (5) Environmental control. Distribution of funds is handled via competitive solicitation of research proposals through Site Coordinators at the seven member universities. These were first reviewed and ranked by a group of technical reviewers (selected primarily from industry). Based on these reviews, and an assessment of overall program requirements, the CAST Technical Committee made an initial selection/ranking of proposals and forwarded these to the DOE/NETL Project Officer for final review and approval. The successful projects are listed by category, along with brief abstracts of their aims and objectives.

  12. Chemical Looping | Open Energy Information

    Open Energy Info (EERE)

    to convert fossil fuels to electricity and provide carbon capture without significant efficiency or cost penalties. Chemical looping combustion is very similar to oxy-fuel...

  13. Chemical substructure analysis in toxicology

    SciTech Connect (OSTI)

    Beauchamp, R.O. Jr.

    1990-12-31

    A preliminary examination of chemical-substructure analysis (CSA) demonstrates the effective use of the Chemical Abstracts compound connectivity file in conjunction with the bibliographic file for relating chemical structures to biological activity. The importance of considering the role of metabolic intermediates under a variety of conditions is illustrated, suggesting structures that should be examined that may exhibit potential activity. This CSA technique, which utilizes existing large files accessible with online personal computers, is recommended for use as another tool in examining chemicals in drugs. 2 refs., 4 figs.

  14. FAQS Reference Guide- Chemical Processing

    Broader source: Energy.gov [DOE]

    This reference guide addresses the competency statements in the February 2010 edition of DOE-STD-1176-2010, Chemical Processing Functional Area Qualification Standard.

  15. Chemical Logging | Open Energy Information

    Open Energy Info (EERE)

    concentrations.1 Use in Geothermal Exploration During a chemical logging study at the Raft River Geothermal Test Site, returned drilling fluid samples were collected every...

  16. Technologies for Upgrading Light Water Reactor Outlet Temperature

    SciTech Connect (OSTI)

    Daniel S. Wendt; Piyush Sabharwall; Vivek Utgikar

    2013-07-01

    Nuclear energy could potentially be utilized in hybrid energy systems to produce synthetic fuels and feedstocks from indigenous carbon sources such as coal and biomass. First generation nuclear hybrid energy system (NHES) technology will most likely be based on conventional light water reactors (LWRs). However, these LWRs provide thermal energy at temperatures of approximately 300°C, while the desired temperatures for many chemical processes are much higher. In order to realize the benefits of nuclear hybrid energy systems with the current LWR reactor fleets, selection and development of a complimentary temperature upgrading technology is necessary. This paper provides an initial assessment of technologies that may be well suited toward LWR outlet temperature upgrading for powering elevated temperature industrial and chemical processes during periods of off-peak power demand. Chemical heat transformers (CHTs) are a technology with the potential to meet LWR temperature upgrading requirements for NHESs. CHTs utilize chemical heat of reaction to change the temperature at which selected heat sources supply or consume thermal energy. CHTs could directly utilize LWR heat output without intermediate mechanical or electrical power conversion operations and the associated thermodynamic losses. CHT thermal characteristics are determined by selection of the chemical working pair and operating conditions. This paper discusses the chemical working pairs applicable to LWR outlet temperature upgrading and the CHT operating conditions required for providing process heat in NHES applications.

  17. Multidimensional simulation and chemical kinetics development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multidimensional simulation and chemical kinetics development for high efficiency clean combustion engines Multidimensional simulation and chemical kinetics development for high...

  18. Chemical Safety Program | Department of Energy

    Office of Environmental Management (EM)

    Chemical Safety Program Chemical Safety Program The Department of Energy's (DOE's) Chemical Safety Program provides a forum for the exchange of best practices, lessons learned, and guidance in the area of chemical management. This content is supported by the Chemical Safety Topical Committee which was formed to identify chemical safety-related issues of concern to the DOE and pursue solutions to issues identified. Chemical Safety Information: Contacts Library Related Chemical Safety Links

  19. Assessment of oil-pretreatment technologies to improve performance of reverse-osmosis systems. Technical literature review and technologies evaluation

    SciTech Connect (OSTI)

    Tansel, B.; Villate, J.

    1992-06-19

    The services provided under this contract include both theoretical and experimental research for development of an appropriate technology for treatment of petroleum hydrocarbons in source water for reverse osmosis (RO) systems. This report evaluates and screens the candidate technologies identified during the literature review in accordance with the approved Technology Evaluation Plan. A short-list of technologies that warrant further study is recommended to be carried forward to the experimental phase. The contamination problems due to petroleum hydrocarbons have been long recognized. However, the treatment technologies available for treatment of petroleum contaminated media are still very limited. Major limitations relative to treatment of petroleum hydrocarbons include: exact chemical composition is not defined; aerobic treatment processes are not effective for breaking down heavy petroleum hydrocarbons; anaerobic treatment processes are slow; and physical/chemical treatment processes are expensive and there is usually additional waste produced during treatment of the contaminated media.

  20. Summaries of FY 1982 research in the chemical sciences

    SciTech Connect (OSTI)

    1982-09-01

    The purpose of this booklet is to help those interested in research supported by the Department of Energy's Division of Chemical Sciences, which is one of six Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. These summaries are intended to provide a rapid means for becoming acquainted with the Chemical Sciences program to members of the scientific and technological public and interested persons in the Legislative and Executive Branches of the Government. Areas of research supported by the Division are to be seen in the section headings, the index and the summaries themselves. Energy technologies which may be advanced by use of the basic knowledge discovered in this program can be seen in the index and again (by reference) in the summaries. The table of contents lists the following: photochemical and radiation sciences; chemical physics; atomic physics; chemical energy; separation and analysis; chemical engineering sciences; offsite contracts; equipment funds; special facilities; topical index; institutional index for offsite contracts; investigator index.

  1. SSL TECHNOLOGY DEVELOPMENT WORKSHOP

    Broader source: Energy.gov [DOE]

    Rapid advances in SSL technology make it easy to forget that this technology is still at a relatively early stage of development, and much of its potential remains untapped. The 10th annual DOE SSL...

  2. Technology Readiness Assessment Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-09-15

    The Guide assists individuals and teams involved in conducting Technology Readiness Assessments (TRAs) and developing Technology Maturation Plans (TMPs) for the DOE capital asset projects subject to DOE O 413.3B. Supersedes DOE G 413.3-4.

  3. Technology Deployment Case Studies

    Broader source: Energy.gov [DOE]

    Find technology deployment case studies below. Click on each individual project link to see the full case study. You can also view a map of technology deployment case studies.

  4. Open Government Technology Summit

    Broader source: Energy.gov [DOE]

    On January 25, 2012, the OCIO hosted the Open Government Technology Summit in Forrestal Auditorium.  Five speakers including Deputy U.S. Chief Technology Officer Chris Vein, DOE Director of New...

  5. Applied Cathode Enhancement and Robustness Technologies (ACERT)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerators, Electrodynamics » ACERT Applied Cathode Enhancement and Robustness Technologies (ACERT) World leading experts from fields of accelerator design & testing, chemical synthesis of nanomaterials, and shielding application of nanomaterials. thumbnail of Nathan Moody Nathan Moody Principal Investigator (PI) Email ACERT Logo Team Our project team, a part of Los Alamos National Laboratory (LANL) comprised of world leading experts from fields of accelerator design & testing,

  6. Fuel Cell Technologies Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7/21/2015 eere.energy.gov Fuel Cell Technologies Overview States Energy Advisory Board (STEAB) Washington, DC Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 3/14/2012 Outline * Introduction - Technology and Market Overview * DOE Program Overview - Mission & Structure - R&D Progress - Demonstration & Deployments * State Activities - Examples of potential opportunities 2 | Fuel Cell Technologies Program Source: US DOE 7/21/2015

  7. Technology Partnership Agreements | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Partnership Agreements Looking for Funding? We do not fund any projects under a technology partnership agreement. The partner provides the necessary resources and, in most cases, covers our costs of providing technical services. NREL does provide funding opportunities through competitively placed contracts. See procurement. There are a variety of ways to partner with NREL using technology partnership agreements. See a summary of our Fiscal Year 2015 technology partnership agreements.

  8. Geothermal Energy & Drilling Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy & Drilling Technology - Sandia Energy Energy Search Icon Sandia Home Locations ... Atmospheric Radiation Measurement Climate Reasearch Facility Geomechanics and Drilling ...

  9. TECHNOLOGY READINESS ASSESSMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DECEMBER 2012 Pathway for readying the next generation of affordable clean energy technology -Carbon Capture, Utilization, and Storage (CCUS) 2012 TECHNOLOGY READINESS ASSESSMENT -OVERVIEW 2 2012 TECHNOLOGY READINESS ASSESSMENT-OVERVIEW 2012 TECHNOLOGY READINESS ASSESSMENT-OVERVIEW 3 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any

  10. Robert Jilek: Pellion Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robert Jilek: Pellion Technologies Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Robert Jilek: Pellion Technologies Senior research scientist at eastern energy storage startup September 3, 2014 Robert Jilek Robert Jilek Contact Linda Anderman Email Robert Jilek Jilek is currently with Pellion Technologies Bob Jilek is currently spending part of his time in a management role at Pellion Technologies in the Cambridge

  11. NREL: Geothermal Technologies - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... studies, regional sedimentary basin exploration, prospect generation, reservoir ... Technologies Office in assessment and evaluation of research and development projects. ...

