Powered by Deep Web Technologies
Note: This page contains sample records for the topic "interstate pipeline systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Deliverability on the interstate natural gas pipeline system  

SciTech Connect

Deliverability on the Interstate Natural Gas Pipeline System examines the capability of the national pipeline grid to transport natural gas to various US markets. The report quantifies the capacity levels and utilization rates of major interstate pipeline companies in 1996 and the changes since 1990, as well as changes in markets and end-use consumption patterns. It also discusses the effects of proposed capacity expansions on capacity levels. The report consists of five chapters, several appendices, and a glossary. Chapter 1 discusses some of the operational and regulatory features of the US interstate pipeline system and how they affect overall system design, system utilization, and capacity expansions. Chapter 2 looks at how the exploration, development, and production of natural gas within North America is linked to the national pipeline grid. Chapter 3 examines the capability of the interstate natural gas pipeline network to link production areas to market areas, on the basis of capacity and usage levels along 10 corridors. The chapter also examines capacity expansions that have occurred since 1990 along each corridor and the potential impact of proposed new capacity. Chapter 4 discusses the last step in the transportation chain, that is, deliverability to the ultimate end user. Flow patterns into and out of each market region are discussed, as well as the movement of natural gas between States in each region. Chapter 5 examines how shippers reserve interstate pipeline capacity in the current transportation marketplace and how pipeline companies are handling the secondary market for short-term unused capacity. Four appendices provide supporting data and additional detail on the methodology used to estimate capacity. 32 figs., 15 tabs.

1998-05-01T23:59:59.000Z

2

Overview of interstate hydrogen pipeline systems.  

DOE Green Energy (OSTI)

The use of hydrogen in the energy sector of the United States is projected to increase significantly in the future. Current uses are predominantly in the petroleum refining sector, with hydrogen also being used in the manufacture of chemicals and other specialized products. Growth in hydrogen consumption is likely to appear in the refining sector, where greater quantities of hydrogen will be required as the quality of the raw crude decreases, and in the mining and processing of tar sands and other energy resources that are not currently used at a significant level. Furthermore, the use of hydrogen as a transportation fuel has been proposed both by automobile manufacturers and the federal government. Assuming that the use of hydrogen will significantly increase in the future, there would be a corresponding need to transport this material. A variety of production technologies are available for making hydrogen, and there are equally varied raw materials. Potential raw materials include natural gas, coal, nuclear fuel, and renewables such as solar, wind, or wave energy. As these raw materials are not uniformly distributed throughout the United States, it would be necessary to transport either the raw materials or the hydrogen long distances to the appropriate markets. While hydrogen may be transported in a number of possible forms, pipelines currently appear to be the most economical means of moving it in large quantities over great distances. One means of controlling hydrogen pipeline costs is to use common rights-of-way (ROWs) whenever feasible. For that reason, information on hydrogen pipelines is the focus of this document. Many of the features of hydrogen pipelines are similar to those of natural gas pipelines. Furthermore, as hydrogen pipeline networks expand, many of the same construction and operating features of natural gas networks would be replicated. As a result, the description of hydrogen pipelines will be very similar to that of natural gas pipelines. The following discussion will focus on the similarities and differences between the two pipeline networks. Hydrogen production is currently concentrated in refining centers along the Gulf Coast and in the Farm Belt. These locations have ready access to natural gas, which is used in the steam methane reduction process to make bulk hydrogen in this country. Production centers could possibly change to lie along coastlines, rivers, lakes, or rail lines, should nuclear power or coal become a significant energy source for hydrogen production processes. Should electrolysis become a dominant process for hydrogen production, water availability would be an additional factor in the location of production facilities. Once produced, hydrogen must be transported to markets. A key obstacle to making hydrogen fuel widely available is the scale of expansion needed to serve additional markets. Developing a hydrogen transmission and distribution infrastructure would be one of the challenges to be faced if the United States is to move toward a hydrogen economy. Initial uses of hydrogen are likely to involve a variety of transmission and distribution methods. Smaller users would probably use truck transport, with the hydrogen being in either the liquid or gaseous form. Larger users, however, would likely consider using pipelines. This option would require specially constructed pipelines and the associated infrastructure. Pipeline transmission of hydrogen dates back to late 1930s. These pipelines have generally operated at less than 1,000 pounds per square inch (psi), with a good safety record. Estimates of the existing hydrogen transmission system in the United States range from about 450 to 800 miles. Estimates for Europe range from about 700 to 1,100 miles (Mohipour et al. 2004; Amos 1998). These seemingly large ranges result from using differing criteria in determining pipeline distances. For example, some analysts consider only pipelines above a certain diameter as transmission lines. Others count only those pipelines that transport hydrogen from a producer to a customer (e.g., t

Gillette, J .L.; Kolpa, R. L

2008-02-01T23:59:59.000Z

3

Deliverability on the Interstate Natural Gas Pipeline System  

U.S. Energy Information Administration (EIA)

pipeline companies are handling the secondary market for The overall scope and content of the report was ... Average Length of Long-Term Firm ...

4

EIA - Natural Gas Pipeline Network - Interstate Pipelines Segment  

Gasoline and Diesel Fuel Update (EIA)

Home > Natural Gas > About U.S. Natural Gas Pipelines > Interstate Natural Gas Pipeline Segment About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through...

5

California Interstate Natural Gas Pipeline Capacity Levels ...  

U.S. Energy Information Administration (EIA)

PG&E Gas Transmission - NW Tuscarora Pipeline (Malin OR) 110 Mmcf/d 2,080 Mmcf/d Total Interstate Pipeline Capacity into California 7,435 Mmcf/d Net Natural Gas ...

6

EIA - Natural Gas Pipeline Network - States Dependent on Interstate  

U.S. Energy Information Administration (EIA) Indexed Site

States Dependent on Interstate Pipelines States Dependent on Interstate Pipelines About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates States in grey which are at least 85% dependent on the interstate pipeline network for their natural gas supply are: New England - Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont Southeast - Florida, Georgia, North Carolina, South Carolina, Tennessee Northeast - Delaware, Maryland, New Jersey, New York, District of Columbia Midwest - Illinois, Indiana, Minnesota, Ohio, Wisconsin Central - Iowa, Missouri, Nebraska, South Dakota West - Arizona, California, Idaho, Nevada, Oregon, Washington Interstate Natural Gas Supply Dependency, 2007 Map: Interstate Natural Gas Supply Dependency

7

Interstate Natural Gas Pipelines (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

This statute confers upon the Utilities Board the authority to act as an agent of the federal government in determining pipeline company compliance with federal standards within the boundaries of...

8

Statistics of interstate natural gas pipeline companies, 1990  

Science Conference Proceedings (OSTI)

This report presents financial and operating information of all major interstate natural gas pipeline companies that operated in the United States during 1990. (VC)

Not Available

1992-04-09T23:59:59.000Z

9

Gas supplies of interstate natural gas pipeline companies, 1986  

SciTech Connect

The publication provides information on the total reserves, production, and deliverability capabilities of the 90 interstate pipeline companies. The gas supplies of interstate pipeline companies consist of the certificated, dedicated, recoverable, salable natural gas available from domestic in-the-ground reserves; gas purchased under contracts with other interstate pipeline companies; domestically produced coal gas, liquefied natural gas (LNG), and synthetic natural gas (SNG); and imported natural gas and LNG. The domestic in-the-ground reserves consist of company-owned reserves including natural gas in underground storage, reserves dedicated to or warranted under contracts with independent producers, and supplemental or short-term supplies purchased from independent producers and intrastate pipeline companies. To avoid duplicate reporting of domestic in-the-ground reserves, the volumes of gas under contract agreement between jurisdictional pipelines have been excluded in summarizing State and national reserves. Volumes contracted under agreements with foreign suppliers include pipeline imports from Canada and Mexico. 7 figs., 18 tabs.

Not Available

1987-12-18T23:59:59.000Z

10

Gas supplies of interstate natural gas pipeline companies 1985  

SciTech Connect

This publication provides information on the total reserves, production, and deliverability capabilities of the 91 interstate pipeline companies. The gas supplies of interstate pipeline companies consist of the certificated, dedicated, recoverable, salable natural gas available from domestic in-the-ground reserves; gas purchased under contracts with other interstate pipeline companies; domestically produced coal gas, liquefied natural gas (LNG), and synthetic natural gas (SNG); and imported natural gas and LNG. The domestic in-the-ground reserves consist of company owned reserves including natural gas in underground storage, reserves dedicated to or warranted under contracts with independent producers, and supplemental or short-term supplies purchased from independent producers and intrastate pipeline companies. To avoid duplicate reporting of domestic in-the-ground reserves, the volumes of gas under contract agreement between jurisdictional pipelines have been excluded in summarizing state and national reserves. Volumes contracted under agreements with foreign suppliers include pipeline imports from Canada and Mexico and LNG from Algeria. 7 figs., 18 tabs.

Not Available

1986-11-14T23:59:59.000Z

11

Gas supplies of interstate natural gas pipeline companies, 1984  

SciTech Connect

This publication provides information on the total reserves, production, and deliverability capabilities of 89 interstate pipeline companies. The gas supplies of interstate pipeline companies consist of the certificated, dedicated, recoverable, salable natural gas available from domestic in-the-ground reserves; gas purchased under contracts with other interstate pipeline companies; domestically produced coal gas, liquefied natural gas (LNG), and synthetic natural gas (SNG); and imported natural gas and LNG. The domestic in-the-ground reserves consist of company-owned reserves including natural gas in underground storage, reserves dedicated to or warranted under contracts with independent producers, and supplemental or short-term supplies purchased from independent producers and intrastate pipeline companies. To avoid duplicate reporting of domestic in-the-ground reserves, the volumes of gas under contract agreement between jurisdictional pipelines have been excluded in summarizing state and national reserves. Volumes contracted under agreements with foreign suppliers include pipeline imports from Canada and Mexico and LNG from Algeria. 8 figs., 18 tabs.

Price, R.

1985-12-04T23:59:59.000Z

12

EIA - Natural Gas Pipeline Network - Largest Natural Gas Pipeline Systems  

U.S. Energy Information Administration (EIA) Indexed Site

Interstate Pipelines Table Interstate Pipelines Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Thirty Largest U.S. Interstate Natural Gas Pipeline Systems, 2008 (Ranked by system capacity) Pipeline Name Market Regions Served Primary Supply Regions States in Which Pipeline Operates Transported in 2007 (million dekatherm)1 System Capacity (MMcf/d) 2 System Mileage Columbia Gas Transmission Co. Northeast Southwest, Appalachia DE, PA, MD, KY, NC, NJ, NY, OH, VA, WV 1,849 9,350 10,365 Transcontinental Gas Pipeline Co. Northeast, Southeast Southwest AL, GA, LA, MD, MS, NC, NY, SC, TX, VA, GM 2,670 8,466 10,450 Northern Natural Gas Co. Central, Midwest Southwest IA, IL, KS, NE, NM, OK, SD, TX, WI, GM 1,055 7,442 15,874 Texas Eastern Transmission Corp.

13

Recent market activities of major interstate pipeline companies  

Science Conference Proceedings (OSTI)

In addition to analyzing trends in wellhead purchases over the past year, this study also presents information and analysis of natural gas purchases from other pipeline companies, and sales to several types of customers. Activities of 20 major interstate pipeline companies were analysed in response to market developments over the past 4 years and over the past year in particular. This study includes an analysis of trends in natural gas sales and of the effects of increasing prices since 1979. It includes separate analyses of direct industrial sales, sales to major pipeline companies, and other sales for resale, as well as analyses of the volumes transported for sale to others. It also reports on purchase patterns in general since 1979 and on purchase projection patterns for particular types of gas since 1981. The differing behavior of pipeline companies in purchasing high-cost gas in the current market is also analyzed. (PSB)

Not Available

1984-01-01T23:59:59.000Z

14

EIA - Natural Gas Pipeline System - Links to U.S. Natural Gas Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Links Links About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Links to U.S. Natural Gas Pipeline Information - The links below will either direct the user to a narrative describing the system, a pipeline system map, a FERC prescribed "Informational Postings" page, or a FERC Tariff Sheet. Pipeline Name Type of System Regions of Operations Acadian Gas Pipeline System Intrastate Southwest Algonquin Gas Transmission Co Interstate Northeast Alliance Pipeline Co Interstate Central, Midwest Anaconda Pipeline System Gathering Gulf of Mexico ANR Pipeline Co Interstate Midwest ANR Storage Co Interstate Midwest Arkansas Oklahoma Gas Co Intrastate Southwest Arkansas Western Pipeline Co Intrastate

15

EIA - Natural Gas Pipeline System - Northeast Region  

U.S. Energy Information Administration (EIA) Indexed Site

Northeast Region Northeast Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Northeast Region Overview | Domestic Gas | Canadian Imports | Regional Pipeline Companies & Links Overview Twenty interstate natural gas pipeline systems operate within the Northeast Region (Connecticut, Delaware, Massachusetts, Maine, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Virginia, and West Virginia). These interstate pipelines deliver natural gas to several intrastate natural gas pipelines and at least 50 local distribution companies in the region. In addition, they also serve large industrial concerns and, increasingly, natural gas fired electric power generation facilities.

16

Natural Gas Compressor Stations on the Interstate Pipeline Network:Developments Since 1996  

Reports and Publications (EIA)

This special report looks at the use of natural gas pipeline compressor stations on the interstate natural gas pipeline network that serves the lower 48 States. It examines the compression facilities added over the past 10 years and how the expansions have supported pipeline capacity growth intended to meet the increasing demand for natural gas.

Information Center

2007-11-07T23:59:59.000Z

17

EIA - Natural Gas Pipeline Network - Largest Natural Gas Pipeline...  

Gasoline and Diesel Fuel Update (EIA)

through 20072008 with selected updates Thirty Largest U.S. Interstate Natural Gas Pipeline Systems, 2008 (Ranked by system capacity) Pipeline Name Market Regions Served Primary...

18

EIA - Natural Gas Pipeline System - Midwest Region  

U.S. Energy Information Administration (EIA)

Natural Gas Pipelines in the Midwest Region Overview | Domestic Gas | Canadian Imports | Regional Pipeline Companies & Links. Overview Twenty-six interstate and at ...

19

EIA - Natural Gas Pipeline System - Central Region  

U.S. Energy Information Administration (EIA) Indexed Site

Central Region Central Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Central Region Overview | Domestic Gas | Exports | Regional Pipeline Companies & Links Overview Twenty-two interstate and at least thirteen intrastate natural gas pipeline companies (see Table below) operate in the Central Region (Colorado, Iowa, Kansas, Missouri, Montana, Nebraska, North Dakota, South Dakota, Utah, and Wyoming). Twelve interstate natural gas pipeline systems enter the region from the south and east while four enter from the north carrying Canadian supplies. The average utilization rates on those shipping Canadian natural gas tend to be higher than those carrying domestic supplies.

20

Overview of the design, construction, and operation of interstate liquid petroleum pipelines.  

Science Conference Proceedings (OSTI)

The U.S. liquid petroleum pipeline industry is large, diverse, and vital to the nation's economy. Comprised of approximately 200,000 miles of pipe in all fifty states, liquid petroleum pipelines carried more than 40 million barrels per day, or 4 trillion barrel-miles, of crude oil and refined products during 2001. That represents about 17% of all freight transported in the United States, yet the cost of doing so amounted to only 2% of the nation's freight bill. Approximately 66% of domestic petroleum transport (by ton-mile) occurs by pipeline, with marine movements accounting for 28% and rail and truck transport making up the balance. In 2004, the movement of crude petroleum by domestic federally regulated pipelines amounted to 599.6 billion tonmiles, while that of petroleum products amounted to 315.9 billion ton-miles (AOPL 2006). As an illustration of the low cost of pipeline transportation, the cost to move a barrel of gasoline from Houston, Texas, to New York Harbor is only 3 cents per gallon, which is a small fraction of the cost of gasoline to consumers. Pipelines may be small or large, up to 48 inches in diameter. Nearly all of the mainline pipe is buried, but other pipeline components such as pump stations are above ground. Some lines are as short as a mile, while others may extend 1,000 miles or more. Some are very simple, connecting a single source to a single destination, while others are very complex, having many sources, destinations, and interconnections. Many pipelines cross one or more state boundaries (interstate), while some are located within a single state (intrastate), and still others operate on the Outer Continental Shelf and may or may not extend into one or more states. U.S. pipelines are located in coastal plains, deserts, Arctic tundra, mountains, and more than a mile beneath the water's surface of the Gulf of Mexico (Rabinow 2004; AOPL 2006). The network of crude oil pipelines in the United States is extensive. There are approximately 55,000 miles of crude oil trunk lines (usually 8 to 24 inches in diameter) in the United States that connect regional markets. The United States also has an estimated 30,000 to 40,000 miles of small gathering lines (usually 2 to 6 inches in diameter) located primarily in Texas, Oklahoma, Louisiana, and Wyoming, with small systems in a number of other oil producing states. These small lines gather the oil from many wells, both onshore and offshore, and connect to larger trunk lines measuring 8 to 24 inches in diameter. There are approximately 95,000 miles of refined products pipelines nationwide. Refined products pipelines are found in almost every state in the United States, with the exception of some New England states. These refined product pipelines vary in size from relatively small, 8- to 12-inch-diameter lines, to up to 42 inches in diameter. The overview of pipeline design, installation, and operation provided in the following sections is only a cursory treatment. Readers interested in more detailed discussions are invited to consult the myriad engineering publications available that provide such details. The two primary publications on which the following discussions are based are: Oil and Gas Pipeline Fundamentals (Kennedy 1993) and the Pipeline Rules of Thumb Handbook (McAllister 2002). Both are recommended references for additional reading for those requiring additional details. Websites maintained by various pipeline operators also can provide much useful information, as well as links to other sources of information. In particular, the website maintained by the U.S. Department of Energy's Energy Information Administration (EIA) (http://www.eia.doe.gov) is recommended. An excellent bibliography on pipeline standards and practices, including special considerations for pipelines in Arctic climates, has been published jointly by librarians for the Alyeska Pipeline Service Company (operators of the Trans-Alaska Pipeline System [TAPS]) and the Geophysical Institute/International Arctic Research Center, both located in Fairbanks (Barboza and Trebelhorn 2001)

Pharris, T. C.; Kolpa, R. L.

2008-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "interstate pipeline systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

EIA - Natural Gas Pipeline System - Western Region  

U.S. Energy Information Administration (EIA) Indexed Site

Western Region Western Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Western Region Overview | Transportation South | Transportation North | Regional Pipeline Companies & Links Overview Ten interstate and nine intrastate natural gas pipeline companies provide transportation services to and within the Western Region (Arizona, California, Idaho, Nevada, Oregon, and Washington), the fewest number serving any region (see Table below). Slightly more than half the capacity entering the region is on natural gas pipeline systems that carry natural gas from the Rocky Mountain area and the Permian and San Juan basins. These latter systems enter the region at the New Mexico-Arizona and Nevada-Utah State lines. The rest of the capacity arrives on natural gas pipelines that access Canadian natural gas at the Idaho and Washington State border crossings with British Columbia, Canada.

22

Natural Gas Compressor Stations on the Interstate Pipeline ...  

U.S. Energy Information Administration (EIA)

facilities, emergency shutdown systems, and an on-site computerized flow control and dispatch system that maintains the operational integrity of the ...

23

EIA - Natural Gas Pipeline System - Southwest Region  

U.S. Energy Information Administration (EIA) Indexed Site

Southwest Region Southwest Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Southwest Region Overview | Export Transportation | Intrastate | Connection to Gulf of Mexico | Regional Pipeline Companies & Links Overview Most of the major onshore interstate natural gas pipeline companies (see Table below) operating in the Southwest Region (Arkansas, Louisiana, New Mexico, Oklahoma, and Texas) are primarily exporters of the region's natural gas production to other parts of the country and Mexico, while an extensive Gulf of Mexico and intrastate natural gas pipeline network is the main conduit for deliveries within the region. More than 56,000 miles of natural gas pipeline on more than 66 intrastate natural gas pipeline systems (including offshore-to-onshore and offshore Gulf of Mexico pipelines) deliver natural gas to the region's local natural gas distribution companies and municipalities and to the many large industrial and electric power facilities located in the region.

24

EIA - Natural Gas Pipeline System - Southeast Region  

U.S. Energy Information Administration (EIA) Indexed Site

Southeast Region Southeast Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Southeast Region Overview | Transportation to Atlantic & Gulf States | Gulf of Mexico Transportation Corridor | Transportation to the Northern Tier | Regional Pipeline Companies & Links Overview Twenty-three interstate, and at least eight intrastate, natural gas pipeline companies operate within the Southeast Region (Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, and Tennessee). Fifteen of the twenty-one interstate natural gas pipelines originate in the Southwest Region and receive most of their supplies from the Gulf of Mexico or from the States of Texas and/or Louisiana.

25

Corporate Realignments and Investments in the Interstate Natural Gas Transmission System  

Reports and Publications (EIA)

Examines the financial characteristics of current ownership in the natural gas pipeline industry and of the major U.S. interstate pipeline companies that transported the bulk of the natural gas consumed in the United States between 1992 and 1997, focusing on 14 parent corporations. It also examines the near-term investment needs of the industry and the anticipated growth in demand for natural gas during the next decade.

Information Center

1999-10-01T23:59:59.000Z

26

About U.S. Natural Gas Pipelines  

Reports and Publications (EIA)

This information product provides the interested reader with a broad and non-technical overview of how the U.S. natural gas pipeline network operates, along with some insights into the many individual pipeline systems that make up the network. While the focus of the presentation is the transportation of natural gas over the interstate and intrastate pipeline systems, information on subjects related to pipeline development, such as system design and pipeline expansion, are also included.

Information Center

2007-06-01T23:59:59.000Z

27

Capsule injection system for a hydraulic capsule pipelining system  

DOE Patents (OSTI)

An injection system for injecting capsules into a hydraulic capsule pipelining system, the pipelining system comprising a pipeline adapted for flow of a carrier liquid therethrough, and capsules adapted to be transported through the pipeline by the carrier liquid flowing through the pipeline. The injection system comprises a reservoir of carrier liquid, the pipeline extending within the reservoir and extending downstream out of the reservoir, and a magazine in the reservoir for holding capsules in a series, one above another, for injection into the pipeline in the reservoir. The magazine has a lower end in communication with the pipeline in the reservoir for delivery of capsules from the magazine into the pipeline.

Liu, Henry (Columbia, MO)

1982-01-01T23:59:59.000Z

28

EIA - Natural Gas Pipeline Network - Intrastate Natural Gas Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Intrastate Natural Gas Pipeline Segment Intrastate Natural Gas Pipeline Segment About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Intrastate Natural Gas Pipeline Segment Overview Intrastate natural gas pipelines operate within State borders and link natural gas producers to local markets and to the interstate pipeline network. Approximately 29 percent of the total miles of natural gas pipeline in the U.S. are intrastate pipelines. Although an intrastate pipeline system is defined as one that operates totally within a State, an intrastate pipeline company may have operations in more than one State. As long as these operations are separate, that is, they do not physically interconnect, they are considered intrastate, and are not jurisdictional to the Federal Energy Regulatory Commission (FERC). More than 90 intrastate natural gas pipelines operate in the lower-48 States.

29

Deliverability on the Interstate Natural Gas Pipeline System  

U.S. Energy Information Administration (EIA)

Energy Information Administration / Natural Gas Monthly May 1998 vii The following article is the Executive Summary from the recently published report Deliverability ...

30

Method and system for pipeline communication  

DOE Patents (OSTI)

A pipeline communication system and method includes a pipeline having a surface extending along at least a portion of the length of the pipeline. A conductive bus is formed to and extends along a portion of the surface of the pipeline. The conductive bus includes a first conductive trace and a second conductive trace with the first and second conductive traces being adapted to conformally couple with a pipeline at the surface extending along at least a portion of the length of the pipeline. A transmitter for sending information along the conductive bus on the pipeline is coupled thereto and a receiver for receiving the information from the conductive bus on the pipeline is also couple to the conductive bus.

Richardson; John G. (Idaho Falls, ID)

2008-01-29T23:59:59.000Z

31

Acoustic system for communication in pipelines  

DOE Patents (OSTI)

A system for communication in a pipe, or pipeline, or network of pipes containing a fluid. The system includes an encoding and transmitting sub-system connected to the pipe, or pipeline, or network of pipes that transmits a signal in the frequency range of 3-100 kHz into the pipe, or pipeline, or network of pipes containing a fluid, and a receiver and processor sub-system connected to the pipe, or pipeline, or network of pipes containing a fluid that receives said signal and uses said signal for a desired application.

Martin, II, Louis Peter (San Ramon, CA); Cooper, John F. (Oakland, CA)

2008-09-09T23:59:59.000Z

32

Using Natural Gas Transmission Pipeline Costs to Estimate Hydrogen Pipeline Costs  

E-Print Network (OSTI)

Warren R. “U.S. interstate pipelines begin 1993 on upbeat. ”66. ? True, Warren R. “Current pipeline costs. ” Oil & GasWarren R. “U.S. interstate pipelines ran more efficiently in

Parker, Nathan

2004-01-01T23:59:59.000Z

33

OPUS-97: A Generalized Operational Pipeline System  

E-Print Network (OSTI)

. OPUS is the platform on which the telemetry pipeline at the Hubble Space Telescope Science Institute is running currently. OPUS was developed both to repair the mistakes of the past, and to build a system which could meet the challenges of the future. The production pipeline inherited at the Space Telescope Science Institute was designed a decade earlier, and made assumptions about the environment which were unsustainable. While OPUS was developed in an environment that required a great deal of attention to throughput, speed, e#ciency, flexibility, robustness and extensibility, it is not just a "big science" machine. The OPUS platform, our baseline product, is a small compact system designed to solve a specific problem in a robust way. The OPUS platform handles communication with the OPUS blackboard; individual processes within this pipeline need have no knowledge of OPUS, of the blackboard, or of the pipeline itself. The OPUS API is an intermediate pipeline product. In addition to t...

J. Rose

1998-01-01T23:59:59.000Z

34

Computer Systems to Oil Pipeline Transporting  

E-Print Network (OSTI)

Computer systems in the pipeline oil transporting that the greatest amount of data can be gathered, analyzed and acted upon in the shortest amount of time. Most operators now have some form of computer based monitoring system employing either commercially available or custom developed software to run the system. This paper presented the SCADA systems to oil pipeline in concordance to the Romanian environmental reglementations.

Chis, Timur

2009-01-01T23:59:59.000Z

35

Policies of System Level Pipeline Modeling  

E-Print Network (OSTI)

Pipelining is a well understood and often used implementation technique for increasing the performance of a hardware system. We develop several SystemC/C++ modeling techniques that allow us to quickly model, simulate, and evaluate pipelines. We employ a small domain specific language (DSL) based on resource usage patterns that automates the drudgery of boilerplate code needed to configure connectivity in simulation models. The DSL is embedded directly in the host modeling language SystemC/C++. Additionally we develop several techniques for parameterizing a pipeline's behavior based on policies of function, communication, and timing (performance modeling).

Harcourt, Ed

2008-01-01T23:59:59.000Z

36

Communication systems vital to Colombian pipeline  

Science Conference Proceedings (OSTI)

Construction of the Centro Oriente Gas Pipeline represents a major step in Colombia`s goal to strengthen the emerging natural gas business. With construction beginning in 1995, the Centro Oriente is scheduled to begin operation early this year transporting 150 MMcf/d. The 779-kilometer (484-mile) pipeline ranging in diameter from 22-inch to 12-inches, provides the central transportation link between major gas suppliers in both the northern and western regions of Colombia and new markets throughout their immediate regions as well as in the central and eastern regions. TransCanada, operating company for the Centro Oriente pipeline, will develop and manage the support organizations required to operate and maintain the system. The central control system for the CPC is the Gas SCADA system, ADACS, provided by Bristol Babcock Inc. (BBI). This control system provides the data acquisition and control capabilities necessary to operate the entire pipeline safely and efficiently from Burcaramanga.

Serrato, E. [Ecopetrol, Bogota (Colombia); Mailloux, R. [Bristol Babcock Inc., Watertown, CT (United States)

1997-02-01T23:59:59.000Z

37

Pipeline Construction Guidelines (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

This division of the Utility Regulatory Commission regulates the construction of any segment of an interstate pipeline on privately owned land in Indiana. The division has provisions for...

38

EIA - Natural Gas Pipeline Network - Regional Overview and Links  

U.S. Energy Information Administration (EIA) Indexed Site

Overview and Links Overview and Links About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Regional Overviews and Links to Pipeline Companies Through a series of interconnecting interstate and intrastate pipelines the transportation of natural gas from one location to another within the United States has become a relatively seamless operation. While intrastate pipeline systems often transports natural gas from production areas directly to consumers in local markets, it is the interstate pipeline system's long-distance, high-capacity trunklines that supply most of the major natural gas markets in the United States. Of the six geographic regions defined in this analysis, the Southwest Region contains the largest number of individual natural gas pipeline systems (more than 90) and the highest level of pipeline mileage (over 106,000).

39

Pipelining with common operands for power-efficient linear systems  

Science Conference Proceedings (OSTI)

We propose a systematic pipelining method for a linear system to minimize power and maximize throughput, given a constraint on the number of pipeline stages and a set of resource constraints. Unlike most existing pipelining approaches, our method takes ... Keywords: common operand, linear system, operand sharing, pipelining, power

Daehong Kim; Dongwan Shin; Kiyoung Choi

2005-09-01T23:59:59.000Z

40

High temperature gas reactor and energy pipeline system  

SciTech Connect

Under contract to the General Electric Co. as a part of a DOE-sponsored program, the Energy Systems Analysis Group at the Institute of Gas Technology examined the following aspects of the high temperature gas reactor closed loop chemical energy pipeline concept: (1) pipeline transmission and storage system design; (2) pipeline and storage system cost; (3) methane reformer interface; and (4) system safety and environmental aspects. This work focuses on the pipeline and storage system concepts, pipeline size, compressor power, and storage facility requirements were developed for 4 different types of pipeline systems to obtain system cost estimates. Each pipeline system includes a synthesis-gas pipeline from the reformer to the methanator, a methane-rich gas pipeline from the methanator to the reformer, a water return line from the methanator to the reformer, and storage for the synthesis gas, methane-rich gas and water.

Daniels, E.; Blazek, C.; Pflasterer, G.R.; Allen, D.C.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "interstate pipeline systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

High temperature gas reactor and energy pipeline system  

DOE Green Energy (OSTI)

A study was made of the following aspects of the High Temperature Gas Reactor (HTGR) Closed Loop Chemical Energy Pipeline (CEP) concept: pipeline transmission and storage system design, pipeline and storage system cost, methane reformer interface, and system safety and environmental aspects. This paper focuses on the pipeline and storage system concepts. Pipeline size, compressor power, and storage facility requirements were developed for four different types of pipeline systems to obtain system cost estimates. Each pipeline system includes a synthesis-gas pipeline from the reformer to the methanator, a methane-rich gas pipeline from the methanator to the reformer, a water return line from the methanator to the reformer, and storage for the synthesis gas, methane-rich gas and water.

Daniels, E.; Blazek, C.; Allen, D.C.; Pflasterer, G.R.

1980-12-19T23:59:59.000Z

42

Optimal operation of pipeline systems using genetic algorithm  

Science Conference Proceedings (OSTI)

A Genetic Algorithm (GA) is used in this paper for the optimal operation, result in better solution than the existing one, of the pipeline systems under transient conditions caused by valve closure. Simulation of pipeline system is carried out here by ... Keywords: genetic algorithm, implicit method of characteristic, pipeline system, transient flow, water hammer

M. H. Afshar; M. Rohani

2009-05-01T23:59:59.000Z

43

EIA - Natural Gas Pipeline Network - Regional Overview and Links  

Gasoline and Diesel Fuel Update (EIA)

based on data through 20072008 with selected updates Regional Overviews and Links to Pipeline Companies Through a series of interconnecting interstate and intrastate pipelines the...

44

Sensor and transmitter system for communication in pipelines  

DOE Patents (OSTI)

A system for sensing and communicating in a pipeline that contains a fluid. An acoustic signal containing information about a property of the fluid is produced in the pipeline. The signal is transmitted through the pipeline. The signal is received with the information and used by a control.

Cooper, John F.; Burnham, Alan K.

2013-01-29T23:59:59.000Z

45

Virtual Pipeline System Testbed to Optimize the U.S. Natural Gas Transmission Pipeline System  

SciTech Connect

The goal of this project is to develop a Virtual Pipeline System Testbed (VPST) for natural gas transmission. This study uses a fully implicit finite difference method to analyze transient, nonisothermal compressible gas flow through a gas pipeline system. The inertia term of the momentum equation is included in the analysis. The testbed simulate compressor stations, the pipe that connects these compressor stations, the supply sources, and the end-user demand markets. The compressor station is described by identifying the make, model, and number of engines, gas turbines, and compressors. System operators and engineers can analyze the impact of system changes on the dynamic deliverability of gas and on the environment.

Kirby S. Chapman; Prakash Krishniswami; Virg Wallentine; Mohammed Abbaspour; Revathi Ranganathan; Ravi Addanki; Jeet Sengupta; Liubo Chen

2005-06-01T23:59:59.000Z

46

Design of a model pipeline for testing of piezoelectric micro power generator for the Trans-Alaska Pipeline System  

E-Print Network (OSTI)

In order to provide a reliable corrosion detection system for the Trans-Alaska Pipeline System (TAPS), a distributed wireless self-powered sensor array is needed to monitor the entire length of the pipeline at all times. ...

Lah, Mike M. (Mike Myoung)

2007-01-01T23:59:59.000Z

47

Natural Gas Pipeline and System Expansions, 1997-2000  

U.S. Energy Information Administration (EIA)

complement CNG’s planned improvement to its system for Pipeline Company’s Express 500 is one such proposal, with flowing gas between Leidy, Pennsylvania, ...

48

Natural Gas Pipeline and System Expansions  

U.S. Energy Information Administration (EIA)

Energy Information Administration / Natural Gas Monthly April 1997 vii This special report examines recent expansions to the North American natural gas pipeline network

49

Natural Gas Pipeline and System Expansions  

Reports and Publications (EIA)

This special report examines recent expansions tothe North American natural gas pipeline networkand the nature and type of proposed pipeline projects announced or approved for construction during the next several years in the United States. It includes those projects in Canada and Mexico that tie in with U.S. markets or projects.

