National Library of Energy BETA

Sample records for inventory worksheet seq

  1. Dungeon Session Worksheet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    worksheet below: Downloads Dungeon-Session-Worksheet.docx | unknown NESAP Worksheet for Science Problem Definition, Application Profile and Optimization Strategy Last edited:...

  2. FES Case Study Worksheets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Worksheets FES Case Study Worksheets This workshop is closed, and the worksheets can no longer be edited. If you have questions, please report any problems or suggestions for improvement to Richard Gerber (ragerber@lbl.gov). Please choose your worksheet template: Lee Berry, Paul Bonoli, David Green [Read] Jeff Candy [Read] CS Chang [Read] Stephane Ethier [Read] Alex Friedman [Read] Kai Germaschewski [Read] Martin Greenwald [Read] Stephen Jardin [Read] Charlson Kim [Read] Scott Kruger [Read]

  3. Dungeon Session Worksheet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dungeon Session Worksheet Dungeon Session Worksheet Tier 1 and 2 NESAP codes have the opportunity to visit Intel Offices in Hillsboro for a multi-day intense application optimization session called a "Dungeon Session". In order to be eligible to attend, NESAP teams are asked to fill out the attached form which guides teams through choosing a science problem, profiling their application, generating kernels and identifying bottlenecks and an optimization strategy for their application.

  4. Building Your Message Map Worksheet

    Broader source: Energy.gov [DOE]

    Building Your Message Map Worksheet, as posted on the U.S. Department of Energy's Better Buildings Neighborhood Program website.

  5. Creating a Partnership Agreement Worksheet

    Broader source: Energy.gov [DOE]

    Creating a Partnership Agreement Worksheet, as posted on the U.S. Department of Energy's Better Buildings Neighborhood Program website.

  6. Training Worksheet Job Aid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Worksheet Job Aid Maintained by Corporate Education, Development & Training (CEDT) Purchase Order A. General Awareness Sandia-Specific Training - Initial and Refresher Training Program/ Hazards Title Course Number Annual Counterintelligence Training Members of the Workforce who process, or have access to information. CI100 Annual Integrated Cyber and Information Security Training All members of the SNL workforce who create and process Sandia information are required to complete

  7. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    ...64,845681,892668,924164,9335827 "ARKANSAS",1824,"R",1385978,1260384,1393467,1336107,138369...05822,827010,832273,810336,845138,820471,851824,9031674 "James Fitzpatrick",852.2,,623636,...

  8. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Park City of",1153,"Lake Park",22,"G2",2,2,2,,"IC","DFO",,5,2005,"OP" "IA","Hamilton",12341,"MidAmerican Energy Co",56252,"Century",22,"CWF",185,185,185,,"WT","WND",,9,20...

  9. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    ... SBD 9403 Aegon DC",22,6113,1.5,1.5,1.5,,"IC","DFO",,9,2007,"SB" "IA","Hamilton",12341,"MidAmerican Energy Co",56252,"Century",22,"CWF2",15,15,15,,"WT","WND",,12,200...

  10. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    ...GT","NG","DFO",6,2003,"OP" "IN","Hamilton",15470,"Duke Energy Indiana Inc",1007,"Noblesville",22,3,76,65.3,73,,"CT","NG",,6,2003,"OP" "IN","Hamilton",15470,"Duke Energy Indiana ...

  11. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    ...147,583681,602148,6966033 "North Anna 1",903,,682128,614940,679365,655730,677674,633395,567952,685297,241410,13448,634382,694213,6779934 "North Anna 2",903,,679559,613252,435317,28...

  12. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    ... "VA",6168,"North Anna",1,920,692457,625518,692798,671787,691816,665108,681385,498737,0,0,330856,692666,6243128 "VA",6168,"North Anna",2,943,709056,655361,722340,698...

  13. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    ...48841,108,569950,6412295 "North Anna 1",903,,681901,616048,152142,616351,682837,656542,675142,673279,656170,548106,662230,681751,7302499 "North Anna 2",903,,680897,615159,680946,65...

  14. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Iberville",5347,"Dow Chemical Co",55419,"Plaquemine Cogeneration Plant",325,"G500",198,151,186,,"CT","NG",,3,2004,"OP" "LA","Iberville",5347,"Dow Chemical Co",55419,"Plaquemine ...

  15. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    ...0,,"ST","SUB",,7,2006,"OP" "AZ","Santa Cruz",19728,"UNS Electric, Inc",6515,"Valencia",22,"GT4",20,17,19.6,,"GT","NG","DFO",6,2006,"OP" "CA","Santa Cruz",54814,"AMERESCO Santa Cruz ...

  16. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Empire Energy Center",22,2,409.5,345,366,,"CS","NG",,5,2010,"OP" "CA","Santa Barbara",56397,"J&A-Santa Maria II LLC",57101,"J&A-Santa Maria II LLC",22,1,1.4,1.4,1.4,,"IC","LFG",...

  17. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    Plants Excluding Coke","Railroad",1675 2014,1,"Alabama","Alabama","Electric Power Sector","River",679939 2014,1,"Alabama","Alabama","Industrial Plants Excluding ...

  18. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    2014,1,"Alabama","Alabama","Industrial Plants Excluding Coke","Railroad",1675 2014,1,"Alabama","Alabama","Industrial Plants Excluding Coke","River",3107 ...

  19. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Energy Inc",56497,"Goodman Energy Center",22,1,8.4,8.2,8.2,,"IC","NG",,6,2008,"OP" "KS","Ellis",12524,"Midwest Energy Inc",56497,"Goodman Energy Center",22,2,8.4,8.2,8....

  20. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    ..."WT","WND",,6,2009,"OP",80 "CA","Monterey",12869,"Monterey Regional Waste Mgmt",10748,"Marina Landfill Gas",562212,"U4J08",1.4,1.4,1.4,,"IC","LFG",,7,2009,"OP" ...

  1. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    A.1. FRCC Summer Historical and Projected Demand and Capacity, Data Year 2010" ,"(Megawatts)" ,,,,,,,,"Actual","Projected" ,"Data Year","Country","Season","Area","Subarea","Line#","DESCRIPTION",2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020 ,2010,"US","SUM","FRCC","-",1,"Unrestricted Non-coincident Peak

  2. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    B.1. FRCC Winter Historical and Projected Demand and Capacity, Data Year 2010" ,"(Megawatts)" ,,,,,,,,"Actual","Projected" ,"Data Year","Country","Season","Area","Subarea","Line#","DESCRIPTION",2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020 ,2010,"US","WIN","FRCC","-",1,"Unrestricted Non-coincident Peak

  3. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    2,7,50022,3,,0,,6,1, 1000,1,"PC",1,1,18542,14198,3.7,0.8,18.4,,1 1972,7,50022,3,"IL",10,"S",6,1, 500,1,"BIT",1,1,55139,12018,2.7,11.2,35.7,,1 1972,7,50022,3,"IL",10,"U",6,1, 600,1,"BIT",1,1,27158,12018,2.7,11.2,35.7,,1 1972,7,50022,3,"IL",10,"U",6,1, 700,1,"BIT",1,1,140259,11368,3.4,12.5,45.4,,1 1972,7,50022,3,"AL",13,"S",6,1,

  4. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    3,1,50022,3,,0,,6,1,79100,1,"PC",1,1,12156,14103,3.8,0.5,19.3,,1 1973,1,50022,3,"IL",10,"S",6,1,78600,1,"BIT",1,1,31282,12053,2.8,10.1,39.2,,1 1973,1,50022,3,"IL",10,"U",6,1,78800,1,"BIT",1,1,87695,11608,3.3,10.1,49.7,,1 1973,1,50022,3,"IL",10,"U",6,1,78700,1,"BIT",1,1,15407,12053,2.8,10.1,39.2,,1

  5. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    4,1,50022,3,,0,,6,1,50600,1,"PC",1,1,12081,14244,3.9,0.3,18.5,,1 1974,1,50022,3,"KY",9,"S",6,1,50300,1,"BIT",7,7,1497,11915,5.3,9.9,51.1,,1 1974,1,50022,3,"IL",10,"U",6,1,50400,1,"BIT",2,2,52626,11643,3,9.4,60.1,,1 1974,1,50022,3,"AL",13,"S",6,1,50200,1,"BIT",2,2,984,10881,0.6,15.3,80.7,,1 1974,1,50022,3,"AL",13,"S",6,1,50500,1,"BIT",7,7,7398,11260,0.9,13.8,61.8,,1

  6. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    5,1,50022,3,,,,6,1,03700,2,"FO2",1,1,3636,137028,0.1,0,229.5,,1,,1 1975,1,50022,3,,,,6,1,03800,2,"FO2",1,1,15502,137028,0.1,0,229.5,,2,,1 1975,1,50022,3,,,,6,1,03900,3,"NG",4,4,377720,1046,0,0,135.2,,1,,1 1975,1,50022,3,"KY",9,"S",6,1,03100,1,"BIT",7,7,7174,11367,4.1,11.1,161.4,,1,,1 1975,1,50022,3,"KY",9,"S",6,1,03000,1,"BIT",7,7,18076,10831,3.5,11.6,160.2,,1,,1

  7. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    6,1,50022,3,,,,6,1,35400,2,"FO2",1,1,8769,134870,0.11,0,212.1,,1,,1 1976,1,50022,3,,,,6,1,35500,2,"FO2",1,1,5606,134870,0.11,0,212.1,,2,,1 1976,1,50022,3,"AL",13,"S",6,1,35100,1,"BIT",7,7,15646,11560,0.95,16.4,110.9,,1,,1 1976,1,50022,3,"AL",13,"S",6,1,35200,1,"BIT",1,1,17914,11430,0.75,15.3,116.8,,1,,1 1976,1,50022,3,"AL",13,"S",6,1,35000,1,"BIT",2,2,48432,11708,0.71,14.2,96.7,,1,,1

  8. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    7,1,50022,3,,,,6,1,73900,3,"NG",4,4,39342,1154,0,0,172,,1,,2 1977,1,50022,3,,,,6,1,74000,2,"FO2",1,1,8264,136644,0.2,0,266.8,,1,,2 1977,1,50022,3,,,,6,1,74100,2,"FO2",1,1,6234,136644,0.2,0,266.8,,2,,2 1977,1,50022,3,"AL",13,"S",6,1,73700,1,"BIT",7,7,16368,13470,0.66,3.5,171.9,,1,,2 1977,1,50022,3,"AL",13,"S",6,1,73800,1,"BIT",7,7,23351,11797,1.08,14.6,107.6,,1,,2

  9. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    8,1,50022,3,,,,6,1,85400,2,"FO2",1,1,10893,137630,0.22,0,282.2,,1,,2 1978,1,50022,3,,,,6,1,85500,3,"NG",5,5,103689,1193,0,0,210.7,,1,,2 1978,1,50022,3,"KY",8,"S",6,1,85300,1,"BIT",7,7,24535,10812,1.15,13.3,155.7,,1,,2 1978,1,50022,3,"TN",8,"S",6,1,85200,1,"BIT",7,7,22749,10797,1.46,13.6,153.6,,1,,2 1978,1,50022,5,,,,6,1,85600,3,"NG",5,5,147714,1190,0,0,210.8,,1,,2

  10. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    9,1,50022,3,,,,6,1,05002,3,"NG",5,5,455894,1159,0,0,225,,1,01,05002 1979,1,50022,7,,,,6,1,05002,2,"FO2",7,7,406,135492,0.15,0,319.6,,1,01,05002 1979,1,50022,8,"AL",13,"S",6,1,05002,1,"BIT",7,7,102,12959,1.4,8.6,116.2,,1,01,05002 1979,1,50022,8,"AL",13,"S",6,1,05002,1,"BIT",1,1,4909,11899,1.46,10.3,111,,1,01,05002

  11. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    0,1,50022,3,"AL",13,"S",6,1,05002,1,"BIT",7,7,1581,11246,0.8,15.2,149.6,,1,01,05002 1980,1,50022,3,,,,6,1,05002,2,"FO2",3,3,13947,136743,0.27,0,642.1,,1,01,05002 1980,1,50022,7,"AL",13,"S",6,1,05002,1,"BIT",7,7,3556,11215,0.75,13.2,125,,1,01,05002 1980,1,50022,7,"AL",13,"S",6,1,05002,1,"BIT",7,7,3955,13161,1.75,8.1,127.7,,1,01,05002

  12. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    1,1,50022,3,"AL",13,"S",6,1,05002,1,"BIT",7,7,4888,12138,0.59,13.8,161.5,,1,01,05002 1981,1,50022,3,,0,,6,1,05002,3,"NG",4,4,78897,1153,0,0,272,,1,01,05002 1981,1,50022,8,"AL",13,"S",6,1,05002,1,"BIT",2,2,15025,12766,1.51,11.7,119.4,,1,01,05002 1981,1,50022,8,"AL",13,"S",6,1,05002,1,"BIT",2,2,24927,11908,1.36,14.2,172,,1,01,05002

  13. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    2,1,50022,3,"KY",8,"S",6,1,05002,1,"BIT",7,7,4209,12659,1.15,7,233.6,,1,01,05002 1982,1,50022,3,,0,,6,1,05002,2,"FO2",2,2,203,135618,0.25,0,773.5,,1,01,05002 1982,1,50022,7,"AL",13,"S",6,1,05002,1,"BIT",7,7,1314,13358,3.88,9.3,135.7,,1,01,05002 1982,1,50022,7,,0,,6,1,05002,2,"FO2",2,2,384,137644,0.25,0,753.2,,1,01,05002

  14. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    3,1,50022,3,,0,,6,1, 112,2,"FO2",7,7,399,139029,0.12,0,649.4,,1,,21158 1983,1,50022,3,,0,,6,1, 113,3,"NG",4,4,110615,1114,0,0,327.7,,1 1983,1,50022,7,"AL",13,"S",6,1, 112,1,"BIT",1,1,20969,13543,0.69,3.5,285.5,,1,04 1983,1,50022,7,,0,,6,1, 113,2,"FO2",7,7,191,138343,0.17,0,646.1,,1,,21158 1983,1,50022,7,,0,,6,1, 114,3,"NG",5,5,616,1028,0,0,447,,1 1983,1,50022,8,"AL",13,"S",6,1,

  15. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    4,1,50022,3,,,,6,1, 112,3,"NG",4,4,22593,1046,0,0,308.2,,1,,31154 1984,1,50022,7,,,,6,1, 113,3,"NG",5,5,414,1031,0,0,441.5,,1,,31230 1984,1,50022,7,"AL",13,"S",6,1, 112,1,"BIT",1,1,22851,13215,0.75,3.7,293.3,,1,04,19007 1984,1,50022,8,,,,6,1, 214,2,"FO2",7,7,1495,137951,0.29,0,613,,1,,21006 1984,1,50022,8,"AL",13,"S",6,1, 112,1,"BIT",1,1,21641,13243,1.48,8.9,160.2,,1,12,19006

  16. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    5,1,50022,3,,,,6,1, 113,3,"NG",4,4,19338,1086,0,0,321.5,,1,,31205 1985,1,50022,3,,,,6,1, 112,2,"FO2",7,7,373,139018,0.09,0,562.8,,1,,21075 1985,1,50022,7,,,,6,1, 115,3,"NG",5,5,350,1031,0,0,445.4,,1,,31230 1985,1,50022,7,,,,6,1, 114,2,"FO2",7,7,177,139403,0.12,0,558.4,,1,,21075 1985,1,50022,7,"AL",13,"S",6,1,86113,1,"BIT",1,1,1740,12711,1.54,11,137.4,,1,07,12588 1985,1,50022,7,"AL",13,"S",6,1,

  17. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    6,1,50022,3,,,,6,1, 113,2,"FO2",7,7,187,139092,0.17,0,545.9,,1,,21026 1986,1,50022,3,,,,6,1, 114,3,"NG",4,4,69908,1123,0,0,255,,1,,31205 1986,1,50022,3,,,,6,1, 115,3,"NG",5,5,15823,1040,0,0,321,,1,,31590 1986,1,50022,3,"KY",8,"U",6,1, 112,1,"BIT",7,7,25752,11943,1.05,13.5,139.8,,1,19,12624 1986,1,50022,3,"KY",8,"S",6,1, 112,1,"BIT",7,7,12876,11943,1.05,13.5,139.8,,1,19,12624 1986,1,50022,7,,,,6,1,

  18. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    7,1,50022,3,,,,6,1, 112,2,"FO2",1,1,177,138320,0.34,0,408.4,,1,,21026 1987,1,50022,3,,,,6,1, 113,3,"NG",4,4,18001,1028,0,0,195,,1,,31205 1987,1,50022,3,,,,6,1, 114,3,"NG",5,5,42089,1028,0,0,308.9,,1,,31590 1987,1,50022,7,,,,6,1, 113,2,"FO2",1,1,355,138559,0.1,0,418.7,,1,,21075 1987,1,50022,7,,,,6,1, 114,3,"NG",5,5,4449,1037,0,0,300,,1,,31230 1987,1,50022,7,"AL",13,"S",6,1,

  19. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    8,1,50022,3,,,,6,1, 114,2,"FO2",7,7,215,141386,0.23,0,362.2,,1,,19446 1988,1,50022,3,,,,6,1, 115,3,"NG",5,5,273,1034,0,0,195,,1,,31204 1988,1,50022,3,,,,6,1, 116,3,"NG",5,5,32619,1034,0,0,242,,1,,31590 1988,1,50022,3,"AL",13,"S",6,1, 112,1,"BIT",1,1,32154,12995,0.89,8.2,223.5,,1,12,16526 1988,1,50022,3,"AL",13,"S",6,1, 113,1,"BIT",7,7,21409,11985,0.96,12.1,130.4,,1,07,12688 1988,1,50022,7,,,,6,1,

  20. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    9,1,50022,3,,,,6,1, 114,2,"FO2",7,7,177,136071,0.45,0,395.1,,1,,19446 1989,1,50022,3,,,,6,1, 115,3,"NG",5,5,71365,1020,0,0,195,,1,,31204 1989,1,50022,3,"AL",13,"S",6,1, 112,1,"BIT",1,1,35278,12852,0.91,9.5,225.9,,1,12,16526 1989,1,50022,3,"TN",13,"U",6,1, 113,1,"BIT",7,7,12543,12340,1,11.2,142.1,,1,11,29999 1989,1,50022,8,,,,6,1, 215,2,"FO2",7,7,812,136668,0.48,0,390.2,,1,,19238

  1. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    298,"Alexandria City of",1,"HUNTER STATION","PRESCOTT",100,6.7,"OH","AC",138,138,636,"Other","Single",1,1,"SINGLE WOOD POLE" 298,"Alexandria City of",2,"HUNTER STATION E-LOOP","BAYOU RAPIDES SUB.",100,2,"OH","AC",138,138,636,"Other","Single",1,1,"SINGLE POLE WOOD" 298,"Alexandria City of",3,"BAYOU RAPIDES

  2. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"LAND_LANDRIGHT_COSTS","POLE_TOWER_FIXTURE_COSTS","CONDUCTOR_DEVICE_COSTS","CONSTRUCTION_ETC_COSTS","TOTAL_LINE_COSTS","IN_SERVICE_DATE" 1015,"Austin City of",1,"Sand Hill","Onion Creek",100,0.21,"OH","AC",138,138,1590,"ACSR","Single",1,1,"Steel",710,0,3500000,750000,4000000,8250000,"application/vnd.ms-excel" 1015,"Austin City

  3. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    UTILITY_ID","UTILITY_NAME","TRANSLINE_NO","TERMINAL_LOC_FROM","TERMINAL_LOC_TO","PERCENT_OWNED","LINE_LENGTH","LINE_TYPE","VOLTAGE_TYPE","VOLTAGE_OPERATING","VOLTAGE_DESIGN","CONDUCTOR_SIZE","CONDUCTOR_MAT_TYPE","CONDUCTOR_CONFIG","CIRCUIT_PERSTRUCT_PRES","CIRCUIT_PERSTRUCT_ULT","POLE_TOWER_TYPE","RATED_CAPACITY","LAND_LANDRIGHT_COSTS","POLE_TOWER_FIXTURE_COSTS","CONDUCTOR_DEVICE_COSTS","CONSTRUCTION_ETC_COSTS","TOTAL_LINE_COSTS","IN_SERVICE_DATE" 2003,1015,"Austin City of",1,"Northland","Magnesium Plant",100,4.11,"OH","AC",138,138,795,"ACSR Drake/ACSS Rail","Single",1,2,"Steel & Wood Poles",215,0,17500,8000,19500,45000,"application/vnd.ms-excel" 2003,1015,"Austin City of",2,"Grove","Met Center",100,3.1,"OH","AC",138,138,795,"ASCR Drake","Double",1,1,"Steel Pole",430,0,30000,10000,35000,75000,"application/vnd.ms-excel" 2003,1015,"Austin City of",3,"Dessau","Daffin Gin",100,6.01,"OH","AC",138,138,795,"ASCR Drake","Single",1,1,"Steel Pole",215,0,60000,15000,40000,115000,"application/vnd.ms-excel" 2003,1015,"Austin City of",4,"Burleson","AMD",100,2.2,"OH","AC",138,138,795,"ACR Drake","Double",2,2,"Steel Pole",430,0,75000,55000,120000,250000,"application/vnd.ms-excel" 2003,1015,"Austin City of",5,"Bergstrom","Kingsberry",100,4.2,"OH","AC",138,138,795,"ASCR Drake/AAAC","Single",1,2,"Steel & Wood Poles",215,0,75000,35000,340000,450000,"application/vnd.ms-excel" 2003,1015,"Austin City of",6,"Mcneil","Magnesium Plant",100,3.24,"OH","AC",138,138,795,"ACSR Drake","Double",1,2,"Steel Pole & Steel Tower",430,0,380000,76000,644000,1100000,"application/vnd.ms-excel" 2003,1015,"Austin City of",7,"Summit","Magnesium Plant",100,2.18,"OH","AC",138,138,795,"ACSR Drake","Double",1,2,"Steel Pole & Steel Tower",430,0,265000,125000,410000,800000,"application/vnd.ms-excel" 2003,1307,"Basin Electric Power Coop",1,"Rapid City","New Underwood",65,18.55,"OH","AC",230,230,1272,"ACSR","Single",1,1,"Single Pole, Steel",460,0,0,0,5300000,5300000,"application/vnd.ms-excel" 2003,1586,"Bentonville City of",1,"AEP/SWEPCO","City Substation F",100,1,"OH","AC",161,161,477,"ACSR","Single",1,1,"Wood and Steel Single Pole",199,18000,81522,28082,214516,342120,"application/vnd.ms-excel" 2003,2172,"Brazos Electric Power Coop",1,"Coppell","Lewisville",100,7.03,"OH","AC",138,138,1033,"ACSR","Double",1,1,"Concrete/Steel Single Pole",485,17577.55,2527717,537265.96,956475.39,4039035.9,"application/vnd.ms-excel" 2003,2172,"Brazos Electric Power Coop",2,"Boyd","Newark",100,1.8,"OH","AC",138,138,795,"ACSR","Single",2,2,"Concrete/Steel Single Pole",215,133929.08,538282.3,131112.75,246577.6,1049901.73,"application/vnd.ms-excel" 2003,2172,"Brazos Electric Power Coop",3,"Cedar Hill","Sardis",100,5.1,"OH","AC",138,138,795,"ACSR","Single",1,1,"Concrete Si ngle Ploe",215,24515.26,652910.22,246676.96,560582.43,1484684.87,"application/vnd.ms-excel" 2003,5580,"East Kentucky Power Coop Inc",1,"Jamestown Tap","Jamestown Tap",100,0.47,"OH","AC",161,161,556.5,"ACSR","Single",1,1,"Wood Single Pole",292,43326,160508,68789,0,272623,"application/vnd.ms-excel" 2003,5580,"East Kentucky Power Coop Inc",2,"Pulaski Co. Tap","Pulaski Co. Tap",100,5.88,"OH","AC",161,161,795,"ACSR","Single",1,1,"Wood H-Frame Structure",367,494183,1092462,468198,0,2054843,"application/vnd.ms-excel" 2003,7197,"Georgia Transmission Corp",1,"Shoal Creek","Spout Spring",100,10.83,"OH","AC",230,230,1351,"ACSR","Single",1,1,"Concrete, Single Pole & Steel",602,1277945,1685271,444690,6047603,9455509,"application/vnd.ms-excel" 2003,7197,"Georgia Transmission Corp",2,"Dresden","Yellowdirt",100,9.5,"OH","AC",230,230,795,"ACSR","Double",1,1,"Concrete, Single Pole",866,870826,772876,375515,3649376,5668593,"application/vnd.ms-excel" 2003,7197,"Georgia Transmission Corp",3,"East Moultrie","West Valdosta",100,38.46,"OH","AC",230,230,1622,"ACSR","Single",1,1,"Concrete, Single Pole",596,1191168,2829632,1476802,10279078,15776680,"application/vnd.ms-excel" 2003,7490,"Grand River Dam Authority",1,"Cowskin","Grove PSO",100,4.5,"OH","AC",138,138,795,"ACSR","Single/Twisted",1,1,"Wood Pole",223,287671,135402,156769,880890,1460732,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",1,"BASTROP","AUSTIN",100,0.32,"OH","AC",138,138,795,"ACSR","Single",1,1,"Wood Pole",,9155828,155817297,37044659,47228709,249246493,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",2,"BASTROP","AUSTROP",100,0.32,"OH","AC",138,138,795,"ACSR","Single",1,1,"Wood Pole",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",3,"BASTROP","AUSTROP",100,0.32,"OH","AC",138,138,795,"ACSR","Single",1,1,"Wood Pole",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",4,"BASTROP","AUSTROP",100,0.32,"OH","AC",138,138,795,"ACSR","Single",1,1,"Wood Pole",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",5,"CANYON","SAN MARCOS/LOCKHART",100,0.31,"OH","AC",138,138,795,"ACSR","Single",1,1,"Wood Pole",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",6,"CANYON","SAN MARCOS/LOCKHART",100,0.31,"OH","AC",138,138,795,"ACSR","Single",1,1,"Wood Pole",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",7,"CANYON","SAN MARCOS/LOCKHART",100,0.31,"OH","AC",138,138,795,"ACSR","Single",1,1,"Wood Pole",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",8,"CANYON","SAN MARCOS/LOCKHART",100,0.31,"OH","AC",138,138,795,"ACSR","Single",1,1,"Wood Pole",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",9,"CANYON","SAN MARCOS/LOCKHART",100,0.31,"OH","AC",138,138,795,"ACSR","Single",1,1,"Wood Pole",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",10,"CICO","HELOTES",100,4,"OH","AC",138,138,795,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",11,"CICO","HELOTES",100,4,"OH","AC",138,138,795,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",12,"CICO","HELOTES",100,4,"OH","AC",138,138,795,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",13,"CICO","HELOTES",100,4,"OH","AC",138,138,795,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",14,"CICO","HELOTES",100,4,"OH","AC",138,138,795,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",15,"CICO","HELOTES",100,4,"OH","AC",138,138,795,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",16,"LOCKHART","DUMP HILL",100,1.6,"OH","AC",138,138,795,"ACSR","Single",1,1,"Concrete Pole",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",17,"HILL POWER STATION","NUECES BAY",100,17.3,"OH","AC",138,138,795,"ACSR","Double",1,1,"Wood Pole",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",18,"NORTH OAK PARK","LON HILL",100,14.9,"OH","AC",138,138,795,"ACSR","Double",1,1,"Wood Pole",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",19,"STATE HIGHTWAY 80",,100,0.38,"OH","AC",138,138,211.5,"ACSR","Single",1,1,"Wood H-Frame Structure",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",20,"STATE HIGHWAY 80",,100,0.38,"OH","AC",138,138,211.5,"ACSR","Single",1,1,"Wood H-Frame Structure",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",21,"STERLING/MITCHELL LINE","TWINN BUTTES",100,135.08,"OH","AC",345,345,1590,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",22,"VERDE CREEK","KERRVILLE STADIUM",100,0.1,"OH","AC",138,138,336,"ACSR","Double",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",23,"VERDE CREEK","KERRVILLE STADIUM",100,0.1,"OH","AC",138,138,336,"ACSR","Double",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",24,"VERDE CREEK","KERRVILLE STADIUM",100,0.1,"OH","AC",138,138,336,"ACSR","Double",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",25,"VERDE CREEK","KERRVILLE STADIUM",100,0.1,"OH","AC",138,138,336,"ACSR","Double",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",26,"ZORN","MCCARTY LANE",100,4.2,"OH","AC",138,138,1433.6,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",27,"ZORN","MCCARTY LANE",100,4.2,"OH","AC",138,138,1433.6,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",28,"ZORN","MCCARTY LANE",100,4.2,"OH","AC",138,138,1433.6,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",29,"ZORN","MCCARTY LANE",100,4.2,"OH","AC",138,138,1433.6,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",30,"ZORN","MCCARTY LANE",100,4.2,"OH","AC",138,138,1433.6,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,11269,"Lower Colorado River Authority",31,"ZORN","MCCARTY LANE",100,4.2,"OH","AC",138,138,1433.6,"ACSR","Single",1,1,"Steel Tower",,0,0,0,0,0,"application/vnd.ms-excel" 2003,15143,"Platte River Power Authority",1,"Rawhide","Timberline West",100,31.63,"OH","AC",230,230,954,"ACSR","Single",2,2,"Steel/Tower & Pole",378,5553,1928767,2385430,251850,4571600,"application/vnd.ms-excel" 2003,15159,"Plymouth City of",1,"Mullet River Sub","Sub # 1",100,0.8,"OH","AC",138,138,336.4,"ACSR","SINGLE",1,1,"Steel Double Pole",33,0,0,0,1492139,1492139,"application/vnd.ms-excel" 2003,16534,"Sacramento Municipal Util Dist",1,"Natomas","Elverta",100,4.3,"OH","AC",230,230,954,"Aluminum","Single",1,1,"Steel Tower",316,0,0,0,0,0,"application/vnd.ms-excel" 2003,17543,"South Carolina Pub Serv Auth",1,"Rainey - Anderson (Duke) #1","Rainey - Anderson (Duke) #1",100,9.51,"OH","AC",230,230,1272,"ACSR","Double",2,2,"Steel / Tower",956,840152,1230361,1207282,22364,3300159,"application/vnd.ms-excel" 2003,17543,"South Carolina Pub Serv Auth",2,"Rainey - Anderson (Duke) #2","Rainey - Anderson (Duke) #2",100,9.51,"OH","AC",230,230,1272,"ACSR","Double",2,2,"Steel / Tower",956,840152,1230361,1207282,22364,3300159,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",1,"West Ringgold","Center Point",100,7.94,"OH","AC",115,230,954,"ASCR","Single",1,2,"Steel Tower",,2086252,5658529,1502763,3053959,12301503,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",2,"NE Johnson City--Erwin 161kV T","Jonesborough 161 kV SS",100,0.28,"OH","AC",161,161,954,"ASCR","Single",1,1,"Steel Tower",,11050,191917,894933,714987,1812887,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",3,"Elizabethton","Pandara-Shouns",100,15.12,"OH","AC",161,161,636,"ASCR","Single",1,1,"Steel Tower",,282232,1797686,537733,2057572,4675223,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",4,"Sullivan","Blountville",100,0.63,"OH","AC",161,161,1590,"ASCR","Single",2,2,"Steel Tower",,547521,1134556,788061,1224067,3694205,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",5,"Pin Hook","Structure E 104A (NES)",100,1.74,"OH","DC",161,161,2034.5,"ASCR","Single",1,2,"Steel Tower",,179775,881877,641976,270782,1974410,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",6,"Dug Gap 115 kV SS","Center Point 230 kV SS",100,4.49,"OH","AC",115,230,954,"ASCR","Single",2,2,"Steel Tower",,3939251,3451555,545558,1026021,8962385,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",7,"Chickamauga-Ridgedale","Hawthorne 161 kV SS",100,2.82,"OH","AC",161,161,1590,"ASCR","Single",2,2,"Steel Tower",,87206,533582,342640,584799,1548227,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",8,"Ft. Loudoun-Elza 161 kV TL","Spallation Neutron Source 161",100,3.92,"OH","AC",161,161,954,"ASCR","Single",1,1,"Steel Tower",,2972,639541,373150,469765,1485428,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",9,"Leake","Sebastapol SW STA 161 kV",100,0.77,"OH","AC",161,161,636,"ASCR","Single",2,2,"Steel Tower",,36158,236368,103374,167311,543211,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",10,"Sebasatpol 161 kV Switching St","Five Point 161 kV Substation",100,0.13,"OH","AC",161,230,954,"ASCR","Single",1,1,"Steel Tower",,917304,1772761,931352,1477668,5099085,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",11,"Structure 170A","Structure 174",100,0.73,"OH","AC",161,161,636,"ASCR","Single",1,1,"Steel Tower",,0,445863,79638,194574,720075,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",12,"Ramer-Hickory Valley 161 kV TL","Middleton 46 kV SS",100,6.81,"OH","AC",161,161,954,"ASCR","Single",1,1,"Steel Tower",,566805,1162854,447607,787813,2965079,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",13,"Lowndes-Miller","Valley View",100,0.46,"OH","AC",500,500,954,"ASCR","Triple",1,2,"Steel Tower",,0,688737,255237,341129,1285103,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",14,"Sweetwater 161 kV SS","Madisonville 161 kV SS",100,8.95,"OH","AC",161,161,954,"ASCR","Single",1,1,"Steel Tower",,1066219,1474937,466681,797814,3805651,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",15,"East Point 500 kV SS","Hanceville 161 kV TL",100,11.25,"OH","AC",161,161,1351.5,"ASCR","Single",1,2,"Steel Tower",,1416513,1442382,606534,1427424,4892853,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",16,"W Cookeville-Crossville 161 kV","W. Crossville SS",100,4.37,"OH","AC",161,161,954,"ASCR","Single",1,2,"Steel Tower",,267463,1112667,651963,964407,2996500,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",17,"East Shelbyville-Unionville","Deason 161 kV SS",100,5.09,"OH","AC",161,161,636,"ASCR","Single",1,1,"Steel Tower",,1071199,931797,430714,320721,2754431,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",18,"Kentucky Hydro","Barkley Hydro",100,2,"OH","AC",161,161,2034.5,"ACSR","Single",1,1,"Steel Tower",,2845,406947,90111,155401,655304,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",19,"MEC Sw Station","Trinity Substation",100,2.9,"OH","AC",161,161,954,"ACSS","Single",2,2,"Steel Tower",,0,604526,474640,608702,1687868,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",20,"Hickory Valley Selmer 161 kV T","North Selmer 161 kV SS",100,4.88,"OH","AC",161,161,636,"ASCR","Single",1,1,"Steel Tower",,357578,632244,368993,899046,2257861,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",21,"Trinity","Morgan Energy Center",100,2.98,"OH","AC",161,161,1590,"ASCR","Single",2,2,"Steel Tower",,7155,647789,386671,513831,1555446,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",22,"MEC","Finley",100,0.61,"OH","AC",161,161,954,"ASCR","Single",1,2,"Steel Tower",,9879,303540,156165,181613,651197,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",23,"Pickwick-South Jackson","Magic Valley",100,1.38,"OH","AC",161,161,954,"ASCR","Single",1,1,"Steel Pole",,78377,284367,113237,237716,713697,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",24,"Wolf Creek-Choctaw 500 kV TL","Reliant French Camp Gener Plt",100,0.11,"OH","AC",500,500,954,"ASCR","Triple",1,2,"Steel Tower",,0,863770,411493,891161,2166424,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",25,"Widows Creek Ft. Payne 161 kV","Flat Rock 161 kV SS",100,2.05,"OH","AC",161,161,397.5,"ASCR","Single",1,1,"Steel Tower",,130460,443384,182965,410228,1167037,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",26,"Volunteer-Cherokee HP 161 kV T","Oakland 161 kV SS",100,0.5,"OH","AC",161,161,1351,"ASCR","Single",1,2,"Steel Tower",,0,159020,71787,133784,364591,"application/vnd.ms-excel" 2003,18642,"Tennessee Valley Authority",27,"Cordell-Hull-Carthage 161 kV","South Carthage 161 kV SS",100,1.68,"OH","AC",161,161,636,"ASCR","Single",1,2,"Steel Tower",,0,209664,102390,256537,568591,"application/vnd.ms-excel" 2003,20447,"Western Farmers Elec Coop Inc",1,"Arco","Sprectrum",100,5.89,"OH","AC",138,138,336.4,"ACSR","Single",1,1,"Wood Pole",91,37547.56,399750.8,416067.16,0,853365.52,"application/vnd.ms-excel" 2003,20447,"Western Farmers Elec Coop Inc",2,"Hazel Dell Jct","Hazel Dell",100,3.12,"OH","AC",138,138,795,"ACSR","Single",1,1,"Wood Pole",158,72967.09,417464.37,285659.16,0,776090.62,"application/vnd.ms-excel" 2003,20447,"Western Farmers Elec Coop Inc",3,"Red River","Tenaska Kiowa Sw",100,75.75,"OH","AC",345,345,795,"ACSR","Single",1,1,"Combination Pole",158,0,0,0,47569327.23,47569327.23,"application/vnd.ms-excel" 2003,20447,"Western Farmers Elec Coop Inc",4,"Washita Sw","Blue Canyon",100,23.96,"OH","AC",138,138,1590,"ACSR","Single",1,1,"Wood Pole",239,0,0,0,5092171.22,5092171.22,"application/vnd.ms-excel" 2003,20447,"Western Farmers Elec Coop Inc",5,"Limestone Jct","Limestone",100,0.5,"OH","AC",138,138,336.4,"ACSR","Single",1,1,"Wood Pole",91,25673.08,159253.08,77468.07,0,262394.23,"application/vnd.ms-excel" 2003,20447,"Western Farmers Elec Coop Inc",6,"OGE Sunset Jct","Sunset Corner",100,0.15,"OH","AC",161,161,336.4,"ACSR","Singel",1,1,"Wood Pole",91,0,29315.87,35224.01,0,64539.88,"application/vnd.ms-excel" 2003,27000,"Western Area Power Admin",1,"Shiprock","Four Corners",100,8.2,"OH","AC",345,345,,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",2,"Coolidge","Sundance 1 and 2",100,9.8,"OH","AC",230,230,954,"ASCR",,2,2,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",3,"Structure 96/4","O/Banion 1",100,38,"OH","AC",230,230,,"ASCR",,2,2,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",4,"Mead","Market Place",100,12.9,"OH","AC",525,525,,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",5,"Bears Ears","Craig",100,1,"OH","AC",345,345,,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",6,"Glen Canyon Pumping Plant","Glen Canyon SW Yard",100,1,"OH","AC",345,345,,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",7,"Baker","Bowman",22.96,53.96,"OH","AC",230,230,954,"ASCR",,1,1,"Wood H",,0,0,0,0,0 2003,27000,"Western Area Power Admin",8,"Basin Tap #2","Washburn",100,2.23,"OH","AC",230,230,795,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",9,"Craig","Rifle",100,96,"OH","AC",230,230,1272,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",10,"Garrison","Basin Tap #1",100,20.97,"OH","AC",230,230,795,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",11,"Everta","Roseville",100,13.3,"OH","AC",230,230,,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",12,"Griffith","McConnico",100,8,"OH","AC",230,230,1272,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",13,"McConnico","Peacock",100,29.4,"OH","AC",230,230,795,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",14,"Liberty","Buckeye",100,6.7,"OH","AC",230,230,1272,"ASCR",,2,2,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",15,"Liberty","Parker",100,118.7,"OH","AC",230,230,1272,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",16,"Liberty","Estrella",100,10.8,"OH","AC",230,230,954,"ASCR",,2,2,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",17,"Liberty","Lone Batte",100,38.2,"OH","AC",230,230,954,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",18,"Lone Butte","Sundance",100,38.4,"OH","AC",230,230,954,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",19,"New Waddell","West Wing",100,10.1,"OH","AC",230,230,954,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",20,"South Point","Topock #1",100,6.46,"OH","AC",230,230,1590,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0 2003,27000,"Western Area Power Admin",21,"South Point","Topock #2",100,6.34,"OH","AC",230,230,1590,"ASCR",,1,1,"Steel Lattice",,0,0,0,0,0

  4. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    AMOUNT(DOLLARS)","DESCRIPTION" 55,"Aberdeen City of",2,1,8411792,"Electric Plant and Adjustments (101-106, 114, 116)" 55,"Aberdeen City of",2,2,815431,"Construction Work in Progress (107)" 55,"Aberdeen City of",2,3,3365499,"(Less) Accumulated Provision for Depreciation, Amortization, and Depletion (108, 111, 115)" 55,"Aberdeen City of",2,4,5861724,"Net Electric Plant (sum of lines 1-2 less line 3)"

  5. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    AMOUNT","DESCRIPTION" 55,"Aberdeen City of",2,1,9459177,"Electric Plant and Adjustments (101-106, 114, 116)" 55,"Aberdeen City of",2,2,43447,"Construction Work in Progress (107)" 55,"Aberdeen City of",2,3,3580599,"(Less) Accumulated Provision for Depreciation, Amortization, and Depletion (108, 111, 115)" 55,"Aberdeen City of",2,4,5922025,"Net Electric Plant (sum of lines 1-2 less line 3)"

  6. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    0355525,"Electric Operating Revenues (400)" 55,"Aberdeen City of",3,2,9378695,"Operation Expenses (401)" 55,"Aberdeen City of",3,3,149731,"Maintenance Expenses (402)" 55,"Aberdeen City of",3,4,204268,"Depreciation Expenses (403)" 55,"Aberdeen City of",3,5,0,"Amortization of Electric Plant, Property Losses and Regulatory Study Cost (404-407)" 55,"Aberdeen City of",3,6,479437,"Taxes and Tax

  7. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    1482863,"Electric Operating Revenues (400)" 55,"Aberdeen City of",3,2,10384918,"Operation Expenses (401)" 55,"Aberdeen City of",3,3,158893,"Maintenance Expenses (402)" 55,"Aberdeen City of",3,4,204881,"Depreciation Expenses (403)" 55,"Aberdeen City of",3,5,0,"Amortization of Electric Plant, Property Losses and Regulatory Study Cost (404-407)" 55,"Aberdeen City of",3,6,482619,"Taxes and Tax