  12. Consumer Vehicle Technology Data

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  13. Technology Integration Overview

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  14. California Institute of Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sunday, July 29, 2012 California Institute of Technology Hameetman Auditorium at the Cahill Center 8:30 AM - 5:00 PM Speakers include: o Harry Atwater, Director, LMI-EFRC and Resnick Institute, California Institute of Technology o Ivan Celanovic, Principal Research Scientist, Massachusetts Institute of Technology o Geoffrey Kinsey, Director, Photovoltaic Technologies, Fraunhofer Center for Sustainable Energy o Sarah Kurtz, Principal Scientist, National Renewable Energy Laboratory o Minh Le,

  15. First National Technology Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Technology First National Technology Center Center Dennis Hughes FMA, RPA, P.E. Lead Property Manager, First National Buildings, Inc. 2 First National Technology First National Technology Center Center First National of Nebraska, Inc. - $12 Billion Assets - 5,400 employees - 6.6 million customers in 50 states - 60 banking locations Nebraska, Colorado, Kansas, South Dakota,Texas, Illinois - Largest in house merchant processor in United States Top ten VISA® and MasterCard® processor Top

  16. Fuel Cell Technologies Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    States Energy Advisory Board (STEAB) Washington, DC Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 3/14/2012 2 | Fuel Cell Technologies Program Source: US DOE 3/19/2013 eere.energy.gov * Introduction - Technology and Market Overview * DOE Program Overview - Mission & Structure - R&D Progress - Demonstration & Deployments * State Activities - Examples of potential opportunities Outline 3 | Fuel Cell Technologies Program Source: US DOE

  17. Benchmarking of Competitive Technologies

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  18. Building Technologies Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office Roland Risser Director, Building Technologies Office National Energy Consumption 40% 60% Reducing consumption or improving performance calls for cutting-edge energy-efficient solutions Aiming High for 2030 Double U.S. energy productivity Lower building energy use by 50% Annual energy use by 20 quads 1 billion metric tons CO 2 $200 billion for America's homes and buildings Delivering Energy-Efficient Solutions Co Emerging Technologies High-impact building technologies ~Five

  19. Building Technologies Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roland Risser Director, Building Technologies Office Building Technologies Office Overview Our Homes and Buildings Use 40% of Our Nation's Energy and 75% of Electricity Energy Use Electricity Use Residential Transportation 21 quads 27 quads Commercial 18 quads Industrial 31 quads U.S. Energy Bill for Buildings: $410 billion per year 2 Building Technologies Office (BTO) Ecosystem Emerging Technologies Building Codes Appliance Standards Residential Buildings Integration Commercial Buildings

  20. Carbon Fiber Technology Facility

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  1. Carbon Fiber Technology Facility

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. Technology Performance Exchange

    SciTech Connect (OSTI)

    2015-09-01

    To address the need for accessible, high-quality data, the Department of Energy has developed the Technology Performance Exchange (TPEx). TPEx enables technology suppliers, third-party testing laboratories, and other entities to share product performance data. These data are automatically transformed into a format that technology evaluators can easily use in their energy modeling assessments to inform procurement decisions.

  3. High Impact Technology Hub

    Broader source: Energy.gov [DOE]

    The High Impact Technology Hub is a one stop shop for information associated with technology demonstrations in occupied, operational buildings. Resources posted to Hub should accelerate the selection and evaluation of technology demonstration projects and enable transparency into DOE’s market stimulation and tech to market activities.

  4. Vehicle Technologies Office

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office is developing more energy efficient and environmentally friendly highway transportation technologies that will enable America to use less petroleum. The long-term aim is to develop "leap frog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

  5. NREL: Technology Transfer - Agreements for Commercializing Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agreements for Commercializing Technology NREL uses Agreements for Commercializing Technology (ACT) when a partner seeks highly specialized or technical services to complete a project. An ACT agreement also authorizes participating contractor-operated DOE laboratories, such as NREL, to partner with businesses using more flexible terms that are aligned with industry practice. Read more about how this partnership tool increases flexibility. The agreement type used depends on the business, and the

  6. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS. FINAL QUARTERLY STATUS REPORT NO. 10

    SciTech Connect (OSTI)

    1998-11-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  7. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS. FINAL QUARTERLY STATUS REPORT

    SciTech Connect (OSTI)

    1999-04-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  8. APPLICATION OF CHEMICALLY ACCELERATED BIOTREATMENT TO REDUCE RISK IN OIL-IMPACTED SOILS

    SciTech Connect (OSTI)

    J.R. Paterek; W.W. Bogan; L.M. Lahner; V. Trbovic; E. Korach

    2001-05-01

    The overall program objective is to develop and evaluate integrated biological/physical/chemical co-treatment strategies for the remediation of wastes associated with the exploration and production of fossil energy. The specific objectives of this project are: chemical accelerated biotreatment (CAB) technology development for enhanced site remediation, application of the risk based analyses to define and support the rationale for environmental acceptable endpoints (EAE) for exploration and production wastes, and evaluate both the technological technologies in conjugation for effective remediation of hydrocarbon contaminated soils from E&P sites in the USA.

  9. Vehicle Technologies Office Merit Review 2014: Carbon Fiber Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Fiber Technology Facility Vehicle Technologies Office Merit Review 2014: Carbon Fiber Technology Facility Presentation given by Oak Ridge National Laboratory at 2014 DOE ...

  10. Vehicle Technologies Office: 2010 Fuel Technologies R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: 2010 Fuel Technologies R&D Annual Progress Report The Fuels Technologies subprogram supports fuels and lubricants research and development (R&D)...

  11. 2010 DOE EERE Vehicle Technologies Program Merit Review ? Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration 2011 Annual Merit Review Results Report - Technology Integration DOE Vehicle Technologies Program 2009 Merit Review Report - Technology Integration and Education...

  12. Vehicle Technologies Office Merit Review 2015: Advanced Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Technology Vehicle Lab Benchmarking (L1&L2) Vehicle Technologies Office Merit Review 2015: Advanced Technology Vehicle Lab Benchmarking (L1&L2) Presentation given by Argonne ...

  13. Vehicle Technologies Office Merit Review 2014: Advanced Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Technology Vehicle Lab Benchmarking - Level 1 Vehicle Technologies Office Merit Review 2014: Advanced Technology Vehicle Lab Benchmarking - Level 1 Presentation given by ...

  14. Weapons of Mass Destruction Technology Evaluation and Training Range

    SciTech Connect (OSTI)

    Kevin Larry Young

    2009-05-01

    The Idaho National Laboratory (INL) has a long history for providing technology evaluation and training for military and other federal level Weapons of Mass Destruction (WMD) response agencies. Currently there are many federal organizations and commercial companies developing technologies related to detecting, assessing, mitigating and protecting against hazards associated with a WMD event. Unfortunately, very few locations exist within the United States where WMD response technologies are realistically field tested and evaluated using real chemical, biological, radiological, nuclear and explosive materials. This is particularly true with biological and radiological hazards. Related to this lack of adequate WMD, multi-hazard technology testing capability is the shortage of locations where WMD response teams can train using actual chemical, biological, and radiological material or highly realistic simulates. In response to these technology evaluation and training needs, the INL has assembled a consortium of subject matter experts from existing programs and identified dedicated resources for the purpose of establishing an all-hazards, WMD technology evaluation and training range. The author describes the challenges associated with creating the all-hazards WMD technology evaluation and training range and lists the technical, logistical and financial benefits of an all-hazards technology evaluation and training range. Current resources and capabilities for conducting all-hazard technology evaluation and training at the INL are identified. Existing technology evaluation and training programs at the INL related to radiological, biological and chemical hazards are highlighted, including successes and lessons learned. Finally, remaining gaps in WMD technology evaluation and training capabilities are identified along with recommendations for closing those gaps.

  15. 38th Symposium on Biotechnology for Fuels and Chemicals

    Broader source: Energy.gov [DOE]

    The 38th Symposium on Biotechnology for Fuels and Chemicals will be hosted in Baltimore, Maryland, from April 25–28, 2016 and will be hosted by the Oak Ridge National Laboratory. The conference will center on the development of a wide variety of renewable biobased fuels and products. Many members of the Bioenergy Technologies Office will be in attendance, including Deputy Director Valerie Reed and Advanced Algal Systems and Feedstocks Program Manger Alison Goss Eng, as well as Technology Managers Christine English, Jay Fitzgerald, Prasad Gupte, Ian Rowe, and Steve Thomas.

  16. Method of forming a chemical composition

    DOE Patents [OSTI]

    Bingham, Dennis N.; Wilding, Bruce M.; Klingler, Kerry M.; Zollinger, William T.; Wendt, Kraig M.

    2007-10-09

    A method of forming a chemical composition such as a chemical hydride is described and which includes the steps of selecting a composition having chemical bonds and which is capable of forming a chemical hydride; providing a source of hydrogen; and exposing the selected composition to an amount of ionizing radiation to encourage the changing of the chemical bonds of the selected composition, and chemically reacting the selected composition with the source of hydrogen to facilitate the formation of a chemical hydride.