Information Center

1997-04-01T23:59:59.000Z

50

Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies and Technologies and Systems Pipeline Transmission of Hydrogen Strategic Initiatives for Hydrogen Delivery Workshop May 7- 8, 2003 U.S. Department of Energy â–  Hydrogen, Fuel Cells, and Infrastructure Technologies Program Pipeline Transmission of Hydrogen --- 2 Copyright: Design & Operation Standards Relevant Design and Operating Standards ANSI/ASME B31.8 49 CFR 192 CGA H 2 Pipeline Standard (in development) Pipeline Transmission of Hydrogen --- 3 Copyright: Future H 2 Infrastructure Wind Powered Electrolytic Separation Local Reformers Users Stationary Power Sources Vehicle Fueling Stations Distance from Source to User (Miles) <500 0-5 <2,000 <50 Off-peak Hydroelectric Powered Electrolytic Separation Large Reformers (scale economies) Pipeline Transmission of Hydrogen

51

A Macroscopic Behavior Model for Self-Timed Pipeline Systems  

Science Conference Proceedings (OSTI)

This paper presents a novel macroscopic behavior modelfor self-timed pipeline (STP). STP is a promising architecturefor system-on-chip (SoC) design, because STP easesthe timing problems and abnegates the control dependenciesamong building components ...

Shuji Sannomiya; Yoichi Omori; Makoto Iwata

2003-06-01T23:59:59.000Z

52

Interstate Commission on the Potomac River Basin (Multiple States) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interstate Commission on the Potomac River Basin (Multiple States) Interstate Commission on the Potomac River Basin (Multiple States) Interstate Commission on the Potomac River Basin (Multiple States) < Back Eligibility Commercial Construction Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State District of Columbia Program Type Environmental Regulations Siting and Permitting Provider Interstate Commission on the Potomac River Basin The Interstate Commission on the Potomac River Basin's (ICPRB) mission is to enhance, protect, and conserve the water and associated land resources of the Potomac River and its tributaries through regional and interstate

53

EIA - Natural Gas Pipeline Network - Network Configuration & System Design  

U.S. Energy Information Administration (EIA) Indexed Site

Network Configuration & System Design Network Configuration & System Design About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Network Configuration and System Design Overview | Transmission/Storage | Design Criteria | Importance of Storage| Overall Pipeline System Configuration Overview A principal requirement of the natural gas transmission system is that it be capable of meeting the peak demand of its shippers who have contracts for firm service. To meet this requirement, the facilities developed by the natural gas transmission industry are a combination of transmission pipelines to bring the gas to the market areas and of underground natural gas storage sites and liquefied natural gas (LNG) peaking facilities located in the market areas.

54

Delgado-Frias, “A Mesochronous Pipelining Scheme for High-Performance Digital Systems  

E-Print Network (OSTI)

Abstract—A novel mesochronous pipelining scheme is described in this paper. In this scheme, data and clock travel together. At any given time a pipeline stage could be operating on more than one data wave. The clock period in the proposed pipeline scheme is determined by the pipeline stage with largest difference between its minimum and maximum delays. This is a significant performance gain compared to conventional pipeline scheme where clock period is determined by the stage with the largest delay. A detailed analysis of the clock period constraints is provided to show the performance gains and of mesochronous pipelining over other pipelining schemes. Also, the number of pipeline stages and pipeline registers is small. The clock distribution scheme is simple in the mesochronous pipeline architecture. An 8 8-bit carry-save adder multiplier has been implemented in mesochronous pipeline architecture using modest TSMC 180-nm (drawn length 200 nm) CMOS technology. The multiplier architecture and simulation results are described in detail in this paper. The pipelined multiplier is able to operate on a clock period of 350 ps (2.86 GHz). This is a of 1.7 times over conventional pipeline scheme, with fewer pipeline stages and pipeline registers. Index Terms—High performance, mesochronous pipeline, multiplier, pipelined system, register delays. I.

Suryanarayana B. Tatapudi; Student Member; José G. Delgado-frias; Senior Member

2006-01-01T23:59:59.000Z

55

Estimated 2000 Interregional Pipeline Capacity and 1999 Average Flows  

U.S. Energy Information Administration (EIA)

... the nation's natural gas interstate pipeline infrastructure appears more than adequate to meet the differing regional market demand requirements that are likely ...

56

Gas Pipeline ASD Application Study: Business Plan for the Application of ASDs to a Section of a Gas Pipeline System  

Science Conference Proceedings (OSTI)

An adjustable speed drive (ASD) offers opportunities to operate a gas pipeline in a more energy efficient manner. This report focuses on the appropriate system requirements and includes data used to determine those requirements. It also provides a business plan for progressively applying ASDs to a 600-mile section of gas pipeline in order to realize full energy savings and operational improvements.

1999-04-02T23:59:59.000Z

57

The Economics of the Nord Stream Pipeline System  

E-Print Network (OSTI)

The Economics of the Nord Stream Pipeline System Chi Kong Chyong, Pierre Noël and David M. Reiner September 2010 CWPE 1051 & EPRG 1026 www.eprg.group.cam.ac.uk E P R G W O R K IN G P A P E R Abstract... The Economics of the Nord Stream Pipeline System EPRG Working Paper 1026 Cambridge Working Paper in Economics 1051 Chi Kong Chyong, Pierre No?l and David M. Reiner We calculate the total cost of building Nord Stream and compare its levelised unit...

Chyong, Chi Kong; Noël, Pierre; Reiner, David M.

58

Improving Security of Oil Pipeline SCADA Systems Using Service-Oriented Architectures  

Science Conference Proceedings (OSTI)

Oil pipeline Supervisory Control and Data Acquisition (SCADA) systems monitor and help control pipes transporting both crude and refined petroleum products. Typical SCADA system architectures focus on centralized data collection and control --- however, ... Keywords: SCADA, architecture, petroleum, pipeline, security, services

Nary Subramanian

2008-11-01T23:59:59.000Z

59

Localized Pipeline Encroachment Detector System Using Sensor Network  

E-Print Network (OSTI)

Detection of encroachment on pipeline right-of-way is important for pipeline safety. An effective system can provide on-time warning while reducing the probability of false alarms. There are a number of industry and academic developments to tackle this problem. This thesis is the first to study the use of a wireless sensor network for pipeline right-of-way encroachment detection. In the proposed method, each sensor node in the network is responsible for detecting and transmitting vibration signals caused by encroachment activities to a base station (computer center). The base station monitors and analyzes the signals. If an encroachment activity is detected, the base station will send a warning signal. We describe such a platform with hardware configuration and software controls, and the results demonstrate that the platform is able to report our preliminary experiments in detecting digging activities by a tiller in the natural and automotive noise.

Ou, Xiaoxi 1986-

2011-08-01T23:59:59.000Z

60

Development of software using fuzzy logic to predict erosive wear in slurry pipeline system  

Science Conference Proceedings (OSTI)

The phenomenon of wear is a major challenge in transportation through slurry pipeline system. A predictive software tool has been devised using Fuzzy Logic for predicting the erosive wear rate in slurry pipeline system. It is based on published experimental ... Keywords: Java, erosive wear, fuzzy logic, slurry pipeline system, software

Rajat Gupta; Bikramjit Chowdhury; Ambarish Kapil Barpujari; Jnandeep Borbarua

2008-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "interstate pipeline systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Development and Evaluation of an Automated Annotation Pipeline and cDNA Annotation System  

E-Print Network (OSTI)

Development and Evaluation of an Automated Annotation Pipeline and cDNA Annotation System Takeya, including an automated annotation pipeline that provides high-quality preliminary annotation for each

Gough, Julian

62

Natural gas pipeline technology overview.  

Science Conference Proceedings (OSTI)

The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by transmission companies. Compressor stations at required distances boost the pressure that is lost through friction as the gas moves through the steel pipes (EPA 2000). The natural gas system is generally described in terms of production, processing and purification, transmission and storage, and distribution (NaturalGas.org 2004b). Figure 1.1-2 shows a schematic of the system through transmission. This report focuses on the transmission pipeline, compressor stations, and city gates.

Folga, S. M.; Decision and Information Sciences

2007-11-01T23:59:59.000Z

63

Western Interstate Nuclear Compact State Nuclear Policy (Multiple States) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Western Interstate Nuclear Compact State Nuclear Policy (Multiple Western Interstate Nuclear Compact State Nuclear Policy (Multiple States) Western Interstate Nuclear Compact State Nuclear Policy (Multiple States) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Retail Supplier Rural Electric Cooperative State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Arizona Program Type Siting and Permitting Provider Western Interstate Energy Board Legislation authorizes states' entrance into the Western Interstate Nuclear Compact, which aims to undertake the cooperation of participating states in

64

Cooperative Pipelined Regeneration in Distributed Storage Systems  

E-Print Network (OSTI)

The Apprentice Challenge J. STROTHER MOORE and GEORGE PORTER University of Texas at Austin We and distributed compu- tation, mutual exclusion, operational semantics, theorem proving 1. THE APPRENTICE SYSTEM in the Apprentice class builds an instance of a Container object and then begins creating and starting new threads

Li, Baochun

65

A Dredging Knowledge-Base Expert System for Pipeline Dredges with Comparison to Field Data  

E-Print Network (OSTI)

A Pipeline Analytical Program and Dredging Knowledge{Base Expert{System (DKBES) determines a pipeline dredge's production and resulting cost and schedule. Pipeline dredge engineering presents a complex and dynamic process necessary to maintain navigable waterways. Dredge engineers use pipeline engineering and slurry transport principles to determine the production rate of a pipeline dredge system. Engineers then use cost engineering factors to determine the expense of the dredge project. Previous work in engineering incorporated an object{oriented expert{system to determine cost and scheduling of mid{rise building construction where data objects represent the fundamental elements of the construction process within the program execution. A previously developed dredge cost estimating spreadsheet program which uses hydraulic engineering and slurry transport principles determines the performance metrics of a dredge pump and pipeline system. This study focuses on combining hydraulic analysis with the functionality of an expert{system to determine the performance metrics of a dredge pump and pipeline system and its resulting schedule. Field data from the U.S. Army Corps of Engineers pipeline dredge, Goetz, and several contract daily dredge reports show how accurately the DKBES can predict pipeline dredge production. Real{time dredge instrumentation data from the Goetz compares the accuracy of the Pipeline Analytical Program to actual dredge operation. Comparison of the Pipeline Analytical Program to pipeline daily dredge reports shows how accurately the Pipeline Analytical Program can predict a dredge project's schedule over several months. Both of these comparisons determine the accuracy and validity of the Pipeline Analytical Program and DKBES as they calculate the performance metrics of the pipeline dredge project. The results of the study determined that the Pipeline Analytical Program compared closely to the Goetz eld data where only pump and pipeline hydraulics a ected the dredge production. Results from the dredge projects determined the Pipeline Analytical Program underestimated actual long{term dredge production. Study results identi ed key similarities and di erences between the DKBES and spreadsheet program in terms of cost and scheduling. The study then draws conclusions based on these ndings and o ers recommendations for further use.

Wilson, Derek Alan

2010-12-01T23:59:59.000Z

66

New perspectives on the damage estimation for buried pipeline systems due to seismic wave propagation  

Science Conference Proceedings (OSTI)

Over the past three decades, seismic fragility fonnulations for buried pipeline systems have been developed following two tendencies: the use of earthquake damage scenarios from several pipeline systems to create general pipeline fragility functions; and, the use of damage scenarios from one pipeline system to create specific-system fragility functions. In this paper, the advantages and disadvantages of both tendencies are analyzed and discussed; in addition, a summary of what can be considered the new challenges for developing better pipeline seismic fragility formulations is discussed. The most important conclusion of this paper states that more efforts are needed to improve the estimation of transient ground strain -the main cause of pipeline damage due to seismic wave propagation; with relevant advances in that research field, new and better fragility formulations could be developed.

Pineda Porras, Omar Andrey [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

67

Interstate Oil and Gas Conservation Compact (Maryland) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interstate Oil and Gas Conservation Compact (Maryland) Interstate Oil and Gas Conservation Compact (Maryland) Interstate Oil and Gas Conservation Compact (Maryland) < Back Eligibility Commercial Construction Fed. Government Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Tribal Government Utility Program Info State Maryland Program Type Siting and Permitting Provider Interstate Oil and Gas Compact Commission This legislation authorizes the State to join the Interstate Compact for the Conservation of Oil and Gas. The Compact is an agreement that has been entered into by 30 oil- and gas-producing states, as well as eight associate states and 10 international affiliates (including seven Canadian provinces). Members participate in the Interstate Oil and Gas Compact

68

EIA - Natural Gas Pipeline Network - Regulatory Authorities  

U.S. Energy Information Administration (EIA) Indexed Site

Regulatory Authorities Regulatory Authorities About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Regulatory Authorities Beginning | Regulations Today | Coordinating Agencies | Regulation of Mergers and Acquisitions Beginning of Industry Restructuring In April 1992, the Federal Energy Regulatory Commission (FERC) issued its Order 636 and transformed the interstate natural gas transportation segment of the industry forever. Under it, interstate natural gas pipeline companies were required to restructure their operations by November 1993 and split-off any non-regulated merchant (sales) functions from their regulated transportation functions. This new requirement meant that interstate natural gas pipeline companies were allowed to only transport natural gas for their customers. The restructuring process and subsequent operations have been supervised closely by FERC and have led to extensive changes throughout the interstate natural gas transportation segment which have impacted other segments of the industry as well.

69

Interstate Mining Compact Commission (multi-state) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Interstate Mining Compact Commission (multi-state) Interstate Mining Compact Commission (multi-state) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Systems Integrator Tribal Government Utility Program Info Start Date 1970 State Alabama Program Type Safety and Operational Guidelines Siting and Permitting Provider Interstate Mining Compact Commission The Interstate Mining Compact is a multi-state governmental agency / organization that represents the natural resource and related environmental protection interests of its member states. Currently, 23 states are members to the compact, and 6 additional states are associate members. The compact

70

Failure analysis expert system for onshore pipelines. Part-II: End-User interface and algorithm  

Science Conference Proceedings (OSTI)

In order to develop a Failure Analysis Expert System (FAES), with application for onshore pipeline transporting oil and gas products, the work was split in two parts. Previously failure database and knowledge acquisition method were described in the ... Keywords: Artificial neural network, Expert system, Failure analysis, Knowledge acquisition, Onshore pipelines

V. Castellanos; A. Albiter; P. Hernández; G. Barrera

2011-09-01T23:59:59.000Z

71

EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Development &  

U.S. Energy Information Administration (EIA) Indexed Site

Pipelinesk > Development & Expansion Pipelinesk > Development & Expansion About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Development and Expansion Timing | Determining Market Interest | Expansion Options | Obtaining Approval | Prefiling Process | Approval | Construction | Commissioning Timing and Steps for a New Project An interstate natural gas pipeline construction or expansion project takes an average of about three years from the time it is first announced until the new pipe is placed in service. The project can take longer if it encounters major environmental obstacles or public opposition. A pipeline development or expansion project involves several steps: Determining demand/market interest

72

EIA - Natural Gas Pipeline Network - Region To Region System ...  

U.S. Energy Information Administration (EIA)

Home > Natural Gas > About U.S. Natural Gas Pipelines ... The EIA has determined that the informational map displays here do not raise security ...

73

The geological disasters defense expert system of the massive pipeline network SCADA system based on FNN  

Science Conference Proceedings (OSTI)

The SCADA system plays an important role in monitoring the long distance operation of mass pipeline network, which may experience huge damage due to landslides geological hazards. It is critical to detect the deformation and displacement of rock to forecast ... Keywords: FNN, SCADA system, TDR, expert system, geologic hazard

Xiedong Cao; Cundang Wei; Jie Li; Li Yang; Dan Zhang; Gang Tang

2012-04-01T23:59:59.000Z

74

,"U.S. Intrastate Natural Gas Pipeline Systems"  

U.S. Energy Information Administration (EIA) Indexed Site

Intrastate Natural Gas Pipeline Systems" Intrastate Natural Gas Pipeline Systems" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Intratstate Natural Gas Pipelines By Region",1,"Periodic",2007 ,"Release Date:","application/vnd.ms-excel" ,"Next Release Date:","application/vnd.ms-excel" ,"Source:","Energy Information Administration" ,"Excel File Name:","PipeIntra.xls" ,"Available from Web Page:","http://www.eia.doe.gov/pub/oil_gas/natural_gas/analysis_publications/ngpipeline/intrastate.html" ,"For Help, Contact:","infoctr@eia.doe.gov"

75

Seismic fragility formulations for segmented buried pipeline systems including the impact of differential ground subsidence  

Science Conference Proceedings (OSTI)

Though Differential Ground Subsidence (DGS) impacts the seismic response of segmented buried pipelines augmenting their vulnerability, fragility formulations to estimate repair rates under such condition are not available in the literature. Physical models to estimate pipeline seismic damage considering other cases of permanent ground subsidence (e.g. faulting, tectonic uplift, liquefaction, and landslides) have been extensively reported, not being the case of DGS. The refinement of the study of two important phenomena in Mexico City - the 1985 Michoacan earthquake scenario and the sinking of the city due to ground subsidence - has contributed to the analysis of the interrelation of pipeline damage, ground motion intensity, and DGS; from the analysis of the 48-inch pipeline network of the Mexico City's Water System, fragility formulations for segmented buried pipeline systems for two DGS levels are proposed. The novel parameter PGV{sup 2}/PGA, being PGV peak ground velocity and PGA peak ground acceleration, has been used as seismic parameter in these formulations, since it has shown better correlation to pipeline damage than PGV alone according to previous studies. By comparing the proposed fragilities, it is concluded that a change in the DGS level (from Low-Medium to High) could increase the pipeline repair rates (number of repairs per kilometer) by factors ranging from 1.3 to 2.0; being the higher the seismic intensity the lower the factor.

Pineda Porras, Omar Andrey [Los Alamos National Laboratory; Ordaz, Mario [UNAM, MEXICO CITY

2009-01-01T23:59:59.000Z

76

The challenge of new pipeline systems in Russia and the republics  

Science Conference Proceedings (OSTI)

This paper reports that there will be considerable development of the oil and gas industry in the former USSR in the near future. Concurrent with this development will be the need to repair, upgrade and extend existing pipeline systems to carry more products from an increasingly wider production base. Considerable activity in pipeline construction is envisaged in the near future in Russia and its neighboring states. Western participation will continue to grow and the CIS will become a key market for pipeline service companies and construction contractors in the closing years of the 20th century.

Davies, P. (JP Kenny Group of Companies, London (GB)); Chernyaev, V.D. (Transneft, Moscow (SU))

1992-03-01T23:59:59.000Z

77

Fine grain pipeline systems for real-time motion and stereo-vision computation  

Science Conference Proceedings (OSTI)

Image processing systems require high computational load that motivates the design of specific hardware architectures in order to arrive at real-time platforms. We adopt innovative design techniques based on the intensive utilisation of the inherent ... Keywords: FPGAs, algorithm parallelisation, cognitive vision models, customised architectures, data flow architectures, field programmable gate arrays, fine-grain pipelining, high performance architectures, image processing, on-chip integration, optical flow, pipelined techniques, real-time motion, reconfigurable hardware, stereo vision, superscalar units

Javier Diaz; Eduardo Ros; Alberto Prieto; Francisco J. Pelayo

2007-04-01T23:59:59.000Z

78

Water Quality Criteria for Intrastate, Interstate, and Coastal Water  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Quality Criteria for Intrastate, Interstate, and Coastal Quality Criteria for Intrastate, Interstate, and Coastal Water (Mississippi) Water Quality Criteria for Intrastate, Interstate, and Coastal Water (Mississippi) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Mississippi Program Type Environmental Regulations

79

EIA - Natural Gas Pipeline Network - Combined Natural Gas Transportation  

U.S. Energy Information Administration (EIA) Indexed Site

Combined Natural Gas Transportation Maps Combined Natural Gas Transportation Maps About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Pipeline Network Map of U.S. Natural Gas Pipeline Network Major Natural Gas Supply Basins Relative to Natural Gas Pipeline Transportation Corridors Map of Major Natural Gas Supply Basins Relative to Natural Gas Pipeline Transportation Corridors see related text enlarge see related text enlarge U.S. Regional Breakdown Map of U.S. Regional Breakout States (in Grey) Highly Dependent on Interstate Pipelines for Natural Gas Supplies Map of States (in Grey) Highly Dependent on Interstate Pipelines for Natural Gas Supplies

80

PGPG: An Automatic Generator of Pipeline Design for Programmable GRAPE Systems  

E-Print Network (OSTI)

We have developed PGPG (Pipeline Generator for Programmable GRAPE), a software which generates the low-level design of the pipeline processor and communication software for FPGA-based computing engines (FBCEs). An FBCE typically consists of one or multiple FPGA (Field-Programmable Gate Array) chips and local memory. Here, the term "Field-Programmable" means that one can rewrite the logic implemented to the chip after the hardware is completed, and therefore a single FBCE can be used for calculation of various functions, for example pipeline processors for gravity, SPH interaction, or image processing. The main problem with FBCEs is that the user need to develop the detailed hardware design for the processor to be implemented to FPGA chips. In addition, she or he has to write the control logic for the processor, communication and data conversion library on the host processor, and application program which uses the developed processor. These require detailed knowledge of hardware design, a hardware description language such as VHDL, the operating system and the application, and amount of human work is huge. A relatively simple design would require 1 person-year or more. The PGPG software generates all necessary design descriptions, except for the application software itself, from a high-level design description of the pipeline processor in the PGPG language. The PGPG language is a simple language, specialized to the description of pipeline processors. Thus, the design of pipeline processor in PGPG language is much easier than the traditional design. For real applications such as the pipeline for gravitational interaction, the pipeline processor generated by PGPG achieved the performance similar to that of hand-written code. In this paper we present a detailed description of PGPG version 1.0.

Tsuyoshi Hamada; Toshiyuki Fukushige; Junichiro Makino

2007-03-08T23:59:59.000Z

Note: This page contains sample records for the topic "interstate pipeline systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

DEVELOPMENT OF DEPOSIT DETECTION SYSTEM IN PIPELINES OF THE STEELWORKS USING CS-137 GAMMA-RAY  

SciTech Connect

The deposit is built up in the pipeline of the steelworks by the chemical reaction among COG (coke oven gas), BFG (blast furnace gas), moisture, and steel in the high temperature environment and obstructs the smooth gas flow. In this study a gamma-ray system is developed to detect the deposit accumulated in pipelines and calculate the accumulation rate with respect to the cross section area of pipes. Cs-137 is used as the gamma-ray source and the system is designed to apply to pipes of various diameters. This system also includes the DB for storage and display of the measurement results so that it can be used for the efficient management of the pipelines.

Song, Won-Joon; Lee, Seung-Hee; Jeong, Hee-Dong [Research Institute of Industrial Science and Technology, 32 Hyoja-Dong, Nam-Ku, Pohang, 790-330 (Korea, Republic of)

2008-02-28T23:59:59.000Z

82

Clean Air Interstate Rule (CAIR) Budget Permits (Michigan) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Air Interstate Rule (CAIR) Budget Permits (Michigan) Clean Air Interstate Rule (CAIR) Budget Permits (Michigan) Clean Air Interstate Rule (CAIR) Budget Permits (Michigan) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Michigan Program Type Siting and Permitting Michigan implements the federal requirements of the Clean Air Interstate Rule (CAIR) through state regulations. Michigan's Rule 821 requires subject sources to obtain and operate in compliance with a CAIR Annual NOx Budget

83

Components in the Pipeline  

Science Conference Proceedings (OSTI)

Scientists commonly describe their data processing systems metaphorically as software pipelines. These pipelines input one or more data sources and apply a sequence of processing steps to transform the data and create useful results. While conceptually simple, pipelines often adopt complex topologies and must meet stringent quality of service requirements that place stress on the software infrastructure used to construct the pipeline. In this paper we describe the MeDICi Integration Framework, which is a component-based framework for constructing complex software pipelines. The framework supports composing pipelines from distributed heterogeneous software components and provides mechanisms for controlling qualities of service to meet demanding performance, reliability and communication requirements.

Gorton, Ian; Wynne, Adam S.; Liu, Yan (Jenny); Yin, Jian

2011-02-24T23:59:59.000Z

84

Operational Challenges in Gas-To-Liquid (GTL) Transportation Through Trans Alaska Pipeline System (TAPS)  

Science Conference Proceedings (OSTI)

Oil production from Alaskan North Slope oil fields has steadily declined. In the near future, ANS crude oil production will decline to such a level (200,000 to 400,000 bbl/day) that maintaining economic operation of the Trans-Alaska Pipeline System (TAPS) will require pumping alternative products through the system. Heavy oil deposits in the West Sak and Ugnu formations are a potential resource, although transporting these products involves addressing important sedimentation issues. One possibility is the use of Gas-to-Liquid (GTL) technology. Estimated recoverable gas reserves of 38 trillion cubic feet (TCF) on the North Slope of Alaska can be converted to liquid with GTL technology and combined with the heavy oils for a product suitable for pipeline transport. Issues that could affect transport of this such products through TAPS include pumpability of GTL and crude oil blends, cold restart of the pipeline following a prolonged winter shutdown, and solids deposition inside the pipeline. This study examined several key fluid properties of GTL, crude oil and four selected blends under TAPS operating conditions. Key measurements included Reid Vapor Pressure, density and viscosity, PVT properties, and solids deposition. Results showed that gel strength is not a significant factor for the ratios of GTL-crude oil blend mixtures (1:1; 1:2; 1:3; 1:4) tested under TAPS cold re-start conditions at temperatures above - 20 F, although Bingham fluid flow characteristics exhibited by the blends at low temperatures indicate high pumping power requirements following prolonged shutdown. Solids deposition is a major concern for all studied blends. For the commingled flow profile studied, decreased throughput can result in increased and more rapid solid deposition along the pipe wall, resulting in more frequent pigging of the pipeline or, if left unchecked, pipeline corrosion.

Godwin A. Chukwu; Santanu Khataniar; Shirish Patil; Abhijit Dandekar

2006-06-30T23:59:59.000Z

85

Integrated system for coal-methanol liquefaction and slurry pipeline transportation. Final report. [In slurry transport  

DOE Green Energy (OSTI)

The engineering economics of an integrated coal-to-methanol conversion system and coal-in-methanol transportation system are examined, under the circumstances of the western coalfields, i.e., long distances from major markets and scarcity of water in the vicinity of the mines. The transportation economics are attractive, indicating tariffs of approximately 40 cents per million Btu per thousand miles for the coal-methanol pipeline vs 60 cents via coal-water pipelines and upwards of a dollar via rail. Energy consumption is also less in the coal-methanol pipeline than in the coal-water pipeline, and about equal to rail. It is also concluded that, by a proper marriage of the synthetic fuel (methanolization) plant to the slurrification plant, most, and in some cases all, of the water required by the synthetic fuel process can be supplied by the natural moisture of the coal itself. Thus, the only technology which presently exists and by which synthetic fuel from western coal can displace petroleum in the automotive fuel market is the integrated methanol conversion and tranportation system. The key element is the ability of the methanol slurry pipeline to accept and to deliver dry (1 to 5% moisture) coal, allowing the natural coal moisture to be used as synthesis feedstock in satisfaction of the large water requirement of any synthetic fuel plant. By virtue of these unique properties, this integrated system is seen as the only means in the foreseeable future whereby western coal can be converted to synthetic fuel and moved to distant markets.

Banks, W.F.; Davidson, J.K.; Horton, J.H.; Summers, C.W.

1980-03-31T23:59:59.000Z

86

EIA - Natural Gas Pipeline Network - Pipeline Capacity and Utilization  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline Utilization & Capacity Pipeline Utilization & Capacity About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Capacity & Utilization Overview | Utilization Rates | Integration of Storage | Varying Rates of Utilization | Measures of Utilization Overview of Pipeline Utilization Natural gas pipeline companies prefer to operate their systems as close to full capacity as possible to maximize their revenues. However, the average utilization rate (flow relative to design capacity) of a natural gas pipeline system seldom reaches 100%. Factors that contribute to outages include: Scheduled or unscheduled maintenance Temporary decreases in market demand Weather-related limitations to operations

87

Assessment of the Adequacy of Natural Gas Pipeline Capacity in the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 In 2005-06, the Office of Electricity Delivery and Energy Reliability (OE) conducted a study on the adequacy of interstate natural gas pipeline capacity serving the northeastern United States to meet natural gas demand in the event of a pipeline disruption. The study modeled gas demand for select market areas in the Northeast under a range of different weather conditions. The study then determined how interstate pipeline flow patterns could change in the event of a pipeline disruption to one or more of the pipelines serving the region in order to meet the gas demand. The results

88

A Methodology to Assess the Reliability of Hydrogen-based Transportation Energy Systems  

E-Print Network (OSTI)

on the Interstate Natural Gas Pipeline System. U.S. DOE,May. EIA (2001a) U.S. Natural Gas Markets: Recent Trends andD.C. , May. EIA (2001b) U.S. Natural Gas Markets: Mid-Term

McCarthy, Ryan

2004-01-01T23:59:59.000Z

89

A Novel MagPipe Pipeline transportation system using linear motor drives  

Science Conference Proceedings (OSTI)

A novel capsule pipeline transportation system using linear motor drives, called Magplane MagPipe, is under development with the intention to replace trucks and railways for hauling materials from the mine to the rail head, power plant, or processing plant with reduced operating cost and energy consumption. The initial demonstration of a MagPipe line in Inner Mongolia will be a 500-m-long double-pipe coal transport system with the design transportation capacity of 3 Mega-Mg per year. The pipeline consists of 6-m-long plastic pipe modules with an I-beam suspension system inside the pipe to carry sets of five coupled capsules. The pipe will also contain noncontinuous motor winding modules spaced at 50-m intervals. A set of Halbach-arrayed permanent magnets on the bottom of the capsules interact with the linear motor windings to provide propulsion. The motor is driven by variable frequency drives outside the pipe to control the speed. This paper briefly describes the overall MagPipe pipeline transportation system, including the preliminary conclusions of the linear synchronous motor analysis.

Fang, J.R.; Montgomery, D.B.; Roderick, L. [Magplane Technology Inc., Littleton, MA (United States)

2009-11-15T23:59:59.000Z

90

An energy-efficient differential flip-flop for deeply pipelined systems  

E-Print Network (OSTI)

Abstract — Deeply pipelined systems require flip-flops with low latency and power consumption. Often, the flip-flop must supply both inverted and non-inverted signals to subsequent logic. Generating both outputs at the same time improves performance by equalizing the worst-case delays. In this paper, we present a novel differential flip-flop for deeply pipelined systems. The circuit uses cross-coupled p-transistors as pull-up devices to achieve high energy efficiency. We simulated the design in 90-nm CMOS technology to determine the delay and power consumption. We then repeated the analysis with four other differential flip-flops that produce symmetric outputs. The proposed design achieves the best power-delay product of the five alternatives. I.

Mitchell J. Myjak; José G. Delgado-frias; Seon Kwang Jeon

2006-01-01T23:59:59.000Z

91

Alliant Energy Interstate Power and Light - Business and Farm Renewable  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliant Energy Interstate Power and Light - Business and Farm Alliant Energy Interstate Power and Light - Business and Farm Renewable Energy Rebates Alliant Energy Interstate Power and Light - Business and Farm Renewable Energy Rebates < Back Eligibility Agricultural Commercial Industrial Savings Category Bioenergy Solar Buying & Making Electricity Wind Maximum Rebate Energy Efficient Wind: $35,000 Standard Wind: $30,000 Energy Efficient PV: $25,000 Standard PV: $20,000 Biomass: $500,000 Anaerobic Digester: $200,000 Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Energy Efficient Wind: $0.75/kWh Standard Wind: $0.25/kWh Energy Efficient PV: $1/kWh Standard PV: $0.50/kWh Biomass: 50% of system cost Anaerobic Digester: 50% of system cost Provider Alliant Energy The Alliant Energy Renewable Cash-Back Rewards program offers rebates for

92

Coordinating Interstate ElectricTransmission Siting: An Introduction to the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coordinating Interstate ElectricTransmission Siting: An Coordinating Interstate ElectricTransmission Siting: An Introduction to the Debate Coordinating Interstate ElectricTransmission Siting: An Introduction to the Debate In recent years, experts have started drawing att ention to the need to improve the system that transmits electricity from power plants to demand centers. Congestion on existing lines, increased energy demand that suggests a need for new electric transmission and the challenge of connecting renewable energy sources to load centers highlight some needs that could be underserved by the existing system in the near future. While improved demand-side management (including energy effi ciency and demand response), bett er utilization of the existing transmission grid, and other strategies (such as distributed

93

Pipelined Regeneration with Regenerating Codes for Distributed Storage Systems  

E-Print Network (OSTI)

Description of the Domain Apprentice Tasks Capabi Ii ties of the Demonstration System D i a log Speci fic as an expert consul- tant to a human apprentice. Together, the system and the apprentice will be engaged system will gi ve the human apprentice advice about how to diagnose equipment faults , how to repair them

Li, Baochun

94

Interstate Mining Compact (Maryland) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Interstate Mining Compact (Maryland) Interstate Mining Compact (Maryland) < Back Eligibility Commercial Developer Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Maryland Program Type Environmental Regulations Provider Interstate Mining Compact Commission This legislation authorizes the state's entrance into the Interstate Mining Compact, a multi-state governmental agency / organization that represents the natural resource and related environmental protection interests of its member states. Currently, 23 states are members to the compact, and 6 additional states are associate members. The compact is administered by the Interstate Mining Compact Commission, which does not possess regulatory

95

Pipeline Safety  

Science Conference Proceedings (OSTI)

Pipeline Safety. Summary: Our goal is to provide standard test methods and critical data to the pipeline industry to improve safety and reliability. ...

2012-11-13T23:59:59.000Z

96

Emerging Issues for Interstate Transportation Market  

U.S. Energy Information Administration (EIA)

Emerging Issues for Interstate Transportation Market. ... How, when or will the pricing structure change from cost of service rates to market based rates?

97

Southeast Interstate Low-Level Radioactive Waste Management Compact...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southeast Interstate Low-Level Radioactive Waste Management Compact (multi-state) Southeast Interstate Low-Level Radioactive Waste Management Compact (multi-state) Eligibility...

98

Northwest Interstate Compact on Low-Level Radioactive Waste Management...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northwest Interstate Compact on Low-Level Radioactive Waste Management (Multiple States) Northwest Interstate Compact on Low-Level Radioactive Waste Management (Multiple States)...

99

Atlantic Interstate Low-Level Radioactive Waste Management Compact...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Atlantic Interstate Low-Level Radioactive Waste Management Compact (South Carolina) Atlantic Interstate Low-Level Radioactive Waste Management Compact (South Carolina) Eligibility...

100

EAC Recommendations for DOE Action Regarding the CSG Interstate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the CSG Interstate Transmission Siting Compact - June 6, 2013 EAC Recommendations for DOE Action Regarding the CSG Interstate Transmission Siting Compact - June 6, 2013 EAC...

Note: This page contains sample records for the topic "interstate pipeline systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Alliant Energy Interstate Power and Light (Electric) - Business...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Savings Alliant Energy Interstate Power and Light (Electric) - Business Energy Efficiency Rebate Programs Alliant Energy Interstate Power and...

