National Library of Energy BETA

Sample records for interstate pipeline companies

  1. Gas supplies of interstate natural gas pipeline companies, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-12-11

    This publication provides information on the total reserves, production, and deliverability capabilities of the 64 interstate pipeline companies required to file the Federal Energy Regulatory Commission (FERC) Form 15, ``Interstate Pipeline`s Annual Report of Gas Supply.`` Data reported on this form are not considered to be confidential. This publication is the 29th in a series of annual reports on the total gas supplies of interstate pipeline companies since the inception of individual company reports to the Federal Power Commission (FPC) in 1964 for report year 1963.

  2. Gas supplies of interstate natural gas pipeline companies, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-12-11

    This publication provides information on the total reserves, production, and deliverability capabilities of the 64 interstate pipeline companies required to file the Federal Energy Regulatory Commission (FERC) Form 15, Interstate Pipeline's Annual Report of Gas Supply.'' Data reported on this form are not considered to be confidential. This publication is the 29th in a series of annual reports on the total gas supplies of interstate pipeline companies since the inception of individual company reports to the Federal Power Commission (FPC) in 1964 for report year 1963.

  3. Gas supplies of interstate/natural gas pipeline companies 1989

    SciTech Connect (OSTI)

    Not Available

    1990-12-18

    This publication provides information on the interstate pipeline companies' supply of natural gas during calendar year 1989, for use by the FERC for regulatory purposes. It also provides information to other Government agencies, the natural gas industry, as well as policy makers, analysts, and consumers interested in current levels of interstate supplies of natural gas and trends over recent years. 5 figs., 18 tabs.

  4. U.S. interstate pipelines ran more efficiently in 1994

    SciTech Connect (OSTI)

    True, W.R.

    1995-11-27

    Regulated US interstate pipelines began 1995 under the momentum of impressive efficiency improvements in 1994. Annual reports filed with the US Federal Energy Regulatory Commission (FERC) show that both natural-gas and petroleum liquids pipeline companies increased their net incomes last year despite declining operating revenues. This article discusses trends in the pipeline industry and gives data on the following: pipeline revenues, incomes--1994; current pipeline costs; pipeline costs--estimated vs. actual; current compressor construction costs; compressor costs--estimated vs. actual; US interstate mileage; investment in liquids pipelines; 10-years of land construction costs; top 10 interstate liquids pipelines; top 10 interstate gas pipelines; liquids pipeline companies; and gas pipeline companies.

  5. EIA - Natural Gas Pipeline Network - Interstate Pipelines Segment

    U.S. Energy Information Administration (EIA) Indexed Site

    Interstate Natural Gas Pipeline Segment About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Interstate Natural Gas Pipeline Segment Two-thirds of the lower 48 States are almost totally dependent upon the interstate pipeline system for their supplies of natural gas. On the interstate pipeline grid, the long-distance, wide-diameter (20-42 inch), high capacity trunklines carry most of the natural gas that is transported throughout the

  6. Deliverability on the interstate natural gas pipeline system

    SciTech Connect (OSTI)

    1998-05-01

    Deliverability on the Interstate Natural Gas Pipeline System examines the capability of the national pipeline grid to transport natural gas to various US markets. The report quantifies the capacity levels and utilization rates of major interstate pipeline companies in 1996 and the changes since 1990, as well as changes in markets and end-use consumption patterns. It also discusses the effects of proposed capacity expansions on capacity levels. The report consists of five chapters, several appendices, and a glossary. Chapter 1 discusses some of the operational and regulatory features of the US interstate pipeline system and how they affect overall system design, system utilization, and capacity expansions. Chapter 2 looks at how the exploration, development, and production of natural gas within North America is linked to the national pipeline grid. Chapter 3 examines the capability of the interstate natural gas pipeline network to link production areas to market areas, on the basis of capacity and usage levels along 10 corridors. The chapter also examines capacity expansions that have occurred since 1990 along each corridor and the potential impact of proposed new capacity. Chapter 4 discusses the last step in the transportation chain, that is, deliverability to the ultimate end user. Flow patterns into and out of each market region are discussed, as well as the movement of natural gas between States in each region. Chapter 5 examines how shippers reserve interstate pipeline capacity in the current transportation marketplace and how pipeline companies are handling the secondary market for short-term unused capacity. Four appendices provide supporting data and additional detail on the methodology used to estimate capacity. 32 figs., 15 tabs.

  7. EIA - Natural Gas Pipeline Network - States Dependent on Interstate

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipelines Map States Dependent on Interstate Pipelines About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates States in grey which are at least 85% dependent on the interstate pipeline network for their natural gas supply are: New England - Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont Southeast - Florida, Georgia, North Carolina, South Carolina, Tennessee Northeast - Delaware, Maryland, New Jersey, New

  8. Overview of interstate hydrogen pipeline systems.

    SciTech Connect (OSTI)

    Gillette, J .L.; Kolpa, R. L

    2008-02-01

    The use of hydrogen in the energy sector of the United States is projected to increase significantly in the future. Current uses are predominantly in the petroleum refining sector, with hydrogen also being used in the manufacture of chemicals and other specialized products. Growth in hydrogen consumption is likely to appear in the refining sector, where greater quantities of hydrogen will be required as the quality of the raw crude decreases, and in the mining and processing of tar sands and other energy resources that are not currently used at a significant level. Furthermore, the use of hydrogen as a transportation fuel has been proposed both by automobile manufacturers and the federal government. Assuming that the use of hydrogen will significantly increase in the future, there would be a corresponding need to transport this material. A variety of production technologies are available for making hydrogen, and there are equally varied raw materials. Potential raw materials include natural gas, coal, nuclear fuel, and renewables such as solar, wind, or wave energy. As these raw materials are not uniformly distributed throughout the United States, it would be necessary to transport either the raw materials or the hydrogen long distances to the appropriate markets. While hydrogen may be transported in a number of possible forms, pipelines currently appear to be the most economical means of moving it in large quantities over great distances. One means of controlling hydrogen pipeline costs is to use common rights-of-way (ROWs) whenever feasible. For that reason, information on hydrogen pipelines is the focus of this document. Many of the features of hydrogen pipelines are similar to those of natural gas pipelines. Furthermore, as hydrogen pipeline networks expand, many of the same construction and operating features of natural gas networks would be replicated. As a result, the description of hydrogen pipelines will be very similar to that of natural gas pipelines

  9. Natural Gas Compressor Stations on the Interstate Pipeline Network: Developments Since 1996

    U.S. Energy Information Administration (EIA) Indexed Site

    Compressor Stations on the Interstate Pipeline Network: Developments Since 1996 This special report looks at the use of natural gas pipeline compressor stations on the interstate natural gas pipeline network that serves the lower 48 States. It examines the compression facilities added over the past 10 years and how the expansions have supported pipeline capacity growth intended to meet the increasing demand for natural gas. Questions or comments on the contents of this article may be directed to

  10. Natural Gas Compressor Stations on the Interstate Pipeline Network: Developments Since 1996

    Reports and Publications (EIA)

    2007-01-01

    This special report looks at the use of natural gas pipeline compressor stations on the interstate natural gas pipeline network that serves the lower 48 states. It examines the compression facilities added over the past 10 years and how the expansions have supported pipeline capacity growth intended to meet the increasing demand for natural gas.

  11. Overview of the design, construction, and operation of interstate liquid petroleum pipelines.

    SciTech Connect (OSTI)

    Pharris, T. C.; Kolpa, R. L.

    2008-01-31

    The U.S. liquid petroleum pipeline industry is large, diverse, and vital to the nation's economy. Comprised of approximately 200,000 miles of pipe in all fifty states, liquid petroleum pipelines carried more than 40 million barrels per day, or 4 trillion barrel-miles, of crude oil and refined products during 2001. That represents about 17% of all freight transported in the United States, yet the cost of doing so amounted to only 2% of the nation's freight bill. Approximately 66% of domestic petroleum transport (by ton-mile) occurs by pipeline, with marine movements accounting for 28% and rail and truck transport making up the balance. In 2004, the movement of crude petroleum by domestic federally regulated pipelines amounted to 599.6 billion tonmiles, while that of petroleum products amounted to 315.9 billion ton-miles (AOPL 2006). As an illustration of the low cost of pipeline transportation, the cost to move a barrel of gasoline from Houston, Texas, to New York Harbor is only 3 cents per gallon, which is a small fraction of the cost of gasoline to consumers. Pipelines may be small or large, up to 48 inches in diameter. Nearly all of the mainline pipe is buried, but other pipeline components such as pump stations are above ground. Some lines are as short as a mile, while others may extend 1,000 miles or more. Some are very simple, connecting a single source to a single destination, while others are very complex, having many sources, destinations, and interconnections. Many pipelines cross one or more state boundaries (interstate), while some are located within a single state (intrastate), and still others operate on the Outer Continental Shelf and may or may not extend into one or more states. U.S. pipelines are located in coastal plains, deserts, Arctic tundra, mountains, and more than a mile beneath the water's surface of the Gulf of Mexico (Rabinow 2004; AOPL 2006). The network of crude oil pipelines in the United States is extensive. There are approximately 55

  12. Deliverability on the Interstate Natural Gas Pipeline System

    Reports and Publications (EIA)

    1998-01-01

    Examines the capability of the national pipeline grid to transport natural gas to various U.S. markets.

  13. Weather, construction inflation could squeeze North American pipelines

    SciTech Connect (OSTI)

    True, W.R.

    1998-08-31

    Major North American interstate and interprovincial pipeline companies appear headed for a squeeze near-term: 1997 earnings from operations were down for the second straight year even as the companies expected new construction to begin this year or later to cost more. The effects of warmer-than-normal weather during 1997 in North America made a showing in annual reports filed by US regulated interstate oil and gas pipeline companies with the US Federal Energy Regulatory Commission (FERC). This paper contains data on the following: pipeline revenues, incomes--1997; North American pipeline costs; North American pipeline costs (estimated vs. actual); North American compressor construction costs; US compressor costs (estimated vs. actual); US interstate mileage; investment in liquids pipelines; 10 years of land construction costs; top 10 interstate liquids lines; top 10 interstate gas lines; liquids pipeline companies; and gas pipeline companies.

  14. U.S. pipelines continue gains into 1996

    SciTech Connect (OSTI)

    True, W.R.

    1996-11-25

    US interstate natural gas, crude oil, and petroleum product pipelines turned in health performances for 1995, continuing impressive efficiency improvements that were evident in 1994. Revenues and incomes earned from operations along with volumes moved are among data annually submitted to FERC and tracked by Oil and Gas Journal year to year in this exclusive report. This year`s report expands coverage of plans for new construction and completed-cost figures by including Canadian activity for the same 12-month period: July 1, 1995, to June 30, 1996. The paper includes data on the following: pipeline revenues, incomes--1995; North American pipeline costs, estimated; US pipeline costs, estimated vs. actual; North American compressor-construction costs; US compressor costs, estimated vs. actual; Canadian pipeline construction costs, actual; US interstate mileage; investment in liquids pipelines; 10 years of land construction costs; to 10 interstate liquids lines; top 10 interstate gas lines; liquids pipeline companies; and gas pipeline companies.

  15. EIA - Natural Gas Pipeline System - Central Region

    U.S. Energy Information Administration (EIA) Indexed Site

    Central Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Central Region Overview | Domestic Gas | Exports | Regional Pipeline Companies & Links Overview Twenty-two interstate and at least thirteen intrastate natural gas pipeline companies (see Table below) operate in the Central Region (Colorado, Iowa, Kansas, Missouri, Montana, Nebraska, North Dakota, South Dakota, Utah, and Wyoming). Twelve

  16. EIA - Natural Gas Pipeline System - Midwest Region

    U.S. Energy Information Administration (EIA) Indexed Site

    Midwest Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Midwest Region Overview | Domestic Gas | Canadian Imports | Regional Pipeline Companies & Links Overview Twenty-six interstate and at least eight intrastate natural gas pipeline companies operate within the Midwest Region (Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin). The principal sources of natural gas supply for the

  17. EIA - Natural Gas Pipeline System - Southwest Region

    U.S. Energy Information Administration (EIA) Indexed Site

    Southwest Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Southwest Region Overview | Export Transportation | Intrastate | Connection to Gulf of Mexico | Regional Pipeline Companies & Links Overview Most of the major onshore interstate natural gas pipeline companies (see Table below) operating in the Southwest Region (Arkansas, Louisiana, New Mexico, Oklahoma, and Texas) are primarily

  18. EIA - Natural Gas Pipeline System - Western Region

    U.S. Energy Information Administration (EIA) Indexed Site

    Western Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Western Region Overview | Transportation South | Transportation North | Regional Pipeline Companies & Links Overview Ten interstate and nine intrastate natural gas pipeline companies provide transportation services to and within the Western Region (Arizona, California, Idaho, Nevada, Oregon, and Washington), the fewest number serving

  19. EIA - Natural Gas Pipeline Network - Intrastate Natural Gas Pipeline...

    Gasoline and Diesel Fuel Update (EIA)

    ... In some instances, an intrastate natural gas pipeline may also be classified as a "Hinshaw" pipeline. Although such pipelines receive all of their supplies from interstate pipeline ...

  20. EIA - Natural Gas Pipeline System - Northeast Region

    U.S. Energy Information Administration (EIA) Indexed Site

    Northeast Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Northeast Region Overview | Domestic Gas | Canadian Imports | Regional Pipeline Companies & Links Overview Twenty interstate natural gas pipeline systems operate within the Northeast Region (Connecticut, Delaware, Massachusetts, Maine, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Virginia, and West Virginia). These

  1. EIA - Natural Gas Pipeline Network - Regional Overview and Links

    U.S. Energy Information Administration (EIA) Indexed Site

    Overview and Links About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Regional Overviews and Links to Pipeline Companies Through a series of interconnecting interstate and intrastate pipelines the transportation of natural gas from one location to another within the United States has become a relatively seamless operation. While intrastate pipeline systems often transports natural gas from production areas directly to consumers in

  2. Natural gas annual 1993 supplement: Company profiles

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. This report, the Natural Gas Annual 1993 Supplement: Company Profiles, presents a detailed profile of 45 selected companies in the natural gas industry. The purpose of this report is to show the movement of natural gas through the various States served by the companies profiled. The companies in this report are interstate pipeline companies or local distribution companies (LDC`s). Interstate pipeline companies acquire gas supplies from company owned production, purchases from producers, and receipts for transportation for account of others. Pipeline systems, service area maps, company supply and disposition data are presented.

  3. US pipelines report mixed results for 1993

    SciTech Connect (OSTI)

    True, W.R.

    1994-11-21

    US natural gas pipelines started 1994 in generally better conditions than a year earlier. These companies' operational and financial results for 1993 indicate modest but continuing improvement. Petroleum liquids pipelines, on the other hand, suffered reduced revenues and incomes last: increased deliveries and trunkline movement of liquid petroleum products failed fully to offset fewer barrels of crude oil moving through the companies' pipeline systems. Revenues, incomes, mileage operated, and other data are tracked in Oil and Gas Journal's exclusive Economics Report. Additionally, this report contains extensive data on actual costs of pipeline construction compared with what companies expected to spend at the time of projects' approvals. The paper also discusses the continuing shift of natural gas pipelines as merchants to role of transporter; what was spent; the US interstate network; pipeline mileage; deliveries; the top 10 companies; construction activities; cost trends; and cost components.

  4. The 14th Pipeline and Gas Journal 500 report. [Statistical dimensions of leading US pipeline companies

    SciTech Connect (OSTI)

    Congram, G.E.

    1994-09-01

    This article presents compiled data on oil and gas pipeline systems in the US and includes specific information on mileage, volume of transported fluids, and cost information. It lists the rankings based on miles of pipeline, units of gas sold, number of customers, units of petroleum sold, and utility by production sales. Information is also presented in alphabetical format.

  5. EIS-0140: Ocean State Power Project, Tennessee Gas Pipeline Company

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission prepared this statement to evaluate potential impacts of construction and operation of a new natural gas-fired, combined-cycle power plant which would be located on a 40.6-acre parcel in the town of Burrillville, Rhode Island, as well as construction of a 10-mile pipeline to transport process and cooling water to the plant from the Blackstone River and a 7.5-mile pipeline to deliver No. 2 fuel oil to the site for emergency use when natural gas may not be available. The Economic Regulatory Administration adopted the EIS on 7/15/1988.

  6. Illinois user sues pipeline on refusal to transport gas

    SciTech Connect (OSTI)

    Barber, J.

    1985-12-02

    An Illinois steel company filed suit against Panhandle Eastern Pipeline Co. for refusing to transport natural gas after its gas transportation program ended on November 1. The company is asking for three times the amount it is losing, which is $7,000 per day, since being forced to purchase from a higher priced distribution company. The suit claims that Panhandle's refusal violates federal and state anti-trust laws and threatens the plant's continued operation. This is the first legal action by a single industrial user, but consumer groups have named over 20 major interstate pipelines for the same allegation when pipelines declined to participate in open access transportation under Order 436.

  7. Corporate Realignments and Investments in the Interstate Natural Gas Transmission System

    Reports and Publications (EIA)

    1999-01-01

    Examines the financial characteristics of current ownership in the natural gas pipeline industry and of the major U.S. interstate pipeline companies that transported the bulk of the natural gas consumed in the United States between 1992 and 1997, focusing on 14 parent corporations. It also examines the near-term investment needs of the industry and the anticipated growth in demand for natural gas during the next decade.

  8. EIS-0152: Iroquois/Tennessee Phase I Pipeline Project

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission prepared this statement to asses the environmental impacts of constructing and operating an interstate natural gas pipeline and associated infrastructure to transport gas from Canada and domestic sources to the New England Market, as proposed by the Iroquois Gas Transmission System and the Tennessee Gas Pipeline Company. The U.S. Department of Energy Office of Fossil Energy was a cooperating agency during statement development and adopted the statement on 9/1/1990.

  9. EIA - Natural Gas Pipeline Network - Largest Natural Gas Pipeline Systems

    U.S. Energy Information Administration (EIA) Indexed Site

    Interstate Pipelines Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Thirty Largest U.S. Interstate Natural Gas Pipeline Systems, 2008 (Ranked by system capacity) Pipeline Name Market Regions Served Primary Supply Regions States in Which Pipeline Operates Transported in 2007 (million dekatherm)1 System Capacity (MMcf/d) 2 System Mileage Columbia Gas Transmission Co. Northeast Southwest, Appalachia DE, PA, MD, KY, NC, NJ, NY,

  10. Analysis of gas chilling alternatives for Arctic pipelines

    SciTech Connect (OSTI)

    Dvoiris, A.; McMillan, D.K.; Taksa, B.