  17. Chemical Microsensors For Detection Of Explosives And Chemical Warfare Agents

    DOE Patents [OSTI]

    Yang, Xiaoguang (Los Alamos, NM); Swanson, Basil I. (Los Alamos, NM)

    2001-11-13

    An article of manufacture is provided including a substrate having an oxide surface layer and a layer of a cyclodextrin derivative chemically bonded to said substrate, said layer of a cyclodextrin derivative adapted for the inclusion of selected compounds, e.g., nitro-containing organic compounds, therewith. Such an article can be a chemical microsensor capable of detecting a resultant mass change from inclusion of the nitro-containing organic compound.

  18. Health effects of coal technologies: research needs

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    In this 1977 Environmental Message, President Carter directed the establishment of a joint program to identify the health and environmental problems associated with advanced energy technologies and to review the adequacy of present research programs. In response to the President's directive, representatives of three agencies formed the Federal Interagency Committee on the Health and Environmental Effects of Energy Technologies. This report was prepared by the Health Effects Working Group on Coal Technologies for the Committee. In this report, the major health-related problems associated with conventional coal mining, storage, transportation, and combustion, and with chemical coal cleaning, in situ gasification, fluidized bed combustion, magnetohydrodynamic combustion, cocombustion of coal-oil mixtures, and cocombustion of coal with municipal solid waste are identified. The report also contains recommended research required to address the identified problems.

  19. Minerals Technologies | Open Energy Information

    Open Energy Info (EERE)

    Technologies Jump to: navigation, search Name: Minerals Technologies Place: Bethlehem, PA Website: www.mineralstechnologies.com References: Minerals Technologies1 Information...

  20. High Impact Technology Hub- Results

    Broader source: Energy.gov [DOE]

    Highlights, outcomes and activities to support the adoption of High Impact TechnologiesTechnology Highlights preview early results from current technology demonstrations.  Case Studies overview...

  1. Gerar Technology | Open Energy Information

    Open Energy Info (EERE)

    Gerar Technology Jump to: navigation, search Name: Gerar Technology Place: Rio de Janeiro, Brazil Product: Developer of new technology for production of biodiesel from vegetable...

  2. EKB Technology | Open Energy Information

    Open Energy Info (EERE)

    EKB Technology Jump to: navigation, search Name: EKB Technology Place: Oxfordshire, United Kingdom Product: Developer of a new bioprocessing technology. Coordinates: 51.813938,...

  3. Rubicon Technology | Open Energy Information

    Open Energy Info (EERE)

    Rubicon Technology Jump to: navigation, search Name: Rubicon Technology Place: Franklin Park, Illinois Zip: 60131 Product: Rubicon Technology makes a sapphire substrates for use in...

  4. Shorepower Technologies | Open Energy Information

    Open Energy Info (EERE)

    Shorepower Technologies Jump to: navigation, search Logo: Shorepower Technologies Name: Shorepower Technologies Address: 2351 NW York St. Place: Portland, Oregon Zip: 97210 Region:...

  5. Briza Technologies | Open Energy Information

    Open Energy Info (EERE)

    Briza Technologies Jump to: navigation, search Name: Briza Technologies Place: Hillsborough, New Jersey Zip: 8844 Sector: Wind energy Product: Developing wind turbine technology....

  6. PCN Technology | Open Energy Information

    Open Energy Info (EERE)

    PCN Technology Jump to: navigation, search Name: PCN Technology Place: San Diego, California Zip: CA 92127 Product: California-based smart grid technology developer. References:...

  7. High Impact Technology HQ- Results

    Broader source: Energy.gov [DOE]

    Highlights, outcomes and activities to support the adoption of High Impact Technologies.  Technology Highlights preview early results from current technology demonstrations.  Case Studies overview...

  8. Topanga Technologies | Open Energy Information

    Open Energy Info (EERE)

    Technologies Place: Canoga Park, California Zip: 91303 Product: Stealth-mode high-intensity discharge (HID) lighting technology developer. References: Topanga Technologies1...

  9. Konarka Technologies | Open Energy Information

    Open Energy Info (EERE)

    Technologies Jump to: navigation, search Name: Konarka Technologies Place: Lowell, MA Website: www.konarkatechnologies.com References: Konarka Technologies1 Information About...

  10. Non-planar chemical preconcentrator

    DOE Patents [OSTI]

    Manginell, Ronald P. (Albuquerque, NM); Adkins, Douglas R. (Albuquerque, NM); Sokolowski, Sara S. (Albuquerque, NM); Lewis, Patrick R. (Albuquerque, NM)

    2006-10-10

    A non-planar chemical preconcentrator comprises a high-surface area, low mass, three-dimensional, flow-through sorption support structure that can be coated or packed with a sorptive material. The sorptive material can collect and concentrate a chemical analyte from a fluid stream and rapidly release it as a very narrow temporal plug for improved separations in a microanalytical system. The non-planar chemical preconcentrator retains most of the thermal and fabrication benefits of a planar preconcentrator, but has improved ruggedness and uptake, while reducing sorptive coating concerns and extending the range of collectible analytes.

  11. Chemical microreactor and method thereof

    DOE Patents [OSTI]

    Morse, Jeffrey D. (Martinez, CA); Jankowski, Alan (Livermore, CA)

    2011-08-09

    A method for forming a chemical microreactor includes forming at least one capillary microchannel in a substrate having at least one inlet and at least one outlet, integrating at least one heater into the chemical microreactor, interfacing the capillary microchannel with a liquid chemical reservoir at the inlet of the capillary microchannel, and interfacing the capillary microchannel with a porous membrane near the outlet of the capillary microchannel, the porous membrane being positioned beyond the outlet of the capillary microchannel, wherein the porous membrane has at least one catalyst material imbedded therein.

  12. Technology transfer 1994

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    This document, Technology Transfer 94, is intended to communicate that there are many opportunities available to US industry and academic institutions to work with DOE and its laboratories and facilities in the vital activity of improving technology transfer to meet national needs. It has seven major sections: Introduction, Technology Transfer Activities, Access to Laboratories and Facilities, Laboratories and Facilities, DOE Office, Technologies, and an Index. Technology Transfer Activities highlights DOE`s recent developments in technology transfer and describes plans for the future. Access to Laboratories and Facilities describes the many avenues for cooperative interaction between DOE laboratories or facilities and industry, academia, and other government agencies. Laboratories and Facilities profiles the DOE laboratories and facilities involved in technology transfer and presents information on their missions, programs, expertise, facilities, and equipment, along with data on whom to contact for additional information on technology transfer. DOE Offices summarizes the major research and development programs within DOE. It also contains information on how to access DOE scientific and technical information. Technologies provides descriptions of some of the new technologies developed at DOE laboratories and facilities.

  13. Unit Price Scaling Trends for Chemical Products

    SciTech Connect (OSTI)

    Qi, Wei; Sathre, Roger; William R. Morrow, III; Shehabi, Arman

    2015-08-01

    To facilitate early-stage life-cycle techno-economic modeling of emerging technologies, here we identify scaling relations between unit price and sales quantity for a variety of chemical products of three categories - metal salts, organic compounds, and solvents. We collect price quotations for lab-scale and bulk purchases of chemicals from both U.S. and Chinese suppliers. We apply a log-log linear regression model to estimate the price discount effect. Using the median discount factor of each category, one can infer bulk prices of products for which only lab-scale prices are available. We conduct out-of-sample tests showing that most of the price proxies deviate from their actual reference prices by a factor less than ten. We also apply the bootstrap method to determine if a sample median discount factor should be accepted for price approximation. We find that appropriate discount factors for metal salts and for solvents are both -0.56, while that for organic compounds is -0.67 and is less representative due to greater extent of product heterogeneity within this category.

  14. ORISE: Chemical Stockpile Emergency Preparedness Program Training Advisor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6.0 CSEPP Training HSEEP Training Spokesperson Training Incident Command System Training Emergency Management Emergency Response Crisis and Risk Communication How ORISE is Making a Difference Overview Exercises and Planning Training and Technology Support Resources How to Work With Us Contact Us Oak Ridge Institute for Science Education Training Chemical Stockpile Emergency Preparedness Program Training: Advisor 6.0 The Oak Ridge Institute for Science and Education (ORISE) designed a unique

  15. Chemical Hieroglyphs: Abstract Depiction of Complex Void Space Topology of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoporous Materials | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Chemical Hieroglyphs: Abstract Depiction of Complex Void Space Topology of Nanoporous Materials Previous Next List Kevin Theisen, Berend Smit and Maciej Haranczyk, J. Chem. Inf. Model., 2010, 50 (4), pp 461-469 DOI: 10.1021/ci900451v Abstract Image Abstract In general, most porous materials are so complex that structural information cannot be easily observed with 3D visualization tools.