  8. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    BEGINNING(DOLLARS)","ADDITIONS(DOLLARS)","RETIREMENTS(DOLLARS)","ADJUSTMENTS(DOLLARS)","YEAR_END(DOLLARS)","DESCRIPTION" 55,"Aberdeen City of",4,1,0,0,0,0,0,"Intangible Plant (301-303)" 55,"Aberdeen City of",4,2,0,0,0,0,0,"Steam Production (310-316)" 55,"Aberdeen City of",4,3,0,0,0,0,0,"Nuclear Production (320-325)" 55,"Aberdeen City of",4,4,0,0,0,0,0,"Hydraulic

  9. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    COL1AMOUNT","COL2AMOUNT","COL3AMOUNT","COL4AMOUNT","COL5AMOUNT","DESCRIPTION" 55,"Aberdeen City of",4,1,0,0,0,0,0,"Intangible Plant (301-303)" 55,"Aberdeen City of",4,2,0,0,0,0,0,"Steam Production (310-316)" 55,"Aberdeen City of",4,3,0,0,0,0,0,"Nuclear Production (320-325)" 55,"Aberdeen City of",4,4,0,0,0,0,0,"Hydraulic Production (330-336)" 55,"Aberdeen

  10. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    4,"Ames City of",6,1,"Omaha Public Power District","NF",127,0,0,6037,6037 554,"Ames City of",6,2,"MidAmerican Energy Co.","NF",52,0,0,3171,3171 554,"Ames City of",6,3,"Iowa State University","NF",62,0,0,2661,2661 590,"Anaheim City of",6,1,"American Electric Power",,7592,,,343620,343620 590,"Anaheim City of",6,2,"Arizona Public Service C0.",,41600,,,583600,583600

  11. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    FP",223,0,0,7756,7756 554,"Ames City of",6,999,"TOTAL",,223,,,7756,7756 590,"Anaheim City of",6,1,"Enron Power Mkting Inc.",,0,,,552000,552000 590,"Anaheim City of",6,2,"American Electric Power",,162588,,,5257468,5257468 590,"Anaheim City of",6,3,"Aquila Energy",,3000,,,88700,88700 590,"Anaheim City of",6,4,"Bonneville Power Admin",,240,,,12700,12700 590,"Anaheim City

  12. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    OT",333,9,,14413,14413 554,"Ames City of",6,999,,,333,,,14413,14413 590,"Anaheim City of",6,1,"American Electric Power",,45885,,,1317333,1317333 590,"Anaheim City of",6,2,"Aquila Energy",,5600,,,193400,193400 590,"Anaheim City of",6,3,"Arizona Electric Power",,50,,,950,950 590,"Anaheim City of",6,4,"Arizona Public Service",,400,,,15700,15700 590,"Anaheim City of",6,5,"Bonneville Power

  13. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    2,0,0,0,0,"Nuclear Power Generation (517-525, 528-532) Fuel Cost (518)" 55,"Aberdeen City of",7,3,0,0,0,0,"Hydraulic Power Generation (535-540, 541-545)" 55,"Aberdeen City of",7,4,0,0,0,0,"Other Power Generation (546-550, 551-554) Fuel Cost (547)" 55,"Aberdeen City of",7,5,,8949841,,8949841,"Purchased Power (555)" 55,"Aberdeen City of",7,6,,0,,0,"Other Production Expenses (556-557)" 55,"Aberdeen City

  14. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    FUEL(DOLLARS)/EMPLOYEES","OPERATION(DOLLARS)","MAINTENANCE(DOLLARS)","TOTAL(DOLLARS)","DESCRIPTION" 55,"Aberdeen City of",7,1,0,0,0,0,"Steam Power Generation (500-507, 510-514) Fuel Cost (501)" 55,"Aberdeen City of",7,2,0,0,0,0,"Nuclear Power Generation (517-525, 528-532) Fuel Cost (518)" 55,"Aberdeen City of",7,3,0,0,0,0,"Hydraulic Power Generation (535-540, 541-545)" 55,"Aberdeen City

  15. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    1,0,0,0,0,"Steam Power Generation (500-507, 510-514) Fuel Cost (501)" 55,"Aberdeen City of",7,2,0,0,0,0,"Nuclear Power Generation (517-525, 528-532) Fuel Cost (518)" 55,"Aberdeen City of",7,3,0,0,0,0,"Hydraulic Power Generation (535-540, 541-545)" 55,"Aberdeen City of",7,4,0,0,0,0,"Other Power Generation (546-550, 551-554) Fuel Cost (547)" 55,"Aberdeen City of",7,5,0,9690053,0,9690053,"Purchased Power

  16. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Aberdeen City of",8,1,"TVA","FP",222768267,37649,,8949841,8949841 207,"Alameda City of",8,1,"Northern California Power Agency","FP",247806,46,15378268,1070636823,12273267 207,"Alameda City of",8,2,"Western Area Power Administration","FP",148547,23,901700,3729161,4630861 207,"Alameda City of",8,3,"Balancing Accounts & Accruals",,,,,6633038,6633038 230,"Albany Water Gas &

  17. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    15478,35,0,8706280,8706280 55,"Aberdeen City of",8,999,"TOTAL",,215478,,0,8706280,8706280 207,"Alameda City of",8,1,"Northern California Power Agency","FP",232228,45,12493988,7497451,19991439 207,"Alameda City of",8,2,"Western Area Power Administration","FP",148474,22,905800,4228084,5133884 207,"Alameda City of",8,3,"Balancing Accounts & Accruals",,,,,1065892760,1065892760 207,"Alameda

  18. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    34665,36,0,9690053,9690053 55,"Aberdeen City of",8,999,,,234665,,0,9690053,9690053 207,"Alameda City of",8,1,"Northern California Power Agency","FP",223804,48,8903610,7484733,16388343 207,"Alameda City of",8,2,"Western Area Power Administration","FP",162065,22,990300,3715118,4705418 207,"Alameda City of",8,3,"Balancing Account & Accruals",,,,,592705,592705 207,"Alameda City

  19. Worksheet

    U.S. Energy Information Administration (EIA) Indexed Site

    UTILITY","UTILITY_NAME","PLANT_ID","PLANT_NAME","SCHEDULE","LINENO","COL1AMOUNT","DESCRIPTION" 2003,298,"Alexandria City of",6558,"D G Hunter",9,1,"STEAM","Type of Plant" 2003,298,"Alexandria City of",6558,"D G Hunter",9,2,1956,"Year Originally Constructed" 2003,298,"Alexandria City of",6558,"D G Hunter",9,3,1974,"Year Last Unit

  20. WEATHERIZATION ANNUAL FILE WORKSHEET | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WEATHERIZATION ANNUAL FILE WORKSHEET WEATHERIZATION ANNUAL FILE WORKSHEET Form is designed to gather specific detail related to the expenditures of the Weatherization grant. PDF icon WEATHERIZATION ANNUAL FILE WORKSHEET More Documents & Publications DOE F 540.3 WPN 06-3: Revised Weatherization Assistance Program Application Instructions and Forms WPN 04-4: Revised Weatherization Assistance Program Application Package and Reporting Format

  1. Commercialization Plan Worksheet | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commercialization Plan Worksheet A Microsoft Word template for potential licensees to use in preparing a proposed commercialization plan for an Argonne technology File...

  2. F243worksheet.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    F243worksheet.pdf F243worksheet.pdf PDF icon F243worksheet.pdf More Documents & Publications Your Records Management Responsibilities DOE O 243.1B, Records Management Program...

  3. Property:NEPA DNA Worksheet | Open Energy Information

    Open Energy Info (EERE)

    DNA Worksheet Jump to: navigation, search Property Name NEPA DNA Worksheet Property Type Page Description DNA Worksheet files for NEPA Docs. This is a property of type Page. It...

  4. Tool 0.1: CESP Planning Worksheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CESP Planning Worksheet Tool 0.1: CESP Planning Worksheet Tool 0.1: CESP Planning Worksheet from the Introduction to Community Energy Strategic Planning. File Tool 0.1: CESP ...

  5. CESP Tool 4.2: SWOT Worksheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SWOT Worksheet CESP Tool 4.2: SWOT Worksheet CESP Tool 4.2: SWOT Worksheet from Step 4: Assess the Current Energy Profile, Guide to Community Energy Strategic Planning. File CESP Tool 4.2: SWOT Worksheet More Documents & Publications CESP Tool 5.1: Goals, Strategies, and Actions Planning Worksheet Guide to Community Energy Strategic Planning Guide to Community Energy Strategic Planning: Step 4

  6. Task Order Price Evaluation Worksheet for ESPCs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Task Order Price Evaluation Worksheet for ESPCs Task Order Price Evaluation Worksheet for ESPCs Document lists a series of site-specific proposal data questions to answer for a task order. Microsoft Office document icon Download the Task Order Price Evaluation Worksheet. More Documents & Publications Task Order Price Evaluation Worksheet for SUPER ESPC Descriptions of ESPC Task Order Schedules and Placement of Pricing Information (IDIQ Attachment J-5) ESPC Task Order Financial Schedules

  7. Core Competency Worksheets for Significant Cybersecurity Roles | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Core Competency Worksheets for Significant Cybersecurity Roles Core Competency Worksheets for Significant Cybersecurity Roles shutterstock_1703802_jpg.jpg The OCIO has developed core competency worksheets that describe the minimum core competencies for each functional cyber role as documented in the DOE Essential Body of Knowledge (EBK). These worksheets can be used by any agency or private entity to assist in developing site or organization-specific, role-based training for cyber

  8. SUMMARY GREENHOUSE GAS EMISSIONS DATA WORKSHEET JANUARY 2015 | Department

    Energy Savers [EERE]

    of Energy SUMMARY GREENHOUSE GAS EMISSIONS DATA WORKSHEET JANUARY 2015 SUMMARY GREENHOUSE GAS EMISSIONS DATA WORKSHEET JANUARY 2015 File SUMMARY_GREENHOUSE_GAS_EMISSIONS_DATA_WORKSHEET_JANUARY_2015.xlsx More Documents & Publications Attachment C - Summary GHG Emissions Data FINAL Attachment C Summary GHG Emissions Data FINAL Full Service Leased Space Data Report

  9. STATE ENERGY PROGRAM (SEP) NARRATIVE INFORMATION WORKSHEET | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy STATE ENERGY PROGRAM (SEP) NARRATIVE INFORMATION WORKSHEET STATE ENERGY PROGRAM (SEP) NARRATIVE INFORMATION WORKSHEET The SEP Narrative consists of information on each SEP market, mandatory or optional, planned for the program year (PY), submitted on the SEP Narrative Information Worksheet included in the Forms section (or facsimile). If there is no change in the purpose and description of a continuing market, only the milestones and PY budget need be submitted in subsequent years. A

  10. Task Order Price Evaluation Worksheet for SUPER ESPC

    Broader source: Energy.gov [DOE]

    Document provides a worksheet for evaluating price for a task order as part of a Super Energy Savings Performance Contract (ESPC).

  11. DOE (Department of Energy) risk assessment worksheets: A structured approach

    SciTech Connect (OSTI)

    Not Available

    1989-09-01

    This volume consists of the worksheets for each step in completing the guideline. This guideline outlines the approach to conducting risk assessments of computer security. (JEF)

  12. New Ideas for Seeding Your Solar Marketplace Workshop Worksheet

    Broader source: Energy.gov [DOE]

    This is a worksheet by Adam Cohen, fellow for the SunShot Initiative, for the 2014 SunShot Grand Challenge Summit and Peer Review Workshop, "New Ideas for Seeding Your Solar Marketplace: Program Pilots and Embedded Experiments."

  13. Buildings Greenhouse Gas Mitigation Estimator Worksheet | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Buildings Greenhouse Gas Mitigation Estimator Worksheet Buildings Greenhouse Gas Mitigation Estimator Worksheet Excel tool helps agencies estimate the greenhouse gas (GHG) mitigation reduction from implementing energy efficiency measures across a portfolio of buildings. It is designed to be applied to groups of office buildings. For example, at a program level (regional or site) that can be summarized at the agency level. While the default savings and cost estimates apply to office

  14. CESP Tool 3.1: Vision Development Worksheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3.1: Vision Development Worksheet CESP Tool 3.1: Vision Development Worksheet CESP Tool 3.1: Vision Development Worksheet from Step 3: Develop an Energy Vision, Guide to Community Energy Strategic Planning. File CESP Tool 3.1: Vision Development Worksheet More Documents & Publications Guide to Community Energy Strategic Planning: Step 3 Guide to Community Energy Strategic Planning Tool 0.1: CESP Planning Worksheet

  15. ESPC ENABLE ESCO Evaluation Guide and Worksheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ESCO Evaluation Guide and Worksheet ESPC ENABLE ESCO Evaluation Guide and Worksheet Template serves as a tool to be used by the ESPC ENABLE acquisition team to evaluate energy service company (ESCO) responses to the Request for Quote/Notice of Opportunity (RFQ/NOO). In the RFQ/NOO, the agency identified the criteria that would be used to select an ESCO from the responses received. The responses should be no longer than 10 pages and follow the format prescribed in this document. File

  16. CESP Tool 3.1: Vision Development Worksheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CESP Tool 3.1: Vision Development Worksheet from Step 3: Develop an Energy Vision, Guide to Community Energy Strategic Planning. File CESP Tool 3.1: Vision Development Worksheet ...

  17. SeqQuest

    Energy Science and Technology Software Center (OSTI)

    2007-10-25

    SeqQuest is a general purpose code to compute first principles electron structure of molecules and solids, within the density functional theory approximation, using pseudopotentials and a gaussian-based local orbital basis set expansion for the wave functions. Primary usage is for basic research into fundamental chemical and physical properties of molecules and materials.

  18. CESP Tool 4.2: Activity Inventory Template | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Activity Inventory Template CESP Tool 4.2: Activity Inventory Template Tool 4.2: Activity Inventory Template from the Step 4: Assess the Current Energy Profile, Guide to Community Energy Strategic Planning. File CESP Tool 4.2: Activity Inventory Template More Documents & Publications CESP Tool 9.1: Monitoring Plan Template CESP Tool 4.2: SWOT Worksheet CESP Tool 7.1: Financing Inventory Template

  19. CESP Tool 5.1: Goals, Strategies, and Actions Planning Worksheet |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 5.1: Goals, Strategies, and Actions Planning Worksheet CESP Tool 5.1: Goals, Strategies, and Actions Planning Worksheet CESP Tool 5.1: Goals, Strategies, and Actions Planning Worksheet from Step 5: Develop Energy Goals and Strategies, Guide to Community Energy Strategic Planning. File CESP Tool 5.1: Goals, Strategies, and Actions Planning Worksheet More Documents & Publications cesp_tool_5-1_goals_strategies_actions_planning_worksheet_1.docx Guide to Community Energy

  20. cesp_tool_5-1_goals_strategies_actions_planning_worksheet_1.docx...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications CESP Tool 5.1: Goals, Strategies, and Actions Planning Worksheet Guide to Community Energy Strategic Planning Guide to Community Energy Strategic ...

  1. Example U.S. Department of Energy State Energy Program Information Worksheet

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy State Energy Program (SEP) worksheet that shows compliance with the National Environmental Policy Act (NEPA).

  2. N:\\My Documents\\porfin.pdf

    Energy Savers [EERE]

    ... C D 2002 3116 019-20 EE GA Atlanta US 1 D000 C E 1999 7. Inventory Page 41 of 133 Department of Energy 2006 Commercial and Inherently Governmental FTE Inventory Worksheet Seq No. ...

  3. Waste management units - Savannah River Site. Volume 1, Waste management unit worksheets

    SciTech Connect (OSTI)

    Not Available

    1989-10-01

    This report is a compilation of worksheets from the waste management units of Savannah River Plant. Information is presented on the following: Solid Waste Management Units having received hazardous waste or hazardous constituents with a known release to the environment; Solid Waste Management Units having received hazardous waste or hazardous constituents with no known release to the environment; Solid Waste Management Units having received no hazardous waste or hazardous constituents; Waste Management Units having received source; and special nuclear, or byproduct material only.

  4. Revising the worksheet with L3: a language and environment foruser-script interaction

    SciTech Connect (OSTI)

    Hohn, Michael H.

    2008-01-22

    This paper describes a novel approach to the parameter anddata handling issues commonly found in experimental scientific computingand scripting in general. The approach is based on the familiarcombination of scripting language and user interface, but using alanguage expressly designed for user interaction and convenience. The L3language combines programming facilities of procedural and functionallanguages with the persistence and need-based evaluation of data flowlanguages. It is implemented in Python, has access to all Pythonlibraries, and retains almost complete source code compatibility to allowsimple movement of code between the languages. The worksheet interfaceuses metadata produced by L3 to provide selection of values through thescriptit self and allow users to dynamically evolve scripts withoutre-running the prior versions. Scripts can be edited via text editors ormanipulated as structures on a drawing canvas. Computed values are validscripts and can be used further in other scripts via simplecopy-and-paste operations. The implementation is freely available underan open-source license.

  5. FAIR Act Inventory- FY13

    Broader source: Energy.gov [DOE]

    Federal Activities Inventory Reform (FAIR) Act - INHERENTLY GOVERNMENTAL AND COMMERCIAL ACTIVITIES (IGCA) INVENTORY

  6. CONDUCTING A RECORDS INVENTORY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROCEDURE FOR CONDUCTING A RECORDS INVENTORY Revision 1 10/31/07 Approved by: DOE Records Management Division, IM-23 PROCEDURE FOR CONDUCTING A RECORDS INVENTORY 1. GENERAL. A records inventory is compiling a descriptive list of each record series or system, including the location of the records and any other pertinent data. A records inventory is not a list of each document or each folder. 2. DEFINE THE RECORDS INVENTORY GOAL(S). The goals of a records inventory should be to: a. Gather

  7. 33 CFR 331 et seq.: Administrative Appeal Process | Open Energy...

    Open Energy Info (EERE)

    CFR 331 et seq.: Administrative Appeal ProcessLegal Abstract These regulations establish policies and procedures used for administrative appeal of approved jurisdictional...

  8. Personal Computer Inventory System

    Energy Science and Technology Software Center (OSTI)

    1993-10-04

    PCIS is a database software system that is used to maintain a personal computer hardware and software inventory, track transfers of hardware and software, and provide reports.

  9. The RNA-Seq Analysis pipeline on Galaxy

    SciTech Connect (OSTI)

    Meng, Xiandong; Martin, Jeffrey; Wang, Zhong

    2011-05-31

    Q: How do I know my RNA-Seq experiments worked well A: RNA-Seq QC PipelineQ: How do I detect transcripts which are over expressed or under expressed in my samples A: Counting and Statistic AnalysisQ: What do I do if I don't have a reference genome A: Rnnotator de novo Assembly.

  10. Web Content Analysis and Inventories: Template and FY 2014 Inventory |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Content Analysis and Inventories: Template and FY 2014 Inventory Web Content Analysis and Inventories: Template and FY 2014 Inventory A content inventory and analysis will help identify content that needs to be updated, edited, added, or removed for maintenance. They're also recommended prior to starting a website redesign. This content template and sample inventory were created in Excel. The sample lists URLs, page names, navigation, navigation hierarchy, and section

  11. High-Level Waste Inventory

    Office of Environmental Management (EM)

    Analysis of Alternatives for Disposition of the Idaho Calcined High-Level Waste Inventory ... of the Idaho Calcined High-Level Waste Inventory Volume 1- Summary Report April ...

  12. Life Cycle Inventory Database

    Broader source: Energy.gov [DOE]

    The U.S. Life Cycle Inventory (LCI) Database serves as a central repository for information about the total energy and resource impacts of developing and using various commercial building materials...

  13. Cal. Pub. Res. Code 5020 et seq.: Historical Resources | Open...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Cal. Pub. Res. Code 5020 et seq.: Historical ResourcesLegal Abstract This section...

  14. Cal. Pub. Res. 25500 et seq | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Cal. Pub. Res. 25500 et seqLegal Abstract Cal. Pub. Res. Code 25531, current through...

  15. 23 CCR 3855 et seq. - Water Quality Certification | Open Energy...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: 23 CCR 3855 et seq. - Water Quality CertificationLegal Published NA Year Signed or Took...

  16. Initial Radionuclide Inventories

    SciTech Connect (OSTI)

    H. Miller

    2004-09-19

    The purpose of this analysis is to provide an initial radionuclide inventory (in grams per waste package) and associated uncertainty distributions for use in the Total System Performance Assessment for the License Application (TSPA-LA) in support of the license application for the repository at Yucca Mountain, Nevada. This document is intended for use in postclosure analysis only. Bounding waste stream information and data were collected that capture probable limits. For commercially generated waste, this analysis considers alternative waste stream projections to bound the characteristics of wastes likely to be encountered using arrival scenarios that potentially impact the commercial spent nuclear fuel (CSNF) waste stream. For TSPA-LA, this radionuclide inventory analysis considers U.S. Department of Energy (DOE) high-level radioactive waste (DHLW) glass and two types of spent nuclear fuel (SNF): CSNF and DOE-owned (DSNF). These wastes are placed in two groups of waste packages: the CSNF waste package and the codisposal waste package (CDSP), which are designated to contain DHLW glass and DSNF, or DHLW glass only. The radionuclide inventory for naval SNF is provided separately in the classified ''Naval Nuclear Propulsion Program Technical Support Document'' for the License Application. As noted previously, the radionuclide inventory data presented here is intended only for TSPA-LA postclosure calculations. It is not applicable to preclosure safety calculations. Safe storage, transportation, and ultimate disposal of these wastes require safety analyses to support the design and licensing of repository equipment and facilities. These analyses will require radionuclide inventories to represent the radioactive source term that must be accommodated during handling, storage and disposition of these wastes. This analysis uses the best available information to identify the radionuclide inventory that is expected at the last year of last emplacement, currently identified as 2030 and 2033, depending on the type of waste. TSPA-LA uses the results of this analysis to decay the inventory to the year of repository closure projected for the year of 2060.

  17. Web Content Analysis and Inventories: Template and FY 2014 Inventory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Content Analysis and Inventories: Template and FY 2014 Inventory Web Content Analysis and ... It also includes a notes field, which can be used for a Web content analysis. File Content ...

  18. Service Contract Inventory

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) approach will be performed in accordance with the criteria set out in Consolidated Appropriations Act, 2010, (Pub. L. No. 111-117, § 743 (2009)), Appendix D of the November 5, 2010 OMB Memorandum on Service Contract Inventories, OMB Memorandum dated November 25, 2014, and will ultimately identify contracts for a more in-depth review.

  19. PHYSICAL INVENTORY LISTING | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PHYSICAL INVENTORY LISTING PHYSICAL INVENTORY LISTING Form supports nuclear materials control and accountability. PDF icon PHYSICAL INVENTORY LISTING More Documents & Publications ...

  20. PERTRAN: Genome-guided RNA-seq Read Assembler

    SciTech Connect (OSTI)

    Shu, Shengqiang; Goodstein, David; Rokhsar, Dan

    2013-10-28

    As short RNA-seq reads become a standard, affordable input to any genome annotation project, a sensitive and accurate transcript assembler is an essential part of any gene prediction system. PERTRAN is a pipeline for assembling transcripts from RNA-seq reads which demonstrates higher sensitivity, with fewer fused exons (in most cases), and faster run times compared to other TOPHAT/CUFFLINKS and genome-guided Trinity. PERTRAN shows slightly lower specificity with increased gene fusions in some cases, discussed below. SAM files generated from PERTRAN can be used to compute expression level by cuffdiff and result is comparable to that from TOPHAT.

  1. STEM Education Program Inventory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Issue for STEM Education Program Inventory Title of Program* Requestor Contact Information First Name* Last Name* Phone Number* E-mail* Fax Number Institution Name Program Description* Issue Information Leading Organization* Location of Program / Event Program Address Program Website To select multiple options, press CTRL and click. Type of Program (if Other, enter information in the box to the right.)* Workforce Development Student Programs Public Engagement in Life Long Learning

  2. Training Worksheet Job Aid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generic ENV104G Environmental Protection Management of Underground Storage Tanks Generic ENV215G Ergonomics Healthy Back Generic ERG114G Safe Operation of...

  3. WORKSHEET AND RESPONDENT QUESTIONS

    Gasoline and Diesel Fuel Update (EIA)

    ... Answer0 E36 Are these mainly inkjet or laser printers? If Activity (B2)Retail, Food sales, or Food service PRNTYP8 E36 1. Inkje 2. Laser 3. ** IF VOLUNTEERED ** 4. ** IF ...

  4. FES Case Study Worksheets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    David Green Read Jeff Candy Read CS Chang Read Stephane Ethier Read Alex Friedman Read Kai Germaschewski Read Martin Greenwald Read Stephen Jardin Read...

  5. MCA 75-11-501 et seq. - Montana Underground Storage Tank Act...

    Open Energy Info (EERE)

    11-501 et seq. - Montana Underground Storage Tank Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: MCA 75-11-501 et seq. -...

  6. MCA 87-5-501 et seq. - Montana Stream Protection | Open Energy...

    Open Energy Info (EERE)

    7-5-501 et seq. - Montana Stream Protection Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: MCA 87-5-501 et seq. - Montana Stream...

  7. UC 19-6-401 et seq. - Utah Underground Storage Tank Act | Open...

    Open Energy Info (EERE)

    9-6-401 et seq. - Utah Underground Storage Tank Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: UC 19-6-401 et seq. - Utah...

  8. NAC 445B.287 et seq - Air Pollution Control Operating Permits...

    Open Energy Info (EERE)

    287 et seq - Air Pollution Control Operating Permits Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NAC 445B.287 et seq -...

  9. 54 USC 100101 et seq. - National Park Service Organic Act | Open...

    Open Energy Info (EERE)

    54 USC 100101 et seq. - National Park Service Organic Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: 54 USC 100101 et seq. -...

  10. FY 2015 Service Contract Inventory

    Energy Savers [EERE]

    of Energy FY 2015 Service Contract Inventory Analysis Plan Department of Energy Office of Acquisition Management Strategic Programs Division (MA-622) January 2016 Department of Energy FY 2015 Service Contract Inventory Plan for Analysis The Department of Energy (DOE) approach will be performed in accordance with the criteria set out in Consolidated Appropriations Act, 2010, (Pub. L. No. 111-117, § 743 (2009)), Appendix D of the November 5, 2010 OMB Memorandum on Service Contract Inventories,,

  11. FY 2015 Service Contract Inventory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy FY 2015 Service Contract Inventory Analysis Plan Department of Energy Office of Acquisition Management Strategic Programs Division (MA-622) January 2016 Department of Energy FY 2015 Service Contract Inventory Plan for Analysis The Department of Energy (DOE) approach will be performed in accordance with the criteria set out in Consolidated Appropriations Act, 2010, (Pub. L. No. 111-117, § 743 (2009)), Appendix D of the November 5, 2010 OMB Memorandum on Service Contract Inventories,,

  12. course inventory | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Read more about CMI Education Partner: Colorado School of Mines CMI Course Inventory: Mineral Economics and Business Mineral Economics and Business Of the six CMI Team members that ...

  13. Chemical Inventory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Inventory Use the following dropdown menus to filter the results for chemical records. To reset the results clear the entries and click "update". Facility - Any - SSRL ...

  14. US Releases Updated Plutonium Inventory Report | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Releases Updated Plutonium Inventory Report | National Nuclear Security Administration ... US Releases Updated Plutonium Inventory Report US Releases Updated Plutonium Inventory ...

  15. Fair Act Inventory | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fair Act Inventory Fair Act Inventory This page provides guidance for submission of the DOE FAIR Act Inventory, or otherwise known as the Inherently Governmental Commercial Activities (IGCA) Inventory. The FAIR Act directs Federal agencies to issue each year an inventory of all commercial activities performed by Federal employees. OMB reviews each agency's commercial activities inventory and consults with the agency regarding content. Upon the completion of this review and consultation, the

  16. California Statewide Property Inventory Website | Open Energy...

    Open Energy Info (EERE)

    Inventory Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: California Statewide Property Inventory Website Abstract The Statewide Property...

  17. Structural Insights into the Cooperative Binding of SeqA to a Tandem GATC Repeat

    SciTech Connect (OSTI)

    Chung, Y.; Brendler, T; Austin, S; Guarne, A

    2009-01-01

    SeqA is a negative regulator of DNA replication in Escherichia coli and related bacteria that functions by sequestering the origin of replication and facilitating its resetting after every initiation event. Inactivation of the seqA gene leads to unsynchronized rounds of replication, abnormal localization of nucleoids and increased negative superhelicity. Excess SeqA also disrupts replication synchrony and affects cell division. SeqA exerts its functions by binding clusters of transiently hemimethylated GATC sequences generated during replication. However, the molecular mechanisms that trigger formation and disassembly of such complex are unclear. We present here the crystal structure of a dimeric mutant of SeqA [SeqA{Delta}(41-59)-A25R] bound to tandem hemimethylated GATC sites. The structure delineates how SeqA forms a high-affinity complex with DNA and it suggests why SeqA only recognizes GATC sites at certain spacings. The SeqA-DNA complex also unveils additional protein-protein interaction surfaces that mediate the formation of higher ordered complexes upon binding to newly replicated DNA. Based on this data, we propose a model describing how SeqA interacts with newly replicated DNA within the origin of replication and at the replication forks.

  18. FY 2014 Service Contract Inventory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis Plan Department of Energy Office of Acquisition and Project Management Strategic Programs Division (MA-622) December 2014 Department of Energy FY 2014 Service Contract Inventory Plan for Analysis The Department of Energy (DOE) approach will be performed in accordance with the criteria set out in Consolidated Appropriations Act, 2010, (Pub. L. No. 111-117, § 743 (2009)), Appendix D of the November 5, 2010 OMB Memorandum on Service Contract Inventories, OMB Memorandum dated November 25,

  19. Clean Lead Facility (CLF) Inventory System

    Energy Science and Technology Software Center (OSTI)

    1995-07-13

    The CLF Inventory System records shipments of clean or nonradioactive contaminated lead stored at the CLF. The Inventory System provides reports and inventory information to Facility operators. Annual, quarterly, monthly, and current inventory reports may be printed. Profile reports of each shipment of lead may also be printed for verification and documentation of lead transactions.

  20. Stable isotope research pool inventory

    SciTech Connect (OSTI)

    Not Available

    1980-12-01

    This report contains a listing of electromagnetically separated stable isotopes which are available for distribution within the United States for non-destructive research use from the Oak Ridge National Laboratory on a loan basis. This inventory includes all samples of stable isotopes in the Materials Research Collection and does not designate whether a sample is out on loan or in reprocessing.

  1. RFID Technology for Inventory Management

    ScienceCinema (OSTI)

    None

    2012-12-31

    The Pacific Northwest National Laboratory is leveraging the use and application of radio frequency identification (RFID) technology to a variety of markets. Tagging and tracking of individual items for inventory control is revealing rich rewards through increased time efficiency and reduced human intervention.

  2. Excess Uranium Inventory Management Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Excess Uranium Inventory Management Plan Excess Uranium Inventory Management Plan The 2013 Excess Uranium Inventory Management Plan describes a framework for the effective...

  3. Microsoft Word - IGCA Inventory Sub Guide 031611 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IGCA Inventory Sub Guide 031611 Microsoft Word - IGCA Inventory Sub Guide 031611 PDF icon Microsoft Word - IGCA Inventory Sub Guide 031611 More Documents & Publications IGCA ...

  4. E-IDR (Inventory Disclosure Record) PIA, Idaho National Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    E-IDR (Inventory Disclosure Record) PIA, Idaho National Laboratory E-IDR (Inventory Disclosure Record) PIA, Idaho National Laboratory E-IDR (Inventory Disclosure Record) PIA, Idaho ...

  5. Natural gas inventories at record levels

    U.S. Energy Information Administration (EIA) Indexed Site

    record levels U.S. natural gas inventories at the end of October tied the all-time record high and inventories could climb to 4 trillion cubic feet in November for the first time. ...

  6. FY 2013 Service Contract Inventory Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Service Contract Inventory Analysis Department of Energy Office of Acquisition and Project Management Strategic Programs Division (MA-622) December 2014 FY 2013 Service Contract Inventory Analysis Department of Energy Contents Page Section 1: Scope 2 Section 2: Methodology 4 Section 3: Findings 6 Section 4: Actions Taken or Planned 7 FY 2013 Service Contract Inventory Analysis Department of Energy 2 Section 1: Scope Service Contract Inventories Section 743 of Division C of the FY 2010

  7. Estimating Waste Inventory and Waste Tank Characterization

    Broader source: Energy.gov [DOE]

    Summary Notes from 28 May 2008 Generic Technical Issue Discussion on Estimating Waste Inventory and Waste Tank Characterization

  8. GEO-SEQ Best Practices Manual. Geologic Carbon Dioxide Sequestration: Site Evaluation to Implementation

    SciTech Connect (OSTI)

    Benson, Sally M.; Myer, Larry R.; Oldenburg, Curtis M.; Doughty, Christine A.; Pruess, Karsten; Lewicki, Jennifer; Hoversten, Mike; Gasperikova, Erica; Daley, Thomas; Majer, Ernie; Lippmann, Marcelo; Tsang, Chin-Fu; Knauss, Kevin; Johnson, James; Foxall, William; Ramirez, Abe; Newmark, Robin; Cole, David; Phelps, Tommy J.; Parker, J.; Palumbo, A.; Horita, J.; Fisher, S.; Moline, Gerry; Orr, Lynn; Kovscek, Tony; Jessen, K.; Wang, Y.; Zhu, J.; Cakici, M.; Hovorka, Susan; Holtz, Mark; Sakurai, Shinichi; Gunter, Bill; Law, David; van der Meer, Bert

    2004-10-23

    The first phase of the GEO-SEQ project was a multidisciplinary effort focused on investigating ways to lower the cost and risk of geologic carbon sequestration. Through our research in the GEO-SEQ project, we have produced results that may be of interest to the wider geologic carbon sequestration community. However, much of the knowledge developed in GEO-SEQ is not easily accessible because it is dispersed in the peer-reviewed literature and conference proceedings in individual papers on specific topics. The purpose of this report is to present key GEO-SEQ findings relevant to the practical implementation of geologic carbon sequestration in the form of a Best Practices Manual. Because our work in GEO-SEQ focused on the characterization and project development aspects, the scope of this report covers practices prior to injection, referred to as the design phase. The design phase encompasses activities such as selecting sites for which enhanced recovery may be possible, evaluating CO{sub 2} capacity and sequestration feasibility, and designing and evaluating monitoring approaches. Through this Best Practices Manual, we have endeavored to place our GEO-SEQ findings in a practical context and format that will be useful to readers interested in project implementation. The overall objective of this Manual is to facilitate putting the findings of the GEO-SEQ project into practice.

  9. Stable isotope research pool inventory

    SciTech Connect (OSTI)

    Not Available

    1988-02-01

    This report contains a listing of electromagnetically separated stable isotopes which are available at the Oak Ridge National Laboratory for distribution for nondestructive research use on a loan basis. This inventory includes all samples of stable isotopes in the Research Materials Collection and does not designate whether a sample is out on loan or is in reprocessing. For some of the high-abundance, naturally occurring isotopes, larger amounts can be made available; for example, Ca-40 and Fe-56.

  10. Stable isotope research pool inventory

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    This report contains a listing of electromagnetically separated stable isotopes which are available for distribution within the United States for nondestructive research use from the Oak Ridge National Laboratory on a loan basis. This inventory includes all samples of stable isotopes in the Material Research Collection and does not designate whether a sample is out on loan or in reprocessing. For some of the high abundance naturally occurring isotopes, larger amounts can be made available; for example, Ca-40 and Fe-56.

  11. Stable isotope research pool inventory

    SciTech Connect (OSTI)

    Not Available

    1984-03-01

    This report contains a listing of electromagnetically separated stable isotopes which are available at the Oak Ridge National Laboratory for distribution for nondestructive research use on a loan basis. This inventory includes all samples of stable isotopes in the Research Materials Collection and does not designate whether a sample is out on loan or is in reprocessing. For some of the high abundance naturally occurring isotopes, larger amounts can be made available; for example, Ca-40 and Fe-56.

  12. MCA 22-3-421 et seq. - Montana State Antiquities Act | Open Energy...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: MCA 22-3-421 et seq. - Montana State Antiquities ActLegal Abstract Provides for protecting...

  13. Title 7 CFR 1.601 et seq. Conditions in FERC Hydropower Licenses...

    Open Energy Info (EERE)

    7 CFR 1.601 et seq. Conditions in FERC Hydropower Licenses Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 7 CFR...

  14. 16 U.S.C. 1600 et seq.: Chapter 36: Forest and Rangeland Renewable...

    Open Energy Info (EERE)

    1600 et seq.: Chapter 36: Forest and Rangeland Renewable Resources Planning Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: 16...

  15. MCA 75-5-101 et seq. - Water Quality | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: MCA 75-5-101 et seq. - Water QualityLegal Abstract Title 75, Chapter 5, MCA governs water...

  16. Colorado - C.R.S. 40-5-101 et seq., Utilities-New Construction...

    Open Energy Info (EERE)

    Colorado - C.R.S. 40-5-101 et seq., Utilities-New Construction - Extension Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute:...

  17. Wyo. Stat. 37-1-101 et seq.: In General | Open Energy Information

    Open Energy Info (EERE)

    StatuteStatute: Wyo. Stat. 37-1-101 et seq.: In GeneralLegal Abstract This articles outlines general requirements for the Wyoming Public Service Commission. Published N...

  18. MCA 75-7-101 et seq - The Natural Streambed and Land Preservation...

    Open Energy Info (EERE)

    7-101 et seq - The Natural Streambed and Land Preservation Act of 1975 Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: MCA...

  19. Wyo. Stat. 35-12-101 et seq.: The Wyoming Industrial Development...

    Open Energy Info (EERE)

    35-12-101 et seq.: The Wyoming Industrial Development Information and Siting Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute:...

  20. Title 18 CFR 4.200 et seq. Application for Amendment of License...

    Open Energy Info (EERE)

    OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 18 CFR 4.200 et seq. Application for Amendment of LicenseLegal Abstract Regulations providing for...

  1. 42 U.S.C. 7401 et seq. - Clean Air Act | Open Energy Information

    Open Energy Info (EERE)

    is the statutory text of the Clean Air Act. Published NA Year Signed or Took Effect 1977 Legal Citation 42 U.S.C. 7401 et seq. DOI Not Provided Check for DOI availability:...

  2. NAC 445B.3485 et seq - Air Pollution Control: Class III Operating...

    Open Energy Info (EERE)

    85 et seq - Air Pollution Control: Class III Operating Permits Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NAC...

  3. NAC 445B.3453 et seq - Air Pollution Control: Class II Operating...

    Open Energy Info (EERE)

    53 et seq - Air Pollution Control: Class II Operating Permits Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NAC 445B.3453...

  4. NAC 445B.352 et seq - Air Pollution Control: Class IV Operating...

    Open Energy Info (EERE)

    52 et seq - Air Pollution Control: Class IV Operating Permits Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NAC 445B.352...

  5. NAC 445B.3361 et seq - Air Pollution Control: Class I Operating...

    Open Energy Info (EERE)

    361 et seq - Air Pollution Control: Class I Operating Permits Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NAC 445B.3361...

  6. 49 A.R.S. 255 et seq.: Arizona Pollutant Discharge Elimination...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: 49 A.R.S. 255 et seq.: Arizona Pollutant Discharge Elimination System ProgramLegal Abstract...

  7. 49 A.R.S. 321 et seq.: Water Quality Appeals | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: 49 A.R.S. 321 et seq.: Water Quality AppealsLegal Abstract This section governs appeals to the...

  8. 41 A.R.S. 1092 et seq.: Uniform Administrative Hearing Procedures...

    Open Energy Info (EERE)

    A.R.S. 1092 et seq.: Uniform Administrative Hearing Procedures Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: 41 A.R.S. 1092 et...

  9. Colorado - C.R.S. 24-4-101 et seq., Rule-making and Licensing...

    Open Energy Info (EERE)

    Colorado - C.R.S. 24-4-101 et seq., Rule-making and Licensing Procedures by State Agencies Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  10. Colorado - C.R.S. 40-1-101 et seq., Definitions | Open Energy...

    Open Energy Info (EERE)

    Colorado - C.R.S. 40-1-101 et seq., Definitions Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Colorado - C.R.S. 40-1-101 et...

  11. Colorado - C.R.S. 43-2-106 et seq., Abandoned State Highways...

    Open Energy Info (EERE)

    Apps Datasets Community Login | Sign Up Search Page Edit with form History Colorado - C.R.S. 43-2-106 et seq., Abandoned State Highways Jump to: navigation, search OpenEI...

  12. Colorado - C.R.S. 40-2-101 et seq., Public Utility Commission...

    Open Energy Info (EERE)

    Colorado - C.R.S. 40-2-101 et seq., Public Utility Commission - Renewable Energy Standard Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  13. Colorado - C.R.S. 24-4-105 et seq., Hearings and Determinations...

    Open Energy Info (EERE)

    Colorado - C.R.S. 24-4-105 et seq., Hearings and Determinations Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Colorado - C.R.S....

  14. Annotation of Plant Genomes using RNA-seq Data (2010 JGI/ANL HPC Workshop)

    ScienceCinema (OSTI)

    Pellegrinni, Matteo [UCLA

    2011-06-08

    Matteo Pellegrini from University of California, Los Angeles gives a presentation on "Annotation of Plant Genomes using RNA-seq Data" at the JGI/Argonne HPC Workshop on January 25, 2010.