    1994-12-31

    The operation of buried natural gas pipelines in Arctic regions requires installation of gas chilling facilities at compressor stations. These facilities are required in order to cool compressed pipeline gases to temperatures below that of permanently frozen surrounding soil. If these pipeline gas temperatures are too high, the frozen ground around the pipelines will eventually thaw. This is undesirable for many reasons amongst which are ground settlement and possible catastrophic failure of the pipeline. This paper presents the results of a study which compared several alternative methods of gas chilling for possible application at one of the compressor stations on the proposed new Yamal-Center gas pipeline system in the Russian Arctic. This technical and economic study was performed by Gulf Interstate Engineering (GIE) for GAZPROM, the gas company in Russia that will own and operate this new pipeline system. Geotechnical, climatical and other information provided by GAZPROM, coupled with information developed by GIE, formed the basis for this study.

  11. Natural gas annual 1992: Supplement: Company profiles

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The data for the Natural Gas Annual 1991 Supplement : Company Profiles are taken from Form EIA-176, (open quotes) Annual Report of Natural and Supplemental Gas Supply and Disposition (close quotes). Other sources include industry literature and corporate annual reports to shareholders. The companies appearing in this report are major interstate natural gas pipeline companies, large distribution companies, or combination companies with both pipeline and distribution operations. The report contains profiles of 45 corporate families. The profiles describe briefly each company, where it operates, and any important issues that the company faces. The purpose of this report is to show the movement of natural gas through the various States served by the 45 large companies profiled.

  12. 1997 annual pipeline directory and equipment guide

    SciTech Connect (OSTI)

    1997-09-01

    This annual guide is divided into the following sections: Equivalent valve tables; Complete 1997 line pipe tables; Engineering and construction services; Crude oil pipeline companies; Slurry companies; Natural gas companies; Gas distribution pipeline companies; Municipal gas systems; Canadian pipeline companies; International pipeline companies; and Company index. The tables list component materials, manufacturers, and service companies.

  13. INVESTIGATION OF PIPELINES INTEGRITY ASSOCIATED WITH PUMP MODULES VIBRATION FOR PUMPING STATION 9 OF ALYESKA PIPELINE SERVICE COMPANY

    SciTech Connect (OSTI)

    Wang, Jy-An John

    2009-09-01

    Since the operation of PS09 SR module in 2007, it has been observed that there is vibration in various parts of the structures, on various segments of piping, and on appurtenance items. At DOT Pipeline and Hazardous Materials Safety Administration (PHMSA) request, ORNL Subject Matter Experts support PHMSA in its review and analysis of the observed vibration phenomenon. The review and analysis consider possible effects of pipeline design features, vibration characteristics, machinery configuration, and operating practices on the structural capacity and leak tight integrity of the pipeline. Emphasis is placed on protection of welded joints and machinery against failure from cyclic loading. A series of vibration measurements were carried out by the author during the site visit to PS09, the power of the operating pump during the data collection is at about 2970KW, which is less than that of APSC's vibration data collected at 3900KW. Thus, a first order proportional factor of 4900/2970 was used to project the measured velocity data to that of APSC's measurement of the velocity data. It is also noted here that the average or the peak-hold value of the measured velocity data was used in the author's reported data, and only the maximum peak-hold data was used in APSC's reported data. Therefore, in some cases APSC's data is higher than the author's projective estimates that using the average data. In general the projected velocity data are consistent with APSC's measurements; the examples of comparison at various locations are illustrated in the Table 1. This exercise validates and confirms the report vibration data stated in APSC's summary report. After the reinforcement project for PS09 Station, a significant reduction of vibration intensity was observed for the associated pipelines at the SR Modules. EDI Co. provided a detailed vibration intensity investigation for the newly reinforced Pump Module structures and the associated pipelines. A follow-up review of EDI

  14. Natural gas pipeline technology overview.

    SciTech Connect (OSTI)

    Folga, S. M.; Decision and Information Sciences

    2007-11-01

    The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by transmission companies

  15. National Account Energy Alliance Final Report for the Basin Electric Project at Northern Border Pipeline Company's Compressor Station #7, North Dakota

    SciTech Connect (OSTI)

    Sweetzer, Richard; Leslie, Neil

    2008-02-01

    A field research test and verification project was conducted at the recovered energy generation plant at Northern Border Pipeline Company Compressor Station #7 (CS#7) near St. Anthony. Recovered energy generation plant equipment was supplied and installed by ORMAT Technologies, Inc. Basin Electric is purchasing the electricity under a purchase power agreement with an ORMAT subsidiary, which owns and operates the plant.

  16. Annual pipeline directory and equipment guide

    SciTech Connect (OSTI)

    Not Available

    1994-11-01

    This issue reviews international pipeline and gas utility operations, design, and maintenance. It includes the identification of companies, their addresses, telephone numbers, company officers, and types of involvement with oil and gas pipeline issues. Specific categories addressed include companies involved in pipeline valves; engineering and construction services; pipe coating applicators; crude oil pipelines; natural gas pipelines; slurry pipelines; gas distribution utilities; and, pipeline manufacturers and suppliers.

  17. About U.S. Natural Gas Pipelines

    Reports and Publications (EIA)

    2007-01-01

    This information product provides the interested reader with a broad and non-technical overview of how the U.S. natural gas pipeline network operates, along with some insights into the many individual pipeline systems that make up the network. While the focus of the presentation is the transportation of natural gas over the interstate and intrastate pipeline systems, information on subjects related to pipeline development, such as system design and pipeline expansion, are also included.

  18. EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Development &

    U.S. Energy Information Administration (EIA) Indexed Site

    Expansion Pipelinesk > Development & Expansion About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Development and Expansion Timing | Determining Market Interest | Expansion Options | Obtaining Approval | Prefiling Process | Approval | Construction | Commissioning Timing and Steps for a New Project An interstate natural gas pipeline construction or expansion project takes an average of about three years

  19. Pipeline and Gas Journal`s 1998 annual pipeline directory and equipment guide

    SciTech Connect (OSTI)

    1998-09-01

    The tables provide information on line pipe sizes, walls, grades, and manufacturing processes. Data are presented by manufacturer within each country. Also tabulated are engineering and construction service companies, crude oil pipeline companies, products pipeline companies, natural gas pipeline companies, gas distribution companies, and municipal gas systems in the US. There is also a Canadian and an international directory.

  20. CFPL installs products pipeline with directional drilling

    SciTech Connect (OSTI)

    1996-01-01

    Central Florida Pipeline Company (CFPL), a subsidiary of GATX Terminals Corp., Tampa, FL, has used directional drilling under seven water bodies in Hillsborough, Polk and Osceola Counties in constructing its new pipeline from Tampa to Orlando. Primary reason for using directional drilling is to protect the environment by minimizing water turbidity while the 16-inch diameter, 109-mile refined petroleum products pipeline is being installed. Total cost of the project is pegged at $68.5 million. Directional drilling enabled the pipe to be placed about 20 feet below the bottom of: The Alafia River in Riverview with 999 feet drilled; Port Sutton Channel near the Port of Tampa with 2,756 feet drilled; Reedy Creek Swamp at the intersection of Interstate 4 and Highway 192 which had 1,111 feet drilled; Wetland {number_sign}70 southwest of Lake Wales with 1,575 feet drilled; Peace River south of Bartow had 2,470 feet drilled; Bonnet Creek west of Kissimmee had 693 feet drilled. Shingle Creek near the borders of Osceola and Orange Counties with 1,700 feet drilled. This paper reviews the design plans for construction and the emergency response plans should a rupture occur in the line.

  1. EIA - Natural Gas Pipeline Network - Pipeline Capacity and Utilization

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline Utilization & Capacity About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Capacity & Utilization Overview | Utilization Rates | Integration of Storage | Varying Rates of Utilization | Measures of Utilization Overview of Pipeline Utilization Natural gas pipeline companies prefer to operate their systems as close to full capacity as possible to maximize their revenues. However, the average

  2. Interstate Technology & Regulatory Council (ITRC) Remediation...

    Office of Environmental Management (EM)

    Interstate Technology & Regulatory Council (ITRC) Remediation Management of Complex Sites: Case Studies and Guidance Interstate Technology & Regulatory Council (ITRC) Remediation ...

  3. Clean Development Mechanism Pipeline | Open Energy Information

    Open Energy Info (EERE)

    Clean Development Mechanism Pipeline AgencyCompany Organization: UNEP-Risoe Centre, United Nations Environment Programme Sector: Energy, Land Topics: Finance, Implementation,...

  4. UNEP-Risoe CDM/JI Pipeline Analysis and Database | Open Energy...

    Open Energy Info (EERE)

    UNEP-Risoe CDMJI Pipeline Analysis and Database Jump to: navigation, search Tool Summary LAUNCH TOOL Name: UNEP Risoe CDMJI Pipeline Analysis and Database AgencyCompany...

  5. GAS PIPELINE PIGABILITY

    SciTech Connect (OSTI)

    Ted Clark; Bruce Nestleroth

    2004-04-01

    In-line inspection equipment is commonly used to examine a large portion of the long distance transmission pipeline system that transports natural gas from well gathering points to local distribution companies. A piece of equipment that is inserted into a pipeline and driven by product flow is called a ''pig''. Using this term as a base, a set of terms has evolved. Pigs that are equipped with sensors and data recording devices are called ''intelligent pigs''. Pipelines that cannot be inspected using intelligent pigs are deemed ''unpigable''. But many factors affect the passage of a pig through a pipeline, or the ''pigability''. The pigability pipeline extend well beyond the basic need for a long round hole with a means to enter and exit. An accurate assessment of pigability includes consideration of pipeline length, attributes, pressure, flow rate, deformation, cleanliness, and other factors as well as the availability of inspection technology. All factors must be considered when assessing the appropriateness of ILI to assess specific pipeline threats.

  6. Changes in the Pipeline Transportation Market

    Reports and Publications (EIA)

    1999-01-01

    This analysis assesses the amount of capacity that may be turned back to pipeline companies, based on shippers' actions over the past several years and the profile of contracts in place as of July 1, 1998. It also examines changes in the characteristics of contracts between shippers and pipeline companies.

  7. Worldwide pipelines and contractors directory

    SciTech Connect (OSTI)

    1999-11-01

    This directory contains information on the following: pipeline contractors; US natural gas pipelines; US crude oil pipelines; US product pipelines; Canadian pipelines and foreign pipelines.

  8. Interstate Electrification Improvement Project

    SciTech Connect (OSTI)

    Puckette, Margaret; Kim, Jeff

    2015-07-01

    The Interstate Electrification Improvement Project, publicly known as the Shorepower Truck Electrification Project (STEP), started in May 2011 and ended in March 2015. The project grant was awarded by the Department of Energy’s Vehicles Technology Office in the amount of $22.2 million. It had three overarching missions: 1. Reduce the idling of Class 8 tractors when parked at truck stops, to reduce diesel fuel consumption and thus U.S. dependence on foreign petroleum; 2. Stimulate job creation and economic activity as part of the American Reinvestment and Recovery Act of 2009; 3. Reduce greenhouse gas emissions (GHG) from diesel combustion and the carbon footprint of the truck transportation industry. The project design was straightforward. First, build fifty Truck Stop Electrification (TSE) facilities in truck stop parking lots across the country so trucks could plug-in to 110V, 220V, or 480VAC, and shut down the engine instead of idling. These facilities were strategically located at fifty truck stops along major U.S. Interstates with heavy truck traffic. Approximately 1,350 connection points were installed, including 150 high-voltage electric standby Transport Refrigeration Unit (eTRU) plugs--eTRUs are capable of plugging in to shore power1 to cool the refrigerated trailer for loads such as produce, meats and ice cream. Second, the project provided financial incentives on idle reduction equipment to 5,000 trucks in the form of rebates, to install equipment compatible with shore power. This equipment enables drivers to shut down the main engine when parked, to heat or cool their cab, charge batteries, or use other household appliances without idling—a common practice that uses approximately 1 gallon of diesel per hour. The rebate recipients were intended to be the first fleets to plug into Shorepower to save diesel fuel and ensure there is significant population of shore power capable trucks. This two part project was designed to complement each other by

  9. EIA - Natural Gas Pipeline Network - Regulatory Authorities

    U.S. Energy Information Administration (EIA) Indexed Site

    Regulatory Authorities About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Regulatory Authorities Beginning | Regulations Today | Coordinating Agencies | Regulation of Mergers and Acquisitions Beginning of Industry Restructuring In April 1992, the Federal Energy Regulatory Commission (FERC) issued its Order 636 and transformed the interstate natural gas transportation segment of the industry forever. Under it,

  10. Assessment of the Adequacy of Natural Gas Pipeline Capacity in the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Northeast United States - November 2013 | Department of Energy Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 In 2005-06, the Office of Electricity Delivery and Energy Reliability (OE) conducted a study on the adequacy of interstate natural gas pipeline capacity serving the northeastern United States to meet natural gas demand

  11. Panel 2, Hydrogen Delivery in the Natural Gas Pipeline Network

    Broader source: Energy.gov (indexed) [DOE]

    the Natural Gas Pipeline Network DOE'S HYDROGEN ENERGY STORAGE FOR GRID AND ... >Unanswered Questions >CEC's Mobile Hydrogen Station 3 3 Company Overview ESTABLISHED ...

  12. Renewable Energy Pipeline Development Terms of Reference | Open...

    Open Energy Info (EERE)

    Development Terms of Reference Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy Pipeline Development Terms of Reference AgencyCompany Organization:...

  13. “Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States” Report Now Available

    Broader source: Energy.gov [DOE]

    In 2013, OE conducted an assessment to determine how changes to the Northeast gas market may have affected the ability of the interstate pipeline system to meet natural gas demand for “essential human needs” in the event of a disruption in pipeline capacity.

  14. The Clean Air Interstate Rule

    SciTech Connect (OSTI)

    Debra Jezouit; Frank Rambo

    2005-07-01

    On May 12, 2005, EPA promulgated the Clean Air Interstate Rule, which overhauls and expands the scope of air emissions trading programs in the eastern United States. The rule imposes statewide caps on emissions of nitrogen oxides and sulfur dioxide to be introduced in two phases, beginning in 2009. This article briefly explains the background leading up to the rule and summarizes its key findings and requirements. 2 refs., 1 fig., 1 tab.

  15. EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage

    U.S. Energy Information Administration (EIA) Indexed Site

    Storage About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Underground Natural Gas Storage Overview | Regional Breakdowns Overview Underground natural gas storage provides pipelines, local distribution companies, producers, and pipeline shippers with an inventory management tool, seasonal supply backup, and access to natural gas needed to avoid imbalances between receipts and deliveries on a pipeline network. There are three

  16. Pipeline Expansions

    Reports and Publications (EIA)

    1999-01-01

    This appendix examines the nature and type of proposed pipeline projects announced or approved for construction during the next several years in the United States. It also includes those projects in Canada and Mexico that tie-in with the U.S. markets or projects.

  17. U.S. Natural Gas Net Interstate Receipts (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Net Interstate Receipts (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. International and Interstate Movements of Natural Gas by State

  18. Colonial Pipeline Company Timothy C. Felt

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Following 911, Colonial undertook a system-wide review of both our physical security and cyber infrastructure. Both the Departments of Energy and Homeland Security have visited ...

  19. The Black Mesa coal/water slurry pipeline system

    SciTech Connect (OSTI)

    Brolick, H.J.

    1994-12-31

    The Black Mesa Pipeline is a 273 mile (439 km) long, 18-inch (457 mm) coal/water slurry pipeline, originating on the Black Mesa in the Northeastern part of Arizona, USA. The system delivers coal from the Peabody Coal Company`s Black Mesa open pit mine to the Mohave Generating Station which is a 1580 mw steam powered electric generating plant located in Laughlin, Nevada.

  20. Coal slurry pipelines: Blach Mesa and future projects

    SciTech Connect (OSTI)

    Brolick, H.J.

    1998-12-31

    Most people in the mining industry have some familiarity with pipelining of minerals in slurry form, however, many may not realize the extent that mineral slurry pipeline transport is used throughout the world. The author is referring to the shipment of the minerals in the raw or concentrate form, not tailings pipelines which are also commonplace in the minerals industry. There are over forty mineral pipelines around the world. The list covers a wide range of minerals, including copper ore concentrate, iron ore concentrate, limestone, phosphate concentrate, kaolin, Gilsonite and gold ore, with only eleven of the mineral pipelines located in the USA. It should be noted that one of the earliest slurry pipelines was a 108 mile coal slurry pipeline in Ohio, which started up in 1957. The pipeline only operated until 1963 when a railroad company literally bought out the transportation contract. This really was the beginning of the unit train concept. Each mineral has specific physical and chemical characteristics to be considered when evaluating transport by pipeline. The processing required at the pipeline origin, as well as at the pipeline termination, are also important factors in determining slurry pipeline feasibility. Transport distance, annual volume, and continuity of shipments are other important factors. One of the most difficult minerals to transport as a slurry is coal because the specific gravity is closer to water than most other minerals. Thus, the fine balance of creating enough fine particles to serve as a carrier for the coarser material, while at the same time having a material that can be economically dewatered is very sensitive and technical designs will vary with types of coal. Additionally, since coal is purchased for its thermal value, excess surface moisture can lower the value of the coal to the customer. One of the most successful slurry pipeline operations, and the only current operating long-distance coal slurry pipeline is the Black Mesa

  1. Components in the Pipeline

    SciTech Connect (OSTI)

    Gorton, Ian; Wynne, Adam S.; Liu, Yan; Yin, Jian

    2011-02-24

    Scientists commonly describe their data processing systems metaphorically as software pipelines. These pipelines input one or more data sources and apply a sequence of processing steps to transform the data and create useful results. While conceptually simple, pipelines often adopt complex topologies and must meet stringent quality of service requirements that place stress on the software infrastructure used to construct the pipeline. In this paper we describe the MeDICi Integration Framework, which is a component-based framework for constructing complex software pipelines. The framework supports composing pipelines from distributed heterogeneous software components and provides mechanisms for controlling qualities of service to meet demanding performance, reliability and communication requirements.

  2. Questions and Issues on Hydrogen Pipelines: Pipeline Transmission of Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Issues on Hydrogen Pipelines Pipeline Transmission of Hydrogen Doe Hydrogen Pipeline Working Group Meeting August 31, 2005 Pipeline Transmission of Hydrogen --- 2 Copyright: Air Liquide Pipeline Inventory Breakdown by gases 0 500 1000 1500 2000 2500 3000 3500 KM N2 2956 km O2 3447 km H2 1736 km CO/Syngas 61 km TOTAL 8200 km Pipeline Inventory 2004 Asie Pacific America Europe Pipeline Transmission of Hydrogen --- 3 Copyright: Pipeline Transmission of Hydrogen --- 4 Copyright: 3. Special

  3. Keystone XL pipeline update

    Broader source: Energy.gov [DOE]

    Questions have been raised recently about the Keystone XL pipeline project, so we wanted to make some points clear.