102

HANFORD SITE LOW EXPOSURE PIPELINE REPAIR USING A NON-METALLIC COMPOSITE SYSTEM  

Science Conference Proceedings (OSTI)

At the Department of Energy, Richland Operations (DOE-RL) Hanford site in eastern Washington, a 350 mm (14 inch) diameter high density polyethylene (HDPE) pump recirculation pipeline failed at a bonded joint adjacent to a radiologically and chemically contaminated groundwater storage basin. The responsible DOE-RL contractor, CH2MHill Plateau Remediation Company, applied a fiberglass reinforced plastic (composite) field repair system to the failed joint. The system was devised specifically for the HDPE pipe repair at the Hanford site, and had not been used on this type of plastic piping previously. This paper introduces the pipe failure scenario, describes the options considered for repair and discusses the ultimate resolution of the problem. The failed pipeline was successfully returned to service with minimal impact on waste water treatment plant operating capacity. Additionally, radiological and chemical exposures to facility personnel were maintained as low as reasonably achievable (ALARA). The repair is considered a success for the near term, and future monitoring will prove whether the repair can be considered for long term service and as a viable alternative for similar piping failures at the Hanford site.

HUTH RJ

2009-11-12T23:59:59.000Z

103

Pipeline Morphing and Virtual Pipelines  

E-Print Network (OSTI)

Pipeline morphing is a simple but effectivetechnique for reconfiguring pipelined FPGA designs at run time. By overlapping computation and reconfiguration, the latency associated with emptying and refilling a pipeline can be avoided. Weshowhow morphing can be applied to linear and mesh pipelines at both word-level and bit-level, and explain how this method can be implemented using Xilinx 6200 FPGAs. We also present an approach using morphing to map a large virtual pipeline onto a small physical pipeline, and the trade-offs involved are discussed.

W. Luk; N. Shirazi; S. R. Guo; P. Y. K. Cheung

1997-01-01T23:59:59.000Z

104

IMPROVEMENT TO PIPELINE COMPRESSOR ENGINE RELIABILITY THROUGH RETROFIT MICRO-PILOT IGNITION SYSTEM -- PHASE III  

Science Conference Proceedings (OSTI)

This report documents the third year's effort towards a 3-year program conducted by the Engines & Energy Conversion Laboratory (EECL) at Colorado State University (CSU) to develop micropilot ignition systems for existing pipeline compressor engines. Research activities for the overall program were conducted with the understanding that the efforts are to result in a commercial product to capture and disseminate the efficiency and environmental benefits of this new technology. Commercially-available fuel injection products were identified and applied to the program where appropriate. This approach will minimize the overall time-to-market requirements, while meeting performance and cost criteria. Two earlier phases of development precede this report. The objective for Phase I was to demonstrate the feasibility of retrofit micropilot ignition (RMI) systems for large bore, slow speed engines operating at low compression ratios under laboratory conditions at the EECL. The objective for Phase II was to further develop and optimize the micropilot ignition system at the EECL for large bore, slow speed engines operating at low compression ratios. These laboratory results were enhanced, then verified via a field demonstration project during Phase III of the Micropilot Ignition program. An Implementation Team of qualified engine retrofit service providers was assembled to install the retrofit micropilot ignition system for an engine operated by El Paso Pipeline Group at a compressor station near Window Rock, Arizona. Testing of this demonstration unit showed that the same benefits identified by laboratory testing at CSU, i.e., reduced fuel consumption and exhaust emissions (NOx, THC, CO, and CH2O). Installation efforts at Window Rock were completed towards the end of the budget period, which did not leave sufficient time to complete the durability testing. These efforts are ongoing, with funding provided by El Paso Pipeline Group, and the results will be documented in a report. Commercialization of the retrofit micropilot ignition (RMI) technology is awaiting a ''market pull'', which is expected to materialize as the results of the field demonstration become known and accepted. The Implementation Team, comprised of Woodward Governor Company, Enginuity LLC, Hoerbiger Corporation of America, and DigiCon Inc., has direct experience with the technology development and implementation, and stands ready to promote and commercialize the RMI system.

Scott Chase; Daniel Olsen; Ted Bestor

2005-03-01T23:59:59.000Z

105

Detecting internal corrosion of natural gas transmission pipelines: field tests of probes and systems for real-time corrosion measurement  

Science Conference Proceedings (OSTI)

A field study was conducted to evaluate the use of automated, multi-technique electrochemical corrosion-rate monitoring devices and probes for detecting corrosion in environments similar to those found in natural gas transmission pipelines. It involved measurement of real-time corrosion signals from operating pipelines. Results and interpretation were reported from four different field test locations. Standard flush-mount and custom flange probes were used in four different environments at a gas-gathering site and one environment but two different probe orientations at a natural gas site. These sites were selected to represent normal and upset conditions common in gas transmission pipelines. The environments consisted of two different levels of humidified natural gas, liquid hydrocarbon, and water from natural gas. Probe locations included the 6 and 12 o?clock positions of a natural gas pipeline carrying 2-phase gas/liquid flow. The probe data was monitored using completely remote solar powered systems that provided real-time data transmission via wireless back to a pipeline control station. Data are also presented comparing the ECR probe data to that for coupons used to determine corrosion rate and to detect the presence of microbiologically influenced corrosion (MIC).

Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Holcomb, Gordon R.; Ziomek-Moroz, M.; Kane, R.D. (InterCorr International); Meidinger, B. (Rocky Mountain Oilfield Testing Center)

2005-01-01T23:59:59.000Z

106

Activities to Secure Control Systems in the Energy Sector  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

sector sector NSTB November 2008 Hank Kenchington - Program Manager Office of Electricity of Delivery and Energy Reliability U.S. Department of Energy Activities to Secure Control Systems in the Energy Sector * 2,000,000 Miles of Oil Pipelines * 1,300,000 Miles of Gas Pipelines * 2,000 Petroleum Terminals * ~1,000,000 Wells * Extensive Ports, Refineries, Transportation, and LNG Facilities * 160,000 Miles of Electrical Transmission lines * ~17,000 Generators; 985,000 Megawatts (net summer capacity) * Over 3,100 Electric Utilities, with 131 million customers Refinery Locations, Crude and Product Pipelines Source: Energy Information Administration, Office of Oil & Gas LNG Import Facilities (Reactivation underway) Legend Interstate Pipelines Intrastate and Other Pipelines

107

Pipeline Access and Market Integration in the Natural Gas Industry: Evidence from Cointegration Tests  

E-Print Network (OSTI)

System for Natural Gas Pipelines." Study prepared underin the Natural Gas Pipeline Industry. Ph.D. dissertation,the remaining barfers to pipeline integration. REFERENCES

De Vany, Arthur; Walls, W. David

1993-01-01T23:59:59.000Z

108

Coal log fuel pipeline transportation system: Invention and innovations project fact sheet  

DOE Green Energy (OSTI)

This is a fact sheet written for the Inventions and Innovation Program about a new way to compact and deliver coal and other materials through pipelines.

NREL

1999-12-14T23:59:59.000Z

109

Pipeline Safety Program he Oak Ridge National  

E-Print Network (OSTI)

miles of natural gas and hazardous liquid pipelines. To assist PHMSA accomplish this mission, ORNL Analysis Transportation Decision Support Systems Transportation Network Routing Models Natural gas pipeline operators in accordance with the following Federal pipeline safety regulations 49 CFR 192 - Gas Pipelines

110

Upgrading drained coal mine methane to pipeline quality: a report on the commercial status of system suppliers  

Science Conference Proceedings (OSTI)

In today's scenario of growing energy demand worldwide and rising natural gas prices, any methane emitted into the atmosphere is an untapped resource of energy and potentially a lost opportunity for additional revenue. In 2005, 9.7% of the total US anthropogenic emissions of methane were attributed to coal production. In recent years, many gassy coal mines have seized the opportunity to recover coal mine methane (CMM) and supply it to natural gas pipeline systems. With natural gas prices in the US exceeding $7.00 per million Btu, CMM pipeline sales brought in an annual revenue topping $97 million in 2005. However, significant opportunity still exists for tapping into this resource as 22% of the drained CMM remains unutilized as of 2005, primarily because its quality does not meet the requirements of natural gas pipeline systems. Recent advances in technologies now offer off-the-shelf options in the US that can upgrade the drained CMM to pipeline quality. These gas upgrading technologies are not only opening up the market to lower-quality methane resources but also providing significant means for reducing emissions, since methane is over 20 times a more potent greenhouse gas than carbon dioxide. This report reviews current gas upgrading technologies available in the market for removal of typical CMM contaminants, provides examples of their successful commercial implementation and compiles a list of vendors specific to nitrogen rejection systems, since nitrogen exposes the biggest challenge to upgrading CMM. 2 figs., 3 tabs., 9 apps.

Carothers, F.P.; Schultz, M.L.

2008-01-15T23:59:59.000Z

111

Status of Natural Gas Pipeline System Capacity Entering the 2000-2001 Heating Season  

Reports and Publications (EIA)

This special report looks at the capabilities of the national natural gas pipeline network in 2000 and provides an assessment of the current levels of available capacity to transport supplies from production areas to markets throughout the United States during the upcoming heating season. It also examines how completion of currently planned expansion projects and proposed new pipelines would affect the network.

Information Center

2000-10-01T23:59:59.000Z

112

Hydrogen Pipeline Discussion  

NLE Websites -- All DOE Office Websites (Extended Search)

praxair.com praxair.com Copyright © 2003, Praxair Technology, Inc. All rights reserved. Hydrogen Pipeline Discussion BY Robert Zawierucha, Kang Xu and Gary Koeppel PRAXAIR TECHNOLOGY CENTER TONAWANDA, NEW YORK DOE Hydrogen Pipeline Workshop Augusta, GA August 2005 2 Introduction Regulatory and technical groups that impact hydrogen and hydrogen systems ASME, DOE, DOT etc, Compressed Gas Association activities ASTM TG G1.06.08 Hydrogen pipelines and CGA-5.6 Selected experience and guidance Summary and recommendations 3 CGA Publications Pertinent to Hydrogen G-5: Hydrogen G-5.3: Commodity Specification for Hydrogen G-5.4: Standard for Hydrogen Piping at Consumer Locations G-5.5: Hydrogen Vent Systems G-5.6: Hydrogen Pipeline Systems (IGC Doc 121/04/E) G-5.7: Carbon Monoxide and Syngas

113

ORNL Genome Analysis Pipeline - Eukaryotic  

NLE Websites -- All DOE Office Websites (Extended Search)

Grail (Microbial Gene Prediction System Internet Link) GrailEXP Genome Analysis Pipeline DomainParser PROSPECT (PROtein Structure Prediction and Evaluation Computer...

114

GAS PIPELINE PIGABILITY  

Science Conference Proceedings (OSTI)

In-line inspection equipment is commonly used to examine a large portion of the long distance transmission pipeline system that transports natural gas from well gathering points to local distribution companies. A piece of equipment that is inserted into a pipeline and driven by product flow is called a ''pig''. Using this term as a base, a set of terms has evolved. Pigs that are equipped with sensors and data recording devices are called ''intelligent pigs''. Pipelines that cannot be inspected using intelligent pigs are deemed ''unpigable''. But many factors affect the passage of a pig through a pipeline, or the ''pigability''. The pigability pipeline extend well beyond the basic need for a long round hole with a means to enter and exit. An accurate assessment of pigability includes consideration of pipeline length, attributes, pressure, flow rate, deformation, cleanliness, and other factors as well as the availability of inspection technology. All factors must be considered when assessing the appropriateness of ILI to assess specific pipeline threats.

Ted Clark; Bruce Nestleroth

2004-04-01T23:59:59.000Z

115

DOE Hydrogen Pipeline Working Group Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Pipeline Pipeline Working Group Workshop August 31, 2005 Augusta, Georgia Hydrogen Pipeline Experience Presented By: LeRoy H. Remp Lead Project Manager Pipeline Projects ppt00 3 Hydrogen Pipeline - Scope of Presentation Only those systems that are regulated by DOT in the US, DOT delegated state agency, or other federal regulatory authority. Cross property of third party and/or public properties for delivery to customers. Does not include in-plant or in-house hydrogen piping. Does not include piping (aboveground or underground) that delivers to a customer if all property is owned and controlled by Air Products and the customer. ppt00 4 Pipeline Photos ppt00 5 Pipeline Photos ppt00 6 Pipeline Photos ppt00 7 Pipeline Photos ppt00 8 Pipeline Photos ppt00 9 Overview of North American

116

Synchronous interlocked pipelines  

E-Print Network (OSTI)

In a circuit environment that is becoming increasingly sensitive to dynamic power dissipation and noise, and where cycle time available for control decisions continues to decrease, locality principles are becoming paramount in controlling advancement of data through pipelined systems. Achieving fine grained power down and progressive pipeline stalls at the local stage level is therefore becoming increasingly important to enable lower dynamic power consumption while keeping introduced switching noise under control as well as avoiding global distribution of timing critical stall signals. It has long been known that the interlocking properties of asynchronous pipelined systems have a potential to provide such benefits. However, it has not been understood how such interlocking can be achieved in synchronous pipelines. This paper

Hans M. Jacobson; Prabhakar N. Kudva; Pradip Bose; Peter W. Cook; Stanley E. Schuster

2002-01-01T23:59:59.000Z

117

Laboratory Evaluation of an Electrochemical Noise System for Detection of Localized and General Corrosion of Natural Gas Transmission Pipelines  

SciTech Connect

Gas transmission pipelines are susceptible to both internal (gas side) and external (soil side) corrosion attack. Internal corrosion is caused by the presence of salt laden moisture, CO{sub 2}, H{sub 2}S, and perhaps O{sub 2} in the natural gas. Internal corrosion usually manifests itself as general corrosion. However, the presence of chlorides in entrained water also can lead to pitting corrosion damage. The electrochemical noise technique can differentiate general from localized corrosion and provide estimates of corrosion rates without external perturbation of the corroding system. It is increasingly being applied to field and industrial installations for in situ corrosion monitoring. It has been used here to determine its suitability for monitoring internal and external corrosion damage on gas transmission pipelines. Corrosion measurements were made in three types of environments: (1) aqueous solutions typical of those found within gas pipelines in equilibrium with th e corrosive components of natural gas; (2) biologically-active soils typical of wetlands; and (3) a simulated, unpressurized, internal gas/liquid gas pipeline environment. Multiple sensor designs were evaluated in the simulated pipe environment. Gravimetric measurements were conducted in parallel with the electrochemical noise measurements to validate the results.

Bullard, S.J.; Covino, B.S., Jr.; Russell, J.H.; Holcomb, G.R.; Cramer, S.D.; Ziomek-Moroz, M.; Eden, D.

2003-03-16T23:59:59.000Z

118

Synchronous Interlocked Pipelines  

E-Print Network (OSTI)

In a circuit environment that is becoming increasingly sensitive to dynamic power dissipation and noise, and where cycle time available for control decisions continues to decrease, locality principles are becoming paramount in controlling advancement of data through pipelined systems. Achieving fine grained power down and progressive pipeline stalls at the local stage level is therefore becoming increasingly important to enable lower dynamic power consumption while keeping introduced switching noise under control as well as avoiding global distribution of timing critical stall signals.

Hans Jacobson Prabhakar; Hans M. Jacobson; Prabhakar N. Kudva; Pradip Bose; Peter W. Cook; Stanley E. Schuster; Eric G. Mercer; Chris J. Myers

2001-01-01T23:59:59.000Z

119

An Integration and Analysis Pipeline for Systems Biology in Crop Plant Metabolism  

Science Conference Proceedings (OSTI)

To advance the comprehension of complex biological processes occurring in crop plants (e.g. for improvement of growth or yield) it is of high interest to reconstruct and analyse detailed metabolic models. Therefore, we established a pipeline combining ...

Stephan Weise; Christian Colmsee; Eva Grafahrend-Belau; Björn Junker; Christian Klukas; Matthias Lange; Uwe Scholz; Falk Schreiber

2009-07-01T23:59:59.000Z

120

Natural Gas Pipeline Research: Best Practices in Monitoring Technology  

E-Print Network (OSTI)

Natural Gas Pipeline Research: Best Practices in Monitoring Technology Energy Systems Research pipelines from outofstate supply basins located in the southwestern United States, the Rocky Mountains, and Canada. These pipelines run throughout the state, including underneath high population areas

Note: This page contains sample records for the topic "interstate pipeline systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

The systems edge of the Parameterized Linear Array with a Reconfigurable Pipelined Bus System (LARPBS(p)) optical bus parallel computing model  

Science Conference Proceedings (OSTI)

This paper is about exploring the various systems related aspects pertinent in the recent Parameterized Linear Array with a Reconfigurable Pipelined Bus System (LARPBS(p)) model. The two principal features of the LARPBS(p) model is, firstly, its bridging ... Keywords: Optical bus, Parallel computing model

Brian J. D'Auriol

2009-05-01T23:59:59.000Z

122

IMPROVEMENT TO PIPELINE COMPRESSOR ENGINE RELIABILITY THROUGH RETROFIT MICRO-PILOT IGNITION SYSTEM  

Science Conference Proceedings (OSTI)

This report documents a 3-year research program conducted by the Engines & Energy Conversion Laboratory (EECL) at Colorado State University (CSU) to develop micropilot ignition systems for existing pipeline compressor engines. Research activities for the overall program were conducted with the understanding that the efforts are to result in a commercial product to capture and disseminate the efficiency and environmental benefits of this new technology. An extensive state-of-art review was conducted to leverage the existing body of knowledge of micropilot ignition with respect to retrofit applications. Additionally, commercially-available fuel injection products were identified and applied to the program where appropriate. This approach will minimize the overall time-to-market requirements, while meeting performance and cost criteria. The objective for Phase I was to demonstrate the feasibility of micropilot ignition for large bore, slow speed engines operating at low compression ratios under laboratory conditions at the EECL. The primary elements of Micropilot Phase I were to develop a single-cylinder test chamber to study the injection of pilot fuel into a combustion cylinder and to develop, install and test a multi-cylinder micropilot ignition system for a 4-cylinder, natural gas test engine. In all, there were twelve (12) tasks defined and executed to support these two (2) primarily elements in a stepwise fashion. Task-specific approaches and results are documented in this report. The four-cylinder prototype data was encouraging for the micro-pilot ignition technology when compared to spark ignition. The objective for Phase II was to further develop and optimize the micropilot ignition system at the EECL for large bore, slow speed engines operating at low compression ratios. The primary elements of Micropilot Phase II were to evaluate the results for the 4-cylinder system prototype developed for Phase I, then optimize this system and prepare the technology for the field demonstration phase in Year 3. In all, there were twelve (12) tasks defined and executed to support objectives in a stepwise fashion. The optimized four-cylinder system data demonstrated significant progress compared to Phase I results, as well as traditional spark ignition systems. These laboratory results were enhanced, then verified via a field demonstration project during Phase III of the Micropilot Ignition program. An Implementation Team of qualified engine retrofit service providers was assembled to install the retrofit micropilot ignition system on an engine operated by El Paso Pipeline Group at a compressor station near Window Rock, Arizona. Testing of this demonstration unit showed that the same benefits identified by laboratory testing at CSU, i.e., reduced fuel consumption and exhaust emissions (NOx, THC, CO, and CH2O). Commercialization of the retrofit micropilot ignition technology is awaiting a ''market pull'', which is expected to materialize as the results of the field demonstration become known and accepted. The Implementation Team, comprised of Woodward Governor Company, Enginuity LLC, Hoerbiger Corporation of America, and DigiCon Inc., has direct experience with the technology development and implementation, and stands ready to promote and commercialize the retrofit micropilot ignition system.

Scott Chase; Daniel Olsen; Ted Bestor

2005-05-01T23:59:59.000Z

123

Pipelines (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pipelines (Minnesota) Pipelines (Minnesota) Pipelines (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Minnesota Program Type Siting and Permitting This section regulates pipelines that are used to carry natural or synthetic gas at a pressure of more than 90 pounds per square inch, along with pipelines used to carry petroleum products and coal. Special rules apply to pipelines used to carry natural gas at a pressure of more than 125

124

Pipeline ADC Design Methodology  

E-Print Network (OSTI)

Scaling vs. R. Figure 4.8 Pipeline ADC Structures. Figure2.4 A Pipelined ADC. Figure 3.1 Pipeline ADC Transfer Curve.Modes (b) data latency in pipeline ADC Figure 3.3 Detailed

Zhao, Hui

2012-01-01T23:59:59.000Z

125

RISK BASED MAINTENANCE OF A CROSS-COUNTRY PETROLEUM PIPELINE SYSTEM  

E-Print Network (OSTI)

: PHAST FX, RISKAT, WHAZAN, and SAFETI, etc. (Dziubinski et al. 2006; Mannan 2005). Total Risk The risk PHAST FX 6.5.1 software. The values obtained range from 1E-05 to 1E-09 per year for the entire pipeline

van Gelder, Pieter

126

NIST MSQC Pipeline  

Science Conference Proceedings (OSTI)

NIST MSQC Pipeline. Software for Monitoring LC-MS Performance. ... Installation Instructions. 1. Download the latest NIST MSQC Pipeline release. ...

2013-07-17T23:59:59.000Z

127

PIPENETa wireless sensor network for pipeline monitoring  

Science Conference Proceedings (OSTI)

US water utilities are faced with mounting operational and maintenance costs as a result of aging pipeline infrastructures. Leaks and ruptures in water supply pipelines and blockages and overflow events in sewer collectors cost millions of dollars a ... Keywords: Intel mote platforms, pipeline monitoring, water supply systems, wireless sensor networks

Ivan Stoianov; Lama Nachman; Sam Madden; Timur Tokmouline

2007-04-01T23:59:59.000Z

128

Report of the Committee on Oil Pipeline Regulation  

SciTech Connect

As described in this report, the past year has seen several significant developments in the field of oil pipeline regulation. Foremost among those developments was the passage of the Energy Policy Act of 1992 which, among other things, requires substantial reforms in the way that the Federal Energy Regulatory Commission (FERC) regulates oil pipelines. Other 1992 legislative developments include the amendment and reauthorization of the Hazardous Liquid Pipeline Safety Act of 1979 (HLPSA). The amendments, implemented pursuant to the Pipeline Safety Act of 1992, impose additional pipeline inspection and reporting duties upon the Department of Transportation (DOT). On the administrative front, the FERC issued its Policy Statement on Incentive Regulation, which establishes an alternative to the traditional cost of service approach to setting rates for oil pipelines, as well as for natural gas pipelines and electric utilities that have market power. Finally, in two cases, Bonito Pipe Line Co. and Oxy Interstate Commerce Act (ICA) over oil pipelines operating on the outer Continental Shelf (OCS).

Not Available

1993-01-01T23:59:59.000Z

129

EIA - AEO2010 - Clean Air Interstate Rule: Changes and modeling in AEO2010  

Gasoline and Diesel Fuel Update (EIA)

Clean Air Interstate Rule: Changes and modeling in AEO2010 Clean Air Interstate Rule: Changes and modeling in AEO2010 Annual Energy Outlook 2010 with Projections to 2035 Clean Air Interstate Rule: Changes and modeling in AEO2010 On December 23, 2008, the D.C. Circuit Court remanded but did not vacate CAIR [17], overriding its previous decision on February 8, 2008, to remand and vacate CAIR. The December decision, which is reflected in AEO2010, allows CAIR to remain in effect, providing time for the EPA to modify the rule in order to address objections raised by the Court in its earlier decision. A similar rule, referred to as the CAMR, which was to set up a cap-and-trade system for reducing mercury emissions by approximately 70 percent, is not represented in the AEO2010 projections, because it was vacated by the D.C. Circuit Court in February 2008.

130

"Assessment of the Adequacy of Natural Gas Pipeline Capacity in the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

"Assessment of the Adequacy of Natural Gas Pipeline Capacity in "Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States" Report Now Available "Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States" Report Now Available November 27, 2013 - 3:13pm Addthis The Office of Electricity Delivery and Energy Reliability has released its "Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States" report. The report is now available for downloading. In 2005-06, the Office of Electricity Delivery and Energy Reliability (OE) conducted a study on the adequacy of interstate natural gas pipeline capacity serving the northeastern United States to meet natural gas demand in the event of a pipeline disruption. The study modeled gas demand for

131

EIA - Natural Gas Imports & Exports/Pipelines Data & Analysis  

Gasoline and Diesel Fuel Update (EIA)

Imports & Exports / Pipelines Imports & Exports / Pipelines U.S. Imports by Country Prices and volumes (monthly, annual). U.S. Exports by Country Prices and volumes (monthly, annual). U.S. Imports & Exports by State Prices and volumes (annual). U.S. Imports by Point of Entry Prices and volumes (annual). U.S. Exports by Point of Exit Prices and volumes (annual). International & Interstate Movements of Natural Gas Includes International and Interstate receipts, deliveries and net reciepts by State (annual). Natural Gas Weekly Update Analysis of current price, supply, and storage data; and a weather snapshot. Natural Gas Monthly U.S. production, supply, consumption, disposition, storage, imports, exports, and prices. Natural Gas Basics Analysis of Natural Gas Imports/Exports & Pipelines

132

Intrastate Pipeline Safety (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Intrastate Pipeline Safety (Minnesota) Intrastate Pipeline Safety (Minnesota) Intrastate Pipeline Safety (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Minnesota Program Type Siting and Permitting These regulations provide standards for gas and liquid pipeline maintenance and operating procedures, per the Federal Hazardous Liquid and Natural Gas Pipeline Safety Acts, and give the commissioner of public safety the

133

Pipeline and Gas Journal`s 1998 annual pipeline directory and equipment guide  

Science Conference Proceedings (OSTI)

The tables provide information on line pipe sizes, walls, grades, and manufacturing processes. Data are presented by manufacturer within each country. Also tabulated are engineering and construction service companies, crude oil pipeline companies, products pipeline companies, natural gas pipeline companies, gas distribution companies, and municipal gas systems in the US. There is also a Canadian and an international directory.

NONE

1998-09-01T23:59:59.000Z

134

Interstate Oil and Gas Conservation Compact (Montana) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Montana) Interstate Oil and Gas Conservation Compact (Montana) Eligibility Utility Commercial Investor-Owned Utility Industrial Construction MunicipalPublic Utility Rural Electric...

135

I; FAST PARALLEL PIPELINED READOUT ARCHITECTURE FOR A COMPLETELY FLASH DIGITIZING SYSTEM WITH MULTI-LEVEL TRIGGER  

E-Print Network (OSTI)

We have built, and used to take physics data, a digitizing and readout system for Brookhaven AGS Experiment 791, a high-rate search for rare kaon decays. All digitization- of charge and time information is “flash ” (performed in less than 200 ns), followed by front-end buffering and a pipelined readout with massive parallelism. A data transfer rate of-- 0.5- Gigabytelsec into dual-port memories in eight 3081-emulating processors has been achieved. A readout-supervising circuit coordinates the three levels of event triggering and the movement of data throughout the system. The host Micro-VAX is interrupted only for the uploading of packets of fully filtered events from the 3081/E’s, Digitizing and data transfer from the front end to the 3081/E’s contribute negligible deadtime to the experiment.

_ Robert D. Cousins; Jacob Konigsberg; Jonathan Kubic; Philip L. Mel; Gregory W. Hart; W& n R. Molzonq; George M. Irwin; Dale A. Ouimette B; Jack L. Ritchiec; Quang H. Trang; Robert J. Whyleyd

1988-01-01T23:59:59.000Z

136

ORNL Genome Analysis Pipeline - Yeast (Saccharomyces cerevisiae...  

NLE Websites -- All DOE Office Websites (Extended Search)

Grail (Microbial Gene Prediction System Internet Link) GrailEXP Genome Analysis Pipeline DomainParser PROSPECT (PROtein Structure Prediction and Evaluation Computer Toolkit)...

137

Pipeline Safety (Maryland)  

Energy.gov (U.S. Department of Energy (DOE))

The Public Service Commission has the authority enact regulations pertaining to pipeline safety. These regulations address pipeline monitoring, inspections, enforcement, and penalties.

138

Pipeline Operations Program (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Pipeline Operations Program regulates the construction, acquisition, abandonment and interconnection of natural gas pipelines, as well as, the transportation and use of natural gas supplies.

139

Hydrogen Pipeline Safety  

Science Conference Proceedings (OSTI)

... data, we can model the performance of pipeline materials and make predictions about the safe operating limits of pipelines carrying pressurized ...

2013-01-31T23:59:59.000Z

140

Gas Pipeline Safety (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

This section establishes the Pipeline Safety Division within the Utility Regulatory Commission to administer federal pipeline safety standards and establish minimum state safety standards for...

Note: This page contains sample records for the topic "interstate pipeline systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Pipeline Safety (South Dakota)  

Energy.gov (U.S. Department of Energy (DOE))

The South Dakota Pipeline Safety Program, administered by the Public Utilities Commission, is responsible for regulating hazardous gas intrastate pipelines. Relevant legislation and regulations...

142

The SINFONI pipeline  

E-Print Network (OSTI)

The SINFONI data reduction pipeline, as part of the ESO-VLT Data Flow System, provides recipes for Paranal Science Operations, and for Data Flow Operations at Garching headquarters. At Paranal, it is used for the quick-look data evaluation. For Data Flow Operations, it fulfills several functions: creating master calibrations; monitoring instrument health and data quality; and reducing science data for delivery to service mode users. The pipeline is available to the science community for reprocessing data with personalised reduction strategies and parameters. The pipeline recipes can be executed either with EsoRex at the command line level or through the Gasgano graphical user interface. The recipes are implemented with the ESO Common Pipeline Library (CPL). SINFONI is the Spectrograph for INtegral Field Observations in the Near Infrared (1.1-2.45 um) at the ESO-VLT. SINFONI was developed and build by ESO and MPE in collaboration with NOVA. It consists of the SPIFFI integral field spectrograph and an adaptive optics module which allows diffraction limited and seeing limited observations. The image slicer of SPIFFI chops the SINFONI field of view on the sky in 32 slices which are re-arranged to a pseudo slit. The latter is dispersed by one of the four possible gratings (J, H, K, H+K). The detector thus sees a spatial dimension (along the pseudo-slit) and a spectral dimension. We describe in this paper the main data reduction procedures of the SINFONI pipeline, which is based on SPRED - the SPIFFI data reduction software developed by MPE, and the most recent developments after more than a year of SINFONI operations.

Andrea Modigliani; Wolfgang Hummel; Roberto Abuter; Paola Amico; Pascal Ballester; Richard Davies; Christophe Dumas; Mattew Horrobin; Mark Neeser; Markus Kissler-Patig; Michele Peron; Juha Rehunanen; Juergen Schreiber; Thomas Szeifert

2007-01-10T23:59:59.000Z

143

Optimal Design of Offshore Natural-Gas Pipeline Systems B. Rothfarb; H. Frank; D. M. Rosenbaum; K. Steiglitz; D. J. Kleitman  

E-Print Network (OSTI)

Optimal Design of Offshore Natural-Gas Pipeline Systems B. Rothfarb; H. Frank; D. M. Rosenbaum; K@jstor.org. http://www.jstor.org Mon Oct 22 13:48:01 2007 #12;OPTIMAL DESIGN OF OFFSHORE NATURAL-GAS PIPELINEAnolog,tj, Cambridge, Massachusetts (Received January 28, 1969) The exploitation of offshore natural gas reserves

Steiglitz, Kenneth

144

Detection and Location of Damage on Pipelines  

SciTech Connect

The INEEL has developed and successfully tested a real-time pipeline damage detection and location system. This system uses porous metal resistive traces applied to the pipe to detect and locate damage. The porous metal resistive traces are sprayed along the length of a pipeline. The unique nature and arrangement of the traces allows locating the damage in real time along miles of pipe. This system allows pipeline operators to detect damage when and where it is occurring, and the decision to shut down a transmission pipeline can be made with actual real-time data, instead of conservative estimates from visual inspection above the area.

Karen A. Moore; Robert Carrington; John Richardson

2003-11-01T23:59:59.000Z

145

Differential-drive in-pipe robot for moving inside urban gas pipelines  

Science Conference Proceedings (OSTI)

Pipelines for the urban gas-supply system require a robot possessing outstanding mobility and advanced control algorithms, since they are configured with various pipeline elements, such as straight pipelines, elbows, and branches. We present a comprehensive ...

Se-gon Roh; Hyouk Ryeol Choi

2005-02-01T23:59:59.000Z

146

VNG's Hampton Roads Pipeline Crossing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

VNG's Hampton Roads Pipeline Crossing VNG's Hampton Roads Pipeline Crossing FUPWG Conference Fall 2008 Williamsburg, Virginia Connection to DTI at Quantico Columbia Limitations South Hampton Roads served by a single pipeline Southside dependent on back up systems LNG Propane/air Two supply sources to VNG What if we connected pipelines? It would take Two Water Crossings Two Compressor Stations Construction in densely populated cities It could Deliver over 200,000 Dth of incremental supply Serve VNG, Columbia and Dominion customers ...we would get... Hampton Roads Crossing - HRX Hampton / Newport News Craney Island Norfolk 21 miles of 24" pipe 7 miles in Hampton/Newport News 4 miles in Norfolk 10 miles of water and island crossing 4 mile harbor crossing 4.5 miles on Craney

147

PIPELINES AS COMMUNICATION NETWORK LINKS  

SciTech Connect

This report presents the results of an investigation into two methods of using the natural gas pipeline as a communication medium. The work addressed the need to develop secure system monitoring and control techniques between the field and control centers and to robotic devices in the pipeline. In the first method, the pipeline was treated as a microwave waveguide. In the second method, the pipe was treated as a leaky feeder or a multi-ground neutral and the signal was directly injected onto the metal pipe. These methods were tested on existing pipeline loops at UMR and Batelle. The results reported in this report indicate the feasibility of both methods. In addition, a few suitable communication link protocols for this network were analyzed.