  15. Analysis of Strand-Specific RNA-Seq Data Using Machine Learning Reveals the

    Office of Scientific and Technical Information (OSTI)

    Structures of Transcription Units in Clostridium thermocellum (Journal Article) | SciTech Connect Analysis of Strand-Specific RNA-Seq Data Using Machine Learning Reveals the Structures of Transcription Units in Clostridium thermocellum Citation Details In-Document Search Title: Analysis of Strand-Specific RNA-Seq Data Using Machine Learning Reveals the Structures of Transcription Units in Clostridium thermocellum The identification of transcription units (TUs) encoded in a bacterial genome

  16. Stable isotope research pool inventory

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    This report contains a listing of electromagnetically separated stable isotopes which are available for distribution within the United States for non-destructive research use from the Oak Ridge National Laboratory on a loan basis. This inventory includes all samples of stable isotopes in the Materials Research Collection and does not designate whether a sample is out on loan or in reprocessing. For some of the high abundance naturally occurring isotopes, larger amounts can be made available; for example, Ca-40 and Fe-56.

  17. Stable isotope research pool inventory

    SciTech Connect (OSTI)

    Not Available

    1983-03-01

    This report contains a listing of electromagnetically separated stable isotopes which are available for distribution within the United States for non-destructive research use from the Oak Ridge National Laboratory on a loan basis. This inventory includes all samples of stable isotopes in the Materials Research Collection and does not designate whether a sample is out on loan or in reprocessing. For some of the high abundance naturally occurring isotopes, larger amounts can be made available; for example, Ca-40 and Fe-56.

  18. FY 2014 Service Contract Inventory Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis Department of Energy Office of Acquisition Management Strategic Programs Division (MA-622) January 2016 FY 2014 Service Contract Inventory Analysis Department of Energy Contents Page Section 1: Scope 1 Section 2: Methodology 3 Section 3: Findings 5 Section 4: Actions Taken or Planned 6 FY 2014 Service Contract Inventory Analysis Department of Energy 1 Section 1: Scope Service Contract Inventories Section 743 of Division C of the FY 2010 Consolidated Appropriations Act, P.L. 111-117,

  19. FY 2012 Service Contract Inventory Analysis Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Service Contract Inventory Analysis Plan Department of Energy Office of Acquisition and Project Management Strategic Programs Division (MA-622) December 2012 Department of Energy FY 2012 Service Contract Inventory Plan for Analysis The Department of Energy (DOE) approach will be performed in accordance with the criteria set out in Consolidated Appropriations Act, 2010, (Pub. L. No. 111-117, § 743 (2009)) and Appendix D of the November 5, 2010 OMB Memorandum on Service Contract Inventories,

  20. National System Templates: Building Sustainable National Inventory...

    Open Energy Info (EERE)

    System Templates: Building Sustainable National Inventory Management Systems Jump to: navigation, search Tool Summary LAUNCH TOOL Name: National System Templates: Building...

  1. IPCC Inventory Guidelines LULUCF | Open Energy Information

    Open Energy Info (EERE)

    Land Focus Area: Forestry, Agriculture Topics: GHG inventory Resource Type: Guidemanual, Lessons learnedbest practices Website: www.ipcc-nggip.iges.or.jppublicgpglulucf...

  2. IGCA Inventory Sub Guide 040512 | Department of Energy

    Energy Savers [EERE]

    Inventory Sub Guide 040512 IGCA Inventory Sub Guide 040512 PDF icon IGCA_Inventory_Sub_Guide_040512.pdf More Documents & Publications 2015 Inherently Governmental and Commercial Activity (IGCA) Inventory Submission Guidance Microsoft Word - IGCA Inventory Sub Guide 031611 IGCA Training 2012

  3. Stable isotope research pool inventory

    SciTech Connect (OSTI)

    Not Available

    1985-02-01

    This report contains a listing of electromagnetically separated stable isotopes which are available at the Oak Ridge National Laboratory for distribution for non-destructive research use on a loan basis. This inventory includes all samples of stable isotopes in the Research Materials Collection and does not designate whether a sample is out on loan or is in reprocessing. For some of the high abundance naturally occurring isotopes, larger amounts can be made available; for example, /sup 40/Ca and /sup 56/Fe. All request for the loan of samples should be submitted with a summary of the purpose of the loan to: Isotope Distribution Office, Oak Ridge National Laboratory, P.O. Box X, Oak Ridge, Tennessee 37831. Requests from non-DOE contractors and from foreign institutions require DOE approval.

  4. Stable isotope research pool inventory

    SciTech Connect (OSTI)

    Not Available

    1986-08-01

    This report contains a listing of electromagnetically separated stable isotopes which are available at the Oak Ridge National Laboratory for distribution for nondestructive research use on a loan basis. This inventory includes all samples of stable isotopes in the Research Materials Collection and does not designate whether a sample is out on loan or is in reprocessing. For some of the high-abundance, naturally occurring isotopes, larger amounts can be made available; for example, Ca-40 and Fe-56. All requests for the loan of samples should be submitted with a summary of the purpose of the loan to: Iotope Distribution Office, Oak Ridge National Laboratory, P.O. Box X, Oak Ridge, Tennessee 37831. Requests from non-DOE contractors and from foreign institutions require DOE approval.

  5. Inventory Data Package for Hanford Assessments

    SciTech Connect (OSTI)

    Kincaid, Charles T.; Eslinger, Paul W.; Aaberg, Rosanne L.; Miley, Terri B.; Nelson, Iral C.; Strenge, Dennis L.; Evans, John C.

    2006-06-01

    This document presents the basis for a compilation of inventory for radioactive contaminants of interest by year for all potentially impactive waste sites on the Hanford Site for which inventory data exist in records or could be reasonably estimated. This document also includes discussions of the historical, current, and reasonably foreseeable (1944 to 2070) future radioactive waste and waste sites; the inventories of radionuclides that may have a potential for environmental impacts; a description of the method(s) for estimating inventories where records are inadequate; a description of the screening method(s) used to select those sites and contaminants that might make a substantial contribution to impacts; a listing of the remedial actions and their completion dates for waste sites; and tables showing the best estimate inventories available for Hanford assessments.

  6. IPCC Guidelines for National Greenhouse Gas Inventories | Open...

    Open Energy Info (EERE)

    Guidelines for National Greenhouse Gas Inventories Jump to: navigation, search Tool Summary Name: IPCC Guidelines for National Greenhouse Gas Inventories AgencyCompany...

  7. Managing the National Greenhouse Gas Inventory Process | Open...

    Open Energy Info (EERE)

    Managing the National Greenhouse Gas Inventory Process Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Managing the National Greenhouse Gas Inventory Process Agency...

  8. 2015 Inherently Governmental and Commercial Activity (IGCA) Inventory...

    Energy Savers [EERE]

    Inherently Governmental and Commercial Activity (IGCA) Inventory Submission Guidance 2015 ... Office of Management and Budget's (OMB) 2015 inventory guidance yet, but anticipates ...

  9. High natural gas output and inventories contribute to lower prices

    U.S. Energy Information Administration (EIA) Indexed Site

    High natural gas output and inventories contribute to lower prices High natural gas production and ample gas inventories are expected to keep natural gas prices relatively low for ...

  10. PROCEDURE FOR PREPARING RECORDS INVENTORY AND DISPOSITION SCHEDULES...

    Energy Savers [EERE]

    records inventory and disposition schedules PDF icon PROCEDURE FOR PREPARING RECORDS INVENTORY AND DISPOSITION SCHEDULES (RIDS) More Documents & Publications DOE F 1324.10...

  11. UNFCCC-GHG Inventory Review Training Program | Open Energy Information

    Open Energy Info (EERE)

    Logo: UNFCCC GHG inventory Review Training Program The Basic Course of the updated training programme covers technical aspects of the review of GHG inventories under the...

  12. UNFCCC-GHG Inventory Review Training Program | Open Energy Information

    Open Energy Info (EERE)

    UNFCCC-GHG Inventory Review Training Program (Redirected from UNFCCC GHG Inventory Review Training Program) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: UNFCCC GHG...

  13. Tunisia-Capacity Development for GHG inventories and MRV | Open...

    Open Energy Info (EERE)

    Tunisia-Capacity Development for GHG inventories and MRV Jump to: navigation, search Name Capacity Development for GHG inventories and MRV in Tunisia AgencyCompany Organization...

  14. Tunisia-Capacity Development for GHG inventories and MRV | Open...

    Open Energy Info (EERE)

    Development for GHG inventories and MRV in Tunisia) Jump to: navigation, search Name Capacity Development for GHG inventories and MRV in Tunisia AgencyCompany Organization...

  15. EPA-GHG Inventory Capacity Building | Open Energy Information

    Open Energy Info (EERE)

    EPA-GHG Inventory Capacity Building Jump to: navigation, search Tool Summary Name: US EPA GHG inventory Capacity Building AgencyCompany Organization: United States Environmental...

  16. Moldova National Inventory Report - Lessons Learned | Open Energy...

    Open Energy Info (EERE)

    Moldova National Inventory Report - Lessons Learned Jump to: navigation, search Name Moldova Second National Inventory Report - Lessons Learned AgencyCompany Organization United...

  17. Building Trust in GHG Inventories from the United States and...

    Open Energy Info (EERE)

    Trust in GHG Inventories from the United States and China Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Counting the Gigatones: Building Trust in GHG Inventories from...

  18. The Sim-SEQ Project: Comparison of Selected Flow Models for the S-3 Site

    SciTech Connect (OSTI)

    Mukhopadhyay, Sumit; Doughty, Christine A.; Bacon, Diana H.; Li, Jun; Wei, Lingli; Yamamoto, Hajime; Gasda, Sarah E.; Hosseini, Seyyed; Nicot, Jean-Philippe; Birkholzer, Jens

    2015-05-23

    Sim-SEQ is an international initiative on model comparison for geologic carbon sequestration, with an objective to understand and, if possible, quantify model uncertainties. Model comparison efforts in Sim-SEQ are at present focusing on one specific field test site, hereafter referred to as the Sim-SEQ Study site (or S-3 site). Within Sim-SEQ, different modeling teams are developing conceptual models of CO2 injection at the S-3 site. In this paper, we select five flow models of the S-3 site and provide a qualitative comparison of their attributes and predictions. These models are based on five different simulators or modeling approaches: TOUGH2/EOS7C, STOMP-CO2e, MoReS, TOUGH2-MP/ECO2N, and VESA. In addition to model-to-model comparison, we perform a limited model-to-data comparison, and illustrate how model choices impact model predictions. We conclude the paper by making recommendations for model refinement that are likely to result in less uncertainty in model predictions.

  19. Inventory of state energy models

    SciTech Connect (OSTI)

    Melcher, A.G.; Gist, R.L.; Underwood, R.G.; Weber, J.C.

    1980-03-31

    These models address a variety of purposes, such as supply or demand of energy or of certain types of energy, emergency management of energy, conservation in end uses of energy, and economic factors. Fifty-one models are briefly described as to: purpose; energy system; applications;status; validation; outputs by sector, energy type, economic and physical units, geographic area, and time frame; structure and modeling techniques; submodels; working assumptions; inputs; data sources; related models; costs; references; and contacts. Discussions in the report include: project purposes and methods of research, state energy modeling in general, model types and terminology, and Federal legislation to which state modeling is relevant. Also, a state-by-state listing of modeling efforts is provided and other model inventories are identified. The report includes a brief encylopedia of terms used in energy models. It is assumed that many readers of the report will not be experienced in the technical aspects of modeling. The project was accomplished by telephone conversations and document review by a team from the Colorado School of Mines Research Institute and the faculty of the Colorado School of Mines. A Technical Committee (listed in the report) provided advice during the course of the project.

  20. National Coal Quality Inventory (NACQI)

    SciTech Connect (OSTI)

    Robert Finkelman

    2005-09-30

    The U.S. Geological Survey (USGS) conducted the National Coal Quality Inventory (NaCQI) between 1999 and 2005 to address a need for quality information on coals that will be mined during the next 20-30 years. Collaboration between the USGS, State geological surveys, universities, coal burning utilities, and the coal mining industry plus funding support from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) permitted collection and submittal of coal samples for analysis. The chemical data (proximate and ultimate analyses; major, minor and trace element concentrations) for 729 samples of raw or prepared coal, coal associated shale, and coal combustion products (fly ash, hopper ash, bottom ash and gypsum) from nine coal producing States are included. In addition, the project identified a new coal reference analytical standard, to be designated CWE-1 (West Elk Mine, Gunnison County, Colorado) that is a high-volatile-B or high-volatile-A bituminous coal with low contents of ash yield and sulfur, and very low, but detectable contents of chlorine, mercury and other trace elements.

  1. FY 2010 Service Contract Inventory Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... and the Acquisition Law Panel (also referred to as the "SARA Panel"). FY2010 Service Contract Inventory Analysis ... survey so that data is received in a single usable format. ...

  2. Annual Transuranic Waste Inventory Report - 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Page 4 of 382 Table of Figures Figure 1-1. U.S. Department of Energy TRU Waste Generator Sites ... 17 Figure 2-1. TRU Waste Inventory Process Flowchart...

  3. State Energy Efficiency Program Evaluation Inventory

    U.S. Energy Information Administration (EIA) Indexed Site

    State Energy Efficiency Program Evaluation Inventory July 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | State Energy Efficiency Program Evaluation Inventory i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other

  4. FY 2011 Service Contract Inventory Analysis Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Service Contract Inventory Analysis Plan Department of Energy Office of Procurement & Assistance Management Strategic Programs Division (MA-622) December 2011 Department of Energy FY 2011 Service Contract Inventory Plan for Analysis The Department of Energy (DOE) approach will be performed in accordance with the criteria set out in Consolidated Appropriations Act, 2010, (Pub. L. No. 111-117, § 743 (2009)) and Appendix D of the November 5, 2010 OMB Memorandum on Service Contract

  5. Technical Basis for PNNL Beryllium Inventory

    SciTech Connect (OSTI)

    Johnson, Michelle Lynn

    2014-07-09

    The Department of Energy (DOE) issued Title 10 of the Code of Federal Regulations Part 850, “Chronic Beryllium Disease Prevention Program” (the Beryllium Rule) in 1999 and required full compliance by no later than January 7, 2002. The Beryllium Rule requires the development of a baseline beryllium inventory of the locations of beryllium operations and other locations of potential beryllium contamination at DOE facilities. The baseline beryllium inventory is also required to identify workers exposed or potentially exposed to beryllium at those locations. Prior to DOE issuing 10 CFR 850, Pacific Northwest Nuclear Laboratory (PNNL) had documented the beryllium characterization and worker exposure potential for multiple facilities in compliance with DOE’s 1997 Notice 440.1, “Interim Chronic Beryllium Disease.” After DOE’s issuance of 10 CFR 850, PNNL developed an implementation plan to be compliant by 2002. In 2014, an internal self-assessment (ITS #E-00748) of PNNL’s Chronic Beryllium Disease Prevention Program (CBDPP) identified several deficiencies. One deficiency is that the technical basis for establishing the baseline beryllium inventory when the Beryllium Rule was implemented was either not documented or not retrievable. In addition, the beryllium inventory itself had not been adequately documented and maintained since PNNL established its own CBDPP, separate from Hanford Site’s program. This document reconstructs PNNL’s baseline beryllium inventory as it would have existed when it achieved compliance with the Beryllium Rule in 2001 and provides the technical basis for the baseline beryllium inventory.

  6. RADIOISOTOPE INVENTORY FOR TSPA-SR

    SciTech Connect (OSTI)

    C. Leigh; R. Rechard

    2001-01-30

    The total system performance assessment for site recommendation (TSPA-SR), on Yucca Mountain, as a site (if suitable) for disposal of radioactive waste, consists of several models. The Waste Form Degradation Model (i.e, source term) of the TSPA-SR, in turn, consists of several components. The Inventory Component, discussed here, defines the inventory of 26 radioisotopes for three representative waste categories: (1) commercial spent nuclear fuel (CSNF), (2) US Department of Energy (DOE) spent nuclear fuel (DSNF), and (3) high-level waste (HLW). These three categories are contained and disposed of in two types of waste packages (WPs)--CSNF WPs and co-disposal WPs, with the latter containing both DSNF and HLW. Three topics are summarized in this paper: first, the transport of radioisotopes evaluated in the past; second, the development of the inventory for the two WP types; and third, the selection of the most important radioisotopes to track in TSPA-SR.

  7. INEEL Greenhouse Gas Inventory and Trend Analysis

    SciTech Connect (OSTI)

    Shropshire, David Earl; Teel, Dale Milton

    2000-02-01

    The objective of the INEEL GHG Inventory and Trend Analysis is to establish INEEL expertise in carbon management decision making and policy analysis. This FY-99 effort is the first step toward placing the INEEL in a leadership role within the DOE laboratories to support carbon management systems and analysis.

  8. FAIR Act Inventory - FY12 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 FAIR Act Inventory - FY12 File DOE 2015 FAIR More Documents & Publications FAIR Act Inventory - FY13 Memorandum Summarizing Ex Parte Communication Detailed Monthly and Annual LNG Import Statistics (2004-2012)

  9. Natural gas inventories heading to record levels at start of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural gas inventories heading to record levels at start of winter heating season U.S. natural gas inventories are expected to be at record levels to start the winter heating ...

  10. Natural gas inventories end the winter at a record high

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural gas inventories end the winter at a record high U.S. natural gas inventories finished the winter heating season at their highest level ever. In its new monthly forecast, ...

  11. End of Year 2010 SNF & HLW Inventories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    End of Year 2010 SNF & HLW Inventories End of Year 2010 SNF & HLW Inventories Map of the United States of America that shows the location of approximately 64,000 MTHM of Spent ...

  12. Excess Uranium Inventory Management Plan 2008 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plan 2008 Excess Uranium Inventory Management Plan 2008 On March 11, 2008, Secretary of Energy Samuel W. Bodman signed a policy statement1 on the management of the U.S. Department of Energy's (DOE) excess uranium inventory (Policy Statement). This Policy Statement provides the framework within which DOE will make decisions concerning future use and disposition of this inventory. The Policy Statement commits DOE to manage those inventories in a manner that: (1) is consistent with all applicable

  13. DOE Announces Policy for Managing Excess Uranium Inventory | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Policy for Managing Excess Uranium Inventory DOE Announces Policy for Managing Excess Uranium Inventory March 12, 2008 - 10:52am Addthis WASHINGTON, DC - U.S. Secretary of Energy Samuel W. Bodman today released a Policy Statement on the management of the Department of Energy's (DOE) excess uranium inventory, providing the framework within which DOE will make decisions concerning future use and disposition of its inventory. During the coming year, DOE will continue its ongoing program

  14. DOE Releases Excess Uranium Inventory Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Excess Uranium Inventory Plan DOE Releases Excess Uranium Inventory Plan December 16, 2008 - 8:51am Addthis WASHINGTON, D.C. - The United States Department of Energy (DOE) today issued its Excess Uranium Inventory Management Plan (the Plan), which outlines the Department's strategy for the management and disposition of its excess uranium inventories. The Plan highlights DOE's ongoing efforts to enhance national security and promote a healthy domestic nuclear infrastructure through the efficient

  15. 2002 DOE Final Inherently Governmental and Commercial Activities Inventory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 2 DOE Final Inherently Governmental and Commercial Activities Inventory 2002 DOE Final Inherently Governmental and Commercial Activities Inventory PDF icon 2002 DOE Final Inherently Governmental and Commercial Activities Inventory More Documents & Publications 2003 DOE IGCA Inventory Data for web.xls� 3REV2004DOEFAIR.xls� N:\My Documents\porfin.pdf�

  16. E-IDR (Inventory Disclosure Record) PIA, Idaho National Laboratory |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy E-IDR (Inventory Disclosure Record) PIA, Idaho National Laboratory E-IDR (Inventory Disclosure Record) PIA, Idaho National Laboratory E-IDR (Inventory Disclosure Record) PIA, Idaho National Laboratory PDF icon E-IDR (Inventory Disclosure Record) PIA, Idaho National Laboratory More Documents & Publications PIA - INL Education Programs Business Enclave Manchester Software 1099 Reporting PIA, Idaho National Laboratory Integrated Safety Management Workshop Registration,

  17. PROCEDURE FOR CONDUCTING A RECORDS INVENTORY | Department of...

    Energy Savers [EERE]

    FOR CONDUCTING A RECORDS INVENTORY More Documents & Publications Records Management Handbook Records Management Handbook Information and Records Management Transition Guidance...

  18. EPA-GHG Inventory Targeted Data Collection Strategies and Software...

    Open Energy Info (EERE)

    Protection Agency Sector: Energy, Land Topics: GHG inventory Resource Type: Dataset, Lessons learnedbest practices, Training materials, Softwaremodeling tools User...

  19. Air Emission Inventory for the INEEL -- 1999 Emission Report

    SciTech Connect (OSTI)

    Zohner, Steven K

    2000-05-01

    This report presents the 1999 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradionuclide emissions estimates for stationary sources.

  20. Rnnotator: an automated de novo transcriptome assembly pipeline from stranded RNA-Seq reads

    SciTech Connect (OSTI)

    Martin, Jeffrey; Bruno, Vincent M.; Fang, Zhide; Meng, Xiandong; Blow, Matthew; Zhang, Tao; Sherlock, Gavin; Snyder, Michael; Wang, Zhong

    2010-11-19

    Background: Comprehensive annotation and quantification of transcriptomes are outstanding problems in functional genomics. While high throughput mRNA sequencing (RNA-Seq) has emerged as a powerful tool for addressing these problems, its success is dependent upon the availability and quality of reference genome sequences, thus limiting the organisms to which it can be applied. Results: Here, we describe Rnnotator, an automated software pipeline that generates transcript models by de novo assembly of RNA-Seq data without the need for a reference genome. We have applied the Rnnotator assembly pipeline to two yeast transcriptomes and compared the results to the reference gene catalogs of these organisms. The contigs produced by Rnnotator are highly accurate (95percent) and reconstruct full-length genes for the majority of the existing gene models (54.3percent). Furthermore, our analyses revealed many novel transcribed regions that are absent from well annotated genomes, suggesting Rnnotator serves as a complementary approach to analysis based on a reference genome for comprehensive transcriptomics. Conclusions: These results demonstrate that the Rnnotator pipeline is able to reconstruct full-length transcripts in the absence of a complete reference genome.

  1. Sandia Explosive Inventory and Information System

    SciTech Connect (OSTI)

    Clements, D.A.

    1994-08-01

    The Explosive Inventory and Information System (EIS) is being developed and implemented by Sandia National Laboratories (SNL) to incorporate a cradle to grave structure for all explosives and explosive containing devices and assemblies at SNL from acquisition through use, storage, reapplication, transfer or disposal. The system does more than track all material inventories. It provides information on material composition, characteristics, shipping requirements; life cycle cost information, plan of use; and duration of ownership. The system also provides for following the processes of explosive development; storage review; justification for retention; Resource, Recovery and Disposition Account (RRDA); disassembly and assembly; and job description, hazard analysis and training requirements for all locations and employees involved with explosive operations. In addition, other information systems will be provided through the system such as the Department of Energy (DOE) and SNL Explosive Safety manuals, the Navy`s Department of Defense (DoD) Explosive information system, and the Lawrence Livermore National Laboratories (LLNL) Handbook of Explosives.

  2. Fuel-based motor vehicle emission inventory

    SciTech Connect (OSTI)

    Singer, B.C.; Harley, R.A.

    1996-06-01

    A fuel-based methodology for calculating motor vehicle emission inventories is presented. In the fuel-based method, emission factors are normalized to fuel consumption and expressed as grams of pollutant emitted per gallon of gasoline burned. Fleet-average emission factors are calculated from the measured on-road emissions of a large, random sample of vehicles. Using this method, a fuel-based motor vehicle CO inventory was calculated for the South Coast Air Basin in California for summer 1991. Emission factors were calculated from remote sensing measurements of more than 70,000 in-use vehicles. Results of the study are presented and a conclusion is provided. 40 refs., 4 figs., 6 tabs.

  3. Physical Inventory Listing NRC 742cu

    National Nuclear Security Administration (NNSA)

    EXAMPLE 4 *** Company Name RIS 09/30/2008 A 864 0 0 90 J 1 1 A 864 0 0 90 J 2 2 1* 1* E4 E2 E1 864 0 90 J 3 2 A 0 4 *Reporting itemized inventory Total U U-235 E1 = 0.4 0.001 E2 = 0.4 0.11 E4 = 0.4 0.39 Total: 1.2 0.501

  4. Air Emission, Liquid Effluent Inventory and Reporting

    Energy Science and Technology Software Center (OSTI)

    1998-08-18

    The IES maintains an inventory of radiological air and liquid effluents released to the atmosphere. The IES utilizes the official stack numbers. Data may be entered by generators for any monitoring time period. Waste volumes released as well as their radiological constituents are tracked. The IES provides data to produce a report for NESHAPS as well as several administrative action/anomaly reports. These reports flag unusual occurences (releases) that are above normal range releases.

  5. Geoscience Equipment Inventory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geoscience Equipment Inventory « Geoscience Laboratory Title Equipment Type Description Coy Anaerobic Chamber Inert Atmosphere Chamber Coy anaerobic chamber (Type C, model 7100-000) with auto airlock for wet and dry sample preparations, 5% H2/95% N2 mix atmosphere, and auto injection system. Fisher Scientific General Purpose Refrigerator Temperature Control Fisher Scientific General Purpose refrigerator. Fisher Scientific Isotemp Freezer Temperature Control Fisher Scientific Isotemp Freezer.

  6. Available for Checkout Equipment Inventory | Sample Preparation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories Available for Checkout Equipment Inventory « Equipment Resources Title Description Agate Mortar & Pestle Sets Agate mortar & pestle sets (100mm, 65 mm, & 50mm sizes). Buchi V-700 Vacuum Pump & condenser Chemically resistant vacuum pump, flow rate 1.8m^3/h, ultimate vacuum less than 10mbar. The secondary condenser (Buchi 047180) is a complete module with insulation and 500mL receiving flask. Campden Instruments Vibrating Manual Tissue Cutter HA 752 Campden

  7. ChIP-seq Mapping of Distant-Acting Enhancers and Their In Vivo Activities

    SciTech Connect (OSTI)

    Visel, Axel; Pennacchio, Len A.

    2011-06-01

    The genomic location and function of most distant-acting transcriptional enhancers in the human genome remains unknown We performed ChIP-seq for various transcriptional coactivator proteins (such as p300) directly from different embryonic mouse tissues, identifying thousands of binding sitesTransgenic mouse experiments show that p300 and other co-activator peaks are highly predictive of genomic location AND tissue-specific activity patterns of distant-acting enhancersMost enhancers are active only in one or very few tissues Genomic location of tissue-specific p300 peaks correlates with tissue-specific expression of nearby genes Most binding sites are conserved, but the global degree of conservation varies between tissues

  8. Plutonium inventory characterization technical evaluation report

    SciTech Connect (OSTI)

    Wittman, G.R., Westinghouse Hanford

    1996-07-10

    This is a technical report on the data, gathered to date, under WHC- SD-CP-TP-086, Rev. 1, on the integrity of the food pack cans currently being used to store plutonium or plutonium compounds at the Plutonium Finishing Plant. Workplan PFP-96-VO-009, `Inspection of Special Nuclear Material Using X-ray`, was used to gather data on material and containment conditions using real time radiography. Some of those images are included herein. A matrix found in the `Plutonium Inventory Characterization Implementation Plan` was used to categorize different plutonium items based upon the type of material being stored and the life expectancy of the containers.

  9. Plutomium inventory characterization technical evaluation report II

    SciTech Connect (OSTI)

    Wittman, G.R.

    1996-09-06

    This is a technical report on the data gathered between May 1 and August 30, 1996 under WHC-SD-CP-TP-086, Rev. 1, on the integrity of stored special nuclear material at the Plutonium Finishing Plant. Work Plan PFP-96-VO-009, `Inspection of Special Nuclear Material Using X-ray` was used to gather data on material and containment conditions using real time radiography. Some of those images are included herein. A matrix found in the `Plutonium Inventory Characterization Implementation Plan` was used to categorize different plutonium items based upon the type of material being stored and the life expectancy of the containers.

  10. Annual Transuranic Waste Inventory Report - 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ANNUAL TRANSURANIC WASTE INVENTORY REPORT - 2015 (Data Cutoff Date 12/31/2014) DOE/TRU-15-3425 Revision 0 December 2015 U.S. Department of Energy Carlsbad Field Office This document has been submitted as required to: U.S. Department of Energy Office of Scientific and Technical Information PO Box 62 Oak Ridge, TN 37831 Phone: (865) 576-8401 Additional information about this document may be obtained by calling 1-800-336-9477. Unlimited, publicly available full-text scientific and technical reports

  11. BCM 2 Equipment Inventory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Equipment Inventory « Biology Chemistry & Material Science Laboratory 2 Title Equipment Type Description Accumet Basic AB15 pH meter pH Meter pH meters with combination Ag/AgCl electrode and ATC probe. Corning 430 pH Meter pH Meter (Cold Room) Corning 430 pH meter. Corning 6795-420D Digital Stirrer/Hot Plate w/ temp probe Temperature Control Digital Hot Plate/Stirrer, 5 inch x 7 inch ceramic top, temperature range: 5° to 550°C; stir range: 60 to 1100rpm. The hot plate is equipment with

  12. FY13 Energy Department Federal Program Inventory | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FY13 Energy Department Federal Program Inventory FY13 Energy Department Federal Program Inventory Per the Government Performance and Results Act (GPRA) Modernization Act, DOE's Federal Program Inventory (FPI) is part of a Federal-wide program list intended to facilitate coordination by making it easier to find programs that contribute to a shared goal. The FPI is also intended to improve public understanding of Federal programs operations and linkages to budget, performance, and other

  13. Web Content Analysis and Inventories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Content Analysis and Inventories Web Content Analysis and Inventories The Office of Energy Efficiency and Renewable Energy (EERE) recommends periodic content inventories and analyses of its websites. They will help identify content that needs to be updated, edited, added, or removed for maintenance. They're also recommended prior to starting a website redesign. EERE asks that all Web Coordinators and their teams review their websites' content at least once a year. It is an important part of

  14. Excess Uranium Inventory Management Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plan Excess Uranium Inventory Management Plan The 2013 Excess Uranium Inventory Management Plan describes a framework for the effective management of the Energy Department's surplus uranium inventory in support of meeting its critical environmental cleanup and national security missions. The Plan is not a commitment to specific activities beyond those that have already been contracted nor is it a restriction on actions that the Department may undertake in the future as a result of changing

  15. Managing Inventories of Heavy Actinides (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Conference: Managing Inventories of Heavy Actinides Citation Details In-Document Search Title: Managing Inventories of Heavy Actinides The Department of Energy (DOE) has stored a limited inventory of heavy actinides contained in irradiated targets, some partially processed, at the Savannah River Site (SRS) and Oak Ridge National Laboratory (ORNL). The 'heavy actinides' of interest include plutonium, americium, and curium isotopes; specifically 242Pu and 244Pu,

  16. USE OF CHEMICAL INVENTORY ACCURACY MEASUREMENTS AS LEADING INDICATORS

    SciTech Connect (OSTI)

    Kuntamukkula, M.

    2011-02-10

    Chemical safety and lifecycle management (CSLM) is a process that involves managing chemicals and chemical information from the moment someone begins to order a chemical and lasts through final disposition(1). Central to CSLM is tracking data associated with chemicals which, for the purposes of this paper, is termed the chemical inventory. Examples of data that could be tracked include chemical identity, location, quantity, date procured, container type, and physical state. The reason why so much data is tracked is that the chemical inventory supports many functions. These functions include emergency management, which depends upon the data to more effectively plan for, and respond to, chemical accidents; environmental management that uses inventory information to aid in the generation of various federally-mandated and other regulatory reports; and chemical management that uses the information to increase the efficiency and safety with which chemicals are stored and utilized. All of the benefits of having an inventory are predicated upon having an inventory that is reasonably accurate. Because of the importance of ensuring one's chemical inventory is accurate, many have become concerned about measuring inventory accuracy. But beyond providing a measure of confidence in information gleaned from the inventory, does the inventory accuracy measurement provide any additional function? The answer is 'Yes'. It provides valuable information that can be used as a leading indicator to gauge the health of a chemical management system. In this paper, we will discuss: what properties make leading indicators effective, how chemical inventories can be used as a leading indicator, how chemical inventory accuracy can be measured, what levels of accuracies should realistically be expected in a healthy system, and what a subpar inventory accuracy measurement portends.

  17. Agriculture and Land Use National Greenhouse Gas Inventory Software...

    Open Energy Info (EERE)

    Agriculture and Land Use National Greenhouse Gas Inventory Software Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Agriculture and Land Use National Greenhouse Gas...

  18. Tools for Forest Carbon Inventory, Management, and Reporting...

    Open Energy Info (EERE)

    of carbon in forests are crucial for forest carbon management, carbon credit trading, national reporting of greenhouse gas inventories to the United Nations Framework...

  19. Building GHGs National Inventory Systems | Open Energy Information

    Open Energy Info (EERE)

    order to enable all developing countries with REDD potential to compile and present their national greenhouse gas inventories, it is absolutely essential that all available...

  20. CMI Education Course Inventory: Geology Engineering/Geochemistry...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Course Inventory: Geology EngineeringGeochemistry Geology EngineeringGeochemistry Of the six CMI Team members that are educational institutions, five offer courses in Geology....

  1. Greenhouse Gas Training Program for Inventory and Mitigation...

    Open Energy Info (EERE)

    divisionsfuture-perfect Country: South Korea Eastern Asia Language: English References: Greenhouse Gas Training Program for Inventory and Mitigation Modeling1...

  2. UNFCCC-GHG Inventory Data | Open Energy Information

    Open Energy Info (EERE)

    Data AgencyCompany Organization: United Nations Framework Convention on Climate Change Sector: Energy, Land Topics: GHG inventory, Background analysis Resource Type: Dataset...

  3. Greenhouse Gas Regional Inventory Protocol (GRIP) Website | Open...

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentgreenhouse-gas-regional-inventory-pro Language: English Policies: Deployment Programs DeploymentPrograms: "Lead by Example" is not...

  4. UNFCCC-GHG Inventory Methodological Documents and Training Materials...

    Open Energy Info (EERE)

    Company Organization: United Nations Framework Convention on Climate Change Sector: Energy, Land Topics: GHG inventory Resource Type: Lessons learnedbest practices, Training...

  5. Emission Inventories and Projections (Book) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Title: Emission Inventories and Projections When the Executive Body to the Convention on Long-range Transboundary Air Pollution took the decision to establish the Task Force on ...

  6. Categorization of Used Nuclear Fuel Inventory in Support of a...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Nuclear Fuel Cycle Strategy Categorization of Used Nuclear Fuel Inventory in Support of a Comprehensive National Nuclear Fuel Cycle Strategy The Office of Nuclear Energy ...

  7. Global Atmospheric Pollution Forum Air Pollutant Emission Inventory...

    Open Energy Info (EERE)

    Atmospheric Pollution Forum Air Pollutant Emission Inventory Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Global Atmospheric Pollution (GAP) Forum Air Pollutant...

  8. EPA-GHG Inventory Capacity Building | Open Energy Information

    Open Energy Info (EERE)

    Capacity Building) Jump to: navigation, search Tool Summary Name: US EPA GHG inventory Capacity Building AgencyCompany Organization: United States Environmental Protection...

  9. Oil inventories in industrialized countries to reach record high...

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration said it expects commercial oil inventories in the United States and other industrialized countries to total 2.83 billion barrels at the end of this ...

  10. Greenhouse Gas Inventory Development in Asia | Open Energy Information

    Open Energy Info (EERE)

    Research Sector: Energy, Land Topics: GHG inventory Resource Type: Guidemanual, Lessons learnedbest practices Website: www.nies.go.jpgaiyomediakit9.WGIAI067.pdf...

  11. UNFCCC Individual Reviews of GHG Inventories | Open Energy Information

    Open Energy Info (EERE)

    search Name UNFCCC Individual Reviews of GHG Inventories AgencyCompany Organization United Nations Framework Convention on Climate Change Sector Energy, Land Topics GHG...

  12. SSRL HIRING REQUEST / EMPLOYMENT REQUISITION WORKSHEET Hiring...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    InternalExternal WBS NOTE: If internal posting only is considered contact Stephanie Carlson. Charge : %: Additional advertising needed in posting position? Yes No Job...

  13. Core Competency Worksheets for Significant Cybersecurity Roles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information System Security Officer (ISSO) Information System Security Manager (ISSM) Cybersecurity Program Manager (CSPM) Security Control Assessor Information System Owner (ISO)

  14. Buildings GHG Mitigation Estimator Worksheet, Version 1

    Broader source: Energy.gov [DOE]

    Xcel document describes Version 1 of the the Buildings GHG Mitigation Estimator tool. This tool assists federal agencies in estimating the greenhouse gas mitigation reduction from implementing energy efficiency measures across a portfolio of buildings. It is designed to be applied to groups of office buildings, for example, at a program level (regional or site) that can be summarized at the agency level. While the default savings and cost estimates apply to office buildings, users can define their own efficiency measures, costs, and savings estimates for inclusion in the portfolio assessment. More information on user-defined measures can be found in Step 2 of the buildings emission reduction guidance. The output of this tool is a prioritized set of activities that can help the agency to achieve its greenhouse gas reduction targets most cost-effectively.

  15. National Bridge Inventory Record Data Submission Requirement | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy National Bridge Inventory Record Data Submission Requirement National Bridge Inventory Record Data Submission Requirement More Documents & Publications Slide 1 Microsoft PowerPoint - 2009.10.27 Bridge Inspection Follow-up Information and Records Management Transition Guidance

  16. 2013 guidance fo real Property Inventory Reporting | Department of Energy

    Energy Savers [EERE]

    guidance fo real Property Inventory Reporting 2013 guidance fo real Property Inventory Reporting PDF icon SIGNED_FY13_Rpt_Instructions REV - 2013.08.15.pdf More Documents & Publications FY 2012 Federal Real Property Reporting Requirement FY09_Federal_Real_Property_Reporting_Requirements.pdf Guidance for Fiscal Year 2015 Facilities Information Management System Data Validations

  17. Smoothing method aids gas-inventory variance trending

    SciTech Connect (OSTI)

    Mason, R.G. )

    1992-03-23

    This paper reports on a method for determining gas-storage inventory and variance in a natural-gas storage field which uses the equations developed to determine gas-in-place in a production field. The calculations use acquired data for shut-in pressures, reservoir pore volume, and storage gas properties. These calculations are then graphed and trends are developed. Evaluating trends in inventory variance can be enhanced by use of a technique, described here, that smooths the peaks and valleys of an inventory-variance curve. Calculations using the acquired data determine inventory for a storage field whose drive mechanism is gas expansion (that is, volumetric). When used for a dry gas, condensate, or gas-condensate reservoir, the formulas require no further modification. Inventory in depleted oil fields can be determined in this same manner, as well. Some additional calculations, however, must be made to assess the influence of oil production on the gas-storage process.

  18. Microsoft Word - PPL 970-Materials and Inventory 5-9-05.doc ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PPL 970-Materials and Inventory 5-9-05.doc Microsoft Word - PPL 970-Materials and Inventory 5-9-05.doc PDF icon Microsoft Word - PPL 970-Materials and Inventory 5-9-05.doc More ...

  19. Analysis of Strand-Specific RNA-Seq Data Using Machine Learning Reveals the Structures of Transcription Units in Clostridium thermocellum

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chou, Wen-Chi; Ma, Qin; Yang, Shihui; Cao, Sha; Klingeman, Dawn M.; Brown, Steven D.; Xu, Ying

    2015-03-12

    The identification of transcription units (TUs) encoded in a bacterial genome is essential to elucidation of transcriptional regulation of the organism. To gain a detailed understanding of the dynamically composed TU structures, we have used four strand-specific RNA-seq (ssRNA-seq) datasets collected under two experimental conditions to derive the genomic TU organization of Clostridium thermocellum using a machine-learning approach. Our method accurately predicted the genomic boundaries of individual TUs based on two sets of parameters measuring the RNA-seq expression patterns across the genome: expression-level continuity and variance. A total of 2590 distinct TUs are predicted based on the four RNA-seq datasets.more » Moreover, among the predicted TUs, 44% have multiple genes. We assessed our prediction method on an independent set of RNA-seq data with longer reads. The evaluation confirmed the high quality of the predicted TUs. Functional enrichment analyses on a selected subset of the predicted TUs revealed interesting biology. To demonstrate the generality of the prediction method, we have also applied the method to RNA-seq data collected on Escherichia coli and achieved high prediction accuracies. The TU prediction program named SeqTU is publicly available athttps://code.google.com/p/seqtu/. We expect that the predicted TUs can serve as the baseline information for studying transcriptional and post-transcriptional regulation in C. thermocellum and other bacteria.« less

  20. Analysis of Strand-Specific RNA-Seq Data Using Machine Learning Reveals the Structures of Transcription Units in Clostridium thermocellum

    SciTech Connect (OSTI)

    Chou, Wen-Chi; Ma, Qin; Yang, Shihui; Cao, Sha; Klingeman, Dawn M.; Brown, Steven D.; Xu, Ying

    2015-03-12

    The identification of transcription units (TUs) encoded in a bacterial genome is essential to elucidation of transcriptional regulation of the organism. To gain a detailed understanding of the dynamically composed TU structures, we have used four strand-specific RNA-seq (ssRNA-seq) datasets collected under two experimental conditions to derive the genomic TU organization of Clostridium thermocellum using a machine-learning approach. Our method accurately predicted the genomic boundaries of individual TUs based on two sets of parameters measuring the RNA-seq expression patterns across the genome: expression-level continuity and variance. A total of 2590 distinct TUs are predicted based on the four RNA-seq datasets. Moreover, among the predicted TUs, 44% have multiple genes. We assessed our prediction method on an independent set of RNA-seq data with longer reads. The evaluation confirmed the high quality of the predicted TUs. Functional enrichment analyses on a selected subset of the predicted TUs revealed interesting biology. To demonstrate the generality of the prediction method, we have also applied the method to RNA-seq data collected on Escherichia coli and achieved high prediction accuracies. The TU prediction program named SeqTU is publicly available athttps://code.google.com/p/seqtu/. We expect that the predicted TUs can serve as the baseline information for studying transcriptional and post-transcriptional regulation in C. thermocellum and other bacteria.