  16. Ultra-Fast Chemical Conversion Surfaces | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon pm027_erdemir_2010_p.pdf More Documents & Publications Ultra-Fast Chemical Conversion Surfaces Lubricant-Friendly, Superhard and Low-Friction Coatings by Design ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry

  17. Exploration Technologies Technology Needs Assessment | Department of Energy

    Office of Environmental Management (EM)

    Technologies Technology Needs Assessment Exploration Technologies Technology Needs Assessment The Exploration Technologies Needs Assessment is a critical component of ongoing technology roadmapping efforts, and will be used to guide the program's research and development. PDF icon iet_needs_assessment_06-2011.pdf More Documents & Publications Draft Innovative Exploration Technologies Needs Assessment Geothermal Technologies Program Annual Peer Review Presentation By Doug Hollett Hydrothermal

  18. Mass-sensitive chemical preconcentrator

    DOE Patents [OSTI]

    Manginell, Ronald P. (Albuquerque, NM); Adkins, Douglas R. (Albuquerque, NM); Lewis, Patrick R. (Albuquerque, NM)

    2007-01-30

    A microfabricated mass-sensitive chemical preconcentrator actively measures the mass of a sample on an acoustic microbalance during the collection process. The microbalance comprises a chemically sensitive interface for collecting the sample thereon and an acoustic-based physical transducer that provides an electrical output that is proportional to the mass of the collected sample. The acoustic microbalance preferably comprises a pivot plate resonator. A resistive heating element can be disposed on the chemically sensitive interface to rapidly heat and release the collected sample for further analysis. Therefore, the mass-sensitive chemical preconcentrator can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

  19. Process Intensification - Chemical Sector Focus

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Chemical Engineering Journal, 135(1), 71-77. 11 PwC ...nrelpubs.nrel.govWebtopwsnichwwwpublicRecord?rpp25&upp0&m2&... for reasonable system economics; 426 sufficient ...

  20. Geothermal innovative technologies catalog

    SciTech Connect (OSTI)

    Kenkeremath, D.

    1988-09-01

    The technology items in this report were selected on the basis of technological readiness and applicability to current technology transfer thrusts. The items include technologies that are considered to be within 2 to 3 years of being transferred. While the catalog does not profess to be entirely complete, it does represent an initial attempt at archiving innovative geothermal technologies with ample room for additions as they occur. The catalog itself is divided into five major functional areas: Exploration; Drilling, Well Completion, and Reservoir Production; Materials and Brine Chemistry; Direct Use; and Economics. Within these major divisions are sub-categories identifying specific types of technological advances: Hardware; Software; Data Base; Process/Procedure; Test Facility; and Handbook.

  1. Chemical Science | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemical Science Chemical Science Plant fatty acids are used in a vast range of products, from polymers to plastics and soaps to industrial feed stocks -- making up an estimated $150 billion market annually. A new discovery of inserting double bonds in the fatty acids could show the way to the designer production of plant fatty acids, and, in turn, to new industrial applications and new products. <a href

  2. Building Technologies Office: Emerging Technologies Windows and Building Envelope

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bahman Habibzadeh, PhD Technology Development Manger Building Technologies Office Emerging Technologies Windows and Building Envelope 2 Emerging Technologies (ET)  Develop cost-effective, high-impact building technologies: Lighting, HVAC, Windows & Envelope, Sensors & Controls, Appliances & Equipment Commercial Buildings Integration (CBI) Residential Buildings Integration (RBI)  Partner with private sector to demonstrate technologies and solutions  Demonstrate market

  3. Coatings with controlled porosity and chemical properties

    DOE Patents [OSTI]

    Frye, G.C.; Brinker, C.J.; Doughty, D.H.; Bein, T.; Moller, K.

    1996-12-31

    Coatings and sensors are disclosed having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided. 7 figs.

  4. Coatings with controlled porosity and chemical properties

    DOE Patents [OSTI]

    Frye, G.C.; Brinker, C.J.; Doughty, D.H.; Bein, T.; Moller, K.

    1993-07-06

    Coatings and sensors are described having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided.

  5. MECS 2006 - Chemicals | Department of Energy

    Office of Environmental Management (EM)

    Chemicals MECS 2006 - Chemicals Manufacturing Energy and Carbon Footprint for Chemicals Sector (NAICS 325) with Total Energy Input, October 2012 (MECS 2006) All available footprints and supporting documents Manufacturing Energy and Carbon Footprint PDF icon Chemicals More Documents & Publications Chemicals (2010 MECS) MECS 2006 - Alumina and Aluminum MECS 2006 - Cement

  6. Summary - Caustic Recovery Technology

    Office of Environmental Management (EM)

    Caustic Recovery Technology ETR Report Date: July 2007 ETR-7 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Caustic Recovery Technology Why DOE-EM Did This Review The Department of Energy (DOE) Environmental Management Office (EM-21) has been developing caustic recovery technology for application to the Hanford Waste Treatment Plant (WTP) to reduce the amount of Low Activity Waste (LAW) vitrified. Recycle of sodium hydroxide with an

  7. Technology Transfer - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PAZ0004_v2.jpg Technology Transfer Who We Are JCAP Mission JCAP At A Glance Fact Sheets Organizational Chart Recent Science Technology Transfer Awards & Honors Senior Management Scientific Leadership Researchers Governance & Advisory Boards Operations & Administration Who we are Overview JCAP Mission JCAP At A Glance Fact Sheets Organizational Chart Our Achievements Recent Science Technology Transfer Awards & Honors Our People Senior Management Scientific Leadership Researchers

  8. TECHNOLOGY READINESS ASSESSMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ASSESSMENT JANUARY 2015 -A CHECKPOINT ALONG A CHALLENGING JOURNEY DOE/NETL-2015/1710 U.S. Department of Energy 2014 TECHNOLOGY READINESS ASSESSMENT-CLEAN COAL RESEARCH PROGRAM 2 2014 TECHNOLOGY READINESS ASSESSMENT-CLEAN COAL RESEARCH PROGRAM Office of Fossil Energy | National Energy Technology Laboratory DISCLAIMER 3 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor

  9. Arc Position Sensing Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arc Position Sensing Technology Award Winning Technology Flaws in specialty metals used in aerospace and other advanced applications are often caused by solidification problems that arise during the melting and refining process. A common problem is arc constriction during melting. Previously, these conditions could not be identified during furnace operations, requiring ingot manufacturers to perform extensive testing on all ingots. The Arc Position Sensing (APS) technology, developed by NETL's

  10. Technology and energy supply

    Gasoline and Diesel Fuel Update (EIA)

    Donald L. Paul Executive Director, USC Energy Institute and William M. Keck Chair of Energy Resources 06 April 2010 EIA and SAIS 2010 Energy Conference Energy and the Economy Technology and Energy Transformation Science and Technology + Economics and Business + Society and Environment + Policy and Government Scale, time, and complexity 3 Existing supply and demand infrastructure New resources, infrastructures, and paradigms Multiple generations of technology History, the present, and the future

  11. Digital Sensor Technology

    SciTech Connect (OSTI)

    Ted Quinn; Jerry Mauck; Richard Bockhorst; Ken Thomas

    2013-07-01

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy, reliability, availability, and maintainability. This report demonstrates these benefits in direct comparisons of digital and analog sensor applications. It also addresses the qualification issues that must be addressed in the application of digital sensor technology.

  12. Information Sciences and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Sciences and Technology Information Sciences and Technology National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Contact thumbnail of Business Development Executive Steve Stringer Business Development Executive Richard P. Feynman Center for Innovation (505) 660-2177 Email Los Alamos leverages advances in theory, algorithms,

  13. NREL: Technology Transfer - Ombuds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Transfer Ombuds NREL's Technology Transfer Ombuds offers an informal process to help resolve issues and concerns regarding the laboratory's technology partnership, patent, and licensing activities. As a designated neutral party, our ombuds provides confidential, resolution-focused services. Through the ombuds process, we encourage collaborative techniques such as mediation to facilitate the speedy and low-cost resolution of complaints and disputes, when appropriate. The NREL Ombuds

  14. Technologies | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies Available for Licensing Energy Storage Industrial & Manufacturing Processes Licensable Software Life Sciences Materials Transportation Fact Sheets and Forms Licensable Technologies Argonne's researchers have developed a wide and diverse range of technologies that have worldwide impact in a variety of fields. Argonne grants licenses for lab-developed intellectual property to existing and start-up companies that are technically and financially capable of turning early-stage

  15. Technology Transfer | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Transfer Through partnerships and licensing of its intellectual property rights, NREL seeks to reduce private sector risk in early stage technologies, enable investment in the adoption of renewable energy and energy efficiency technologies, reduce U.S. reliance on foreign energy sources, reduce carbon emissions, and increase U.S. industrial competitiveness. A photo of three men looking at a colorful, floor-to-ceiling, 3-D visualization of a biomass analysis model. View a summary of

  16. Carbon Fiber Technology Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Fiber Technology Facility Dave Warren, PI Cliff Eberle, Presenter Technology Development Manager Polymer Matrix Composites Oak Ridge National Laboratory May 16, 2012 Project ID # LM003 Status as of March 30, 2012 This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 Managed by UT-Battelle for the U.S. Department of Energy Carbon Fiber Technology Facility (CFTF) ARRA CAPITAL Project Overview * Funds received FY10Q2 * Scheduled finish FY13Q4

  17. Technology Pathway Selection Effort

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BIOMASS PROGRAM Technology Pathway Selection Effort Alicia Lindauer 27 November 2012 2 | Biomass Program eere.energy.gov * Setting R&D priorities * Benchmarking * Informing multi-sectoral analytical activities * Track Program R&D progress against goals * Identify technology process routes and prioritize funding * Program direction decisions: * Are we spending our money on the right technology pathways? * Within a pathway: Are we focusing our funding on the highest priority activities?