  4. Fiber Reinforced Composite Pipelines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rawls Savannah River National Laboratory This presentation does not contain proprietary, confidential, or otherwise restricted information Fiber Reinforced Composite Pipelines ...

  5. U.S., Canada pipeline work shows gain in 1994

    SciTech Connect (OSTI)

    Watts, J.

    1994-01-01

    Pipeline construction activity in the US and Canada is expected to be down slightly during 1994 from 1993 mileage, even though natural gas pipeline work remains steady on both sides of the border. Pipeline and Gas Journal and Pipeline and Utilities Construction estimate that a total of 3.638 miles of new gas, crude oil and refined products pipeline will be installed during 1994 in the US, down from a total of 4.278 miles built in 1993. Canadian 1994 work remains essentially unchanged in 1994, with 1,094 new miles compared to 1,091 miles in 1993. This paper reviews the proposed construction by region and company. It includes information on mileage, type pipeline, and estimated completion date.

  6. Interstate Deliveries of Natural Gas (Annual Supply & Disposition)

    Gasoline and Diesel Fuel Update (EIA)

    per Thousand Cubic Feet) Dollars per Thousand Cubic Feet) International Falls, MN Natural Gas Pipeline Imports From Canada (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.71 2.03 2.00 2.33 2000's 2.77 4.85 3.01 -- -- 11.20 -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages:

  7. Subsea pipeline connection

    SciTech Connect (OSTI)

    Langner, C. G.

    1985-12-17

    A method and apparatus are provided for laying an offshore pipeline or flowline bundle to a deepwater subsea structure. The pipeline or flowline bundle is laid along a prescribed path, preferably U-shape, such that a pullhead at the terminus of the pipeline or flowline bundle falls just short of the subsea structure. A pull-in tool connected to the pipeline or flowline bundle by a short length of pull cable is then landed on and latched to the subsea structure, and the pipeline or flowline bundle is pulled up to the subsea structure by the pull-in tool and pull cable.

  8. Questions and Issues on Hydrogen Pipelines: Pipeline Transmission of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen | Department of Energy Questions and Issues on Hydrogen Pipelines: Pipeline Transmission of Hydrogen Questions and Issues on Hydrogen Pipelines: Pipeline Transmission of Hydrogen Pipping of GH2 Pipeline. Background: FG 64 built in 50ies, KP added in 70ies, active mining area over total length hpwgw_questissues_campbell.pdf (1.02 MB) More Documents & Publications Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues Hydrogen Pipeline Discussion EIS-0487:

  9. Mississippi's ratable-take rule preempted: Transcontinental Gas Pipeline Corp. v. State Oil and Gas Board

    SciTech Connect (OSTI)

    Box, A.L.

    1986-01-01

    While the Court's objections to Mississippi's ratable-take rules as applied to interstate pipelines are clear, conservation lawyers have concerns about the impact of the Transco decision upon state interests in oil and gas conservation and because the decision does not clarify the limits of preemption of state conservation legislation. A variety of state regulatory legislation challenges will likely result in different contexts. These could affect interest on royalties, payment procedures, and could even lead to conflicting regulations.

  10. Hydrogen Pipeline Discussion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    praxair.com Copyright © 2003, Praxair Technology, Inc. All rights reserved. Hydrogen Pipeline Discussion BY Robert Zawierucha, Kang Xu and Gary Koeppel PRAXAIR TECHNOLOGY CENTER TONAWANDA, NEW YORK DOE Hydrogen Pipeline Workshop Augusta, GA August 2005 2 Introduction Regulatory and technical groups that impact hydrogen and hydrogen systems ASME, DOE, DOT etc, Compressed Gas Association activities ASTM TG G1.06.08 Hydrogen pipelines and CGA-5.6 Selected experience and guidance Summary and

  11. Product Pipeline Reports Tutorial

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum > Petroleum Survey Forms> Petroleum Survey Forms Tutorial Product Pipeline Reports Tutorial Content on this page requires a newer version of Adobe Flash Player. Get Adobe ...

  12. Interstate Renewable Energy Council IREC | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy Council IREC Jump to: navigation, search Name: Interstate Renewable Energy Council (IREC) Place: Latham, New York Zip: 12110-1156 Sector: Renewable Energy Product:...

  13. Alliant Energy Interstate Power and Light (Gas and Electric)...

    Broader source: Energy.gov (indexed) [DOE]

    Program Info Sector Name Utility Administrator Alliant Energy-Interstate Power and Light Website http:www.alliantenergy.comSaveEnergyAndMoneyAdditionalWaysSaveFinan......

  14. Use of look-ahead modeling in pipeline operations

    SciTech Connect (OSTI)

    Wray, B.; O`Leary, C.

    1995-12-31

    Amoco Canada Petroleum Company, Ltd. operates the Cochin pipeline system. Cochin pumps batched liquid ethane, propane, ethylene, butane, and NGL. Operating and scheduling this pipeline is very complex. There are safety considerations, especially for ethylene, which cannot be allowed to drop below vapor pressure. Amoco Canada needs to know where batches are in the line, what pressure profiles will look like into the future, and when batches arrive at various locations along the line. In addition to traditional instrumentation and SCADA, Amoco Canada uses modeling software to help monitor and operate the Cochin pipeline. Two important components of the modeling system are the Estimated Time of Arrival (ETA) and Predictive Model (PM) modules. These modules perform look ahead modeling to assist in operating the Cochin pipeline. The modeling software was first installed for the Cochin system in February of 1994, and was commissioned on August 1, 1994. This paper will discuss how the look ahead modules are used for the Cochin pipeline.

  15. Final EIS Keystone Pipeline Project Appendix E Pipeline Restrictive...

    Energy Savers [EERE]

    Pipeline Project Route Appendix G Public Water Supply Wells Within One Mile of the ... EIS Keystone Pipeline Project Public Water Supplies (PWS Wells and Wellhead ...

  16. Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Permeability and Integrity of Hydrogen Delivery Pipelines Z. Feng*, L.M. Anovitz*, J.G. Blencoe*, S. Babu*, and P. S. Korinko** * Oak Ridge National Laboratory * Savannah River National Laboratory August 30, 2005 2 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Partners and Collaborators * Oak Ridge National Laboratory - Project lead * Savannah River National Laboratory - Low H 2 pressure permeation test * Edison Welding Institute - Pipeline materials * Lincoln Electric Company -

  17. Hydrogen Pipelines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery » Gaseous Hydrogen » Hydrogen Pipelines Hydrogen Pipelines Photo of a hydrogen pipeline. Gaseous hydrogen can be transported through pipelines much the way natural gas is today. Approximately 1,500 miles of hydrogen pipelines are currently operating in the United States. Owned by merchant hydrogen producers, these pipelines are located where large hydrogen users, such as petroleum refineries and chemical plants, are concentrated such as the Gulf Coast region. Transporting gaseous

  18. Hawaii Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use (Million Cubic Feet) Hawaii Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2 2 2 3 2 2 2010's 2 2 3 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Pipeline & Distribution Use Hawaii Natural Gas

  19. Aspen Pipeline | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Aspen Pipeline Place: Houston, Texas Zip: 77057 Product: US firm which acquires, builds and owns pipelines, gathering systems and distribution systems....

  20. New Materials for Hydrogen Pipelines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY New Materials for Hydrogen Pipelines New Materials for Hydrogen Pipelines Barton Smith, Barbara Frame, Cliff Eberle, Larry ...

  1. Composites Technology for Hydrogen Pipelines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Composites Technology for Hydrogen Pipelines Barton Smith, Barbara Frame, Larry Anovitz ... for pipeline joining technologies Barton Smith 865-574-2196, smithdb@ornl.gov * Implement ...

  2. New Materials for Hydrogen Pipelines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Materials for Hydrogen Pipelines Bart Smith, Jimmy Mays, Barbara Frame, Mike Simonson, Cliff Eberle, Jim Blencoe, and Tim Armstrong Hydrogen Pipeline R&D Project Review Meeting ...

  3. Subsea pipeline connection

    SciTech Connect (OSTI)

    Langner, C. G.

    1985-09-17

    A method and apparatus are provided for connecting an offshore pipeline or flowline bundle to a deepwater subsea structure and then laying away from said structure. The pipeline or flowline bundle is deployed vertically from a pipelay vessel to make a hinged connection with the subsea structure. The connection operation is facilitated by a flowline connection tool attached to the pipeline or flowline bundle and designed to be inserted into a funnel located either centrally or to one side of the subsea structure. The connection procedure consists of landing and securing the flowline connection tool onto the subsea structure, then hinging over and connecting the pipeline or flowline bundle to the subsea structure as the pipeline or flowline bundle is laid on the seafloor beginning at the subsea structure.

  4. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    prices from producing areas, plus an allowance for interstate natural gas pipeline and local distribution company charges to transport the gas to market. Such a calculation...

  5. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    prices using spot prices from producing areas, plus an allowance for interstate natural gas pipeline and local distribution company charges to transport the gas to market. Such a...

  6. Interstate Clean Transportation Corridor Project Under Way

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    rucks that travel in the western United States will soon be able to operate clean-burning alternative fuel vehicles (AFVs) along the Interstate Clean Transpor- tation Corridor (ICTC). The ICTC project is the first effort to develop clean transportation corridors to connect Los Angeles, San Bernar- dino, the San Joaquin Valley, Sacra- mento/San Francisco, Salt Lake City, Reno, and Las Vegas along routes 1-15, 1-80, and 1-5/CA-99. The ICTC team, headed by California- based Gladstein and

  7. The Interstate-40 bridge shaker project

    SciTech Connect (OSTI)

    Mayes, R.L.; Nusser, M.A.

    1994-04-01

    New Mexico State University organized an effort to perform static and dynamic damage-detection tests on the Interstate-40 bridge over the Rio Grande at Albuquerque. The opportunity was available because the 425-ft-long bridge was soon to be replaced. Sandia National Laboratories was asked to provide and operate a shaker that could exert 1000-lb peak amplitude forces for both sinusoidal and random excitations between 2 and 20 Hz. Two Sandia departments collaborated to design and build the shaker, using existing major components connected with Sandia-designed and -fabricated hardware. The shaker was installed and operated successfully for a series of five modal and sinusoidal response tests.

  8. Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Working Group Workshop: Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines Code for Hydrogen Piping and Pipelines. B31 Hydrogen Section Committee to develop a new code for H2 piping and pipelines. hpwgw_code_hayden.pdf (105.33 KB) More Documents & Publications Hydrogen Transmission and Distribution Workshop American Society of Mechanical Engineers/Savannah River National Laboratory (ASME/SRNL) Materials and Components

  9. INTERNAL REPAIR OF PIPELINES

    SciTech Connect (OSTI)

    Robin Gordon; Bill Bruce; Nancy Porter; Mike Sullivan; Chris Neary

    2003-05-01

    The two broad categories of deposited weld metal repair and fiber-reinforced composite repair technologies were reviewed for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Preliminary test programs were developed for both deposited weld metal repairs and for fiber-reinforced composite repair. To date, all of the experimental work pertaining to the evaluation of potential repair methods has focused on fiber-reinforced composite repairs. Hydrostatic testing was also conducted on four pipeline sections with simulated corrosion damage: two with composite liners and two without.

  10. Interstate Technology & Regulatory Council (ITRC) Remediation Management of Complex Sites: Case Studies and Guidance

    Broader source: Energy.gov [DOE]

    Interstate Technology & Regulatory Council (ITRC) Remediation Management of Complex Sites: Case Studies and Guidance

  11. Liquefaction and Pipeline Costs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distribution Pipeline Costs Collected historical Oil & Gas Journal data, and surveyed for ... mile Downtown: 1 to 8 in. Downtown: 4 to 20 in. Urban H2A Right of Way Oil & Gas Journal

  12. Rnnotator Assembly Pipeline

    SciTech Connect (OSTI)

    Martin, Jeff

    2010-06-03

    Jeff Martin of the DOE Joint Genome Institute discusses a de novo transcriptome assembly pipeline from short RNA-Seq reads on June 3, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM

  13. Crossing Active Faults on the Sakhalin II Onshore Pipeline Route: Pipeline Design and Risk Analysis

    SciTech Connect (OSTI)

    Mattiozzi, Pierpaolo; Strom, Alexander

    2008-07-08

    Twin oil (20 and 24 inch) and gas (20 and 48 inch) pipeline systems stretching 800 km are being constructed to connect offshore hydrocarbon deposits from the Sakhalin II concession in the North to an LNG plant and oil export terminal in the South of Sakhalin island. The onshore pipeline route follows a regional fault zone and crosses individual active faults at 19 locations. Sakhalin Energy, Design and Construction companies took significant care to ensure the integrity of the pipelines, should large seismic induced ground movements occur during the Operational life of the facilities. Complex investigations including the identification of the active faults, their precise location, their particular displacement values and assessment of the fault kinematics were carried out to provide input data for unique design solutions. Lateral and reverse offset displacements of 5.5 and 4.5 m respectively were determined as the single-event values for the design level earthquake (DLE) - the 1000-year return period event. Within the constraints of a pipeline route largely fixed, the underground pipeline fault crossing design was developed to define the optimum routing which would minimize stresses and strain using linepipe materials which had been ordered prior to the completion of detailed design, and to specify requirements for pipe trenching shape, materials, drainage system, etc. Detailed Design was performed with due regard to actual topography and to avoid the possibility of the trenches freezing in winter, the implementation of specific drainage solutions and thermal protection measures.

  14. Panel 2, Hydrogen Delivery in the Natural Gas Pipeline Network

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in the Natural Gas Pipeline Network DOE'S HYDROGEN ENERGY STORAGE FOR GRID AND TRANSPORTATION SERVICES WORKSHOP Sacramento, CA May 14, 2014 Brian Weeks Gas Technology Institute 2 2 Topics for Today >GTI Introduction >Natural Gas Infrastructure is Undergoing Changes >Questions that have been addressed >Two Scenarios >Unanswered Questions >CEC's Mobile Hydrogen Station 3 3 Company Overview ESTABLISHED 1941 > Independent, not-for-profit company established by natural gas

  15. Title 16 USC 824p Siting of Interstate Electric Transmission...

    Open Energy Info (EERE)

    p Siting of Interstate Electric Transmission Facilities Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Title 16 USC 824p Siting...

  16. Interstate Power and Light Co | Open Energy Information

    Open Energy Info (EERE)

    Light Co Jump to: navigation, search Name: Interstate Power and Light Co Address: 200 1st Street Southeast Place: Cedar Rapids, Iowa Zip: 52401 Website: www.alliantenergy.com...

  17. Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines...

    Broader source: Energy.gov (indexed) [DOE]

    Code for Hydrogen Piping and Pipelines. B31 Hydrogen Section Committee to develop a new code for H2 piping and pipelines. hpwgwcodehayden.pdf (105.33 KB) More Documents & ...

  18. Coordinating Interstate ElectricTransmission Siting: An Introduction to the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Debate | Department of Energy Coordinating Interstate ElectricTransmission Siting: An Introduction to the Debate Coordinating Interstate ElectricTransmission Siting: An Introduction to the Debate In recent years, experts have started drawing att ention to the need to improve the system that transmits electricity from power plants to demand centers. Congestion on existing lines, increased energy demand that suggests a need for new electric transmission and the challenge of connecting

  19. PROJECT PROFILE: Interstate Renewable Energy Council | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interstate Renewable Energy Council PROJECT PROFILE: Interstate Renewable Energy Council Project Name: Integration of Solar Training into Allied Industry Professional Development Platforms Funding Opportunity: Solar Training and Education for Professionals (STEP) SunShot Subprogram: Soft Costs Location: Albany, NY SunShot Award Amount: $2,200,000 Awardee Cost Share: $0 This project creates an engagement strategy to facilitate the integration of state-of-the art solar training into existing

  20. Company Questionnaire

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Technical Assistance » Superior Energy Performance » Companies with SEP-Certified Facilities Win Energy Management Awards Companies with SEP-Certified Facilities Win Energy Management Awards June 3, 2016 - 4:10pm Addthis Companies with SEP-Certified Facilities Win Energy Management Awards Cummins, Inc. is one of only three companies worldwide to win the 2016 Award of Excellence in Energy Management from the Clean Energy Ministerial (CEM), an active forum of energy

  1. EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Mileage by

    U.S. Energy Information Administration (EIA) Indexed Site

    Region/State Mileage by State About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Estimated Natural Gas Pipeline Mileage in the Lower 48 States, Close of 2008 Estimated Natural Gas Pipeline Mileage in the Lower 48 States, Close of 2008

  2. EIA - Natural Gas Pipeline Network - Generalized Natural Gas Pipeline

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity Design Schematic Generalized Design Schematic About U.S. Natural Gas Pipelines- Transporting Natural Gas based on data through 2007/2008 with selected updates Generalized Natural Gas Pipeline Capacity Design Schematic Generalized Natural Gas Pipeline Capcity Design Schematic

  3. Department of Transportation Pipeline and Hazardous Materials...

    Office of Environmental Management (EM)

    Transportation Pipeline and Hazardous Materials Safety Administration Activities Department of Transportation Pipeline and Hazardous Materials Safety Administration Activities...

  4. Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop Augusta, Georgia August 31, 2005 Louis Hayden, PE Chair ASME B31.12 3 Presentation Outline * Approval for new code development * Charge from BPTCS to B31 Standards Committee for Hydrogen Piping/Pipeline code development * B31.12 Status & Structure * Hydrogen Pipeline issues * Research Needs * Where Do We Go From Here? 4 Code for Hydrogen Piping and Pipelines * B31 Hydrogen Section Committee to develop a new code for H 2

  5. ENERGY TRANSFER Shelley Corman Executive Vice President, Interstate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pipelines ENERGY TRANSFER ASSETS * Map is a general depiction of Energy Transfer assets 2 More than 72,000 miles of natural gas, NGL, crude, and refined products pipelines ...

  6. UQ Pipeline Lorenz Portlet

    Energy Science and Technology Software Center (OSTI)

    2012-08-31

    This is web client software that can help initiate UQ Pipeline jobs on LLNL's LC compute systems and visually shows the status of such jobs in a browser window. The web client interacts with LC's interactive compute nodes using (LLNL) Lorenz REST API to initiate action and obtain status data in JSON format.

  7. State Regulators Promote Consumer Choice in Retail Gas Markets

    Reports and Publications (EIA)

    1996-01-01

    Restructuring of interstate pipeline companies has created new choices and challenges for local distribution companies (LDCs), their regulators, and their customers. The process of separating interstate pipeline gas sales from transportation service has been completed and has resulted in greater gas procurement options for LDCs.