  1. Estonian greenhouse gas emissions inventory report

    SciTech Connect (OSTI)

    Punning, J.M.; Ilomets, M.; Karindi, A.; Mandre, M.; Reisner, V.; Martins, A.; Pesur, A.; Roostalu, H.; Tullus, H.

    1996-07-01

    It is widely accepted that the increase of greenhouse gas concentrations in the atmosphere due to human activities would result in warming of the Earth`s surface. To examine this effect and better understand how the GHG increase in the atmosphere might change the climate in the future, how ecosystems and societies in different regions of the World should adapt to these changes, what must policymakers do for the mitigation of that effect, the worldwide project within the Framework Convention on Climate Change was generated by the initiative of United Nations. Estonia is one of more than 150 countries, which signed the Framework Convention on Climate Change at the United Nations Conference on Environment and Development held in Rio de Janeiro in June 1992. In 1994 a new project, Estonian Country Study was initiated within the US Country Studies Program. The project will help to compile the GHG inventory for Estonia, find contemporary trends to investigate the impact of climate change on the Estonian ecosystems and economy and to formulate national strategies for Estonia addressing to global climate change.

  2. NREL: U.S. Life Cycle Inventory Database Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. Life-Cycle Inventory Database Buildings Research Photo of a green field with an ocean in the background. U.S. Life Cycle Inventory Database NREL and its partners created the U.S. Life Cycle Inventory (LCI) Database to help life cycle assessment (LCA) practitioners answer questions about environmental impact. This database provides individual gate-to-gate, cradle-to-gate and cradle-to-grave accounting of the energy and material flows into and out of the environment that are associated with

  3. US Releases Updated Plutonium Inventory Report | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration US Releases Updated Plutonium Inventory Report June 29, 2012 WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA) today announced the public release of a report that details the current plutonium inventory of the U.S. Titled The United States Plutonium Balance, 1944-2009, the document serves as an update to Plutonium: the First 50 Years, which was first released by the Department of Energy (DOE) in 1996. The report provides the U.S. inventory of plutonium

  4. Chapter 09 - Accounting for Inventory and Related Property

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... place the inventory or material in storage ready for issue. ... Oil produced from the Naval Petroleum Reserve (NPR) ... and held in holding tanks for sale or delivery to buyers. ...

  5. Assess and improve the national GHG inventory and other economic...

    Open Energy Info (EERE)

    public and private sector capacity to support initiatives 2.4. Assess and improve the national GHG inventory and other economic and resource data as needed for LEDS development...

  6. Forecasting Crude Oil Spot Price Using OECD Petroleum Inventory Levels

    Reports and Publications (EIA)

    2003-01-01

    This paper presents a short-term monthly forecasting model of West Texas Intermediate crude oil spot price using Organization for Economic Cooperation and Development (OECD) petroleum inventory levels.

  7. U.S. Life Cycle Inventory Database Roadmap (Brochure)

    SciTech Connect (OSTI)

    Deru, M.

    2009-08-01

    Life cycle inventory data are the primary inputs for conducting life cycle assessment studies. Studies based on high-quality data that are consistent, accurate, and relevant allow for robust, defensible, and meaningful results.

  8. U.S. Life Cycle Inventory Database Roadmap

    SciTech Connect (OSTI)

    none,

    2009-08-01

    Life cycle inventory data are the primary inputs for conducting life cycle assessment studies. Studies based on high-quality data that are consistent, accurate, and relevant allow for robust, defensible, and meaningful results.

  9. Hawaii Information Package for Chemical Inventory Form (HCIF...

    Open Energy Info (EERE)

    Information Package for Chemical Inventory Form (HCIF)Tier II Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Hawaii Information Package for Chemical...

  10. Toxic Chemical Release Inventory reporting ``Qs & As``. Environmental Guidance

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    This document offers guidance on toxic chemical release inventory reporting, pursuant to Section 313 of the Emergency Planning and Community Right-to-Know Act (EPCRA) at DOE sites.

  11. 2015 Inherently Governmental and Commercial Activity (IGCA) Inventory Submission Guidance

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) has not received the Office of Management and Budget’s (OMB) 2015 inventory guidance yet, but anticipates that an OMB alert, which is largely a reminder document,...

  12. State Energy Efficiency Program Evaluation Inventory - Energy Information

    Gasoline and Diesel Fuel Update (EIA)

    State Energy Efficiency Program Evaluation Inventory July 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | State Energy Efficiency Program Evaluation Inventory i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other

  13. Inventory Tracking and Management: Fact Sheet | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Inventory Tracking and Management: Fact Sheet March 23, 2012 Under International Atomic Energy Agency (IAEA) safeguards agreements, States are required to establish a "state system of accounting and control" (SSAC) to keep track of all nuclear material (quantity and type), note changes in material inventories (imports/exports), and monitor all material balance areas (for material use and/or processing) within safeguarded nuclear facilities. States are required to

  14. Secondary Energy InfoBook | Open Energy Information

    Open Energy Info (EERE)

    Geothermal worksheet Hydropower worksheet Natural Gas worksheet Petroleum worksheet Propane worksheet Solar worksheet Uranium worksheet Wind worksheet Renewables and...

  15. Bounding Radionuclide Inventory and Accident Consequence Calculation for the 1L Target

    SciTech Connect (OSTI)

    Kelsey, Charles T. IV

    2011-01-01

    A bounding radionuclide inventory for the tungsten of the Los Alamos Neutron Science Center (LANSCE) IL Target is calculated. Based on the bounding inventory, the dose resulting from the maximum credible incident (MCI) is calculated for the maximally exposed offsite individual (MEOl). The design basis accident involves tungsten target oxidation following a loss of cooling accident. Also calculated for the bounding radionuclide inventory is the ratio to the LANSCE inventory threshold for purposes of inventory control as described in the target inventory control policy. A bounding radionuclide inventory calculation for the lL Target was completed using the MCNPX and CINDER'90 codes. Continuous beam delivery at 200 {micro}A to 2500 mA{center_dot}h was assumed. The total calculated activity following this irradiation period is 205,000 Ci. The dose to the MEOI from the MCI is 213 mrem for the bounding inventory. The LANSCE inventory control threshold ratio is 132.

  16. Illumina GA IIx& HiSeq 2000 Production Sequenccing and QC Analysis Pipelines at the DOE Joint Genome Institute

    SciTech Connect (OSTI)

    Daum, Christopher; Zane, Matthew; Han, James; Kennedy, Megan; San Diego, Matthew; Copeland, Alex; Li, Mingkun; Lucas, Susan

    2011-01-31

    The U.S. Department of Energy (DOE) Joint Genome Institute's (JGI) Production Sequencing group is committed to the generation of high-quality genomic DNA sequence to support the mission areas of renewable energy generation, global carbon management, and environmental characterization and clean-up. Within the JGI's Production Sequencing group, a robust Illumina Genome Analyzer and HiSeq pipeline has been established. Optimization of the sesequencer pipelines has been ongoing with the aim of continual process improvement of the laboratory workflow, reducing operational costs and project cycle times to increases ample throughput, and improving the overall quality of the sequence generated. A sequence QC analysis pipeline has been implemented to automatically generate read and assembly level quality metrics. The foremost of these optimization projects, along with sequencing and operational strategies, throughput numbers, and sequencing quality results will be presented.

  17. Waste Inventory for Near Surface Repository (NSR) - 13482

    SciTech Connect (OSTI)

    Vaidotas, Algirdas

    2013-07-01

    The main characteristics, physical, chemical as well as radiological of the waste intended to be disposed of in the planned NSR are described. This description is mainly based on the waste inventory investigations performed by the Ignalina Nuclear Power Plant (INPP). The four different waste streams to be disposed of in the NSR are described and investigated. (authors)

  18. 'Bradbury Science Museum Collections Inventory Photos Disc #4

    SciTech Connect (OSTI)

    Strohmeyer, Wendy J.

    2015-11-16

    The photos on Bradbury Science Museum Collections Inventory Photos Disc #4 is another in an ongoing effort to catalog all artifacts held by the Museum. Photos will be used as part of the condition report for the artifact, and will become part of the collection record in the collections database for that artifact. The collections database will be publically searchable on the Museum website.

  19. Gas-storage calculations yield accurate cavern, inventory data

    SciTech Connect (OSTI)

    Mason, R.G. )

    1990-07-02

    This paper discusses how determining gas-storage cavern size and inventory variance is now possible with calculations based on shut-in cavern surveys. The method is the least expensive of three major methods and is quite accurate when recorded over a period of time.

  20. CESP Tool 7.1: Financing Inventory Template | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7.1: Financing Inventory Template CESP Tool 7.1: Financing Inventory Template CESP Tool 7.1: Financing Inventory Template from Step 7: Put Together a Financing Strategy, Guide to Community Energy Strategic Planning. File CESP Tool 7.1: Financing Inventory Template More Documents & Publications Guide to Community Energy Strategic Planning: Step 7 Using Qualified Energy Conservation Bonds for Public Building Upgrades: Reducing Energy Bills in the City of Philadelphia Qualified Energy

  1. 2003 DOE IGCA Inventory Data for web.xls | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 DOE IGCA Inventory Data for web.xls� 2003 DOE IGCA Inventory Data for web.xls� PDF icon 2003 DOE IGCA Inventory Data for web.xls� More Documents & Publications 3REV2004DOEFAIR.xls� N:\My Documents\porfin.pdf� 2002 DOE Final Inherently Governmental and Commercial Activities Inventory

  2. Terrestrial Carbon Inventory at the Savannah River Site, 1951 – 2001.

    SciTech Connect (OSTI)

    US Forest Service - Annonymous,

    2012-02-01

    A Power Point slide presentation/report on the terestrial carbon inventory at the Savannah River Site.

  3. Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory - Calendar Year 1998 Emissions Report

    SciTech Connect (OSTI)

    S. K. Zohner

    1999-10-01

    This report presents the 1998 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradiological emissions estimates for stationary sources.

  4. Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory - Calendar Year 1999 Emission Report

    SciTech Connect (OSTI)

    Zohner, S.K.

    2000-05-30

    This report presents the 1999 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradionuclide emissions estimates for stationary sources.

  5. Air emission inventory for the Idaho National Engineering Laboratory: 1994 emissions report

    SciTech Connect (OSTI)

    1995-07-01

    This report Presents the 1994 update of the Air Emission inventory for the Idaho National Engineering Laboratory (INEL). The INEL Air Emission Inventory documents sources and emissions of non-radionuclide pollutants from operations at the INEL. The report describes the emission inventory process and all of the sources at the INEL, and provides non-radionuclide emissions estimates for stationary sources.

  6. Evaluation of Multiplexed 16S rRNA Microbial Population Surveys Using Illumina MiSeq Platform (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    ScienceCinema (OSTI)

    Tremblay, Julien [DOE JGI

    2013-01-25

    Julien Tremblay from DOE JGI presents "Evaluation of Multiplexed 16S rRNA Microbial Population Surveys Using Illumina MiSeq Platorm" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  7. An inventory of wells of Oak Ridge National Laboratory 1992

    SciTech Connect (OSTI)

    Rush, R.M.; Gryder, R.K.; Baxter, F.P.

    1993-02-01

    The well inventory described in this report is a database of well information being developed for the Oak Ridge National Laboratory (ORNL) Groundwater Coordinator and the ORNL Groundwater Protection Program. Data are presented on 2071 ORNL wells as maps and as tabular data. A table of well identification aliases is given to permit correlation with earlier reports. Information is incomplete for many of the wells, and a form is provided for readers to provide missing or updated data. The goal of the developers of this data base is to produce a comprehensive inventory of wells at ORNL. This data base is being maintained to provide current information for the operational management of the ORNL groundwater monitoring system and for various users of groundwater data at ORNL.

  8. The Information Role of Spot Prices and Inventories

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Role of Spot Prices and Inventories James L. Smith, Rex Thompson, and Thomas Lee June 24, 2014 Independent Statistics & Analysis www.eia.gov U.S. Energy Information Administration Washington, DC 20585 This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy Information Administration. WORKING PAPER SERIES June 2014 James L. Smith, Rex Thomas, and Thomas K.

  9. COMPILATION OF REGIONAL TO GLOBAL INVENTORIES OF ANTHROPOGENIC EMISSIONS

    SciTech Connect (OSTI)

    BENKOVITZ,C.M.

    2002-11-01

    The mathematical modeling of the transport and transformation of trace species in the atmosphere is one of the scientific tools currently used to assess atmospheric chemistry, air quality, and climatic conditions. From the scientific but also from the management perspectives accurate inventories of emissions of the trace species at the appropriate spatial, temporal, and species resolution are required. There are two general methodologies used to estimate regional to global emissions: bottom-up and top-down (also known as inverse modeling). Bottom-up methodologies to estimate industrial emissions are based on activity data, emission factors (amount of emissions per unit activity), and for some inventories additional parameters (such as sulfur content of fuels). Generally these emissions estimates must be given finer sectoral, spatial (usually gridded), temporal, and for some inventories species resolution. Temporal and spatial resolution are obtained via the use of surrogate information, such as population, land use, traffic counts, etc. which already exists in or can directly be converted to gridded form. Speciation factors have been and are being developed to speciate inventories of NO{sub x}, particulate matter, and hydrocarbons. Top-down (inverse modeling) methodologies directly invert air quality measurements in terms of poorly known but critical parameters to constrain the emissions needed to explain these measurements; values of these parameters are usually computed using atmospheric transport models. Currently there are several strong limitations of inverse modeling, but the continued evolution of top-down estimates will be facilitated by the development of denser monitoring networks and by the massive amounts of data from satellite observations.

  10. Fuel Cycle Potential Waste Inventory for Disposition Rev 5

    Broader source: Energy.gov [DOE]

    The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel is stored onsite in either wet pools or in dry storage systems with ultimate disposal envisioned in a deep mined geologic repository. This report provides an estimate of potential waste inventory and waste form characteristics for the DOE UNF and HLW and a variety of commercial fuel cycle alternatives in order to support subsequent system-level evaluations of disposal system performance.

  11. An Integrated RFID and Barcode Tagged Item Inventory System for Deployment at New Brunswick Laboratory

    SciTech Connect (OSTI)

    Younkin, James R; Kuhn, Michael J; Gradle, Colleen; Preston, Lynne; Thomas, Brigham B.; Laymance, Leesa K; Kuziel, Ron

    2012-01-01

    New Brunswick Laboratory (NBL) has a numerous inventory containing thousands of plutonium and uranium certified reference materials. The current manual inventory process is well established but is a lengthy process which requires significant oversight and double checking to ensure correctness. Oak Ridge National Laboratory has worked with NBL to develop and deploy a new inventory system which utilizes handheld computers with barcode scanners and radio frequency identification (RFID) readers termed the Tagged Item Inventory System (TIIS). Certified reference materials are identified by labels which incorporate RFID tags and barcodes. The label printing process and RFID tag association process are integrated into the main desktop software application. Software on the handheld computers syncs with software on designated desktop machines and the NBL inventory database to provide a seamless inventory process. This process includes: 1) identifying items to be inventoried, 2) downloading the current inventory information to the handheld computer, 3) using the handheld to read item and location labels, and 4) syncing the handheld computer with a designated desktop machine to analyze the results, print reports, etc. The security of this inventory software has been a major concern. Designated roles linked to authenticated logins are used to control access to the desktop software while password protection and badge verification are used to control access to the handheld computers. The overall system design and deployment at NBL will be presented. The performance of the system will also be discussed with respect to a small piece of the overall inventory. Future work includes performing a full inventory at NBL with the Tagged Item Inventory System and comparing performance, cost, and radiation exposures to the current manual inventory process.

  12. 2011 Los Alamos National Laboratory Riparian Inventory Results

    SciTech Connect (OSTI)

    Norris, Elizabeth J.; Hansen, Leslie A.; Hathcock, Charles D.; Keller, David C.; Zemlick, Catherine M.

    2012-03-29

    A total length of 36.7 kilometers of riparian habitat were inventoried within LANL boundaries between 2007 and 2011. The following canyons and lengths of riparian habitat were surveyed and inventoried between 2007 and 2011. Water Canyon (9,669 m), Los Alamos Canyon (7,131 m), Pajarito Canyon (6,009 m), Mortandad Canyon (3,110 m), Two-Mile Canyon (2,680 m), Sandia Canyon (2,181 m), Three-Mile Canyon (1,883 m), Canyon de Valle (1,835 m), Ancho Canyon (1,143 m), Canada del Buey (700 m), Sandia Canyon (221 m), DP Canyon (159 m) and Chaquehui Canyon (50 m). Effluent Canyon, Fence Canyon and Potrillo Canyon were surveyed but no areas of riparian habitat were found. Stretches of inventoried riparian habitat were classified for prioritization of treatment, if any was recommended. High priority sites included stretches of Mortandad Canyon, LA Canyon, Pajarito Canyon, Two-Mile Canyon, Sandia Canyon and Water Canyon. Recommended treatment for high priority sites includes placement of objects into the stream channel to encourage sediment deposition, elimination of channel incision, and to expand and slow water flow across the floodplain. Additional stretches were classified as lower priority, and, for other sites it was recommended that feral cattle and exotic plants be removed to aid in riparian habitat recovery. In June 2011 the Las Conchas Wildfire burned over 150,000 acres of land in the Jemez Mountains and surrounding areas. The watersheds above LA Canyon, Water Canyon and Pajarito Canyon were burned in the Las Conchas Wildfire and flooding and habitat alteration were observed in these canyon bottoms (Wright 2011). Post fire status of lower priority areas may change to higher priority for some of the sites surveyed prior to the Las Conchas Wildfire, due to changes in vegetation cover in the adjacent upland watershed.

  13. Technetium Inventory, Distribution, and Speciation in Hanford Tanks

    SciTech Connect (OSTI)

    Serne, R. Jeffrey; Rapko, Brian M.

    2014-05-02

    The purpose of this report is three fold: 1) assemble the available information regarding technetium (Tc) inventory, distribution between phases, and speciation in Hanford’s 177 storage tanks into a single, detailed, comprehensive assessment; 2) discuss the fate (distribution/speciation) of Tc once retrieved from the storage tanks and processed into a final waste form; and 3) discuss/document in less detail the available data on the inventory of Tc in other "pools" such as the vadose zone below inactive cribs and trenches, below single-shell tanks (SSTs) that have leaked, and in the groundwater below the Hanford Site. A thorough understanding of the inventory for mobile contaminants is key to any performance or risk assessment for Hanford Site facilities because potential groundwater and river contamination levels are proportional to the amount of contaminants disposed at the Hanford Site. Because the majority of the total 99Tc produced at Hanford (~32,600 Ci) is currently stored in Hanford’s 177 tanks (~26,500 Ci), there is a critical need for knowledge of the fate of this 99Tc as it is removed from the tanks and processed into a final solid waste form. Current flow sheets for the Hanford Waste Treatment and Immobilization Plant process show most of the 99Tc will be immobilized as low-activity waste glass that will remain on the Hanford Site and disposed at the Integrated Disposal Facility (IDF); only a small fraction will be shipped to a geologic repository with the immobilized high-level waste. Past performance assessment studies, which focused on groundwater protection, have shown that 99Tc would be the primary dose contributor to the IDF performance.

  14. Tn-seq of Caulobacter crescentus under uranium stress reveals genes essential for detoxification and stress tolerance

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yung, Mimi C.; Park, Dan M.; Overton, K. Wesley; Blow, Matthew J.; Hoover, Cindi A.; Smit, John R.; Murray, Sean R.; Ricci, Dante P.; Christen, Beat; Bowman, Grant R.; et al

    2015-07-20

    Ubiquitous aquatic bacterium Caulobacter crescentus is highly resistant to uranium (U) and facilitates U biomineralization and thus holds promise as an agent of U bioremediation. In order to gain an understanding of how C. crescentus tolerates U, we employed transposon (Tn) mutagenesis paired with deep sequencing (Tn-seq) in a global screen for genomic elements required for U resistance. Of the 3,879 annotated genes in the C. crescentus genome, 37 were found to be specifically associated with fitness under U stress, 15 of which were subsequently tested through mutational analysis. Systematic deletion analysis revealed that mutants lacking outer membrane transporters (rsaFamore » and rsaFb), a stress-responsive transcription factor (cztR), or a ppGpp synthetase/hydrolase (spoT) exhibited a significantly lower survival rate under U stress. RsaFa and RsaFb, which are homologues of TolC in Escherichia coli, have previously been shown to mediate S-layer export. Transcriptional analysis revealed upregulation of rsaFa and rsaFb by 4- and 10-fold, respectively, in the presence of U. We additionally show that rsaFa mutants accumulated higher levels of U than the wild type, with no significant increase in oxidative stress levels. These results suggest a function for RsaFa and RsaFb in U efflux and/or maintenance of membrane integrity during U stress. In addition, we present data implicating CztR and SpoT in resistance to U stress. Together, our findings reveal novel gene targets that are key to understanding the molecular mechanisms of U resistance in C. crescentus.« less

  15. An Interoperability Testing Study: Automotive Inventory Visibility and Interoperability

    SciTech Connect (OSTI)

    Ivezic, Nenad; Kulvatunyou, Boonserm; Frechette, Simon; Jones, Albert

    2004-01-01

    This paper describes a collaborative effort between the NIST and Korean Business-to-Business Interoperability Test Beds to support a global, automotive-industry interoperability project. The purpose of the collaboration is to develop a methodology for validation of interoperable data-content standards implemented across inventory visibility tools within an internationally adopted testing framework. In this paper we describe methods (1) to help the vendors consistently implement prescribed message standards and (2) to assess compliance of those implementations with respect to the prescribed data content standards. We also illustrate these methods in support of an initial proof of concept for an international IV&I scenario.

  16. Automatic Estimation of the Radiological Inventory for the Dismantling of Nuclear Facilities

    SciTech Connect (OSTI)

    Garcia-Bermejo, R.; Felipe, A.; Gutierrez, S.; Salas, E.; Martin, N.

    2008-01-15

    The estimation of the radiological inventory of Nuclear Facilities to be dismantled is a process that included information related with the physical inventory of all the plant and radiological survey. Estimation of the radiological inventory for all the components and civil structure of the plant could be obtained with mathematical models with statistical approach. A computer application has been developed in order to obtain the radiological inventory in an automatic way. Results: A computer application that is able to estimate the radiological inventory from the radiological measurements or the characterization program has been developed. In this computer applications has been included the statistical functions needed for the estimation of the central tendency and variability, e.g. mean, median, variance, confidence intervals, variance coefficients, etc. This computer application is a necessary tool in order to be able to estimate the radiological inventory of a nuclear facility and it is a powerful tool for decision taken in future sampling surveys.

  17. U.S. Life Cycle Inventory Database Roadmap (Brochure) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Life Cycle Inventory Database Roadmap (Brochure) U.S. Life Cycle Inventory Database Roadmap (Brochure) Life cycle inventory data are the primary inputs for conducting life cycle assessment studies. Studies based on high-quality data that are consistent, accurate, and relevant allow for robust, defensible, and meaningful results. PDF icon 45153.pdf More Documents & Publications Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products Vehicle Technologies

  18. Air Emission Inventory for the Idaho National Engineering Laboratory, 1993 emissions report

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This report presents the 1993 update of the Air Emission Inventory for the Idaho National Engineering Laboratory (INEL). The purpose of the Air Emission Inventory is to commence the preparation of the permit to operate application for the INEL, as required by the recently promulgated Title V regulations of the Clean Air Act. The report describes the emission inventory process and all of the sources at the INEL and provides emissions estimates for both mobile and stationary sources.

  19. Technetium Inventory, Distribution, and Speciation in Hanford Tanks

    SciTech Connect (OSTI)

    Serne, R. Jeffrey; Rapko, Brian M.; Pegg, Ian L.

    2014-11-13

    The purpose of this report is three fold: 1) assemble the available information regarding Tc inventory, distribution between phases, and speciation in Hanford’s 177 storage tanks into a single, detailed, comprehensive assessment; 2) discuss the fate (distribution/speciation) of Tc once retrieved from the storage tanks and processed into final waste forms; and 3) discuss/document in less detail the available data on the inventory of Tc in other “pools” such as the vadose zone below inactive cribs and trenches, below single-shell tanks (SSTs) that have leaked, and in the groundwater below the Hanford Site. This report was revised in September 2014 to add detail and correct inaccuracies in Section 5.0 on the fate of technetium (Tc) recycle from the off-gas systems downstream of the low-activity waste (LAW) melters back to the melters, based on several reports that were not found in the original literature search on the topic. The newly provided reports, from experts active in the Hanford Tank Waste Treatment and Immobilization Plant (WTP) glass studies, the Vitreous State Laboratory at The Catholic University of America (VSL) melter and off-gas system demonstrations and overall WTP systems analysis, were not originally found on electronic databases commonly searched. The major revisions to Section 5.0 also required changes to Section 7.0 (Summary and Conclusions) and this executive summary.

  20. System and method for inventorying multiple remote objects

    DOE Patents [OSTI]

    Carrender, Curtis L.; Gilbert, Ronald W.

    2007-10-23

    A system and method of inventorying multiple objects utilizing a multi-level or a chained radio frequency identification system. The system includes a master tag and a plurality of upper level tags and lower level tags associated with respective objects. The upper and lower level tags communicate with each other and the master tag so that reading of the master tag reveals the presence and absence of upper and lower level tags. In the chained RF system, the upper and lower level tags communicate locally with each other in a manner so that more remote tags that are out of range of some of the upper and lower level tags have their information relayed through adjacent tags to the master tag and thence to a controller.

  1. System and method for inventorying multiple remote objects

    DOE Patents [OSTI]

    Carrender, Curtis L.; Gilbert, Ronald W.

    2009-12-29

    A system and method of inventorying multiple objects utilizing a multi-level or a chained radio frequency identification system. The system includes a master tag and a plurality of upper level tags and lower level tags associated with respective objects. The upper and lower level tags communicate with each other and the master tag so that reading of the master tag reveals the presence and absence of upper and lower level tags. In the chained RF system, the upper and lower level tags communicate locally with each other in a manner so that more remote tags that are out of range of some of the upper and lower level tags have their information relayed through adjacent tags to the master tag and thence to a controller.

  2. Process integrated modelling for steelmaking Life Cycle Inventory analysis

    SciTech Connect (OSTI)

    Iosif, Ana-Maria Hanrot, Francois Ablitzer, Denis

    2008-10-15

    During recent years, strict environmental regulations have been implemented by governments for the steelmaking industry in order to reduce their environmental impact. In the frame of the ULCOS project, we have developed a new methodological framework which combines the process integrated modelling approach with Life Cycle Assessment (LCA) method in order to carry out the Life Cycle Inventory of steelmaking. In the current paper, this new concept has been applied to the sinter plant which is the most polluting steelmaking process. It has been shown that this approach is a powerful tool to make the collection of data easier, to save time and to provide reliable information concerning the environmental diagnostic of the steelmaking processes.

  3. Inventory of power plants in the United States 1994

    SciTech Connect (OSTI)

    1995-10-18

    The Inventory of Power Plants in the US provides year-end statistics on generating units operated by electric utilities in the US (the 50 States and the District of Columbia). Statistics presented in this report reflect the status of generating units as of December 31, 1994. The publication also provides a 10-year outlook for generating unit additions. This report is prepared annually by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy (DOE). Data summarized in this report are useful to a wide audience including Congress, Federal, and State agencies; the electric utility industry; and the general public. This is a report of electric utility data; in cases where summary data of nonutility capacity are presented, it is specifically noted as such.

  4. Inventory of power plants in the United States, 1993

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    The Inventory of Power Plants in the United States is prepared annually by the Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), U.S. Department of Energy (DOE). The purpose of this publication is to provide year-end statistics about electric generating units operated by electric utilities in the United States (the 50 States and the District of Columbia). The publication also provides a 10-year outlook of future generating unit additions. Data summarized in this report are useful to a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. Data presented in this report were assembled and published by the EIA to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended.

  5. NWCF Evaporator Tank System 2001 Offgas Emissions Inventory

    SciTech Connect (OSTI)

    Boardman, R.D.; Lamb, K.M.; Matejka, L.A.; Nenni, J.A.

    2002-02-27

    An offgas emissions inventory and liquid stream characterization of the Idaho New Waste Calcining Facility (NWCF) Evaporator Tank System (ETS), formerly known as the High Level Liquid Waste Evaporator (HLLWE), has been completed. The emissions rates of volatile and semi-volatile organic compounds, multiple metals, particulate, and hydrochloric acid were measured in accordance with an approved Quality Assurance Project Plan (QAPjP) and Test Plan that invoked U.S. Environmental Protection Agency (EPA) standard sample collection and analysis procedures. Offgas samples were collected during the start up and at the end of evaporator batches when it was hypothesized the emissions would be at peak rates. Corresponding collection of samples from the evaporator feed overhead condensate, and bottoms was made at approximately the same time as the emissions inventory to support material balance determinations for the evaporator process. The data indicate that organic compound emissions are slightly higher at the beginning of the batch while metals emissions, including mercury, are slightly higher at the end of the evaporator batch. The maximum emissions concentrations are low for all constituents of primary concern. Mercury emissions were less than 5 ppbv, while the sum of HCl and Cl2 emissions was less than 1 ppmv. The sum of all organic emissions also was less than 1 ppmv. The estimated hazardous quotient (HQ) for the evaporator was 6.2e-6 as compared to 0.25 for the EPA target criteria. The cancer risk was 1.3e-10 compared to an EPA target of le-5.

  6. NWCF Evaporator Tank System 2001 Offgas Emissions Inventory

    SciTech Connect (OSTI)

    Boardman, Richard Doin; Lamb, Kenneth Mitchel; Matejka, Leon Anthony; Nenni, Joseph A

    2002-02-01

    An offgas emissions inventory and liquid stream characterization of the Idaho New Waste Calcining Facility (NWCF) Evaporator Tank System (ETS), formerly known as the High Level Liquid Waste Evaporator (HLLWE), has been completed. The emissions rates of volatile and semi-volatile organic compounds, multiple metals, particulate, and hydrochloric acid were measured in accordance with an approved Quality Assurance Project Plan (QAPjP) and Test Plan that invoked U.S. Environmental Protection Agency (EPA) standard sample collection and analysis procedures. Offgas samples were collected during the start up and at the end of evaporator batches when it was hypothesized the emissions would be at peak rates. Corresponding collection of samples from the evaporator feed overhead condensate, and bottoms was made at approximately the same time as the emissions inventory to support material balance determinations for the evaporator process. The data indicate that organic compound emissions are slightly higher at the beginning of the batch while metals emissions, including mercury, are slightly higher at the end of the evaporator batch. The maximum emissions concentrations are low for all constituents of primary concern. Mercury emissions were less than 5 ppbv, while the sum of HCl and Cl2 emissions was less than 1 ppmv. The sum of all organic emissions also was less than 1 ppmv. The estimated hazardous quotient (HQ) for the evaporator was 6.2e-6 as compared to 0.25 for the EPA target criteria. The cancer risk was 1.3e-10 compared to an EPA target of le-5.

  7. Materials Inventory Database for the Light Water Reactor Sustainability Program

    SciTech Connect (OSTI)

    Kazi Ahmed; Shannon M. Bragg-Sitton

    2013-08-01

    Scientific research involves the purchasing, processing, characterization, and fabrication of many sample materials. The history of such materials can become complicated over their lifetime – materials might be cut into pieces or moved to various storage locations, for example. A database with built-in functions to track these kinds of processes facilitates well-organized research. The Material Inventory Database Accounting System (MIDAS) is an easy-to-use tracking and reference system for such items. The Light Water Reactor Sustainability Program (LWRS), which seeks to advance the long-term reliability and productivity of existing nuclear reactors in the United States through multiple research pathways, proposed MIDAS as an efficient way to organize and track all items used in its research. The database software ensures traceability of all items used in research using built-in functions which can emulate actions on tracked items – fabrication, processing, splitting, and more – by performing operations on the data. MIDAS can recover and display the complete history of any item as a simple report. To ensure the database functions suitably for the organization of research, it was developed alongside a specific experiment to test accident tolerant nuclear fuel cladding under the LWRS Advanced Light Water Reactor Nuclear Fuels Pathway. MIDAS kept track of materials used in this experiment from receipt at the laboratory through all processes, test conduct and, ultimately, post-test analysis. By the end of this process, the database proved to be right tool for this program. The database software will help LWRS more efficiently conduct research experiments, from simple characterization tests to in-reactor experiments. Furthermore, MIDAS is a universal tool that any other research team could use to organize their material inventory.

  8. Microsoft Word - NEGTN02-#188646-v22B-INVENTORY_PLAN_UNCLASSIFIED.DOC

    Energy Savers [EERE]

    Department of Energy Excess Uranium Inventory Management Plan December 16, 2008 Office of Nuclear Energy 2008 Table of Contents Executive Summary................................................................................................ES-1 Excess Uranium Inventories..........................................................................................1 Unallocated U.S. HEU.........................................................................................1 U.S.-Origin NU as UF 6

  9. OMB Form 83-C, Paperwork Reduction Act Change Worksheet, October...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Total annualized CapitalStartup costs Total annual costs (O&M) Total annualized cost requested Difference Explanation of difference Program change Adjustment Adobe Professional ...

  10. WS-J 14 Update Worksheet(20April14).xlsx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Modification 350, Attachment 4 HANFORD WASTE SITE ASSIGNMENT LIST Site Code Site Names Designated Area Assigned Contractor 100-B-1 100-B-1; Laydown Yard; Surface Chemical and Solid Waste Dumping Area 100B WCH 100-B-10 100-B-10; 107-B Basin Leak and Warm Springs 100B WCH 100-B-11 100-B-11; 115-B Tank; 115-B/C Caisson Site; 115-B/C Caisson Valve Pit; 115-BC Drywell; 115-BC Sump 100B WCH 100-B-12 100-B-12; Filter Box Radiological Materials Area (RMA) 100B WCH 100-B-14 100-B-14; 100-B Area Process

  11. Amendment: Lifecycle Emissions Data Worksheet (December 30, 2008...

    Broader source: Energy.gov (indexed) [DOE]

    of Travel and the Price of Gasoline - Dataset Fact 889: September 7, 2015 Average Diesel Price Lower than Gasoline for the First Time in Six Years - Dataset Careers &...

  12. WS-J 14 Update Worksheet(20April14).xlsx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    100-B-1 100-B-1; Laydown Yard; Surface Chemical and Solid Waste Dumping Area 100B WCH ... Pile 100B WCH 100-B-19 100-B-19; 100BC Chemical Contaminated Surface Soil Areas; 100-BC ...

  13. Note Field Name Worksheet Cell Status Definition Report Table...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on top of company key tab sheet. Color code number to match chart. 12 FTE Allocation H5 Required Enter FTE charged to the specific NETL division. Use 2 decimal places. 13 FYXX...

  14. Radionuclide Inventory Distribution Project Data Evaluation and Verification White Paper

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2010-05-17

    Testing of nuclear explosives caused widespread contamination of surface soils on the Nevada Test Site (NTS). Atmospheric tests produced the majority of this contamination. The Radionuclide Inventory and Distribution Program (RIDP) was developed to determine distribution and total inventory of radionuclides in surface soils at the NTS to evaluate areas that may present long-term health hazards. The RIDP achieved this objective with aerial radiological surveys, soil sample results, and in situ gamma spectroscopy. This white paper presents the justification to support the use of RIDP data as a guide for future evaluation and to support closure of Soils Sub-Project sites under the purview of the Federal Facility Agreement and Consent Order. Use of the RIDP data as part of the Data Quality Objective process is expected to provide considerable cost savings and accelerate site closures. The following steps were completed: - Summarize the RIDP data set and evaluate the quality of the data. - Determine the current uses of the RIDP data and cautions associated with its use. - Provide recommendations for enhancing data use through field verification or other methods. The data quality is sufficient to utilize RIDP data during the planning process for site investigation and closure. Project planning activities may include estimating 25-millirem per industrial access year dose rate boundaries, optimizing characterization efforts, projecting final end states, and planning remedial actions. In addition, RIDP data may be used to identify specific radionuclide distributions, and augment other non-radionuclide dose rate data. Finally, the RIDP data can be used to estimate internal and external dose rates. The data quality is sufficient to utilize RIDP data during the planning process for site investigation and closure. Project planning activities may include estimating 25-millirem per industrial access year dose rate boundaries, optimizing characterization efforts, projecting final end states, and planning remedial actions. In addition, RIDP data may be used to identify specific radionuclide distributions, and augment other non-radionuclide dose rate data. Finally, the RIDP data can be used to estimate internal and external dose rates.

  15. Inventory of Power Plants in the United States, October 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-27

    The Inventory of Power Plants in the United States is prepared annually by the Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), US Department of Energy (DOE). The purpose of this publication is to provide year-end statistics about electric generating units operated by electric utilities in the United States (the 50 States and the District of Columbia). The publication also provides a 10-year outlook of future generating unit additions. Data summarized in this report are useful to a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. Data presented in this report were assembled and published by the EIA to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. The report is organized into the following chapters: Year in Review, Operable Electric Generating Units, and Projected Electric Generating Unit Additions. Statistics presented in these chapters reflect the status of electric generating units as of December 31, 1992.

  16. Water inventory management in condenser pool of boiling water reactor

    DOE Patents [OSTI]

    Gluntz, D.M.

    1996-03-12

    An improved system for managing the water inventory in the condenser pool of a boiling water reactor has means for raising the level of the upper surface of the condenser pool water without adding water to the isolation pool. A tank filled with water is installed in a chamber of the condenser pool. The water-filled tank contains one or more holes or openings at its lowermost periphery and is connected via piping and a passive-type valve (e.g., squib valve) to a high-pressure gas-charged pneumatic tank of appropriate volume. The valve is normally closed, but can be opened at an appropriate time following a loss-of-coolant accident. When the valve opens, high-pressure gas inside the pneumatic tank is released to flow passively through the piping to pressurize the interior of the water-filled tank. In so doing, the initial water contents of the tank are expelled through the openings, causing the water level in the condenser pool to rise. This increases the volume of water available to be boiled off by heat conducted from the passive containment cooling heat exchangers. 4 figs.

  17. Water inventory management in condenser pool of boiling water reactor

    DOE Patents [OSTI]

    Gluntz, Douglas M.

    1996-01-01

    An improved system for managing the water inventory in the condenser pool of a boiling water reactor has means for raising the level of the upper surface of the condenser pool water without adding water to the isolation pool. A tank filled with water is installed in a chamber of the condenser pool. The water-filled tank contains one or more holes or openings at its lowermost periphery and is connected via piping and a passive-type valve (e.g., squib valve) to a high-pressure gas-charged pneumatic tank of appropriate volume. The valve is normally closed, but can be opened at an appropriate time following a loss-of-coolant accident. When the valve opens, high-pressure gas inside the pneumatic tank is released to flow passively through the piping to pressurize the interior of the water-filled tank. In so doing, the initial water contents of the tank are expelled through the openings, causing the water level in the condenser pool to rise. This increases the volume of water available to be boiled off by heat conducted from the passive containment cooling heat exchangers. 4 figs.

  18. Radionuclide inventory for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    This report updates the information previously submitted in the draft report DOE/WIPP 88-005, Radionuclide Source Term for the WIPP, dated 1987 (reference 1). The information in this report provides the projected radionuclide inventory at the WIPP based on the projected waste receipts through the year 2013. The information is based on the 1991 TRU Program Data submittals for the Integrated Data Base (DOE/RW-0006, Rev. 7) from each of the DOE sites generating or storing TRU waste for shipment to the WIPP. The data is based on existing characterization data on the waste in interim storage, waste estimates based on projected programs during the 1991 through 2013 time period, projected treatment processes required to meet WIPP Waste Acceptance Criteria (WAC), and a projection of the waste that will be declared low level waste when it is assayed as part of the certification program for waste shipments to WIPP. This data will serve as a standard reference for WIPP programs requiring radionuclide data, including safety programs, performance assessment, and regulatory compliance. These projections will continue to be periodically updated as the waste data estimates are refined by the generator sites as they participate in the annual update of the Integrated Data Base (IDB).

  19. Defense Nuclear Material Stewardship Integrated Inventory Information Management System (IIIMS).

    SciTech Connect (OSTI)

    Aas, Christopher A.; Lenhart, James E.; Bray, Olin H.; Witcher, Christina Jenkin

    2004-11-01

    Sandia National Laboratories was tasked with developing the Defense Nuclear Material Stewardship Integrated Inventory Information Management System (IIIMS) with the sponsorship of NA-125.3 and the concurrence of DOE/NNSA field and area offices. The purpose of IIIMS was to modernize nuclear materials management information systems at the enterprise level. Projects over the course of several years attempted to spearhead this modernization. The scope of IIIMS was broken into broad enterprise-oriented materials management and materials forecasting. The IIIMS prototype was developed to allow multiple participating user groups to explore nuclear material requirements and needs in detail. The purpose of material forecasting was to determine nuclear material availability over a 10 to 15 year period in light of the dynamic nature of nuclear materials management. Formal DOE Directives (requirements) were needed to direct IIIMS efforts but were never issued and the project has been halted. When restarted, duplicating or re-engineering the activities from 1999 to 2003 is unnecessary, and in fact future initiatives can build on previous work. IIIMS requirements should be structured to provide high confidence that discrepancies are detected, and classified information is not divulged. Enterprise-wide materials management systems maintained by the military can be used as overall models to base IIIMS implementation concepts upon.