  18. Technology Performance Exchange

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Performance Exchange TDM - Jason Koman (BTO) TDM - Dave Catarious (FEMP) William Livingood National Renewable Energy Laboratory William.Livingood@nrel.gov 303-384-7490 April 2, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem: Perceived fiscal risk associated with the installation of unfamiliar technologies impedes adoption rates for cost-effective, energy-saving products. Impact of Project: Enable end users to quickly and confidently assess

  19. Environmental Technology Verification of Mobile Sources Control...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Technology Verification of Mobile Sources Control Technologies Environmental Technology Verification of Mobile Sources Control Technologies 2005 Diesel Engine...

  20. NREL: Geothermal Technologies - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reply. Your name: Your email address: Your message: Send Message Printable Version Geothermal Technologies Home Capabilities Projects Publications Data & Resources Research Staff...

  1. Sandia Science & Technology Park

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories. More Info Liquid Common SS&TP welcomes Liquid Common Liquid Common is a digital marketing company now located in the Park. More Info Sandia Science & Technology...

  2. Director, Geothermal Technologies Office

    Broader source: Energy.gov [DOE]

    The mission of the Geothermal Technologies Office (GTO) is to accelerate the development and deployment of clean, domestic geothermal resources that will promote a stronger, more productive economy...

  3. Semiconductor Science and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    world ssls.sandia.gov Initiates decades-long investment into compound semiconductor science and technology, eventually establishing its Center for Compound Semiconductor Science...

  4. 2016 Technology Innovation Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects FY 2016 Technology Innovation Project Briefs Demand Response TIP 292: Advanced Heat Pump Water Heater Research TIP 336: Scaled Deployment and Demonstration of Demand...

  5. National Energy Technology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wellbore cement integrity is paramount to safe, successful oil and natural gas drilling. ... technologies for drilling systems associated with onshore oil and natural gas development. ...

  6. Supervisory Information Technology Specialist

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will be responsible for providing Information Technology (IT) infrastructure, capabilities and technical support to the Department of Energy (DOE),...

  7. Mobile Technology Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-11-21

    The directive will ensure that federal organizations and employees within the Department can use mobile technology to support mission requirements in a safe and secure manner.

  8. Information Sciences and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    file systems Bioinformatics Infectious disease surveillance Climate change and energy security Smart grids Learn more about our Information Science and Technology capabilities

  9. Fuel Cell Technologies Budget

    SciTech Connect (OSTI)

    EERE

    2012-03-16

    The Fuel Cell Technologies Office receives appropriations from Energy and Water Development. The offices's major activities and budget are outlined in this Web page.

  10. Overview of geothermal technologies

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The geothermal overview section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  11. Overview of biomass technologies

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The biomass overview of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  12. SRNL LDRD - Developed Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Developed Technologies Porous Wall Hollow Glass Microspheres Porous Wall Hollow Glass Microspheres Tiny Glass Spheres for Energy Storage, Medical Applications and Other Uses...

  13. Sorption Storage Technology Summary

    Broader source: Energy.gov [DOE]

    Presented at the R&D Strategies for Compressed, Cryo-Compressed and Cryo-Sorbent Hydrogen Storage Technologies Workshops on February 14 and 15, 2011.

  14. Science, Technology & Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    search, Alan Bishop has been selected to be the Laboratory's next Principal Associate Director for - 2 - Science, Technology, and Engineering (PADSTE). Bishop has been acting...

  15. ENERGY EFFICIENCY TECHNOLOGY ROADMAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    managed the overall development and maturation of this Energy Efficiency Technology Roadmap, the effort would not have been possible without the active engagement of a diverse...

  16. Collaborative Transmission Technology Roadmap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Addendum to the Collaborative Transmission Technology Roadmap March 2014 Bonneville Power Administration Enhanced PDF Functionality Functionality of the PDF version of this...

  17. Appendix C - Industrial technologies

    SciTech Connect (OSTI)

    None, None

    2002-12-20

    This report describes the results, calculations, and assumptions underlying the GPRA 2004 Quality Metrics results for all Planning Units within the Office of Industrial Technologies.

  18. Science, Technology, and Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PADSTE Science, Technology, and Engineering Delivering mission success and innovative solutions to national security problems through the agile, rapid application of our...

  19. Technology Demonstration Partnership Policy

    Broader source: Energy.gov [DOE]

    This City Council memorandum establishes a framework for engaging in and evaluating demonstration partnerships with the goal of developing, testing, and demonstrating emerging technologies, product, and service innovations.

  20. Solar Energy Technologies Office

    Broader source: Energy.gov [DOE]

    In 2011, the Energy Department's Solar Energy Technologies Office (SETO) became the SunShot Initiative, a collaborative national effort that aggressively drives innovation to make solar energy...

  1. Ocean Energy Technology Overview

    SciTech Connect (OSTI)

    none,

    2009-08-05

    Introduction to and overview of ocean renewable energy resources and technologies prepared for the U.S. Department of Energy Federal Energy management Program.

  2. ocean energy technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Tribal Energy Program Intellectual Property Current EC Partnerships How to Partner Small ... SunShot Grand Challenge: Regional Test Centers ocean energy technologies HomeTag:ocean ...

  3. Marine & Hydrokinetic Technologies

    SciTech Connect (OSTI)

    2011-07-01

    This fact sheet describes the Wind and Water Power Program's current approach to supporting the development and deployment of marine and hydrokinetic technologies.

  4. A Green Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Green Technology - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy ...

  5. Consumer Vehicle Technology Data

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    technologies Relevance: An informed understanding of the consumer allows VTO to achieve petroleum-use reduction goals through: * Robust assumptions for consumer modeling,...

  6. Consumer Vehicle Technology Data

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    technologies. Relevance: An informed understanding of the consumer allows VTO to achieve petroleum-use reduction goals through: * Robust assumptions for consumer modeling,...

  7. Renewable energy technology characterizations

    SciTech Connect (OSTI)

    None, None

    1997-12-01

    The Renewable Energy Technology Characterizations describe the technical and economic status of the major emerging renewable energy options for electricity supply.

  8. Quantitative metrics for assessment of chemical image quality and spatial resolution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kertesz, Vilmos; Cahill, John F.; Van Berkel, Gary J.

    2016-02-28

    Rationale: Currently objective/quantitative descriptions of the quality and spatial resolution of mass spectrometry derived chemical images are not standardized. Development of these standardized metrics is required to objectively describe chemical imaging capabilities of existing and/or new mass spectrometry imaging technologies. Such metrics would allow unbiased judgment of intra-laboratory advancement and/or inter-laboratory comparison for these technologies if used together with standardized surfaces. Methods: We developed two image metrics, viz., chemical image contrast (ChemIC) based on signal-to-noise related statistical measures on chemical image pixels and corrected resolving power factor (cRPF) constructed from statistical analysis of mass-to-charge chronograms across features of interest inmore »an image. These metrics, quantifying chemical image quality and spatial resolution, respectively, were used to evaluate chemical images of a model photoresist patterned surface collected using a laser ablation/liquid vortex capture mass spectrometry imaging system under different instrument operational parameters. Results: The calculated ChemIC and cRPF metrics determined in an unbiased fashion the relative ranking of chemical image quality obtained with the laser ablation/liquid vortex capture mass spectrometry imaging system. These rankings were used to show that both chemical image contrast and spatial resolution deteriorated with increasing surface scan speed, increased lane spacing and decreasing size of surface features. Conclusions: ChemIC and cRPF, respectively, were developed and successfully applied for the objective description of chemical image quality and spatial resolution of chemical images collected from model surfaces using a laser ablation/liquid vortex capture mass spectrometry imaging system.« less

  9. Los Alamos technology to be featured on CSI: NY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL technology featured on CSI: NY Los Alamos technology to be featured on CSI: NY The multipurpose "sampler gun" rapidly collects and tracks radiological, chemical, and biological samples in solid, liquid, or gaseous forms. March 27, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and

  10. Mr. James L. Holt President National Security Technologies, LLC

    Energy Savers [EERE]

    22, 2016 Mr. James L. Holt President National Security Technologies, LLC P.O. Box 98521, NSF001 Las Vegas, Nevada 89193-8521 WEL-2016-01 Dear Mr. Holt: The Office of Enterprise Assessments' Office of Enforcement has completed an evaluation of a chemical waste drum fire at the National Nuclear Security Administration's Nevada National Security Site (NNSS) on June 24, 2015, as reported by National Security Technologies, LLC (NSTec) into the Department of Energy's (DOE) Noncompliance Tracking

  11. NREL: Research Facilities - Laboratories and Facilities by Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories and Facilities by Technology The following NREL research programs have laboratory, and/or test and user facility capabilities for researching, developing, and testing a variety of renewable energy and energy efficiency technologies. Biomass Our biomass research laboratory capabilities include user facilities for converting renewable feedstocks into a variety of products such as transportation fuels, high-value chemicals, and electricity. These facilities and labs can be used to test

  12. Vehicle Technologies Office: Materials for Energy Recovery Systems and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controlling Exhaust Gases | Department of Energy Energy Recovery Systems and Controlling Exhaust Gases Vehicle Technologies Office: Materials for Energy Recovery Systems and Controlling Exhaust Gases The typical internal combustion engine wastes about 30 percent of its chemical energy in the form of hot exhaust gases. To improve fuel efficiency, the Vehicle Technologies Office (VTO) supports research on turbochargers and thermoelectric devices that can convert some of this lost energy to

  13. Emerging Technologies - Capturing Innovation with Technology

    SciTech Connect (OSTI)

    None

    2012-12-01

    ET team research results are critical to achieving 50% energy savings across U.S. buildings within the next two decades. The ET team focuses on supporting research, development, and tech-to-market opportunities of high impact technologies, or those that demonstrate potential for achieving significant energy savings cost effectively.