  8. Vermont Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Vermont Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 9 8 8 2000's 15 14 14 14 14 14 15 16 15 17 2010's 16 53 114 89 124 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Pipeline & Distribution Use Vermont Natural

  9. Maine Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Maine Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 0 0 2000's 808 1,164 877 859 658 585 494 753 943 837 2010's 1,753 2,399 762 844 1,300 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Pipeline & Distribution Use

  10. Delaware Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Delaware Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 13 15 45 2000's 62 23 49 34 39 40 18 16 18 22 2010's 140 464 1,045 970 1,040 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Pipeline & Distribution Use

  11. Sweetgrass, MT Liquefied Natural Gas Pipeline Exports to Canada (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Pipeline Exports to Canada (Million Cubic Feet) Sweetgrass, MT Liquefied Natural Gas Pipeline Exports to Canada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2012 2 2013 3 5 4 6 9 8 5 8 7 5 7 5 2014 8 11 10 8 8 5 6 6 6 6 6 7 2015 5 4 5 5 5 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Liquefied

  12. Power line fault current coupling to nearby natural gas pipelines: Volume 3, Analysis of pipeline coating impedance: Final report

    SciTech Connect (OSTI)

    Dabkowski, J.; Frazier, M. J.

    1988-08-01

    This report is a compilation of results obtained from two research programs. The response of a pipeline and coating at the higher voltage excitation levels encountered under power line fault conditions appears to be dominated by conduction at holiday sites in the coating. A simple analytical model was developed for predicting the resistance of a pipeline coating holiday as a function of the voltage produced across the pipeline coating by a nearby faulted power transmission line. The model was initially validated using coated pipeline samples stressed by a capacitive discharge voltage. Additional validation tests were then performed at the Pacific Gas and Electric Company's High Voltage Engineering Research Facility using high voltage ac waveforms for fault simulation. The principle program objective was to develop, both by laboratory and controlled field testing, an electrical resistance characterization for the pipeline coating as a function of the applied voltage level. The development of this model will allow a more accurate prediction of coupled voltage levels to a pipeline during fault current conditions. 54 figs, 3 tabs.

  13. Technology certification and technology acceptance: Promoting interstate cooperation and market development for innovative technologies

    SciTech Connect (OSTI)

    Brockbank, B.R.

    1995-03-01

    In the past two years, public and private efforts to promote development and deployment of innovative environmental technologies have shifted from the analysis of barriers to the implementation of a variety of initiatives aimed at surmounting those barriers. Particular attention has been directed at (1) streamlining fragmented technology acceptance processes within and among the states, and (2) alleviating disincentives, created by inadequate or unverified technology cost and performance data, for users and regulators to choose innovative technologies. Market fragmentation currently imposes significant cost burdens on technology developers and inhibits the investment of private capital in environmental technology companies. Among the responses to these problems are state and federal technology certification/validation programs, efforts to standardize cost/performance data reporting, and initiatives aimed at promoting interstate cooperation in technology testing and evaluation. This paper reviews the current status of these initiatives, identifies critical challenges to their success, and recommends strategies for addressing those challenges.

  14. Hydrogen Pipeline Working Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pipeline Working Group Hydrogen Pipeline Working Group The Hydrogen Pipeline Working Group of research and industry experts focuses on issues related to the cost, safety, and reliability of hydrogen pipelines. Participants represent organizations conducting hydrogen pipeline research for the Department of Energy to better understand and minimize hydrogen embrittlement and to identify improved and new materials for hydrogen pipelines. Hydrogen Pipeline Working Group Workshops: September 25-26,

  15. Instrumented Pipeline Initiative

    SciTech Connect (OSTI)

    Thomas Piro; Michael Ream

    2010-07-31

    This report summarizes technical progress achieved during the cooperative agreement between Concurrent Technologies Corporation (CTC) and U.S. Department of Energy to address the need for a for low-cost monitoring and inspection sensor system as identified in the Department of Energy (DOE) National Gas Infrastructure Research & Development (R&D) Delivery Reliability Program Roadmap.. The Instrumented Pipeline Initiative (IPI) achieved the objective by researching technologies for the monitoring of pipeline delivery integrity, through a ubiquitous network of sensors and controllers to detect and diagnose incipient defects, leaks, and failures. This report is organized by tasks as detailed in the Statement of Project Objectives (SOPO). The sections all state the objective and approach before detailing results of work.

  16. Trans ecuadorian pipeline; Mountainous pipeline restoration a logistical masterpiece

    SciTech Connect (OSTI)

    Hamilton, L. )

    1988-06-01

    The Trans Ecuadorian Pipeline pumped approximately 300,000 b/d of crude from fields in eastern Ecuador to an export terminal and refinery at Esmeraldas on the Pacific coast. The devastation resulting from an earthquake cut off the main portion of export income as well as domestic fuel supplies and propane gas. Approximately 25 km of the pipeline was destroyed. This article details how the pipeline was reconstructed, including both the construction of a temporary line and of permanent facilities.

  17. EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Compressor

    U.S. Energy Information Administration (EIA) Indexed Site

    Stations Compressor Stations Illustration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Pipeline Compressor Stations Illustration, 2008 Map of U.S. Natural Gas Pipeline Compressor Stations Source: Energy Information Administration, Office of Oil & Gas, Natural Gas Division, Natural Gas Transportation Information System. The EIA has determined that the informational map displays here do not raise security

  18. INTERNAL REPAIR OF PIPELINES

    SciTech Connect (OSTI)

    Bill Bruce; Nancy Porter; George Ritter; Matt Boring; Mark Lozev; Ian Harris; Bill Mohr; Dennis Harwig; Robin Gordon; Chris Neary; Mike Sullivan

    2005-07-20

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without

  19. EIA - Natural Gas Pipeline Network - Natural Gas Market Centers and Hubs

    U.S. Energy Information Administration (EIA) Indexed Site

    Market Centers and Hubs About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Market Centers and Hubs in Relation to Major Natural Gas Transportation Corridors, 2009 Natural Gas Market Centers and Hubs in Relation to Major Natural Gas Transportation Corridors, 2009 DCP = DCP Midstream Partners LP; EPGT = Enterprise Products Texas Pipeline Company. Note: The relative widths of the various transportation corridors are based

  20. Roma, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Roma, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2016 1 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S.

  1. Heavy oil transportation by pipeline

    SciTech Connect (OSTI)

    Gerez, J.M.; Pick, A.R.

    1996-12-31

    Worldwide there are a number of pipelines used to transport heavy crude oils. The operations are facilitated in a variety of ways. For example, the Alyeska pipeline is an insulated pipeline transporting warm oil over 800 miles. This 48-inch line experiences limited heat loss due to the insulation, volume of oil contained, and heat gain due to friction and pumping. Some European trunk lines periodically handle heavy and waxy crudes. This is achieved by proper sizing of batches, following waxy crudes with non-waxy crudes, and increased use of scrapers. In a former Soviet republic, the transportation of heavy crude oil by pipeline has been facilitated by blending with a lighter Siberian crude. The paper describes the pipeline transport of heavy crudes by Interprovincial Pipe Line Inc. The paper describes enhancing heavy oil transportation by emulsion formation, droplet suspension, dilution, drag reducing agents, and heating.

  2. Competition in the natural gas pipeline industry: An economic policy analysis

    SciTech Connect (OSTI)

    Gallick, E.C.

    1993-01-01

    The Federal Energy Regulatory Commission (FERC) currently regulates the price at which natural gas can be sold by regulated interstate natural gas pipelines. Whether pipelines should be deregulated depends, to an important extent, on the competitive nature of the market. The key question is whether pipelines can successfully raise price (i.e., the transport fee) and reduce output if the market is deregulated. In most natural gas pipeline markets, there are a small number of current suppliers. Opponents of deregulation argue that the unrestrained market power of pipelines in many local markets will introduce inefficiencies in the sale of natural gas. Implicit in their arguments is a narrow view of competition: the number of current suppliers. The competitive effect of potential entry is largely ignored. These commentators would argue that without potential entry, it may be true that the net social cost of deregulation exceeds the costs of maintaining present regulation. A study was conducted to determine the extent to which potential entry might constrain the exercise of market power by natural gas pipelines if price and entry regulation is removed. Potential entrants are defined in the context of antitrust markets. That is, these markets are consistent with the Department of Justice (DOJ) Merger Guidelines. The study attempts to quantify the effects of potential entry on the market power of current suppliers. The selection of potential entrants therefore considers a number of factors (such as the size of the nearby supplier and the distance to the market) that are expected to affect the likelihood of collision in a deregulated market. The policy implications of the study are reviewed.

  3. Capital Reporting Company

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... going 21 have to look to power plants and to industrial 22 ... to oil and gas pipelines, maybe 9 CO2 pipelines as well. ... multi-agency part is so 3 critical, to say that in addition ...

  4. INTERNAL REPAIR OF PIPELINES

    SciTech Connect (OSTI)

    Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; George Ritter; Bill Mohr; Matt Boring; Nancy Porter; Mike Sullivan; Chris Neary

    2004-12-31

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without

  5. INTERNAL REPAIR OF PIPELINES

    SciTech Connect (OSTI)

    Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; Nancy Porter; Mike Sullivan; Chris Neary

    2004-04-12

    The two broad categories of deposited weld metal repair and fiber-reinforced composite liner repair technologies were reviewed for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Preliminary test programs were developed for both deposited weld metal repair and for fiber-reinforced composite liner repair. Evaluation trials have been conducted using a modified fiber-reinforced composite liner provided by RolaTube and pipe sections without liners. All pipe section specimens failed in areas of simulated damage. Pipe sections containing fiber-reinforced composite liners failed at pressures marginally greater than the pipe sections without liners. The next step is to evaluate a liner material with a modulus of elasticity approximately 95% of the modulus of elasticity for steel. Preliminary welding parameters were developed for deposited weld metal repair in preparation of the receipt of Pacific Gas & Electric's internal pipeline welding repair system (that was designed specifically for 559 mm (22 in.) diameter pipe) and the receipt of 559 mm (22 in.) pipe sections from Panhandle Eastern. The next steps are to transfer welding parameters to the PG&E system and to pressure test repaired pipe sections to failure. A survey of pipeline operators was conducted to better understand the needs and performance requirements of the natural gas transmission industry regarding internal repair. Completed surveys contained the following principal conclusions: (1) Use of internal weld repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling (HDD) when a new bore must be created to

  6. INTERNAL REPAIR OF PIPELINES

    SciTech Connect (OSTI)

    Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; George Ritter; Bill Mohr; Matt Boring; Nancy Porter; Mike Sullivan; Chris Neary

    2004-08-17

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners

  7. Pipelines programming paradigms: Prefab plumbing

    SciTech Connect (OSTI)

    Boeheim, C.

    1991-08-01

    Mastery of CMS Pipelines is a process of learning increasingly sophisticated tools and techniques that can be applied to your problem. This paper presents a compilation of techniques that can be used as a reference for solving similar problems

  8. Fatigue analysis for submarine pipelines

    SciTech Connect (OSTI)

    Celant, M.; Re, G.; Venzi, S.

    1982-01-01

    The techniques used in fatigue life forecasts for a submarine pipeline, which have been worked out during the design of the Transmediterranean Pipeline, are presented. The stress level imposed by supports configuration, pipeline weight and weight-pressure-temperature of the internal fluid, is increased further by cyclic loads of sensible extent, resulting from hydroelastic phenomena of interaction between spanning pipe and seabottom current; the synchronization between the characteristic frequencies of vortex-shedding and the natural frequencies of the spans provokes cyclic loading which affect negatively the fatigue life of the pipeline. The results of this research have affected the design choices from the operations of route selection; in particular, they were aiming at the determination of the intervention works on the sea bottom before pipelaying, and the possible installation of overweights or pipe supports in order to avoid free spans of unacceptable length, and at the determination of the interval between periodic inspection.

  9. New Materials for Hydrogen Pipelines

    Broader source: Energy.gov [DOE]

    Presentation by 08-Smith to DOE Hydrogen Pipeline R&D Project Review Meeting held January 5-6, 2005 at Oak Ridge National Laboratory in Oak Ridge, Tennessee.

  10. EAC Recommendations for DOE Action Regarding the CSG Interstate Transmission Siting Compact- June 6, 2013

    Broader source: Energy.gov [DOE]

    EAC Recommendations for DOE Action Regarding the CSG Interstate Transmission Siting Compact, approved at the June 5-6, 2013 EAC Meeting.

  11. Alliant Energy Interstate Power and Light (Gas and Electric)- Farm Equipment Energy Efficiency Incentives

    Broader source: Energy.gov [DOE]

    Interstate Power and Light (Alliant Energy) offers prescriptive rebates for a variety of energy efficient products for agricultural customers. In addition to these incentives, IPL offers a Farm...

  12. Secretary of Energy Samuel W. Bodman Issues Statement on Clean Air Interstate Rule

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC – Energy Secretary Samuel W. Bodman today issued the following statement regarding the Clean Air Interstate Rule (CAIR) released by the Environmental Protection Agency (EPA):

  13. Alliant Energy Interstate Power and Light (Gas)- Residential Energy Efficiency Rebate Programs

    Office of Energy Efficiency and Renewable Energy (EERE)

    Interstate Power and Light (Alliant Energy) offers residential energy efficiency rebates to Iowa customers for a variety of home upgrades. Rebates are available for certain heating, insulation,...

  14. Alliant Energy Interstate Power and Light (Electric)- Residential Energy Efficiency Rebate Programs

    Office of Energy Efficiency and Renewable Energy (EERE)

    Interstate Power and Light (Alliant Energy) offers residential energy efficiency rebates for Iowa customers for a variety of technologies. Rebates are available for certain HVAC equipment,...

  15. The evaluation and restoration of a deteriorated buried gas pipeline

    SciTech Connect (OSTI)

    Dovico, R.; Montero, E.

    1996-12-31

    Historically, the Argentine gas transmission and distribution industry was owned and operated by the State. In 1992, by government decree, this entire industry was transferred to private owners and operators, and divided into two Gas Transmission Companies (TGN and TGS) and eight Gas Distribution Companies. The pipelines and related facilities had been left in an operating condition, however major capital investments were required to assure that the integrity, reliability and operability of the facilities were intact. These capital expenditures were mandatory in many areas as part of the privatization. Maintenance and rehabilitation tasks were developed for the entire transmission system, with the intent to reduce the number of unscheduled outages, optimize system maintenance costs, increase operation safety, and upgrade the pipeline to ensure compliance with the international code. Transportadora de Gas del Norte (TGN), operated by Nova Gas International of Calgary, Canada, consists of two major pipeline transmission systems. The North Line, which transports gas from Northern Argentina and Bolivia to markets south to Buenos Aires is a 24 inch, 3,000 Km system constructed in 1960. It was constructed using a field applied asphalt coating system. The Center West Line, which transports gas from central Argentina (Neuquen) to markets in the western part of the country and also the Buenos Aires area, is a 30 inch, 1,400 Km system constructed in 1981. It was constructed using a field applied polyethylene tape coating system.

  16. The Geysers pipeline project

    SciTech Connect (OSTI)

    Dellinger, M.; Allen, E.

    1997-01-01

    A unique public/private partnership of local, state, federal and corporate stakeholders are constructing the world`s first wastewater-to-electricity system at The Geysers. A rare example of a genuinely {open_quotes}sustainable{close_quotes} energy system, three Lake County communities will recycle their treated wastewater effluent through the southeast portion of the The Geysers steamfield to produce approximately 625,000 MWh annually from six existing geothermal power plants. In effect, the communities` effluent will produce enough power to indefinitely sustain their electric needs, along with enough extra power for thousands of other California consumers. Because of the project`s unique sponsorship, function and environmental impacts, its implementation has required: (1) preparation of a consolidated state environmental impact report (EIR) and federal environmental impact statement (EIS), and seven related environmental agreements and management plans; (2) acquisition of 25 local, state, and federal permits; (3) negotiation of six federal and state financial assistance agreements; (4) negotiation of six participant agreements on construction, operation and financing of the project, and (5) acquisition of 163 easements from private land owners for pipeline construction access and ongoing maintenance. The project`s success in efficiently and economically completing these requirements is a model for geothermal innovation and partnering throughout the Pacific Rim and elsewhere internationally.

  17. Nevada Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Nevada Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 656 782 801 2000's 876 863 851 1,689 2,256 2,224 2,737 2,976 3,013 2,921 2010's 2,992 4,161 6,256 4,954 4,912 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Pipeline

  18. Mapco's NGL Rocky Mountain pipeline

    SciTech Connect (OSTI)

    Isaacs, S.F.

    1980-01-01

    The Rocky Mountain natural gas liquids (NGL) pipeline was born as a result of major producible gas finds in the Rocky Mountain area after gas deregulation. Gas discoveries in the overthurst area indicated considerable volumes of NGL would be available for transportation out of the area within the next 5 to 7 years. Mapco studied the need for a pipeline to the overthrust, but the volumes were not substantial at the time because there was little market and, consequently, little production for ethane. Since that time crude-based products for ethylene manufacture have become less competitive as a feed product on the world plastics market, and ethane demand has increased substantially. This change in the market has caused a major modification in the plans of the NGL producers and, consequently, the ethane content of the NGL stream for the overthrust area is expected to be 30% by volume at startup and is anticipated to be at 45% by 1985. These ethane volumes enhance the feasibility of the pipeline. The 1196-mile Rocky Mountain pipeline will be installed from the existing facility in W. Texas, near Seminole, to Rock Springs, Wyoming. A gathering system will connect the trunk line station to various plant locations. The pipeline development program calls for a capacity of 65,000 bpd by the end of 1981.

  19. U.S. Natural Gas Net International & Interstate Receipts (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) & Interstate Receipts (Million Cubic Feet) U.S. Natural Gas Net International & Interstate Receipts (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 51,151,097 1990's 51,464,146 50,200,246 53,277,237

  20. Colorado's Prospects for Interstate Commerce in Renewable Power

    SciTech Connect (OSTI)

    Hurlbut, D. J.

    2009-12-01

    Colorado has more renewable energy potential than it is ever likely to need for its own in-state electricity consumption. Such abundance may suggest an opportunity for the state to sell renewable power elsewhere, but Colorado faces considerable competition from other western states that may have better resources and easier access to key markets on the West Coast. This report examines factors that will be important to the development of interstate commerce for electricity generated from renewable resources. It examines market fundamentals in a regional context, and then looks at the implications for Colorado.

  1. Clean Air Interstate Rule (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    Clean Air Interstate Rule (CAIR) is a cap-and-trade program promulgated by the Environmental Protection Agency in 2005, covering 28 eastern U.S. states and the District of Columbia. It was designed to reduce sulfur dioxide (SO2) and nitrogen oxide (NOx) emissions in order to help states meet their National Ambient Air Quality Standards (NAAQS) for ozone and particulate matter (PM2.5) and to further emissions reductions already achieved through the Acid Rain Program and the NOx State Implementation Plan call program. The rule was set to commence in 2009 for seasonal and annual NOx emissions and in 2010 for SO2 emissions.