  20. Heavy metal inventory and fuel sustainability of recycling TRU in FBR design

    SciTech Connect (OSTI)

    Permana, Sidik; Suzuki, Mitsutoshi; Su'ud, Zaki

    2012-06-06

    Nuclear fuel materials from spent fuel of light water reactors have a potential to be used for destructive devices with very huge energy release or in the same time, it can be utilized as a peaceful energy or civil applications, for generating electricity, desalination of water, medical application and others applications. Several research activities showed some recycled spent fuel can be used as additional fuel loading for increasing fuel breeding capability as well as improving intrinsic aspect of nuclear non-proliferation. The present investigation intends to evaluate the composition of heavy metals inventories and fuel breeding capability in the FBR design based on the loaded fuel of light water reactor (LWR) spent fuel (SF) of 33 GWd/t with 5 years cooling time by adopting depletion code of ORIGEN. Whole core analysis of FBR design is performed by adopting and coupling codes such as SLAROM code, JOINT and CITATION codes. Nuclear data library, JFS-3-J-3.2R which is based on the JENDL 3.2 has been used for nuclear data analysis. JSFR design is the basis design reference which basically adopted 800 days cycle length for 4 batches system. Higher inventories of plutonium of MOX fuel and TRU fuel types at equilibrium composition than initial composition have been shown. Minor actinide (MA) inventory compositions obtain a different inventory trends at equilibrium composition for both fuel types. Higher Inventory of MA is obtained by MOX fuel and less MA inventory for TRU fuel at equilibrium composition than initial composition. Some different MA inventories can be estimated from the different inventory trend of americium (Am). Higher americium inventory for MOX fuel and less americium inventory for TRU fuel at equilibrium condition. Breeding ratio of TRU fuel is relatively higher compared with MOX fuel type. It can be estimated from relatively higher production of Pu-238 (through converted MA) in TRU fuel, and Pu-238 converts through neutron capture to produce Pu-239. Higher breeding ratio of MOX fuel and TRU fuel types at equilibrium condition are estimated from converted fertile material during reactor operation into fissile material of plutonium such as converted uranium fuel (converted U-238 into Pu-239) or additional converted fuel from MA into Pu-238 and changes into Pu-239 by capturing neutron. Loading LWR SF gives better fuel breeding capability and increase inventory of MA for doping material of MOX fuel; however, it requires more supply MA inventory for TRU fuel type.

  1. World oil inventories forecast to grow significantly in 2016 and 2017

    U.S. Energy Information Administration (EIA) Indexed Site

    World oil inventories forecast to grow significantly in 2016 and 2017 Global oil inventories are expected to continue strong growth over the next two years which should keep oil prices low. In its new monthly forecast, the U.S. Energy Information Administration said world oil stocks are likely to increase by 1.6 million barrels per day this year and by 600,000 barrels per day next year. The higher forecast for inventory builds are the result of both higher global oil production and less oil

  2. Appendix B - Chemical and Radiological Inventories for the CEMRC, pages 1-4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    B-1 APPENDIX B CHEMICAL AND RADIOLOGICAL INVENTORIES FOR THE CEMRC The current inventories of chemicals and radiological materials at the Carlsbad Environmental Monitoring and Research Center (CEMRC) are provided in Tables B-1 and B-2, respectively. These tables were provided by Joel Webb, Director of the CEMRC, New Mexico State University (Webb 2002). Table B-1. Onsite CEMRC Chemical Inventory Chemical Name Amount Units SARA Limit Acetic Acid, Glacial 5,400 mL NA a Acetone 38 L NA AA Modifier

  3. EM Rolls Ahead of DOE Goals to Trim Vehicle Fleet Inventory

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – EM exceeded a DOE goal to reduce its vehicle fleet inventory, advancing the Department’s broader initiative to cut greenhouse gas emissions and decrease petroleum consumption across the complex.

  4. Compilation and analyses of emissions inventories for the NOAA atmospheric chemistry project. Progress report, August 1997

    SciTech Connect (OSTI)

    Benkovitz, C.M.

    1997-09-01

    Global inventories of anthropogenic emissions of oxides of nitrogen for circa 1985 and 1990 and non-methane volatile organic compounds (NMVOCs) for circa 1990 have been compiled by this project. Work on the inventories has been carried out under the umbrella of the Global Emissions Inventory Activity of the International Global Atmospheric Chemistry program. Global emissions of NOx for 1985 are estimated to be 21 Tg N/yr, with approximately 84% originating in the Northern Hemisphere. The global emissions for 1990 are 31 Tg N/yr for NOx and 173 Gg NMVOC/yr. Ongoing research activities for this project continue to address emissions of both NOx and NMVOCs. Future tasks include: evaluation of more detailed regional emissions estimates and update of the default 1990 inventories with the appropriate estimates; derivation of quantitative uncertainty estimates for the emission values; and development of emissions estimates for 1995.

  5. Record U.S. oil inventories continue increasing over next two...

    U.S. Energy Information Administration (EIA) Indexed Site

    months climbing to 444 million barrels at the end of February. In its new monthly forecast, the U.S. Energy Information Administration said the increase in oil inventories will ...

  6. Natural gas inventories to remain high at end of winter heating...

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural gas inventories to remain high at end of winter heating season Despite the jump in natural gas use to meet heating demand during the recent winter storm that walloped the ...

  7. EIS-0347: Long-Term Management of the National Defense Stockpile Inventory of Excess Mercury

    Broader source: Energy.gov [DOE]

    This Defense Logistics Agency EIS evaluated alternatives for managing the Defense National Stockpile Center inventory of excess mercury. DOE was a cooperating agency for preparation of the draft EIS.

  8. Numerical research of the optimal control problem in the semi-Markov inventory model

    SciTech Connect (OSTI)

    Gorshenin, Andrey K.

    2015-03-10

    This paper is devoted to the numerical simulation of stochastic system for inventory management products using controlled semi-Markov process. The results of a special software for the systems research and finding the optimal control are presented.

  9. Air Emission Inventory for the Idaho National Engineering Laboratory: 1992 emissions report

    SciTech Connect (OSTI)

    Stirrup, T.S.

    1993-06-01

    This report presents the 1992 Air Emission Inventory for the Idaho National Engineering Laboratory. Originally, this report was in response to the Environmental Oversight and Monitoring Agreement in 1989 between the State of Idaho and the Department of Energy Idaho Field Office, and a request from the Idaho Air Quality Bureau. The current purpose of the Air Emission Inventory is to provide the basis for the preparation of the INEL Permit-to-Operate (PTO) an Air Emission Source Application, as required by the recently promulgated Title V regulations of the Clean Air Act. This report includes emissions calculations from 1989 to 1992. The Air Emission Inventory System, an ORACLE-based database system, maintains the emissions inventory.

  10. State of Play: How National and International Renewable Energy Policies are Impacting North American Biomass Inventories

    Broader source: Energy.gov [DOE]

    Breakout Session 1A: Biomass Feedstocks for the Bioeconomy State of Play: How National and International Renewable Energy Policies are Impacting North American Biomass Inventories Tim Portz, Executive Editor, Biomass Magazine

  11. COMPILATION AND ANALYSES OF EMISSIONS INVENTORIES FOR THE NOAA ATMOSPHERIC CHEMISTRY PROJECT. PROGRESS REPORT, AUGUST 1997.

    SciTech Connect (OSTI)

    BENKOVITZ,C.M.

    1997-09-01

    Global inventories of anthropogenic emissions of oxides of nitrogen (NO{sub x}) for circa 1985 and 1990 and Non-Methane Volatile Organic Compounds (NMVOCs) for circa 1990 have been compiled by this project. Work on the inventories has been carried out under the umbrella of the Global Emissions Inventory Activity (GEIA) of the International Global Atmospheric Chemistry (IGAC) Program. The 1985 NO{sub x} inventory was compiled using default data sets of global emissions that were refined via the use of more detailed regional data sets; this inventory is being distributed to the scientific community at large as the GEIA Version 1A inventory. Global emissions of NO{sub x} for 1985 are estimated to be 21 Tg N y{sup -1}, with approximately 84% originating in the Northern Hemisphere. The 1990 inventories of NO{sub x} and NMVOCs were compiled using unified methodologies and data sets in collaboration with the Netherlands National Institute of Public Health and Environmental Protection (Rijksinstituut Voor Volksgezondheid en Milieuhygiene, RIVM) and the Division of Technology for Society of the Netherlands Organization for Applied Scientific Research, (IMW-TNO); these emissions will be used as the default estimates to be updated with more accurate regional data. The NMVOC inventory was gridded and speciated into 23 chemical categories. The resulting global emissions for 1990 are 31 Tg N yr{sup -1} for NO{sub x} and 173 Gg NMVOC yr{sup -1}. Emissions of NO{sub x} are highest in the populated and industrialized areas of eastern North America and across Europe, and in biomass burning areas of South America, Africa, and Asia. Emissions of NMVOCs are highest in biomass burning areas of South America, Africa, and Asia. The 1990 NO{sub x} emissions were gridded to 1{sup o} resolution using surrogate data, and were given seasonal, two-vertical-level resolution and speciated into NO and NO{sub 2} based on proportions derived from the 1985 GEIA Version 1B inventory. Global NMVOC emissions were given additional species resolution by allocating the 23 chemical categories to individual chemical species based on factors derived from the speciated emissions of NMVOCs in the U.S. from the U.S. EPA's 1990 Interim Inventory. Ongoing research activities for this project continue to address emissions of both NO{sub x} and NMVOCs. Future tasks include: (a) evaluation of more detailed regional emissions estimates and update of the default 1990 inventories with the appropriate estimates, (b) derivation of quantitative uncertainty estimates for the emission values, and (c) development of emissions estimates for 1995.

  12. An Inventory Analysis of Thermal-spectrum Thorium-fueled Molten Salt

    Office of Scientific and Technical Information (OSTI)

    Reactor Concepts: Supporting U.S. Fuel Cycle Assessment (Conference) | SciTech Connect Conference: An Inventory Analysis of Thermal-spectrum Thorium-fueled Molten Salt Reactor Concepts: Supporting U.S. Fuel Cycle Assessment Citation Details In-Document Search Title: An Inventory Analysis of Thermal-spectrum Thorium-fueled Molten Salt Reactor Concepts: Supporting U.S. Fuel Cycle Assessment Authors: Powers, Jeffrey J [1] ; Gehin, Jess C [1] ; Worrall, Andrew [1] ; Harrison, Thomas J [1] ;

  13. DOE Seeking Input on Alternative Uses of Nickel Inventory | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Seeking Input on Alternative Uses of Nickel Inventory DOE Seeking Input on Alternative Uses of Nickel Inventory March 9, 2007 - 10:28am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) is seeking input from industry representatives on the safe disposition of approximately 15,300 tons of nickel scrap recovered from uranium enrichment process equipment at the Department's Oak Ridge, TN, and Paducah, KY, facilities. The Expression of Interest (EOI), released today, will

  14. 2014 Review of the Potential Impact of DOE Excess Uranium Inventory On the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Markets | Department of Energy 4 Review of the Potential Impact of DOE Excess Uranium Inventory On the Commercial Markets 2014 Review of the Potential Impact of DOE Excess Uranium Inventory On the Commercial Markets Energy Resources International (ERI), Inc conducted this independent market impact analysis on DOE planned uranium sales and transfers during the period 2014 to 2033, based on information concerning quantities and schedules provided to ERI by DOE. PDF icon ERI Market

  15. Peru`s national greenhouse gas inventory, 1990. Peru climate change country study

    SciTech Connect (OSTI)

    1996-07-01

    The aim of this study has been to determine the Inventory and to propose greenhouse gases mitigation alternatives in order to face the future development of the country in a clean environmental setting, improving in this way the Peruvian standard of life. The main objective of this executive summary is to show concisely the results of the National Inventory about greenhouse gases emitted by Peru in 1990.

  16. The Municipal Solid-State Street Lighting Consortium Public Outdoor Lighting Inventory: Phase I: Survey Results

    SciTech Connect (OSTI)

    Kinzey, Bruce R.; Smalley, Edward; Haefer, R.

    2014-09-30

    This document presents the results of a voluntary web-based inventory survey of public street and area lighting across the U.S. undertaken during the latter half of 2013.This survey attempts to access information about the national inventory in a “bottoms-up” manner, going directly to owners and operators. Adding to previous “top down” estimates, it is intended to improve understanding of the role of public outdoor lighting in national energy use.

  17. A hybrid inventory management system respondingto regular demand and surge demand

    SciTech Connect (OSTI)

    Mohammad S. Roni; Mingzhou Jin; Sandra D. Eksioglu

    2014-06-01

    This paper proposes a hybrid policy for a stochastic inventory system facing regular demand and surge demand. The combination of two different demand patterns can be observed in many areas, such as healthcare inventory and humanitarian supply chain management. The surge demand has a lower arrival rate but higher demand volume per arrival. The solution approach proposed in this paper incorporates the level crossing method and mixed integer programming technique to optimize the hybrid inventory policy with both regular orders and emergency orders. The level crossing method is applied to obtain the equilibrium distributions of inventory levels under a given policy. The model is further transformed into a mixed integer program to identify an optimal hybrid policy. A sensitivity analysis is conducted to investigate the impact of parameters on the optimal inventory policy and minimum cost. Numerical results clearly show the benefit of using the proposed hybrid inventory model. The model and solution approach could help healthcare providers or humanitarian logistics providers in managing their emergency supplies in responding to surge demands.

  18. Inventory optimization in the US petroleum industry: empirical analysis and implications for energy emergency policy

    SciTech Connect (OSTI)

    Hubbard, R.G.; Weiner, R.

    1983-08-01

    This paper starts from the observation that the rapid increases in the price of crude oil during two of the last three supply disruptions can be attributed in part to increased private inventory demand stimulated by expectations of still higher prices (and hence speculative profits) in the future. To examine this phenomenon, we develop an optimizing model of inventory behavior in the petroleum industry and test it on United States data. Government intervention in any future disruption is likely to take the form of releases from the Strategic Petroleum Reserve (SPR). Given that the SPR accounts for but a small fraction of US oil inventories, the reaction of the private sector is critical in evaluating its impact. We incorporate inventory behavior in a small, empirically-estimated model of the world oil market, which is then linked to a short-run macro-econometric model of the US. We employ the linked energy-economy models to simulate a disruption and the effects of using the SPR on oil prices and private inventory behavior. Our simulations support the view that substantial inventory accumulation accompanies a supply disruption. In the debate over whether the SPR is potentially a potent or impotent resource in an emergency, we lean toward potency. We found that public releases were not absorbed in private stockpiles; indeed, their dampening price effects served, albeit slightly, to discourage speculative stock build. 20 references, 3 figures, 6 tables.

  19. Uncertainty assessment and analysis of ITER in-VV tritium inventory determination

    SciTech Connect (OSTI)

    Cristescu, I. R.; Cristescu, I.; Glugla, M.; Murdoch, D.; Ciattaglia, S.

    2008-07-15

    Tracking of tritium inventories on ITER will be essential to ensure that the safety limits established for the mobilizable tritium inventory in the vacuum vessel are not violated. Tritium will be delivered to the ITER site from outside suppliers. Staring with the tritium imports the value of tritium inventory at ITER site will be known with a certain error that will propagate in time. During plasma operation, shot by shot measurements of the tritium delivered to the Torus and recovered will allow the amount of tritium trapped in the Torus to be computed at the end of the day. A case study for different measuring techniques and several measuring points for the tritium recovered from Torus have been done. An alternative method is to measure overnight the variation in the inventory of the storage and delivery system and the associated error when this method will be employed are presented. In order to reduce the errors on the tritium trapped in-vessel, at certain time intervals a method of global tritium inventory will be performed. The method envisages the transfer of all the mobilizable tritium from the plant and measurement of this inventory in the self-assay beds from the storage and delivery system. Evaluation of the most important sources of error for the tritium trapped in-vessel and means of minimization are eventually presented. (authors)

  20. Sediment studies at Bikini Atoll part 2. inventories of transuranium elements in surface sediments

    SciTech Connect (OSTI)

    Noshkin, V.E.; Eagle, R.J.; Wong, K.M.; Robison, W.L.

    1997-10-01

    This is the second of three reports on Bikini sediment studies, which discusses the concentrations and inventories of {sup 241}Am and {sup 239+240}Pu in sediments from the lagoon. Surface sediment samples were collected from 87 locations over the entire lagoon at Bikini Atoll during 1979. The collections were made to map the distribution of long-lived radionuclides associated with the bottom material and to show what modifications occurred in the composition of the sediment as a result of the testing program. Present inventories for {sup 241}Am and {sup 239+240}Pu in the surface 2 cm of sediment are estimated to be 14 and 17 TBq, respectively. These values are estimated to represent only 14% of the total inventory in the sediment column. Sediment inventories of {sup 239+240}Pu and {sup 241}Am are changing only slowly with time through chemical- physical processes that continuously mobilize small amounts of the transuranics to the water column. The lowest concentrations and inventories are associated with deposits logoonward of the eastern reef.

  1. US Department of Energy`s weapons complex scrap metal inventory. Research report

    SciTech Connect (OSTI)

    Duda, J.R.

    1993-07-01

    Two tasks comprise the thrust of this contracted effort. Task 1 is the development of a Source List and is based on determining a list of public documents pertaining to contaminated/uncontaminated scrap metals, equipment, and other materials of value, were they not contaminated or could they be decontaminated. Task 2 is to develop an inventory of such materials from the Task 1 list of public documentation. In more detail, the Task 2 Inventory Report is based upon fulfillment of the following requirement to prepare and submit an Inventory Report based on the information obtained in the Source List. The Inventory Report shall define the type, quantity, and location of used equipment, scrap metal, and other materials existing within DOE`s system. The Inventory Report shall list: the site where the equipment, scrap metal, or other material resides; the type and size of equipment; the type and volume and/or weight of scrap metal or other material; its source; the type and level of contamination; its accessibility; the current annual rate of generation; and the projected annual rate of generation of the material.

  2. Reduction of Worldwide Plutonium Inventories Using Conventional Reactors and Advanced Fuels: A Systems Study

    SciTech Connect (OSTI)

    Krakowski, R.A., Bathke, C.G.

    1997-12-31

    The potential for reducing plutonium inventories in the civilian nuclear fuel cycle through recycle in LWRs of a variety of mixed oxide forms is examined by means of a cost based plutonium flow systems model. This model emphasizes: (1) the minimization of separated plutonium; (2) the long term reduction of spent fuel plutonium; (3) the optimum utilization of uranium resources; and (4) the reduction of (relative) proliferation risks. This parametric systems study utilizes a globally aggregated, long term (approx. 100 years) nuclear energy model that interprets scenario consequences in terms of material inventories, energy costs, and relative proliferation risks associated with the civilian fuel cycle. The impact of introducing nonfertile fuels (NFF,e.g., plutonium oxide in an oxide matrix that contains no uranium) into conventional (LWR) reactors to reduce net plutonium generation, to increase plutonium burnup, and to reduce exo- reactor plutonium inventories also is examined.

  3. An SAR-compliant radionuclide inventory management system for a DOE research and development laboratory

    SciTech Connect (OSTI)

    O'Kula, K.R.; Lux, C.R.; Clements, J.A.

    2000-07-01

    The US Department of Energy Complex contains many laboratories that require inventory management and control of large stores of radionuclides. While the overall quantities of radionuclides are bounded by Authorization-Basis (AB) documents, the spatial distribution may change rapidly according to facility experimentation and storage limits. Thus, the consequences of postulated accident events may be difficult to quantify as the location of radiological species becomes uncertain. Furthermore, a situation of this nature may be compounded by management of fissile materials in the same laboratory. Although radionuclide inventory management, fissile material control, and compliance with AB limits may be handled individually, a systematic and consistent approach would be to integrate all three functions. A system with these characteristics, an upgraded Radionuclide Inventory and Administrative Control (RI-AC) System, has been implemented for the Savannah River Technology Center (SRTC) located on the Savannah River Site (SRS), and is summarized in this paper.

  4. Radionuclide inventories for short run-time space nuclear reactor systems

    SciTech Connect (OSTI)

    Coats, R.L.

    1992-10-22

    Space Nuclear Reactor Systems, especially those used for propulsion, often have expected operation run times much shorter than those for land-based nuclear power plants. This produces substantially different radionuclide inventories to be considered in the safety analyses of space nuclear systems. This presentation describes an analysis utilizing ORIGEN2 and DKPOWER to provide comparisons among representative land-based and space systems. These comparisons enable early, conceptual considerations of safety issues and features in the preliminary design phases of operational systems, test facilities, and operations by identifying differences between the requirements for space systems and the established practice for land-based power systems. Early indications are that separation distance is much more effective as a safety measure for space nuclear systems than for power reactors because greater decay of the radionuclide activity occurs during the time to transport the inventory a given distance. In addition, the inventories of long-lived actinides are very low for space reactor systems.

  5. Reduction of worldwide plutonium inventories using conventional reactors and advanced fuels: A systems study

    SciTech Connect (OSTI)

    Krakowski, R.A.; Bathke, C.G.; Chodak, P. III

    1997-09-01

    The potential for reducing plutonium inventories in the civilian nuclear fuel cycle through recycle in LWRs of a variety of mixed-oxide forms is examined by means of a cost-based plutonium-flow systems model that includes an approximate measure of proliferation risk. The impact of plutonium recycle in a number of forms is examined, including the introduction of nonfertile fuels into conventional (LWR) reactors to reduce net plutonium generation, to increase plutonium burnup, and to reduce exo-reactor plutonium inventories.

  6. Environmental Protection Department`s well inventory (through the fourth quarter of 1991)

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    This report is an inventory of the wells recorded in Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) documents since the startup of the Savannah River Site (SRS) and includes wells monitored by special request and SRS research wells. Wells listed in this inventory are monitoring wells unless otherwise indicated. The purpose of this report is as follows: to provide a historical record of the wells that EPD/EMS has monitored; to provide a document containing a list of wells that are currently in the EPD/EMS Groundwater Monitoring Program, and to provide pertinent information about all wells listed in EPD/EMS documents.

  7. Environmental Protection Department`s well inventory (through the second quarter of 1991)

    SciTech Connect (OSTI)

    Rogers, C.D.

    1991-10-01

    This report is an inventory of the wells contained in Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) documents since the startup of the Savannah River Site (SRS) and includes wells monitored by special request and SRS research wells. Wells listed in this inventory are monitoring wells unless otherwise indicated. The purpose of this report is as follows: To provide a historical record of the wells that EPD/EMS has monitored; to provide a document containing a list of wells that are currently in the EPD/EMS Groundwater Monitoring Program; and to provide pertinent information about all wells listed in EPD/EMS documents.

  8. Environmental Protection Department's well inventory (through the fourth quarter of 1991)

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    This report is an inventory of the wells recorded in Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) documents since the startup of the Savannah River Site (SRS) and includes wells monitored by special request and SRS research wells. Wells listed in this inventory are monitoring wells unless otherwise indicated. The purpose of this report is as follows: to provide a historical record of the wells that EPD/EMS has monitored; to provide a document containing a list of wells that are currently in the EPD/EMS Groundwater Monitoring Program, and to provide pertinent information about all wells listed in EPD/EMS documents.

  9. Environmental Protection Department's well inventory (through the second quarter of 1991)

    SciTech Connect (OSTI)

    Rogers, C.D. )

    1991-10-01

    This report is an inventory of the wells contained in Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) documents since the startup of the Savannah River Site (SRS) and includes wells monitored by special request and SRS research wells. Wells listed in this inventory are monitoring wells unless otherwise indicated. The purpose of this report is as follows: To provide a historical record of the wells that EPD/EMS has monitored; to provide a document containing a list of wells that are currently in the EPD/EMS Groundwater Monitoring Program; and to provide pertinent information about all wells listed in EPD/EMS documents.

  10. Inventory of Carbon Dioxide (CO2) Emissions at Pacific Northwest National Laboratory

    SciTech Connect (OSTI)

    Judd, Kathleen S.; Kora, Angela R.; Shankle, Steve A.; Fowler, Kimberly M.

    2009-06-29

    The Carbon Management Strategic Initiative (CMSI) is a lab-wide initiative to position the Pacific Northwest National Laboratory (PNNL) as a leader in science, technology and policy analysis required to understand, mitigate and adapt to global climate change as a nation. As part of an effort to walk the talk in the field of carbon management, PNNL conducted its first carbon dioxide (CO2) emissions inventory for the 2007 calendar year. The goal of this preliminary inventory is to provide PNNL staff and management with a sense for the relative impact different activities at PNNL have on the labs total carbon footprint.

  11. Integrated data base report--1995: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    SciTech Connect (OSTI)

    1996-12-01

    The information in this report summarizes the U.S. Department of Energy (DOE) data base for inventories, projections, and characteristics of domestic spent nuclear fuel and radioactive waste. This report is updated annually to keep abreast of continual waste inventory and projection changes in both the government and commercial sectors. Baseline information is provided for DOE program planning purposes and to support DOE program decisions. Although the primary purpose of this document is to provide background information for program planning within the DOE community, it has also been found useful by state and local governments, the academic community, and some private citizens.

  12. RADIONUCLIDE INVENTORY AND DISTRIBUTION: FOURMILE BRANCH, PEN BRANCH, AND STEEL CREEK IOUS

    SciTech Connect (OSTI)

    Hiergesell, R.; Phifer, M.

    2014-04-29

    As a condition to the Department of Energy (DOE) Low Level Waste Disposal Federal Facility Review Group (LFRG) review team approving the Savannah River Site (SRS) Composite Analysis (CA), SRS agreed to follow up on a secondary issue, which consisted of the consolidation of several observations that the team concluded, when evaluated collectively, could potentially impact the integration of the CA results. This report addresses secondary issue observations 4 and 21, which identify the need to improve the CA sensitivity and uncertainty analysis specifically by improving the CA inventory and the estimate of its uncertainty. The purpose of the work described herein was to be responsive to these secondary issue observations by re-examining the radionuclide inventories of the Integrator Operable Units (IOUs), as documented in ERD 2001 and Hiergesell, et. al. 2008. The LFRG concern has been partially addressed already for the Lower Three Runs (LTR) IOU (Hiergesell and Phifer, 2012). The work described in this investigation is a continuation of the effort to address the LFRG concerns by re-examining the radionuclide inventories associated with Fourmile Branch (FMB) IOU, Pen Branch (PB) IOU and Steel Creek (SC) IOU. The overall approach to computing radionuclide inventories for each of the IOUs involved the following components: Defining contaminated reaches of sediments along the IOU waterways Identifying separate segments within each IOU waterway to evaluate individually Computing the volume and mass of contaminated soil associated with each segment, or compartment Obtaining the available and appropriate Sediment and Sediment/Soil analytical results associated with each IOU Standardizing all radionuclide activity by decay-correcting all sample analytical results from sample date to the current point in time, Computing representative concentrations for all radionuclides associated with each compartment in each of the IOUs Computing the radionuclide inventory of each DOE-added radionuclide for the compartments of each IOU by applying the representative, central value concentration to the mass of contaminated soil Totaling the inventory for all compartments associated with each of the IOUs Using this approach the 2013 radionuclide inventories for each sub-compartment associated with each of the three IOUs were computed, by radionuclide. The inventories from all IOU compartments were then rolled-up into a total inventory for each IOU. To put the computed estimate of radionuclide activities within FMB, PB, and SC IOUs into context, attention was drawn to Cs-137, which was the radionuclide with the largest contributor to the calculated dose to a member of the public at the perimeter of SRS within the 2010 SRS CA (SRNL 2010). The total Cs-137 activity in each of the IOUs was calculated to be 9.13, 1.5, and 17.4 Ci for FMB, PB, and SC IOUs, respectively. Another objective of this investigation was to address the degree of uncertainty associated with the estimated residual radionuclide activity that is calculated for the FMB, PB, and SC IOUs. Two primary contributing factors to overall uncertainty of inventory estimates were identified and evaluated. The first related to the computation of the mass of contaminated material in a particular IOU compartment and the second to the uncertainty associated with analytical counting errors. The error ranges for the mass of contaminated material in each IOU compartment were all calculated to be approximately +/- 9.6%, or a nominal +/-10%. This nominal value was added to the uncertainty associated with the analytical counting errors that were associated with each radionuclide, individually. This total uncertainty was then used to calculate a maximum and minimum estimated radionuclide inventories for each IOU.

  13. Compilation and analyses of emissions inventories for NOAA`s atmospheric chemistry project. Progress report, August 1997

    SciTech Connect (OSTI)

    Benkovitz, C.M.; Mubaraki, M.A.

    1997-09-01

    Global inventories of anthropogenic emissions of oxides of nitrogen (NO{sub x}) for circa 1985 and 1990 and Non-Methane Volatile Organic Compounds (NMVOCs) for circa 1990 have been compiled by this project. Work on the inventories has been carried out under the umbrella of the Global Emissions Inventory Activity (GEIA) of the International Global Atmospheric Chemistry (IGAC) Program. The 1985 NO{sub x} inventory was compiled using default data sets of global emissions that were refined via the use of more detailed regional data sets; this inventory is being distributed to the scientific community at large as the GEIA Version 1A inventory. Global emissions of NO{sub x} for 1985 are estimated to be 21 Tg N y{sup -1}, with approximately 84% originating in the Northern Hemisphere. The 1990 inventories of NO{sub x} and NMVOCs were compiled using unified methodologies and data sets in collaboration with the Netherlands National Institute of Public Health and Environmental Protection (Rijksinstituut Voor Volksgezondheid en Milieuhygiene, RIVM) and the Division of Technology for Society of the Netherlands Organization for Applied Scientific Research, (IMW-TNO); these emissions will be used as the default estimates to be updated with more accurate regional data. The NMVOC inventory was gridded and speciated into 23 chemical categories.

  14. Estimation of SX Farm Vadose Zone CS-137 Inventories from Geostatistical Analysis of Drywell and Soil Core Data

    SciTech Connect (OSTI)

    KNEPP, A.J.

    2000-06-02

    This report provides an estimation of the Cs-137 inventories in the soil under the SX Tank Farm based on measurements obtained from drywell and soil cores. The Cs-137 inventories are estimated separately for distinct volumes of soil associated etc.

  15. Waste Isolation Pilot Plant Transuranic Waste Baseline inventory report. Volume 2. Revision 1

    SciTech Connect (OSTI)

    1995-02-01

    This document is the Baseline Inventory Report for the transuranic (alpha-bearing) wastes stored at the Waste Isolation Pilot Plant (WIPP) in New Mexico. Waste stream profiles including origin, applicable EPA codes, typical isotopic composition, typical waste densities, and typical rates of waste generation for each facility are presented for wastes stored at the WIPP.

  16. Integrated data base report--1996: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    SciTech Connect (OSTI)

    1997-12-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and commercial and U.S. government-owned radioactive wastes. Inventories of most of these materials are reported as of the end of fiscal year (FY) 1996, which is September 30, 1996. Commercial SNF and commercial uranium mill tailings inventories are reported on an end-of-calendar year (CY) basis. All SNF and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are SNF, high-level waste, transuranic waste, low-level waste, uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, naturally occurring and accelerator-produced radioactive material, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through FY 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

  17. Integrated data base report - 1994: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    SciTech Connect (OSTI)

    1995-09-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel and commercial and U.S. government-owned radioactive wastes. Except for transuranic wastes, inventories of these materials are reported as of December 31, 1994. Transuranic waste inventories are reported as of December 31, 1993. All spent nuclear fuel and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

  18. Life Cycle Inventory of Biodiesel and Petroleum Diesel for Use in an Urban Bus

    SciTech Connect (OSTI)

    Sheehan, John; Camobreco, Vince; Duffield, James; Graboski, Michael; Graboski, Michael; Shapouri, Housein

    1998-05-01

    This report presents the findings from a study of the life cycle inventories (LCIs) for petroleum diesel and biodiesel. An LCI is a comprehensive quantification of all the energy and environmental flows associated with a product from “cradle to grave.” It provides information on raw materials extracted from the environment; energy resources consumed; air, water, and solid waste emissions generated.

  19. Mixed Waste Management Facility (MWMF) Old Burial Ground (OBG) source control technology and inventory study

    SciTech Connect (OSTI)

    Flach, G.P.; Rehder, T.E.; Kanzleiter, J.P.

    1996-10-02

    This report has been developed to support information needs for wastes buried in the Burial Ground Complex. Information discussed is presented in a total of four individual attachments. The general focus of this report is to collect information on estimated source inventories, leaching studies, source control technologies, and to provide information on modeling parameters and associated data deficiencies.

  20. Categorization of Used Nuclear Fuel Inventory in Support of a Comprehensive National Nuclear Fuel Cycle Strategy

    Broader source: Energy.gov [DOE]

    The Office of Nuclear Energy has conducted a technical review and assessment of the total current inventory [~70,150 MTHM as of 2011] of domestic discharged used nuclear fuel (UNF) and estimated an amount to be considered for retention in support of research, development, demonstration, and national security interests.

  1. AX tank farm waste inventory study for the Hanford Tanks Initiative (HTI) project

    SciTech Connect (OSTI)

    Becker, D.L.

    1997-12-22

    In May of 1996, the US Department of Energy implemented a four-year demonstration project identified as the Hanford Tanks Initiative (HTI). The HTI mission is to minimize technical uncertainties and programmatic risks by conducting demonstrations to characterize and remove tank waste using technologies and methods that will be needed in the future to carry out tank waste remediation and tank farm closure at the Hanford Site. Included in the HTI scope is the development of retrieval performance evaluation criteria supporting readiness to close single-shell tanks in the future. A path forward that includes evaluation of closure basis alternatives has been outlined to support the development of retrieval performance evaluation criteria for the AX Farm, and eventual preparation of the SEIS for AX Farm closure. This report documents the results of the Task 4, Waste Inventory study performed to establish the best-basis inventory of waste contaminants for the AX Farm, provides a means of estimating future soil inventories, and provides data for estimating the nature and extent of contamination (radionuclide and chemical) resulting from residual tank waste subsequent to retrieval. Included in the report are a best-basis estimate of the existing radionuclide and chemical inventory in the AX Farm Tanks, an estimate of the nature and extent of existing radiological and chemical contamination from past leaks, a best-basis estimate of the radionuclide and chemical inventory in the AX Farm Tanks after retrieval of 90 percent, 99 percent, and 99.9 percent of the waste, and an estimate of the nature and extent of radionuclide and chemical contamination resulting from retrieval of waste for an assumed leakage from the tanks during retrieval.

  2. National inventory of abandoned mine land problems: an emphasis on health, safety, and general welfare impacts

    SciTech Connect (OSTI)

    Honea, R.B.; Baxter, F.P.

    1984-07-01

    In 1977 Congress passed the Surface Mining Control and Reclamation Act, which provided for the abatement of abandoned mine land (AML) problems through a reclamation program funded by a severance tax on current mining. AML was defined as any land, including associated buildings, equipment, and affected areas, that was no longer being used for coal mining by August 1977. This act also created the Office of Surface Mining (OSM) in the Department of the Interior to administer the AML program and to assume other regulatory and research responsibilities. This report documents the design, implementation, and results of a National inventory of the most serious problems associated with past mining practices. One of the objectives of the Inventory was to help OSM and the participating states locate, identify, and rank AML problems and estimate their reclamation costs. Other objectives were to encourage states and Indian tribes to collect such data and to provide OSM with the information necessary to guide its decision-making processes and to quantify the progress of the reclamation program. Because only limited funds were available to design and implement the National inventory and because the reclamation fund established by the Act may never be sufficient to correct all AML problems, OSM has focused on only the top-priority problems. It is stressed that this is not an inventory of AML features but rather an inventory of AML impacts. It should be noted that the data and analysis contained in this report are based on a data collection effort conducted by the states, Indian tribes, and OSM contractors between 1979 and mid-1982.

  3. seq | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quality - Certified to ISO 14001:2004 Questions about NETL's Environment, Safety and Health Management System may be directed to Dave Hyman, 412-386-6572,...

  4. ‘N-of-1- pathways ’ unveils personal deregulated mechanisms from a single pair of RNA-Seq samples: Towards precision medicine

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gardeux, Vincent; Achour, Ikbel; Li, Jianrong; Maienschein-Cline, Mark; Li, Haiquan; Pesce, Lorenzo; Parinandi, Gurunadh; Bahroos, Neil; Winn, Robert; Garcia, Joe G. N.; et al

    2014-11-01

    Background: The emergence of precision medicine allowed the incorporation of individual molecular data into patient care. This research entails, DNA sequencing predicts somatic mutations in individual patients. However, these genetic features overlook dynamic epigenetic and phenotypic response to therapy. Meanwhile, accurate personal transcriptome interpretation remains an unmet challenge. Further, N-of-1 (single-subject) efficacy trials are increasingly pursued, but are underpowered for molecular marker discovery. Method: ‘N-of-1-pathways’ is a global framework relying on three principles: (i) the statistical universe is a single patient; (ii) significance is derived from geneset/biomodules powered by paired samples from the same patient; and (iii) similarity between genesets/biomodulesmore » assesses commonality and differences, within-study and cross-studies. Thus, patient gene-level profiles are transformed into deregulated pathways. From RNA-Seq of 55 lung adenocarcinoma patients, N-of-1-pathways predicts the deregulated pathways of each patient. Results: Cross-patient N-of-1-pathways obtains comparable results with conventional genesets enrichment analysis (GSEA) and differentially expressed gene (DEG) enrichment, validated in three external evaluations. Moreover, heatmap and star plots highlight both individual and shared mechanisms ranging from molecular to organ-systems levels (eg, DNA repair, signaling, immune response). Patients were ranked based on the similarity of their deregulated mechanisms to those of an independent gold standard, generating unsupervised clusters of diametric extreme survival phenotypes (p=0.03). Conclusions: The N-of-1-pathways framework provides a robust statistical and relevant biological interpretation of individual disease-free survival that is often overlooked in conventional cross-patient studies. It enables mechanism-level classifiers with smaller cohorts as well as N-of-1 studies.« less

  5. ‘N-of-1- pathways ’ unveils personal deregulated mechanisms from a single pair of RNA-Seq samples: Towards precision medicine

    SciTech Connect (OSTI)

    Gardeux, Vincent; Achour, Ikbel; Li, Jianrong; Maienschein-Cline, Mark; Li, Haiquan; Pesce, Lorenzo; Parinandi, Gurunadh; Bahroos, Neil; Winn, Robert; Garcia, Joe G. N.; Foster, Ian; Lussier, Yves A.

    2014-11-01

    Background: The emergence of precision medicine allowed the incorporation of individual molecular data into patient care. This research entails, DNA sequencing predicts somatic mutations in individual patients. However, these genetic features overlook dynamic epigenetic and phenotypic response to therapy. Meanwhile, accurate personal transcriptome interpretation remains an unmet challenge. Further, N-of-1 (single-subject) efficacy trials are increasingly pursued, but are underpowered for molecular marker discovery. Method: ‘N-of-1-pathways’ is a global framework relying on three principles: (i) the statistical universe is a single patient; (ii) significance is derived from geneset/biomodules powered by paired samples from the same patient; and (iii) similarity between genesets/biomodules assesses commonality and differences, within-study and cross-studies. Thus, patient gene-level profiles are transformed into deregulated pathways. From RNA-Seq of 55 lung adenocarcinoma patients, N-of-1-pathways predicts the deregulated pathways of each patient. Results: Cross-patient N-of-1-pathways obtains comparable results with conventional genesets enrichment analysis (GSEA) and differentially expressed gene (DEG) enrichment, validated in three external evaluations. Moreover, heatmap and star plots highlight both individual and shared mechanisms ranging from molecular to organ-systems levels (eg, DNA repair, signaling, immune response). Patients were ranked based on the similarity of their deregulated mechanisms to those of an independent gold standard, generating unsupervised clusters of diametric extreme survival phenotypes (p=0.03). Conclusions: The N-of-1-pathways framework provides a robust statistical and relevant biological interpretation of individual disease-free survival that is often overlooked in conventional cross-patient studies. It enables mechanism-level classifiers with smaller cohorts as well as N-of-1 studies.

  6. An approach for verifying biogenic greenhouse gas emissions inventories with atmospheric CO 2 concentration data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ogle, Stephen; Davis, Kenneth J.; Lauvaux, Thomas; Schuh, Andrew E.; Cooley, Dan; West, Tristram O.; Heath, L.; Miles, Natasha; Richardson, S. J.; Breidt, F. Jay; et al

    2015-03-10

    Verifying national greenhouse gas (GHG) emissions inventories is a critical step to ensure that reported emissions data to the United Nations Framework Convention on Climate Change (UNFCCC) are accurate and representative of a country’s contribution to GHG concentrations in the atmosphere. Verification could include a variety of evidence, but arguably the most convincing verification would be confirmation of a change in GHG concentrations in the atmosphere that is consistent with reported emissions to the UNFCCC. We report here on a case study evaluating this option based on a prototype atmospheric CO2 measurement network deployed in the Mid-Continent Region of themore » conterminous United States. We found that the atmospheric CO2 measurement data did verify the accuracy of the emissions inventory within the confidence limits of the emissions estimates, suggesting that this technology could be further developed and deployed more widely in the future for verifying reported emissions.« less

  7. Pacific Northwest Laboratory facilities radionuclide inventory assessment CY 1992-1993

    SciTech Connect (OSTI)

    Sula, M.J.; Jette, S.J.

    1994-09-01

    Assessments for evaluating compliance with airborne radionuclide emission monitoring requirements in the National Emission Standards for Hazardous Air Pollutants (NESHAPs - U.S. Code of Federal Regulations, Title 40 Part 61, Subparts H and I) were performed for 33 buildings at the U.S. Department of Energy`s (DOE) Pacific Northwest Laboratory on the Hanford Site, and for five buildings owned and operated by Battelle, Pacific Northwest Laboratories in Richland, Washington. The assessments were performed using building radionuclide inventory data obtained in 1992 and 1993. Results of the assessments are summarized in Table S.1 for DOE-PNL buildings and in Table S.2 for Battelle-owned buildings. Based on the radionuclide inventory assessments, four DOE-PNL buildings (one with two emission points) require continuous sampling for radionuclides per 40 CFR 61. None of the Battelle-owned buildings require continuous emission sampling.

  8. Dismantling of the PETRA glove box: tritium contamination and inventory assessment

    SciTech Connect (OSTI)

    Wagner, R.