Kelvin T. Erickson; Ann Miller; E. Keith Stanek; C.H. Wu; Shari Dunn-Norman

2005-03-14T23:59:59.000Z

148

Northwest Interstate Compact on Low-Level Radioactive Waste Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northwest Interstate Compact on Low-Level Radioactive Waste Northwest Interstate Compact on Low-Level Radioactive Waste Management (Multiple States) Northwest Interstate Compact on Low-Level Radioactive Waste Management (Multiple States) < Back Eligibility Utility Fed. Government Commercial Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Institutional Nonprofit Program Info Start Date 1981 State Alaska Program Type Siting and Permitting Provider Northwest Interstate Compact The Northwest Interstate Compact on Low-Level Radioactive Waste Management, enacted in 1981, was ratified by Congress in 1985. The Compact is a cooperative effort of the party states to protect their citizens, and maintain and enhance economic viability, while sharing the responsibilities

149

Interstate Oil and Gas Conservation Compact (Multiple States) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interstate Oil and Gas Conservation Compact (Multiple States) Interstate Oil and Gas Conservation Compact (Multiple States) Interstate Oil and Gas Conservation Compact (Multiple States) < Back Eligibility Commercial Developer Industrial Investor-Owned Utility Municipal/Public Utility Utility Program Info State Alabama Program Type Environmental Regulations Provider Interstate Oil and Gas Compact Commission The Interstate Oil and Gas Compact Commission assists member states efficiently maximize oil and natural gas resources through sound regulatory practices while protecting the nation's health, safety and the environment. The Commission serves as the collective voice of member governors on oil and gas issues and advocates states' rights to govern petroleum resources within their borders. The Commission formed the Geological CO2 Sequestration Task Force, which

150

Runtime Assignment of Reconfigurable Hardware Components for Image Processing Pipelines  

E-Print Network (OSTI)

The combination of hardware acceleration and flexibility make FPGAs important to image processing applications. There is also a need for efficient, flexible hardware/software codesign environments that can balance the benefits and costs of using FPGAs. Image processing applications often consist of a pipeline of components where each component applies a different processing algorithm. Components can be implemented for FPGAs or software. Such systems enable an image analyst to work with either FPGA or software implementations of image processing algorithms for a given problem. The pipeline assignment problem chooses from alternative implementations of pipeline components to yield the fastest pipeline. Our codesign system solves the pipeline assignment problem to provide the most effective implementation automatically, so the image analyst can focus solely on choosing components which make up the pipeline. However, the pipeline assignment problem is NP complete. An efficient, dynamic solution to the pipeline assignment problem is a desirable enabler of codesign systems which use both FPGA and software implementations. This paper is concerned with solving pipeline assignment in this context. Consequently, we focus on optimal and heuristic methods for fast (fixed time limit) runtime pipeline assignment. Exhaustive search, integer linear programming and local search methods for pipeline assignment are investigated. We present experimental findings for pipelines of 20 or fewer components which show that in our environment, optimal runtime solutions are possible for smaller pipelines and nearly optimal heuristic solutions are possible for larger pipelines.

Heather Quinn; L. A. Smith King; Miriam Leeser; W. Meleis; Waleed Meleis

2003-01-01T23:59:59.000Z

151

Instrumented Pipeline Initiative  

Science Conference Proceedings (OSTI)

This report summarizes technical progress achieved during the cooperative agreement between Concurrent Technologies Corporation (CTC) and U.S. Department of Energy to address the need for a for low-cost monitoring and inspection sensor system as identified in the Department of Energy (DOE) National Gas Infrastructure Research & Development (R&D) Delivery Reliability Program Roadmap.. The Instrumented Pipeline Initiative (IPI) achieved the objective by researching technologies for the monitoring of pipeline delivery integrity, through a ubiquitous network of sensors and controllers to detect and diagnose incipient defects, leaks, and failures. This report is organized by tasks as detailed in the Statement of Project Objectives (SOPO). The sections all state the objective and approach before detailing results of work.

Thomas Piro; Michael Ream

2010-07-31T23:59:59.000Z

152

Performance Metrics for Embedded Parallel Pipelines  

Science Conference Proceedings (OSTI)

AbstractżA statistical approach to performance prediction is applied to a system development methodology for pipelines comprised of independent parallel stages. The methodology is aimed at distributed memory machines employing medium-grained parallelization. ... Keywords: Performance prediction, parallel pipelines, real-time systems, order statistics.

Martin Fleury; Andrew C. Downton; Adrian F. Clark

2000-11-01T23:59:59.000Z

153

Pipeline, rail backers lock horns on coal transport. [Coal pipeline act, H. R. 4370  

SciTech Connect

The backers of railroad and pipeline transport for coal clashed at hearings on the proposed Coal Pipeline Act. Slurry-pipeline advocates, claiming that high rail rates discourage industry and are counter to national energy goals, are seeking the eminent domain they need to secure rights-of-way for pipeline construction. Railroad lobbyists have successfully fought the idea so far and will continue to oppose a competing transport system. Proponents of several pipeline routes see them as a way to lower transport prices, while handling only about five percent of the nation's coal. The economics of pipelines appear to be a factor of distance and volume, with no hard evidence available. Arguments of both sides of the controversy are cited. Water rights are a major problem in transporting Western coal by pipeline and, in some states, are a larger issue than eminent domain. (DCK)

Murnane, T.

1980-03-24T23:59:59.000Z

154

Expansion of the U.S. Natural Gas Pipeline Network:  

Gasoline and Diesel Fuel Update (EIA)

Expansion of the U.S. Natural Gas Pipeline Network: Expansion of the U.S. Natural Gas Pipeline Network: Additions in 2008 and Projects through 2011 This report examines new natural gas pipeline capacity added to the U.S. natural gas pipeline system during 2008. In addition, it discusses and analyzes proposed natural gas pipeline projects that may be developed between 2009 and 2011, and the market factors supporting these initiatives. Questions or comments on this article should be directed to Damien Gaul at damien.gaul@eia.doe.gov or (202) 586-2073. Robust construction of natural gas infrastructure in 2008 resulted in the completion of 84 pipeline projects in the lower 48 States, adding close to 4,000 miles of natural gas pipeline. These completions of new natural gas pipelines and expansions of existing pipelines in the United States

155

DEVELOPMENT OF AN EMAT IN-LINE INSPECTION SYSTEM FOR DETECTION, DISCRIMINATION, AND GRADING OF STRESS CORROSION CRACKING IN PIPELINES  

SciTech Connect

This report describes progress, experiments, and results for a project to develop a pipeline inline inspection tool that uses electromagnetic acoustic transducers (EMATs) to detect and grade stress corrosion cracking (SCC). There is a brief introduction that gives background material about EMATs and relevant previous Tuboscope work toward a tool. This work left various choices about the modes and transducers for this project. The experimental section then describes the lab systems, improvements to these systems, and setups and techniques to narrow the choices. Improvements, which involved transducer matching networks, better magnetic biasing, and lower noise electronics, led to improved signal to noise (SNR) levels. The setups permitted transducer characterizations and interaction measurements in plates with man-made cracks, pipeline sections with SCC, and a full pipe with SCC. The latter were done with a moveable and compact EMAT setup, called a lab mouse, which is detailed. Next, the results section justifies the mode and transducer choices. These were for magnetostrictive EMATs and the use of EMAT launched modes: SH0 (at 2.1 MHz-mm) and SV1 (at 3.9 MHz-mm). This section then gives details of measurements on these modes. The measurements consisted of signal to noise ratio, insertion loss, magnetic biasing sensitivities crack reflection and transmission coefficients, beam width, standoff and tilt sensitivities. For most of the measurements the section presents analysis curves, such as reflection coefficient versus crack depth. Some notable results for the chosen modes are: that acceptable SNRs were generated in a pipe with magnetostrictive EMATs, that optimum bias for magnetostrictive transmitters and receivers is magnetic saturation, that crack reflection and transmission coefficients from crack interactions agree with 2 D simulations and seem workable for crack grading, and that the mouse has good waveform quality and so is ready for exhaustive measurement EMAT scans of SCC interactions. This section also reviews further coil optimization and implementation requirements. These involve transmitter and receiver power, acquisition parameters, and magnetic configuration. At this time all these seem reasonable for an ILI tool.

Jeff Aron; Jon Gore, Roger Dalton; Stuart Eaton; Adrian Bowles; Owen Thomas; Tim Jarman

2003-07-01T23:59:59.000Z

156

Alliant Energy Interstate Power and Light (Gas) - Residential Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliant Energy Interstate Power and Light (Gas) - Residential Alliant Energy Interstate Power and Light (Gas) - Residential Energy Efficiency Program Alliant Energy Interstate Power and Light (Gas) - Residential Energy Efficiency Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Construction Design & Remodeling Sealing Your Home Ventilation Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Attic and Wall Insulation: $1000 Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount ENERGY STAR New Construction: $600-$3500/home Home Energy Audit: Free Boilers: $150 or $400 depending on AFUE Furnaces: $250 or $400 depending on AFUE Programmable Thermostats: $25

157

Alliant Energy Interstate Power and Light (Electric) - Business Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interstate Power and Light (Electric) - Business Interstate Power and Light (Electric) - Business Energy Efficiency Rebate Programs Alliant Energy Interstate Power and Light (Electric) - Business Energy Efficiency Rebate Programs < Back Eligibility Commercial Fed. Government Local Government Multi-Family Residential Nonprofit State Government Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Construction Design & Remodeling Other Windows, Doors, & Skylights Heat Pumps Commercial Lighting Lighting Manufacturing Water Heating Maximum Rebate See program web site Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Custom: Based on Annual Dollar Energy Savings New Construction: Varies widely

158

Alliant Energy Interstate Power and Light (Gas) - Business Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliant Energy Interstate Power and Light (Gas) - Business Energy Alliant Energy Interstate Power and Light (Gas) - Business Energy Efficiency Rebate Programs (Minnesota) Alliant Energy Interstate Power and Light (Gas) - Business Energy Efficiency Rebate Programs (Minnesota) < Back Eligibility Commercial Fed. Government Local Government Multi-Family Residential Retail Supplier State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Other Appliances & Electronics Water Heating Windows, Doors, & Skylights Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Tank Water Heater: $50 Furnace: $250-$400 Boiler: $150 or $400 Programmable Thermostat: $25 Windows/Sash: $20 Custom: Based on Annual Energy Dollar Savings Provider

159

Alliant Energy Interstate Power and Light (Gas) - Business Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliant Energy Interstate Power and Light (Gas) - Business Energy Alliant Energy Interstate Power and Light (Gas) - Business Energy Efficiency Rebate Program (Iowa) Alliant Energy Interstate Power and Light (Gas) - Business Energy Efficiency Rebate Program (Iowa) < Back Eligibility Commercial Fed. Government Industrial Local Government Multi-Family Residential Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Construction Design & Remodeling Other Windows, Doors, & Skylights Ventilation Appliances & Electronics Maximum Rebate Insulation: $5000 (each type) Sealing: $1500 Multi-Family Insulation/Sealing: $5,000 Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Custom: Based on Annual Dollar Energy Savings

160

Alliant Energy Interstate Power and Light (Electric) - Residential Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliant Energy Interstate Power and Light (Electric) - Residential Alliant Energy Interstate Power and Light (Electric) - Residential Energy Efficiency Rebate Program (Iowa) Alliant Energy Interstate Power and Light (Electric) - Residential Energy Efficiency Rebate Program (Iowa) < Back Eligibility Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Other Heat Pumps Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Central Air Conditioners: $100 - $200 Air Source Heat Pumps: $100 - $400 Geothermal Heat Pumps: $300/ton + $50/EER/ton Fan Motors: $50/unit Programmable Thermostats: $25 Tank Water Heater: $50

Note: This page contains sample records for the topic "interstate pipeline systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Alliant Energy Interstate Power and Light (Gas) - Residential Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliant Energy Interstate Power and Light (Gas) - Residential Alliant Energy Interstate Power and Light (Gas) - Residential Energy Efficiency Program Alliant Energy Interstate Power and Light (Gas) - Residential Energy Efficiency Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Design & Remodeling Windows, Doors, & Skylights Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Caulking/Weather Stripping: $200 Ceiling/Foundation/Wall Insulation: $750 Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Boilers: $150 - $400 Furnaces: $250 - $400 Efficient Fan Motor: $50 Programmable Thermostats: $25 Furnace or Boiler Clean and Tune: $30

162

The Basics of Underground Natural Gas Storage  

U.S. Energy Information Administration (EIA)

... interstate pipeline companies rely heavily on underground storage to facilitate load balancing and system ... costs. "Open Access ... independent operators ...

163

Energy Information Administration - Natural Gas Glossary  

U.S. Energy Information Administration (EIA)

Energy Information Administration Deliverability on the Interstate Natural Gas Pipeline System 143 Glossary Abandonment: Regulatory permission to ...

164

Algeria LPG pipeline is build by Bechtel  

SciTech Connect

The construction of the 313 mile long, 24 in. LPG pipeline from Hassi R'Mel to Arzew, Algeria is described. The pipeline was designed to deliver 6 million tons of LPG annually using one pumping station. Eventually an additional pumping station will be added to raise the system capacity to 9 million tons annually.

Horner, C.

1984-08-01T23:59:59.000Z

165

DEVELOPMENT OF AN EMAT IN-LINE INSPECTION SYSTEM FOR DETECTION, DISCRIMINATION, AND GRADING OF STRESS CORROSION CRACKING IN PIPELINES  

SciTech Connect

This report describes prototypes, measurements, and results for a project to develop a prototype pipeline in-line inspection (ILI) tool that uses electromagnetic acoustic transducers (EMATs) to detect and grade stress corrosion cracking (SCC). The introduction briefly provides motivation and describes SCC, gives some background on EMATs and guided ultrasonic waves, and reviews promising results of a previous project using EMATs for SCC. The experimental section then describes lab measurement techniques and equipment, the lab mouse and prototypes for a mule, and scan measurements made on SCC. The mouse was a moveable and compact EMAT setup. The prototypes were even more compact circuits intended to be pulled or used in an ILI tool. The purpose of the measurements was to determine the best modes, transduction, and processing to use, to characterize the transducers, and to prove EMATs and mule components could produce useful results. Next, the results section summarizes the measurements and describes the mouse scans, processing, prototype circuit operating parameters, and performance for SH0 scans. Results are given in terms of specifications--like SNR, power, insertion loss--and parametric curves--such as signal amplitude versus magnetic bias or standoff, reflection or transmission coefficients versus crack depth. Initially, lab results indicated magnetostrictive transducers using both SH0 and SV1 modes would be worthwhile to pursue in a practical ILI system. However, work with mule components showed that SV1 would be too dispersive, so SV1 was abandoned. The results showed that reflection measurements, when normalized by the direct arrival are sensitive to and correlated with SCC. This was not true for transmission measurements. Processing yields a high data reduction, almost 60 to 1, and permits A and C scan display techniques and software already in use for pipeline inspection. An analysis of actual SH0 scan results for SCC of known dimensions showed that length and depth could be determined for deep enough cracks. Defect shadow and short length effects were apparent but may be taken into account. The SH0 scan was done with the mule prototype circuits and permanent magnet EMATs. These gave good enough results that this hardware and the processing techniques are very encouraging for use in a practical ILI tool.

Jeff Aron; Jeff Jia; Bruce Vance; Wen Chang; Raymond Pohler; Jon Gore; Stuart Eaton; Adrian Bowles; Tim Jarman

2005-02-01T23:59:59.000Z

166

Interstate Clean Transportation Corridor Project Under Way  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

rucks that travel in the western rucks that travel in the western United States will soon be able to operate clean-burning alternative fuel vehicles (AFVs) along the Interstate Clean Transpor- tation Corridor (ICTC). The ICTC project is the first effort to develop clean transportation corridors to connect Los Angeles, San Bernar- dino, the San Joaquin Valley, Sacra- mento/San Francisco, Salt Lake City, Reno, and Las Vegas along routes 1-15, 1-80, and 1-5/CA-99. The ICTC team, headed by California- based Gladstein and Associates, plans to have commitments by early 1997 for 10 to 15 fueling sites located approximately 180 miles apart. These sites will serve 250 new heavy-duty AFVs and 500 local delivery vehicles. Their fuels will displace 4.7 million gallons of petroleum and mitigate more than

167

Gas Pipelines:- long, thin, bombs?  

Science Conference Proceedings (OSTI)

... Gas Pipelines:- long, thin, bombs? Gas pipelines attract substantial reseach to improve safety and cut costs. They operate ...

168

H. R. 2092(Report No. 99-121, Parts I, II, and III): a bill to amend the Natural Gas Pipeline Safety Act of 1968 and the Hazardous Liquid Pipeline Safety Act of 1979 to authorize appropriations for fiscal years 1986 and 1987, and for other purposes. Introduced in the House of Representatives, Nineth-Ninth Congress, First Session, April 17, 1985  

SciTech Connect

Parts I, II, and III of the House report amend the Natural Gas Pipeline Safety Act of 1968 and the Hazardous Liquid Pipeline Safety Act of 1979 to preclude discriminatory tax treatment by states and local governments imposing an overvalued assessment against interstate gas transmission for ad valorem taxes. The amendment clarifies assessment terms and stipulates that federal courts may intervene if tax assessments exceed five per cent of true market value. The bill also authorizes the fiscal year 1986 and 1987 appropriations.

1985-01-01T23:59:59.000Z

169

Expansion of the U.S. Natural Gas Pipeline Network  

Reports and Publications (EIA)

Additions in 2008 and Projects through 2011 - This report examines new natural gas pipeline capacity added to the U.S. natural gas pipeline system during 2008. In addition, it discusses and analyzes proposed natural gas pipeline projects that may be developed between 2009 and 2011, and the market factors supporting these initiatives.

Information Center

2009-09-30T23:59:59.000Z

170

Automation Schemes for FPGA Implementation of Wave-Pipelined Circuits  

Science Conference Proceedings (OSTI)

Operating frequencies of combinational logic circuits can be increased using Wave-Pipelining (WP), by adjusting the clock periods and clock skews. In this article, Built-In Self-Test (BIST) and System-on-Chip (SOC) approaches are proposed for automating ... Keywords: CORDIC, DAA, FPGA, SOC, pipelining, wave-pipelining

G. Seetharaman; B. Venkataramani

2009-06-01T23:59:59.000Z

171

Hydrogen Delivery Technologies and Pipeline Transmission of Hydrogen  

E-Print Network (OSTI)

Hydrogen Delivery Technologies and Systems Pipeline Transmission of Hydrogen Strategic Initiatives, and Infrastructure Technologies Program #12;Pipeline Transmission of Hydrogen --- 2 Copyright: Design & Operation Standards Relevant Design and Operating Standards ANSI/ASME B31.8 49 CFR 192 CGA H2 Pipeline Standard (in

172

Alliant Energy Interstate Power and Light (Gas and Electric)...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Amount 1,500 - 25,000 Provider Customer Service Interstate Power and Light (Alliant Energy), in conjunction with Wells Fargo Bank, offers a low-interest loan for residential,...

173

Interstate Power and Light Co (Minnesota) | Open Energy Information  

Open Energy Info (EERE)

Interstate Power and Light Co (Minnesota) Interstate Power and Light Co (Minnesota) Jump to: navigation, search Name Interstate Power and Light Co Place Minnesota Utility Id 9417 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1060/kWh Commercial: $0.0969/kWh Industrial: $0.0757/kWh The following table contains monthly sales and revenue data for Interstate Power and Light Co (Minnesota). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

174

Interstate Power and Light (Alliant Energy) - Farm Equipment Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interstate Power and Light (Alliant Energy) - Farm Equipment Energy Interstate Power and Light (Alliant Energy) - Farm Equipment Energy Efficiency Incentives Interstate Power and Light (Alliant Energy) - Farm Equipment Energy Efficiency Incentives < Back Eligibility Agricultural Savings Category Other Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Commercial Lighting Lighting Cooling Construction Commercial Weatherization Manufacturing Maximum Rebate Contact Alliant Energy Interstate Power and Light Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Farm Energy Audit: Free Automatic Milker Takeoffs: $5/cow Dairy Scroll Compressor: $250 Heat Reclaimers: $5/cow Milk Precooler: $3.40/cow Variable Speed Drives for Dairy Vacuum Pumps: $5/cow Motors: Up to $1080 Variable Frequency Drives: $30/HP

175

Atlantic Interstate Low-Level Radioactive Waste Management Compact (South  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Atlantic Interstate Low-Level Radioactive Waste Management Compact Atlantic Interstate Low-Level Radioactive Waste Management Compact (South Carolina) Atlantic Interstate Low-Level Radioactive Waste Management Compact (South Carolina) < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Program Info Start Date 1986 State South Carolina Program Type Environmental Regulations Siting and Permitting Provider Atlantic Compact Commission The Atlantic (Northeast) Interstate Low-Level Radioactive Waste Management Compact is a cooperative effort to plan, regulate, and administer the disposal of low-level radioactive waste in the region. The states of Connecticut, New Jersey, and South Carolina are party to this compact

176

Comments of the Western Interstate Energy Board's High-Level...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Counsel's Notice of Inquiry concerning the preparation of a report to Congress on the Price-Anderson Act. Comments of the Western Interstate Energy Board's High-Level Radioactive...

177

California Natural Gas Interstate Receipts (Million Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Receipts (Million Cubic Feet) California Natural Gas Interstate Receipts (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's...

178

California Natural Gas Interstate Deliveries to All States (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Deliveries to All States (Million Cubic Feet) California Natural Gas Interstate Deliveries to All States (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

179

New Hampshire International and Interstate Movements of Natural ...  

U.S. Energy Information Administration (EIA)

Vermont : 1989-1998: International & Interstate Deliveries (To) 104,713: 154,268: 115,474: 126,880: 132,564: 152,537: 1988-2011: International Deliveries : 0: 64: 0 ...

180

Alliant Energy Interstate Power and Light- New Home Construction Incentives  

Energy.gov (U.S. Department of Energy (DOE))

Interstate Power and Light's New Home Program gives incentives to builders and contractors who build energy efficient homes. A base rebate is available to those customers that make the minimum...

Note: This page contains sample records for the topic "interstate pipeline systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Figure 14. Net interstate movements, imports, and exports of...  

Annual Energy Outlook 2012 (EIA)

United States, 2012 (million cubic feet) TrinidadTobago India Trinidad Tobago Yemen Brazil Interstate Movements Not Shown on Map From Volume To From Volume To CT RI TN FL MA CT...

182

New Mexico Natural Gas Interstate Receipts (Million Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Receipts (Million Cubic Feet) New Mexico Natural Gas Interstate Receipts (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's...

183

New Mexico Natural Gas Interstate Deliveries (Million Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Deliveries (Million Cubic Feet) New Mexico Natural Gas Interstate Deliveries (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

184

Keystone XL pipeline update  

Energy.gov (U.S. Department of Energy (DOE))

Questions have been raised recently about the Keystone XL pipeline project, so we wanted to make some points clear.

185

Correction Methods and Algorithms for Inertial Navigation System Working Inside of Pipelines  

Science Conference Proceedings (OSTI)

The correction methods for inertial navigation system of the "pig" are proposed in this paper. These methods are related with such sensors as inclinometers and potentiometers and provide independent information about the angles used for improving the ...

S. Sadovnychiy; V. Ponomaryov; A. Sadovnychyy

2007-09-01T23:59:59.000Z

186

Energy-efficient pipelines  

E-Print Network (OSTI)

We discuss the design of energy-efficient pipelines for asynchronous VLSI architectures. To maximize throughput in asynchronous pipelines it is often necessary to insert buffer stages, increasing the energy overhead. Instead of optimizing pipelines for minimum energy or maximum throughput, we consider a joint energy-time metric of the form ? ?,where?is the energy per operation and ? is the time per operation. We show that pipelines optimized for the ? ? energy-time metric may need fewer buffer stages and we give bounds when such stages can be removed. We present several common asynchronous pipeline structures and their energy-time optimized solutions. 1.

John Teifel; David Fang; David Biermann; Clint Kelly; Rajit Manohar

2002-01-01T23:59:59.000Z

187

INTERNAL REPAIR OF PIPELINES  

Science Conference Proceedings (OSTI)

The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is only marginally effective at restoring the pressure containing capabilities of pipelines. Failure pressures for larger diameter pipe repaired with a semi-circular patch of carbon fiber-reinforced composite lines were also marginally greater than that of a pipe section with un-repaired simulated damage without a liner. These results indicate that fiber reinforced composite liners have the potential to increase the burst pressure of pipe sections with external damage Carbon fiber based liners are viewed as more promising than glass fiber based liners because of the potential for more closely matching the mechanical properties of steel. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. In lieu of a field installation on an abandoned pipeline, a preliminary nondestructive testing protocol is being developed to determine the success or failure of the fiber-reinforced liner pipeline repairs. Optimization and validation activities for carbon-fiber repair methods are ongoing.

Bill Bruce; Nancy Porter; George Ritter; Matt Boring; Mark Lozev; Ian Harris; Bill Mohr; Dennis Harwig; Robin Gordon; Chris Neary; Mike Sullivan

2005-07-20T23:59:59.000Z

188

Integrity assurance of natural gas transmission pipelines  

Science Conference Proceedings (OSTI)

Natural gas transmission pipelines have proven to be a safe and efficient means for transporting the trillions of cubic feet of natural gas used annually in the United States. Since the peak of construction of these pipelines occurred between 1950 and the mid-1960s, their average age is now over thirty years. However, replacement of these pipelines because of age would be prohibitively expensive and unnecessary. Preventive maintenance and rehabilitation programs put into practice by the pipeline industry provides the key to ensuring the continued integrity of the transmission pipeline system. This article reviews the preventive maintenance practices commonly used by the gas industry. These practices include right-of-way patrols, corrosion control procedures, in-line inspection with intelligent or smart pigs that inspect the pipe while traveling through the inside of the pipe, direct access inspection of the pipe from bellhole excavations, and hydrostatic retesting of pipelines. When pipelines are properly maintained, these practices can ensure the integrity and long-term serviceability of transmission pipelines well into the 21st Century. 11 refs., 5 figs., 1 tab.

Posakony, G.J. (J-TECH Consulting, Richland, WA (United States))

1993-05-01T23:59:59.000Z

189

Natural Gas Pipeline Utilities (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Pipeline Utilities (Maine) Natural Gas Pipeline Utilities (Maine) Natural Gas Pipeline Utilities (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Siting and Permitting Provider Public Utilities Commission These regulations apply to entities seeking to develop and operate natural gas pipelines and provide construction requirements for such pipelines. The regulations describe the authority of the Public Utilities Commission with

190

Natural Gas Transmission Pipeline Siting Act (Florida) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Transmission Pipeline Siting Act (Florida) Natural Gas Transmission Pipeline Siting Act (Florida) Natural Gas Transmission Pipeline Siting Act (Florida) < Back Eligibility Commercial Construction Developer Fed. Government Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Tribal Government Utility Program Info State Florida Program Type Siting and Permitting Provider Florida Department of Environmental Protection This Act establishes a centralized and coordinated permitting process for the location of natural gas transmission pipeline corridors and the construction and maintenance of natural gas transmission pipelines. The Act intends to achieve a reasonable balance between the need for the natural

191

PROBER: Ad-Hoc Debugging of Extraction and Integration Pipelines  

E-Print Network (OSTI)

Complex information extraction (IE) pipelines assembled by plumbing together off-the-shelf operators, specially customized operators, and operators re-used from other text processing pipelines are becoming an integral component of most text processing frameworks. A critical task faced by the IE pipeline user is to run a post-mortem analysis on the output. Due to the diverse nature of extraction operators (often implemented by independent groups), it is time consuming and error-prone to describe operator semantics formally or operationally to a provenance system. We introduce the first system that helps IE users analyze pipeline semantics and infer provenance interactively while debugging. This allows the effort to be proportional to the need, and to focus on the portions of the pipeline under the greatest suspicion. We present a generic debugger for running post-execution analysis of any IE pipeline consisting of arbitrary types of operators. We propose an effective provenance model for IE pipelines which cap...

Sarma, Anish Das; Bohannon, Philip

2010-01-01T23:59:59.000Z

192

EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Mileage...  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Natural Gas > About U.S. Natural Gas Pipelines > Natural Gas Pipeline Mileage by State About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through...

193

The Noao Newfirm Pipeline  

E-Print Network (OSTI)

The NOAO NEWFIRM Pipeline produces instrumentally calibrated data products and data quality measurements from all exposures taken with the NOAO Extremely Wide-Field Infrared Imager (NEWFIRM) at the KPNO Mayall 4-meter telescope. We describe the distributed nature of the NEWFIRM Pipeline, the calibration data that are applied, the data quality metadata that are derived, and the data products that are delivered by the NEWFIRM Pipeline.

Swaters, R A; Dickinson, M E

2009-01-01T23:59:59.000Z

194

Product Pipeline Reports Tutorial  

Gasoline and Diesel Fuel Update (EIA)

Home > Petroleum > Petroleum Survey Forms> Petroleum Survey Forms Tutorial Product Pipeline Reports Tutorial Content on this page requires a newer version of Adobe Flash Player....

195

Liquefaction and Pipeline Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

factors add 20 percent to liquefaction plant total installed cost 6 Distribution Pipeline Costs Collected historical Oil & Gas Journal data, and surveyed for current urban and...

196

Alliant Energy Interstate Power and Light - Residential Renewable Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliant Energy Interstate Power and Light - Residential Renewable Alliant Energy Interstate Power and Light - Residential Renewable Energy Rebates Alliant Energy Interstate Power and Light - Residential Renewable Energy Rebates < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Wind Maximum Rebate Solar Thermal Water Heater: $750 Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Energy Efficient Solar PV: $1.25/kWh x estimated first year output Standard Solar PV: $0.75/kWh x estimated first year output Energy Efficient Wind: $0.75/kWh x estimated first year output Standard Wind: 0.25/kWh x estimated first year output Solar Thermal Water Heater (electric): $0.35 x annual kWh savings Solar Thermal Water Heater (natural gas): $2.50 x annual therm savings

197

Alliant Energy Interstate Power and Light - New Home Construction  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliant Energy Interstate Power and Light - New Home Construction Alliant Energy Interstate Power and Light - New Home Construction Incentives Alliant Energy Interstate Power and Light - New Home Construction Incentives < Back Eligibility Construction Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Construction Design & Remodeling Windows, Doors, & Skylights Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Builder Option Package: Up to $2,000 Advanced Builder Option Package: Up to $2,800 Energy Star Qualified Home: Up to $3,500 Multi-Family Incentives: See program web site Provider

198

Pipeline under construction Sea Proposed/planned pipeline Possible ...  

U.S. Energy Information Administration (EIA)

Arab Gas Pipeline Maghreb-Europe GME Shah-Deniz Statfjord Ormen Lange TrollTTrollroll ... Greece-Italy Interconnector Turkey-Greece Interconnector South Caucasus Pipeline

199

Pipeline Carriers (Montana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carriers (Montana) Carriers (Montana) Pipeline Carriers (Montana) < Back Eligibility Utility Investor-Owned Utility Industrial Construction Municipal/Public Utility Rural Electric Cooperative Retail Supplier Institutional Systems Integrator Fuel Distributor Program Info State Montana Program Type Siting and Permitting Provider State of Montana Public Service Commission Pipeline carriers transporting crude petroleum, coal, the products of crude petroleum or coal, or carbon dioxide produced in the combustion or gasification of fossil fuels are required to abide by these regulations. The regulations address construction permits and the use of eminent domain by pipeline carriers, records and reporting, connection and interchange facilities, and the prohibition of discrimination in rates and service

200

MFL tool hardware for pipeline inspection  

SciTech Connect

The intelligent pig based on the magnetic flux leakage (MFL) is frequently used for inline inspection of gas and liquid transportation pipelines. The tool is capable of reliably detecting and characterizing several commonly occurring pipeline defects including metal loss due to corrosion and gouges, dents, and buckles, which tend to threaten the structural integrity of the pipeline. The defect detection and characterization capabilities of the tool are directly dependent upon the type of critical hardware components and systems selected for the tool assembly. This article discusses the key components of an advanced or high resolution MFL tool.

Tandon, K.K. [Engineers India Ltd., Haryana (India). Research and Development Complex

1997-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "interstate pipeline systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Condition monitoring of offshore pipelines using vibration based methods.  

E-Print Network (OSTI)

??[Truncated abstract] Subsea pipelines are essential structural systems to transport natural oil or gas from offshore oil wells to an onshore location. Damage along a… (more)

Peng, Xue-Lin

2012-01-01T23:59:59.000Z

202

The Oak Ridge Genome Annotation and Analysis Pipelines  

NLE Websites -- All DOE Office Websites (Extended Search)

Grail (Microbial Gene Prediction System Internet Link) GrailEXP Genome Analysis Pipeline DomainParser PROSPECT (PROtein Structure Prediction and Evaluation Computer...

203

U.S. Natural Gas Pipeline and Underground Storage Expansions ...  

U.S. Energy Information Administration (EIA)

Pipeline transportation and underground storage are vital and complementary components of the U.S. natural gas system. While mainline gas transmission ...

204

Alliant Energy Interstate Power and Light (Electric) - Business Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Alliant Energy Interstate Power and Light (Electric) - Business Energy Efficiency Rebate Programs Alliant Energy Interstate Power and Light (Electric) - Business Energy Efficiency Rebate Programs < Back Eligibility Commercial Fed. Government Local Government Nonprofit Retail Supplier State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Home Weatherization Windows, Doors, & Skylights Commercial Weatherization Construction Design & Remodeling Water Heating Maximum Rebate See program web site Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount New Construction: Varies, see program web site Custom: Based on Annual Dollar Energy Savings

205

Aspen Pipeline | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Aspen Pipeline Jump to: navigation, search Name Aspen Pipeline Place Houston, Texas Zip 77057...

206

Natural Gas Pipeline Safety (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

This article states minimum safety standards for the transportation of natural gas by pipeline and reporting requirements for operators of pipelines.

207

Questions and Issues on Hydrogen Pipelines: Pipeline Transmission of Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Issues on Hydrogen Issues on Hydrogen Pipelines Pipeline Transmission of Hydrogen Doe Hydrogen Pipeline Working Group Meeting August 31, 2005 Pipeline Transmission of Hydrogen --- 2 Copyright: Air Liquide Pipeline Inventory Breakdown by gases 0 500 1000 1500 2000 2500 3000 3500 KM N2 2956 km O2 3447 km H2 1736 km CO/Syngas 61 km TOTAL 8200 km Pipeline Inventory 2004 Asie Pacific America Europe Pipeline Transmission of Hydrogen --- 3 Copyright: Pipeline Transmission of Hydrogen --- 4 Copyright: 3. Special structures River Crossings (culvert): 6 (Rhein, Ruhr, Rhein-Herne-Kanal) River crossing (on bridge): 1 (Rhein-Herne-Kanal) Motorway Crossings: 26 Overground Pipelines: approx 21 km Pipeline Transmission of Hydrogen --- 5 Copyright: 5. Mining areas Pipeline Transmission of Hydrogen --- 6 Copyright: France & Netherlands

208

BP and Hydrogen Pipelines  

NLE Websites -- All DOE Office Websites (Extended Search)

BP and Hydrogen Pipelines BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop August 30-31, 2005 Gary P. Yoho, P.E. i l i * Green corporate philosophy and senior management commitment * Reduced greenhouse gas emissions nine years ahead of target * Alternatives to oil are a big part of BP' including natural gas, LNG, solar and hydrogen * Hydrogen Bus Project won Australia' prestigious environmental award * UK partnership opened the first hydrogen demonstration refueling station * Two hydrogen pipelines in Houston area BP Env ronmenta Comm tment s portfolio, s most BP' * li l " li i i * i l pl i i * Li l li l * " i i l i 2 i i ll i i l pl ifi i * 8" ly idl i i l s Hydrogen Pipelines Two nes, on y a brand new 12 ne s act ve Connect Houston area chem ca ant w th a ref nery nes come off a p

209

INTERNAL REPAIR OF PIPELINES  

Science Conference Proceedings (OSTI)

The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is only marginally effective at restoring the pressure containing capabilities of pipelines. Failure pressures for larger diameter pipe repaired with a semi-circular patch of carbon fiber-reinforced composite lines were also marginally greater than that of a pipe section with un-repaired simulated damage without a liner. These results indicate that fiber reinforced composite liners have the potential to increase the burst pressure of pipe sections with external damage Carbon fiber based liners are viewed as more promising than glass fiber based liners because of the potential for more closely matching the mechanical properties of steel. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. Development of a comprehensive test plan for this process is recommended for use in the field trial portion of this program.

Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; George Ritter; Bill Mohr; Matt Boring; Nancy Porter; Mike Sullivan; Chris Neary

2004-08-17T23:59:59.000Z

210

INTERNAL REPAIR OF PIPELINES  

Science Conference Proceedings (OSTI)

The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is only marginally effective at restoring the pressure containing capabilities of pipelines. Failure pressures for larger diameter pipe repaired with a semi-circular patch of carbon fiber-reinforced composite lines were also marginally greater than that of a pipe section with un-repaired simulated damage without a liner. These results indicate that fiber reinforced composite liners have the potential to increase the burst pressure of pipe sections with external damage Carbon fiber based liners are viewed as more promising than glass fiber based liners because of the potential for more closely matching the mechanical properties of steel. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. The first round of optimization and validation activities for carbon-fiber repairs are complete. Development of a comprehensive test plan for this process is recommended for use in the field trial portion of this program.

Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; George Ritter; Bill Mohr; Matt Boring; Nancy Porter; Mike Sullivan; Chris Neary

2004-12-31T23:59:59.000Z

211

Analytic prognostic for petrochemical pipelines  

E-Print Network (OSTI)

Pipelines tubes are part of vital mechanical systems largely used in petrochemical industries. They serve to transport natural gases or liquids. They are cylindrical tubes and are submitted to the risks of corrosion due to high PH concentrations of the transported liquids in addition to fatigue cracks due to the alternation of pressure-depression of gas along the time, initiating therefore in the tubes body micro-cracks that can propagate abruptly to lead to failure. The development of the prognostic process for such systems increases largely their performance and their availability, as well decreases the global cost of their missions. Therefore, this paper deals with a new prognostic approach to improve the performance of these pipelines. Only the first mode of crack, that is, the opening mode, is considered.

Abdo Abou Jaoude; Seifedine Kadry; Khaled El-Tawil; Hassan Noura; Mustapha Ouladsine

2012-12-25T23:59:59.000Z

212

Analytic prognostic for petrochemical pipelines  

E-Print Network (OSTI)

Pipelines tubes are part of vital mechanical systems largely used in petrochemical industries. They serve to transport natural gases or liquids. They are cylindrical tubes and are submitted to the risks of corrosion due to high PH concentrations of the transported liquids in addition to fatigue cracks due to the alternation of pressure-depression of gas along the time, initiating therefore in the tubes body micro-cracks that can propagate abruptly to lead to failure. The development of the prognostic process for such systems increases largely their performance and their availability, as well decreases the global cost of their missions. Therefore, this paper deals with a new prognostic approach to improve the performance of these pipelines. Only the first mode of crack, that is, the opening mode, is considered.

Jaoude, Abdo Abou; El-Tawil, Khaled; Noura, Hassan; Ouladsine, Mustapha

2012-01-01T23:59:59.000Z

213

An observational Study of the “Interstate 5” Dust Storm Case  

Science Conference Proceedings (OSTI)

On 29 November 1991 a series of collisions involving 164 vehicles occurred on Interstate 5 in the San Joaquin Valley in California in a dust storm that reduced the visibility to near zero. The accompanying high surface winds are hypothesized to ...

Patricia M. Pauley; Nancy L. Baker; Edward H. Barker

1996-04-01T23:59:59.000Z

214

Pipeline integrity programs help optimize resources  

SciTech Connect

Natural Gas Pipeline Co. of America has developed an integrity program. NGPL operates approximately 13,000 miles of large-diameter parallel gas pipelines, which extend from traditional supply areas to the Chicago area. Line Number 1, the 24-in. Amarillo-to-Chicago mainline, was built in 1931, and parts of it are still in operation today. More than 85% of the NGPL systems is more than 25 years old, and continues to provide very reliable service. The company operated for many years with specialized crews dedicated to pipeline systems, and a corrosion department. Under this organization, employees developed an intimate knowledge of the pipeline and related integrity issues. NGPL relied on this knowledge to develop its integrity program. The risk assessment program is a very valuable tool for identifying areas that may need remedial work. However, it is composed of many subjective evaluations and cannot predict failure nor ensure good performance. The program is an excellent data management tool that enables a pipeline operator to combine all available information needed to make integrity decisions. The integrity of a pipeline is continually changing, and any program should be updated on a regular basis.

Dusek, P.J. (Natural Gas Pipeline Co. of America, Lombard, IL (United States))

1994-03-01T23:59:59.000Z

215

Composites Technology for Hydrogen Pipelines  

E-Print Network (OSTI)

Composites Technology for Hydrogen Pipelines Barton Smith, Barbara Frame, Larry Anovitz and Cliff Eberle Oak Ridge National Laboratory Pipeline Working Group MeetingPipeline Working Group Meeting Aiken;Composites Technology for Hydrogen Pipelines Fiber-reinforced polymer pipe Project Overview: Investigate

216

Code for Hydrogen Hydrogen Pipeline  

E-Print Network (OSTI)

#12;2 Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop Augusta, Georgia August development · Charge from BPTCS to B31 Standards Committee for Hydrogen Piping/Pipeline code development · B31.12 Status & Structure · Hydrogen Pipeline issues · Research Needs · Where Do We Go From Here? #12;4 Code

217

DOE Hydrogen Pipeline Working Group Workshop  

E-Print Network (OSTI)

DOE Hydrogen Pipeline Working Group Workshop August 31, 2005 Augusta, Georgia #12;Hydrogen Pipeline Experience Presented By: LeRoy H. Remp Lead Project Manager Pipeline Projects #12;ppt00 3 Hydrogen Pipeline and the customer. #12;ppt00 4 Pipeline Photos #12;ppt00 5 Pipeline Photos #12;ppt00 6 Pipeline Photos #12;ppt00 7

218

Comparing Existing Pipeline Networks with the Potential Scale of Future U.S. CO2 Pipeline Networks  

SciTech Connect

There is growing interest regarding the potential size of a future U.S. dedicated CO2 pipeline infrastructure if carbon dioxide capture and storage (CCS) technologies are commercially deployed on a large scale. In trying to understand the potential scale of a future national CO2 pipeline network, comparisons are often made to the existing pipeline networks used to deliver natural gas and liquid hydrocarbons to markets within the U.S. This paper assesses the potential scale of the CO2 pipeline system needed under two hypothetical climate policies and compares this to the extant U.S. pipeline infrastructures used to deliver CO2 for enhanced oil recovery (EOR), and to move natural gas and liquid hydrocarbons from areas of production and importation to markets. The data presented here suggest that the need to increase the size of the existing dedicated CO2 pipeline system should not be seen as a significant obstacle for the commercial deployment of CCS technologies.

Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

2008-02-29T23:59:59.000Z

219

New York University 2012 System for KBP Slot Filling  

Science Conference Proceedings (OSTI)

... KBP SF systems, including our own, consist of several independent extraction pipelines. The system combines the responses from each pipeline. ...

2013-06-19T23:59:59.000Z

220

Mapping hidden water pipelines using a mobile sensor droplet  

Science Conference Proceedings (OSTI)

This study presents several extensions to our previous work on the PipeProbe system, a mobile sensor system for identifying the spatial topology of hidden water pipelines (i.e., non-moldable pipes such as copper and PVC) behind walls or under floors ... Keywords: Wireless sensor networks, constraint satisfaction, mapping water pipeline, sensor inference

Ted Tsung-Te Lai; Wei-Ju Chen; Yu-Han Tiffany Chen; Polly Huang; Hao-Hau Chu

2013-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "interstate pipeline systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Highly Pipelined Asynchronous FPGAs  

E-Print Network (OSTI)

We present the design of a high-performance, highly pipelined asynchronous FPGA. We describe a very ne-grain pipelined logic block and routing interconnect architecture, and show how asynchronous logic can eciently take advantage of this large amount of pipelining. Our FPGA, which does not use a clock to sequence computations, automatically \\selfpipelines " its logic without the designer needing to be explicitly aware of all pipelining details. This property makes our FPGA ideal for throughput-intensive applications and we require minimal place and route support to achieve good performance. Benchmark circuits taken from both the asynchronous and clocked design communities yield throughputs in the neighborhood of 300-400 MHz in a TSMC 0.25m process and 500-700 MHz in a TSMC 0.18m process.

John Teifel; Rajit Manohar

2004-01-01T23:59:59.000Z

222

Capturing Latino Students in the Academic Pipeline  

E-Print Network (OSTI)

The Latino Educational Pipeline Why Latino Students are atSTUDENTS IN THE ACADEMIC PIPELINE CAPTURING LATINO STUDENTSIN THE ACADEMIC PIPELINE Patricia Gcindara, Editor Katherine

Gándara, Patricia; Larson, Katherine; Mehan, Hugh; Rumberger, Russell

1998-01-01T23:59:59.000Z

223

Total Crude by Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2007 2008 2009 2010 2011 2012 View

224

Interstate Power and Light Co | Open Energy Information  

Open Energy Info (EERE)

Interstate Power and Light Co Interstate Power and Light Co Address 200 1st Street Southeast Place Cedar Rapids, Iowa Zip 52401 Website www.alliantenergy.com/ind Utility Id 9417 Utility Location Yes Ownership I NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 Residential Residential

225

Interstate Renewable Energy Council IREC | Open Energy Information  

Open Energy Info (EERE)

Interstate Renewable Energy Council IREC Interstate Renewable Energy Council IREC Jump to: navigation, search Name Interstate Renewable Energy Council (IREC) Place Latham, New York Zip 12110-1156 Sector Renewable Energy Product US non-profit organisation with mission of accelerating the sustainable utilization of renewable energy sources and technologies in and through state and local government and community activities. Coordinates 39.098856°, -83.247057° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.098856,"lon":-83.247057,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

226

U.S. pipeline industry enters new era  

Science Conference Proceedings (OSTI)

The largest construction project in North America this year and next--the Alliance Pipeline--marks some advances for the US pipeline industry. With the Alliance Pipeline system (Alliance), mechanized welding and ultrasonic testing are making their debuts in the US as primary mainline construction techniques. Particularly in Canada and Europe, mechanized welding technology has been used for both onshore and offshore pipeline construction for at least 15 years. However, it has never before been used to build a cross-country pipeline in the US, although it has been tested on short segments. This time, however, an accelerated construction schedule, among other reasons, necessitated the use of mechanized gas metal arc welding (GMAW). The $3-billion pipeline will delivery natural gas from northwestern British Columbia and northeastern Alberta in Canada to a hub near Chicago, Ill., where it will connect to the North American pipeline grid. Once the pipeline is completed and buried, crews will return the topsoil. Corn and other crops will reclaim the land. While the casual passerby probably won't know the Alliance pipeline is there, it may have a far-reaching effect on the way mainline pipelines are built in the US. For even though mechanized welding and ultrasonic testing are being used for the first time in the United States on this project, some US workers had already gained experience with the technology on projects elsewhere. And work on this pipeline has certainly developed a much larger pool of experienced workers for industry to draw from. The Alliance project could well signal the start of a new era in US pipeline construction.

Johnsen, M.R.

1999-11-01T23:59:59.000Z

227

Reconfigurable Cell Architecture for Systolic and Pipelined Computing Datapaths  

Science Conference Proceedings (OSTI)

This paper introduces a recon?gurable computing cell architecture for pipelined and systolic datapaths in the Mixed Grained recon?gurable Coprocessor array system(MiGCop). The cell is efficiently capable of building scalable parallel-parallel, ... Keywords: Reconfigurable, Multiplier, Systolic, 2D pipeline, Baugh-Wooley, distributed arithmetic

Abdulrahman Hanoun; Friedrich Mayer-Lindenberg; Bassel Soudan

2008-12-01T23:59:59.000Z

228

Alliant Energy Interstate Power and Light (Gas and Electric) - Low Interest  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliant Energy Interstate Power and Light (Gas and Electric) - Low Alliant Energy Interstate Power and Light (Gas and Electric) - Low Interest Energy Efficiency Loan Program Alliant Energy Interstate Power and Light (Gas and Electric) - Low Interest Energy Efficiency Loan Program < Back Eligibility Agricultural Commercial Fed. Government Local Government Nonprofit Residential State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Other Heat Pumps Commercial Lighting Lighting Manufacturing Water Heating Home Weatherization Windows, Doors, & Skylights Maximum Rebate $25,000 Program Info State Iowa Program Type Utility Loan Program Rebate Amount $1,500 - $25,000 Provider Customer Service Interstate Power and Light (Alliant Energy), in conjunction with Wells

229

Alliant Energy Interstate Power and Light (Gas)- Residential Energy Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE))

Interstate Power and Light (Alliant Energy) offers residential energy efficiency rebates to Iowa customers for a variety of home upgrades. Rebates are available for certain heating, insulation,...

230

Southeast Interstate Low-Level Radioactive Waste Management Compact (multi-state)  

Energy.gov (U.S. Department of Energy (DOE))

The Southeast Interstate Low-Level Radioactive Waste Management Compact is administered by the Compact Commission. The Compact provides for rotating responsibility for the region's low-level...

231

Alliant Energy Interstate Power and Light (Electric)- Residential Energy Efficiency Rebate Program (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

Interstate Power and Light (Alliant Energy) offers residential energy efficiency rebates and incentives for Iowa customers for a variety of technologies. Rebates are available for certain HVAC...

232

EAC Recommendations for DOE Action Regarding the CSG Interstate Transmission Siting Compact- June 6, 2013  

Energy.gov (U.S. Department of Energy (DOE))

EAC Recommendations for DOE Action Regarding the CSG Interstate Transmission Siting Compact, approved at the June 5-6, 2013 EAC Meeting.

233

Alliant Energy Interstate Power and Light (Electric)- Residential Energy Efficiency Rebate Program (Minnesota)  

Energy.gov (U.S. Department of Energy (DOE))

Interstate Power and Light (Alliant Energy) offers a number of energy efficiency rebates for Minnesota residential customers which implement HVAC, lighting, appliance, window, insulation and water...

234

The vascular flora of Breaks Interstate Park, Pike County, Kentucky, and Dickenson County, Virginia.  

E-Print Network (OSTI)

??The vascular flora of Breaks Interstate Park was documented during two growing seasons, 2008 and 2009; with supplemental collections made in 2010 and 2011. The… (more)

Clark, Julie Bennett

2012-01-01T23:59:59.000Z

235

Alliant Energy Interstate Power and Light (Gas)- Business Energy Efficiency Rebate Programs (Minnesota)  

Energy.gov (U.S. Department of Energy (DOE))

Alliant Energy - Interstate Power and Light (IPL) offers rebates for high efficiency equipment for commercial customers. Rebates are available for windows/sashes, programmable thermostats, water...

236

Alliant Energy Interstate Power and Light (Electric)- Business Energy Efficiency Rebate Programs  

Energy.gov (U.S. Department of Energy (DOE))

Alliant Energy - Interstate Power and Light (IPL) offers rebates for high efficiency equipment for commercial customers. Rebates are available for high efficiency lighting equipment, occupancy...

237

Pipeline Setback Ordinance (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sites Power Marketing Administration Other Agencies You are here Home Savings Pipeline Setback Ordinance (Minnesota) Pipeline Setback Ordinance (Minnesota) Eligibility...

238

Dataplot Commands for Alaska Pipeline Case Study  

Science Conference Proceedings (OSTI)

Dataplot Commands for Alaska Pipeline Case Study. Set Software Options and Get Started, . . Starting Alaska Pipeline Calibration Case Study . . ...

2012-03-31T23:59:59.000Z

239

Collaborative Visualization and the Analysis Pipeline | Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Science & Engineering Applications Collaborative Visualization and the Analysis Pipeline Collaborative Visualization and the Analysis Pipeline Integration of Access Grid and...

240

Operation chaining asynchronous pipelined circuits  

Science Conference Proceedings (OSTI)

We define operation chaining (op-chaining) as an optimization problem to determine the optimal pipeline depth for balancing performance against energy demands in pipelined asynchronous designs. Since there are no clock period requirements, asynchronous ...

Girish Venkataramani; Seth C. Goldstein

2007-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "interstate pipeline systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Determining the Remaining Strength of Pitting Corrosion in Corroded Pipelines with API579 Criterion  

Science Conference Proceedings (OSTI)

Because the long-distance oil and gas pipelines have buried underground in a long term, there is corrosion on the inside and outside surfaces of pipeline, which can cause serious hole leaking accident, and bring the huge economic losses. In order to ... Keywords: API579 criterion, remaining strength, pipeline corrosion, pitting corrosion, evaluation system

Song-wei Gao; Bo Gao; Li-jian Yang

2011-10-01T23:59:59.000Z

242

PipeProbe: a mobile sensor droplet for mapping hidden pipeline  

Science Conference Proceedings (OSTI)

This paper presents PipeProbe, a mobile sensor system for determining the spatial topology of hidden water pipelines behind walls. PipeProbe works by dropping a tiny wireless sensor capsule into the source of the water pipelines. As the PipeProbe capsule ... Keywords: constraint satisfaction, mapping water pipeline, sensor inference, wireless sensor networks

Tsung-te (Ted) Lai; Yu-han (Tiffany) Chen; Polly Huang; Hao-hua Chu

2010-11-01T23:59:59.000Z

243

TASSEL 3.0 Universal Network Enabled Analysis Kit (UNEAK) pipeline documentation  

E-Print Network (OSTI)

1 TASSEL 3.0 Universal Network Enabled Analysis Kit (UNEAK) pipeline documentation Authors: Fei Lu.............................................................................................................................. 8 Introduction The UNEAK is the non-reference Genotyping by Sequencing (GBS) SNP calling pipeline the command line in the following format (Linux or Mac operating system; for Windows use run_pipeline

Buckler, Edward S.

244

3. Deliverability on the Interstate Network  

U.S. Energy Information Administration (EIA)

nondiscriminatory transporters and mandated open access to ... independent operators are linked to natural gas ... occurred on the Texas Eastern Transmission system as

245

Coal slurry pipelines: a maze of rights  

SciTech Connect

A survey of coal slurry pipeline projects, discussed at the 4th Annual International Slurry Transportation Conference showed that Energy Transportation Systems Inc. has effectively solved the right-of-way problem for its 1400 mi line from Wyoming's Powder River Basin and expects to have an environmental impact statement completed within 30 mo and have the pipeline in operation by 1983. San Marco Pipeline Co., is developing a source of water from wells drilled near Alamosa, Colo., for use in a proposed line from Walsenburg, Colo., to Houston. The Alton pipeline from the Alton coal field in southern Utah to power stations in southern Nevada is delayed by right-of-way needs through federal land and by changing environmental requirements. Florida Gas Co., is working on alternative projects to bring coal to Florida by pipeline. Northwest Energy Co.'s proposed slurry line from Gillette, Wyo., to Boise, Idaho, and Boardman, Oreg., is in a holding position. Texas Eastern Transmission Co. hopes to have a 1300 mi 38 in. line in operation in 1985 from Wyoming's Powder River Basin to the Houston area.

1979-08-01T23:59:59.000Z

246

Pipeline transportation and underground storage are vital and complementary components of the U  

U.S. Energy Information Administration (EIA) Indexed Site

Additions to Capacity on the U.S. Natural Gas Pipeline Network: 2005 Additions to Capacity on the U.S. Natural Gas Pipeline Network: 2005 This report examines the amount of new natural gas pipeline capacity added to the U.S. natural gas pipeline system during 2005 and the areas of the country where those additions were concentrated. In addition, it discusses and analyzes proposed natural gas pipeline projects that may be developed between 2006 and 2008 and the market factors supporting these initiatives. Questions or comments on the contents of this article should be directed to James Tobin at james.tobin@eia.doe.gov or (202) 586-4835. The addition to natural gas pipeline capacity in 2005 exceeded that of 2004 (Figure 1) although fewer miles of pipeline were installed (Figure 2). Miles of new natural gas pipeline (1,152) were 21 percent less than in 2004, even

247

Comparing Existing Pipeline Networks with the Potential Scale of Future U.S. CO2 Pipeline Networks  

Science Conference Proceedings (OSTI)

There is growing interest regarding the potential size of a future U.S. dedicated carbon dioxide (CO2) pipeline infrastructure if carbon dioxide capture and storage (CCS) technologies are commercially deployed on a large scale within the United States. This paper assesses the potential scale of the CO2 pipeline system needed under two hypothetical climate policies (so called WRE450 and WRE550 stabilization scenarios) and compares this to the extant U.S. pipeline infrastructures used to deliver CO2 for enhanced oil recovery (EOR), and to move natural gas and liquid hydrocarbons from areas of production and importation to markets. The analysis reveals that between 11,000 and 23,000 additional miles of dedicated CO2 pipeline might be needed in the U.S. before 2050 across these two cases. While that is a significant increase over the 3,900 miles that comprise the existing national CO2 pipeline infrastructure, it is critically important to realize that the demand for additional CO2 pipeline capacity will unfold relatively slowly and in a geographically dispersed manner as new dedicated CCS-enabled power plants and industrial facilities are brought online. During the period 2010-2030, the growth in the CO2 pipeline system is on the order of a few hundred to less than a thousand miles per year. In comparison during the period 1950-2000, the U.S. natural gas pipeline distribution system grew at rates that far exceed these projections in growth in a future dedicated CO2 pipeline system. This analysis indicates that the need to increase the size of the existing dedicated CO2 pipeline system should not be seen as a major obstacle for the commercial deployment of CCS technologies in the U.S. Nevertheless, there will undoubtedly be some associated regulatory and siting issues to work through but these issues should not be unmanageable based on the size of infrastructure requirements alone.

Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

2009-04-20T23:59:59.000Z

248

S. 1583: This Act may be cited as the Pipeline Safety Improvement Act of 1991, introduced in the United States Senate, One Hundred Second Congress, First Session, September 16, 1991  

SciTech Connect

This bill would amend the Natural Gas Pipeline Act of 1968 and the Hazardous Liquid Pipeline Safety Act of 1979 to authorize appropriations and to improve pipeline safety. The bill describes the following: authorization of appropriations; definitions; environmental protection; identification of certain pipelines; rapid shutdown of pipeline facilities; excess flow valves; replacement of cast iron pipelines; safety of pipe not owned by pipeline operators; one-call notification systems; underwater abandoned pipeline facilities; study of underwater abandoned pipeline facilities; and exemption from hours of service requirements.

1991-01-01T23:59:59.000Z

249

NewPipeline-Robot-Power-Source.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Sources for Power Sources for Inspection Robots in Natural Gas Transmission Pipelines By Shreekant B. Malvadkar and Edward L. Parsons Office of Systems & Policy Support INTRODUCTION Strategic Center of Natural gas's (SCNG) Natural Gas Infrastructure Reliability Product Team has undertaken the development of a prototype robot that would inspect and possibly repair transmission pipelines. NETL has granted a contract for this purpose to New York Gas Group (NYGAS) and Carnegie Mellon University's (CMU) National Robotics Engineering Consortium (NREC). The purpose of this study is to analyze various onboard power supply options for such a commercially viable robot that can operate in a transmission pipeline for extended period. The primary power sources considered are wind turbines, rechargeable batteries,

250

Hydrogen degradation of pipeline steels: Final report  

DOE Green Energy (OSTI)

Purpose of investigations conducted by Battelle Columbus Laboratories was to develop a research data base applicable to the problem of hydrogen degradation in pipeline steels. The findings would provide pipeline designers and operators with insight for developing specifications and procedures in the event available natural gas transmission/distribution systems are used for hydrogen transport. Fundamental investigations and data derived from sophisticated analytical and test procedures have been equated to practical field conditions and experiences as may be encountered should the hydrogen energy storage/transport option become an economic reality.

Holbrook, J.H.; Collings, E.W.; Cialone, H.J.; Drauglis, E.J.

1986-03-01T23:59:59.000Z

251

Using Natural Gas Transmission Pipeline Costs to Estimate Hydrogen Pipeline Costs  

E-Print Network (OSTI)

cost dependent on pipeline length and diameter against thedescribe with only the pipeline length and diameter. Labordescribed by the pipeline diameter and length alone. In some

Parker, Nathan

2004-01-01T23:59:59.000Z

252

Causes of Pipeline Failures  

Science Conference Proceedings (OSTI)

Table 1   Types of defects that can cause pipeline failures...pipe body Mechanical damage Environmental causes Corrosion (external or internal) Hydrogen-stress cracking External stress corrosion cracking Internal sulfide-stress cracking Hydrogen blistering Fatigue Miscellaneous causes Secondary loads Weldments to pipe surface Wrinkle bends Internal combustion...

253

New Materials for Hydrogen Pipelines  

NLE Websites -- All DOE Office Websites (Extended Search)

OAK OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY New Materials for Hydrogen Pipelines New Materials for Hydrogen Pipelines Barton Smith, Barbara Frame, Cliff Eberle, Larry Anovitz, James Blencoe and Tim Armstrong Oak Ridge National Laboratory Jimmy Mays University of Tennessee, Knoxville Hydrogen Pipeline Working Group Meeting August 30-31, 2005 Augusta, Georgia 2 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Overview Overview - - Barriers and Technical Targets Barriers and Technical Targets * Barriers to Hydrogen Delivery - Existing steel pipelines are subject to hydrogen embrittlement and are inadequate for widespread H 2 distribution. - Current joining technology (welding) for steel pipelines is major cost factor and can exacerbate hydrogen embrittlement issues.

254

Mobile sensor network to monitor wastewater collection pipelines  

E-Print Network (OSTI)

Advanced pipeline monitoringDesign of mobile pipeline floating sensor “SewerSnortIllustration of mobile pipeline floating sensor monitoring

Lim, Jungsoo

2012-01-01T23:59:59.000Z

255

[Interstate Clean Transportation]. Final Report for FG02-99EE50591  

DOE Green Energy (OSTI)

The Interstate Clean Transportation (ICTC) purpose is to develop a public-private partnership dedicated to accelerating the market penetration of clean, alternative fuel vehicles (AFVs) in interstate goods movement. In order to foster project development, the ICTC activity sought to increase awareness of heavy-duty AFVs among truck fleet operators.

Wendt, Lee

2002-07-19T23:59:59.000Z

256

EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage  

U.S. Energy Information Administration (EIA) Indexed Site

Storage Storage About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Underground Natural Gas Storage Overview | Regional Breakdowns Overview Underground natural gas storage provides pipelines, local distribution companies, producers, and pipeline shippers with an inventory management tool, seasonal supply backup, and access to natural gas needed to avoid imbalances between receipts and deliveries on a pipeline network. There are three principal types of underground storage sites used in the United States today. They are: · depleted natural gas or oil fields (326), · aquifers (43), or · salt caverns (31). In a few cases mine caverns have been used. Most underground storage facilities, 82 percent at the beginning of 2008, were created from reservoirs located in depleted natural gas production fields that were relatively easy to convert to storage service, and that were often close to consumption centers and existing natural gas pipeline systems.

257

Gas Pipeline Safety (West Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pipeline Safety (West Virginia) Pipeline Safety (West Virginia) Gas Pipeline Safety (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Safety and Operational Guidelines Provider Public Service Commission of West Virginia The Gas Pipeline Safety Section of the Engineering Division is responsible for the application and enforcement of pipeline safety regulations under Chapter 24B of the West Virginia Code and 49 U.S.C. Chapter 601,

258

Enhancing protection for unusually sensitive ecological areas from pipeline releases  

E-Print Network (OSTI)

ECOLOGICAL AREAS FROM PIPELINE RELEASES Christina Sames;Administration, Office of Pipeline Safety, DPS-10/ 400 7thof a hazardous liquid pipeline accident. Pipeline operators

Sames, Christina; Fink, Dennis

2001-01-01T23:59:59.000Z

259

Renewable Energy and the Clean Air Interstate Rule  

Wind Powering America (EERE)

Joe Bryson Joe Bryson US Environmental Protection Agency Climate Protection Partnerships Division January 12, 2006 bryson.joe@epa.gov (202) 343-9631 Renewable Energy and the Clean Air Interstate Rule My Perspective Where I Sit: Climate Change Protection Division * Energy STAR products, buildings, and homes * Green Power Partnership * CHP Partnership * Climate Leaders * EPA-State Partnerships on Clean Energy and Utility Regulation Who I Coordinate with: Clean Air Markets Division * Responsible for the design, analysis, and implementation of EPA's cap and trade programs for SO2, NOx, and Hg Information from Two Views Environmental Regulatory Perspective Renewable Energy Perspective Environmental Regulatory Perspective States have full authority and flexibility to allocate NOx

260

Alliant Energy Interstate Power and Light (Gas and Electric) - Farm  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas and Electric) - Farm Gas and Electric) - Farm Equipment Energy Efficiency Incentives Alliant Energy Interstate Power and Light (Gas and Electric) - Farm Equipment Energy Efficiency Incentives < Back Eligibility Agricultural Savings Category Other Heating & Cooling Cooling Appliances & Electronics Home Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Commercial Heating & Cooling Heating Commercial Lighting Lighting Manufacturing Water Heating Program Info Start Date 1/1/2012 State Iowa Program Type Utility Rebate Program Rebate Amount Energy Audit: Free Clothes Washer: $100 Refrigerator Replacement: $50 Dishwasher Replacement: $20 Freezer: $25 Room Air Conditioner: $25 Water Heater: $50 Electric Heat Pump Water Heaters: $100 Circulating Fans: $25 - $75

Note: This page contains sample records for the topic "interstate pipeline systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Colorado's Prospects for Interstate Commerce in Renewable Power  

DOE Green Energy (OSTI)

Colorado has more renewable energy potential than it is ever likely to need for its own in-state electricity consumption. Such abundance may suggest an opportunity for the state to sell renewable power elsewhere, but Colorado faces considerable competition from other western states that may have better resources and easier access to key markets on the West Coast. This report examines factors that will be important to the development of interstate commerce for electricity generated from renewable resources. It examines market fundamentals in a regional context, and then looks at the implications for Colorado.

Hurlbut, D. J.

2009-12-01T23:59:59.000Z

262

The VVV-SkZ pipeline: an automatic PSF-fitting photometric pipeline for the VVV survey  

E-Print Network (OSTI)

We present the VVV-SkZ_pipeline, a DAOPHOT-based photometric pipeline, created to perform PSF-fitting photometry of "VISTA Variables in the V\\'ia L\\'actea" (VVV) ESO Public Survey data. The pipeline replaces the user avoiding repetitive interaction in all the operations, retaining all of the benefits of the power and accuracy of the DAOPHOT suite. The pipeline provides an astrometrized photometric catalog reliable up to more than 2 magnitudes brighter than the saturation limit, where other techniques fail. It also produces deeper and more accurate photometry. These achievements allow the VVV-SkZ_pipeline to produce data well anchored to the selected standard photometric system and analyze important phenomena (i.e. TRGB, RGB slope, HB morphology, RR Lyrae), that other methods are not able to manage.

Mauro, Francesco; Chené, André-Nicolas; Geisler, Doug; Alonso-García, Javier; Borissova, Jura; Carraro, Giovanni

2013-01-01T23:59:59.000Z

263

INNOVATIVE ELECTROMAGNETIC SENSORS FOR PIPELINE CRAWLERS  

Science Conference Proceedings (OSTI)

Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they encounter. Recent development efforts include a new generation of powered inspection platforms that crawl slowly inside a pipeline and are able to maneuver past the physical barriers that can limit inspection. At Battelle, innovative electromagnetic sensors are being designed and tested for these new pipeline crawlers. The various sensor types can be used to assess a wide range of pipeline anomalies including corrosion, mechanical damage, and cracks. Battelle has completed the second year of work on a projected three-year development effort. In the first year, two innovative electromagnetic inspection technologies were designed and tested. Both were based on moving high-strength permanent magnets to generate inspection energy. One system involved translating permanent magnets towards the pipe. A pulse of electric current would be induced in the pipe to oppose the magnetization according to Lenz's Law. The decay of this pulse would indicate the presence of defects in the pipe wall. This inspection method is similar to pulsed eddy current inspection methods, with the fundamental difference being the manner in which the current is generated. Details of this development effort were reported in the first semiannual report on this project. The second inspection methodology is based on rotating permanent magnets. The rotating exciter unit produces strong eddy currents in the pipe wall. At distances of a pipe diameter or more from the rotating exciter, the currents flow circumferentially. These circumferential currents are deflected by pipeline defects such as corrosion and axially aligned cracks. Simple sensors are used to detect the change in current densities in the pipe wall. The second semiannual report on this project reported on experimental and modeling results. The results showed that the rotating system was more adaptable to pipeline inspection and therefore only this system will be carried into the second year of the sensor development. In the third reporting period, the rotating system inspection was further developed. Since this is a new inspection modality without published fundamentals to build upon, basic analytical and experimental investigations were performed. A closed form equation for designing rotating exciters and positioning sensors was derived from fundamental principles. Also signal processing methods were investigated for detection and assessment of pipeline anomalies. A lock in amplifier approach was chosen as the method for detecting the signals. Finally, mechanical implementations for passing tight restrictions such as plug valves were investigated. This inspection concept is new and unique; a United States patent application has been submitted. In this fourth reporting period, the rotating system inspection was further developed. A multichannel real-time data recorder system was implemented and fundamental experiments were conducted to provide data to aid in the design of the rotating magnetizer system. An unexpected but beneficial result was achieved when examining the separation between the rotating magnet and the pipe wall; separations of over an inch could be tolerated. Essentially no change in signal from corrosion anomalies could be detected for separations up to 1.35 inches. The results presented in this report will be used to achieve the next deliverable, designs of components of the rotating inspection system that will function with inspection crawlers in a pipeline environment.