  2. Method and system for pipeline communication

    DOE Patents [OSTI]

    Richardson; John G.

    2008-01-29

    A pipeline communication system and method includes a pipeline having a surface extending along at least a portion of the length of the pipeline. A conductive bus is formed to and extends along a portion of the surface of the pipeline. The conductive bus includes a first conductive trace and a second conductive trace with the first and second conductive traces being adapted to conformally couple with a pipeline at the surface extending along at least a portion of the length of the pipeline. A transmitter for sending information along the conductive bus on the pipeline is coupled thereto and a receiver for receiving the information from the conductive bus on the pipeline is also couple to the conductive bus.

  3. Construction plans jump; operations skid in 1996

    SciTech Connect (OSTI)

    True, W.R.

    1997-08-04

    Federally regulated oil and gas pipelines turned in mixed performances in 1996, a review of annual reports filed with the US Federal Energy Regulatory Commission (FERC) shows. Plans for new pipeline construction, filed with both the FERC and Canadian regulatory bodies, increased during a 12-month period ending June 30, 1997. Natural-gas pipeline operating companies increased their operating revenues but saw their incomes fall; oil pipelines saw both revenues and incomes fall sharply as deliveries were flat. Major natural-gas pipelines slightly increased the amounts of gas they moved for a fee and decreased gas sold out of their systems. In 1996, liquids pipelines moved fewer barrels than a year earlier and reduced in all categories the miles of line operated. Each year in this exclusive report, Oil and Gas Journal tracks revenues and incomes earned from operations along with volumes moved, as submitted to the FERC by US regulated interstate pipeline companies. Data are presented on the following: pipeline revenues, incomes--1996; North American pipeline-construction costs; US pipeline costs--estimated vs. actual; North American compressor construction costs; US compressor costs--estimated vs. actual; Canadian pipeline-construction costs, actual; US interstate mileage; investment in liquids pipelines; 10 years of land-construction costs; top 10 interstate liquids lines; top 10 interstate gas lines; liquids pipeline companies; and gas pipeline companies.

  4. OMAE 1993: Proceedings. Volume 5: Pipeline technology

    SciTech Connect (OSTI)

    Yoon, M.; Murray, A.; Thygesen, J.

    1993-01-01

    This volume of conference proceedings is volume five of a five volume series dealing with offshore and arctic pipeline, marine riser, platforms, and ship design and engineering. This volume is a result of increased use of pipeline transportation for oil, gas, and liquid products and the resultant need for lower design and operating costs. Papers in this conference cover topics on environmental considerations, pipeline automation, computer simulation techniques, materials testing, corrosion protection, permafrost problems, pipeline integrity, geotechnical concerns, and offshore engineering problems.

  5. California Natural Gas Pipelines: A Brief Guide

    SciTech Connect (OSTI)

    Neuscamman, Stephanie; Price, Don; Pezzola, Genny; Glascoe, Lee

    2013-01-22

    The purpose of this document is to familiarize the reader with the general configuration and operation of the natural gas pipelines in California and to discuss potential LLNL contributions that would support the Partnership for the 21st Century collaboration. First, pipeline infrastructure will be reviewed. Then, recent pipeline events will be examined. Selected current pipeline industry research will be summarized. Finally, industry acronyms are listed for reference.

  6. Kinder Morgan Central Florida Pipeline Ethanol Project

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    KINDER MORGAN CENTRAL FLORIDA PIPELINE ETHANOL PROJECT  In December 2008, Kinder Morgan began transporting commercial batches of denatured ethanol along with gasoline shipments in its 16-inch Central Florida Pipeline (CFPL) from Tampa to Orlando, making CFPL the first transmarket gasoline pipeline in the United States to do so. The 16-inch pipeline previously only transported regular and premium gasoline.  Kinder Morgan invested approximately $10 million to modify the line for ethanol

  7. DOE Hydrogen Pipeline Working Group Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pipeline Working Group Workshop August 31, 2005 Augusta, Georgia Hydrogen Pipeline Experience Presented By: LeRoy H. Remp Lead Project Manager Pipeline Projects ppt00 3 Hydrogen Pipeline - Scope of Presentation Only those systems that are regulated by DOT in the US, DOT delegated state agency, or other federal regulatory authority. Cross property of third party and/or public properties for delivery to customers. Does not include in-plant or in-house hydrogen piping. Does not include piping

  8. Industry Research for Pipeline Systems Panel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Council International, Inc. DOE Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop -Industry Research for Pipeline Systems Panel Mike Whelan Director, Research Operations November 12, 2014 2 www.prci.org Pipeline Research Council Int'l. Overview  Founded in 1952 - Current Membership  39 Pipelines, over 350,000 miles of transmission pipe * Natural Gas and Hazardous Liquids Pipelines * 27 members are North American based - Remainder: Europe, Brazil, China,

  9. International Falls, MN Natural Gas Pipeline Imports From Canada (Dollars

    U.S. Energy Information Administration (EIA) Indexed Site

    per Thousand Cubic Feet) Dollars per Thousand Cubic Feet) International Falls, MN Natural Gas Pipeline Imports From Canada (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.71 2.03 2.00 2.33 2000's 2.77 4.85 3.01 -- -- 11.20 -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages:

  10. International Falls, MN Natural Gas Pipeline Imports From Canada (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Million Cubic Feet) International Falls, MN Natural Gas Pipeline Imports From Canada (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 6,373 6,544 6,103 4,857 2000's 3,022 617 602 0 0 22 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S.

  11. District of Columbia Natural Gas Pipeline and Distribution Use (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) (Million Cubic Feet) District of Columbia Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 246 256 244 2000's 243 236 242 470 466 487 464 238 203 177 2010's 213 1,703 1,068 1,434 1,305 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages:

  12. Seismic assessment of buried pipelines

    SciTech Connect (OSTI)

    Al-Chaar, G.; Brady, P.; Fernandez, G.

    1995-12-31

    A structure and its lifelines are closely linked because the disruption of lifeline systems will obstruct emergency service functions that are vitally needed after an earthquake. As an example of the criticality of these systems, the Association of Bay Area Government (ABAG) recorded thousands of leaks in pipelines that resulted in more than twenty million gallons of hazardous materials being released in several recorded earthquakes. The cost of cleaning the spills from these materials was very high. This information supports the development of seismic protection of lifeline systems. The US Army Corps of Engineers Construction Engineering Research Laboratories (USACERL) has, among its missions, the responsibility to develop seismic vulnerability assessment procedures for military installations. Within this mission, a preliminary research program to assess the seismic vulnerability of buried pipeline systems on military installations was initiated. Phase 1 of this research project resulted in two major studies. In the first, evaluating current procedures to seismically design or evaluate existing lifeline systems, the authors found several significant aspects that deserve special consideration and need to be addressed in future research. The second was focused on identifying parameters related to buried pipeline system vulnerability and developing a generalized analytical method to relate these parameters to the seismic vulnerability assessment of existing pipeline systems.

  13. Detection of Unauthorized Construction Equipment in Pipeline Right-of-Ways

    SciTech Connect (OSTI)

    Maurice Givens; James E. Huebler

    2004-09-30

    The leading cause of incidents on transmission pipelines is damage by third-party construction equipment. A single incident can be devastating, causing death and millions of dollars of property loss. This damage would be prevented if potentially hazardous construction equipment could be detected, identified, and an alert given before the pipeline is hit. Currently there is no method for continuously monitoring a pipeline right-of-way. Instead, companies periodically walk or fly over the pipeline to find unauthorized construction activities. Gas Technology Institute (GTI) is developing a system to solve this problem by using an optical fiber buried above the pipeline as a distributed sensor. A custom optical time domain reflectometer (OTDR) is used to interrogate the fiber. Key issues in the development of this technology are the ability to detect encroachment and the ability to discriminate among potentially hazardous and benign encroachments. Advantages of the reflectometry technique are the ability to accurately pinpoint the location of the construction activity and the ability to separately monitor simultaneously occurring events. The basic concept of using OTDR with an optical fiber buried above the pipeline to detect encroachment of construction equipment into the right of way works. Sufficiently rapid time response is possible; permitting discrimination between encroachment types. Additional work is required to improve the system into a practical device.

  14. Crosby, ND Liquefied Natural Gas Pipeline Exports to Canada (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Pipeline Exports to Canada (Million Cubic Feet) Crosby, ND Liquefied Natural Gas Pipeline Exports to Canada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Liquefied Natural Gas Exports by Point of Exit Crosby, ND Liquefied Natural Gas to Canada

  15. Rhode Island Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Rhode Island Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 837 336 243 2000's 295 281 332 383 308 695 804 822 865 900 2010's 1,468 1,003 1,023 1,087 2,824 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Pipeline &

  16. Roma, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Roma, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2016 2.06 2.61 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Price of

  17. World pipeline construction plans show increase into next century

    SciTech Connect (OSTI)

    Koen, A.D.; True, W.R.

    1995-02-06

    Plans for worldwide pipeline construction into the next century increased in the past year, especially for developing regions of Latin America and Asia-Pacific. Many of the projects involve large capacity, international gas pipeline systems. By contrast, pipeline construction in Canada, The US, and Europe will decline. Those trends and others are revealed in the latest Oil and Gas Journal pipeline construction data, derived from a survey of world pipeline operators, industry sources, and published information. More than 61,000 miles of crude oil, product, and natural gas pipeline are to be built in 1995 and beyond. The paper discusses Europe's markets, North Sea pipelines, expansion of German pipeline, pipelines in the UK, European and African gas, the trans-Mediterranean gas pipeline, Caspian Sea pipeline, Middle East pipelines, Asia-Pacific activity, South American gas lines, pipelines in Colombia, TransCanada line, Gulf of Mexico pipelines, other Gulf activities, and other US activity.

  18. Pipe line companies to install 14,766 miles of lines in 1994

    SciTech Connect (OSTI)

    Ives, G. Jr.

    1994-01-01

    This paper reviews the historical and projected pipeline construction activities in the US and around the world. It gives mileage values for all types of oil and gas transmission lines, both on and offshore. Tables provides information on the diameters of these pipelines and information on compressor stations planned and constructed. Known major construction projects are listed by company name with a brief description of the proposed project.

  19. U.S. Natural Gas Interstate Deliveries (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries (Million Cubic Feet) U.S. Natural Gas Interstate Deliveries (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 50,697,415 1990's 51,022,894 49,708,414 52,574,795 52,674,053 57,969,941 61,167,051 62,953,877 61,199,549 55,139,674 57,326,720 2000's 58,570,289 65,774,849 63,389,468 65,793,961 64,423,388 63,027,775 61,863,323 66,858,134 70,305,954 72,022,602 2010's 74,778,078 74,661,629 70,195,570 64,110,541 62,914,469 - = No Data

  20. U.S. Natural Gas Interstate Receipts (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Receipts (Million Cubic Feet) U.S. Natural Gas Interstate Receipts (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 50,697,415 1990's 51,022,894 49,708,414 52,574,795 52,674,053 57,969,941 61,167,051 62,953,877 61,199,549 55,139,674 57,323,473 2000's 58,570,289 65,774,849 63,389,468 65,793,961 64,423,388 63,027,775 61,863,323 66,858,134 70,305,954 72,022,602 2010's 74,778,078 74,661,629 70,195,570 64,110,541 62,914,469 - = No Data Reported;

  1. Workforce Pipeline | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In the News College engineers build the cars of the future Embedded Computing Design 3 tips to land a job after college Foxboro Reporter NAACP fair to spotlight college applications, finances, experience Chicago Tribune Workforce Pipeline Argonne seeks to attract, hire and retain a diverse set of talent in order to meet the laboratory's mission of excellence in science, engineering and technology. In order for Argonne to continue to carry out world-class science, the lab needs to seek out the

  2. Alliant Energy Interstate Power and Light (Gas)- Business Energy Efficiency Rebate Programs

    Office of Energy Efficiency and Renewable Energy (EERE)

    Interstate Power and Light (IPL) offers a wide variety of incentives for commercial customers to save energy in eligible facilities, whether they are upgrading existing facilities or building new...

  3. 16 U.S.C. 824p - Siting of interstate electric transmission facilities...

    Open Energy Info (EERE)

    824p - Siting of interstate electric transmission facilities Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: 16 U.S.C. 824p -...

  4. Alliant Energy Interstate Power and Light (Gas and Electric)- New Home Construction Incentives

    Office of Energy Efficiency and Renewable Energy (EERE)

    Interstate Power and Light's New Home Program gives incentives to builders and contractors who build energy efficient homes. A base rebate is available to those customers that make the minimum...

  5. Alliant Energy Interstate Power and Light (Gas and Electric)- Low Interest Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    Interstate Power and Light (Alliant Energy), in conjunction with Wells Fargo Bank, offers a low-interest loan for residential, commercial and agricultural customers who purchase and install energy...

  6. Alliant Energy Interstate Power and Light (Electric)- Business Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Interstate Power and Light (IPL) offers a wide variety of incentives for commercial customers to save energy in eligible facilities, whether they are upgrading existing facilities or building new...

  7. Capsule injection system for a hydraulic capsule pipelining system

    DOE Patents [OSTI]

    Liu, Henry

    1982-01-01

    An injection system for injecting capsules into a hydraulic capsule pipelining system, the pipelining system comprising a pipeline adapted for flow of a carrier liquid therethrough, and capsules adapted to be transported through the pipeline by the carrier liquid flowing through the pipeline. The injection system comprises a reservoir of carrier liquid, the pipeline extending within the reservoir and extending downstream out of the reservoir, and a magazine in the reservoir for holding capsules in a series, one above another, for injection into the pipeline in the reservoir. The magazine has a lower end in communication with the pipeline in the reservoir for delivery of capsules from the magazine into the pipeline.

  8. DETECTION OF UNAUTHORIZED CONSTRUCTION EQUIPMENT IN PIPELINE RIGHT-OF-WAYS

    SciTech Connect (OSTI)

    James E. Huebler

    2002-07-19

    Natural gas transmission companies mark the right-of-way areas where pipelines are buried with warning signs to prevent accidental third-party damage. Nevertheless, pipelines are sometimes damaged by third-party construction equipment. A single incident can be devastating, causing death and millions of dollars of property loss. This damage would be prevented if potentially hazardous construction equipment could be detected, identified, and an alert given before the pipeline was damaged. The Gas Technology Institute (GTI) is developing a system to solve this problem by using an optical fiber as a distributed sensor and interrogating the fiber with an custom optical time domain reflectometer. Key issues are the ability to detect encroachment and the ability to discriminate among potentially hazardous and benign encroachments. The work performed in the third quarter of the project (2nd quarter of 2002) includes design of the diode laser driver and high-speed detector electronics and programming of the custom optical time domain reflectometer.

  9. Buried pipelines in large fault movements

    SciTech Connect (OSTI)

    Wang, L.J.; Wang, L.R.L.

    1995-12-31

    Responses of buried pipelines in large fault movements are examined based upon a non-linear cantilever beam analogy. This analogy assumes that the pipeline in a large deflection zone behaves like a cantilever beam under a transverse-concentrated shear at the inflection point with a uniformly distributed soil pressure along the entire span. The tangent modulus approach is adopted to analyze the coupled axial force-bending moment interaction on pipeline deformations in the inelastic range. The buckling load of compressive pipeline is computed by the modified Newmark`s numerical integration scheme. Parametric studies of both tensile and compressive pipeline responses to various fault movements, pipeline/fault crossing angles, soil/pipe friction angles, buried depths, pipe diameters and thickness are investigated. It is shown by the comparisons that previous findings were unconservative.

  10. Pipeline Safety Research, Development and Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pipeline and Hazardous Materials Safety Administration Pipeline Safety Research, Development and Technology Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop Nov 2014 U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration Thank You! * We appreciate the opportunity to share! * Much to share about DOT natural gas infrastructure R&D * Many facets to the fugitive methane issue * DOT/DOE - We would like to restart the practice of

  11. Materials Solutions for Hydrogen Delivery in Pipelines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Barriers addressed High capital cost and Hydrogen Embrittlement of Pipelines Technical ... - Contract details and agreement for intellectual properties were discussed 10 OAK RIDGE ...

  12. Acoustic system for communication in pipelines

    DOE Patents [OSTI]

    Martin, II, Louis Peter; Cooper, John F.

    2008-09-09

    A system for communication in a pipe, or pipeline, or network of pipes containing a fluid. The system includes an encoding and transmitting sub-system connected to the pipe, or pipeline, or network of pipes that transmits a signal in the frequency range of 3-100 kHz into the pipe, or pipeline, or network of pipes containing a fluid, and a receiver and processor sub-system connected to the pipe, or pipeline, or network of pipes containing a fluid that receives said signal and uses said signal for a desired application.

  13. Department of Transportation Pipeline and Hazardous Materials...

    Office of Environmental Management (EM)

    Bulk Packaging Placarding Requirements - Placarding of Packages vs. Placarding Vehicle * LSASCO Scenarios - 7 - U.S. Department of Transportation Pipeline and Hazardous Materials...

  14. GLAST (FERMI) Data-Processing Pipeline

    SciTech Connect (OSTI)

    Flath, Daniel L.; Johnson, Tony S.; Turri, Massimiliano; Heidenreich, Karen A.; /SLAC

    2011-08-12

    The Data Processing Pipeline ('Pipeline') has been developed for the Gamma-Ray Large Area Space Telescope (GLAST) which launched June 11, 2008. It generically processes graphs of dependent tasks, maintaining a full record of its state, history and data products. The Pipeline is used to automatically process the data down-linked from the satellite and to deliver science products to the GLAST collaboration and the Science Support Center and has been in continuous use since launch with great success. The pipeline handles up to 2000 concurrent jobs and in reconstructing science data produces approximately 750GB of data products using 1/2 CPU-year of processing time per day.

  15. Composites Technology for Hydrogen Pipelines | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Investigate application of composite, fiber-reinforced polymer pipeline technology for hydrogen transmission and distribution pipelinegroupsmithms.pdf (2.31 MB) More Documents & ...

  16. DETECTION OF UNAUTHORIZED CONSTRUCTION EQUIPMENT IN PIPELINE RIGHT-OF-WAYS

    SciTech Connect (OSTI)

    James E. Huebler

    2003-04-17

    Natural gas transmission companies mark the right-of-way areas where pipelines are buried with warning signs to prevent accidental third-party damage. Nevertheless, pipelines are sometimes damaged by third-party construction equipment. A single incident can be devastating, causing death and millions of dollars of property loss. This damage would be prevented if potentially hazardous construction equipment could be detected, identified, and an alert given before the pipeline was damaged. The Gas Technology Institute (GTI) is developing a system to solve this problem by using an optical fiber as a distributed sensor and interrogating the fiber with a custom optical time domain reflectometer. Key issues are the ability to detect encroachment and the ability to discriminate among potentially hazardous and benign encroachments. The work performed in the 1st quarter of 2003 included fine-tuning and debugging of the custom Optical Time Domain Reflectometer being constructed for data collection and analysis. The detector was redesigned reducing the noise floor by over a factor of ten. While GTI's OTDR was being improved, a new, commercial OTDR was used to verify that the technique is capable of measuring one pound continuous force applied to the Hergalite. Optical fibers were installed at the ANR Pipeline test site along an operating pipeline.