    2015-03-15

    The PETRA facility is the first installation in which experiments with tritium were carried out at the Tritium Laboratory Karlsruhe. After completion of two main experimental programs, the decommissioning of PETRA was initiated with the aim to reuse the glove box and its main still valuable components. A decommissioning plan was engaged to: -) identify the source of tritium release in the glove box, -) clarify the status of the main components, -) assess residual tritium inventories, and -) de-tritiate the components to be disposed of as waste. Several analytical techniques - calorimetry on small solid samples, wipe test followed by liquid scintillation counting for surface contamination assessment, gas chromatography on gaseous samples - were deployed and cross-checked to assess the remaining tritium inventories and initiate the decommissioning process. The methodology and the main outcomes of the numerous different tritium measurements are presented and discussed. (authors)

  9. SF 6110-AC Residual Inventory of Material or Equipment Furnished by or Acquired for Sandia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AC (10-2014) Supersedes (09-2013) issue Procurement Center RESIDUAL INVENTORY OF MATERIAL OR EQUIPMENT FURNISHED BY OR ACQUIRED FOR SANDIA Contractor: Contractor No.: Item Description/Corporation * Quantity Furnished Residual Estimated Estimated (Sandia Use) Disposition No. (Do NOT include Classified Information) (See below) Acquired Quantity Total Value Weight Remarks * NOTE: Description shall include Drawing/Specification No. and whether item is Classified, Furnished, Acquired, Esplosive,

  10. Meeting the challenge: A case study of Sandia National Laboratories Records Inventory Project

    SciTech Connect (OSTI)

    Cusimano, L.J.; Roberts, C.B.

    1993-08-01

    Sandia National Laboratories determined that the most effective method to address records management initiatives would be through a single, comprehensive facilities wide records inventory and retention schedule project. The logistic of such an undertaking (estimated at 425,000 linear feet) are demanding. The relatively short time frame required for completion and the project`s size called for sound, up front planning by Sandia and ultimately the support of an outside contractor for qualified resources to execute the plan.

  11. Measuring Li+ inventory losses in LiCoO2/graphite cells using Raman microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Snyder, Chelsea Marie; Apblett, Christopher A.; Grillet, Anne; Thomas Edwin Beechem; Duquette, David

    2016-03-25

    Here, the contribution from loss of Li+ inventory to capacity fade is described for slow rates (C/10) and long-term cycling (up to 80 cycles). It was found through electrochemical testing and ex-situ Raman analysis that at these slow rates, the entirety of capacity loss up to 80 cycles can be explained by loss of Li+ inventory in the cell. The Raman spectrum of LiCoO2 is sensitive to the state of lithiation and can therefore be leveraged to quantify the state of lithiation for individual particles. With these Raman derived estimates, the lithiation state of the cathode in the discharged statemore » is compared to electrochemical data as a function of cycle number. High correlation is found between Raman quantifications of cycleable lithium and the capacity fade. Additionally, the linear relationship between discharge capacity and cell overpotential suggests that the loss of capacity stems from an impedance rise of the electrodes, which based on Li inventory losses, is caused by SEI formation and repair.« less

  12. Continuous Fiber Ceramic Composite (CFCC) Program. Inventory of federally funded CFCC R&D projects

    SciTech Connect (OSTI)

    Richlen, S.; Caton, G.M.; Karnitz, M.A.; Cox, T.D.; Hong, W.

    1993-05-01

    Continuous Fiber Ceramic Composites (CFCC) are a new class of materials that are lighter, stronger, more corrosion resistant, and capable of performing at elevated temperatures. This new type of material offers the potential to meet the demands of a variety of industrial, military, and aerospace applications. The Department of Energy Office of Industrial Technologies (OIT) has a new program on CFCCs for industrial applications and this program has requested an inventory of all federal projects on CFCCs that relate to their new program. The purpose of this project is to identify all other ongoing CFCC research to avoid redundancy in the OIT Program. The inventory will be used as a basis for coordinating with the other ongoing ceramic composite projects. The inventory is divided into two main parts. The first part is concerned with CFCC supporting technologies projects and is organized by the categories listed below. (1) Composite Design; (2) Materials Characterization; (3) Test Methods; (4) Non-Destructive Evaluation; (5) Environmental Effects; (6) Mechanical Properties; (7) Database Life Prediction; (8) Fracture/Damage; and (9) Joining. The second part has information on component development, fabrication, and fiber-related projects.

  13. Procedures for Interagency Consultation to Avoid or Mitigate Adverse Effects on Rivers in the Nationwide Inventory (CEQ, 1980)

    Broader source: Energy.gov [DOE]

    These Council on Environmental Quality (CEQ) procedures are designed to assist federal officials in complying with the President's directive to protect rivers in the Nationwide Inventory through the normal environmental analysis process.

  14. SRS 2010 Vegetation Inventory GeoStatistical Mapping Results for Custom Reaction Intensity and Total Dead Fuels.

    SciTech Connect (OSTI)

    Edwards, Lloyd A.; Paresol, Bernard

    2014-09-01

    This report of the geostatistical analysis results of the fire fuels response variables, custom reaction intensity and total dead fuels is but a part of an SRS 2010 vegetation inventory project. For detailed description of project, theory and background including sample design, methods, and results please refer to USDA Forest Service Savannah River Site internal report “SRS 2010 Vegetation Inventory GeoStatistical Mapping Report”, (Edwards & Parresol 2013).

  15. DOSE ASSESSMENT OF THE FINAL INVENTORIES IN CENTER SLIT TRENCHES ONE THROUGH FIVE

    SciTech Connect (OSTI)

    Collard, L.; Hamm, L.; Smith, F.

    2011-05-02

    In response to a request from Solid Waste Management (SWM), this study evaluates the performance of waste disposed in Slit Trenches 1-5 by calculating exposure doses and concentrations. As of 8/19/2010, Slit Trenches 1-5 have been filled and are closed to future waste disposal in support of an ARRA-funded interim operational cover project. Slit Trenches 6 and 7 are currently in operation and are not addressed within this analysis. Their current inventory limits are based on the 2008 SA and are not being impacted by this study. This analysis considers the location and the timing of waste disposal in Slit Trenches 1-5 throughout their operational life. In addition, the following improvements to the modeling approach have been incorporated into this analysis: (1) Final waste inventories from WITS are used for the base case analysis where variance in the reported final disposal inventories is addressed through a sensitivity analysis; (2) Updated K{sub d} values are used; (3) Area percentages of non-crushable containers are used in the analysis to determine expected infiltration flows for cases that consider collapse of these containers; (4) An updated representation of ETF carbon column vessels disposed in SLIT3-Unit F is used. Preliminary analyses indicated a problem meeting the groundwater beta-gamma dose limit because of high H-3 and I-129 release from the ETF vessels. The updated model uses results from a recent structural analysis of the ETF vessels indicating that water does not penetrate the vessels for about 130 years and that the vessels remain structurally intact throughout the 1130-year period of assessment; and (5) Operational covers are included with revised installation dates and sets of Slit Trenches that have a common cover. With the exception of the modeling enhancements noted above, the analysis follows the same methodology used in the 2008 PA (WSRC, 2008) and the 2008 SA (Collard and Hamm, 2008). Infiltration flows through the vadose zone are identical to the flows used in the 2008 PA, except for flows during the operational cover time period. The physical (i.e., non-geochemical) models of the vadose zone and aquifer are identical in most cases to the models used in the 2008 PA. However, the 2008 PA assumed a uniform distribution of waste within each Slit Trench (WITS Location) and assumed that the entire inventory of each trench was disposed of at the time the first Slit Trench was opened. The current analysis considers individual trench excavations (i.e., segments) and groups of segments (i.e., Inventory Groups also known as WITS Units) within Slit Trenches. Waste disposal is assumed to be spatially uniform in each Inventory Group and is distributed in time increments of six months or less between the time the Inventory Group was opened and closed.

  16. 2008 Toxic Chemical Release Inventory 2008 Toxic Chemical Release Inventory Community Right-to-Know Act of 1986, Title III, Section 313

    SciTech Connect (OSTI)

    Ecology and Air Quality Group

    2009-10-01

    For reporting year 2008, Los Alamos National Laboratory (LANL) submitted a Form R report for lead as required under the Emergency Planning and Community Right-to- Know Act (EPCRA) Section 313. No other EPCRA Section 313 chemicals were used in 2008 above the reportable thresholds. This document was prepared to provide a description of the evaluation of EPCRA Section 313 chemical use and threshold determinations for LANL for calendar year 2008, as well as to provide background information about data included on the Form R reports. Section 313 of EPCRA specifically requires facilities to submit a Toxic Chemical Release Inventory Report (Form R) to the U.S. Environmental Protection Agency (EPA) and state agencies if the owners and operators manufacture, process, or otherwise use any of the listed toxic chemicals above listed threshold quantities. EPA compiles this data in the Toxic Release Inventory database. Form R reports for each chemical over threshold quantities must be submitted on or before July 1 each year and must cover activities that occurred at the facility during the previous year. In 1999, EPA promulgated a final rule on persistent bioaccumulative toxics (PBTs). This rule added several chemicals to the EPCRA Section 313 list of toxic chemicals and established lower reporting thresholds for these and other PBT chemicals that were already reportable. These lower thresholds became applicable in reporting year 2000. In 2001, EPA expanded the PBT rule to include a lower reporting threshold for lead and lead compounds. Facilities that manufacture, process, or otherwise use more than 100 lb of lead or lead compounds must submit a Form R.

  17. Analysis of potential combustion source impacts on acid deposition using an independently derived inventory. Volume I

    SciTech Connect (OSTI)

    Not Available

    1983-12-01

    This project had three major objectives. The first objective was to develop a fossil fuel combustion source inventory (NO/sub x/, SO/sub x/, and hydrocarbon emissions) that would be relatively easy to use and update for analyzing the impact of combustion emissions on acid deposition in the eastern United States. The second objective of the project was to use the inventory data as a basis for selection of a number of areas that, by virtue of their importance in the acid rain issue, could be further studied to assess the impact of local and intraregional combustion sources. The third objective was to conduct an analysis of wet deposition monitoring data in the areas under study, along with pertinent physical characteristics, meteorological conditions, and emission patterns of these areas, to investigate probable relationships between local and intraregional combustion sources and the deposition of acidic material. The combustion source emissions inventory has been developed for the eastern United States. It characterizes all important area sources and point sources on a county-by-county basis. Its design provides flexibility and simplicity and makes it uniquely useful in overall analysis of emission patterns in the eastern United States. Three regions with basically different emission patterns have been identified and characterized. The statistical analysis of wet deposition monitoring data in conjunction with emission patterns, wind direction, and topography has produced consistent results for each study area and has demonstrated that the wet deposition in each area reflects the characteristics of the localized area around the monitoring sites (typically 50 to 150 miles). 8 references, 28 figures, 39 tables.

  18. Environmental Protection Department`s well inventory (through the second quarter of 1993)

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    This report is an inventory of the wells recorded in Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) documents since the startup of the Savannah River Site (SRS) and includes wells monitored by special request and SRS research wells. The purpose of this report is as follows: to provide a historical record of the wells that EPD/EMS has monitored; to provide a document containing a list of wells that are currently in the EPD/EMS Groundwater Monitoring Program; to provide pertinent information about all wells listed in EPD/EMS documents.

  19. Beyond the Inventory: An Interagency Collaboration to Reduce Greenhouse Gas Emissions in the Greater Yellowstone Area

    SciTech Connect (OSTI)

    Kandt, A.; Hotchkiss, E.; Fiebig, M.

    2010-10-01

    As one of the largest, intact ecosystems in the continental United States, land managers within the Greater Yellowstone Area (GYA) have recognized the importance of compiling and understanding agency greenhouse gas (GHG) emissions. The 10 Federal units within the GYA have taken an active role in compiling GHG inventories on a unit- and ecosystem-wide level, setting goals for GHG mitigation, and identifying mitigation strategies for achieving those goals. This paper details the processes, methodologies, challenges, solutions, and lessons learned by the 10 Federal units within the GYA throughout this ongoing effort.

  20. Analytical services Organization Union Valley sample Preparation facility Polychlorinated Biphenyl (PCB) Annual Inventory Document

    SciTech Connect (OSTI)

    Brown, B.J.

    1998-06-01

    The Analytical Services Organization (ASO), Union Valley Sample Preparation Facility (UVSPF), provides analytical testing in support of the Department of Energy (DOE), Oak Ridge Operations (ORO), and associated sites. Samples generated on the Oak Ridge Reservation (ORR) are routinely received at the WSPF for analytical evaluatiotiidentification. Many of these samples are polychlorinated biphenyl (PCB) regulated from a source or being sent to the facility to determine PCB content. PCB laboratory wastes in solid and liquid form are generated during the evaluation of these materials, requiring the WSPF staff to maintain formal storage areas for staging the materials prior to off-site shipment for disposal. The purpose of this report is to fulfill the requirements set forth in Title 40, Code of Federal Regulations (CFR), Part 761.180(a), Subpart J, which requires owners or operators of a facility using or storing PCBS to prepare an annual inventory document by July 1 of the current year which covers the previous calendar year. This report provides documentation of the inventory of PCB materials/wastes that were generated, stored for dispos~ and shipped off site for disposal for the period January 1, 1997, to January 1, 1998. The following is a summary of materials/wastes subject to the aforementioned reporting requirements.

  1. Inventory of current environmental monitoring projects in the US-Canadian transboundary region

    SciTech Connect (OSTI)

    Glantz, C.S.; Ballinger, M.Y.; Chapman, E.G.

    1986-05-01

    This document presents the results of a study commissioned to survey and summarize major environmental monitoring projects in the US-Canadian transboundary region. Projects with field sites located within 400 km (250 mi) of the border and active after 1980 were reviewed. The types of projects included: ambient air-quality monitoring, ambient water-quality monitoring, deposition monitoring, forest/vegetation monitoring and research, soil studies, and ecosystem studies. Ecosystem studies included projects involving the measurement of parameters from more than one monitoring category (e.g., studies that measured both water and soil chemistry). Individual descriptions were formulated for 184 projects meeting the spatial and temporal criteria. Descriptions included the official title for the project, its common abbreviation, program emphasis, monitoring site locations, time period conducted, parameters measured, protocols employed, frequency of sample collection, data storage information, and the principal contact for the project. A summary inventory subdivided according to the six monitoring categories was prepared using a computerized data management system. Information on major centralized data bases in the field of environmental monitoring was also obtained, and summary descriptions were prepared. The inventory and data base descriptions are presented in appendices to this document.

  2. Emissions inventory report summary for Los Alamos National Laboratory for calendar year 2008

    SciTech Connect (OSTI)

    Ecology and Air Quality Group

    2009-10-01

    Los Alamos National Laboratory (LANL) is subject to annual emissions reporting requirements for regulated air pollutants under Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73 (20.2.73 NMAC), Notice of Intent and Emissions Inventory Requirements. The applicability of the requirements is based on the Laboratory’s potential to emit 100 tons per year of suspended particulate matter, nitrogen oxides, carbon monoxide, sulfur oxides, or volatile organic compounds. Additionally, on April 30, 2004, LANL was issued a Title V Operating Permit from the New Mexico Environment Department/Air Quality Bureau, under 20.2.70 NMAC. This permit was modified and reissued on July 16, 2007. This Title V Operating Permit (Permit No. P-100M2) includes emission limits and operating limits for all regulated sources of air pollution at LANL. The Title V Operating Permit also requires semiannual emissions reporting for all sources included in the permit. This report summarizes both the annual emissions inventory reporting and the semiannual emissions reporting for LANL for calendar year 2008. LANL’s 2008 emissions are well below the emission limits in the Title V Operating Permit.

  3. Emissions Inventory Report Summary for Los Alamos National Laboratory for Calendar Year 2006

    SciTech Connect (OSTI)

    Ecology and Air Quality Group

    2007-09-28

    Los Alamos National Laboratory (LANL) is subject to annual emissions reporting requirements for regulated air pollutants under Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73 (20.2.73 NMAC), Notice of Intent and Emissions Inventory Requirements. The applicability of the requirements is based on the Laboratory's potential to emit 100 tons per year of suspended particulate matter, nitrogen oxides, carbon monoxide, sulfur oxides, or volatile organic compounds. Additionally, on April 30, 2004, LANL was issued a Title V Operating Permit from the New Mexico Environment Department, Air Quality Bureau, under 20.2.70 NMAC. Modification Number 1 to this Title V Operating Permit was issued on June 15, 2006 (Permit No P-100M1) and includes emission limits and operating limits for all regulated sources of air pollution at LANL. The Title V Operating Permit also requires semi-annual emissions reporting for all sources included in the permit. This report summarizes both the annual emissions inventory reporting and the semi-annual emissions reporting for LANL for calendar year 2006. LANL's 2006 emissions are well below the emission limits in the Title V Operating Permit.

  4. Emissions Inventory Report Summary for Los Alamos National Laboratory for Calendar Year 2004

    SciTech Connect (OSTI)

    M. Stockton

    2005-10-01

    Los Alamos National Laboratory (LANL) is subject to annual emissions reporting requirements for regulated air pollutants under Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73 (20.2.73 NMAC), ''Notice of Intent and Emissions Inventory Requirements''. The applicability of the requirements is based on the Laboratory's potential to emit 100 tons per year of suspended particulate matter, nitrogen oxides, carbon monoxide, sulfur oxides, or volatile organic compounds. Additionally, on April 30, 2004, LANL was issued a Title V Operating Permit from the New Mexico Environment Department, Air Quality Bureau, under 20.2.70 NMAC. This Title V Operating Permit (Permit No. P-100) includes emission limits and operating limits for all regulated sources of air pollution at LANL. The Title V Operating Permit also requires semi-annual emissions reporting for all sources included in the permit. This report summarizes both the annual emissions inventory reporting and the semi-annual emissions reporting for LANL for calendar year 2004. LANL's 2004 emissions are well below the emission limits in the Title V Operating Permit.

  5. Emissions Inventory Report Summary for Los Alamos National Laboratory for Calendar Year 2009

    SciTech Connect (OSTI)

    Environmental Stewardship Group

    2010-10-01

    Los Alamos National Laboratory (LANL) is subject to annual emissions reporting requirements for regulated air pollutants under Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73 (20.2.73 NMAC), Notice of Intent and Emissions Inventory Requirements. The applicability of the requirements is based on the Laboratory's potential to emit 100 tons per year of suspended particulate matter, nitrogen oxides, carbon monoxide, sulfur oxides, or volatile organic compounds. Additionally, on April 30, 2004, LANL was issued a Title V Operating Permit from the New Mexico Environment Department/Air Quality Bureau, under 20.2.70 NMAC. This permit was modified and reissued on July 16, 2007. This Title V Operating Permit (Permit No. P-100M2) includes emission limits and operating limits for all regulated sources of air pollution at LANL. The Title V Operating Permit also requires semiannual emissions reporting for all sources included in the permit. This report summarizes both the annual emissions inventory reporting and the semiannual emissions reporting for LANL for calendar year 2009. LANL's 2009 emissions are well below the emission limits in the Title V Operating Permit.

  6. Environmental Protection Department`s well inventory: Includes current and past monitoring (through the second quarter of 1990)

    SciTech Connect (OSTI)

    Rogers, C.D.

    1990-11-01

    This report is an inventory of the wells contained in Environmental Protection Department /Environmental Monitoring Section (EPD/EMS) documents since the startup of the Savannah River Site (SRS) and includes wells monitored by special request and SRS research wells. All wells listed in this inventory are monitoring wells unless otherwise indicated. The purpose of this report is as follows: to provide a historical record of the wells that EPD/EMS has monitored, to provide a document containing a list of wells that are currently in the EPD/EMS Groundwater Monitoring Program, and to provide pertinent information about all wells listed in EPD/EMS documents

  7. Inventory of power plants in the United States as of January 1, 1997

    SciTech Connect (OSTI)

    1997-12-01

    The Inventory of Power Plants in the United States provides annual statistics on generating units operated by electric utilities in the United States (the 50 States and the District of Columbia). Statistics presented in this report reflect the status of generating units as of January 1, 1997. The publication also provides a 10-yr outlook for generating unit additions. This report is prepared annually by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); U.S. Department of Energy (DOE). Data summarized in this report are useful to a wide audience including Congress; Federal and State agencies; the electric utility industry; and the general public. Data presented in this report were assembled and published by the EIA to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended.

  8. Inventory of power plants in the United States as of January 1, 1998

    SciTech Connect (OSTI)

    1998-12-01

    The Inventory of Power Plants in the United States provides annual statistics on generating units operated by electric utilities in the US (the 50 States and the District of Columbia). Statistics presented in this report reflect the status of generating units as of January 1, 1998. The publication also provides a 10-year outlook for generating unit additions and generating unit changes. This report is prepared annually by the Energy Information Administration (EIA). Data summarized in this report are useful to a wide audience. This is a report of electric utility data; in cases where summary data or nonconfidential data of nonutilities are presented, it is specifically noted as nonutility data. 19 figs., 36 tabs.

  9. 2010 Idaho National Laboratory Water Use Report and Comprehensive Well Inventory (Revision 19)

    SciTech Connect (OSTI)

    Mike Lewis

    2011-06-01

    This 2010 Idaho National Laboratory Water Use Report and Comprehensive Well Inventory (Revision 19) provides water use information (monthly annual average and total annual volume) for production and potable water wells at the Idaho National Laboratory for Calendar Year 2010. It also provides detailed information for new, modified, and abandoned (decommissioned) wells and holes. Five new wells were drilled and completed in the latter part of Calendar Years 2009 and 2010. Two wells were modified in Calendar Year 2010 and 66 wells and boreholes reported as abandoned (decommissioned). Detailed construction information for the new and modified wells, along with abandonment information for older wells, is provided. Location maps are provided if survey information was available. This report is being submitted in accordance with the Water Rights Agreement between the State of Idaho and the United States, for the United States Department of Energy (dated 1990) and the subsequent Partial Decree for Water Right 34-10901 issued June 20, 2003.

  10. Electric Vehicle Preparedness: Task 1, Assessment of Fleet Inventory for Marine Corps Base Camp Lejeune

    SciTech Connect (OSTI)

    Schey, Stephen; Francfort, Jim

    2015-01-01

    Several U.S. Department of Defense-based studies were conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). Task 1 included a survey of the inventory of non-tactical fleet vehicles at the Marine Corps Base Camp Lejeune (MCBCL) to characterize the fleet. This information and characterization will be used to select vehicles for monitoring that takes place during Task 2. This monitoring involves data logging of vehicle operation in order to identify the vehicle’s mission and travel requirements. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption. It also identifies whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements and provides observations related to placement of PEV charging infrastructure.

  11. Assessment of Fleet Inventory for Naval Air Station Whidbey Island. Task 1

    SciTech Connect (OSTI)

    Schey, Stephen; Francfort, Jim

    2015-06-01

    Task 1includes a survey of the inventory of non-tactical fleet vehicles at Naval Air Station Whidbey Island (NASWI) to characterize the fleet. This information and characterization are used to select vehicles for monitoring that takes place during Task 2. This monitoring involves data logging of vehicle operation in order to identify the vehicle’s mission and travel requirements. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption. It also identifies whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements and provide observations related to placement of PEV charging infrastructure. This report provides the results of the assessments and observations of the current non-tactical fleet, fulfilling the Task 1 requirements.

  12. Inventory of power plants in the United States as of January 1, 1996

    SciTech Connect (OSTI)

    1996-12-01

    The Inventory of Power Plants in the United States provides annual statistics on generating units operated by electric utilities in the United States (the 50 States and the District of Columbia). Statistics presented in this report reflect the status of generating units as of January 1, 1996. The publication also provides a 10-year outlook for generating unit additions. This report is prepared annually by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); U.S. Department of Energy (DOE). Data summarized in this report are useful to a wide audience including Congress; Federal and State agencies; the electric utility industry; and the general public. Data presented in this report were assembled and published by the EIA to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 as amended.

  13. LIFE CYCLE INVENTORY ANALYSIS IN THE PRODUCTION OF METALS USED IN PHOTOVOLTAICS.

    SciTech Connect (OSTI)

    FTHENAKIS,V.M.; KIM, H.C.; WANG, W.

    2007-03-30

    Material flows and emissions in all the stages of production of zinc, copper, aluminum, cadmium, indium, germanium, gallium, selenium, tellurium, and molybdenum were investigated. These metals are used selectively in the manufacture of solar cells, and emission and energy factors in their production are used in the Life Cycle Analysis (LCA) of photovoltaics. Significant changes have occurred in the production and associated emissions for these metals over the last 10 years, which are not described in the LCA databases. Furthermore, emission and energy factors for several of the by-products of the base metal production were lacking. This report aims in updating the life-cycle inventories associated with the production of the base metals (Zn, Cu, Al, Mo) and in defining the emission and energy allocations for the minor metals (Cd, In, Ge, Se, Te and Ga) used in photovoltaics.

  14. Plutonium Discharge Rates and Spent Nuclear Fuel Inventory Estimates for Nuclear Reactors Worldwide

    SciTech Connect (OSTI)

    Brian K. Castle; Shauna A. Hoiland; Richard A. Rankin; James W. Sterbentz

    2012-09-01

    This report presents a preliminary survey and analysis of the five primary types of commercial nuclear power reactors currently in use around the world. Plutonium mass discharge rates from the reactors spent fuel at reload are estimated based on a simple methodology that is able to use limited reactor burnup and operational characteristics collected from a variety of public domain sources. Selected commercial reactor operating and nuclear core characteristics are also given for each reactor type. In addition to the worldwide commercial reactors survey, a materials test reactor survey was conducted to identify reactors of this type with a significant core power rating. Over 100 material or research reactors with a core power rating >1 MW fall into this category. Fuel characteristics and spent fuel inventories for these material test reactors are also provided herein.

  15. 2014 Idaho National Laboratory Water Use Report and Comprehensive Well Inventory (Revision 23)

    SciTech Connect (OSTI)

    Lewis, Mike

    2015-06-01

    This 2014 Idaho National Laboratory Water Use Report and Comprehensive Well Inventory (Revision 23) provides water use information for production and potable water wells at the Idaho National Laboratory for Calendar Year 2014. It also provides detailed information for new, modified, and decommissioned wells and holes. One new well was drilled and completed in Calendar Year 2014. No modifications were performed on any wells. No wells were decommissioned in Calendar Year 2014. Detailed construction information and a location map for the new well is provided. This report is being submitted in accordance with the Water Rights Agreement between the State of Idaho and the United States, for the United States Department of Energy (dated 1990), the subsequent Partial Decree for Water Right 34-10901 issued June 20, 2003, and the Final Unified Decree issued August 26, 2014.

  16. 2013 Idaho National Laboratory Water Use Report and Comprehensive Well Inventory (Revision 22)

    SciTech Connect (OSTI)

    Mike Lewis

    2014-06-01

    This 2013 Idaho National Laboratory Water Use Report and Comprehensive Well Inventory (Revision 22) provides water use information for production and potable water wells at the Idaho National Laboratory for Calendar Year 2013. It also provides detailed information for new, modified, and decommissioned wells and holes. Two new wells were drilled and completed in Calendar Year 2013. No modifications were performed on any wells. Seven wells were decommissioned in Calendar Year 2013. Detailed construction information for the new and decommissioned wells is provided. Location maps are included, provided survey information was available. This report is being submitted in accordance with the Water Rights Agreement between the State of Idaho and the United States, for the United States Department of Energy (dated 1990) and the subsequent Partial Decree for Water Right 34-10901 issued June 20, 2003.

  17. Vegetation Description, Rare Plant Inventory, and Vegetation Monitoring for Craig Mountain, Idaho.

    SciTech Connect (OSTI)

    Mancuso, Michael; Moseley, Robert

    1994-12-01

    The Craig Mountain Wildlife Mitigation Area was purchased by Bonneville Power Administration (BPA) as partial mitigation for wildlife losses incurred with the inundation of Dworshak Reservoir on the North Fork Clearwater River. Upon completion of the National Environmental Protection Act (NEPA) process, it is proposed that title to mitigation lands will be given to the Idaho Department of Fish and Game (IDFG). Craig Mountain is located at the northern end of the Hells Canyon Ecosystem. It encompasses the plateau and steep canyon slopes extending from the confluence of the Snake and Salmon rivers, northward to near Waha, south of Lewiston, Idaho. The forested summit of Craig Mountain is characterized by gently rolling terrain. The highlands dramatically break into the canyons of the Snake and Salmon rivers at approximately the 4,700 foot contour. The highly dissected canyons are dominated by grassland slopes containing a mosaic of shrubfield, riparian, and woodland habitats. During the 1993 and 1994 field seasons, wildlife, habitat/vegetation, timber, and other resources were systematically inventoried at Craig Mountain to provide Fish and Game managers with information needed to draft an ecologically-based management plan. The results of the habitat/vegetation portion of the inventory are contained in this report. The responsibilities for the Craig Mountain project included: (1) vegetation data collection, and vegetation classification, to help produce a GIS-generated Craig Mountain vegetation map, (2) to determine the distribution and abundance of rare plants populations and make recommendations concerning their management, and (3) to establish a vegetation monitoring program to evaluate the effects of Fish and Game management actions, and to assess progress towards meeting habitat mitigation goals.

  18. INVENTORY AND DESCRIPTION OF COMMERCIAL REACTOR FUELS WITHIN THE UNITED STATES

    SciTech Connect (OSTI)

    Vinson, D.

    2011-03-31

    There are currently 104 nuclear reactors in 31 states, operated by 51 different utilities. Operation of these reactors generates used fuel assemblies that require storage prior to final disposition. The regulatory framework within the United States (U.S.) allows for the licensing of used nuclear fuel storage facilities for an initial licensing period of up to 40 years with potential for license extensions in 40 years increments. Extended storage, for periods of up to 300 years, is being considered within the U.S. Therefore, there is an emerging need to develop the technical bases to support the licensing for long-term storage. In support of the Research and Development (R&D) activities required to support the technical bases, a comprehensive assessment of the current inventory of used nuclear fuel based upon publicly available resources has been completed that includes the most current projections of used fuel discharges from operating reactors. Negotiations with the nuclear power industry are ongoing concerning the willingness of individual utilities to provide information and material needed to complete the R&D activities required to develop the technical bases for used fuel storage for up to 300 years. This report includes a status of negotiations between DOE and industry in these regards. These negotiations are expected to result in a framework for cooperation between the Department and industry in which industry will provide and specific information on used fuel inventory and the Department will compensate industry for the material required for Research and Development and Testing and Evaluation Facility activities.

  19. Evaluating atmospheric CO2 inversions at multiple scales over a highly-inventoried agricultural landscape.

    SciTech Connect (OSTI)

    Schuh, Andrew E.; Lauvaux, Thomas; West, Tristram O.; Denning, A.; Davis, Kenneth J.; Miles, Natasha; Richardson, S. J.; Uliasz, Marek; Lokupitiya, Erandathie; Cooley, Dan; Andrews, Arlyn; Ogle, Stephen

    2013-05-01

    An intensive regional research campaign was conducted by the North American Carbon Program (NACP) in 2005 to study the carbon cycle of the highly productive agricultural regions of the Midwestern United States. Forty-_ve di_erent associated projects were spawned across _ve U.S. agencies over the course of nearly a decade involving hundreds of researchers. The primary objective of the project was to investigate the ability of atmospheric inversion techniques to use highly calibrated CO2 mixing ratio data to estimate CO2 exchange over the major croplands of the U.S. Statistics from densely monitored crop production, consisting primarily corn and soybeans, provided the backbone of a well-studied\\bottom up"flux estimate that was used to evaluate the atmospheric inversion results. Three different inversion systems, representing spatial scales varying from high resolution mesoscale, to continental, to global, coupled to different transport models and optimization techniques were compared to the bottom up" inventory estimates. The mean annual CO2-C sink for 2007 from the inversion systems ranged from 120 TgC to 170 TgC, when viewed across a wide variety of inversion setups, with the best" point estimates ranging from 145 TgC to 155 TgC. Inversion-based mean C sink estimates were generally slightly stronger, but statistically indistinguishable,from the inventory estimate whose mean C sink was 135 TgC. The inversion results showed temporal correlations at seasonal lengths while week to week correlations remained low. Comparisons were made between atmospheric transport yields of the two regional inversion systems, which despite having different influence footprints in space and time due to differences in underlying transport models and external forcings, showed similarity when aggregated in space and time.

  20. Tagging CO2 to Enable Quantitative Inventories of Geological Carbon Storage

    SciTech Connect (OSTI)

    Lackner, Klaus; Matter, Juerg; Park, Ah-Hyung; Stute, Martin; Carson, Cantwell; Ji, Yinghuang

    2014-06-30

    In the wake of concerns about the long term integrity and containment of sub-surface CO2 sequestration reservoirs, many efforts have been made to improve the monitoring, verification, and accounting methods for geo-sequestered CO2. Our project aimed to demonstrate the feasibility of a system designed to tag CO2 with carbon isotope 14C immediately prior to sequestration to a level that is normal on the surface (one part per trillion). Because carbon found at depth is naturally free of 14C, this tag would easily differentiate pre-existing carbon from anthropogenic injected carbon and provide an excellent handle for monitoring its whereabouts in the subsurface. It also creates an excellent handle for adding up anthropogenic carbon inventories. Future inventories in effect count 14C atoms. Accordingly, we have developed a 14C tagging system suitable for use at the part-per-trillion level. This system consists of a gas-exchange apparatus to make disposable cartridges ready for controlled injection into a fast flowing stream of pressurized CO2. We built a high-pressure injection and tagging system, and a 14C detection system. The disposable cartridge and injection system have been successfully demonstrated in the lab with a high-pressure flow reactor, as well as in the field at the CarbFix CO2 sequestration site in Iceland. The laser-based 14C detection system originally conceived has been shown to possess inadequate sensitivity for ambient levels. Alternative methods for detecting 14C, such as saturated cavity absorption ringdown spectroscopy and scintillation counting, may still be suitable. KEYWORDS

  1. The terrestrial carbon inventory on the Savannah River Site: Assessing the change in Carbon pools 1951-2001.

    SciTech Connect (OSTI)

    Dai, Zhaohua; Trettin, Carl, C.; Parresol, Bernard, R.

    2011-11-30

    The Savannah River Site (SRS) has changed from an agricultural-woodland landscape in 1951 to a forested landscape during that latter half of the twentieth century. The corresponding change in carbon (C) pools associated land use on the SRS was estimated using comprehensive inventories from 1951 and 2001 in conjunction with operational forest management and monitoring data from the site.

  2. Regional scale cropland carbon budgets: evaluating a geospatial agricultural modeling system using inventory data

    SciTech Connect (OSTI)

    Zhang, Xuesong; Izaurralde, Roberto C.; Manowitz, David H.; Sahajpal, Ritvik; West, Tristram O.; Thomson, Allison M.; Xu, Min; Zhao, Kaiguang; LeDuc, Stephen D.; Williams, Jimmy R.

    2015-01-01

    Accurate quantification and clear understanding of regional scale cropland carbon (C) cycling is critical for designing effective policies and management practices that can contribute toward stabilizing atmospheric CO2 concentrations. However, extrapolating site-scale observations to regional scales represents a major challenge confronting the agricultural modeling community. This study introduces a novel geospatial agricultural modeling system (GAMS) exploring the integration of the mechanistic Environmental Policy Integrated Climate model, spatially-resolved data, surveyed management data, and supercomputing functions for cropland C budgets estimates. This modeling system creates spatially-explicit modeling units at a spatial resolution consistent with remotely-sensed crop identification and assigns cropping systems to each of them by geo-referencing surveyed crop management information at the county or state level. A parallel computing algorithm was also developed to facilitate the computationally intensive model runs and output post-processing and visualization. We evaluated GAMS against National Agricultural Statistics Service (NASS) reported crop yields and inventory estimated county-scale cropland C budgets averaged over 2000–2008. We observed good overall agreement, with spatial correlation of 0.89, 0.90, 0.41, and 0.87, for crop yields, Net Primary Production (NPP), Soil Organic C (SOC) change, and Net Ecosystem Exchange (NEE), respectively. However, we also detected notable differences in the magnitude of NPP and NEE, as well as in the spatial pattern of SOC change. By performing crop-specific annual comparisons, we discuss possible explanations for the discrepancies between GAMS and the inventory method, such as data requirements, representation of agroecosystem processes, completeness and accuracy of crop management data, and accuracy of crop area representation. Based on these analyses, we further discuss strategies to improve GAMS by updating input data and by designing more efficient parallel computing capability to quantitatively assess errors associated with the simulation of C budget components. The modularized design of the GAMS makes it flexible to be updated and adapted for different agricultural models so long as they require similar input data, and to be linked with socio-economic models to understand the effectiveness and implications of diverse C management practices and policies.

  3. THE DEVELOPMENT OF A 1990 GLOBAL INVENTORY FOR SO(X) AND NO(X) ON A 1(DEGREE) X 1(DEGREE) LATITUDE-LONGITUDE GRID.

    SciTech Connect (OSTI)

    VAN HEYST,B.J.

    1999-10-01

    Sulfur and nitrogen oxides emitted to the atmosphere have been linked to the acidification of water bodies and soils and perturbations in the earth's radiation balance. In order to model the global transport and transformation of SO{sub x} and NO{sub x}, detailed spatial and temporal emission inventories are required. Benkovitz et al. (1996) published the development of an inventory of 1985 global emissions of SO{sub x} and NO{sub x} from anthropogenic sources. The inventory was gridded to a 1{degree} x 1{degree} latitude-longitude grid and has served as input to several global modeling studies. There is now a need to provide modelers with an update of this inventory to a more recent year, with a split of the emissions into elevated and low level sources. This paper describes the development of a 1990 update of the SO{sub x} and NO{sub x} global inventories that also includes a breakdown of sources into 17 sector groups. The inventory development starts with a gridded global default EDGAR inventory (Olivier et al, 1996). In countries where more detailed national inventories are available, these are used to replace the emissions for those countries in the global default. The gridded emissions are distributed into two height levels (0-100m and >100m) based on the final plume heights that are estimated to be typical for the various sectors considered. The sources of data as well as some of the methodologies employed to compile and develop the 1990 global inventory for SO{sub x} and NO{sub x} are discussed. The results reported should be considered to be interim since the work is still in progress and additional data sets are expected to become available.

  4. New automated inventory/material accounting system (AIMAS) version for former Soviet Union countries

    SciTech Connect (OSTI)

    Kuzminski, Jozef; Ewing, Tom; Sakunov, Igor; Drapey, Sergey; Nations, Jim

    2009-01-01

    AIMAS (Automated Inventory/Material Accounting System) is a PC-based application for site-level nuclear material accountancy that was originally developed in the late 90's as a part of the U.S Department of Energy Assistance Program to Ukraine. Designed to be flexible and secure, plus place minimal demands on computing infrastructure, it was originally developed to run in early Windows operating system (OS) environments like W98 and W3.1. The development, support, and maintenance of AIMAS were transferred to Ukraine in 2002. Because it is highly flexible and can be configured to meet diverse end-user's needs, the software has been used at several facilities in Ukraine. Incorporating added functionality is planned to support nuclear installations in the Republic of Kazakhstan and Uzbekistan, as well. An improved 32-bit version of AIMAS has recently been developed to operate effectively on modern PCs running the latest Windows OS by AVIS, the Ukrainian developer. In the paper we discuss the status of AIMAS, plans for new functions, and describe the strategy for addressing a sustainable software life-cycle while meeting user requirements in multiple FSU countries.

  5. An approach for verifying biogenic greenhouse gas emissions inventories with atmospheric CO 2 concentration data

    SciTech Connect (OSTI)

    Ogle, Stephen; Davis, Kenneth J.; Lauvaux, Thomas; Schuh, Andrew E.; Cooley, Dan; West, Tristram O.; Heath, L.; Miles, Natasha; Richardson, S. J.; Breidt, F. Jay; Smith, Jim; McCarty, Jessica L.; Gurney, Kevin R.; Tans, P. P.; Denning, Scott

    2015-03-10

    Verifying national greenhouse gas (GHG) emissions inventories is a critical step to ensure that reported emissions data to the United Nations Framework Convention on Climate Change (UNFCCC) are accurate and representative of a country’s contribution to GHG concentrations in the atmosphere. Verification could include a variety of evidence, but arguably the most convincing verification would be confirmation of a change in GHG concentrations in the atmosphere that is consistent with reported emissions to the UNFCCC. We report here on a case study evaluating this option based on a prototype atmospheric CO2 measurement network deployed in the Mid-Continent Region of the conterminous United States. We found that the atmospheric CO2 measurement data did verify the accuracy of the emissions inventory within the confidence limits of the emissions estimates, suggesting that this technology could be further developed and deployed more widely in the future for verifying reported emissions.

  6. Inventory of Safety-Related Codes and Standards for Energy Storage Systems and Related Experiences with System Approval and Acceptance

    Energy Savers [EERE]

    PNNL-23618 Inventory of Safety-related Codes and Standards for Energy Storage Systems with some Experiences related to Approval and Acceptance DR Conover September 2014 Prepared for the U.S. Department of Energy Energy Storage Program under Contract DE-AC05-76RL01830 Pacific Northwest National Laboratory Richland, Washington 99352 i ii Summary Purpose The purpose of this document is to identify laws; rules; model codes; and codes, standards, regulations (CSR) specifications related to safety

  7. Integrated Data Base for 1992: US spent fuel and radioactive waste inventories, projections, and characteristics. Revision 8

    SciTech Connect (OSTI)

    Payton, M. L.; Williams, J. T.; Tolbert-Smith, M.; Klein, J. A.

    1992-10-01

    The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1991. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal.

  8. (Collection of data on tropical forest inventories, Rome, Italy, March 20--25, 1989): Foreign trip report

    SciTech Connect (OSTI)

    Brown, S.; Gillespie, A.

    1989-04-06

    All forestry information in the library of FAO was organized into country ''boxes,'' and all boxes for countries in tropical Asia and tropical America were searched for data on forest inventories. Information on location and extent of inventories and resulting stand and stock tables were obtained for (1) converting to biomass by using methods that were already developed and (2) calculating expansion factors (commercial volume to total biomass). This work was conducted by the University of Illinois (Drs. Sandra Brown, Principal Investigator, and Andrew Gillespie, Research Associate) for the Department of Energy's Energy Systems Program managed by Oak Ridge National Laboratory. The travelers were successful in obtaining copies of some data for most countries in tropical Asia and tropical America. Most of the inventories for Asia were for only parts of countries, whereas most in America were national in scale. With the information gathered, the travelers will be able to make biomass estimates, geographically referenced, for many forest types representing thousands of hectares in most countries in these two tropical regions.