J. Bruce Nestleroth

2005-11-30T23:59:59.000Z

264

Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines  

NLE Websites -- All DOE Office Websites (Extended Search)

Code for Hydrogen Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop Augusta, Georgia August 31, 2005 Louis Hayden, PE Chair ASME B31.12 3 Presentation Outline * Approval for new code development * Charge from BPTCS to B31 Standards Committee for Hydrogen Piping/Pipeline code development * B31.12 Status & Structure * Hydrogen Pipeline issues * Research Needs * Where Do We Go From Here? 4 Code for Hydrogen Piping and Pipelines * B31 Hydrogen Section Committee to develop a new code for H 2 piping and pipelines - Include requirements specific to H 2 service for power, process, transportation, distribution, commercial, and residential applications - Balance reference and incorporation of applicable sections of B31.1, B31.3 and B31.8 - Have separate parts for industrial, commercial/residential

265

U.S. Natural Gas Interstate Receipts (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Receipts (Million Cubic Feet) Receipts (Million Cubic Feet) U.S. Natural Gas Interstate Receipts (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 50,697,415 1990's 51,022,894 49,708,414 52,574,795 52,674,053 57,969,941 61,167,051 62,953,877 61,199,549 55,139,674 57,323,473 2000's 58,570,289 65,774,849 63,389,468 65,793,961 64,423,388 63,027,775 61,863,323 66,858,134 70,305,954 72,022,602 2010's 74,778,078 74,661,629 70,195,553 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: U.S. International and Interstate Movements of Natural Gas by State

266

Additions to Capacity on the U.S. Natural Gas Pipeline Network: 2005  

Gasoline and Diesel Fuel Update (EIA)

percent increase in capacity additions (see percent increase in capacity additions (see Box, "Capacity Measures," p. 4). Indeed, less new natural gas pipeline mileage was added in 2005 than in any year during the past decade. 1 Energy Information Administration, Office of Oil and Gas, August 2006 1 In 2005, at least 31 natural gas pipeline projects of varying profiles 2 were completed in the lower 48 States and the Gulf of Mexico (Figure 3, Table 1). Of these, 15 were expansions (increases in capacity) on existing natural gas pipelines while the other 16 were 9 system extensions or laterals associated with existing natural gas pipelines, 5 new natural gas pipeline systems, and 2 oil pipeline conversions. Expenditures for natural gas pipeline development amounted to less than $1.3

267

Pipeline corridors through wetlands  

SciTech Connect

This paper presents preliminary findings from six vegetational surveys of gas pipeline rights-of-way (ROW) through wetlands and quantifies the impacts of a 20-year-old pipeline ROW through a boreal forest wetland. Six sites of various ages were surveyed in ecosystems ranging from coastal marsh to forested wetland. At all sites except one, both the number and the percentage of wetland species on the Row approximated or exceeded those in the adjacent natural area. The boreal forest study showed that (1) adjacent natural wetland areas were not altered in type; (2) water sheet flow restriction had been reversed by nature; (3) no nonnative plant species invaded the natural area; (4) three-quarters of the ROW area was a wetland, and (5) the ROW increased diversity.

Zimmerman, R.E.; Wilkey, P.L. [Argonne National Lab., IL (United States); Isaacson, H.R. [Gas Research Institute (United States)

1992-12-01T23:59:59.000Z

268

Pipeline corridors through wetlands  

Science Conference Proceedings (OSTI)

This paper presents preliminary findings from six vegetational surveys of gas pipeline rights-of-way (ROW) through wetlands and quantifies the impacts of a 20-year-old pipeline ROW through a boreal forest wetland. Six sites of various ages were surveyed in ecosystems ranging from coastal marsh to forested wetland. At all sites except one, both the number and the percentage of wetland species on the Row approximated or exceeded those in the adjacent natural area. The boreal forest study showed that (1) adjacent natural wetland areas were not altered in type; (2) water sheet flow restriction had been reversed by nature; (3) no nonnative plant species invaded the natural area; (4) three-quarters of the ROW area was a wetland, and (5) the ROW increased diversity.

Zimmerman, R.E.; Wilkey, P.L. (Argonne National Lab., IL (United States)); Isaacson, H.R. (Gas Research Institute (United States))

1992-01-01T23:59:59.000Z

269

Crossing Active Faults on the Sakhalin II Onshore Pipeline Route: Pipeline Design and Risk Analysis  

SciTech Connect

Twin oil (20 and 24 inch) and gas (20 and 48 inch) pipeline systems stretching 800 km are being constructed to connect offshore hydrocarbon deposits from the Sakhalin II concession in the North to an LNG plant and oil export terminal in the South of Sakhalin island. The onshore pipeline route follows a regional fault zone and crosses individual active faults at 19 locations. Sakhalin Energy, Design and Construction companies took significant care to ensure the integrity of the pipelines, should large seismic induced ground movements occur during the Operational life of the facilities. Complex investigations including the identification of the active faults, their precise location, their particular displacement values and assessment of the fault kinematics were carried out to provide input data for unique design solutions. Lateral and reverse offset displacements of 5.5 and 4.5 m respectively were determined as the single-event values for the design level earthquake (DLE) - the 1000-year return period event. Within the constraints of a pipeline route largely fixed, the underground pipeline fault crossing design was developed to define the optimum routing which would minimize stresses and strain using linepipe materials which had been ordered prior to the completion of detailed design, and to specify requirements for pipe trenching shape, materials, drainage system, etc. Detailed Design was performed with due regard to actual topography and to avoid the possibility of the trenches freezing in winter, the implementation of specific drainage solutions and thermal protection measures.

Mattiozzi, Pierpaolo [Snamprogetti-Saipem, Via Toniolo, 1, 61032 Fano (Italy); Strom, Alexander [Institute of Geospheres Dynamics, Leninskiy Avenue, 38, Building 1, 119334, Moscow (Russian Federation)

2008-07-08T23:59:59.000Z

270

EIA - Natural Gas Pipeline Network - Natural Gas Pipeline ...  

U.S. Energy Information Administration (EIA)

Home > Natural Gas > About U.S. Natural Gas Pipelines > U.S ... The EIA has determined that the informational map displays here do not raise security ...

271

Natural Gas Pipeline & Distribution Use  

Gasoline and Diesel Fuel Update (EIA)

(Million Cubic Feet) Data Series: Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Volumes Delivered to Consumers Volumes Delivered to Residential...

272

BENCHMARKING EMERGING PIPELINE INSPECTION TECHNOLOGIES  

NLE Websites -- All DOE Office Websites (Extended Search)

FINAL REPORT Benchmarking Emerging Pipeline Inspection Technologies To Department of Energy National Energy Technology Laboratory (NETL) DE-AP26-04NT40361 and Department of...

273

Leaking Pipelines: Doctoral Student Family Formation  

E-Print Network (OSTI)

Sari M. “Why the Academic Pipeline Leaks: Fewer Men thanone reason the academic pipeline leaks. 31 Blair-Loy, Mary.to leak out of the “academic pipeline. ” The term “academic

Serrano, Christyna M.

2008-01-01T23:59:59.000Z

274

,"U.S. Natural Gas Net Interstate Receipts (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Interstate Receipts (MMcf)" Interstate Receipts (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Net Interstate Receipts (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1260_nus_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1260_nus_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:38:24 PM"

275

Electric System Decision Making in Other Regions: A Preliminary...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Analysis Prepared for Western Interstate Energy Board Committee on Regional Electric Power Cooperation Electric System Decision Making in Other Regions: A Preliminary...

276

Three dimensional scour along offshore pipelines.  

E-Print Network (OSTI)

??Three-dimensional scour propagation along offshore pipelines is a major reason to pipeline failures in an offshore environment. Although the research on scour in both numerical… (more)

Yeow, Kervin

2007-01-01T23:59:59.000Z

277

Gas Pipeline Securities (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pipeline Securities (Indiana) Gas Pipeline Securities (Indiana) Eligibility Utility Investor-Owned Utility Industrial MunicipalPublic Utility Rural Electric Cooperative Fuel...

278

Natural Gas Pipeline Projects Completed in 2003  

U.S. Energy Information Administration (EIA)

Table 2. Natural Gas Pipeline Projects Completed in 2003; Ending Region & State: Begins in State - Region: Pipeline/Project Name: FERC Docket ...

279

Gas Pipelines (Texas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pipelines (Texas) Gas Pipelines (Texas) Eligibility Utility Fed. Government Commercial Investor-Owned Utility Industrial Construction MunicipalPublic Utility Local Government...

280

Pipeline Safety Rule (Tennessee) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sites Power Marketing Administration Other Agencies You are here Home Savings Pipeline Safety Rule (Tennessee) Pipeline Safety Rule (Tennessee) Eligibility Commercial...

Note: This page contains sample records for the topic "interstate pipeline systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

NIST Building Facility for Hydrogen Pipeline Testing  

Science Conference Proceedings (OSTI)

... long-term exposure to hydrogen can embrittle existing pipelines, increasing the ... term service tests and apply them to study pipeline materials and ...

2012-10-02T23:59:59.000Z

282

Machinist Pipeline/Apprentice Program Program Description  

NLE Websites -- All DOE Office Websites (Extended Search)

Machinist PipelineApprentice Program Program Description The Machinist Pipeline Program was created by the Prototype Fabrication Division to fill a critical need for skilled...

283

IEEE Transactions on Power Apparatus and Systems, Vol.PAS-98, No.5 Sept/Oct 1979 MITIGATION OF BURIED PIPELINE VOLTAGES  

E-Print Network (OSTI)

is the writing of a tutorial handbook that can be used by field personnel to predict the in- duced pipeline accidentally grounding the pipe through his body faces the hazard of electric shock due to steady current flow, if contact with the pipe is not broken. Injury or death can result if the current is large enough. F 79 186

Taflove, Allen

284

780 IEEE Transactions on Power Apparatus and Systems, Vol. PAS-98, No. 3 May/June 1979 PREDICTION METHOD FOR BURIED PIPELINE VOLTAGES  

E-Print Network (OSTI)

The Impact of Pipelining on Energy per Operation in Field-Programmable Gate Arrays Steven J.E. Wilton1, Su-Shin Ang2 and Wayne Luk2 1Dept. of Electrical and Computer Eng. University of British Columbia Vancouver, B.C., Canada 2Department of Computing Imperial College London, England Abstract

Taflove, Allen

285

Southern cone energy network coal gasification for SNG production and pipeline system feasibility study (Brazil). Volume 2. Export trade information  

Science Conference Proceedings (OSTI)

Part I of the volume reports on the coal gasification plant study performed by the Advanced Technology Division of Fluor Engineers and Constructors, Inc., together with information on coal resources and markets, gas demand, and by-product markets provided by Jaakko Poyry. Jaakko Poyry also supported the study with site, cost, economic, and other required local Brazilian data. Part II of the volume presents the results of Fluor's study of an SNG gas transport and gas distribution system. Also included are the results of an alternate study into barging coal north to a gasification plant located in the Santos area.

Not Available

1992-08-01T23:59:59.000Z

286

Time-Constrained Loop Pipelining  

Science Conference Proceedings (OSTI)

This paper addresses the problem of Time-Constrained Loop Pipelining, i.e. given a fixed throughput, finding a schedule of a loop which minimizes resource requirements. This paper proposes a methodology, called TCLP, based on dividing the problem into ... Keywords: loop pipelining, scheduling, timing and resource contraints, register optimization

Fermin Sanchez

1995-12-01T23:59:59.000Z

287

Model documentation: Natural gas transmission and distribution model of the National Energy Modeling System. Volume 1  

SciTech Connect

The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of integrated Analysis and Forecasting of the Energy information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. The NGTDM is the model within the NEMS that represents the transmission, distribution, and pricing of natural gas. The model also includes representations of the end-use demand for natural gas, the production of domestic natural gas, and the availability of natural gas traded on the international market based on information received from other NEMS models. The NGTDM determines the flow of natural gas in an aggregate, domestic pipeline network, connecting domestic and foreign supply regions with 12 demand regions. The methodology employed allows the analysis of impacts of regional capacity constraints in the interstate natural gas pipeline network and the identification of pipeline capacity expansion requirements. There is an explicit representation of core and noncore markets for natural gas transmission and distribution services, and the key components of pipeline tariffs are represented in a pricing algorithm. Natural gas pricing and flow patterns are derived by obtaining a market equilibrium across the three main elements of the natural gas market: the supply element, the demand element, and the transmission and distribution network that links them. The NGTDM consists of four modules: the Annual Flow Module, the Capacity F-expansion Module, the Pipeline Tariff Module, and the Distributor Tariff Module. A model abstract is provided in Appendix A.

NONE

1995-02-17T23:59:59.000Z

288

Midwest Interstate Compact on Low-Level Radioactive Waste (Multiple States)  

Energy.gov (U.S. Department of Energy (DOE))

The Midwest Interstate Low-Level Radioactive Waste Compact is an agreement between the states of Indiana, Iowa, Minnesota, Missouri, Ohio, and Wisconsin that provides for the cooperative and safe...

289

Alliant Energy Interstate Power and Light (Gas and Electric)- Low Interest Energy Efficiency Loan Program  

Energy.gov (U.S. Department of Energy (DOE))

Interstate Power and Light (Alliant Energy), in conjunction with Wells Fargo Bank, offers a low-interest loan for residential, commercial and agricultural customers who purchase and install energy...

290

Overcoming shadows of the past : post-conflict interstate reconciliation in East Asia and Europe  

E-Print Network (OSTI)

This dissertation explores the origins of interstate reconciliation after traumatic conflicts, mainly through the comparative study of postwar Sino-Japanese and (West) German-Polish relations. While Germany and Poland have ...

He, Yinan, 1970-

2004-01-01T23:59:59.000Z

291

Alliant Energy Interstate Power and Light (Gas and Electric)- Low Interest Energy Efficiency Loan Program  

Energy.gov (U.S. Department of Energy (DOE))

Alliant Energy (Interstate Power and Light - IP&L) offers low-interest financing program for the installation of energy efficient improvements. Businesses, Residences, farms or ag-related...

292

Alliant Energy Interstate Power and Light (Gas)- Business Energy Efficiency Rebate Program (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

Interstate Power and Light (IPL) offers a wide variety of incentives for commercial customers to save energy in eligible facilities, whether they are upgrading existing facilities or building new...

293

Composites Technology for Hydrogen Pipelines  

NLE Websites -- All DOE Office Websites (Extended Search)

Composites Technology Composites Technology for Hydrogen Pipelines Barton Smith, Barbara Frame, Larry Anovitz and Cliff Eberle Oak Ridge National Laboratory Pipeline Working Group Meeting Pipeline Working Group Meeting Aiken, South Carolina Aiken, South Carolina September 25-26, 2007 September 25-26, 2007 Managed by UT-Battelle for the Department of Energy 2 Managed by UT Battelle for the Department of Energy Presentation name - _ Composites Technology for Hydrogen Pipelines Fiber-reinforced polymer pipe Project Overview: Investigate application of has excellent burst and collapse composite, fiber-reinforced polymer pipeline pressure ratings, large tensile technology for hydrogen transmission and and compression strengths, and distribution. superior chemical and corrosion resistance. Long lengths can be

294

Microsoft Word - SPR Emergency Pipeline Repair, 2013-2017 NEPA.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emergency Pipeline and Piping Repair, 2013-2017 Emergency Pipeline and Piping Repair, 2013-2017 Description: Subcontractor shall shall provide all labor, materials, equipment, supervision, transportation and services required to perform emergency repairs on the SPR system site piping (including underground fire protection systems and offsite pipelines). Subcontractor shall mobilize equipment to perform excavation, backfill, hydrostatic testing, welding and cutting, blasting, coating and painting of large and small diameter piping systems on the SPR facilities and offsite pipelines. Subcontractor shall also assist in emergency exercises by assemblying temporary piping spools and positioning pump skids and temporary supports. This NEPA document covers the period from 2013-2017.

295

Feasibility study of Northeast Thailand Gas Pipeline Project. Final report. Part 3. Gas transmission pipeline. Export trade information  

SciTech Connect

The volume is the third part of a three part report submitted to the Petroleum Authority of Thailand. Part III examines the feasibility of constructing a gas pipeline from the Nam Phong gas field in the northeast region to the existing natural gas pipeline network in the central region. It contains information concerning the system analysis, route investigation and selection, the order of magnitude cost estimate and the economic and financial analysis.

1989-09-01T23:59:59.000Z

296

Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation  

NLE Websites -- All DOE Office Websites (Extended Search)

Embrittlement Embrittlement of Pipeline Steels: Causes and Remediation P. Sofronis, I. M. Robertson, D. D. Johnson University of Illinois at Urbana-Champaign Hydrogen Pipeline Working Group Workshop Augusta, GA, August 30, 2005 Funding and Duration * Timeline - Project start date: 7/20/05 - Project end date: 7/19/09 - Percent complete: 0.1% * Budget: Total project funding: 300k/yr * DOE share: 75% * Contractor share: 25% * Barriers - Hydrogen embrittlement of pipelines and remediation (mixing with water vapor?) - Assessment of hydrogen compatibility of the existing natural gas pipeline system for transporting hydrogen - Suitable steels, and/or coatings, or other materials to provide safe and reliable hydrogen transport and reduced capital cost 2 Team and Collaborators 3 * Industrial Partners: SECAT

297

Common Pipeline Carriers (North Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Common Pipeline Carriers (North Dakota) Common Pipeline Carriers (North Dakota) Common Pipeline Carriers (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State North Dakota Program Type Siting and Permitting Any entity that owns, operates, or manages a pipeline for the purpose of transporting crude petroleum, gas, coal, or carbon dioxide within or through the state of North Dakota, or is engaged in the business of

298

Engineering High Performance Service-Oriented Pipeline Applications with MeDICi  

Science Conference Proceedings (OSTI)

The pipeline software architecture pattern is commonly used in many application domains to structure a software system. A pipeline comprises a sequence of processing steps that progressively transform data to some desired outputs. As pipeline-based systems are required to handle increasingly large volumes of data and provide high throughput services, simple scripting-based technologies that have traditionally been used for constructing pipelines do not scale. In this paper we describe the MeDICI Integration Framework (MIF), which is specifically designed for building flexible, efficient and scalable pipelines that exploit distributed services as elements of the pipeline. We explain the core runtime and development infrastructures that MIF provides, and demonstrate how MIF has been used in two complex applications to improve performance and modifiability.

Gorton, Ian; Wynne, Adam S.; Liu, Yan

2011-01-07T23:59:59.000Z

299

MHK Technologies/Deep Water Pipelines | Open Energy Information  

Open Energy Info (EERE)

Water Pipelines Water Pipelines < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Deep Water Pipelines.jpg Technology Profile Primary Organization Makai Ocean Engineering Inc Project(s) where this technology is utilized *MHK Projects/Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters Technology Resource Click here Ocean Thermal Energy Conversion (OTEC) Technology Type Click here Closed-cycle Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description Examples include 24 pipe for Mini OTEC four 12 55 pipelines at Hawaii Natural Energy Laboratory with intakes from 2200 to 3000 deep used for OTEC research Significant work on 8 ft DoE pipeline in 1980s India OTEC pipe concept design in 1999 Developed gripper for novel OTEC Cold water pipe concept developed by Lockheed Martin Related technology of SeaWater Air Conditioning has resulted in five other subsea pipelines for Cornell University a resort in Bora Bora and Toronto saving 80 MW of air conditioning power

300

Magnetic Resonance Connectome Automated Pipeline  

E-Print Network (OSTI)

This manuscript presents a novel, tightly integrated pipeline for estimating a connectome, which is a comprehensive description of the neural circuits in the brain. The pipeline utilizes magnetic resonance imaging (MRI) data to produce a high-level estimate of the structural connectivity in the human brain. The Magnetic Resonance Connectome Automated Pipeline (MRCAP) is efficient and its modular construction allows researchers to modify algorithms to meet their specific requirements. The pipeline has been validated and over 200 connectomes have been processed and analyzed to date. This tool enables the prediction and assessment of various cognitive covariates, and this research is applicable to a variety of domains and applications. MRCAP will enable MR connectomes to be rapidly generated to ultimately help spur discoveries about the structure and function of the human brain.

Gray, William R; Vogelstein, Joshua T; Landman, Bennett A; Prince, Jerry L; Vogelstein, R Jacob

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "interstate pipeline systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Gas Utility Pipeline Tax (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

All gas utilities, including any entity that owns, manages, operates, leases, or controls a pipeline for the purpose of transporting natural gas in the state for sale or compensation, as well as...

302

Common Pipeline Carriers (North Dakota)  

Energy.gov (U.S. Department of Energy (DOE))

Any entity that owns, operates, or manages a pipeline for the purpose of transporting crude petroleum, gas, coal, or carbon dioxide within or through the state of North Dakota, or is engaged in the...

303

New Materials for Hydrogen Pipelines  

NLE Websites -- All DOE Office Websites (Extended Search)

Barbara Frame, Mike Simonson, Cliff Eberle, Jim Blencoe, and Tim Armstrong Hydrogen Pipeline R&D Project Review Meeting January 5-6, 2005 Oak Ridge National Laboratory 2 OAK...

304

Pipeline Processing of VLBI Data  

E-Print Network (OSTI)

As part of an on-going effort to simplify the data analysis path for VLBI experiments, a pipeline procedure has been developed at JIVE to carry out much of the data reduction required for EVN experiments in an automated fashion. This pipeline procedure runs entirely within AIPS, the standard data reduction package used in astronomical VLBI, and is used to provide preliminary calibration of EVN experiments correlated at the EVN MkIV data processor. As well as simplifying the analysis for EVN users, the pipeline reduces the delay in providing information on the data quality to participating telescopes, hence improving the overall performance of the array. A description of this pipeline is presented here.

C. Reynolds; Z. Paragi; M. Garrett

2002-05-08T23:59:59.000Z

305

Decoupled Sampling for Graphics Pipelines  

E-Print Network (OSTI)

We propose a generalized approach to decoupling shading from visibility sampling in graphics pipelines, which we call decoupled sampling. Decoupled sampling enables stochastic supersampling of motion and defocus blur at ...

Ragan-Kelley, Jonathan Millar

306

The pipeline and future of drug development in schizophrenia  

E-Print Network (OSTI)

The Pipeline and Future of Drug Development in SchizophreniaThe Drug Discovery Pipeline in Schizophrenia Keywords:discuss the current pipeline of drugs for schizophrenia,

Gray, J A; Roth, B L

2007-01-01T23:59:59.000Z

307

Prepared by Interstate Technology and Regulatory Cooperation Work Group  

E-Print Network (OSTI)

national coalition of personnel from the environmental regulatory agencies of some 40 states and the District of Columbia; three federal agencies; tribes; and public and industry stakeholders. The organization is devoted to reducing barriers to, and speeding interstate deployment of, better, more cost-effective, innovative environmental techniques. ITRC operates as a committee of the Environmental Research Institute of the States (ERIS), a Section 501(c)(3) public charity that supports the Environmental Council of the States (ECOS) through its educational and research activities aimed at improving the environment in the United States and providing a forum for state environmental policy makers. More information about ITRC and its available products and services can be found on the Internet at www.itrcweb.org. DISCLAIMER This document is designed to help regulators and others develop a consistent approach to their evaluation, regulatory approval, and deployment of specific technologies at specific sites. Although the information in this document is believed to be reliable and accurate, this document and all material set forth herein are provided without warranties of any kind, either express or implied, including but not limited to warranties of the accuracy or completeness of information

unknown authors

1999-01-01T23:59:59.000Z

308

Environmental effects of interstate power trading on electricity consumption mixes  

SciTech Connect

Although many studies of electricity generation use national or state average generation mix assumptions, in reality a great deal of electricity is transferred between states with very different mixes of fossil and renewable fuels, and using the average numbers could result in incorrect conclusions in these studies. The authors create electricity consumption profiles for each state and for key industry sectors in the U.S. based on existing state generation profiles, net state power imports, industry presence by state, and an optimization model to estimate interstate electricity trading. Using these 'consumption mixes' can provide a more accurate assessment of electricity use in life-cycle analyses. It is concluded that the published generation mixes for states that import power are misleading, since the power consumed in-state has a different makeup than the power that was generated. And, while most industry sectors have consumption mixes similar to the U.S. average, some of the most critical sectors of the economy - such as resource extraction and material processing sectors - are very different. This result does validate the average mix assumption made in many environmental assessments, but it is important to accurately quantify the generation methods for electricity used when doing life-cycle analyses. 16 refs., 7 figs., 2 tabs.

Joe Marriott; H. Scott Matthews [Carnegie Mellon University, Pittsburgh, PA (United States). Department of Civil and Environmental Engineering

2005-11-15T23:59:59.000Z

309

Growing demand for gas spawns pipeline projects  

Science Conference Proceedings (OSTI)

This paper reports that burgeoning demand for gas is fueling pipeline construction in Eastern and Western hemispheres. In the East, the North Sea is the focal point for activity. And in the West, the U.S. gas market is the power behind construction. As predictions of U.S. gas demand increase, Canadian pipeliners adjust expansion plans to be ready to capture greater shares of markets. Canada's TransCanada Pipelines Ltd. is racing to step up its share of the U.S. market. TransCanada's Western Gas Marketing Ltd. sold 242.3 bcf of gas in the 3 months ended last June 30, a 9.8% increase from last year. TransCanada reported lower volumes sold into Canadian markets, while exports into the U.S. continued to rise. Gas Research Institute (GRI) projects Canadian gas exports to the U.S. by 2000 will reach 2 tcf/year and LNG exports 800 bcf/year. U.S. gas supplies could increase to 23.9 tcf/year by 2010, mostly from Lower 48 production. GRI says supplies from Canada will make up the balance. In the past 2 years, TransCanada has spent about $1 billion expanding its interprovincial main line system.

Not Available

1991-09-09T23:59:59.000Z

310

EIA - Natural Gas Pipeline Network - Transportation Process & Flow  

U.S. Energy Information Administration (EIA) Indexed Site

Process and Flow Process and Flow About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Transportation Process and Flow Overview | Gathering System | Processing Plant | Transmission Grid | Market Centers/Hubs | Underground Storage | Peak Shaving Overview Transporting natural gas from the wellhead to the final customer involves several physical transfers of custody and multiple processing steps. A natural gas pipeline system begins at the natural gas producing well or field. Once the gas leaves the producing well, a pipeline gathering system directs the flow either to a natural gas processing plant or directly to the mainline transmission grid, depending upon the initial quality of the wellhead product.

311

Pipeline Safety (Pennsylvania) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pipeline Safety (Pennsylvania) Pipeline Safety (Pennsylvania) Pipeline Safety (Pennsylvania) < Back Eligibility Utility Investor-Owned Utility Industrial Municipal/Public Utility Rural Electric Cooperative Program Info State Pennsylvania Program Type Safety and Operational Guidelines Provider Pennsylvania Public Utilities Commission The Pennsylvania legislature has empowered the Public Utility Commission to direct and enforce safety standards for pipeline facilities and to regulate safety practices of certificated utilities engaged in the transportation of natural gas and other gas by pipeline. The Commission is authorized to enforce federal safety standards as an agent for the U.S. Department of Transportation's Office of Pipeline Safety. The safety standards apply to the design, installation, operation,

312

TASSEL: MLM/GLM Pipeline: Guide to using Tassel Pipeline Terry Casstevens (tmc46@cornell.edu), Zhiwu Zhang, Peter Bradbury, and Edward  

E-Print Network (OSTI)

1 TASSEL: MLM/GLM Pipeline: Guide to using Tassel Pipeline Terry Casstevens (tmc46@cornell..............................................................................................................................................................2 Appendix A: MLM Pipeline Diagrams..........................................................................................................3 Appendix B: GLM Pipeline Diagrams

Buckler, Edward S.

313

Power Line Fault Current Coupling to Nearby Natural Gas Pipelines, Volumes 1-3  

Science Conference Proceedings (OSTI)

The Electromagnetic and Conductive Coupling Analysis of Powerlines and Pipelines (ECCAPP) computer program provides an easy-to-use method for analyzing the effects of transmission lines on gas pipelines. The program models conductive and inductive interference, enabling electrical and gas engineers to identify these effects and design mitigation systems when necessary.

1987-11-24T23:59:59.000Z

314

What's your idea?: a case study of a grassroots innovation pipeline within a large software company  

Science Conference Proceedings (OSTI)

Establishing a grassroots innovation pipeline has come to the fore as strategy for nurturing innovation within large organizations. A key element of such pipelines is the use of an idea management system that enables and encourages community ideation ... Keywords: creativity, idea management, innovation, organizations

Brian P. Bailey; Eric Horvitz

2010-04-01T23:59:59.000Z

315

Accelerated Simulation of the Probability of Failure of a Main Oil Pipeline Planned Target  

Science Conference Proceedings (OSTI)

A serial model of a main oil pipeline system is investigated. Lifetime and repair-time distribution functions of the components are assumed to be of a general form. A new accelerated simulation method is proposed enabling one to construct high-accuracy ... Keywords: accelerated simulation, failure probability, main oil pipeline

N. Yu. Kuznetsov

2001-01-01T23:59:59.000Z

316

Model relaxations for the fuel cost minimization of steady-state gas pipeline networks  

Science Conference Proceedings (OSTI)

Natural gas, driven by pressure, is transported through pipeline network systems. As the gas flows through the network, energy and pressure are lost due to both friction between the gas and the pipes' inner wall, and heat transfer between the gas and ... Keywords: Compressor stations, Lower bounds, Natural gas, Nonconvex objective, Pipelines, Steady state, Transmission networks

Suming Wu; R. Z. Ríos-Mercado; E. A. Boyd; L. R. Scott

2000-01-01T23:59:59.000Z

317

Hydrogen pipeline compressors annual progress report.  

DOE Green Energy (OSTI)

The objectives are: (1) develop advanced materials and coatings for hydrogen pipeline compressors; (2) achieve greater reliability, greater efficiency, and lower capital in vestment and maintenance costs in hydrogen pipeline compressors; and (3) research existing and novel hydrogen compression technologies that can improve reliability, eliminate contamination, and reduce cost. Compressors are critical components used in the production and delivery of hydrogen. Current reciprocating compressors used for pipeline delivery of hydrogen are costly, are subject to excessive wear, have poor reliability, and often require the use of lubricants that can contaminate the hydrogen (used in fuel cells). Duplicate compressors may be required to assure availability. The primary objective of this project is to identify, and develop as required, advanced materials and coatings that can achieve the friction, wear, and reliability requirements for dynamically loaded components (seal and bearings) in high-temperature, high-pressure hydrogen environments prototypical of pipeline and forecourt compressor systems. The DOE Strategic Directions for Hydrogen Delivery Workshop identified critical needs in the development of advanced hydrogen compressors - notably, the need to minimize moving parts and to address wear through new designs (centrifugal, linear, guided rotor, and electrochemical) and improved compressor materials. The DOE is supporting several compressor design studies on hydrogen pipeline compression specifically addressing oil-free designs that demonstrate compression in the 0-500 psig to 800-1200 psig range with significant improvements in efficiency, contamination, and reliability/durability. One of the designs by Mohawk Innovative Technologies Inc. (MiTi{reg_sign}) involves using oil-free foil bearings and seals in a centrifual compressor, and MiTi{reg_sign} identified the development of bearings, seals, and oil-free tribological coatings as crucial to the successful development of an advanced compressor. MiTi{reg_sign} and ANL have developed potential coatings for these rigorous applications; however, the performance of these coatings (as well as the nickel-alloy substrates) in high-temperature, high-speed hydrogen environments is unknown at this point.

Fenske, G. R.; Erck, R. A. (Energy Systems)

2011-07-15T23:59:59.000Z

318

Application Filing Requirements for Natural Gas Pipeline Construction...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Application Filing Requirements for Natural Gas Pipeline Construction Projects (Wisconsin) Application Filing Requirements for Natural Gas Pipeline Construction Projects...

319

Processor Pipelines and Their Properties for Static WCET Analysis  

E-Print Network (OSTI)

When developing real-time systems, the worst-case execution time (WCET) is a commonly used measure for predicting and analyzing program and system timing behavior. Such estimates should preferrably be provided by static WCET analysis tools. Their analysis is made difficult by features of common processors, such as pipelines and caches.

Jakob Engblom; Bengt Jonsson

2002-01-01T23:59:59.000Z

320

REALTIME MONITORING OF PIPELINES FOR THIRD-PARTY CONTACT  

Science Conference Proceedings (OSTI)

Third-party contact with pipelines (typically caused by contact with a digging or drilling device) can result in mechanical damage to the pipe, in addition to coating damage that can initiate corrosion. Because this type of damage often goes unreported and can lead to eventual catastrophic failure of the pipe, a reliable, cost-effective method is needed for monitoring the pipeline and reporting third-party contact events. The impressed alternating cycle current (IACC) pipeline monitoring method developed by Southwest Research Institute (SwRI) consists of impressing electrical signals on the pipe by generating a time-varying voltage between the pipe and the soil. The signal voltage between the pipe and ground is monitored continuously at receiving stations located some distance away. Third-party contact to the pipe that breaks through the coating (thus resulting in a signal path to ground) changes the signal received at the receiving stations. The IACC method was shown to be a viable method that can be used to continuously monitor pipelines for third-party contact. Electrical connections to the pipeline can be made through existing cathodic protection (CP) test points without the need to dig up the pipe. The instrumentation is relatively simple, consisting of (1) a transmitting station with a frequency-stable oscillator and amplifier and (2) a receiving station with a filter, lock-in amplifier, frequency-stable oscillator, and remote reporting device (e.g. cell phone system). Maximum distances between the transmitting and receiving stations are approximately 1.61 km (1 mile), although the length of pipeline monitored can be twice this using a single transmitter and one receiver on each side (since the signal travels in both directions). Certain conditions such as poor pipeline coatings or strong induced 60-Hz signals on the pipeline can degrade IACC performance, so localized testing should be performed to determine the suitability for an IACC installation at a given location. The method can be used with pipelines having active CP systems in place without causing interference with operation of the CP system. The most appropriate use of IACC is monitoring of localized high-consequence areas where there is a significant risk of third-party contact (e.g. construction activity). The method also lends itself to temporary, low-cost installation where there is a short-term need for monitoring.

Gary L. Burkhardt

2005-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "interstate pipeline systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

U.S. International and Interstate Movements of Natural Gas by State  

U.S. Energy Information Administration (EIA) Indexed Site

International & Interstate Movements of Natural Gas by State International & Interstate Movements of Natural Gas by State (Million Cubic Feet) Area: U.S. Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period:

322

Co-scheduling hardware and software pipelines  

E-Print Network (OSTI)

In this paper we propose CO-Scheduling, a framework for simultaneous design of hardware pipelines struc-tures and software-pipelined schedules. Two important components of the Co-Scheduling framework are: (1) An extension to the analysis of hardware pipeline design that meets the needs of periodic (or software pipelined) schedules. Reservation tables, forbidden la-tencies, collision vectors, and state diagrams from classical pipeline theory are revisited and extended to solve the new problems. (2) An efficient method, based on the above extension of pipeline analysis, to perform (a) software pipeline scheduling and (b) hardware pipeline reconfiguration which are mutually “compatible ”. The proposed method has been implemented and pre-liminary experimental results for 1008 kernel loops are reported. Co-scheduling successfully obtains a sched-ule for 95 % of these loops. The median time to obtain these schedules is 0.25 seconds on a Sparc-20. Keywords:

R. Govindarajan; Erik R. Altman; Guang R. Gao

1996-01-01T23:59:59.000Z

323

Maurer computers for pipelined instruction processing†  

Science Conference Proceedings (OSTI)

We model micro-architectures with non-pipelined instruction processing and pipelined instruction processing using Maurer machines, basic thread algebra and program algebra. We show that stored programs are executed as intended with these micro-architectures. ...