  17. Crossing Active Faults on the Sakhalin II Onshore Pipeline Route: Analysis Methodology and Basic Design

    SciTech Connect (OSTI)

    Vitali, Luigino; Mattiozzi, Pierpaolo

    2008-07-08

    Twin oil (20 and 24 inch) and gas (20 and 48 inch) pipeline systems stretching 800 km are being constructed to connect offshore hydrocarbon deposits from the Sakhalin II concession in the North to an LNG plant and oil export terminal in the South of Sakhalin island. The onshore pipeline route follows a regional fault zone and crosses individual active faults at 19 locations. Sakhalin Energy, Design and Construction companies took significant care to ensure the integrity of the pipelines, should large seismic induced ground movements occur during the Operational life of the facilities. Complex investigations including the identification of the active faults, their precise location, their particular displacement values and assessment of the fault kinematics were carried out to provide input data for unique design solutions. Lateral and reverse offset displacements of 5.5 and 4.5 m respectively were determined as the single-event values for the design level earthquake (DLE)--the 1000-year return period event. Within the constraints of a pipeline route largely fixed, the underground pipeline fault crossing design was developed to define the optimum routing which would minimize stresses and strain using linepipe materials which had been ordered prior to the completion of detailed design, and to specify requirements for pipe trenching shape, materials, drainage system, etc. This Paper describes the steps followed to formulate the concept of the special trenches and the analytical characteristics of the Model.

  18. FERC approves Northwest pipeline expansion

    SciTech Connect (OSTI)

    Not Available

    1992-06-15

    Northwest Pipeline Co., Salt Lake City, Utah, received a final permit from the Federal Energy Regulatory Commission for a $373.4 million main gas line expansion. This paper reports that it plans to begin construction of the 443 MMcfd expansion in mid-July after obtaining further federal, state, and local permits. The expanded system is to be fully operational by second quarter 1993. When the expansion is complete, total Northwest system mileage will be 3,936 miles and system capacity about 2.49 bcfd.

  19. Addressing the workforce pipeline challenge

    SciTech Connect (OSTI)

    Leonard Bond; Kevin Kostelnik; Richard Holman

    2006-11-01

    A secure and affordable energy supply is essential for achieving U.S. national security, in continuing U.S. prosperity and in laying the foundations to enable future economic growth. To meet this goal the next generation energy workforce in the U.S., in particular those needed to support instrumentation, controls and advanced operations and maintenance, is a critical element. The workforce is aging and a new workforce pipeline, to support both current generation and new build has yet to be established. The paper reviews the challenges and some actions being taken to address this need.

  20. Penitas, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Penitas, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 253 40 NA 2000's NA NA NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S.

  1. Havre, MT Natural Gas Pipeline Imports From Canada (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Havre, MT Natural Gas Pipeline Imports From Canada (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 2000's 1,309 NA NA 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S.

  2. Port Huron, MI Natural Gas Pipeline Imports From Canada (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Million Cubic Feet) Port Huron, MI Natural Gas Pipeline Imports From Canada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2016 262 278 16 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S.

  3. 2007 Hydrogen Pipeline Working Group Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 Hydrogen Pipeline Working Group Workshop 2007 Hydrogen Pipeline Working Group Workshop The Department of Energy (DOE) Hydrogen Pipeline Working Group met Sept. 25-26, 2007, to review the progress and results of DOE-sponsored pipeline research and development (R&D) projects. More than 30 researchers and industry representatives shared their research results and discussed the current challenges and future goals for hydrogen pipeline R&D. One of the Pipeline Working Group's near-term

  4. EIA - Natural Gas Pipeline System - Links to U.S. Natural Gas Pipeline

    U.S. Energy Information Administration (EIA) Indexed Site

    Systems Links About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Links to U.S. Natural Gas Pipeline Information - The links below will either direct the user to a narrative describing the system, a pipeline system map, a FERC prescribed "Informational Postings" page, or a FERC Tariff Sheet. Pipeline Name Type of System Regions of Operations Acadian Gas Pipeline System Intrastate Southwest Algonquin Gas Transmission Co

  5. Assessment of the Adequacy of Natural Gas Pipeline Capacity in...

    Office of Environmental Management (EM)

    Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 Assessment of the Adequacy of Natural Gas Pipeline Capacity in the ...

  6. Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation...

    Broader source: Energy.gov (indexed) [DOE]

    Barriers: Hydrogen embrittlement of pipelines and remediation (mixing with water vapor?) ... Enable a Carbon-Neutral Energy Economy Hydrogen Embrittlement of Pipeline Steels: Causes ...

  7. EIS-0501: Golden Pass LNG Export and Pipeline Project, Texas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: Golden Pass LNG Export and Pipeline Project, Texas and Louisiana EIS-0501: Golden Pass LNG Export and Pipeline Project, Texas and Louisiana Summary The Federal Energy Regulatory ...

  8. Report to Congress: Dedicated Ethanol Pipeline Feasability Study...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report to Congress: Dedicated Ethanol Pipeline Feasability Study - Energy Independence and Security Act of 2007 Section 243 Report to Congress: Dedicated Ethanol Pipeline ...

  9. Penitas, TX Natural Gas Pipeline Imports From Mexico (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Penitas, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Penitas, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade ...

  10. Alamo, TX Natural Gas Pipeline Imports From Mexico (Dollars per...

    U.S. Energy Information Administration (EIA) Indexed Site

    Alamo, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Alamo, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade ...

  11. New Jersey Natural Gas Pipeline and Distribution Use (Million...

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) New Jersey Natural Gas Pipeline and Distribution Use (Million Cubic ... Referring Pages: Natural Gas Pipeline & Distribution Use New Jersey Natural Gas ...

  12. New Jersey Natural Gas Pipeline and Distribution Use Price (Dollars...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Price (Dollars per Thousand Cubic Feet) New Jersey Natural Gas Pipeline and Distribution ... Price for Natural Gas Pipeline and Distribution Use New Jersey Natural Gas Prices Price ...

  13. New York Natural Gas Pipeline and Distribution Use (Million Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) New York Natural Gas Pipeline and Distribution Use (Million Cubic ... Referring Pages: Natural Gas Pipeline & Distribution Use New York Natural Gas Consumption ...

  14. New Mexico Natural Gas Pipeline and Distribution Use (Million...

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) New Mexico Natural Gas Pipeline and Distribution Use (Million Cubic ... Referring Pages: Natural Gas Pipeline & Distribution Use New Mexico Natural Gas ...

  15. New Mexico Natural Gas Pipeline and Distribution Use Price (Dollars...

    Gasoline and Diesel Fuel Update (EIA)

    Price (Dollars per Thousand Cubic Feet) New Mexico Natural Gas Pipeline and Distribution ... Price for Natural Gas Pipeline and Distribution Use New Mexico Natural Gas Prices Price ...

  16. Assessing Steel Pipeline and Weld Susceptibility to Hydrogen...

    Broader source: Energy.gov (indexed) [DOE]

    Office webinar "Assessing Steel Pipeline and Weld Susceptibility to Hydrogen Embrittlement" held on January 12, 2016. Assessing Steel Pipeline and Weld Susceptibility to ...

  17. The Sloan Digital Sky Survey Monitor Telescope Pipeline (Journal...

    Office of Scientific and Technical Information (OSTI)

    The Sloan Digital Sky Survey Monitor Telescope Pipeline Citation Details In-Document Search Title: The Sloan Digital Sky Survey Monitor Telescope Pipeline You are accessing a...

  18. North Dakota Natural Gas Pipeline and Distribution Use Price...

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet) North Dakota Natural Gas Pipeline and Distribution ... Price for Natural Gas Pipeline and Distribution Use North Dakota Natural Gas Prices Price ...

  19. North Carolina Natural Gas Pipeline and Distribution Use Price...

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet) North Carolina Natural Gas Pipeline and ... Price for Natural Gas Pipeline and Distribution Use North Carolina Natural Gas Prices ...

  20. North Carolina Natural Gas Pipeline and Distribution Use (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) North Carolina Natural Gas Pipeline and Distribution Use (Million ... Referring Pages: Natural Gas Pipeline & Distribution Use North Carolina Natural Gas ...

  1. North Dakota Natural Gas Pipeline and Distribution Use (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) North Dakota Natural Gas Pipeline and Distribution Use (Million ... Referring Pages: Natural Gas Pipeline & Distribution Use North Dakota Natural Gas ...

  2. Minnesota Natural Gas Pipeline and Distribution Use (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Million Cubic Feet) Minnesota Natural Gas Pipeline and Distribution Use (Million Cubic ... Natural Gas Pipeline & Distribution Use Minnesota Natural Gas Consumption by End Use ...

  3. Minnesota Natural Gas Pipeline and Distribution Use Price (Dollars...

    Gasoline and Diesel Fuel Update (EIA)

    Price (Dollars per Thousand Cubic Feet) Minnesota Natural Gas Pipeline and Distribution ... Price for Natural Gas Pipeline and Distribution Use Minnesota Natural Gas Prices Price for ...

  4. Hydrogen Delivery Technologies and Systems- Pipeline Transmission of Hydrogen

    Broader source: Energy.gov [DOE]

    Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen. Design and operations standards and materials for hydrogen and natural gas pipelines.

  5. Rio Grande pipeline introduces LPG to Mexico

    SciTech Connect (OSTI)

    1997-06-01

    Rio Grande Pipeline, a joint venture between Mid-America Pipeline Co., Amoco Pipeline Co. and Navajo Pipeline Co., has broken new ground in the energy industry as the first LPG pipeline to cross the US-Mexico border. Plans for the project were announced in November 1995 and first deliveries started three months ago on March 21, 1997. The 8-inch, 265-mile pipeline originates near Odessa, TX, where it receives an 85-15 propane-butane mix via a connection to Mid-America Pipeline. From Odessa, product moves west through the Texas desert and crosses the Rio Grande River about 15 miles south of El Paso near Clint, TX and extends 20 miles into Mexico. Capacity of the line is 24,000 bpd and it has been averaging about 22,000 bpd since line-fill. All in all, it sounded like a reasonably feasible, routine project. But perceptions can be deceiving, or at least misleading. In other words, the project can be summarized as follows: one river, two cultures and a world of difference. The official border crossing for pipeline construction took place on Dec. 2, 1996, with a directional drill under the Rio Grande River, but in actuality, the joint venture partners were continually bridging differences in language, laws, customs and norms with Pemex and contracted workers from Mexico.

  6. Natural Gas Pipeline and System Expansions

    Reports and Publications (EIA)

    1997-01-01

    This special report examines recent expansions to the North American natural gas pipeline network and the nature and type of proposed pipeline projects announced or approved for construction during the next several years in the United States. It includes those projects in Canada and Mexico that tie in with U.S. markets or projects.

  7. Algeria LPG pipeline is build by Bechtel

    SciTech Connect (OSTI)

    Horner, C.

    1984-08-01

    The construction of the 313 mile long, 24 in. LPG pipeline from Hassi R'Mel to Arzew, Algeria is described. The pipeline was designed to deliver 6 million tons of LPG annually using one pumping station. Eventually an additional pumping station will be added to raise the system capacity to 9 million tons annually.

  8. Environmental effects of interstate power trading on electricity consumption mixes

    SciTech Connect (OSTI)

    Joe Marriott; H. Scott Matthews

    2005-11-15

    Although many studies of electricity generation use national or state average generation mix assumptions, in reality a great deal of electricity is transferred between states with very different mixes of fossil and renewable fuels, and using the average numbers could result in incorrect conclusions in these studies. The authors create electricity consumption profiles for each state and for key industry sectors in the U.S. based on existing state generation profiles, net state power imports, industry presence by state, and an optimization model to estimate interstate electricity trading. Using these 'consumption mixes' can provide a more accurate assessment of electricity use in life-cycle analyses. It is concluded that the published generation mixes for states that import power are misleading, since the power consumed in-state has a different makeup than the power that was generated. And, while most industry sectors have consumption mixes similar to the U.S. average, some of the most critical sectors of the economy - such as resource extraction and material processing sectors - are very different. This result does validate the average mix assumption made in many environmental assessments, but it is important to accurately quantify the generation methods for electricity used when doing life-cycle analyses. 16 refs., 7 figs., 2 tabs.

  9. Failure modes for pipelines in landslide areas

    SciTech Connect (OSTI)

    Bruschi, R.; Spinazze, M.; Tomassini, D.; Cuscuna, S.; Venzi, S.

    1995-12-31

    In recent years a number of incidences of pipelines affected by slow soil movements have been reported in the relevant literature. Further related issues such as soil-pipe interaction have been studied both theoretically and through experimental surveys, along with the environmental conditions which are responsible for hazard to the pipeline integrity. A suitable design criteria under these circumstances has been discussed by several authors, in particular in relation to a limit state approach and hence a strain based criteria. The scope of this paper is to describe the failure mechanisms which may affect the pipeline in the presence of slow soil movements impacting on the pipeline, both in the longitudinal and transverse direction. Particular attention is paid to environmental, geometric and structural parameters which steer the process towards one or other failure mechanism. Criteria for deciding upon remedial measures required to guarantee the structural integrity of the pipeline, both in the short and in the long term, are discussed.

  10. Magnetic pipeline for coal and oil

    SciTech Connect (OSTI)

    Knolle, E.

    1998-07-01

    A 1994 analysis of the recorded costs of the Alaska oil pipeline, in a paper entitled Maglev Crude Oil Pipeline, (NASA CP-3247 pp. 671--684) concluded that, had the Knolle Magnetrans pipeline technology been available and used, some $10 million per day in transportation costs could have been saved over the 20 years of the Alaska oil pipeline's existence. This over 800 mile long pipeline requires about 500 horsepower per mile in pumping power, which together with the cost of the pipeline's capital investment consumes about one-third of the energy value of the pumped oil. This does not include the cost of getting the oil out of the ground. The reason maglev technology performs superior to conventional pipelines is because by magnetically levitating the oil into contact-free suspense, there is no drag-causing adhesion. In addition, by using permanent magnets in repulsion, suspension is achieved without using energy. Also, the pumped oil's adhesion to the inside of pipes limits its speed. In the case of the Alaska pipeline the speed is limited to about 7 miles per hour, which, with its 48-inch pipe diameter and 1200 psi pressure, pumps about 2 million barrels per day. The maglev system, as developed by Knolle Magnetrans, would transport oil in magnetically suspended sealed containers and, thus free of adhesion, at speeds 10 to 20 times faster. Furthermore, the diameter of the levitated containers can be made smaller with the same capacity, which makes the construction of the maglev system light and inexpensive. There are similar advantages when using maglev technology to transport coal. Also, a maglev system has advantages over railroads in mountainous regions where coal is primarily mined. A maglev pipeline can travel, all-year and all weather, in a straight line to the end-user, whereas railroads have difficult circuitous routes. In contrast, a maglev pipeline can climb over steep hills without much difficulty.

  11. Capital Reporting Company Quadrennial ...

    Broader source: Energy.gov (indexed) [DOE]

    Capital Reporting Company Quadrennial Energy Review Meeting No. 4 06-19-2014 (866) 448 - DEPO www.CapitalReportingCompany.com 2014 1 UNITED STATES DEPARTMENT OF ENERGY OFFICE OF ...

  12. Company Level Imports Archives

    U.S. Energy Information Administration (EIA) Indexed Site

    Company Level Imports Company Level Imports Archives 2015 Imports by Month January XLS February XLS March XLS April XLS May XLS June XLS July XLS August XLS September XLS October...