  9. Integrated Data Base report--1993: U.S. spent nuclear fuel and radioactive waste inventories, projections, and characteristics. Revision 10

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and DOE spent nuclear fuel; also, commercial and US government-owned radioactive wastes through December 31, 1993. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program wastes, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal. 256 refs., 38 figs., 141 tabs.

  10. Cesium-137 inventories in Alaskan Tundra, lake and marine sediments: An indicator of recent organic material transport?

    SciTech Connect (OSTI)

    Grebmeier, J.M.; Cooper, L.W. |; Larsen, I.L.; Solis, C.; Olsen, C.R.

    1993-06-01

    Tundra sampling was accomplished in 1989--1990 at Imnavait Creek, Alaska (68{degree}37` N, 149{degree}17` W). Inventories of {sup 137}Cs (102--162 mBq/cm{sup 2}) are close to expectations, based upon measured atmospheric deposition for this latitude. Accumulated inventories of {sup 137}Cs in tundra decrease by up to 50% along a transect to Prudhoe Bay (70{degree}13` N, 148{degree}30` W). Atmospheric deposition of {sup 137}Cs decreased with latitude in the Arctic, but declines in deposition would have been relatively small over this distance (200 km). This suggests a recent loss of {sup 137}Cs and possibly associated organic matter from tundra over the northern portions of the transect between Imnavait Creek and Prudhoe Bay. Sediments from Toolik Lake (68{degree}38` N, 149{degree}38` W) showed widely varying {sup 137}Cs inventories, from a low of 22 mBq/cm{sup 2} away from the lake inlet, to a high between 140 to >200 mBq/cm{sup 2} near the main stream inflow. This was indicative of recent accumulation of cesium and possibly organic material associated with it in arctic lakes, although additional sampling is needed.

  11. Integrated data base for 1993: US spent fuel and radioactive waste inventories, projections, and characteristics. Revision 9

    SciTech Connect (OSTI)

    Klein, J.A.; Storch, S.N.; Ashline, R.C.

    1994-03-01

    The Integrated Data Base (IDB) Program has compiled historic data on inventories and characteristics of both commercial and DOE spent fuel; also, commercial and U.S. government-owned radioactive wastes through December 31, 1992. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest U.S. Department of Energy/Energy Information Administration (DOE/EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste (HLW), transuranic (TRU), waste, low-level waste (LLW), commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) LLW. For most of these categories, current and projected inventories are given through the calendar-year (CY) 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal.

  12. Plutonium Equivalent Inventory for Belowground Radioactive Waste at the Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011

    SciTech Connect (OSTI)

    French, Sean B.; Shuman, Rob

    2012-04-18

    The Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Many aspects of the management of this waste are conducted at Technical Area 54 (TA-54); Area G plays a key role in these management activities as the Laboratory's only disposal facility for low-level radioactive waste (LLW). Furthermore, Area G serves as a staging area for transuranic (TRU) waste that will be shipped to the Waste Isolation Pilot Plant for disposal. A portion of this TRU waste is retrievably stored in pits, trenches, and shafts. The radioactive waste disposed of or stored at Area G poses potential short- and long-term risks to workers at the disposal facility and to members of the public. These risks are directly proportional to the radionuclide inventories in the waste. The Area G performance assessment and composite analysis (LANL, 2008a) project long-term risks to members of the public; short-term risks to workers and members of the public, such as those posed by accidents, are addressed by the Area G Documented Safety Analysis (LANL, 2011a). The Documented Safety Analysis uses an inventory expressed in terms of plutonium-equivalent curies, referred to as the PE-Ci inventory, to estimate these risks. The Technical Safety Requirements for Technical Area 54, Area G (LANL, 2011b) establishes a belowground radioactive material limit that ensures the cumulative projected inventory authorized for the Area G site is not exceeded. The total belowground radioactive waste inventory limit established for Area G is 110,000 PE-Ci. The PE-Ci inventory is updated annually; this report presents the inventory prepared for 2011. The approach used to estimate the inventory is described in Section 2. The results of the analysis are presented in Section 3.

  13. Impact of Nuclear Data Uncertainties on Calculated Spent Fuel Nuclide Inventories and Advanced NDA Instrument Response

    SciTech Connect (OSTI)

    Hu, Jianwei; Gauld, Ian C.

    2014-12-01

    The U.S. Department of Energy’s Next Generation Safeguards Initiative Spent Fuel (NGSI-SF) project is nearing the final phase of developing several advanced nondestructive assay (NDA) instruments designed to measure spent nuclear fuel assemblies for the purpose of improving nuclear safeguards. Current efforts are focusing on calibrating several of these instruments with spent fuel assemblies at two international spent fuel facilities. Modelling and simulation is expected to play an important role in predicting nuclide compositions, neutron and gamma source terms, and instrument responses in order to inform the instrument calibration procedures. As part of NGSI-SF project, this work was carried out to assess the impacts of uncertainties in the nuclear data used in the calculations of spent fuel content, radiation emissions and instrument responses. Nuclear data is an essential part of nuclear fuel burnup and decay codes and nuclear transport codes. Such codes are routinely used for analysis of spent fuel and NDA safeguards instruments. Hence, the uncertainties existing in the nuclear data used in these codes affect the accuracies of such analysis. In addition, nuclear data uncertainties represent the limiting (smallest) uncertainties that can be expected from nuclear code predictions, and therefore define the highest attainable accuracy of the NDA instrument. This work studies the impacts of nuclear data uncertainties on calculated spent fuel nuclide inventories and the associated NDA instrument response. Recently developed methods within the SCALE code system are applied in this study. The Californium Interrogation with Prompt Neutron instrument was selected to illustrate the impact of these uncertainties on NDA instrument response.

  14. Impact of Nuclear Data Uncertainties on Calculated Spent Fuel Nuclide Inventories and Advanced NDA Instrument Response

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hu, Jianwei; Gauld, Ian C.

    2014-12-01

    The U.S. Department of Energy’s Next Generation Safeguards Initiative Spent Fuel (NGSI-SF) project is nearing the final phase of developing several advanced nondestructive assay (NDA) instruments designed to measure spent nuclear fuel assemblies for the purpose of improving nuclear safeguards. Current efforts are focusing on calibrating several of these instruments with spent fuel assemblies at two international spent fuel facilities. Modelling and simulation is expected to play an important role in predicting nuclide compositions, neutron and gamma source terms, and instrument responses in order to inform the instrument calibration procedures. As part of NGSI-SF project, this work was carried outmore » to assess the impacts of uncertainties in the nuclear data used in the calculations of spent fuel content, radiation emissions and instrument responses. Nuclear data is an essential part of nuclear fuel burnup and decay codes and nuclear transport codes. Such codes are routinely used for analysis of spent fuel and NDA safeguards instruments. Hence, the uncertainties existing in the nuclear data used in these codes affect the accuracies of such analysis. In addition, nuclear data uncertainties represent the limiting (smallest) uncertainties that can be expected from nuclear code predictions, and therefore define the highest attainable accuracy of the NDA instrument. This work studies the impacts of nuclear data uncertainties on calculated spent fuel nuclide inventories and the associated NDA instrument response. Recently developed methods within the SCALE code system are applied in this study. The Californium Interrogation with Prompt Neutron instrument was selected to illustrate the impact of these uncertainties on NDA instrument response.« less

  15. Development of a Life Cycle Inventory of Water Consumption Associated with the Production of Transportation Fuels

    SciTech Connect (OSTI)

    Lampert, David J.; Cai, Hao; Wang, Zhichao; Keisman, Jennifer; Wu, May; Han, Jeongwoo; Dunn, Jennifer; Sullivan, John L.; Elgowainy, Amgad; Wang, Michael; Keisman, Jennifer

    2015-10-01

    The production of all forms of energy consumes water. To meet increased energy demands, it is essential to quantify the amount of water consumed in the production of different forms of energy. By analyzing the water consumed in different technologies, it is possible to identify areas for improvement in water conservation and reduce water stress in energy-producing regions. The transportation sector is a major consumer of energy in the United States. Because of the relationships between water and energy, the sustainability of transportation is tied to management of water resources. Assessment of water consumption throughout the life cycle of a fuel is necessary to understand its water resource implications. To perform a comparative life cycle assessment of transportation fuels, it is necessary first to develop an inventory of the water consumed in each process in each production supply chain. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is an analytical tool that can used to estimate the full life-cycle environmental impacts of various transportation fuel pathways from wells to wheels. GREET is currently being expanded to include water consumption as a sustainability metric. The purpose of this report was to document data sources and methodologies to estimate water consumption factors (WCF) for the various transportation fuel pathways in GREET. WCFs reflect the quantity of freshwater directly consumed per unit production for various production processes in GREET. These factors do not include consumption of precipitation or low-quality water (e.g., seawater) and reflect only water that is consumed (i.e., not returned to the source from which it was withdrawn). The data in the report can be combined with GREET to compare the life cycle water consumption for different transportation fuels.

  16. Facility-J 13 Update Worksheet (16June14) Conformed (2).xlsx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Modification 350, Attachment 2 Structure ID Title Geographic Area Assigned Contractor 100-B (A) Riverlines 100-B (A) / Riverlines (1904B1) 100B WCH 100-B (B) Riverlines 100-B (B) / Riverlines (1904B2) 100B WCH 100-C (A) Riverlines 100-C (A) / Riverlines (1904C1) 100B WCH 100-C (B) Riverlines 100-C (B) / Riverlines (1904C2) 100B WCH 100-D (A) Riverlines 100-D (A) / Riverlines (1904D) 100D WCH 100-D (B) Riverlines 100-D (B) / Riverlines 1904D) 100D WCH 100-DR Riverlines 100-DR / Riverlines

  17. Facility-J 13 Update Worksheet (16June14) Conformed (2).xlsx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Facility 100N WCH 1322NC Crib Sample Pump Pit 100N WCH 1323N N8 Wells Sampling ... Export Power BPA Switchyard 100N BPA 1601D Pump and Treat Transfer Building 100D CHPRC ...

  18. File:TempCampApplicationWorksheet 2011.pdf | Open Energy Information

    Open Energy Info (EERE)

    464 600 pixels. Go to page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Go next page next page Full resolution (1,275 ...

  19. A fuel-based motor vehicle emission inventory for the San Francisco Bay area

    SciTech Connect (OSTI)

    Black, D.R.; Singer, B.C.; Harley, R.A.; Martien, P.T.; Fanai, A.K.

    1997-12-31

    Traditionally, regional motor vehicle emission inventories (MVEI) have been estimated by combining travel demand model and emission factor model predictions. The accuracy of traditional MVEIs is frequently challenged, and development of independent methods for estimating vehicle emissions has been identified as a high priority for air quality research. In this study, an alternative fuel-based MVEI was developed for the San Francisco Bay Area using data from 1990--1992. To estimate CO emissions from motor vehicles in the Bay Area, estimates of gasoline sales were combined with infrared remote sensing measurements of CO and CO{sub 2} exhaust concentrations from over 10,000 light-duty vehicles in summer 1991. Once absolute estimates of CO emissions have been computed, it is possible to use ambient NO{sub x}/CO and NMOC/CO ratios from high traffic areas to estimate emissions for NO{sub x} and NMOC (excluding some resting loss and diurnal evaporative emissions). Ambient ratios were generated from special-study measurements of NMOC and CO in 1990 and 1992, and from routine sampling of NO{sub x} and CO in 1991. All pollutant concentrations were measured on summer mornings at Bay Area monitoring sites in areas with high levels of vehicle traffic and no other significant sources nearby. Stabilized CO emissions calculated by the fuel-based method for cars and light-duty trucks were 1720{+-}420 tons/day. This value is close to California`s MVEI 7G model estimates. Total on-road vehicle emissions of CO in the Bay Area were estimated to be 2900{+-}800 tons/day. Emissions of NMOC were estimated to be 570{+-}200 tons/day, which is 1.6{+-}0.6 times the value predicted by MVEI 7G. In the present study, emissions of NO{sub x} from on-road vehicles were estimated to be 250{+-}90 tons/day, which is 0.6{+-}0.2 times the value predicted by MVEI 7G.

  20. Summary Notes from 28 May 2008 Generic Technical Issue Discussion on Estimating Waste Inventory and Waste Tank Characterization

    Office of Environmental Management (EM)

    8, 2008 Page 1 of 8 Summary Notes from 28 May 2008 Generic Technical Issue Discussion on Estimating Waste Inventory and Waste Tank Characterization Attendees: Representatives from Department of Energy-Headquarters (DOE-HQ) and the U.S. Nuclear Regulatory Commission staff (NRC) met at the DOE offices in Germantown, Maryland on 28 May 2008. Representatives from Department of Energy- Savannah River (DOE-SR), Department of Energy-Richland (DOE-RL), and Department of Energy-River Protection (DOE-ORP)

  1. Predictive Optimal Control of Active and Passive Building Thermal Storage Inventory

    SciTech Connect (OSTI)

    Gregor P. Henze; Moncef Krarti

    2005-09-30

    Cooling of commercial buildings contributes significantly to the peak demand placed on an electrical utility grid. Time-of-use electricity rates encourage shifting of electrical loads to off-peak periods at night and weekends. Buildings can respond to these pricing signals by shifting cooling-related thermal loads either by precooling the building's massive structure or the use of active thermal energy storage systems such as ice storage. While these two thermal batteries have been engaged separately in the past, this project investigated the merits of harnessing both storage media concurrently in the context of predictive optimal control. To pursue the analysis, modeling, and simulation research of Phase 1, two separate simulation environments were developed. Based on the new dynamic building simulation program EnergyPlus, a utility rate module, two thermal energy storage models were added. Also, a sequential optimization approach to the cost minimization problem using direct search, gradient-based, and dynamic programming methods was incorporated. The objective function was the total utility bill including the cost of reheat and a time-of-use electricity rate either with or without demand charges. An alternative simulation environment based on TRNSYS and Matlab was developed to allow for comparison and cross-validation with EnergyPlus. The initial evaluation of the theoretical potential of the combined optimal control assumed perfect weather prediction and match between the building model and the actual building counterpart. The analysis showed that the combined utilization leads to cost savings that is significantly greater than either storage but less than the sum of the individual savings. The findings reveal that the cooling-related on-peak electrical demand of commercial buildings can be considerably reduced. A subsequent analysis of the impact of forecasting uncertainty in the required short-term weather forecasts determined that it takes only very simple short-term prediction models to realize almost all of the theoretical potential of this control strategy. Further work evaluated the impact of modeling accuracy on the model-based closed-loop predictive optimal controller to minimize utility cost. The following guidelines have been derived: For an internal heat gain dominated commercial building, reasonable geometry simplifications are acceptable without a loss of cost savings potential. In fact, zoning simplification may improve optimizer performance and save computation time. The mass of the internal structure did not show a strong effect on the optimization. Building construction characteristics were found to impact building passive thermal storage capacity. It is thus advisable to make sure the construction material is well modeled. Zone temperature setpoint profiles and TES performance are strongly affected by mismatches in internal heat gains, especially when they are underestimated. Since they are a key factor in determining the building cooling load, efforts should be made to keep the internal gain mismatch as small as possible. Efficiencies of the building energy systems affect both zone temperature setpoints and active TES operation because of the coupling of the base chiller for building precooling and the icemaking TES chiller. Relative efficiencies of the base and TES chillers will determine the balance of operation of the two chillers. The impact of mismatch in this category may be significant. Next, a parametric analysis was conducted to assess the effects of building mass, utility rate, building location and season, thermal comfort, central plant capacities, and an economizer on the cost saving performance of optimal control for active and passive building thermal storage inventory. The key findings are: (1) Heavy-mass buildings, strong-incentive time-of-use electrical utility rates, and large on-peak cooling loads will likely lead to attractive savings resulting from optimal combined thermal storage control. (2) By using economizer to take advantage of the cool fresh air during the night, the bu

  2. Toxic Substances Control Act (TSCA) Polychlorinated Biphenyl (PCB)/Radioactive Waste Annual Inventory for Calendar Year 2013

    SciTech Connect (OSTI)

    no author on report

    2014-06-01

    The Toxic Substances Control Act, 40 CFR 761.65(a)(1) provides an exemption from the one year storage time limit for PCB/radioactive waste. PCB/radioactive waste may exceed the one year time limit provided that the provisions at 40 CFR 761.65(a)(2)(ii) and 40 CFR 761.65(a)(2)(iii) are followed. These two subsections require, (ii) "A written record documenting all continuing attempts to secure disposal is maintained until the waste is disposed of" and (iii) "The written record required by subsection (ii) of this section is available for inspection or submission if requested by EPA." EPA Region 10 has requested the Department of Energy (DOE) to submit an inventory of radioactive-contaminated PCB waste in storage at the Idaho National Laboratory (INL) for the previous calendar year. The annual inventory is separated into two parts, INL without Advanced Mixed Waste Treatment Project (AMWTP) (this includes Battelle Energy Alliance, LLC, CH2M-WG Idaho, LLC, and the Naval Reactors Facility), and AMWTP.

  3. Toxic Substances Control Act (TSCA) Polychlorinated Biphenyl (PCB)/Radioactive Waste Annual Inventory for Calendar Year 2014

    SciTech Connect (OSTI)

    Layton, Deborah L.

    2015-06-01

    The Toxic Substances Control Act, 40 CFR 761.65(a)(1) provides an exemption from the one year storage time limit for PCB/radioactive waste. PCB/radioactive waste may exceed the one year time limit provided that the provisions at 40 CFR 761.65(a)(2)(ii) and 40 CFR 761.65(a)(2)(iii) are followed. These two subsections require, (ii) "A written record documenting all continuing attempts to secure disposal is maintained until the waste is disposed of" and (iii) "The written record required by subsection (ii) of this section is available for inspection or submission if requested by EPA." EPA Region 10 has requested the Department of Energy (DOE) to submit an inventory of radioactive-contaminated PCB waste in storage at the Idaho National Laboratory (INL) for the previous calendar year. The annual inventory is separated into two parts, INL without Advanced Mixed Waste Treatment Project (AMWTP) (this includes Battelle Energy Alliance, LLC, CH2M-WG Idaho, LLC, and the Naval Reactors Facility), and AMWTP.

  4. International Assistance for Low-Emission Development Planning: Coordinated Low Emissions Assistance Network (CLEAN) Inventory of Activities and Tools--Preliminary Trends

    SciTech Connect (OSTI)

    Cox, S.; Benioff, R.

    2011-05-01

    The Coordinated Low Emissions Assistance Network (CLEAN) is a voluntary network of international practitioners supporting low-emission planning in developing countries. The network seeks to improve quality of support through sharing project information, tools, best practices and lessons, and by fostering harmonized assistance. CLEAN has developed an inventory to track and analyze international technical support and tools for low-carbon planning activities in developing countries. This paper presents a preliminary analysis of the inventory to help identify trends in assistance activities and tools available to support developing countries with low-emission planning.

  5. Inventory of China's Energy-Related CO2 Emissions in 2008

    SciTech Connect (OSTI)

    Fridley, David; Zheng, Nina; Qin, Yining

    2011-03-31

    Although China became the world's largest emitter of energy-related CO{sub 2} emissions in 2007, China does not publish annual estimates of CO{sub 2} emissions and most published estimates of China's emissions have been done by other international organizations. Undertaken at the request of the Energy Information Administration (EIA) of the US Department of Energy, this study examines the feasibility of applying the EIA emissions inventory methodology to estimate China's emissions from published Chinese data. Besides serving as a proof of concept, this study also helps develop a consistent and transparent method for estimating China's CO{sub 2} emissions using an Excel model and identified China-specific data issues and areas for improvement. This study takes a core set of data from the energy balances published in the China Energy Statistical Yearbook 2009 and China Petrochemical Corporation Yearbook 2009 and applies the EIA's eight-step methodology to estimate China's 2008 CO{sub 2} emissions. First, China's primary and secondary fuel types and consumption by end use are determined with slight discrepancies identified between the two data sources and inconsistencies in product categorization with the EIA. Second, energy consumption data are adjusted to eliminate double counting in the four potential areas identified by EIA; consumption data from China's Special Administrative Regions are not included. Physical fuel units are then converted to energy equivalents using China's standard energy measure of coal equivalent (1 kilogram = 29.27 MJ) and IPCC carbon emissions coefficients are used to calculate each fuel's carbon content. Next, carbon sequestration is estimated following EIA conventions for other petroleum products and non-energy use of secondary fuels. Emissions from international bunker fuels are also subtracted under the 'reference' calculation of estimating apparent energy consumption by fuel type and the 'sectoral' calculation of summing emissions across end-use sectors. Adjustments for the China-specific conventions of reporting foreign bunkers and domestic bunkers fueling abroad are made following IPCC definitions of international bunkers and EIA reporting conventions, while the sequestration of carbon in carbon steel is included as an additional adjustment. Under the sectoral approach, fuel consumption of bunkers and other transformation losses as well as gasoline consumption are reallocated to conform to EIA sectoral reporting conventions. To the extent possible, this study relies on official energy data from primary sources. A limited number of secondary sources were consulted to provide insight into the nature of consumption of some products and to guide the analysis of carbon sequestered in steel. Beyond these, however, the study avoided trying to estimate figures where directly unavailable, such as natural gas flaring. As a result, the basic calculations should be repeatable for other years with the core set of data from National Bureau of Statistics and Sinopec (or a similarly authoritative source of oil product data). This study estimates China's total energy-related CO{sub 2} emissions in 2008 to be 6666 Mt CO{sub 2}, including 234.6 Mt of non-fuel CO{sub 2} emissions and 154 Mt of sequestered CO{sub 2}. Bunker fuel emissions in 2008 totaled 15.9 Mt CO{sub 2}, but this figure is underestimated because fuel use by Chinese ship and planes for international transportation and military bunkers are not included. Of emissions related to energy consumption, 82% is from coal consumption, 15% from petroleum and 3% from natural gas. From the sectoral approach, industry had the largest share of China's energy-related CO{sub 2} emissions with 72%, followed by residential at 11%, transport and telecommunications at 8%, and the other four (commerce, agriculture, construction and other public) sectors having a combined share of 9%. Thermal electricity and (purchased) heat (to a lesser degree) are major sources of fuel consumption behind sectoral emissions, responsible for 2533 Mt CO2 and 321 Mt CO{sub 2}, respectively. The 2008 emissions estimated for China in this study falls within the range of other international estimates, and suggests that the EIA methodology can be adopted to estimate China's emissions if the proper adjustments are made. While these results are helpful in understanding China's annual emissions, several key areas of data challenges affect the accuracy of this estimate. Industrial process-based emissions - an important source of emissions given China's industry-intensive economy and size of its cement sector - have not been included in this calculation and could be the focus of further model refinement. The accuracy of the Chinese emissions estimate can be further improved by addressing two unreported international bunker categories and developing China-specific carbon sequestration coefficients for non-fuel use energy products.

  6. U.S. Natural Gas System Methane Emissions: State of Knowledge from LCAs, Inventories, and Atmospheric Measurements (Presentation)

    SciTech Connect (OSTI)

    Heath, G.

    2014-04-01

    Natural gas (NG) is a potential "bridge fuel" during transition to a decarbonized energy system: It emits less carbon dioxide during combustion than other fossil fuels and can be used in many industries. However, because of the high global warming potential of methane (CH4, the major component of NG), climate benefits from NG use depend on system leakage rates. Some recent estimates of leakage have challenged the benefits of switching from coal to NG, a large near-term greenhouse gas (GHG) reduction opportunity. During this presentation, Garvin will review evidence from multiple perspectives - life cycle assessments (LCAs), inventories and measurements - about NG leakage in the US. Particular attention will be paid to a recent article in Science magazine which reviewed over 20 years of published measurements to better understand what we know about total methane emissions and those from the oil and gas sectors. Scientific and policy implications of the state of knowledge will be discussed.

  7. Report for Westinghouse Hanford Company: Makeup procedures and characterization data for modified DSSF and modified remaining inventory simulated tank waste

    SciTech Connect (OSTI)

    Lokken, R.O.

    1996-03-01

    The majority of defense wastes generated from reprocessing spent reactor fuel at Hanford are stored in underground Double-Shell Tanks (DST) and in older Single-Shell Tanks (SST). The Tank Waste Remediation System (TWRS) Program has the responsibility of safely managing and immobilizing these tank wastes for disposal. A reference process flowsheet is being developed that includes waste retrieval, pretreatment, and vitrification. Melter technologies for vitrifying low-level tank wastes are being evaluated by Westinghouse Hanford Company. Chemical simulants are being used in the technology testing. For the first phase of low-level waste (LLW) vitrification simulant development, two waste stream compositions were investigated. The first waste simulant was based on the analyses of six tanks of double-shell slurry feed (DSSF) waste and on the projected composition of the wastes exiting the pretreatment operations. A simulant normalized to 6 M sodium was based on the anticipated chemical concentrations after ion exchange and initial separations. The same simulant concentrated to 10 M sodium would represent a waste that had been concentrated by evaporation to reduce the overall volume. The second LLW simulant, referred to as the remaining inventory (RI), included wastes not included in the DSSF tanks and the projected LLW fraction of single-shell tank wastes.

  8. Analysis of potential combustion source impacts on acid deposition using an independently derived inventory. Volume II, appendices

    SciTech Connect (OSTI)

    Not Available

    1983-12-01

    This document contains 2 appendices. The first documents the methodologies used to calculate production, unit energy consumption, fuel type and emission estimates for 16 industries and 35 types of facilities utilizing direct-fired industrial combustion processes, located in 26 states (and the District of Columbia) east of the Mississippi River. As discussed in the text of this report, a U.S. total of 16 industries and 45 types of facilities utilizing direct-fired combustion processes were identified by an elimination type method that was developed based on evaluation of fuel use in industrial SIC codes 20-39 to identify pollutant sources contributing to acid rain. The final population included only plants that have direct-fired fuel consumption greater than or equal to 100 x 10/sup 9/ Btu/yr of equivalent energy consumption. The goal for this analysis was to provide at least a 1980 base year for the data. This was achieved for all of the industries and in fact, 1981 data were used for a number of the industries evaluated. The second contains an analysis of all consumption of major fossil fuels to: (1) identify all fuel usage categories, and (2) identify the kinds of combustion equipment used within each category. This analysis provides a frame of reference for the balance of the study and permits using an energy accounting methodology to quantify the degree to which the inventoried sources in individual consuming sectors are complete and representative of the total population for the sector.

  9. final ERI-2142 18-1501 Analysis of Potential Effects on Domestic Industries of DOE Excess Uranium Inventory 2015-2024.docx

    Energy Savers [EERE]

    ERI-2142.18-1501 Analysis of the Potential Effects on the Domestic Uranium Mining, Conversion and Enrichment Industries of the Introduction of DOE Excess Uranium Inventory During CY 2015 Through 2024 ENERGY RESOURCES INTERNATIONAL, INC. 1015 18 th Street, NW, Suite 650 Washington, DC 20036 USA Telephone: (202) 785-8833 Facsimile: (202) 785-8834 ERI-2142.18-1501 Analysis of the Potential Effects on the Domestic Uranium Mining, Conversion and Enrichment Industries of the Introduction of DOE

  10. Use of system code to estimate equilibrium tritium inventory in fusion DT machines, such as ARIES-AT and components testing facilities

    SciTech Connect (OSTI)

    C.P.C. Wong; B. Merrill

    2014-10-01

    ITER is under construction and will begin operation in 2020. This is the first 500 MWfusion class DT device, and since it is not going to breed tritium, it will consume most of the limited supply of tritium resources in the world. Yet, in parallel, DT fusion nuclear component testing machines will be needed to provide technical data for the design of DEMO. It becomes necessary to estimate the tritium burn-up fraction and corresponding initial tritium inventory and the doubling time of these machines for the planning of future supply and utilization of tritium. With the use of a system code, tritium burn-up fraction and initial tritium inventory for steady state DT machines can be estimated. Estimated tritium burn-up fractions of FNSF-AT, CFETR-R and ARIES-AT are in the range of 12.8%. Corresponding total equilibrium tritium inventories of the plasma flow and tritium processing system, and with the DCLL blanket option are 7.6 kg, 6.1 kg, and 5.2 kg for ARIES-AT, CFETR-R and FNSF-AT, respectively.

  11. Inventory of landslides in southern Illinois near the New Madrid Seismic Zone and the possible failure mechanism at three sites

    SciTech Connect (OSTI)

    Su, Wen June . Engineering Geology Section)

    1992-01-01

    A total of 221 landslides was inventoried along a 200-kilometer reach of the Ohio and the Mississippi Rivers from Olmsted to Chester, IL using Side-Looking Airborne Radar imagery, vertical, stereoscopic, black and white aerial photography at various scales, and low altitude, oblique color and color infrared photography. Features observed on aerial photographs were used to classify landslides into three types (rock/debris fall, block slide, and rotational/translational slide) at three levels of confidence: certain, probable, or possible. Some landslides combined two or more types at a single site. Only a few of the landslides showed evidence of repeated activity; most are ancient landforms. Most of the landslides were developed in the loess, alluvium, colluvium, and weak clay layers of the Chesterian Series or in the Porter's Creek Clay and McNairy Formation. Failure of three representative landslides was modeled under static (aseismic) and dynamic (seismic) situations using three different sliding mechanisms. Both the pseudo-static method and a simplified method of the Newmark displacement analysis were used to determine the stability of the slope under earthquake conditions. The three representative landslides selected for detailed slope stability analysis were the Ford Hill, Jones Ridge, and Olmsted landslides. The Ford Hill and Jones Ridge landslides have similar slope geometries. Their modes of failure were recognized as a translational block slide on a weak clay layer. The Olmsted landslide is a complex of several rotational slides of different ages and a mega block slide on weak clay layers. The stability analyses of these three landslides suggest that they would not have occurred under aseismic conditions. However, under earthquake loadings similar to those generated by the 1811-12 earthquakes, most of the slopes could have experienced large displacements leading to landslide initiation.

  12. Inventory Management Specialist

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Facilities/Property, (J1600) 1800 S. Rio Grande Avenue...

  13. The Inventory System

    National Nuclear Security Administration (NNSA)

    Training Meeting Orlando, Florida-May 23-25, 2006 Sponsored by the U.S. Department of Energy & the U.S. Nuclear Regulatory Commission NM M SS NM M SS NM M SS NM M SS Database...

  14. Management of Fleet Inventory

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-01-27

    In fulfillment of Executive Order 13514, DOE began a 3-year, 3-phase strategy to reduce greenhouse gas emissions and decrease petroleum use.

  15. 1998 Tier two emergency and hazardous chemical inventory - emergency planning and community right-to-know act section 312

    SciTech Connect (OSTI)

    ZALOUDEK, D.E.

    1999-03-02

    The Hanford Site covers approximately 1,450 square kilometers (560 square miles) of land that is owned by the U.S, Government and managed by the U.S. Department of Energy, Richland Operations Office (DOE-RL). The Hanford Site is located northwest of the city of Richland, Washington. The city of Richland adjoins the southeastern portion of the Hanford Site boundary and is the nearest population center. Activities on the Hanford Site are centralized in numerically designated areas. The 100 Areas, located along the Columbia River, contain deactivated reactors. The processing units are in the 200 Areas, which are on a plateau approximately 11 kilometers (7 miles) from the Columbia River. The 300 Area, located adjacent to and north of Richland, contains research and development laboratories. The 400 Area, 8 kilometers (5 miles) northwest of the 300 Area, contains the Fast Flux Test Facility previously used for testing liquid metal reactor systems. Adjacent to the north of Richland, the 1100 Area contains offices associated with administration, maintenance, transportation, and materials procurement and distribution. The 600 Area covers all locations not specifically given an area designation. This Tier Two Emergency and Hazardous Chemical Inventory report contains information pertaining to hazardous chemicals managed by DOE-RL and its contractors on the Hanford Site. It does not include chemicals maintained in support of activities conducted by others on lands covered by leases, use permits, easements, and other agreements whereby land is used by parties other than DOE-RL. For example, this report does not include chemicals stored on state owned or leased lands (including the burial ground operated by US Ecology, Inc.), lands owned or used by the Bonneville Power Administration (including the Midway Substation and the Ashe Substation), lands used by the National Science Foundation (the Laser Interferometer Gravitational-Wave Observatory), lands leased to the Washington Public Power Supply System, Johnson Controls, Inc. (boilers operated for steam production), and R. H. Smith Company (gas stations), or similarly leased lands not under the management of DOE-RL.

  16. Hanford 1999 Tier 2 Emergency and Hazardous Chemical Inventory Emergency Planning and Community Right to Know Act Section 312

    SciTech Connect (OSTI)

    ZALOUDEK, D.E.

    2000-03-01

    The Hanford Site covers approximately 1,450 square kilometers (560 square miles) of land that is owned by the U.S. Government and managed by the U.S. Department of Energy, Richland Operations Office (DOE-RL). The Hanford Site is located northwest of the city of Richland, Washington. The city of Richland adjoins the southeastern portion of the Hanford Site boundary and is the nearest population center. Activities on the Hanford Site are centralized in numerically designated areas. The 100 Areas, located along the Columbia River, contain deactivated reactors. The processing units are in the 200 Areas, which are on a plateau approximately 11 kilometers (7 miles) from the Columbia River. The 300 Area, located adjacent to and north of Richland, contains research and development laboratories. The 400 Area, 8 kilometers (5 miles) northwest of the 300 Area, contains the Fast Flux Test Facility previously used for testing liquid metal reactor systems. Adjacent to the north of Richland, the 1100 Area contains offices associated with administration, maintenance, transportation, and materials procurement and distribution. The 600 Area covers all locations not specifically given an area designation. This Tier Two Emergency and Hazardous Chemical Inventory report contains information pertaining to hazardous chemicals managed by DOE-RL and its contractors on the Hanford Site. It does not include chemicals maintained in support of activities conducted by others on lands covered by leases, use permits, easements, and other agreements whereby land is used by parties other than DOE-RL. For example, this report does not include chemicals stored on state owned or leased lands (including the burial ground operated by US Ecology, Inc.), lands owned or used by the Bonneville Power Administration (including the Midway Substation and the Ashe Substation), lands used by the National Science Foundation (the Laser Interferometer Gravitational-Wave Observatory), lands leased to the Washington Public Power Supply System, Johnson Controls, Inc. (boilers operated for steam production), and R. H. Smith Company (gas stations), or similarly leased lands not under the management of DOE-RL.

  17. Modeling global atmospheric CO2 with improved emission inventories and CO2 production from the oxidation of other carbon species

    SciTech Connect (OSTI)

    Nassar, Ray; Jones, DBA; Suntharalingam, P; Chen, j.; Andres, Robert Joseph; Wecht, K. J.; Yantosca, R. M.; Kulawik, SS; Bowman, K; Worden, JR; Machida, T; Matsueda, H

    2010-01-01

    The use of global three-dimensional (3-D) models with satellite observations of CO2 in inverse modeling studies is an area of growing importance for understanding Earth s carbon cycle. Here we use the GEOS-Chem model (version 8-02-01) CO2 mode with multiple modifications in order to assess their impact on CO2 forward simulations. Modifications include CO2 surface emissions from shipping (0.19 PgC yr 1), 3-D spatially-distributed emissions from aviation (0.16 PgC yr 1), and 3-D chemical production of CO2 (1.05 PgC yr 1). Although CO2 chemical production from the oxidation of CO, CH4 and other carbon gases is recognized as an important contribution to global CO2, it is typically accounted for by conversion from its precursors at the surface rather than in the free troposphere. We base our model 3-D spatial distribution of CO2 chemical production on monthly-averaged loss rates of CO (a key precursor and intermediate in the oxidation of organic carbon) and apply an associated surface correction for inventories that have counted emissions of CO2 precursors as CO2. We also explore the benefit of assimilating satellite observations of CO into GEOS-Chem to obtain an observation-based estimate of the CO2 chemical source. The CO assimilation corrects for an underestimate of atmospheric CO abundances in the model, resulting in increases of as much as 24% in the chemical source during May June 2006, and increasing the global annual estimate of CO2 chemical production from 1.05 to 1.18 Pg C. Comparisons of model CO2 with measurements are carried out in order to investigate the spatial and temporal distributions that result when these new sources are added. Inclusion of CO2 emissions from shipping and aviation are shown to increase the global CO2 latitudinal gradient by just over 0.10 ppm (3%), while the inclusion of CO2 chemical production (and the surface correction) is shown to decrease the latitudinal gradient by about 0.40 ppm (10%) with a complex spatial structure generally resulting in decreased CO2 over land and increased CO2 over the oceans. Since these CO2 emissions are omitted or misrepresented in most inverse modeling work to date, their implementation in forward simulations should lead to improved inverse modeling estimates of terrestrial biospheric fluxes.

  18. Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model

    SciTech Connect (OSTI)

    Greenblatt, Jeffery B.

    2013-10-10

    A California Greenhouse Gas Inventory Spreadsheet (GHGIS) model was developed to explore the impact of combinations of state policies on state greenhouse gas (GHG) and regional criteria pollutant emissions. The model included representations of all GHG- emitting sectors of the California economy (including those outside the energy sector, such as high global warming potential gases, waste treatment, agriculture and forestry) in varying degrees of detail, and was carefully calibrated using available data and projections from multiple state agencies and other sources. Starting from basic drivers such as population, numbers of households, gross state product, numbers of vehicles, etc., the model calculated energy demands by type (various types of liquid and gaseous hydrocarbon fuels, electricity and hydrogen), and finally calculated emissions of GHGs and three criteria pollutants: reactive organic gases (ROG), nitrogen oxides (NOx), and fine (2.5 ?m) particulate matter (PM2.5). Calculations were generally statewide, but in some sectors, criteria pollutants were also calculated for two regional air basins: the South Coast Air Basin (SCAB) and the San Joaquin Valley (SJV). Three scenarios were developed that attempt to model: (1) all committed policies, (2) additional, uncommitted policy targets and (3) potential technology and market futures. Each scenario received extensive input from state energy planning agencies, in particular the California Air Resources Board. Results indicate that all three scenarios are able to meet the 2020 statewide GHG targets, and by 2030, statewide GHG emissions range from between 208 and 396 MtCO2/yr. However, none of the scenarios are able to meet the 2050 GHG target of 85 MtCO2/yr, with emissions ranging from 188 to 444 MtCO2/yr, so additional policies will need to be developed for California to meet this stringent future target. A full sensitivity study of major scenario assumptions was also performed. In terms of criteria pollutants, targets were less well-defined, but while all three scenarios were able to make significant reductions in ROG, NOx and PM2.5 both statewide and in the two regional air basins, they may nonetheless fall short of what will be required by future federal standards. Specifically, in Scenario 1, regional NOx emissions are approximately three times the estimated targets for both 2023 and 2032, and in Scenarios 2 and 3, NOx emissions are approximately twice the estimated targets. Further work is required in this area, including detailed regional air quality modeling, in order to determine likely pathways for attaining these stringent targets.

  19. Sediment studies at Bikini Atoll part 3. Inventories of some long-lived gamma-emitting radionuclides associated with lagoon surface sediments

    SciTech Connect (OSTI)

    Noshkin, V.E.

    1997-12-01

    Surface sediment samples were collected during 1979 from 87 locations in the lagoon at Bikini Atoll. The collections were made to better define the concentrations and distribution of long-lived radionuclides associated with the bottom material and to show what modifications occurred to the composition of the surface sediment from the nuclear testing program conducted by the United States at the Atoll between 1946 and 1958. This is the last of three reports on Bikini sediment studies. In this report, we discuss the concentrations and inventories of the residual long-lived gamma-emitting radionuclides in sediments from the lagoon. The gamma-emitting radionuclides detected most frequently in sediments collected in 1979, in addition to Americium-241 ({sup 241}Am) (discussed in the second report of this series), included Cesium-137 ({sup 137}Cs), Bismuth-207 ({sup 207}Bi), Europium-155 ({sup 155}Eu), and Cobalt-60 ({sup 60}Co). Other man-made, gamma-emitting radionuclides such as Europium-152,154 ({sup 152,154}Eu), Antimony-125 ({sup 125}Sb), and Rhodium-101,102m ({sup 101,102m}Rh) were occasionally measured above detection limits in sediments near test site locations. The mean inventories for {sup 137}Cs, {sup 207}Ei, {sup 155}Eu, and {sup 60}Co in the surface 4 cm of the lagoon sediment to be 1.7, 0.56, 7.76, and 0.74 TBq, respectively. By June 1997, radioactive decay would reduce these values to 1.1, 0.38, 0.62, and 0.07 TBq, respectively. Some additional loss results from a combination of different processes that continuously mobilize and return some amount of the radionuclides to the water column. The water and dissolved constituents are removed from the lagoon through channels and exchange with the surface waters of the north equatorial Pacific Ocean. Highest levels of these radionuclides are found in surface deposits lagoonward of the Bravo Crater. Lowest concentrations and inventories are associated with sediment lagoonward of the eastern reef. The quantities in the 0-4 cm surface layer are estimated to be less than 35% of the total inventory to depth in the sediment column.

  20. US Department of Energy interim mixed waste inventory report: Waste streams, treatment capacities and technologies: Volume 4, Site specific---Ohio through South Carolina

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    The Department of Energy (DOE) has prepared this report to provide an inventory of its mixed wastes and treatment capacities and technologies in response to Section 105(a) of the Federal Facility Compliance Act (FFCAct) of 1992 (Pub. L. No. 102-386). As required by the FFCAct-1992, this report provides site-specific information on DOE`s mixed waste streams and a general review of available and planned treatment facilities for mixed wastes at the following five Ohio facilities: Battelle Columbus Laboratories; Fernald Environmental Management Project; Mound Plant; Portsmouth Gaseous Diffusion Plant; and RMI, Titanium Company.