J. a. Bergstra; C. a. Middelburg

2008-04-01T23:59:59.000Z

324

Pipeline Rupture: Review of Common Metallurgical Failure ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2012. Symposium, Failure Analysis and Prevention. Presentation Title, Pipeline Rupture: Review ...

325

EIA - Natural Gas Pipeline Network - Depleted Reservoir ...  

U.S. Energy Information Administration (EIA)

About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates

326

Department of Transportation Pipeline and Hazardous Materials...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Department of Transportation Pipeline and Hazardous Materials Safety Administration Activities Department of Transportation...

327

Computer Science and Information Technology Student Pipeline  

NLE Websites -- All DOE Office Websites (Extended Search)

Student Pipeline Program Description Los Alamos National Laboratory's High Performance Computing and Information Technology Divisions recruit and hire promising...

328

Regional Profiles: Pipeline Capacity and Service  

U.S. Energy Information Administration (EIA)

Regional Profiles: Pipeline Capacity ... large petrochemical and electric utility industries drawn there ... accounts for large electricity load ...

329

Complexity analysis of pipeline mapping problems in distributed heterogeneous networks  

Science Conference Proceedings (OSTI)

Largescale scientific applications require using various system resources to execute complex computing pipelines in distributed networks to support collaborative research. System resources are typically shared in the Internet or over dedicated connections based on their location, availability, capability, and capacity. Optimizing the network performance of computing pipelines in such distributed environments is critical to the success of these applications. We consider two types of largescale distributed applications: (1) interactive applications where a single dataset is sequentially processed along a pipeline; and (2) streaming applications where a series of datasets continuously flow through a pipeline. The computing pipelines of these applications consist of a number of modules executed in a linear order in network environments with heterogeneous resources under different constraints. Our goal is to find an efficient mapping scheme that allocates the modules of a pipeline to network nodes for minimum endtoend delay or maximum frame rate. We formulate the pipeline mappings in distributed environments as optimization problems and categorize them into six classes with different optimization goals and mapping constraints: (1) Minimum Endtoend Delay with No Node Reuse (MEDNNR), (2) Minimum Endtoend Delay with Contiguous Node Reuse (MEDCNR), (3) Minimum Endtoend Delay with Arbitrary Node Reuse (MEDANR), (4) Maximum Frame Rate with No Node Reuse or Share (MFRNNRS), (5) Maximum Frame Rate with Contiguous Node Reuse and Share (MFRCNRS), and (6) Maximum Frame Rate with Arbitrary Node Reuse and Share (MFRANRS). Here, 'contiguous node reuse' means that multiple contiguous modules along the pipeline may run on the same node and 'arbitrary node reuse' imposes no restriction on node reuse. Note that in interactive applications, a node can be reused but its resource is not shared. We prove that MEDANR is polynomially solvable and the rest are NP-complete. MEDANR, where either contiguous or noncontiguous modules in the pipeline can be mapped onto the same node, is essentially the Maximum n-hop Shortest Path problem, and can be solved using a dynamic programming method. In MEDNNR and MFRNNRS, any network node can be used only once, which requires selecting the same number of nodes for onetoone onto mapping. We show its NP-completeness by reducing from the Hamiltonian Path problem. Node reuse is allowed in MEDCNR, MFRCNRS and MFRANRS, which are similar to the Maximum n-hop Shortest Path problem that considers resource sharing. We prove their NP-completeness by reducing from the Disjoint-Connecting-Path Problem and Widest path with the Linear Capacity Constraints problem, respectively.

Lin, Ying [University of Tennessee, Knoxville (UTK); Wu, Qishi [ORNL; Zhu, Mengxia [ORNL; Rao, Nageswara S [ORNL

2009-04-01T23:59:59.000Z

330

Liquefaction and Pipeline Costs Bruce Kelly  

E-Print Network (OSTI)

1 Liquefaction and Pipeline Costs Bruce Kelly Nexant, Inc. Hydrogen Delivery Analysis Meeting May 8 total installed cost #12;6 Distribution Pipeline Costs Collected historical Oil & Gas Journal data, and surveyed for current urban and downtown data Verified that historical natural gas pipeline cost data

331

Pipeline Safety Program Oak Ridge National Laboratory  

E-Print Network (OSTI)

Pipeline Safety Program Oak Ridge National Laboratory managed by UT-Battelle, LLC for the U support to the U.S. Department of Transportation's Pipeline and Hazardous Materials Safety Administration (PHMSA). As a federal regulatory authority with jurisdiction over pipeline safety, PHMSA is responsible

332

Tassel Pipeline Tutorial (Command Line Interface)  

E-Print Network (OSTI)

Tassel Pipeline Tutorial (Command Line Interface) Terry Casstevens Institute for Genomic Diversity, Cornell University May 11, 2011 #12;Tassel Pipeline Basics... · Consists of Modules (i.e. Plugins) · Output from one Module can be Input to another Module. Determined by order specified. run_pipeline

Buckler, Edward S.

333

Energy Reduction in California Pipeline Operations  

E-Print Network (OSTI)

Energy Reduction in California Pipeline Operations Industrial/Agriculture/Water End-Use PIER The Issue Fluid pipelines operating in California transport gasoline, fuel oil, jet fuel, crude, other hydrocarbons, and water, all vital to the wellbeing of Californias economy. These pipelines are also

334

California Energy Commission Pipeline Integrity Technology  

E-Print Network (OSTI)

California Energy Commission Pipeline Integrity Technology Demonstration Grant California Energy Solicitation Scope · The purpose of this solicitation is to demonstrate natural gas pipeline inspection using low cost/low power sensors ­ Improvement of existing pipeline inspection technology to identify

335

NETL: News Release - National Labs to Strengthen Natural Gas Pipeline's  

NLE Websites -- All DOE Office Websites (Extended Search)

National Labs to Strengthen Natural Gas Pipelines' Integrity, Reliability National Labs to Strengthen Natural Gas Pipelines' Integrity, Reliability DOE Receives 24 Proposals, Valued at Half Billion Dollars, For Technologies to Improve Power Plants, Cut Emissions MORGANTOWN, WV - To identify and develop advanced technology for the nation's natural gas pipelines, the Energy Department is calling upon the national labs to assist private industry in developing innovative technologies that establish a framework for future natural gas transmission and distribution systems. The laboratories will help 11 government-industry cost-shared projects, many of which center around detection devices designed to prevent pipeline damage, DOE selected earlier this year (see May 31, 2001, announcement). DOE estimates that natural gas consumption will increase by 60 percent by 2020, placing an unaccustomed demand on the U.S.'s aging natural gas infrastructure. The already-selected 11 projects address that need by demonstrating robotics and other sophisticated ways of bolstering strength, and, therefore, the integrity and reliability of the pipelines the crisscross the country.

336

World pipeline construction to slip for 1994 and beyond  

SciTech Connect

World pipeline construction planned in 1994 and beyond has fallen in the past year, reflecting uncertainties in energy markets. Still, significant expansions are under way or planned for Latin America, Asia and the Pacific regions, and Europe. Latest Oil and Gas Journal data, derived from its survey of world pipeline operators, industry sources, and published information, show more than 55,000 miles of crude oil, product, and natural gas pipeline planned for 1994 and beyond. The data include projections for pipeline construction in Russia and former republics of the Soviet Union. Western Russia and all countries west of the Ural Mountains are included under totals for Europe, eastern Russia and countries east of the Urals under totals for the Asia-Pacific region. The paper discusses the following: European gas lines; North Sea projects; Gulf of Thailand; Yacheng subsea pipeline; Australian gas lines; other Asian lines; Russian activity; Algeria-Europe gas lines; Southeast US; Gulf gathering systems; Western US; South America; Trans-Ecuadorian expansion; Chilean gas network; and Bolivia-Brazil gas line.

Koen, A.D.; True, W.R.

1994-02-07T23:59:59.000Z

337

Pipeline bottoming cycle study. Final report  

Science Conference Proceedings (OSTI)

The technical and economic feasibility of applying bottoming cycles to the prime movers that drive the compressors of natural gas pipelines was studied. These bottoming cycles convert some of the waste heat from the exhaust gas of the prime movers into shaft power and conserve gas. Three typical compressor station sites were selected, each on a different pipeline. Although the prime movers were different, they were similar enough in exhaust gas flow rate and temperature that a single bottoming cycle system could be designed, with some modifications, for all three sites. Preliminary design included selection of the bottoming cycle working fluid, optimization of the cycle, and design of the components, such as turbine, vapor generator and condensers. Installation drawings were made and hardware and installation costs were estimated. The results of the economic assessment of retrofitting bottoming cycle systems on the three selected sites indicated that profitability was strongly dependent upon the site-specific installation costs, how the energy was used and the yearly utilization of the apparatus. The study indicated that the bottoming cycles are a competitive investment alternative for certain applications for the pipeline industry. Bottoming cycles are technically feasible. It was concluded that proper design and operating practices would reduce the environmental and safety hazards to acceptable levels. The amount of gas that could be saved through the year 2000 by the adoption of bottoming cycles for two different supply projections was estimated as from 0.296 trillion ft/sup 3/ for a low supply projection to 0.734 trillion ft/sup 3/ for a high supply projection. The potential market for bottoming cycle equipment for the two supply projections varied from 170 to 500 units of varying size. Finally, a demonstration program plan was developed.

Not Available

1980-06-01T23:59:59.000Z

338

Application Filing Requirements for Natural Gas Pipeline Construction  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Application Filing Requirements for Natural Gas Pipeline Construction Projects (Wisconsin) Application Filing Requirements for Natural Gas Pipeline Construction Projects (Wisconsin) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Wisconsin Program Type Siting and Permitting Any utility proposing to construct a natural gas pipeline requiring a Certificate of Authority (CA) under Wis. Stat. §196.49 must prepare an

339

Natural Gas Transmission Pipeline Intrastate Regulatory Act (Florida) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transmission Pipeline Intrastate Regulatory Act Transmission Pipeline Intrastate Regulatory Act (Florida) Natural Gas Transmission Pipeline Intrastate Regulatory Act (Florida) < Back Eligibility Commercial Construction Developer Fuel Distributor Industrial Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Utility Program Info State Florida Program Type Safety and Operational Guidelines Provider Florida Public Service Commission The regulation of natural gas intrastate transportation and sale is deemed to be an exercise of the police power of the state for the protection of the public welfare. The Public Service Commission is empowered to fix and regulate rates and services of natural gas transmission companies, including, without limitation, rules and regulations for determining the

340

Analysis of oil-pipeline distribution of multiple products subject to delivery time-windows  

E-Print Network (OSTI)

This dissertation defines the operational problems of, and develops solution methodologies for, a distribution of multiple products into oil pipeline subject to delivery time-windows constraints. A multiple-product oil pipeline is a pipeline system composing of pipes, pumps, valves and storage facilities used to transport different types of liquids. Typically, products delivered by pipelines are petroleum of different grades moving either from production facilities to refineries or from refineries to distributors. Time-windows, which are generally used in logistics and scheduling areas, are incorporated in this study. The distribution of multiple products into oil pipeline subject to delivery time-windows is modeled as multicommodity network flow structure and mathematically formulated. The main focus of this dissertation is the investigation of operating issues and problem complexity of single-source pipeline problems and also providing solution methodology to compute input schedule that yields minimum total time violation from due delivery time-windows. The problem is proved to be NP-complete. The heuristic approach, a reversed-flow algorithm, is developed based on pipeline flow reversibility to compute input schedule for the pipeline problem. This algorithm is implemented in no longer than O(T*E) time. This dissertation also extends the study to examine some operating attributes and problem complexity of multiple-source pipelines. The multiple-source pipeline problem is also NP-complete. A heuristic algorithm modified from the one used in single-source pipeline problems is introduced. This algorithm can also be implemented in no longer than O(T*E) time. Computational results are presented for both methodologies on randomly generated problem sets. The computational experience indicates that reversed-flow algorithms provide good solutions in comparison with the optimal solutions. Only 25% of the problems tested were more than 30% greater than optimal values and approximately 40% of the tested problems were solved optimally by the algorithms.

Jittamai, Phongchai

2004-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "interstate pipeline systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Clean Development Mechanism Pipeline | Open Energy Information  

Open Energy Info (EERE)

Clean Development Mechanism Pipeline Clean Development Mechanism Pipeline Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Clean Development Mechanism Pipeline Agency/Company /Organization: UNEP-Risoe Centre, United Nations Environment Programme Sector: Energy, Land Topics: Finance, Implementation, Background analysis Resource Type: Dataset Website: www.cdmpipeline.org/overview.htm Clean Development Mechanism Pipeline Screenshot References: CDM Pipeline[1] Overview "The CDM/JI Pipeline Analysis and Database contains all CDM/JI projects that have been sent for validation/determination. It also contains the baseline & monitoring methodologies, a list of DOEs and several analyses. This monthly newsletter shows a sample of the analysis in the Pipeline. If you want more information, then look into the left column and click on the

342

Southeast geysers effluent pipeline project. Final report  

DOE Green Energy (OSTI)

The project concept originated in 1990 with the convergence of two problems: (1) a need for augmented injection to mitigate declining reservoir productivity at the Geysers; and (2) a need for a new method of wastewater disposal for Lake County communities near the The Geysers. A public/private partnership of Geysers operators and the Lake County Sanitation District (LACOSAN) was formed in 1991 to conduct a series of engineering, environmental, and financing studies of transporting treated wastewater effluent from the communities to the southeast portion of The Geysers via a 29-mile pipeline. By 1994, these evaluations concluded that the concept was feasible and the stakeholders proceeded to formally develop the project, including pipeline and associated facilities design; preparation of an environmental impact statement; negotiation of construction and operating agreements; and assembly of $45 million in construction funding from the stakeholders, and from state and federal agencies with related program goals. The project development process culminated in the system`s dedication on October 16, 1997. As of this writing, all project components have been constructed or installed, successfully tested in compliance with design specifications, and are operating satisfactorily.

Dellinger, M.

1998-01-15T23:59:59.000Z

343

Pipeline Annual Data - 1997 Gas Distribution Annuals Data (Zip) | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Gas Distribution Annuals Data (Zip) 7 Gas Distribution Annuals Data (Zip) Energy Data Apps Maps Challenges Resources Blogs Let's Talk Energy Beta You are here Data.gov » Communities » Energy » Data Pipeline Annual Data - 1997 Gas Distribution Annuals Data (Zip) Dataset Summary Description Pipeline operators (for gas distribution, gas transmission, and hazardous liquid pipelines) are required to submit an annual report to the Pipeline and Hazardous Materials Safety Administration's Office of Pipeline Safety. The report includes information about the operator, a description of their system (main, services), leaks eliminated/repaired during the year, excavation damage, excess flow valves, and other information. Beginning in 2010, the form also includes information regarding integrity management programs.

344

Pipeline Annual Data - 1996 Gas Distribution Annuals Data (Zip) | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Distribution Annuals Data (Zip) Distribution Annuals Data (Zip) Energy Data Apps Maps Challenges Resources Blogs Let's Talk Energy Beta You are here Data.gov » Communities » Energy » Data Pipeline Annual Data - 1996 Gas Distribution Annuals Data (Zip) Dataset Summary Description Pipeline operators (for gas distribution, gas transmission, and hazardous liquid pipelines) are required to submit an annual report to the Pipeline and Hazardous Materials Safety Administration's Office of Pipeline Safety. The report includes information about the operator, a description of their system (main, services), leaks eliminated/repaired during the year, excavation damage, excess flow valves, and other information. Beginning in 2010, the form also includes information regarding integrity management programs.

345

RESIDENTIAL ON SITE SOLAR HEATING SYSTEMS: A PROJECT EVALUATION USING THE CAPITAL ASSET PRICING MODEL  

E-Print Network (OSTI)

natural gas system requires the construction of pipeline networks; electrical heating systems require power generation

Schutz, Stephen Richard

2011-01-01T23:59:59.000Z

346

A novel neural model-based approach to leak detection and localization in oil pipelines for environmental protection  

Science Conference Proceedings (OSTI)

Monitoring oil transporting pipelines is an important task for economical and safe operation, loss prevention, and environmental protection from crude oil emission. The leak detection of oil pipelines, therefore, plays a key role in the overall integrity ... Keywords: environmental and safety systems, fault and uncertainty modeling in dynamical systems, neural nets, process supervision

Alireza Paivar; Karim Salahshoor; Farzad Hourfar

2006-11-01T23:59:59.000Z

347

Workforce Pipeline | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Diversity Diversity Message from the Lab Director Diversity & Inclusion Advisory Council Workforce Pipeline Mentoring Leadership Development Policies & Practices Business Diversity Outreach & Education In the News High school workshop invites girls to explore STEM possibilities Daily Herald EcoCAR 2 competition drives auto engineers to excel Yuma (Ariz.) Sun Mississippi universities collaborate with national labs Mississippi Public Radio Workforce Pipeline Argonne seeks to attract, hire and retain a diverse set of talent in order to meet the laboratory's mission of excellence in science, engineering and technology. In order for Argonne to continue to carry out world-class science, the lab needs to seek out the best talent. Today, that talent is increasingly diverse. Argonne fosters an environment that welcomes and values a diverse

348

BENCHMARKING EMERGING PIPELINE INSPECTION TECHNOLOGIES  

NLE Websites -- All DOE Office Websites (Extended Search)

Benchmarking Emerging Pipeline Inspection Technologies To Department of Energy National Energy Technology Laboratory (NETL) DE-AP26-04NT40361 and Department of Transportation Research and Special Programs Administration (RSPA) DTRS56-02-T-0002 (Milestone 7) September 2004 Final Report on Benchmarking Emerging Pipeline Inspection Technologies Cofunded by Department of Energy National Energy Technology Laboratory (NETL) DE-AP26-04NT40361 and Department of Transportation Research and Special Programs Administration (RSPA) DTRS56-02-T-0002 (Milestone 7) by Stephanie A. Flamberg and Robert C. Gertler September 2004 BATTELLE 505 King Avenue Columbus, Ohio 43201-2693 Neither Battelle, nor any person acting on their behalf: (1) Makes any warranty or representation, expressed or implied, with respect to the

349

Time-Constrained Loop Pipelining  

E-Print Network (OSTI)

This paper addresses the problem of Time-Constrained Loop Pipelining, i.e. given a fixed throughput, finding a schedule of a loop which minimizes resource requirements. We propose a methodology, called TCLP, based on dividing the problem into two simpler and independent tasks: retiming and scheduling. TCLP explores different sets of resources, searchingfor a maximum resource utilization. This reduces area requirements. After a minimum set of resourceshas been found, the execution throughput is increased and the number of registers required by the loop schedule is reduced. TCLP attempts to generate a schedule which minimizes cost in time and area (resources and registers). The results show that TCLP obtains optimal schedules in most cases. 1 Introduction This paper presents TCLP, a methodology to solve TimeConstrained Loop Pipelining. TCLP is NP-complete [3]. Two types of timing constraints (TCs) have been considered in the literature: local TCs to specify minimum and/or maximum TCs ...

Fermn Sanchez; Jordi Cortadella

1995-01-01T23:59:59.000Z

350

Questions and Issues on Hydrogen Pipeline Transmission of Hydrogen  

E-Print Network (OSTI)

Questions and Issues on Hydrogen Pipelines Pipeline Transmission of Hydrogen Doe Hydrogen Pipeline Working Group Meeting August 31, 2005 #12;Pipeline Transmission of Hydrogen --- 2 Copyright: Air Liquide Pipeline Inventory Breakdown by gases 0 500 1000 1500 2000 2500 3000 3500 KM N2 2956 km O2 3447 km H2 1736

351

Competition and Prices in the Deregulated Gas Pipeline Network: A Multivariate Cointegration Analysis  

E-Print Network (OSTI)

of spot markets located on NGPL’s pipeline system in fiveI-Iouston/Katy Florida Gas NGPL Tennessee Texas EasternNorth Texas--Paahandle ANl~ NGPL Northern Panhandle Eastern

Walls, W. David

1993-01-01T23:59:59.000Z

352

Load balancing and computing strategies in pipeline optimization for parallel visualization of 3D irregular meshes  

Science Conference Proceedings (OSTI)

Parallel visualization is assuming an increasing role in the deployment of Web and Grid based systems for scientific applications. The visualization process consists of a set of filters or components that are executed in a pipelined assembly that should ...

Andrea Clematis; Daniele D’Agostino; Vittoria Gianuzzi

2005-09-01T23:59:59.000Z

353

Adaptive noise cancellation schemes for magnetic flux leakage signals obtained from gas pipeline inspection  

Science Conference Proceedings (OSTI)

Nondestructive evaluation of the gas pipeline system is most commonly performed using magnetic flux leakage (MFL) techniques. A major segment of this network employs seamless pipes. The data obtained From MFL inspection of seamless pipes is contaminated ...

M. Afzal; R. Polikar; L. Udpa; S. Udpa

2001-05-01T23:59:59.000Z

354

Pipeline-Centric Provenance Model  

E-Print Network (OSTI)

In this paper we propose a new provenance model which is tailored to a class of workflow-based applications. We motivate the approach with use cases from the astronomy community. We generalize the class of applications the approach is relevant to and propose a pipeline-centric provenance model. Finally, we evaluate the benefits in terms of storage needed by the approach when applied to an astronomy application.

Groth, Paul; Juve, Gideon; Mehta, Gaurang; Berriman, Bruce

2010-01-01T23:59:59.000Z

355

An Oil Pipeline Design Problem  

Science Conference Proceedings (OSTI)

We consider a given set of offshore platforms and onshore wells producing known (or estimated) amounts of oil to be connected to a port. Connections may take place directly between platforms, well sites, and the port, or may go through connection points ... Keywords: Algorithms: interactive branch-and-bound with valid inequalities. industries, Applications: design problem-formulation and analysis. programming, Integer, Networks/graphs, Petroleum/natural gas: oil pipeline network design

Jack Brimberg; Pierre Hansen; Keh-Wei Lin; Nenad Mladenovic; Michčle Breton

2003-03-01T23:59:59.000Z

356

Kinder Morgan Central Florida Pipeline Ethanol Project  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

KINDER MORGAN CENTRAL FLORIDA PIPELINE ETHANOL PROJECT ď‚· In December 2008, Kinder Morgan began transporting commercial batches of denatured ethanol along with gasoline shipments in its 16-inch Central Florida Pipeline (CFPL) from Tampa to Orlando, making CFPL the first transmarket gasoline pipeline in the United States to do so. The 16-inch pipeline previously only transported regular and premium gasoline. ď‚· Kinder Morgan invested approximately $10 million to modify the line for ethanol shipments which involved chemically cleaning the pipeline, replacing pipeline equipment that was incompatible with ethanol and expanding storage capacity at its Orlando terminal to handle ethanol shipments. ď‚· Kinder Morgan is responding to customer interest in ethanol blending. Our Florida

357

State Regulatory Framework Will Most Likely Result in Robust CO2 Pipeline  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Regulatory Framework Will Most Likely Result in Robust CO2 State Regulatory Framework Will Most Likely Result in Robust CO2 Pipeline System, New Study Says State Regulatory Framework Will Most Likely Result in Robust CO2 Pipeline System, New Study Says February 1, 2011 - 12:00pm Addthis Washington, DC - A private sector model with a state rather than Federal-based regulatory framework is the approach that will "most likely result in a robust CO2 [carbon dioxide] pipeline system" in the United States, according to a new report developed with funding from the U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL). However, a Federal role that "includes incentives to encourage the private construction of CO2 pipelines" would be an important factor in moving the concept forward, the study says.

358

Ultrasonic Computerized Tomography of Pipelines for Continuous ...  

Science Conference Proceedings (OSTI)

Commercial handheld thickness gauging devices require direct access to pipelines and find limited applications due to the presence of physical obstacles or the ...

359

Measuring wall forces in a slurry pipeline.  

E-Print Network (OSTI)

??Slurry transport is a key material handling technology in a number of industries. In oilsands ore transport, slurry pipelining also promotes conditioning to release and… (more)

El-Sayed, Suheil

2010-01-01T23:59:59.000Z

360

Pipeline constraints in wholesale natural gas markets.  

E-Print Network (OSTI)

??Natural gas markets in the United States depend on an extensive network of pipelines to transport gas from production fields to end users. While these… (more)

Avalos, Roger George.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "interstate pipeline systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

EIA-802 WEEKLY PRODUCT PIPELINE REPORT INSTRUCTIONS  

U.S. Energy Information Administration (EIA)

EIA-802, Weekly Product Pipeline Report Page 3 PART 4. DIESEL FUEL DOWNGRADED ULSD-- EIA Product Code 465, “distillate fuel oil 15 ppm sulfur

362

Hazardous Liquid Pipelines and Storage Facilities (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

This statute regulates the permitting, construction, monitoring, and operation of pipelines transporting hazardous liquids, including petroleum products and coal slurries. The definition used in...

363

GLAST (FERMI) Data-Processing Pipeline  

Science Conference Proceedings (OSTI)

The Data Processing Pipeline ('Pipeline') has been developed for the Gamma-Ray Large Area Space Telescope (GLAST) which launched June 11, 2008. It generically processes graphs of dependent tasks, maintaining a full record of its state, history and data products. The Pipeline is used to automatically process the data down-linked from the satellite and to deliver science products to the GLAST collaboration and the Science Support Center and has been in continuous use since launch with great success. The pipeline handles up to 2000 concurrent jobs and in reconstructing science data produces approximately 750GB of data products using 1/2 CPU-year of processing time per day.

Flath, Daniel L.; Johnson, Tony S.; Turri, Massimiliano; Heidenreich, Karen A.; /SLAC

2011-08-12T23:59:59.000Z

364

Why improve the pipeline for comparative transcriptomics?  

NLE Websites -- All DOE Office Websites (Extended Search)

Plans Educational Resources MyJGI: Information for Collaborators Why improve the pipeline for comparative transcriptomics? The genomes of several brown rot and white rot fungi...

365

4.6.2. Alaska Pipeline  

Science Conference Proceedings (OSTI)

4. Process Modeling 4.6. Case Studies in Process Modeling 4.6.2. Alaska Pipeline. Non-Homogeneous Variances, This ...

2012-03-31T23:59:59.000Z

366

Materials Solutions for Hydrogen Delivery in Pipelines  

NLE Websites -- All DOE Office Websites (Extended Search)

welding filler wires and processes that would be suitable for construction of new pipeline infrastructure - To develop barrier coatings for minimizing hydrogen permeation in...

367

Exploring Pipeline Dynamics to Connect New Markets  

U.S. Energy Information Administration (EIA)

Gas Shales in the United States. 8. Cumulative Unconventional Production, 2007-2030 (trillion cubic feet) 9. Rockies Express Pipeline (REX) 10.

368

Stakeholder perspectives on the Clean Air Interstate and the Clean Air Mercury Rules  

Science Conference Proceedings (OSTI)

In a follow-up to last month's detailed overviews of the Clean Air Interstate Rule (CAIR) and the Clean Air Mercury Rule (CAMR), this month EM presents perspectives on the two rules from representatives of a range of stakeholders, including EPA, the states, the regulated community, and the environmental community. Titles of the perspectives are: A Multipollutant Approach to Emissions Reductions; Clean Air Lessons from the Myth of Sisyphus; Reactions to EPA's Clean Air Interstate and Clean Air Mercury Rules; The Case for Coal Rank Subcategorization to Regulate Mercury Emissions; EPA's Mercury Rule: The Latest Delay Tactic; EPA's Mercury Rule: With Technology Today, We Can Do Better; STAPPA/ALAPCO's Perspectives on CAMR and CAIR. 16 refs.

C.V. Mathai; Jeffrey Holmstead; Michael Shore; Skiles Boyd; Vicky Sullivan; Dan Weiss; John Kinsman; Steve Lomax; Michael Rossler; David Steele; Greg Schaefer; Felice Stadler; David Foerter; William Becker [Arizona Public Services, Phoenix, AZ (US)

2005-08-01T23:59:59.000Z

369

Optimization of energy and throughput for pipelined VLSI interconnect  

E-Print Network (OSTI)

given a wire length, optimized pipeline energy decreases asFigure 7 shows pipeline energy per bit versus wire length asOptimal pipeline depth is proportional to wire length, and

Hamilton, Kevin Clark

2010-01-01T23:59:59.000Z

370

Structural Genomics of Minimal Organisms: Pipeline and Results  

E-Print Network (OSTI)

of Minimal Organisms: Pipeline and Results Sung-Hou Kim*,~500 genes, respectively). Pipeline: To achieve our mission,determination. Over all pipeline schemes for the single-path

Kim, Sung-Hou

2008-01-01T23:59:59.000Z

371

Trenches Under The Pipeline: The Educational Trajectories of Chicano Male Continuation High School Students  

E-Print Network (OSTI)

Trenches Under The Pipeline: The Educational Trajectories ofnavigate the educational pipeline, continuation high school

Malagon, Maria

2010-01-01T23:59:59.000Z

372

Longitudinal review of state-level accident statistics for carriers of interstate freight  

Science Conference Proceedings (OSTI)

State-level accident rates by mode of freight transport have been developed and refined for application to the US Department of Energy`s (DOE`s) environmental mitigation program, which may involve large-quantity shipments of hazardous and mixed wastes from DOE facilities. These rates reflect multi-year data for interstate-registered highway earners, American Association of Railroads member carriers, and coastal and internal waterway barge traffic. Adjustments have been made to account for the share of highway combination-truck traffic actually attributable to interstate-registered carriers and for duplicate or otherwise inaccurate entries in the public-use accident data files used. State-to-state variation in rates is discussed, as is the stability of rates over time. Computed highway rates have been verified with actual carriers of high- and low-level nuclear materials, and the most recent truck accident data have been used, to ensure that the results are of the correct order of magnitude. Study conclusions suggest that DOE use the computed rates for the three modes until (1) improved estimation techniques for highway combination-truck miles by state become available; (2) continued evolution of the railroad industry significantly increases the consolidation of interstate rail traffic onto fewer high-capacity trunk lines; or (3) a large-scale off-site waste shipment campaign is imminent.

Saricks, C.; Kvitek, T.

1994-03-01T23:59:59.000Z

373

Interstate and intrastate incidence of Oklahoma's severance tax on natural gas  

Science Conference Proceedings (OSTI)

Two models, an intrastate model and an interstate model, are developed based on Shelton and Vogt's (1982) coal-severance tax model. Both models are based on a formal demand and supply framework which incorporated the most-important determinants of the demand for and the supply of natural gas. Two reduced-form equations derived from these models are estimated, using ordinary least-square techniques. About 91% of the Oklahoma severance-tax revenue collected from intrastate natural gas sales is paid by Oklahoma consumers; 9% is paid by producers and mineral-rights owners. Less than 9% of this portion of the tax may be exported. About 97% of the Oklahoma severance-tax revenue collected from interstate natural gas sales is paid by out-of-state consumers. Three percent of this tax revenue is paid by producers and mineral rights owners. Over 97% of this portion of the tax may be exported. Over one-half of the taxes collected in both markets may be exported to federal taxpayers through federal tax deductibility. Findings show a large portion of Oklahoma natural gas severance taxes levied on interstate sales may be exported. In this way, the severance tax meets the exportation criterion of a good tax.

Hsu, C.H.

1987-01-01T23:59:59.000Z

374

Transmission of energy by open-loop chemical energy pipeline  

DOE Green Energy (OSTI)

The primary objective of this program is to evaluate the technical feasibility and, in a preliminary fashion, the economic viability of transmitting and storing energy by an open-loop modification of the reversible chemical energy pipeline system known as EVA/ADAM. The work designed to achieve this objective includes: (1) the preliminary design of a nuclear (HTGR) and methane-based open-loop system; (2) evaluation of energy sources as alternatives to those in the preliminary design (e.g., coal gasification and HTGR/LNG); (3) assessment of the feasibility of using existing natural gas pipelines and storage systems for the synthesis gas; (4) assessment of existing methanation technologies and interchangeability of the SNG with natural gas; (5) evaluation of the various alternative energy end-uses for heat, SNG, and electricity; and (6) development of two conceptual designs and evaluation of their economics and environmental impacts.

Baker, N R

1977-01-01T23:59:59.000Z

375

Oklahoma - State Energy Profile Data - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

... Exxon, Koch, PDIM, Phillips, Trans Texas. Interstate Natural Gas Pipelines : ANR Pipeline Co., Centerpoint Energy Gas Transmission Co., Colorado Interstate Gas ...

376

Kansas Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

ANR Pipeline Co., Centerpoint Energy Gas Transmission Co., Colorado Interstate Gas, KM Interstate Gas Co., Natural Gas Pipeline Company of America, ...

377

Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines  

NLE Websites -- All DOE Office Websites (Extended Search)

Permeability and Permeability and Integrity of Hydrogen Delivery Pipelines Z. Feng*, L.M. Anovitz*, J.G. Blencoe*, S. Babu*, and P. S. Korinko** * Oak Ridge National Laboratory * Savannah River National Laboratory August 30, 2005 2 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Partners and Collaborators * Oak Ridge National Laboratory - Project lead * Savannah River National Laboratory - Low H 2 pressure permeation test * Edison Welding Institute - Pipeline materials * Lincoln Electric Company - Welding electrode and weld materials for pipelines * Trans Canada - Commercial welding of pipelines and industry expectations * DOE Pipeline Working Group and Tech Team activities - FRP Hydrogen Pipelines - Materials Solutions for Hydrogen Delivery in Pipelines - Natural Gas Pipelines for Hydrogen Use

378

Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

2005 Hydrogen Pipeline 2005 Hydrogen Pipeline Working Group Workshop to someone by E-mail Share Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working Group Workshop on Facebook Tweet about Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working Group Workshop on Twitter Bookmark Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working Group Workshop on Google Bookmark Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working Group Workshop on Delicious Rank Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working Group Workshop on Digg Find More places to share Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working Group Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations

379

Fuel Cell Technologies Office: 2007 Hydrogen Pipeline Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

2007 Hydrogen Pipeline 2007 Hydrogen Pipeline Working Group Workshop to someone by E-mail Share Fuel Cell Technologies Office: 2007 Hydrogen Pipeline Working Group Workshop on Facebook Tweet about Fuel Cell Technologies Office: 2007 Hydrogen Pipeline Working Group Workshop on Twitter Bookmark Fuel Cell Technologies Office: 2007 Hydrogen Pipeline Working Group Workshop on Google Bookmark Fuel Cell Technologies Office: 2007 Hydrogen Pipeline Working Group Workshop on Delicious Rank Fuel Cell Technologies Office: 2007 Hydrogen Pipeline Working Group Workshop on Digg Find More places to share Fuel Cell Technologies Office: 2007 Hydrogen Pipeline Working Group Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations

380

Upheaval Buckling of Offshore Pipelines in Homogeneous and Layered Soils.  