  13. Pipeline Decommissioning Trial AWE Berkshire UK - 13619

    SciTech Connect (OSTI)

    Agnew, Kieran

    2013-07-01

    This Paper details the implementation of a 'Decommissioning Trial' to assess the feasibility of decommissioning the redundant pipeline operated by AWE located in Berkshire UK. The paper also presents the tool box of decommissioning techniques that were developed during the decommissioning trial. Constructed in the 1950's and operated until 2005, AWE used a pipeline for the authorised discharge of treated effluent. Now redundant, the pipeline is under a care and surveillance regime awaiting decommissioning. The pipeline is some 18.5 km in length and extends from AWE site to the River Thames. Along its route the pipeline passes along and under several major roads, railway lines and rivers as well as travelling through woodland, agricultural land and residential areas. Currently under care and surveillance AWE is considering a number of options for decommissioning the pipeline. One option is to remove the pipeline. In order to assist option evaluation and assess the feasibility of removing the pipeline a decommissioning trial was undertaken and sections of the pipeline were removed within the AWE site. The objectives of the decommissioning trial were to: - Demonstrate to stakeholders that the pipeline can be removed safely, securely and cleanly - Develop a 'tool box' of methods that could be deployed to remove the pipeline - Replicate the conditions and environments encountered along the route of the pipeline The onsite trial was also designed to replicate the physical prevailing conditions and constraints encountered along the remainder of its route i.e. working along a narrow corridor, working in close proximity to roads, working in proximity to above ground and underground services (e.g. Gas, Water, Electricity). By undertaking the decommissioning trial AWE have successfully demonstrated the pipeline can be decommissioned in a safe, secure and clean manor and have developed a tool box of decommissioning techniques. The tool box of includes; - Hot tapping - a method

  14. Nebraska Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Nebraska Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4,084 2,853 2,922 2000's 3,140 3,021 2,611 5,316 3,983 4,432 4,507 5,373 9,924 6,954 2010's 7,329 9,270 7,602 6,949 7,066 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages:

  15. Ohio Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Ohio Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 19,453 17,641 17,441 2000's 18,490 15,502 16,215 14,872 12,757 13,356 12,233 13,740 11,219 16,575 2010's 15,816 14,258 9,559 10,035 12,661 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring

  16. Oklahoma Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Oklahoma Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 26,130 24,242 23,833 2000's 21,001 23,537 23,340 30,396 30,370 31,444 31,333 28,463 27,581 28,876 2010's 30,611 30,948 32,838 41,813 45,391 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016

  17. Oregon Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Oregon Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 12,481 13,345 10,242 2000's 11,775 10,990 9,117 7,098 9,707 7,264 8,238 9,532 7,354 8,073 2010's 6,394 5,044 4,554 4,098 3,686 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages:

  18. Pennsylvania Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Pennsylvania Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 39,173 32,532 36,597 2000's 38,486 33,013 37,143 33,556 28,989 30,669 27,406 34,849 37,223 41,417 2010's 47,470 51,220 37,176 37,825 36,323 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016

  19. Alabama Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Alabama Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 20,689 19,948 22,109 2000's 22,626 19,978 21,760 18,917 15,911 14,982 14,879 15,690 16,413 18,849 2010's 22,124 23,091 25,349 22,166 18,688 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016

  20. Utah Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Utah Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,935 2,788 2,561 2000's 2,674 4,161 5,984 7,347 8,278 8,859 11,156 11,970 11,532 10,239 2010's 10,347 11,374 12,902 13,441 14,061 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages:

  1. Vermont Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Vermont Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5.25 4.00 4.17 4.00 2.80 2.64 1990's 2.85 2.86 2.96 2.89 2.89 1.05 1.09 1.09 1.40 1.86 2000's 4.39 5.09 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  2. Virginia Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Virginia Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 7,387 6,856 8,005 2000's 7,975 7,542 7,851 6,854 5,452 4,954 5,412 6,905 8,461 8,829 2010's 10,091 13,957 9,443 8,475 7,424 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages:

  3. Washington Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Washington Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 8,836 9,087 7,645 2000's 6,036 9,053 6,356 6,527 8,822 8,174 6,554 7,402 6,605 7,497 2010's 7,587 6,644 9,184 10,144 8,933 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages:

  4. West Virginia Natural Gas Pipeline and Distribution Use (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) (Million Cubic Feet) West Virginia Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 32,318 30,868 29,829 2000's 32,572 30,254 33,731 18,177 18,742 19,690 18,923 20,864 18,289 22,131 2010's 21,589 21,447 31,913 29,578 29,160 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date:

  5. Wisconsin Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Wisconsin Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4,544 4,284 4,151 2000's 4,058 2,869 3,812 3,526 3,302 3,700 3,109 2,851 2,654 1,648 2010's 2,973 2,606 1,780 2,803 3,629 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages:

  6. Indiana Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Indiana Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 10,773 7,327 7,274 2000's 5,617 6,979 5,229 6,647 6,842 6,599 6,313 7,039 7,060 6,597 2010's 8,679 10,259 7,206 7,428 7,025 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages:

  7. Kansas Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Kansas Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 39,109 32,902 31,753 2000's 29,330 25,606 36,127 33,343 28,608 28,752 25,050 24,773 23,589 26,479 2010's 24,305 23,225 19,842 22,586 22,588 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016

  8. Kentucky Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Kentucky Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 22,854 15,750 16,632 2000's 13,826 14,912 11,993 14,279 10,143 8,254 6,510 11,885 12,957 12,558 2010's 13,708 12,451 8,604 7,157 8,426 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring

  9. Louisiana Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Louisiana Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 71,523 60,400 48,214 2000's 50,647 48,257 50,711 47,019 44,963 41,812 47,979 52,244 53,412 49,937 2010's 46,892 51,897 49,235 36,737 45,762 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016

  10. Michigan Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Michigan Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 23,776 20,733 22,355 2000's 26,359 22,036 26,685 27,129 27,198 27,742 25,532 25,961 23,518 23,468 2010's 24,904 23,537 20,496 18,713 19,347 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016

  11. Mississippi Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Mississippi Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 44,979 36,329 31,594 2000's 30,895 30,267 26,997 26,003 21,869 21,496 22,131 27,316 28,677 28,951 2010's 28,117 28,828 48,497 23,667 19,787 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016

  12. Missouri Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Missouri Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 7,456 5,495 6,744 2000's 7,558 1,918 2,555 3,003 3,237 2,556 2,407 2,711 7,211 3,892 2010's 5,820 7,049 4,973 5,626 6,184 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages:

  13. Wyoming Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Wyoming Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 10,461 11,535 13,736 2000's 14,092 13,161 13,103 14,312 12,545 14,143 13,847 14,633 17,090 19,446 2010's 20,807 17,898 16,660 15,283 14,990 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016

  14. Alaska Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Alaska Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4,938 5,564 7,250 2000's 7,365 5,070 4,363 4,064 3,798 2,617 2,825 2,115 2,047 2,318 2010's 3,284 3,409 3,974 544 309 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas

  15. Arizona Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Arizona Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 18,597 19,585 18,570 2000's 20,657 22,158 20,183 18,183 15,850 17,558 20,617 20,397 22,207 20,846 2010's 15,447 13,158 12,372 12,619 13,484 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016

  16. Arkansas Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Arkansas Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 11,591 10,192 8,979 2000's 8,749 8,676 7,854 8,369 7,791 8,943 10,630 10,235 9,927 9,125 2010's 9,544 11,286 10,606 11,437 11,580 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring

  17. California Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) California Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 22,493 8,587 9,341 2000's 9,698 10,913 9,610 8,670 12,969 10,775 7,023 8,994 7,744 6,386 2010's 9,741 10,276 12,906 10,471 22,897 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring

  18. Colorado Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Colorado Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 12,371 9,240 8,380 2000's 9,282 10,187 10,912 9,647 10,213 13,305 12,945 13,850 15,906 17,065 2010's 14,095 13,952 10,797 9,107 8,451 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring

  19. Connecticut Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Connecticut Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,492 833 2,943 2000's 3,020 2,948 2,515 3,382 3,383 3,327 3,178 4,361 4,225 5,831 2010's 6,739 6,302 4,747 4,381 4,698 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages:

  20. Florida Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Florida Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 5,644 3,830 6,822 2000's 7,087 6,531 11,096 9,562 10,572 9,370 11,942 10,092 9,547 10,374 2010's 22,798 13,546 16,359 12,494 3,468 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring

  1. Georgia Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Georgia Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 7,973 7,606 8,846 2000's 5,636 7,411 7,979 7,268 6,235 5,708 6,092 5,188 5,986 6,717 2010's 8,473 10,432 10,509 7,973 6,977 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages:

  2. Idaho Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Idaho Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 5,186 5,496 4,512 2000's 5,939 6,556 5,970 4,538 5,763 5,339 6,507 7,542 6,869 7,031 2010's 7,679 5,201 5,730 5,940 3,867 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural

  3. South Carolina Natural Gas Pipeline and Distribution Use (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) (Million Cubic Feet) South Carolina Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,940 3,163 3,589 2000's 3,461 2,919 3,156 2,807 2,503 2,427 2,292 2,609 2,604 2,847 2010's 3,452 3,408 3,416 2,529 2,409 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016

  4. Tennessee Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Tennessee Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 22,559 16,440 15,208 2000's 13,808 13,757 11,480 12,785 10,486 9,182 8,696 9,988 10,238 11,720 2010's 10,081 11,655 9,880 6,660 5,913 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring

  5. Texas Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Texas Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 82,115 65,800 70,397 2000's 62,014 69,598 88,973 56,197 55,587 81,263 85,262 89,666 109,488 117,219 2010's 79,817 85,549 138,429 294,316 274,451 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016

  6. EIS-0433: Keystone XL Pipeline

    Broader source: Energy.gov [DOE]

    The proposed Keystone XL project consists of a 1,700-mile crude oil pipeline and related facilities that would primarily be used to transport Western Canadian Sedimentary Basin crude oil from an oil supply hub in Alberta, Canada to delivery points in Oklahoma and Texas. This EIS, prepared by the Department of State, evaluates the environmental impacts of the proposed Keystone XL project. DOE’s Western Area Power Administration, a cooperating agency, has jurisdiction over certain proposed transmission facilities (construction and operation of a short 230-kv transmission line and construction of a new substation). The State Department published a notice in the Federal Register on February 3, 2012, regarding the denial of the Keystone XL presidential permit (77 FR 5614).

  7. Rapid Threat Organism Recognition Pipeline

    Energy Science and Technology Software Center (OSTI)

    2013-05-07

    The RAPTOR computational pipeline identifies microbial nucleic acid sequences present in sequence data from clinical samples. It takes as input raw short-read genomic sequence data (in particular, the type generated by the Illumina sequencing platforms) and outputs taxonomic evaluation of detected microbes in various human-readable formats. This software was designed to assist in the diagnosis or characterization of infectious disease, by detecting pathogen sequences in nucleic acid sequence data from clinical samples. It has alsomore » been applied in the detection of algal pathogens, when algal biofuel ponds became unproductive. RAPTOR first trims and filters genomic sequence reads based on quality and related considerations, then performs a quick alignment to the human (or other host) genome to filter out host sequences, then performs a deeper search against microbial genomes. Alignment to a protein sequence database is optional. Alignment results are summarized and placed in a taxonomic framework using the Lowest Common Ancestor algorithm.« less

  8. Middleware for Astronomical Data Analysis Pipelines

    SciTech Connect (OSTI)

    Abdulla, G; Liu, D; Garlick, J; Miller, M; Nikolaev, S; Cook, K; Brase, J

    2005-01-26

    In this paper the authors describe the approach to research, develop, and evaluate prototype middleware tools and architectures. The developed tools can be used by scientists to compose astronomical data analysis pipelines easily. They use the SuperMacho data pipelines as example applications to test the framework. they describe their experience from scheduling and running these analysis pipelines on massive parallel processing machines. they use MCR a Linux cluster machine with 1152 nodes and Luster parallel file system as the hardware test-bed to test and enhance the scalability of the tools.

  9. Pipeline transportation of heavy crude oil

    SciTech Connect (OSTI)

    Kessick, M.A.; St. Denis, C.E.

    1982-08-10

    Heavy crude oils are transported by pipeline from deposit location to a remote upgrading location by emulsifying the crude oil using deaerated sodium hydroxide solution, conveying the oilin-water emulsion through the pipeline, and recovery of the oil from the oil-in-water emulsion by inverting the emulsion and dewatering the resulting water-in-oil emulsion. The emulsion inversion may be effected using slaked lime, resulting in recovery of a substantial proportion of the sodium hydroxide used in the initial emulsification. The sodium hydroxide solution may be recycled by a separate pipeline for reuse or treated for discharge.

  10. Design method addresses subsea pipeline thermal stresses

    SciTech Connect (OSTI)

    Suman, J.C.; Karpathy, S.A. )

    1993-08-30

    Managing thermal stresses in subsea pipelines carrying heated petroleum requires extensive thermal-stress analysis to predict trouble spots and to ensure a design flexible enough to anticipate stresses and expansions. Explored here are various methods for resolving predicaments posed by thermal loads and resulting deformations by keeping the stresses and deformations in the pipeline system within allowable limits. The problems posed by thermal stresses are not unique; the solutions proposed here are. These methods are based on recent work performed for a major Asian subsea pipeline project currently under construction.

  11. Otay Mesa, CA Natural Gas Imports by Pipeline from Mexico

    Gasoline and Diesel Fuel Update (EIA)

    0 0 1,717 0 0 0 2007-2014 Pipeline Prices -- -- 3.55 -- --

  12. DOE Hydrogen Pipeline Working Group Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pipeline Working Group Workshop DOE Hydrogen Pipeline Working Group Workshop Only those systems that are regulated by DOT in the US, DOT delegated state agency, or other federal regulatory authority hpwgw_airprod_remp.pdf (473.83 KB) More Documents & Publications Hydrogen Piping Experience in Chevron Refining Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines EIS-0511: Final Environmental Impact Statement

  13. EIA - Natural Gas Pipeline Network - U.S. Natural Gas Pipeline Network Map

    U.S. Energy Information Administration (EIA) Indexed Site

    Network Map About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Pipeline Network, 2009 U.S. Natural Gas Pipeline Network Map The EIA has determined that the informational map displays here do not raise security concerns, based on the application of the Federal Geographic Data Committee's Guidelines for Providing Appropriate Access to Geospatial Data in Response to Security Concerns

  14. EIA - Natural Gas Pipeline Network - Combined Natural Gas Transportation

    U.S. Energy Information Administration (EIA) Indexed Site

    Maps Combined Natural Gas Transportation Maps About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Pipeline Network Map of U.S. Natural Gas Pipeline Network Major Natural Gas Supply Basins Relative to Natural Gas Pipeline Transportation Corridors Map of Major Natural Gas Supply Basins Relative to Natural Gas Pipeline Transportation Corridors see related text enlarge see related text enlarge U.S. Regional Breakdown

  15. Method and apparatus for constructing buried pipeline systems

    SciTech Connect (OSTI)

    Heuer, C.E.; Hsu, H.; Jahns, H.O.

    1982-11-09

    A method and apparatus for mitigating or eliminating the frost heave of refrigerated pipelines buried in frost-susceptible soil are provided. A blanket of heat absorbent material is placed over the pipeline on the surface of the soil to increase the flow of heat into the region surrounding the pipeline. This technique may be used in combination with other frost heave mitigation techniques, such as insulating the pipeline and supporting the pipeline with a heave resistant bedding material.

  16. December 4, 2007: NETL's Robotic Pipeline Inspection Tool | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 4, 2007: NETL's Robotic Pipeline Inspection Tool December 4, 2007: NETL's Robotic Pipeline Inspection Tool December 4, 2007: NETL's Robotic Pipeline Inspection Tool December 4, 2007 The Department's National Energy Technology Laboratory announces the development of a new robotic pipeline inspection tool that could revolutionize the pipeline inspection process. The wireless, self-propelled Explorer II proved its worth when it was tested in a live 8-inch distribution main pressurized at

  17. Field weldability of high strength pipeline steels

    SciTech Connect (OSTI)

    Noble, D.N.; Pargeter, R.J.

    1988-01-01

    This project has studied the small-scale SMA weldability of two X80 grade pipeline steels and conducted mechanical and fracture toughness tests on full-size SMA and GMA welds in both pipes.

  18. Pump packages for Colombian crude oil pipeline

    SciTech Connect (OSTI)

    1994-05-01

    The Caterpillar Large Engine Center recently packaged ten engine-driven centrifugal pump packages for British Petroleum Exploration`s crude oil pipeline in South America. The ten sets, which use Ingersoll-Dresser centrifugal pumps, are designed to increase significantly the output of BP`s Central LLanos pipeline located in a remote region near Bogota, Colombia. BP anticipates that the addition of the new pump packages will increase daily volume from the current 100000 barrels to approximately 210000 barrels when the upgrade of the pipeline is completed in September. The ten sets are installed at three separate pumping stations. The stations are designed to operate continuously while unmanned, with only periodic maintenance required. The pump packages are powered by Caterpillar 3612 engines rated 3040 kW at 1000 r/min. The 12-cylinder engines are turbocharged and charge-air cooled and use the pipeline oil as both fuel and a cooling medium for the fuel injectors.

  19. Florida products pipeline set to double capacity

    SciTech Connect (OSTI)

    True, W.R.

    1995-11-13

    Directional drilling has begun this fall for a $68.5 million, approximately 110,000 b/d expansion of Central Florida Pipeline Co.`s refined products line from Tampa to Orlando. The drilling started in August and is scheduled to conclude this month, crossing under seven water bodies in Hillsborough, Polk, and Osceola counties. The current 6 and 10-in. system provides more than 90% of the petroleum products used in Central Florida, according to Central Florida Pipeline. Its additional capacity will meet the growing region`s demand for gasoline, diesel, and jet fuel. The new pipeline, along with the existing 10-in. system, will increase total annual capacity from 30 million bbl (82,192 b/d) to approximately 70 million bbl (191,781 b/d). The older 6-in. line will be shutdown when the new line is operating fully. The steps of pipeline installation are described.

  20. Microsoft Word - EOC Activation - Pipeline Overpressurization...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (EOC) has been activated as a precautionary measure after an over-pressurized pipeline vented about 100 gallons of liquid natural gas approximately two miles from the WIPP...

  1. Are shorted pipeline casings a problem

    SciTech Connect (OSTI)

    Gibson, W.F. )

    1994-11-01

    The pipeline industry has many road and railroad crossings with casings which have been in service for more than 50 years without exhibiting any major problems, regardless of whether the casing is shorted to or isolated from the carrier pipe. The use of smart pigging and continual visual inspection when retrieving a cased pipeline segment have shown that whether shorted or isolated, casings have no significant bearing on the presence or absence of corrosion on the carrier pipe.

  2. Seadrift/UCAR pipelines achieve ISO registration

    SciTech Connect (OSTI)

    Arrieta, J.R.; Byrom, J.A.; Gasko, H.M. )

    1992-10-01

    Proper meter station design using gas orifice meters must include consideration of a number of factors to obtain the best accuracy available. This paper reports that Union Carbide's Seadrift/UCAR Pipelines has become the world's first cross-country pipelines to comply with the International Standards Organization's quality criteria for transportation and distribution of ethylene. Carbide's organization in North America and Europe, with 22 of the corporation's businesses having the internationally accepted quality system accredited by a third-party registrar.

  3. Machinist Pipeline/Apprentice Program Program Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Machinist Pipeline/Apprentice Program Program Description The Machinist Pipeline Program was created by the Prototype Fabrication Division to fill a critical need for skilled journeyworker machinists. It is based on a program developed by the National Institute for Metalworking Skills (NIMS) in conjunction with metalworking trade associations to develop and maintain a globally competitive U.S. workforce. The goal is to develop and implement apprenticeship programs that are aligned with

  4. Bayou pipeline crossing requires helical pilings

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    This paper discusses a routine inspection by Transcontinental Gas Pipe Line Corp. which revealed the approximately 100 ft of its 30-in gas pipeline in St. Landry Parish, La., had become suspended. The situation occurred in the West Atchafalaya Floodway after periods of heavy rain produced strong currents that scoured the soil from around and below the pipeline. To protect the pipeline from possible damage from overstressing, Transco awarded a lump-sum contract to Energy Structures Inc., Houston, to design and install pipeline supports. The pipeline supports engineered by ESI used helical-screw pilings instead of conventional driven pilings. The helical piles were manufactured by A.B. Chance Co., Centralia, Mo. Typically, helical pilings consist of steel pipe ranging from 3.5- to 8-in. diameter pipe with one or more helixes welded onto the pipe. Selection of the proper piling cross-section was based on design loads and soil conditions at the project locations. length was determined by the amount of pipeline suspension and on-site soil conditions.

  5. World pipeline work set for rapid growth

    SciTech Connect (OSTI)

    Not Available

    1992-08-01

    This paper reports on international pipeline construction which has entered a fast-growth period, accelerated by the new political and economic realities around the world and increasing demand for natural gas, crude oil and refined petroleum products. Many projects are under way or in planning for completion in the mid- to late 1990s in Europe, South America, Asia and the Middle East. Pipeline And Gas Journal's projection calls for construction or other work on 30,700 miles of new natural gas, crude oil and refined products pipelines in the 1992-93 period outside Canada and the U.S. These projects will cost an estimated $30 billion-plus. Natural gas pipelines will comprise most of the mileage, accounting for almost 23,000 miles at an estimated cost of $26.3 billion. Products pipelines, planned or under construction, will add another 5,800 miles at a cost of $2.8 billion. Crude oil pipelines, at a minimum, will total 1,900 new miles at a cost of slightly under $1 billion.