  1. 2004 Toxic Chemical Release Inventory Report for the Emergency Planning and Community Right-to-Know Act of 1986, Title III, Section 313

    SciTech Connect (OSTI)

    M. Stockton

    2006-01-15

    Section 313 of Emergency Planning and Community Right-to-Know Act (EPCRA) specifically requires facilities to submit a Toxic Chemical Release Inventory Report (Form R) to the U.S. Environmental Protection Agency (EPA) and state agencies if the owners and operators manufacture, process, or otherwise use any of the listed toxic chemicals above listed threshold quantities. EPA compiles this data in the Toxic Release Inventory database. Form R reports for each chemical over threshold quantities must be submitted on or before July 1 each year and must cover activities that occurred at the facility during the previous year. For reporting year 2004, Los Alamos National Laboratory (LANL or the Laboratory) submitted Form R reports for lead compounds, nitric acid, and nitrate compounds as required under the EPCRA Section 313. No other EPCRA Section 313 chemicals were used in 2004 above the reportable thresholds. This document provides a description of the evaluation of EPCRA Section 313 chemical use and threshold determinations for LANL for calendar year 2004, as well as background information about data included on the Form R reports.

  2. 1998 Toxic Chemical Release Inventory Report for the Emergency Planning and Community Right-to-Know Act of 1986, Title III

    SciTech Connect (OSTI)

    Marjorie B. Stockton

    1999-11-01

    The Emergency Planning and Community Right-to-Know Act (EPCRA) of 1986 [also known as the Superfund Amendment and Reauthorization Act (SARA), Title III], as modified by Executive Order 12856, requires that all federal facilities evaluate the need to submit an annual Toxic Chemical Release Inventory report as prescribed in Title III, Section 313 of this Act. This annual report is due every July for the preceding calendar year. Owners and operators who manufacture, process, or otherwise use certain toxic chemicals above listed threshold quantities are required to report their toxic chemical releases to all environmental mediums (air, water, soil, etc.). At Los Alamos National Laboratory (LANL), no EPCRA Section 313 chemicals were used in 1998 above the reportable threshold limits of 10,000 lb or 25,000 lb. Therefore LANL was not required to submit any Toxic Chemical Release Inventory reports (Form Rs) for 1998. This document was prepared to provide a detailed description of the evaluation on chemical usage and EPCRA Section 313 threshold determinations for LANL for 1998.

  3. Emissions Inventory Report Summary: Reporting Requirements for the New Mexico Administrative code, Title 20, Chapter 2, Part 73 (20 NMAC 2.73) for Calendar Year 1997

    SciTech Connect (OSTI)

    1999-01-01

    Los Alamos National Laboratory (the Laboratory) is subject to emissions reporting requirements for regulated air contaminants under Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73, (20 NMAC 2.73), Notice of Intent and Emissions Inventory Requirements. The Laboratory has the potential to emit 100 tons per year of suspended particulate matter (PM), nitrogen oxides (NO{sub x}), carbon monoxide (CO), and volatile organic compounds (VOCs). For 1997, combustion products from the industrial sources contributed the greatest amount of regulated air emissions from the Laboratory. Research and development activities contributed the greatest amount of VOCs. Emissions of beryllium and aluminum were reported for activities permitted under 20 NMAC 2.72, Construction Permits.

  4. 1997 Toxic Chemical Release Inventory Report for the Emergency Planning and Community Right-to-Know Act of 1986, Title III, Section 313

    SciTech Connect (OSTI)

    Heather McBride

    1997-07-01

    The Emergency Planning and Community Right-to-Know Act of 1986 (EPCIL4), Title III, Section 313 [also known as the Superfund Amendment and Reauthorization Act (SARA)], as modified by Executive Order 12856, requires all federal facilities to submit an annual Toxic Chemical Release Inventory report every July for the preceding calendar year. Owners and operators of manufacturing, processing, or production facilities are required to report their toxic chemical releases to all environmental mediums (air, water, soil, etc.). At Los Alamos National Laboratory (LANL), nitric acid was the only toxic chemical used in 1997 that met the reportable threshold limit of 10,000 lb. Form R is the only documentation required by the Environmental Protection Agency, and it is included in the appendix of this report. This report, as requested by DOE, is provided for documentation purposes. In addition, a detailed description of the evaluation and reporting process for chemicals and processes at LANL has been included.

  5. Soil concentration, vertical distribution and inventory of plutonium, [sup 241]Am, [sup 90]Sr and [sup 137]Cs in the Marche Region of Central Italy

    SciTech Connect (OSTI)

    Jia, G.; Testa, C.; Desideri, D.; Guerra, F.; Meli, M.A.; Roselli, C. . Inst. of General Chemistry); Belli, M.E. )

    1999-07-01

    Soil concentrations of [sup 239+240]Pu, [sup 238]Pu, [sup 241]Am, [sup 90]Sr, and [sup 137]Cs are investigated in the Marche Region of Central Italy. Mean values in uncultivated soils are 3.5--8 times higher than the corresponding values in cultivated soils. Radionuclide inventories and ratios are consistent with values reported by the United nations Scientific Committee on the Effect of Atomic Radiation for this latitude. This suggests that radiocontamination in this region is mainly due to atmospheric deposition of nuclear weapon test fallout. The vertical distribution of these radionuclides is also studied. The results show that, with the exception of [sup 90]Sr, more than 90% of these radionuclides are contained in the first 20 cm of soil and that mobility follows the order [sup 90]Sr > [sup 241]Am > [sup 239+240]Pu, [sup 238]Pu > [sup 137]Cs.

  6. Emissions Inventory Report Summary: Reporting Requirements for the New Mexico Administrative Code, Title 20, Chapter 2, Part 73 (20 NMAC 2.73) for Calendar Year 2001

    SciTech Connect (OSTI)

    Margorie Stockton

    2003-04-01

    Los Alamos National Laboratory is subject to annual emissions-reporting requirements for regulated air contaminants under Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73 (20.2.73 NMAC), Notice of Intent and Emissions Inventory Requirements. The applicability of the requirements is based on the Laboratory's potential to emit 100 tons per year of suspended particulate matter, nitrogen oxides, carbon monoxide, sulfur oxides, or volatile organic compounds. For calendar year 2001, the Technical Area 3 steam plant was the primary source of criteria air pollutants from the Laboratory, while research and development activities were the primary source of volatile organic compounds. Emissions of beryllium and aluminum were reported for activities permitted under 20.2.72 NMAC. Hazardous air pollutant emissions from chemical use for research and development activities were also reported.

  7. Emissions Inventory Report Summary Reporting Requirements for the New Mexico Administrative Code, Title 20, Chapter 2, Part 73 (20 NMAC 2.73) for Calendar Year 1998

    SciTech Connect (OSTI)

    Air Quality Group, ESH-17

    1999-09-01

    Los Alamos National Laboratory (the Laboratory) is subject to emissions reporting requirements for regulated air contaminants under Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73 (20 NMAC 2.73), Notice of Intent and Emissions Inventory Requirements. The Laboratory has the potential to emit 100 tons per year of suspended particulate matter, nitrogen oxides, carbon monoxide, sulfur oxides, and volatile organic compounds. For 1998, combustion products from the industrial sources contributed the greatest amount of criteria air pollutants from the Laboratory. Research and development activities contributed the greatest amount of volatile organic compounds. Emissions of beryllium and aluminum were reported for activities permitted under 20 NMAC 2.72 Construction Permits.

  8. 2002 Toxic Chemical Release Inventory Report for the Emergency Planning and Community Right-to-Know Act of 1986, Title III, Section 313

    SciTech Connect (OSTI)

    M. Stockton

    2003-11-01

    For reporting year 2002, Los Alamos National Laboratory (LANL or the Laboratory) submitted Form R reports for lead compounds and mercury as required under the Emergency Planning and Community Right-to-Know Act (EPCRA), Section 313. No other EPCRA Section 313 chemicals were used in 2002 above the reportable thresholds. This document was prepared to provide a description of the evaluation of EPCRA Section 313 chemical usage and threshold determinations for LANL for calendar year 2002 as well as provide background information about the data included on the Form R reports. Section 313 of EPCRA specifically requires facilities to submit a Toxic Chemical Release Inventory report (Form R) to the U.S. Environmental Protection Agency (EPA) and state agencies if the owners and operators manufacture, process, or otherwise use any of the listed toxic chemicals above listed threshold quantities. EPA compiles this data in the Toxic Release Inventory database. Form R reports for each chemical over threshold quantities must be submitted on or before July 1 each year and must cover activities that occurred at the facility during the previous year. In 1999 EPA promulgated a final rule on Persistent Bioaccumulative Toxics (PBTs). This rule added several chemicals to the EPCRA Section 313 list of toxic chemicals and established lower reporting thresholds for these and other PBT chemicals that were already reportable under EPCRA Section 313. These lower thresholds became applicable in reporting year 2000. In 2001, EPA expanded the PBT rule to include a lower reporting threshold for lead and lead compounds. Facilities that manufacture, process, or otherwise use more than 100 lb of lead or lead compounds must submit a Form R.

  9. 2006 Toxic Chemical Release Inventory Report for the Emergency Planning and Community Right-to-Know Act of 1986, Title III, Section 313

    SciTech Connect (OSTI)

    Ecology and Air Quality Group (ENV-EAQ)

    2007-12-12

    For reporting year 2006, Los Alamos National Laboratory (LANL or the Laboratory) submitted Form R reports for lead as required under the Emergency Planning and Community Right-to-Know Act (EPCRA) Section 313. No other EPCRA Section 313 chemicals were used in 2006 above the reportable thresholds. This document was prepared to provide a description of the evaluation of EPCRA Section 313 chemical use and threshold determinations for LANL for calendar year 2006, as well as to provide background information about data included on the Form R reports. Section 313 of EPCRA specifically requires facilities to submit a Toxic Chemical Release Inventory Report (Form R) to the U.S. Environmental Protection Agency (EPA) and state agencies if the owners and operators manufacture, process, or otherwise use any of the listed toxic chemicals above listed threshold quantities. EPA compiles this data in the Toxic Release Inventory database. Form R reports for each chemical over threshold quantities must be submitted on or before July 1 each year and must cover activities that occurred at the facility during the previous year. In 1999, EPA promulgated a final rule on persistent bioaccumulative toxics (PBTs). This rule added several chemicals to the EPCRA Section 313 list of toxic chemicals and established lower reporting thresholds for these and other PBT chemicals that were already reportable. These lower thresholds became applicable in reporting year 2000. In 2001, EPA expanded the PBT rule to include a lower reporting threshold for lead and lead compounds. Facilities that manufacture, process, or otherwise use more than 100 lb of lead or lead compounds must submit a Form R.

  10. Biological and Physical Inventory of Clear Creek, Orofino Creek, and the Potlatch River, Tributary Streams of the Clearwater River, Idaho, 1984 Technical Report.

    SciTech Connect (OSTI)

    Johnson, David B.

    1985-05-01

    Clear Creek, Orofino Creek, and Potlatch Creek, three of the largest tributaries of the lower Clearwater River Basin, were inventoried during 1984. The purpose of the inventory was to identify where anadromous salmonid production occurs and to recommend enhancement alternatives to increase anadromous salmonid habitat in these streams. Anadromous and fluvial salmonids were found in all three drainages. The lower reach of Clear Creek supported a low population of rainbow-steelhead, while the middle reach supported a much greater population of rainbow-steelhead. Substantial populations of cutthroat trout were also found in the headwaters of Clear Creek. Rainbow-steelhead and brook trout were found throughout Orofino Creek. A predominant population of brook trout was found in the headwaters while a predominant population of rainbow-steelhead was found in the mainstem and lower tributaries of Orofino Creek. Rainbow-steelhead and brook trout were also found in the Potlatch River. Generally, the greatest anadromous salmonid populations in the Potlatch River were found within the middle reach of this system. Several problems were identified which would limit anadromous salmonid production within each drainage. Problems affecting Clear Creek were extreme flows, high summer water temperature, lack of riparian habitat, and high sediment load. Gradient barriers prevented anadromous salmonid passage into Orofino Creek and they are the main deterrent to salmonid production in this system. Potlatch River has extreme flows, high summer water temperature, a lack of riparian habitat and high sediment loads. Providing passage over Orofino Falls is recommended and should be considered a priority for improving salmonid production in the lower Clearwater River Basin. Augmenting flows in the Potlatch River is also recommended as an enhancement measure for increasing salmonid production in the lower Clearwater River Basin. 18 refs., 5 figs., 85 tabs.

  11. State Assistance with Risk-Based Data Management: Inventory and needs assessment of 25 state Class II Underground Injection Control programs. Phase 1

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    As discussed in Section I of the attached report, state agencies must decide where to direct their limited resources in an effort to make optimum use of their available manpower and address those areas that pose the greatest risk to valuable drinking water sources. The Underground Injection Practices Research Foundation (UIPRF) proposed a risk-based data management system (RBDMS) to provide states with the information they need to effectively utilize staff resources, provide dependable documentation to justify program planning, and enhance environmental protection capabilities. The UIPRF structured its approach regarding environmental risk management to include data and information from production, injection, and inactive wells in its RBDMS project. Data from each of these well types is critical to the complete statistical evaluation of environmental risk and selected automated functions. This comprehensive approach allows state Underground Injection Control (UIC) programs to effectively evaluate the risk of contaminating underground sources of drinking water, while alleviating the additional work and associated problems that often arise when separate data bases are used. CH2M Hill and Digital Design Group, through a DOE grant to the UIPRF, completed an inventory and needs assessment of 25 state Class II UIC programs. The states selected for participation by the UIPRF were generally chosen based on interest and whether an active Class II injection well program was in place. The inventory and needs assessment provided an effective means of collecting and analyzing the interest, commitment, design requirements, utilization, and potential benefits of implementing a in individual state UIC programs. Personal contacts were made with representatives from each state to discuss the applicability of a RBDMS in their respective state.

  12. A Cultural Resources Inventory and Historical Evaluation of the Smoky Atmospheric Nuclear Test, Areas 8, 9, and 10, Nevada National Security Site, Nye County, Nevada

    SciTech Connect (OSTI)

    Jones, Robert C.; King, Maureen L.; Beck, Colleen M.; Falvey, Lauren W.; Menocal, Tatianna M.

    2014-09-01

    This report presents the results of a National Historic Preservation Act Section 106 cultural resources inventory and historical evaluation of the 1957 Smoky atmospheric test location on the Nevada National Security Site (NNSS). The Desert Research Institute (DRI) was tasked to conduct a cultural resources study of the Smoky test area as a result of a proposed undertaking by the Department of Energy Environmental Management. This undertaking involves investigating Corrective Action Unit (CAU) 550 for potential contaminants of concern as delineated in a Corrective Action Investigation Plan. CAU 550 is an area that spatially overlaps portions of the Smoky test location. Smoky, T-2c, was a 44 kt atmospheric nuclear test detonated at 5:30 am on August 31, 1957, on top of a 213.4 m (700 ft) 200 ton tower (T-2c) in Area 8 of the NNSS. Smoky was a weapons related test of the Plumbbob series (number 19) and part of the Department of Defense Exercise Desert Rock VII and VIII. The cultural resources effort involved the development of a historic context based on archival documents and engineering records, the inventory of the cultural resources in the Smoky test area and an associated military trench location in Areas 9 and 10, and an evaluation of the National Register eligibility of the cultural resources. The inventory of the Smoky test area resulted in the identification of structures, features, and artifacts related to the physical development of the test location and the post-test remains. The Smoky test area was designated historic district D104 and coincides with a historic archaeological site recorded as 26NY14794 and the military trenches designed for troop observation, site 26NY14795. Sites 26NY14794 and 26NY14795 are spatially discrete with the trenches located 4.3 km (2.7 mi) southeast of the Smoky ground zero. As a result, historic district D104 is discontiguous and in total it covers 151.4 hectares (374 acres). The Smoky test location, recorded as historic district D104 and historic sites 26NY14794 and 26NY14795, is the best preserved post-shot atmospheric nuclear tower test at the NNSS and possibly in the world. It is of local, national, and international importance due to nuclear testing’s pivotal role in the Cold War between the United States and the former Soviet Union. The district and sites are linked to the historic theme of atmospheric nuclear testing. D104 retains aspects of the engineering plan and design for the Smoky tower, instrument stations used to measure test effects, German and French personnel shelters, and military trenches. A total of 33 structures contribute to the significance of D104. Artifacts and features provide significant post-test information. Historic district D104 (discontiguous) and historic site 26NY14794 (the Smoky test area) are eligible for listing on the NRHP under Criteria A, B, C, and D. The historic site 26NY14795 (the Smoky military trenches) is eligible for listing under Criteria A, C, and D. Several items have been identified for removal by the CAU 550 investigation. However, none of them is associated with the Smoky atmospheric test, but with later activities in the area. The military trenches are not part of CAU 550 and no actions are planned there. A proposed closure of the Smoky test area with restrictions will limit access and contribute to the preservation of the cultural resources. It is recommended that the Smoky historic district and sites be included in the NNSS cultural resources monitoring program.

  13. Field test of short-notice random inspections for inventory-change verification at a low-enriched-uranium fuel-fabrication plant: Preliminary summary

    SciTech Connect (OSTI)

    Fishbone, L.G. |; Moussalli, G.; Naegele, G.; Ikonomou, P.; Hosoya, M.; Scott, P.; Fager, J.; Sanders, C.; Colwell, D.; Joyner, C.J.

    1994-04-01

    An approach of short-notice random inspections (SNRIs) for inventory-change verification can enhance the effectiveness and efficiency of international safeguards at natural or low-enriched uranium (LEU) fuel fabrication plants. According to this approach, the plant operator declares the contents of nuclear material items before knowing if an inspection will occur to verify them. Additionally, items about which declarations are newly made should remain available for verification for an agreed time. This report details a six-month field test of the feasibility of such SNRIs which took place at the Westinghouse Electric Corporation Commercial Nuclear Fuel Division. Westinghouse personnel made daily declarations about both feed and product items, uranium hexafluoride cylinders and finished fuel assemblies, using a custom-designed computer ``mailbox``. Safeguards inspectors from the IAEA conducted eight SNRIs to verify these declarations. Items from both strata were verified during the SNRIs by means of nondestructive assay equipment. The field test demonstrated the feasibility and practicality of key elements of the SNRI approach for a large LEU fuel fabrication plant.

  14. Field test of short-notice random inspections for inventory-change verification at a low-enriched-uranium fuel-fabrication plant

    SciTech Connect (OSTI)

    Fishbone, L.G. |; Moussalli, G.; Naegele, G.

    1995-05-01

    An approach of short-notice random inspections (SNRIs) for inventory-change verification can enhance the effectiveness and efficiency of international safeguards at natural or low-enriched uranium (LEU) fuel fabrication plants. According to this approach, the plant operator declares the contents of nuclear material items before knowing if an inspection will occur to verify them. Additionally, items about which declarations are newly made should remain available for verification for an agreed time. Then a statistical inference can be made from verification results for items verified during SNRIs to the entire populations, i.e. the entire strata, even if inspectors were not present when many items were received or produced. A six-month field test of the feasibility of such SNRIs took place at the Westinghouse Electric Corporation Commercial Nuclear Fuel Division during 1993. Westinghouse personnel made daily declarations about both feed and product items, uranium hexafluoride cylinders and finished fuel assemblies, using a custom-designed computer ``mailbox``. Safeguards inspectors from the IAEA conducted eight SNRIs to verify these declarations. They arrived unannounced at the plant, in most cases immediately after travel from Canada, where the IAEA maintains a regional office. Items from both strata were verified during the SNRIs by meant of nondestructive assay equipment.

  15. Emissions Inventory Report Summary: Reporting Requirements for the New Mexico Administrative Code, Title 20, Chapter 2, Part 73 (20.2.73 NMAC) for Calendar Year 2003

    SciTech Connect (OSTI)

    M. Stockton

    2005-01-01

    Los Alamos National Laboratory is subject to annual emissions-reporting requirements for regulated air pollutants under Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73 (20.2.73 NMAC), Notice of Intent and Emissions Inventory Requirements. The applicability of the requirements is based on the Laboratory's potential to emit 100 tons per year of suspended particulate matter, nitrogen oxides, carbon monoxide, sulfur oxides, or volatile organic compounds. For calendar year 2003, the Technical Area 3 steam plant and the air curtain destructors were the primary sources of criteria air pollutants from the Laboratory, while the air curtain destructors and chemical use associated with research and development activities were the primary sources of volatile organic compounds and hazardous air pollutants. Emissions of beryllium and aluminum were reported for activities permitted under 20.2.72 NMAC. Hazardous air pollutant emissions were reported from chemical use as well as from all combustion sources. In addition, estimates of particulate matter with diameter less than 2.5 micrometers and ammonia were provided as requested by the New Mexico Environment Department, Air Quality Bureau.

  16. Life cycle inventory analysis of regenerative thermal oxidation of air emissions from oriented strand board facilities in Minnesota - a perspective of global climate change

    SciTech Connect (OSTI)

    Nicholson, W.J.

    1997-12-31

    Life cycle inventory analysis has been applied to the prospective operation of regenerative thermal oxidation (RTO) technology at oriented strand board plants at Bemidji (Line 1) and Cook, Minnesota. The net system destruction of VOC`s and carbon monoxide, and at Cook a small quantity of particulate, has a very high environmental price in terms of energy and water use, global warming potential, sulfur and nitrogen oxide emissions, solids discharged to water, and solid waste deposited in landfills. The benefit of VOC destruction is identified as minor in terms of ground level ozone at best and possibly slightly detrimental. Recognition of environmental tradeoffs associated with proposed system changes is critical to sound decision-making. There are more conventional ways to address carbon monoxide emissions than combustion in RTO`s. In an environment in which global warming is a concern, fuel supplemental combustion for environmental control does not appear warranted. Consideration of non-combustion approaches to address air emission issues at the two operations is recommended. 1 ref., 5 tabs.

  17. Radionuclide inventories : ORIGEN2.2 isotopic depletion calculation for high burnup low-enriched uranium and weapons-grade mixed-oxide pressurized-water reactor fuel assemblies.

    SciTech Connect (OSTI)

    Gauntt, Randall O.; Ross, Kyle W.; Smith, James Dean; Longmire, Pamela

    2010-04-01

    The Oak Ridge National Laboratory computer code, ORIGEN2.2 (CCC-371, 2002), was used to obtain the elemental composition of irradiated low-enriched uranium (LEU)/mixed-oxide (MOX) pressurized-water reactor fuel assemblies. Described in this report are the input parameters for the ORIGEN2.2 calculations. The rationale for performing the ORIGEN2.2 calculation was to generate inventories to be used to populate MELCOR radionuclide classes. Therefore the ORIGEN2.2 output was subsequently manipulated. The procedures performed in this data reduction process are also described herein. A listing of the ORIGEN2.2 input deck for two-cycle MOX is provided in the appendix. The final output from this data reduction process was three tables containing the radionuclide inventories for LEU/MOX in elemental form. Masses, thermal powers, and activities were reported for each category.

  18. Spent Fuel Working Group report on inventory and storage of the Department`s spent nuclear fuel and other reactor irradiated nuclear materials and their environmental, safety and health vulnerabilities. Volume 3, Site team reports

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    A self assessment was conducted of those Hanford facilities that are utilized to store Reactor Irradiated Nuclear Material, (RINM). The objective of the assessment is to identify the Hanford inventories of RINM and the ES & H concerns associated with such storage. The assessment was performed as proscribed by the Project Plan issued by the DOE Spent Fuel Working Group. The Project Plan is the plan of execution intended to complete the Secretary`s request for information relevant to the inventories and vulnerabilities of DOE storage of spent nuclear fuel. The Hanford RINM inventory, the facilities involved and the nature of the fuel stored are summarized. This table succinctly reveals the variety of the Hanford facilities involved, the variety of the types of RINM involved, and the wide range of the quantities of material involved in Hanford`s RINM storage circumstances. ES & H concerns are defined as those circumstances that have the potential, now or in the future, to lead to a criticality event, to a worker radiation exposure event, to an environmental release event, or to public announcements of such circumstances and the sensationalized reporting of the inherent risks.

  19. High-Level Waste Inventory

    Office of Environmental Management (EM)

    Visits Northwest Tribes Head of EM Visits Northwest Tribes May 28, 2015 - 12:00pm Addthis EM and Nez Perce officials visit the Bio-Control Center on the Nez Perce Reservation. From left to right: Kristen Ellis, EM Office of Intergovernmental and Community Activities Director; Gabe Bohnee, Manager of the Nez Perce Environmental Restoration and Waste Management Program; Stacy Charboneau, EM Richland Operations Office (RL) Manager; Mark Whitney, EM Acting Assistant Secretary; Jill Conrad, RL Tribal

  20. FY 2013 Service Contract Inventory ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    as identified through a review of recent Government reports 1 and its own analysis. ... D307 IT and Telecom- IT Strategy and Architecture D310 IT ad Telecom- Cyber Security and ...

  1. PHOTOGRA'"' THIS SHEET LEVEL INVENTORY

    Office of Scientific and Technical Information (OSTI)

    ... with its inherent limitations could be used in this application of fireball photography. ... brightness, and successful photography can employ only a small portion of this energy. ...

  2. FY 2014 Service Contract Inventory ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    are listed by their Product Service Codes (PSC) in Figure 1: OMB Designated Special Interest Functions. 2 Special ... The individual who can serve on the working group is Jeff Davis, ...

  3. CLEAN Inventory | Open Energy Information

    Open Energy Info (EERE)

    Union (EU) United Nations Development Programme (UNDP) Nature Conservation and Nuclear Safety (BMU) Australian Agency for International Development (AusAID) Argentina...

  4. Records Inventory Data Collection Software

    Energy Science and Technology Software Center (OSTI)

    1995-03-01

    DATALINK was created to provide an easy to use data collection program for records management software products. It provides several useful tools for capturing and validating record index data in the field. It also allows users to easily create a comma delimited, ASCII text file for data export into most records management software products.

  5. Critical Materials Institute - course inventory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Estimations and limitations of reserves, and their sociological, political, and economic effects. Offered in alternate years. GE credit: SciEng | SE, SL.-I. (I.) Verosub

  6. ...

  7. Equipment Inventory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    21KBr Centrifuge Centrifuge SSRL BioChemMat Prep Lab 2 131 209 Saint Gobain K-104 Sanyo MIR-154 Cooled Incubator Temperature Control LCLS Sample Prep Lab 999 109 Sanyo MPR-215F...

  8. FY 2014 Service Contract Inventory ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... data and work with contractors to make revisions and fill gaps, as necessary. Step 7: APM reports consolidated results of analysis as well as the supplemental report to ...

  9. DATA SHARING REPORT CHARACTERIZATION OF THE SURVEILLANCE AND MAINTENANCE PROJECT MISCELLANEOUS PROCESS INVENTORY WASTE ITEMS OAK RIDGE NATIONAL LABORATORY, Oak Ridge TN

    SciTech Connect (OSTI)

    Weaver, Phyllis C

    2013-12-12

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, to provide technical and independent waste management planning support under the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested ORAU to plan and implement a sampling and analysis campaign to target certain items associated with URS|CH2M Oak Ridge, LLC (UCOR) surveillance and maintenance (S&M) process inventory waste. Eight populations of historical and reoccurring S&M waste at the Oak Ridge National Laboratory (ORNL) have been identified in the Waste Handling Plan for Surveillance and Maintenance Activities at the Oak Ridge National Laboratory, DOE/OR/01-2565&D2 (WHP) (DOE 2012) for evaluation and processing for final disposal. This waste was generated during processing, surveillance, and maintenance activities associated with the facilities identified in the process knowledge (PK) provided in Appendix A. A list of items for sampling and analysis were generated from a subset of materials identified in the WHP populations (POPs) 4, 5, 6, 7, and 8, plus a small number of items not explicitly addressed by the WHP. Specifically, UCOR S&M project personnel identified 62 miscellaneous waste items that would require some level of evaluation to identify the appropriate pathway for disposal. These items are highly diverse, relative to origin; composition; physical description; contamination level; data requirements; and the presumed treatment, storage, and disposal facility (TSDF). Because of this diversity, ORAU developed a structured approach to address item-specific data requirements necessary for acceptance in a presumed TSDF that includes the Environmental Management Waste Management Facility (EMWMF)—using the approved Waste Lot (WL) 108.1 profile—the Y-12 Sanitary Landfill (SLF) if appropriate; EnergySolutions Clive; and the Nevada National Security Site (NNSS) (ORAU 2013b). Finally, the evaluation of these wastes was more suited to a judgmental sampling approach rather than a statistical design, meaning data were collected for each individual item, thereby providing information for item-byitem disposition decisions. ORAU prepared a sampling and analysis plan (SAP) that outlined data collection strategies, methodologies, and analytical guidelines and requirements necessary for characterizing targeted items (ORAU 2013b). The SAP described an approach to collect samples that allowed evaluation as to whether or not the waste would be eligible for disposal at the EMWMF. If the waste was determined not to be eligible for EMWMF disposal, then there would be adequate information collected that would allow the waste to be profiled for one of the alternate TSDFs listed above.

  10. Information related to low-level mixed waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the U.S. Department of Energy Waste Management Programmatic Environmental Impact Statement

    SciTech Connect (OSTI)

    Wilkins, B.D.; Dolak, D.A.; Wang, Y.Y.; Meshkov, N.K.

    1996-12-01

    This report was prepared to support the analysis of risks and costs associated with the proposed treatment of low-level mixed waste (LLMW) under management of the US Department of Energy (DOE). The various waste management alternatives for treatment of LLMW have been defined in the DOE`s Office of Waste Management Programmatic Environmental Impact Statement. This technical memorandum estimates the waste material throughput expected at each proposed LLMW treatment facility and analyzes potential radiological and chemical releases at each DOE site resulting from treatment of these wastes. Models have been developed to generate site-dependent radiological profiles and waste-stream-dependent chemical profiles for these wastes. Current site-dependent inventories and estimates for future generation of LLMW have been obtained from DOE`s 1994 Mixed Waste Inventory Report (MWIR-2). Using treatment procedures developed by the Mixed Waste Treatment Project, the MWIR-2 database was analyzed to provide waste throughput and emission estimates for each of the different waste types assessed in this report. Uncertainties in the estimates at each site are discussed for waste material throughputs and radiological and chemical releases.

  11. CESP Tool 9.1: Monitoring Plan Template | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9.1: Monitoring Plan Template CESP Tool 9.1: Monitoring Plan Template CESP Tool 9.1: Monitoring Plan Template from Step 9: Plan to Elevate, Guide to Community Energy Strategic Planning. File CESP Tool 9.1: Monitoring Plan Template More Documents & Publications CESP Tool 4.2: Activity Inventory Template Tool 0.1: CESP Planning Worksheet Guide to Community Energy Strategic Planning: Step 9

  12. Transuranic waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the U.S. Department of Energy Waste Management Programmatic Environmental Impact Statement

    SciTech Connect (OSTI)

    Hong, K.; Kotek, T.; Folga, S.; Koebnick, B.; Wang, Y.; Kaicher, C.

    1996-12-01

    Transuranic waste (TRUW) loads and potential contaminant releases at and en route to treatment, storage, and disposal sites in the US Department of Energy (DOE) complex are important considerations in DOE`s Waste Management Programmatic Environmental Impact Statement (WM PEIS). Waste loads are determined in part by the level of treatment the waste has undergone and the complex-wide configuration of origination, treatment, storage, and disposal sites selected for TRUW management. Other elements that impact waste loads are treatment volumes, waste characteristics, and the unit operation parameters of the treatment technologies. Treatment levels and site configurations have been combined into six TRUW management alternatives for study in the WM PEIS. This supplemental report to the WM PEIS gives the projected waste loads and contaminant release profiles for DOE treatment sites under each of the six TRUW management alternatives. It gives TRUW characteristics and inventories for current DOE generation and storage sites, describes the treatment technologies for three proposed levels of TRUW treatment, and presents the representative unit operation parameters of the treatment technologies. The data presented are primary inputs to developing the costs, health risks, and socioeconomic and environmental impacts of treating, packaging, and shipping TRUW for disposal.

  13. Physical Inventory Listing NRC 742cu

    National Nuclear Security Administration (NNSA)

    1 *** Company Name RIS 09/30/2008 A E4 864 1 1 90% J 1 STANDARD 5

  14. Physical Inventory Listing NRC 742cu

    National Nuclear Security Administration (NNSA)

    2 *** Company Name RIS 09/30/2008 A E4 864 1 1 90% J 1 STANDARD 3

  15. Physical Inventory Listing NRC 742cu

    National Nuclear Security Administration (NNSA)

    3.A *** Company Name RIS 09/30/2008 A E4 864 2 2 90 J 1 STANDARDS 2 2 2 2

  16. FY 2014 Service Contract Inventory Analysis

    Energy Savers [EERE]

    Guiding Documents FTCP Guiding Documents Key FTCP Directives and Guidance DOE Order 426.1 Chg 1, Federal Technical Capability DOE Order 360.1C, Federal Employee Training DOE Guide 226.1-2, Federal Line Management Oversight of Department of Energy Nuclear Facilities FTCP Assessment Guidance and Criteria, 1998 FTCP and TQP Assessment CRADs, 2012 Qualification Standards and Related Information Functional Area Qualification Standards - TEMPLATE - FAQS Training Course Evaluation Guide - Review

  17. CMI Course Inventory: Chemistry Engineering | Critical Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to rare earths and critical materials. Other courses are available in these areas: Geology EngineeringGeochemistry Mining Engineering Metallurgical EngineeringMaterials...

  18. CMI Course Inventory: Mining Engineering | Critical Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to rare earths and critical materials. Other courses are available in these areas: Geology EngineeringGeochemistry Metallurgical EngineeringMaterials Science Chemistry...

  19. Excess Uranium Inventory Management Plan.pdf

    Energy Savers [EERE]

  20. Ohio Hydropower Potential Inventory Phase I report

    SciTech Connect (OSTI)

    Not Available

    1981-12-01

    The dams researched in the Ohio Department of Natural Resources (ODNR) files were those contained in a list of Ohio dams provided by the ODNR. The result of this file research is a list of 997 dams contained herein that tabulates information on hydraulic head, stream flow, drainage area, and usage. This listing indicated that all but 137 of the 997 dams can be eliminated from consideration for Phase II research. The second phase would be required to further identify which of the 137 dams might have viable hydroelectric potential and define their basic hydroelectric parameters.

  21. OTC NOx baseline emission inventory, 1990

    SciTech Connect (OSTI)

    1995-07-01

    The objective of this effort was to compile and quality assure a data base of NOx emissions from fossil fuel-fired boilers and indirect heat exchanges greater than or equal to 250 million British thermal units per hour (MMBtu/hr) capacity and electric generating units greater than or equal to 15 megawatts (MW) in the Northeast Ozone Transport Region (OTR). Emissions for the period May 1 through September 30, 1990 (referred to as the 5-month summer season) were compiled and will be used as a basis for emission reduction targeting and trading.

  1. LCLS Equipment Inventory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    water system, resistivity 18.2M.cm, TOC < 5ppb, max. flow fate 2 Lminute. Sanyo MIR-154 Cooled Incubator Temperature Control The Panasonic MIR series offers accurate...

  2. BCM 1 Equipment Inventory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BC Transit Fuel Cell Bus Project Evaluation Results: Second Report L. Eudy and M. Post National Renewable Energy Laboratory Technical Report NREL/TP-5400-62317 September 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 National

  3. Microsoft Word - A14PT028 RPT 2015-12-18 CarbonSeq

    Energy Savers [EERE]

    Office of Fossil Energy's Regional Carbon Sequestration Partnerships Initiative OAI-M-16-03 December 2015 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 December 18, 2015 MEMORANDUM FOR THE ASSISTANT SECRETARY, OFFICE OF FOSSIL ENERGY FROM: Daniel M. Weeber Assistant Inspector General for Audits and Administration Office of Inspector General SUBJECT: INFORMATION: Audit Report on the "The Office of Fossil

  4. To Refseq or ReSeq Oryza - That is the Question (2009 JGI User Meeting)

    ScienceCinema (OSTI)

    Wing, Rod [Arizona Genomics Institute, University of Tennessee

    2011-04-25

    Rod Wing from the University of Arizona asked, "To Refseq or Reseq Oryza - That is the Question" on March 27, 2009 at the 4th Annual User Meeting

  5. GEO-SEQ Subtask 2.3.4: Microseismic Monitoring and Analysis

    SciTech Connect (OSTI)

    Daley, T.; Peterson, J.; Korneev, V.

    2011-03-01

    LBNL's recent analysis of the microseismic data being acquired at well KB-601 has produced a new result of significantly more microseismic activity than previously estimated. During 2009-2010, there was background activity of 1 or 2 events per day with a notable increase during the spring-summer months of up to 20 or more events in a signal day (Figure 1). This level of activity warrants increased effort to obtain quantitative information, and supports plans for expansion of the microseismic monitoring. Quantitative interpretation of these events, including locations, is still hampered by physically unrealistic data from some sensors and uncertainty in which sensors are being recorded and their depth. We now believe that some quantitative analysis will be possible, building upon LBNL's earlier work and analysis conducted by Pinnacle, and utilizing the sledge-hammer tests conducted in the fall of 2010 by the JIP. Current acquisition problems include electrical noise, lack of GPS clock timing, and the sensor uncertainty. To address the acquisition problems, we continue to recommend an active-source recording test with full 144 channel capability (or at least 48 channel). We also recommend a site visit for debugging and repair by a technician knowledgeable in the REF TEK recording system and microseismic acquisition.

  6. Wyo. Stat. 37-2-201 et seq.: Reports, Investigations and Hearings...

    Open Energy Info (EERE)

    This article governs reports, investigations and hearings conducted by the Wyoming Public Service Commission. Published NA Year Signed or Took Effect 2014 Legal Citation...

  7. ChIP-seq Accurately Predicts Tissue-Specific Activity of Enhancers

    SciTech Connect (OSTI)

    Visel, Axel; Blow, Matthew J.; Li, Zirong; Zhang, Tao; Akiyama, Jennifer A.; Holt, Amy; Plajzer-Frick, Ingrid; Shoukry, Malak; Wright, Crystal; Chen, Feng; Afzal, Veena; Ren, Bing; Rubin, Edward M.; Pennacchio, Len A.

    2009-02-01

    A major yet unresolved quest in decoding the human genome is the identification of the regulatory sequences that control the spatial and temporal expression of genes. Distant-acting transcriptional enhancers are particularly challenging to uncover since they are scattered amongst the vast non-coding portion of the genome. Evolutionary sequence constraint can facilitate the discovery of enhancers, but fails to predict when and where they are active in vivo. Here, we performed chromatin immunoprecipitation with the enhancer-associated protein p300, followed by massively-parallel sequencing, to map several thousand in vivo binding sites of p300 in mouse embryonic forebrain, midbrain, and limb tissue. We tested 86 of these sequences in a transgenic mouse assay, which in nearly all cases revealed reproducible enhancer activity in those tissues predicted by p300 binding. Our results indicate that in vivo mapping of p300 binding is a highly accurate means for identifying enhancers and their associated activities and suggest that such datasets will be useful to study the role of tissue-specific enhancers in human biology and disease on a genome-wide scale.

  8. Analysis of Strand-Specific RNA-Seq Data Using Machine Learning...

    Office of Scientific and Technical Information (OSTI)

    Clostridium thermocellum using a machine-learning approach. ... Nucleic Acids Research; Journal ID: ISSN 0305-1048 ... Country of Publication: United States Language: English ...

  9. Colorado - C.R.S. 43-2-101 et seq., State, County and City Highway...

    Open Energy Info (EERE)

    Colorado Department of Transportation to regulate design, construction, improvement, maintenance and general management of the State highway system and highway right-of-ways....

  10. Animal Welfare Act (7 U.S.C. 2031 et seq.) (1966)

    Broader source: Energy.gov [DOE]

    The Animal Welfare Act of 1966 regulates the treatment of animals in research, exhibition, transport, and by dealers.

  11. CRS 25-7-100 et seq - Air Pollution and Prevention Control Act...

    Open Energy Info (EERE)

    Prevention and Control Act. This statutory section sets forth requirements for Colorado's air quality control program. Published NA Year Signed or Took Effect 1980 Legal Citation...

  12. Animal Welfare Act (7 U.S.C. 2031 et seq.)

    Broader source: Energy.gov [DOE]

    The Animal Welfare Act of 1966 regulates the treatment of animals in research, exhibition, transport, and by dealers.

  13. Spent Fuel Working Group report on inventory and storage of the Department`s spent nuclear fuel and other reactor irradiated nuclear materials and their environmental, safety and health vulnerabilities. Volume 2, Working Group Assessment Team reports; Vulnerability development forms; Working group documents

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    The Secretary of Energy`s memorandum of August 19, 1993, established an initiative for a Department-wide assessment of the vulnerabilities of stored spent nuclear fuel and other reactor irradiated nuclear materials. A Project Plan to accomplish this study was issued on September 20, 1993 by US Department of Energy, Office of Environment, Health and Safety (EH) which established responsibilities for personnel essential to the study. The DOE Spent Fuel Working Group, which was formed for this purpose and produced the Project Plan, will manage the assessment and produce a report for the Secretary by November 20, 1993. This report was prepared by the Working Group Assessment Team assigned to the Hanford Site facilities. Results contained in this report will be reviewed, along with similar reports from all other selected DOE storage sites, by a working group review panel which will assemble the final summary report to the Secretary on spent nuclear fuel storage inventory and vulnerability.

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet ... Vehicle Fuel through 1996) in Minnesota (MMcf)",1,"Monthly","22016" ,"Release ...

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Base Gas) (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas ...

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Base Gas) (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas ...

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Natural Gas Lease Fuel...

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Fuel Consumption " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Natural Gas Plant...

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas...

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas...

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas...

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural Gas...

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Natural Gas...

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas...

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Natural Gas Deliveries to...

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas...

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Natural Gas Deliveries to...

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas...

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Natural Gas Deliveries to...

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas...

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas...

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Vermont Natural Gas...

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Industrial...

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas...

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Hawaii Natural Gas...

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wisconsin Natural Gas...

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Natural Gas...

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas...

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Natural Gas Deliveries to...

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Natural Gas Deliveries to...