  14. Alternative Transportation Technologies: Hydrogen, Biofuels,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced ...

  15. Bioconversion Technologies | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Bioconversion Technologies Place: United Kingdom Sector: Biofuels Product: Second-generation biofuels technology developer References: Bioconversion...

  16. Hydrocarbon Technologies | Open Energy Information

    Open Energy Info (EERE)

    Technologies Jump to: navigation, search Name: Hydrocarbon Technologies Place: Lawrenceville, New Jersey Zip: 8648 Sector: Efficiency Product: String representation...

  17. Digital Actuator Technology

    SciTech Connect (OSTI)

    Ken Thomas; Ted Quinn; Jerry Mauck; Richard Bockhorst

    2014-09-01

    There are significant developments underway in new types of actuators for power plant active components. Many of these make use of digital technology to provide a wide array of benefits in performance of the actuators and in reduced burden to maintain them. These new product offerings have gained considerable acceptance in use in process plants. In addition, they have been used in conventional power generation very successfully. This technology has been proven to deliver the benefits promised and substantiate the claims of improved performance. The nuclear industry has been reluctant to incorporate digital actuator technology into nuclear plant designs due to concerns due to a number of concerns. These could be summarized as cost, regulatory uncertainty, and a certain comfort factor with legacy analog technology. The replacement opportunity for these types of components represents a decision point for whether to invest in more modern technology that would provide superior operational and maintenance benefits. Yet, the application of digital technology has been problematic for the nuclear industry, due to qualification and regulatory issues. With some notable exceptions, the result has been a continuing reluctance to undertake the risks and uncertainties of implementing digital actuator technology when replacement opportunities present themselves. Rather, utilities would typically prefer to accept the performance limitations of the legacy analog actuator technologies to avoid impacts to project costs and schedules. The purpose of this report is to demonstrate that the benefits of digital actuator technology can be significant in terms of plant performance and that it is worthwhile to address the barriers currently holding back the widespread development and use of this technology. It addresses two important objectives in pursuit of the beneficial use of digital actuator technology for nuclear power plants: 1. To demonstrate the benefits of digital actuator technology over legacy analog sensor technology in both quantitative and qualitative ways. 2. To recognize and address the added difficulty of digital technology qualification, especially in regard to software common cause failure (SCCF), that is introduced by the use of digital actuator technology.

  18. Technology Catalogue. First edition

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Department of Energy`s Office of Environmental Restoration and Waste Management (EM) is responsible for remediating its contaminated sites and managing its waste inventory in a safe and efficient manner. EM`s Office of Technology Development (OTD) supports applied research and demonstration efforts to develop and transfer innovative, cost-effective technologies to its site clean-up and waste management programs within EM`s Office of Environmental Restoration and Office of Waste Management. The purpose of the Technology Catalogue is to provide performance data on OTD-developed technologies to scientists and engineers assessing and recommending technical solutions within the Department`s clean-up and waste management programs, as well as to industry, other federal and state agencies, and the academic community. OTD`s applied research and demonstration activities are conducted in programs referred to as Integrated Demonstrations (IDs) and Integrated Programs (IPs). The IDs test and evaluate.systems, consisting of coupled technologies, at specific sites to address generic problems, such as the sensing, treatment, and disposal of buried waste containers. The IPs support applied research activities in specific applications areas, such as in situ remediation, efficient separations processes, and site characterization. The Technology Catalogue is a means for communicating the status. of the development of these innovative technologies. The FY93 Technology Catalogue features technologies successfully demonstrated in the field through IDs and sufficiently mature to be used in the near-term. Technologies from the following IDs are featured in the FY93 Technology Catalogue: Buried Waste ID (Idaho National Engineering Laboratory, Idaho); Mixed Waste Landfill ID (Sandia National Laboratories, New Mexico); Underground Storage Tank ID (Hanford, Washington); Volatile organic compound (VOC) Arid ID (Richland, Washington); and VOC Non-Arid ID (Savannah River Site, South Carolina).

  19. Technology Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration Technology Integration 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Vehicle Technologies Plenary PDF icon vtpn02_smith_ti_2011_o.pdf More Documents & Publications Technology Integration Overview Technology Integration Overview Technology Integration Overview

  20. Assistive Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assistive Technology Assistive Technology Assistive technology word cloud Assistive technology word cloud The DOE Headquarters Accommodation Program was established to provide reasonable computer and related telecommunications accommodations for employees with disabilities. Since implementation of the Assistive Technologies program in 1993, accommodations have increased from an initial 26 to an approximately 700 individual accommodations. The Assistive Technologies program complies with Section

  1. Hydraulic Fracturing Technology

    Broader source: Energy.gov [DOE]

    Hydraulic fracturing is a technique in which large volumes of water and sand, and small volumes of chemical additives are injected into low-permeability subsurface formations to increase oil or...

  2. Technology Transfer Overview

    Broader source: Energy.gov [DOE]

    DOE's capabilities, and the innovations it supports, help ensure the country's role as a leader in science and technology. In particular, technology transfer supports the maturation and deployment of DOE discoveries, providing ongoing economic, security and environmental benefits for all Americans.

  3. Advanced uranium enrichment technologies

    SciTech Connect (OSTI)

    Merriman, R.

    1983-03-10

    The Advanced Gas Centrifuge and Atomic Vapor Laser Isotope Separation methods are described. The status and potential of the technologies are summarized, the programs outlined, and the economic incentives are noted. How the advanced technologies, once demonstrated, might be deployed so that SWV costs in the 1990s can be significantly reduced is described.

  4. Additive Manufacturing Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Additive Manufacturing 1 Technology Assessment 2 1. Contents 3 1. Introduction to the Technology/System ............................................................................................... 2 4 1.1 Introduction to Additive Manufacturing ....................................................................................... 2 5 1.2 Additive Manufacturing Processes ............................................................................................... 2 6 1.3 Benefits of Additive

  5. Technology Readiness Assessment Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-09-15

    This document was developed to assist individuals and teams that will be involved in conducting Technology Readiness Assessments (TRAs) and developing Technology Maturation Plans (TMPs) for the Department of Energy (DOE) capital acquisition assets subjects to DOE O 413.3B.

  6. Accelerating Spectrum Sharing Technologies

    SciTech Connect (OSTI)

    Juan D. Deaton; Lynda L. Brighton; Rangam Subramanian; Hussein Moradi; Jose Loera

    2013-09-01

    Spectrum sharing potentially holds the promise of solving the emerging spectrum crisis. However, technology innovators face the conundrum of developing spectrum sharing technologies without the ability to experiment and test with real incumbent systems. Interference with operational incumbents can prevent critical services, and the cost of deploying and operating an incumbent system can be prohibitive. Thus, the lack of incumbent systems and frequency authorization for technology incubation and demonstration has stymied spectrum sharing research. To this end, industry, academia, and regulators all require a test facility for validating hypotheses and demonstrating functionality without affecting operational incumbent systems. This article proposes a four-phase program supported by our spectrum accountability architecture. We propose that our comprehensive experimentation and testing approach for technology incubation and demonstration will accelerate the development of spectrum sharing technologies.

  7. DOE Vehicle Technologies Program 2009 Merit Review Report - Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Validation | Department of Energy Technology Validation DOE Vehicle Technologies Program 2009 Merit Review Report - Technology Validation Merit review of DOE Vehicle Technologies Program research efforts PDF icon 2009_merit_review_9.pdf More Documents & Publications DOE Vehicle Technologies Program 2009 Merit Review Report DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle Systems DOE Vehicle Technologies Program 2009 Merit Review Report - Safety Codes and Standard

  8. Technology Readiness Assessment (TRA)/Technology Maturation Plan (TMP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Guide | Department of Energy Technology Readiness Assessment (TRA)/Technology Maturation Plan (TMP) Process Guide Technology Readiness Assessment (TRA)/Technology Maturation Plan (TMP) Process Guide This document is a guide for those involved in conducting TRAs and developing TMPs for DOE-EM. PDF icon Technology Readiness Assessment (TRA)/Technology Maturation Plan (TMP) Process Guide More Documents & Publications Technology Readiness Assessment Report Small Column Ion Exchange

  9. DOE Vehicle Technologies Program 2009 Merit Review Report - Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration and Education | Department of Energy Technology Integration and Education DOE Vehicle Technologies Program 2009 Merit Review Report - Technology Integration and Education Merit review of DOE Vehicle Technologies Program research efforts PDF icon 2009_merit_review_8.pdf More Documents & Publications DOE Vehicle Technologies Program 2009 Merit Review Report - Technology Validation 2008 Annual Merit Review Results Summary - 16. Technology Integration and Education DOE Vehicle

  10. Vehicle Technologies Office Merit Review 2014: Carbon Fiber Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facility | Department of Energy Carbon Fiber Technology Facility Vehicle Technologies Office Merit Review 2014: Carbon Fiber Technology Facility Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the carbon fiber technology facility. PDF icon lm003_mcgetrick_2014_o.pdf More Documents & Publications Carbon Fiber Technology Facility Carbon Fiber Technology

  11. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    catalysts for maximum selectivity and efficiency in a wide range of chemical processes. ... The measurements generated chemical contour maps for the species present. Quantitative ...