E-Print Network (OSTI)

??Offshore oil and gas pipelines are commonly buried below the seabed to provide environmental stability and protection. Many of these pipelines are prone to upheaval… (more)

Deljoui, Porang

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "interstate pipeline systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Sequencing Technologies and Computational pipelines at the JGI  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequencing Technologies and Computational pipelines at the JGI Sequencing Technologies and Computational pipelines at the JGI September 17, 2013 JGI logo 2 James Han, JGI...

382

BLOCKAGE DETECTION IN NATURAL GAS PIPELINES BY TRANSIENT ANALYSIS.  

E-Print Network (OSTI)

??Pipelines are the most reliable means for the transportation of natural gas. A major problem of flow assurance in natural gas pipelines is solid deposition… (more)

ADELEKE, NAJEEM

2010-01-01T23:59:59.000Z

383

Modeling fatique behavior of dents in petroleum pipelines.  

E-Print Network (OSTI)

??Dents in pipelines can seriously reduce the design life of a pipeline. Dents cause stress concentrations to develop which make dents susceptible to fatigue failures.… (more)

Hoffmann, Roger Lynn

2012-01-01T23:59:59.000Z

384

Mobile sensor network to monitor wastewater collection pipelines  

E-Print Network (OSTI)

we divide the pipeline in equal length segment(i.e. 10we divide the pipeline into segments with equal length (i.e.

Lim, Jungsoo

2012-01-01T23:59:59.000Z

385

Penitas, TX Natural Gas Pipeline Imports From Mexico (Million...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Penitas, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Penitas, TX Natural Gas Pipeline Imports From Mexico...

386

Efficient Compression of CO2 and Pipeline Transport ...  

Science Conference Proceedings (OSTI)

... Final pressure around 1,500 to 2,200 psia for pipeline transport or re-injection. ... Perform optimization of pipeline booster stations ...

2012-10-22T23:59:59.000Z

387

Hidalgo, TX Natural Gas Pipeline Imports From Mexico (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Hidalgo, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Hidalgo, TX Natural Gas Pipeline Imports From Mexico...

388

Alamo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Alamo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Alamo, TX Natural Gas Pipeline Exports to Mexico...

389

St. Clair, MI Natural Gas Pipeline Exports to Canada (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) St. Clair, MI Natural Gas Pipeline Exports to Canada (Million Cubic Feet) St. Clair, MI Natural Gas Pipeline Exports to...

390

Ogilby, CA Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Monthly Annual Download Data (XLS File) Ogilby, CA Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Ogilby, CA Natural Gas Pipeline Exports to Mexico...

391

Nevada Natural Gas Pipeline and Distribution Use Price (Dollars...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Nevada Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Nevada Natural Gas Pipeline and Distribution...

392

Idaho Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Idaho Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Idaho Natural Gas Pipeline and Distribution Use (Million Cubic...

393

Delaware Natural Gas Pipeline and Distribution Use Price (Dollars...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Delaware Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Delaware Natural Gas Pipeline and...

394

Kansas Natural Gas Pipeline and Distribution Use Price (Dollars...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Kansas Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Kansas Natural Gas Pipeline and Distribution...

395

California Natural Gas Pipeline and Distribution Use Price (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) California Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) California Natural Gas Pipeline and...

396

California Natural Gas Pipeline and Distribution Use (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) California Natural Gas Pipeline and Distribution Use (Million Cubic Feet) California Natural Gas Pipeline and Distribution Use...

397

Nevada Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Nevada Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Nevada Natural Gas Pipeline and Distribution Use (Million Cubic...

398

Delaware Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Delaware Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Delaware Natural Gas Pipeline and Distribution Use (Million...

399

Penitas, TX Natural Gas Pipeline Exports to Mexico (Dollars per...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Penitas, TX Natural Gas Pipeline Exports to Mexico (Dollars per Thousand Cubic Feet) Penitas, TX Natural Gas Pipeline Exports...

400

Alaska Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Alaska Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Alaska Natural Gas Pipeline and Distribution Use (Million Cubic...

Note: This page contains sample records for the topic "interstate pipeline systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Minnesota Natural Gas Pipeline and Distribution Use (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Minnesota Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Minnesota Natural Gas Pipeline and Distribution Use (Million...

402

Oregon Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Oregon Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Oregon Natural Gas Pipeline and Distribution Use (Million Cubic...

403

Alabama Natural Gas Pipeline and Distribution Use Price (Dollars...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Alabama Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Alabama Natural Gas Pipeline and...

404

Roma, Texas Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Roma, Texas Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Roma, Texas Natural Gas Pipeline Exports to Mexico...

405

Kansas Natural Gas Pipeline and Distribution Use (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Kansas Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Kansas Natural Gas Pipeline and Distribution Use (Million Cubic...

406

Calexico, CA Natural Gas Pipeline Exports to Mexico (Million...  

Annual Energy Outlook 2012 (EIA)

View History: Monthly Annual Download Data (XLS File) Calexico, CA Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Calexico, CA Natural Gas Pipeline Exports to Mexico...

407

Utah Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Utah Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Utah Natural Gas Pipeline and Distribution Use (Million Cubic...

408

Washington Natural Gas Pipeline and Distribution Use (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Washington Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Washington Natural Gas Pipeline and Distribution Use...

409

Alabama Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Alabama Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Alabama Natural Gas Pipeline and Distribution Use (Million...

410

Penitas, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Penitas, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Penitas, TX Natural Gas Pipeline Exports to Mexico...

411

Massachusetts Natural Gas Pipeline and Distribution Use (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Massachusetts Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Massachusetts Natural Gas Pipeline and Distribution Use...

412

Kentucky Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Kentucky Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Kentucky Natural Gas Pipeline and Distribution Use (Million...

413

Special Provisions Affecting Gas, Water, or Pipeline Companies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agencies You are here Home Savings Special Provisions Affecting Gas, Water, or Pipeline Companies (South Carolina) Special Provisions Affecting Gas, Water, or Pipeline...

414

Florida Natural Gas Pipeline and Distribution Use Price (Dollars...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Florida Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Florida Natural Gas Pipeline and...

415

Indiana Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Indiana Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Indiana Natural Gas Pipeline and Distribution Use (Million...

416

Clint, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Monthly Annual Download Data (XLS File) Clint, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Clint, TX Natural Gas Pipeline Exports to Mexico...

417

Virginia Natural Gas Pipeline and Distribution Use (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Virginia Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Virginia Natural Gas Pipeline and Distribution Use (Million...

418

Hidalgo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Hidalgo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Hidalgo, TX Natural Gas Pipeline Exports to Mexico...

419

Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation  

NLE Websites -- All DOE Office Websites (Extended Search)

1 January 2005 HYDROGEN EMBRITTLEMENT OF PIPELINE STEELS: CAUSES AND REMEDIATION P. Sofronis, I. Robertson, D. Johnson University of Illinois at Urbana-Champaign Hydrogen Pipeline...

420

Alamo, TX Natural Gas Pipeline Imports From Mexico (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Alamo, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Alamo, TX Natural Gas Pipeline Imports From Mexico (Million...

Note: This page contains sample records for the topic "interstate pipeline systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Ohio Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Ohio Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Ohio Natural Gas Pipeline and Distribution Use (Million Cubic...

422

Texas Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Texas Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Texas Natural Gas Pipeline and Distribution Use (Million Cubic...

423

Louisiana Natural Gas Pipeline and Distribution Use (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Louisiana Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Louisiana Natural Gas Pipeline and Distribution Use (Million...

424

Hawaii Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Hawaii Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Hawaii Natural Gas Pipeline and Distribution Use (Million Cubic...

425

Hidalgo, TX Natural Gas Pipeline Exports to Mexico (Dollars per...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Hidalgo, TX Natural Gas Pipeline Exports to Mexico (Dollars per Thousand Cubic Feet) Hidalgo, TX Natural Gas Pipeline Exports...

426

Georgia Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Georgia Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Georgia Natural Gas Pipeline and Distribution Use (Million...

427

Oklahoma Natural Gas Pipeline and Distribution Use Price (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Oklahoma Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Oklahoma Natural Gas Pipeline and...

428

Florida Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Florida Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Florida Natural Gas Pipeline and Distribution Use (Million...

429

Vermont Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Vermont Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Vermont Natural Gas Pipeline and Distribution Use (Million...

430

Massachusetts Natural Gas Pipeline and Distribution Use Price...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Massachusetts Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Massachusetts Natural Gas Pipeline...

431

Arizona Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Arizona Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Arizona Natural Gas Pipeline and Distribution Use (Million...

432

Montana Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Montana Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Montana Natural Gas Pipeline and Distribution Use (Million...

433

Wisconsin Natural Gas Pipeline and Distribution Use Price (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Wisconsin Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Wisconsin Natural Gas Pipeline and...

434

Wisconsin Natural Gas Pipeline and Distribution Use (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Wisconsin Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Wisconsin Natural Gas Pipeline and Distribution Use (Million...

435

Vermont Natural Gas Pipeline and Distribution Use Price (Dollars...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Vermont Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Vermont Natural Gas Pipeline and...

436

Wyoming Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Wyoming Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Wyoming Natural Gas Pipeline and Distribution Use (Million...

437

EIA - Natural Gas Pipeline Network - Generalized Natural Gas...  

Annual Energy Outlook 2012 (EIA)

Gas based on data through 20072008 with selected updates Generalized Natural Gas Pipeline Capacity Design Schematic Generalized Natural Gas Pipeline Capcity Design Schematic...

438

Fuel Cell Technologies Office: Hydrogen Pipeline Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

- Energy Efficiency and Renewable Energy Fuel Cell Technologies Office Hydrogen Pipeline Working Group The Hydrogen Pipeline Working Group of research and industry experts...

439

Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working...  

NLE Websites -- All DOE Office Websites (Extended Search)

- Energy Efficiency and Renewable Energy Fuel Cell Technologies Office 2005 Hydrogen Pipeline Working Group Workshop DOE held a Hydrogen Pipeline Working Group Workshop August...

440

Nebraska Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Nebraska Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Nebraska Natural Gas Pipeline and Distribution Use (Million...

Note: This page contains sample records for the topic "interstate pipeline systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Arkansas Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Arkansas Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Arkansas Natural Gas Pipeline and Distribution Use (Million...

442

Pennsylvania Natural Gas Pipeline and Distribution Use (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Pennsylvania Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Pennsylvania Natural Gas Pipeline and Distribution Use...

443

Niagara Falls, NY Natural Gas Pipeline Exports to Canada (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Niagara Falls, NY Natural Gas Pipeline Exports to Canada (Million Cubic Feet) Niagara Falls, NY Natural Gas Pipeline Exports...

444

Tennessee Natural Gas Pipeline and Distribution Use (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Tennessee Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Tennessee Natural Gas Pipeline and Distribution Use (Million...

445

Maine Natural Gas Pipeline and Distribution Use Price (Dollars...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Maine Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Maine Natural Gas Pipeline and Distribution...

446

Douglas, AZ Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Douglas, AZ Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Douglas, AZ Natural Gas Pipeline Exports to Mexico...

447

Mississippi Natural Gas Pipeline and Distribution Use (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Mississippi Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Mississippi Natural Gas Pipeline and Distribution Use...

448

Otay Mesa, CA Natural Gas Pipeline Exports to Mexico (Million...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Otay Mesa, CA Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Otay Mesa, CA Natural Gas Pipeline Exports to Mexico...

449

Connecticut Natural Gas Pipeline and Distribution Use (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Connecticut Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Connecticut Natural Gas Pipeline and Distribution Use...

450

Maine Natural Gas Pipeline and Distribution Use (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Maine Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Maine Natural Gas Pipeline and Distribution Use (Million Cubic...

451

Rules for Pipeline Public Utilities, Rules for Gas Service and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marketing Administration Other Agencies You are here Home Savings Rules for Pipeline Public Utilities, Rules for Gas Service and Safety (New Hampshire) Rules for Pipeline...

452

Maryland Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Maryland Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Maryland Natural Gas Pipeline and Distribution Use (Million...

453

Michigan Natural Gas Pipeline and Distribution Use (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Michigan Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Michigan Natural Gas Pipeline and Distribution Use (Million...

454

NIST/CSM Sensor Could Help Avert Pipeline Failures  

Science Conference Proceedings (OSTI)

... in conventional pipelines by slowly diffusing into the metal. The NIST/CSM sensor, described today at the 7th International Pipeline Conference ...

2012-10-02T23:59:59.000Z

455

Oklahoma Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Oklahoma Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Oklahoma Natural Gas Pipeline and Distribution Use (Million...

456

Ogilby, CA Natural Gas Pipeline Exports to Mexico (Dollars per...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Ogilby, CA Natural Gas Pipeline Exports to Mexico (Dollars per Thousand Cubic Feet) Ogilby, CA Natural Gas Pipeline Exports...

457

Colorado Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Colorado Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Colorado Natural Gas Pipeline and Distribution Use (Million...

458

In Natural Gas Pipelines, NIST Goes with the Flow  

Science Conference Proceedings (OSTI)

... flows from producers to consumers through a complex pipeline network totaling ... pressures an order of magnitude smaller than pipelines used in ...

2013-05-01T23:59:59.000Z

459

Niagara Falls, NY Natural Gas Pipeline Imports From Canada (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Niagara Falls, NY Natural Gas Pipeline Imports From Canada (Million Cubic Feet) Niagara Falls, NY Natural Gas Pipeline...

460

Rio Bravo, Texas Natural Gas Pipeline Exports to Mexico (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Rio Bravo, Texas Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Rio Bravo, Texas Natural Gas Pipeline Exports to...

Note: This page contains sample records for the topic "interstate pipeline systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Romas, Texas Natural Gas Pipeline Exports (Price) Mexico (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Romas, Texas Natural Gas Pipeline Exports (Price) Mexico (Dollars per Thousand Cubic Feet) Romas, Texas Natural Gas Pipeline...

462

High-Speed Biomass Recalcitrance Pipeline Speeds Up Bio ...  

High-Speed Biomass Recalcitrance Pipeline Speeds Up Bio-Mass Analysis Robotic pipeline allows for rapid analysis of optimal substrate/enzyme ...

463

December 4, 2007: NETL's Robotic Pipeline Inspection Tool  

Energy.gov (U.S. Department of Energy (DOE))

December 4, 2007The Department's National Energy Technology Laboratory announces the development of a new robotic pipeline inspection tool that could revolutionize the pipeline inspection process....

464

EIS-0488: Cameron Pipeline Expansion Project and Cameron LNG...  

NLE Websites -- All DOE Office Websites (Extended Search)

88: Cameron Pipeline Expansion Project and Cameron LNG Liquefaction Project, Cameron Parish, LA EIS-0488: Cameron Pipeline Expansion Project and Cameron LNG Liquefaction Project,...

465

"Assessment of the Adequacy of Natural Gas Pipeline Capacity...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

"Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States" Report Now Available "Assessment of the Adequacy of Natural Gas Pipeline Capacity in...

466

Assessment of the Adequacy of Natural Gas Pipeline Capacity in...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 Assessment of the Adequacy of Natural Gas Pipeline Capacity in the...

467

Ruby natural gas pipeline begins service today (July 28, 2011 ...  

U.S. Energy Information Administration (EIA)

El Paso Corporation's Ruby Pipeline (Ruby), the largest natural gas pipeline project dedicated to serving the Western United States since the ...

468

Network Connectivity and Price Convergency: Gas Pipeline Deregulation  

E-Print Network (OSTI)

pipeline tariffs and gas prices were regulated (Mulherin,failed, in equMizing gas prices across the geographicallyNetwork Connectivity and Price Convergence: Gas Pipeline

De Vany, Arthur; Walls, W. David

1993-01-01T23:59:59.000Z

469

South Dakota Natural Gas Pipeline and Distribution Use (Million...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) South Dakota Natural Gas Pipeline and Distribution Use (Million Cubic Feet) South Dakota Natural Gas Pipeline and Distribution Use...

470

Massena, NY Natural Gas Pipeline Exports to Canada (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Monthly Annual Download Data (XLS File) Massena, NY Natural Gas Pipeline Exports to Canada (Million Cubic Feet) Massena, NY Natural Gas Pipeline Exports to Canada...

471

Nogales, AZ Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Nogales, AZ Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Nogales, AZ Natural Gas Pipeline Exports to Mexico...

472

Development of Protective Coatings for Co-Sequestration Processes and Pipelines  

SciTech Connect

The program, entitled â??Development of Protective Coatings for Co-Sequestration Processes and Pipelinesâ?ť, examined the sensitivity of existing coating systems to supercritical carbon dioxide (SCCO2) exposure and developed new coating system to protect pipelines from their corrosion under SCCO2 exposure. A literature review was also conducted regarding pipeline corrosion sensors to monitor pipes used in handling co-sequestration fluids. Research was to ensure safety and reliability for a pipeline involving transport of SCCO2 from the power plant to the sequestration site to mitigate the greenhouse gas effect. Results showed that one commercial coating and one designed formulation can both be supplied as potential candidates for internal pipeline coating to transport SCCO2.

Gordon Bierwagen; Yaping Huang

2011-11-30T23:59:59.000Z

473

Digital production pipelines: examining structures and methods in the computer effects industry  

E-Print Network (OSTI)

Computer animated films require collaboration: blending artistic concept with technical skill, meeting budget constraints and adhering to deadlines. The path which production follows from initial idea to finished product is known as the pipeline. The purpose of this thesis is to collect, study and share information regarding production pipeline practices and to derive a conceptual definition. Research focused on selected companies in the United States which have produced at least one feature-length computer generated film and continue to produce them. The key finding of this thesis is a conceptual definition of digital production pipelines: A digital production pipeline must, by definition, utilize digital computing hardware and software to facilitate human work and collaboration for the overarching purpose of producing content for film. The digital production pipeline is not a structure, but rather a malleable set of components which can be arranged, configured, and adapted into new structures as needed. These malleable components are human groups with assigned task domains, and digital hardware and software systems. The human groups are normally referred to as departments or teams. The digital hardware and software systems are operating systems, software tools and applications, networks, processors, and storage. The digital production pipeline is the synergy of these two types of components into adaptable systems and structures.

Bettis, Dane Edward

2005-05-01T23:59:59.000Z

474

Exploring Pipeline Dynamics to Connect New Markets  

Reports and Publications (EIA)

This presentation provides analytical results of ongoing research at the Natural Gas Division, Office of Oil and Gas, on the role of natural gas pipelines in the marketplace. The presentation also includes the latest market developments for pipeline expansion and new construction.

Information Center

2009-03-06T23:59:59.000Z

475

Changes in the Pipeline Transportation Market  

Reports and Publications (EIA)

This analysis assesses the amount of capacity that may be turned back to pipeline companies, based on shippers' actions over the past several years and the profile of contracts in place as of July 1, 1998. It also examines changes in the characteristics of contracts between shippers and pipeline companies.

Information Center

1999-04-01T23:59:59.000Z

476

Rio Grande pipeline introduces LPG to Mexico  

SciTech Connect

Rio Grande Pipeline, a joint venture between Mid-America Pipeline Co., Amoco Pipeline Co. and Navajo Pipeline Co., has broken new ground in the energy industry as the first LPG pipeline to cross the US-Mexico border. Plans for the project were announced in November 1995 and first deliveries started three months ago on March 21, 1997. The 8-inch, 265-mile pipeline originates near Odessa, TX, where it receives an 85-15 propane-butane mix via a connection to Mid-America Pipeline. From Odessa, product moves west through the Texas desert and crosses the Rio Grande River about 15 miles south of El Paso near Clint, TX and extends 20 miles into Mexico. Capacity of the line is 24,000 bpd and it has been averaging about 22,000 bpd since line-fill. All in all, it sounded like a reasonably feasible, routine project. But perceptions can be deceiving, or at least misleading. In other words, the project can be summarized as follows: one river, two cultures and a world of difference. The official border crossing for pipeline construction took place on Dec. 2, 1996, with a directional drill under the Rio Grande River, but in actuality, the joint venture partners were continually bridging differences in language, laws, customs and norms with Pemex and contracted workers from Mexico.

NONE

1997-06-01T23:59:59.000Z

477

Corrosion cracking of gas-carrying pipelines  

Science Conference Proceedings (OSTI)

Samples of soil and other materials adhering to the outer and inner surfaces of pipeline coatings, and pieces of rupture pipe were studied to investigate causes of gas-carrying pipeline failures in Pakistan. Chemical analysis of the ruptured pipe shows the pipeline steel had no material flaw. X-ray diffraction studies of the soil reveal that it contains clay and nonclay minerals normally found. The material adhering to the coating facing the pipeline surface contains carbonates and bicarbonates of sodium, namely, nahcolite and trona. This study shows that nahcolite and trona, as products of cathodic protection that were then synthesized in the vicinity of the pipeline surface, could have attacked the pipe surface over the years and caused corrosion.

Hussain, K.; Shaukat, A.; Hassan, F.

1989-02-01T23:59:59.000Z

478

Key decisions near for Chad pipeline proposal  

Science Conference Proceedings (OSTI)

The World Bank is expected to play a key role in a proposed $3 billion development of oil fields in Chad and an export pipeline through Cameroon to the Atlantic Ocean. The project, which has been at least 4 years in the making, could see a breakthrough later this year. Esso Exploration and production Chad Inc. is operator for the consortium proposing the project. It holds a 40% interest, Ste. Shell Tchadienne de Recherches et d`Exploitation has 40%, and Elf Hydrocarbures Tchad has a 20% share it purchased from Chevron Corp. in 1993 (OGJ, February 1, 1993, p 25). The governments of Chad and Cameroon, which had approved a framework agreement for the pipeline in 1995, now are studying an assessment of the pipeline`s environmental impact. If they approve the plans, they are expected to apply to the World Bank for financing. The paper describes the Chad fields, the export pipeline, background information, and the Banks role.

Crow, P.

1997-05-12T23:59:59.000Z

479

Pipeline Behavior Prediction for Superscalar Processors by Abstract Interpretation  

E-Print Network (OSTI)

For real time systems not only the logical function is important but also the timing behavior, e. g. hard real time systems must react inside their deadlines. To guarantee this it is necessary to know upper bounds for the worst case execution times (WCETs). The accuracy of the prediction of WCETs depends strongly on the ability to model the features of the target processor. Cache memories, pipelines and parallel functional units are architectural components which are responsible for the speed gain of modern processors. It is not trivial to determine their influence when predicting the worst case execution time of programs. This paper describes a method to predict the behavior of pipelined superscalar processors and reports initial results of prototypical implementation for the SuperSPARC I processor.

Jörn Schneider; Christian Ferdinand

1999-01-01T23:59:59.000Z

480

Coordinating Interstate ElectricTransmission Siting: An Introduction...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

experts have started drawing att ention to the need to improve the system that transmits electricity from power plants to demand centers. Congestion on existing lines, increased...

Note: This page contains sample records for the topic "interstate pipeline systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Alliant Energy Interstate Power and Light - Business and Farm...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of system cost The Alliant Energy Renewable Cash-Back Rewards program offers rebates for solar photovoltaics (PV), wind, renewable biomass, and anaerobic digesters. Businesses and...

482

Alliant Energy Interstate Power and Light - Farm Equipment Energy...  

Open Energy Info (EERE)

Equipment, Ceiling Fan, Clothes Washers, CustomOthers pending approval, Dishwasher, Energy Mgmt. SystemsBuilding Controls, Equipment Insulation, Heat recovery, Lighting,...

483

Alliant Energy Interstate Power and Light- Residential Renewable Energy Rebates  

Energy.gov (U.S. Department of Energy (DOE))

The Alliant Energy Renewable Cash-Back Rewards program offers its electricity customers rebates for solar photovoltaics (PV), wind, and solar thermal water heating systems. Natural gas customers...

484

Pricing and the incentive to invest in pipelines after Great Lakes  

Science Conference Proceedings (OSTI)

Natural gas pipeline companies invest heavily in expansion of the United States pipeline system. System expansion projects totaled $5.7 billion in 1992. In 1993-94 there was more than $3.8 billion of construction projects completed or under construction, and an additional $5.2 billion proposed and pending, totaling over $9 billion. Over 8,000 miles of new pipelines were installed or under construction in 1993. Much of the new investment involves expanding capacity of existing pipelines by constructing parallel pipes that use existing compressors and follow the same right-of-way, a process also known as {open_quotes}looping.{close_quotes} Under traditional regulation by the Federal Energy Regulatory Commission (Commission or FERC), the pipelines have been able to average or {open_quotes}roll in{close_quotes} the costs of expansion, generally raising costs to existing customers. The Great Lakes Gas Transmission Ltd. Partnership (Great Lakes) decision reversed this long-standing policy by requiring new customers to bear the costs of expansion. This article will demonstrate that these alternative regulatory policies have significant consequences for pricing and the incentives to invest in new pipeline construction, and argues that the Great Lakes decision, which is currently under review, should be upheld and extended.

Spulber, D.F.

1994-12-31T23:59:59.000Z

485

Detection of Unauthorized Construction Equipment in Pipeline Right-of-Ways  

Science Conference Proceedings (OSTI)

The leading cause of incidents on transmission pipelines is damage by third-party construction equipment. A single incident can be devastating, causing death and millions of dollars of property loss. This damage would be prevented if potentially hazardous construction equipment could be detected, identified, and an alert given before the pipeline is hit. Currently there is no method for continuously monitoring a pipeline right-of-way. Instead, companies periodically walk or fly over the pipeline to find unauthorized construction activities. Gas Technology Institute (GTI) is developing a system to solve this problem by using an optical fiber buried above the pipeline as a distributed sensor. A custom optical time domain reflectometer (OTDR) is used to interrogate the fiber. Key issues in the development of this technology are the ability to detect encroachment and the ability to discriminate among potentially hazardous and benign encroachments. Advantages of the reflectometry technique are the ability to accurately pinpoint the location of the construction activity and the ability to separately monitor simultaneously occurring events. The basic concept of using OTDR with an optical fiber buried above the pipeline to detect encroachment of construction equipment into the right of way works. Sufficiently rapid time response is possible; permitting discrimination between encroachment types. Additional work is required to improve the system into a practical device.

Maurice Givens; James E. Huebler

2004-09-30T23:59:59.000Z

486

The LOFAR Known Pulsar Data Pipeline  

E-Print Network (OSTI)

Transient radio phenomena and pulsars are one of six LOFAR Key Science Projects (KSPs). As part of the Transients KSP, the Pulsar Working Group (PWG) has been developing the LOFAR Pulsar Data Pipelines to both study known pulsars as well as search for new ones. The pipelines are being developed for the Blue Gene/P (BG/P) supercomputer and a large Linux cluster in order to utilize enormous amounts of computational capabilities (50Tflops) to process data streams of up to 23TB/hour. The LOFAR pipeline output will be using the Hierarchical Data Format 5 (HDF5) to efficiently store large amounts of numerical data, and to manage complex data encompassing a variety of data types, across distributed storage and processing architectures. We present the LOFAR Known Pulsar Data Pipeline overview, the pulsar beam-formed data format, the status of the pipeline processing as well as our future plans for developing the LOFAR Pulsar Search Pipeline. These LOFAR pipelines and software tools are being developed as the next gen...

Alexov, A; Mol, J D; Stappers, B; van Leeuwen, J

2010-01-01T23:59:59.000Z

487

Transportation and Handling of Medium Btu Gas in Pipelines  

Science Conference Proceedings (OSTI)

Coal-derived medium btu gas can be safely transported by pipeline over moderate distances, according to this survey of current industrial pipeline practices. Although pipeline design criteria will be more stringent than for natural gas pipelines, the necessary technology is readily available.

1984-03-01T23:59:59.000Z

488

GTI PROJECT NUMBER 21222 CALIFORNIA NATURAL GAS PIPELINE  

E-Print Network (OSTI)

GTI PROJECT NUMBER 21222 CALIFORNIA NATURAL GAS PIPELINE ASSESSMENT Contract Number: #500 GAS PIPELINE ASSESSMENT #50010050 Legal Notice This information was prepared by Gas Technology;CALIFORNIA NATURAL GAS PIPELINE ASSESSMENT #50010050 Task 3Summary Report AssessmentofCurrentlyAvailablePipeline

489

Evaluation of Natural Gas Pipeline Materials and Infrastructure for  

E-Print Network (OSTI)

Evaluation of Natural Gas Pipeline Materials and Infrastructure for Hydrogen/Mixed Gas Service Retrofitting Existing NG Pipelines fro Hydrogen/Hythane Service New Pipeline Installation and ROW Lower South Carolina Electric and Gas University of South Carolina Praxair Hydrogen Pipeline Working Group

490

GTI PROJECT NUMBER 21222 CALIFORNIA NATURAL GAS PIPELINE  

E-Print Network (OSTI)

GTI PROJECT NUMBER 21222 CALIFORNIA NATURAL GAS PIPELINE ASSESSMENT Contract Number: #500 GAS PIPELINE ASSESSMENT #500-10-050 Legal Notice This information was prepared by Gas Technology;CALIFORNIA NATURAL GAS PIPELINE ASSESSMENT #500-10-050 Baseline Technology Assessment for Pipeline Integrity

491

Enhanced Renewable Methane Production System  

treatment that enhances the heating value of biogas, delivering a gas that is close to pipeline quality. This system offers

492

Pipeline response to nearby detonations  

SciTech Connect

Texas Gas Transmission Corp. has supplemented the findings of Southwest Research Institute's study of detonation-induced stresses on pipelines by applying SwRI's equations to actual field problems. Texas Gas used the blasting-stress equations to fix the minimum allowable stand-off distance and maximum particle velocities for strip-mining operations planned along a transmission line right-of-way. The ultimate goal was to ensure that the combined stresses of blasting and operating pressures would not exceed 72% of the pipe's specified minimum yield strength. These stress calculations enabled Texas Gas to maintain normal operating conditions throughout the time that overburden blasting was taking place 100-500 ft from the line.

Bart, G.J.

1979-01-01T23:59:59.000Z

493

Reflex: Scientific Workflows for the ESO Pipelines  

E-Print Network (OSTI)

The recently released Reflex scientific workflow environment supports the interactive execution of ESO VLT data reduction pipelines. Reflex is based upon the Kepler workflow engine, and provides components for organising the data, executing pipeline recipes based on the ESO Common Pipeline Library, invoking Python scripts, and constructing interaction loops. Reflex will greatly enhance the quick validation and reduction of the scientific data. In this paper we summarize the main features of Reflex, and demonstrate as an example its application to the reduction of echelle UVES data.

Ballester, Pascal; Forchi, Vincenzo; Freudling, Wolfram; Garcia-Dabo, Cesar Enrique; Gebbinck, Maurice klein; Modigliani, Andrea; Romaniello, Martino

2011-01-01T23:59:59.000Z

494

Offshore pipeline design utilizing a PLEM  

SciTech Connect

A unique pipeline end module (PLEM) functioning as an intermediate underwater tie-in point is planned for use in the Gulf of Thailand to permit new connections without disruption of flow. In March 1983, the Petroleum Authority of Thailand (PTT) contracted with PLT Engineering Inc. to do the preliminary design for a 43-km, 24-in. gas pipeline from Union Oil's newly developed Platong field in the Gulf of Thailand. The assigned task was to tie the new pipeline into an existing 34-in. trunkline that carries gas from Erawan field to shore at Sattahip, Thailand.

Karpathy, S.A.

1984-04-01T23:59:59.000Z

495

Gas Pipeline Safety Rules (Alabama) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Gas Pipeline Safety Rules (Alabama) Gas Pipeline Safety Rules (Alabama) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Alabama Program Type Safety and Operational Guidelines All public utilities and persons subject to this rule shall file with the commission an operating and maintenance plan as well as an emergency plan. All construction work involving the addition and/or the replacement of gas

496

NETL: News Release - Robot Successfully Inspects Live Natural Gas Pipeline  

NLE Websites -- All DOE Office Websites (Extended Search)

22, 2004 22, 2004 Robot Successfully Inspects Live Natural Gas Pipeline in New York Field Test is a First for Natural Gas Industry BROCKPORT, NY - In a recent field demonstration filled with "firsts," a self-powered robot developed by the Northeast Gas Association, Carnegie Mellon University, and the Department of Energy's National Energy Technology Laboratory successfully inspected a mile of a live natural gas distribution main in Brockport, New York. Known as EXPLORER, the remote-controlled robot was launched and retrieved four times on October 8 with no interruption in customer service. The system successfully made its way through an 8-inch diameter pipeline owned and operated by Rochester Electric & Gas, and maneuvered several 70- to 90-degree bends.

497

EIA - Natural Gas Pipeline Network - U.S. Natural Gas Pipeline ...  

U.S. Energy Information Administration (EIA)

U.S. Natural Gas Pipeline Network, 2009 The EIA has determined that the informational map displays here do not raise security concerns, based on the application of ...

498

Interstate Renewable Energy Council, Inc. Sharing Success By  

E-Print Network (OSTI)

California. Ms. Stanfield’s practice focuses on the intersection between renewable energy regulation and environmental and land use law, with a particular focus on regulatory policy implementation, compliance and permitting processes. On behalf of IREC, Ms. Stanfield works to improve the efficiency and efficacy of the permitting process for distributed generation solar systems. She also is a leading voice for the improvement of interconnection standards and their interaction with the procurement and land use permitting processes in California. Contact Sky at

Sky Stanfield; Erica Schroeder; Thad Culley; Wiedman Llp; Wade Crowfoot; Carla Din; Gwen Rose

2012-01-01T23:59:59.000Z

499

Caspian Region Oil Pipelines (U) KIEV RUSSIA  

U.S. Energy Information Administration (EIA)

Kashagan Tengiz Azeri Chirag Guneshli Deep Neka-Tehran 50,000 b/d (first stage) Atyrau-Samara 300,000 b/d Karachaganak-Atyrau (planned) 180,000 b/d Caspian Pipeline

500

Construction advances on gas pipeline in Germany  

Science Conference Proceedings (OSTI)

This paper reports that construction is well under way on a pipeline to transport gas form the North Sea and Russia into the heart of Germany. Mitte Deutchland Anbindungs Leitung (Midal) gas pipeline, under construction for Winershall AG and partner Gazprom, the Russian state gas company, will extend more than 640 km from the North Sea coast to Ludwigshafen in Southwest Germany. en route, the line will make more than 100 river crossings. Midal will connect with the joint ventures' Sachesen-Thurigen-Erdgas Leitung (Stegal) pipeline, which moves Russian gas into eastern Germany and Wintershall's gas storage site at Rehden. Wintershall Erdgas Handelshaus GmbH, set up to manage the joint venture project, divided the pipeline route into six parts, hiring different contractors to lay each section.

Not Available

1992-09-28T23:59:59.000Z