  12. Hanwha Chemical Corp | Open Energy Information

    Open Energy Info (EERE)

    Chemical Corp Jump to: navigation, search Name: Hanwha Chemical Corp Place: Seoul, Seoul, Korea (Republic) Zip: 100-797 Product: Korea-based manufacturer of synthetic resins and...

  13. Silicon Chemical Corp SCC | Open Energy Information

    Open Energy Info (EERE)

    Corp SCC Jump to: navigation, search Name: Silicon Chemical Corp (SCC) Place: Vancouver, Washington State Zip: 98687 Product: US manufacturer of polysilicon and silicon chemical...

  14. Heilongjiang Fengrui Chemical Group | Open Energy Information

    Open Energy Info (EERE)

    Fengrui Chemical Group Jump to: navigation, search Name: Heilongjiang Fengrui Chemical Group Place: Shuangyashan, Heilongjiang Province, China Product: A Chinese bioethanol...

  15. Dow Chemical Co | Open Energy Information

    Open Energy Info (EERE)

    search Name: Dow Chemical Co Place: Midland, Michigan Zip: 48674 Sector: Hydro, Hydrogen Product: Michigan-based global chemical, plastic and agricultural products maker,...

  16. Chemical incident economic impact analysis methodology. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Chemical incident economic impact analysis methodology. Citation Details In-Document Search Title: Chemical incident economic impact analysis methodology. You are accessing a...

  17. Keeping Tabs on the World's Dangerous Chemicals

    Broader source: Energy.gov [DOE]

    Sandia chemical engineer Nancy Jackson has worked in laboratories around the world to help ensure that chemicals are used safely and kept secure.

  18. Chemically homogeneous and thermally reversible oxidation of...

    Office of Scientific and Technical Information (OSTI)

    Chemically homogeneous and thermally reversible oxidation of epitaxial graphene Citation Details In-Document Search Title: Chemically homogeneous and thermally reversible oxidation ...

  19. Dainippon Ink Chemicals Inc | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Dainippon Ink & Chemicals Inc Place: Tokyo, Tokyo, Japan Zip: 103-8233 Product: Japanese diversified chemical company that primarily...

  20. Mitsui Chemicals Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Jump to: navigation, search Name: Mitsui Chemicals Inc Place: Tokyo, Tokyo, Japan Zip: 105-7117 Sector: Solar Product: Chemicals maker including plastics, industrial...

  1. Preliminary Notice of Violation, Lockheed Martin Idaho Technologies Company, EA-97-09

    Broader source: Energy.gov [DOE]

    Preliminary Notice of Violation issued to Lockheed Martin Idaho Technologies Company related to Work Process Deficiencies at the Test Reactor Area and Idaho Chemical Processing Plant at the Idaho National Engineering and Environmental Laboratory, (EA-97-09)

  2. Preliminary Notice of Violation, Lockheed Martin Idaho Technologies- EA-97-01

    Broader source: Energy.gov [DOE]

    Issued to Lockheed Martin Idaho Technologies Company related to Unplanned Internal Radiation Exposures at the Chemical Processing Plant at the Idaho National Engineering and Environmental Laboratory, (EA-97-01)

  3. Technical area status report for chemical/physical treatment. Volume 2, Appendices

    SciTech Connect (OSTI)

    Brown, C.H. Jr.; Schwinkendorf, W.E.

    1993-08-01

    These Appendices describe various technologies that may be applicable to the Mixed Waste Treatment Plant (MWTP) Chemical/Physical Treatment System (CPTS). These technologies were identified by the CPTS Technical Support Group (TSG) as potentially applicable to a variety of separation, volume reduction, and decontamination requirements. The purpose was to identify all available and developing technologies, and their characteristics, for subsequent evaluation for specific requirements identified for the CPTS. However, the technologies described herein are not necessarily all inclusive, nor are they necessarily all applicable.

  4. Robotics Technology Development Program. Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Robotics Technology Development Program (RTDP) is a ``needs-driven`` effort. A lengthy series of presentations and discussions at DOE sites considered critical to DOE`s Environmental Restoration and Waste Management (EM) Programs resulted in a clear understanding of needed robotics applications toward resolving definitive problems at the sites. A detailed analysis of the Tank Waste Retrieval (TWR), Contaminant Analysis Automation (CAA), Mixed Waste Operations (MWO), and Decontamination & Dismantlement (D&D). The RTDP Group realized that much of the technology development was common (Cross Cutting-CC) to each of these robotics application areas, for example, computer control and sensor interface protocols. Further, the OTD approach to the Research, Development, Demonstration, Testing, and Evaluation (RDDT&E) process urged an additional organizational break-out between short-term (1--3 years) and long-term (3--5 years) efforts (Advanced Technology-AT). The RDTP is thus organized around these application areas -- TWR, CAA, MWO, D&D and CC&AT -- with the first four developing short-term applied robotics. An RTDP Five-Year Plan was developed for organizing the Program to meet the needs in these application areas.

  5. The chemical industry, by country

    SciTech Connect (OSTI)

    Not Available

    1995-03-01

    Beijing will be the site for the third ACHEMASIA, international petrochemical and chemical exhibition and conference, May 15--20, 1995. In preparation for this conference, Hydrocarbon Processing contacted executives of petrochemical/chemical industries and trade associations, seeking views on the state of the industry. The Asia-Pacific region is the center of new construction and expanded capacity and also a mixture of mature, developing and emerging petrochemical industries. Established countries must mold and grow with emerging economies as the newcomers access natural resources and develop their own petrochemical infrastructures. The following nation reports focus on product supply/demand trends, economic forecasts, new construction, etc. Space limitations prohibit publishing commentaries from all countries that have petrochemical/chemical capacity. Reports are published from the following countries: Australia, China, Japan, Korea, Malaysia, Philippines, Thailand, and Vietnam.

  6. Chemical Hygiene and Safety Plan

    SciTech Connect (OSTI)

    Berkner, K.

    1992-08-01

    The objective of this Chemical Hygiene and Safety Plan (CHSP) is to provide specific guidance to all LBL employees and contractors who use hazardous chemicals. This Plan, when implemented, fulfills the requirements of both the Federal OSHA Laboratory Standard (29 CFR 1910.1450) for laboratory workers, and the Federal OSHA Hazard Communication Standard (29 CFR 1910.1200) for non-laboratory operations (e.g., shops). It sets forth safety procedures and describes how LBL employees are informed about the potential chemical hazards in their work areas so they can avoid harmful exposures and safeguard their health. Generally, communication of this Plan will occur through training and the Plan will serve as a the framework and reference guide for that training.

  7. Uncoated microcantilevers as chemical sensors

    DOE Patents [OSTI]

    Thundat, Thomas G.

    2001-01-01

    A method and device are provided for chemical sensing using cantilevers that do not use chemically deposited, chemically specific layers. This novel device utilizes the adsorption-induced variation in the surfaces states on a cantilever. The methodology involves exciting charge carriers into or out of the surface states with photons having increasing discrete levels of energy. The excitation energy is provided as discrete levels of photon energy by scanning the wavelength of an exciting source that is illuminating the cantilever surface. When the charge carriers are excited into or out of the surface states, the cantilever bending changes due to changes in surface stress. The amount of cantilever bending with respect to an identical cantilever as a function of excitation energy is used to determine the energy levels associated with adsorbates.

  8. In Situ Sensors for the Chemical Industry- Final Report

    SciTech Connect (OSTI)

    Tate, J.D.; Knittel, Trevor

    2006-06-30

    The project focused on analytical techniques that can be applied in situ. The innovative component of this project is the focus on achieving a significant breakthrough in two of the three primary Process Analytical (PA) fields. PA measurements can roughly be broken down into: ? Single component measurements, ? Multiple component measurements and ? Multiple component isomer analysis. This project targeted single component measurements and multiple component measurements with two basic technologies, and to move these measurements to the process, achieving many of the process control needs. During the project the following achievements were made: ? Development of a low cost Tunable Diode Laser (TDL) Analyzer system for measurement of 1) Oxygen in process and combustion applications, 2) part per million (ppm) H2O impurities in aggressive service, 3) ppm CO in large scale combustion systems. This product is now commercially available ? Development of a process pathlength enhanced (high sensitivity) Laser Based Analyzer for measurement of product impurities. This product is now commercially available. ? Development of signal processing methods to eliminate measurement errors in complex and changing backgrounds (critical to chemical industry measurements). This development is incorporated into 2 commercially available products. ? Development of signal processing methods to allow multi-component measurements in complex chemical streams. This development is incorporated into 2 commercially available products. ? Development of process interface designs to allow in-situ application of TDL technology in aggressive (corrosive, high temperature, high pressure) commonly found in chemical processes. This development is incorporated in the commercially available ASI TDL analyzer. ? Field proving of 3 laser-based analyzer systems in process control and combustion applications at Dow Chemical. Laser based analyzers have been available for >5yrs, however significant product price/performance issues have minimized their applicability in the chemical industry. In order to take advantage of the promise of this technology a number of technology advances were required, within price limits for market acceptance. This project significantly advanced the state of TDL technology for application in chemical industry applications. With these advances a commercially available product now exists that has already achieved market success and is installed in critical applications. The ability to make fast, sensitive and accurate measurements inside the chemical processes is now delivering improved process control, energy efficiency and emissions control within the U.S. Chemical Industry. Despite the success we enjoyed for the laser-based sensors, there were significant technical barriers for the solid-state sensors. With exception of a generic close-coupled extractive housing and electronics interface, there were significant issues with all of the solid-state sensor devices we sought to develop and test. Ultimately, these issues were roadblocks that prevented further development and testing. The fundamental limitations of available sensor materials that we identified, formulated and tested were overwhelming. This situation forced our team to cancel these portions of the project and focus our resources on laser-based sensor techniques. The barriers of material compatibility, sensitivity, speed of response, chemical interferences, etc. are surmountable in the field of solid-state sensors. Inability to address any single one of these attributes will prevent wide-implementation into this market. This situation is plainly evident by the lack of such devices in the online analyzer market (for petrochemicals).

  9. Novel Self-Thickening Chemicals for Improved Conformance Control

    SciTech Connect (OSTI)

    Patrick J. Shuler, Ph.D.

    2011-07-18

    The objective of this project is to identify single chemical agents that exhibit a desirable rheological property whereby if such a chemical is dissolved in salt water it increases the solution viscosity significantly with time. We term that behavior as 'self-thickening' and have nicknamed this as 'T85 technology'. As detailed in the original project proposal, such single chemical products can be applied to advantage as agents for selectively slowing or blocking high flow water channels in subsurface oil reservoirs. The net effect is a decrease in water and an increase in oil flow and production. The initial testing has focused on five different synthetic co-polymers that have two or more chemical groups. These chemicals were dissolved at a concentration of 2500 ppm into different salt solutions (sodium chloride, potassium chloride, and calcium chloride) that encompass a range of dissolved salt concentrations. For the sodium chloride and potassium chloride solutions the salt concentration ranged from 1-5 wt%. The calcium chloride dihydrate sample concentrations ranged from 0.1-1 wt%. One set of samples being aged at 25 C and a second set at 50 C. Viscosity measurements versus aging time show two of these agents may exhibit apparent self-thickening behavior under certain salinity and temperature conditions. Generally the effect is greater in lower salinity NaCl brines and at 25 C. Preliminary flow experiments confirm that the aged fluids exhibit increased effective viscosity while flowing through a porous medium (sand pack). These flow tests include the case of the chemical fluid being aged on the bench before injection into a sand pack, and also a second series of sand packs where fresh chemical fluid is injected and allowed to age in-situ. Thus, the results of the static ageing tests together with the flow tests are a technical validation of the T85 concept.

  10. Advanced Thermionic Technology Program: summary report. Volume 2. Final report

    SciTech Connect (OSTI)

    Not Available

    1984-10-01

    This report summarizes the progress made by the Advanced Thermionic Technology Program during the past several years. This Program, sponsored by the US Department of Energy, has had as its goal adapting thermionic devices to generate electricity in a terrestrial (i.e., combustion) environment. The technology has previously been developed for astronautical applications. Volume 2 (Part C) concentrates on the progress made in developing and fabricating the ''current generation'' of chemical vapor deposited hot shell thermionic converters and is addressed to those primarily concerned with today's capabilities in terrestrial thermionic technology. 30 refs., 83 figs.

  11. Bioenergy Technologies Office FY 2017 Budget At-A-Glance

    Broader source: Energy.gov [DOE]

    The Bioenergy Technologies Office (BETO) is accelerating the commercialization of first-of-a-kind technologies that use our nation’s abundant renewable biomass resources for the production of advanced biofuels and biobased products. Non-food sources of biomass, such as algae, agricultural residues and forestry trimmings, and energy crops like switchgrass, are being used in BETO-supported, cutting edge technologies to produce drop-in biofuels, including renewable gasoline, diesel, and jet fuels. BETO is also investigating how to improve the economics of biofuel production by converting biomass into higher-value chemicals and products that historically have always been derived from petroleum.

  12. NOVEL IN-SITU METAL AND MINERAL EXTRACTION TECHNOLOGY

    SciTech Connect (OSTI)

    Glenn O'Gorman; Hans von Michaelis; Gregory J. Olson

    2004-09-22

    This white paper summarizes the state of art of in-situ leaching of metals and minerals, and describes a new technology concept employing improved fragmentation of ores underground in order to prepare the ore for more efficient in-situ leaching, combined with technology to continuously improve solution flow patterns through the ore during the leaching process. The process parameters and economic benefits of combining the new concept with chemical and biological leaching are described. A summary is provided of the next steps required to demonstrate the technology with the goal of enabling more widespread use of in-situ leaching.

  13. Jie Feng | Center for Gas SeparationsRelevant to Clean Energy Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Blandine Jerome Jie Feng Previous Next List Feng ORISE Research Associate National Energy Technology Laboratory, Morgantown, WV Email: jie.feng[@]netl.doe.gov Phone: 716-361-9078 PhD in Chemical and Biological Engineering, State University of New York at Buffalo BS in Chemical Engineering, Nanchang Institute of Aeronautical Technology, China EFRC Research Membrane gas separation has been under development for 30 years and has achieved significant progress. It is extremely important to

  14. Taking technology to market

    SciTech Connect (OSTI)

    Ford, D.; Ryan, C.

    1981-03-01

    For many years, the concept of the product life cycle has helped managers maximize their return on product sales. But according to the authors of this article, using a technology solely in product sales is no longer enough. Today, companies face high R and D costs, competitive pressures from low-cost producers, capacity limitations, antitrust laws, financial difficulties, and foreign trade barriers. This means that they must improve the rate of return on their technology investments by marketing their technology as completely as possible during all phases of its life cycle. The technology life cycle - derived from the product life cycle - pinpoints the changing decisions companies face in selling their know-how. The authors also discuss both the competitive dangers of transferring technology to low-cost foreign producers and the growing role of intermediaries in technology sales. They stress the importance of having a highly specialized staff to plan a company's technology marketing, a responsibility that should be assigned neither to the part-time attention of top management nor simply to marketers or strategic planners.

  15. Method for producing chemical energy

    DOE Patents [OSTI]

    Jorgensen, Betty S.; Danen, Wayne C.

    2004-09-21

    Fluoroalkylsilane-coated metal particles having a central metal core, a buffer layer surrounding the core, and a fluoroalkylsilane layer attached to the buffer layer are prepared by combining a chemically reactive fluoroalkylsilane compound with an oxide coated metal particle having a hydroxylated surface. The resulting fluoroalkylsilane layer that coats the particles provides them with excellent resistance to aging. The particles can be blended with oxidant particles to form energetic powder that releases chemical energy when the buffer layer is physically disrupted so that the reductant metal core can react with the oxidant.

  16. Chemical Inventory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Inventory Use the following dropdown menus to filter the results for chemical records. To reset the results clear the entries and click "update". Facility - Any - SSRL LCLS Building - Any - 120 131 999 Room - Any - 109 113 209 257 Storage Area Storage Category Apply Title Facility Building Room Storage Area Storage Category Available to All Qty. Size Units Responsible Person 1,3-cyclohexadiene SSRL 131 209 CI L No 1 25 milliliters (ml) Tsu-Chien Weng 1,4- dioxane SSRL 120 257

  17. Agricultural Equipment Technology Conference

    Broader source: Energy.gov [DOE]

    The 20th Agricultural Equipment Technology Conference will be held Feb. 8–10, 2016, in Louisville, Kentucky. The conference will bring together professionals and experts in the agricultural and biological engineering fields. Bioenergy Technologies Office (BETO) Terrestrial Feedstocks Technology Manager Sam Tagore will be in attendance. Mr. Tagore will moderate a technical session titled “Ash Reduction Strategies for Improving Biomass Feedstock Quality.” The session will include presentations by researchers from Idaho National Laboratory and Oak Ridge National Laboratory supporting BETO, as well as from university and industry.

  18. TEAM Technologies, Inc.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies, Inc. A New Mexico owned, SBA certified 8(a)/SDB Small Business Pulsed Power Support TEAM Technologies Inc. opened its doors in 1985 as a one-man operation in support of Sandia's Z Machine, a mainstay of the Lab's Pulsed Power program. No longer a one-man shop, TEAM employs more than 70 people and operates over 36,000 square feet of work space in Sandia's Science & Technology Park. According to TEAM's owner and CEO Bob Sachs, much of TEAM's growth over the years has been as a

  19. Science & Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology Science & Technology NIF Optics Damage Repair is 2015 Top Technology Pick Taking X-ray Snapshots of Hohlraum Dynamics What happens in a NIF hohlraum no longer stays in a NIF hohlraum. LLNL researchers have fielded a new ultrafast x-ray camera that captures time-resolved images, or snapshots, of nanoseconds-long hohlraum interactions that can influence the outcome of a NIF ignition experiment. One of the keys to achieving ignition is coming to a better scientific understanding of

  20. Annual Technology Baseline

    Broader source: Energy.gov [DOE]

    The National Renewable Energy Laboratory is conducting a study sponsored by the U.S. Department of Energy DOE, Office of Energy Efficiency and Renewable Energy (EERE), that aims to document and implement an annual process designed to identify a realistic and timely set of input assumptions (e.g., technology cost and performance, fuel costs), and a diverse set of potential futures (standard scenarios), initially for electric sector analysis. This primary product of the Annual Technology Baseline (ATB) project component includes detailed cost and performance data (both current and projected) for both renewable and conventional technologies. This data is presented in MS Excel.