  6. DETECTION OF UNAUTHORIZED CONSTRUCTION EQUIPMENT IN PIPELINE RIGHT-OF-WAYS

    SciTech Connect (OSTI)

    James E. Huebler

    2002-10-30

    Natural gas transmission companies mark the right-of-way areas where pipelines are buried with warning signs to prevent accidental third-party damage. Nevertheless, pipelines are sometimes damaged by third-party construction equipment. A single incident can be devastating, causing death and millions of dollars of property loss. This damage would be prevented if potentially hazardous construction equipment could be detected, identified, and an alert given before the pipeline was damaged. The Gas Technology Institute (GTI) is developing a system to solve this problem by using an optical fiber as a distributed sensor and interrogating the fiber with a custom optical time domain reflectometer. Key issues are the ability to detect encroachment and the ability to discriminate among potentially hazardous and benign encroachments. The work performed in the third quarter of the project (2nd quarter of 2002) includes design and construction of the diode laser driver and high-speed detector electronics. Fine-tuning of the electronics is proceeding. A new test site along an operating pipeline has been obtained.

  7. DETECTION OF UNAUTHORIZED CONSTRUCTION EQUIPMENT IN PIPELINE RIGHT-OF-WAYS

    SciTech Connect (OSTI)

    James E. Huebler

    2003-01-29

    Natural gas transmission companies mark the right-of-way areas where pipelines are buried with warning signs to prevent accidental third-party damage. Nevertheless, pipelines are sometimes damaged by third-party construction equipment. A single incident can be devastating, causing death and millions of dollars of property loss. This damage would be prevented if potentially hazardous construction equipment could be detected, identified, and an alert given before the pipeline was damaged. The Gas Technology Institute (GTI) is developing a system to solve this problem by using an optical fiber as a distributed sensor and interrogating the fiber with a custom optical time domain reflectometer. Key issues are the ability to detect encroachment and the ability to discriminate among potentially hazardous and benign encroachments. The work performed in the 4th quarter of 2002 included fine-tuning and debugging of the custom Optical Time Domain Reflectometer being constructed for data collection and analysis. It also included installation of optical fibers at the test site along an operating pipeline.

  8. Energy Service Companies

    Broader source: Energy.gov [DOE]

    Energy service companies (ESCOs) develop, design, build, and fund projects that save energy, reduce energy costs, decrease operations and maintenance costs at their customers' facilities.

  9. Capsule Pipeline Research Center. 3-year Progress report, September 1, 1993--August 31, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The Capsule Pipeline Research Center is devoted to performing research in capsule pipelines so that this emerging technology can be developed for early use to transport solids including coal, grain, other agricultural products, solid wastes, etc. Important research findings and accomplishments during the first-three years include: success in making durable binderless coal logs by compaction, success in underwater extrusion of binderless coal logs, success in compacting and extruding coal logs with less than 3% hydrophobic binder at room temperature, improvement in the injection system and the pump-bypass scheme, advancement in the state-of-the-art of predicting the energy loss (pressure drop) along both stationary and moving capsules, demonstrated the effectiveness of using polymer for drag reduction in CLP, demonstrated the influence of zeta potential on coal log fabrication, improved understanding of the water absorption properties of coal logs, better understanding of the mechanism of coal log abrasion (wear), completed a detailed economic evaluation of the CLP technology and compared coal transportation cost by CLP to that by rail, truck and slurry pipelines, and completion of several areas of legal research. The Center also conducted important technology transfer activities including workshops, work sessions, company seminars, involvement of companies in CLP research, issuance of newsletters, completion of a video tape on CLP, and presentation of research findings at numerous national and international meetings.

  10. CASL - Westinghouse Electric Company

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Westinghouse Electric Company Cranberry Township, PA Westinghouse Electric Company provides fuel, services, technology, plant design and equipment for the commercial nuclear electric power industry. Westinghouse nuclear technology is helping to provide future generations with safe, clean and reliable electricity. Key Contributions Definition of CASL challenge problems Existing codes and expertise Data for validation Computatinoal fluid dynamics modeling and analysis Development of test stand for

  11. INNOVATIVE ELECTROMAGNETIC SENSORS FOR PIPELINE CRAWLERS

    SciTech Connect (OSTI)

    J. Bruce Nestleroth

    2004-11-05

    Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they encounter. Recent development efforts include a new generation of powered inspection platforms that crawl slowly inside a pipeline and are able to maneuver past the physical barriers that can limit inspection. At Battelle, innovative electromagnetic sensors are being designed and tested for these new pipeline crawlers. The various sensor types can be used to assess a wide range of pipeline anomalies including corrosion, mechanical damage, and cracks. The Applied Energy Systems Group at Battelle is concluding the first year of work on a projected three-year development effort. In this first year, two innovative electromagnetic inspection technologies were designed and tested. Both were based on moving high-strength permanent magnets to generate inspection energy. One system involved translating permanent magnets towards the pipe. A pulse of electric current would be induced in the pipe to oppose the magnetization according to Lenz's Law. The decay of this pulse would indicate the presence of defects in the pipe wall. This inspection method is similar to pulsed eddy current inspection methods, with the fundamental difference being the manner in which the current is generated. Details of this development effort were reported in the first semiannual report on this project. This second semiannual report focuses on the development of a second inspection methodology, based on rotating permanent magnets. During this period, a rotating permanent magnet exciter was designed and built. The exciter unit produces strong eddy currents in the pipe wall. The tests have shown that at distances of a pipe diameter or more, the currents flow circumferentially, and that these circumferential

  12. QER- Comment of Southern Company

    Broader source: Energy.gov [DOE]

    Southern Company Services, Inc., as agent for Alabama Power Company, Georgia Power Company, Gulf Power Company, and Mississippi Power Company, (collectively, “Southern Companies”), are pleased to hereby provide their comments to the Department of Energy as it prepares the Quadrennial Energy Review. If there is anything else that we can do in this regard, please feel free to contact us.

  13. Caspian pipeline combine awards construction contract

    SciTech Connect (OSTI)

    Not Available

    1992-11-02

    This paper reports that the Caspian Pipeline Consortium (CPC) has let contract to Overseas Bechtel Inc. for a 500 mile crude oil export pipeline in Russia. Bechtel will provide engineering, procurement, financing, and construction services and serve as project manager for the 42 inc. line that will extend west from Grozny, near the Caspian Sea, to Novorossiisk, on the Black Sea. Estimated cost is more than $850 million. At Grozny, the new line will tie into 800 miles of existing pipeline that runs along the north shore of the Caspian Sea from supergiant Tengiz field in Kazakhstan. Together, the two segments will form a 1,300 mile system capable of shipping crude oil from the Tengiz region and from Baku, Azerbaijan, to a new terminal and port facilities at Novorossiisk for shipment to world markets, ultimately reaching open oceans via the Mediterranean Sea.

  14. Subsea pipeline isolation systems: Reliability and costs

    SciTech Connect (OSTI)

    Masheder, R.R.

    1996-08-01

    Since the Piper Alpha disaster, more than 80 subsea isolation systems (SSIS) have been installed in subsea gas and oil pipelines in the U.K. continental shelf at an estimated cost in the region of {Brit_pounds}500 million. The reliability and costs of these installations have now been assessed between Dec. 1992 and Oct. 1993. This assessment was based upon comprehensive reliability and cost databases which were established so that the studies could be based upon factual information in order to obtain a current status as required by the sponsoring group. The study consultants report findings have now been consolidated into a report by the UKOOA Pipeline Valve Work Group. Probabilities of failure for different types of valves and systems have been assessed and expenditures broken down and compared. The results of the studies and the conclusions drawn by UKOOA Pipeline Valve Group and the HSE Offshore Safety Division are presented in this paper.

  15. Webinar January 12: Assessing Steel Pipeline and Weld Susceptibility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen pipelines in the United States are built in compliance with the ASME B31.12 Code for Hydrogen Piping and Pipelines. The Code is based on decades of research and in-field ...

  16. ,"U.S. Natural Gas Pipeline Imports From Canada (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    1: U.S. Natural Gas Pipeline Imports From Canada (MMcf)" "Sourcekey","N9102CN2" "Date","U.S. Natural Gas Pipeline Imports From Canada (MMcf)" 26845,1027883 27210,959063 ...

  17. Sasabe, AZ Natural Gas Pipeline Exports to Mexico (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Sasabe, AZ Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Sasabe, AZ Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug ...

  18. New York Natural Gas Pipeline and Distribution Use Price (Dollars...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Price (Dollars per Thousand Cubic Feet) New York Natural Gas Pipeline and Distribution Use ... Price for Natural Gas Pipeline and Distribution Use New York Natural Gas Prices Price for ...

  19. Detroit, MI Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    2009 2010 2011 2012 2013 2014 View History Pipeline Volumes 21 79 19 0 165 188 1996-2014 Pipeline Prices 4.53 8.37 5.17 -- 4.44 5.26 1996-2014

  20. Havre, MT Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    1998 1999 2000 2001 2002 2003 View History Pipeline Volumes NA NA 1,309 NA NA 0 1998-2003 Pipeline Prices NA NA 3.66 NA NA -- 1998-2003

  1. Roma, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Roma, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Roma, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep ...

  2. Evaluation of Natural Gas Pipeline Materials for Hydrogen Science

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thad M. Adams Materials Technology Section Savannah River National Laboratory DOE Hydrogen Pipeline R&D Project Review Meeting January 5-6, 2005 Evaluation of Natural Gas Pipeline ...

  3. Proceedings of the 2005 Hydrogen Pipeline Working Group Workshop

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Hydrogen Pipeline Working Group Workshop included more than 45 researchers and industry experts. The workshop provided an overview of hydrogen pipeline projects.

  4. U.S. Natural Gas Imports by Pipeline from Mexico

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline Volumes 59 70 69 71 73 85 1973-2016 Pipeline Prices 1.50 1.22 0.82 1.03 1.12 1.43 1993

  5. Marine pipeline dynamic response to waves from directional wave spectra

    SciTech Connect (OSTI)

    Lambrakos, K.F.

    1982-07-01

    A methodology has been developed to calculate the dynamic probabilistic movement and resulting stresses for marine pipelines subjected to storm waves. A directional wave spectrum is used with a Fourier series expansion to simulate short-crested waves and calculate their loads on the pipeline. The pipeline displacements resulting from these loads are solutions to the time-dependent beam-column equation which also includes the soil resistance as external loading. The statistics of the displacements for individual waves are combined with the wave statistics for a given period of time, e.g. pipeline lifetime, to generate probabilistic estimates for net pipeline movement. On the basis of displacements for specified probability levels the pipeline configuration is obtained from which pipeline stresses can be estimated using structural considerations, e.g. pipeline stiffness, end restraints, etc.

  6. Cathodic protection of a remote river pipeline

    SciTech Connect (OSTI)

    Martin, B.A. )

    1994-03-01

    The 261-km long 500-mm diam Kutubu pipeline, which runs through dense jungle swamps in Papua, New Guinea, was built for Chevron Niugini to transport oil from the remote Kutubu oil production facility in the Southern Highlands to an offshore loading facility. The pipeline was laid with a section in the bed of a wide, fast-flowing river. This section was subject to substantial telluric effects and current density variations from changing water resistivities. The cathodic protection system's effectiveness was monitored by coupon off'' potentials and required an innovative approach.

  7. Self lubrication of bitumen froth in pipelines

    SciTech Connect (OSTI)

    Joseph, D.D.

    1997-12-31

    In this paper I will review the main properties of water lubricated pipelines and explain some new features which have emerged from studies of self-lubrication of Syncrudes` bitumen froth. When heavy oils are lubricated with water, the water and oil are continuously injected into a pipeline and the water is stable when in a lubricating sheath around the oil core. In the case of bitumen froth obtained from the Alberta tar sands, the water is dispersed in the bitumen and it is liberated at the wall under shear; water injection is not necessary because the froth is self-lubricating.

  8. RESEARCH AND ENGINEERING COMPANY

    Office of Legacy Management (LM)

    Per our conversation on July 11, 1988, enclosed is a current plot plan of the Linden Technology Center (old Standard Oil Development Company site). I hope this satisfies your in- ...

  9. Capital Reporting Company Quadrennial ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The war on poverty, which was 20 initiated with very dramatics walks from 21 Appalachia ... 07-21-2014 (866) 448 - DEPO www.CapitalReportingCompany.com 2014 44 1 poverty there. ...

  10. Letter to Successful Company

    Office of Energy Efficiency and Renewable Energy (EERE)

    Document features a letter template to help federal agencies inform an energy services company (ESCO) that it was selected for an energy saving performance contract (ESPC) in accordance with its expression of interest to a notice of opportunity.

  11. Capital Reporting Company Quadrennial ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... grid, and battery 18 development and storage. 19 We are, in fact, partnering with China 20 International Engineering Company to develop the 21 next generation of thin film solar. ...

  12. Capital Reporting Company Quadrennial ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ...CapitalReportingCompany.com 2014 120 1 how to adapt to the new oil which is, in New 2 Mexico, a sweet API 40, essentially similar to the 3 North Dakota oil. We have a sweet oil. ...

  13. EIA - Natural Gas Pipeline Network - Natural Gas Imports/Exports Pipelines

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipelines About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Import/Export Pipelines As of the close of 2008 the United States has 58 locations where natural gas can be exported or imported. 24 locations are for imports only 18 locations are for exports only 13 locations are for both imports and exports 8 locations are liquefied natural gas (LNG) import facilities Imported natural gas in 2007 represented almost 16 percent

  14. Evaluation of Natural Gas Pipeline Materials for Hydrogen Science |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Natural Gas Pipeline Materials for Hydrogen Science Evaluation of Natural Gas Pipeline Materials for Hydrogen Science Presentation by 04-Adams to DOE Hydrogen Pipeline R&D Project Review Meeting held January 5-6, 2005 at Oak Ridge National Laboratory in Oak Ridge, Tennessee. 04_adams_nat_gas.pdf (9.97 MB) More Documents & Publications Evalutation of Natural Gas Pipeline Materials and Infrastructure for Hydrogen/Mixed Gas Service Hydrogen Compatibility of

  15. Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Permeability and Integrity of Hydrogen Delivery Pipelines Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines Project Objectives: To gain basic understanding of hydrogen permeation behavior and its impact on hydrogen embrittlement of pipeline steels under high gaseous pressures relevant to hydrogen gas transmission pipeline hpwgw_permeability_integrity_feng.pdf (1.41 MB) More Documents & Publications Hydrogen permeability and Integrity of hydrogen

  16. 2005 Hydrogen Pipeline Working Group Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Hydrogen Pipeline Working Group Workshop 2005 Hydrogen Pipeline Working Group Workshop DOE held a Hydrogen Pipeline Working Group Workshop August 30-31, 2005 in Augusta, Ga. The workshop provided the opportunity for researchers to hear from industry experts about their field experiences with current in-service hydrogen pipelines (both new construction and converted). The group also explored research or other activities needed to improve costs and operability. Issues addressed by industry

  17. Innovative Electromagnetic Sensors for Pipeline Crawlers

    SciTech Connect (OSTI)

    J. Bruce Nestleroth

    2006-05-04

    Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they encounter. Recent development efforts include a new generation of powered inspection platforms that crawl slowly inside a pipeline and are able to maneuver past the physical barriers that can limit inspection. At Battelle, innovative electromagnetic sensors are being designed and tested for these new pipeline crawlers. The various sensor types can be used to assess a wide range of pipeline anomalies including corrosion, mechanical damage, and cracks. Battelle is in the final year on a projected three-year development effort. In the first year, two innovative electromagnetic inspection technologies were designed and tested. Both were based on moving high-strength permanent magnets to generate inspection energy. One system involved translating permanent magnets towards the pipe. A pulse of electric current would be induced in the pipe to oppose the magnetization according to Lenz's Law. The decay of this pulse would indicate the presence of defects in the pipe wall. This inspection method is similar to pulsed eddy current inspection methods, with the fundamental difference being the manner in which the current is generated. Details of this development effort were reported in the first semiannual report on this project. The second inspection methodology is based on rotating permanent magnets. The rotating exciter unit produces strong eddy currents in the pipe wall. At distances of a pipe diameter or more from the rotating exciter, the currents flow circumferentially. These circumferential currents are deflected by pipeline defects such as corrosion and axially aligned cracks. Simple sensors are used to detect the change in current densities in the pipe wall. The second semiannual

  18. McAllen, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) McAllen, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 2000's 1,118 NA 402 0 0 5,322 7,902 26,605 20,115 12,535 2010's 2,520 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S.

  19. Alamo, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Alamo, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA 12,651 2000's 8,390 2,984 571 0 0 2,656 3,880 22,197 20,653 13,279 2010's 4,685 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S.

  20. Havre, MT Natural Gas Pipeline Imports From Canada (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Dollars per Thousand Cubic Feet) Havre, MT Natural Gas Pipeline Imports From Canada (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 2000's 3.66 NA NA -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Price of

  1. Hidalgo, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Hidalgo, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 13,609 17,243 13,496 41,879 2000's 2,093 7,292 782 0 0 1,342 967 5,259 1,201 284 2010's 62 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S.

  2. Port Huron, MI Natural Gas Pipeline Imports From Canada (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Dollars per Thousand Cubic Feet) Port Huron, MI Natural Gas Pipeline Imports From Canada (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2016 2.07 2.06 2.21 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Price of

  3. Green Hydrogen Company | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Company Jump to: navigation, search Logo: Green Hydrogen Company Name: Green Hydrogen Company Abbreviation: GH2 Address: Green Hydrogen Company, Head Office, 9...

  4. Expansion of the U.S. Natural Gas Pipeline Network

    Reports and Publications (EIA)

    2009-01-01

    Additions in 2008 and Projects through 2011. This report examines new natural gas pipeline capacity added to the U.S. natural gas pipeline system during 2008. In addition, it discusses and analyzes proposed natural gas pipeline projects that may be developed between 2009 and 2011, and the market factors supporting these initiatives.

  5. Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Barriers: Hydrogen embrittlement of pipelines and remediation (mixing with water vapor?) hpwgw_embrittlementsteels_sofronis.pdf (675.35 KB) More Documents & Publications Webinar: I2CNER: An International Collaboration to Enable a Carbon-Neutral Energy Economy Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation Hydrogen permeability and Integrity of hydrogen transfer pipelines

  6. Sensor and transmitter system for communication in pipelines

    DOE Patents [OSTI]

    Cooper, John F.; Burnham, Alan K.

    2013-01-29

    A system for sensing and communicating in a pipeline that contains a fluid. An acoustic signal containing information about a property of the fluid is produced in the pipeline. The signal is transmitted through the pipeline. The signal is received with the information and used by a control.

  7. North West Shelf pipeline. Part 2 (conclusion). Laying Australia's North West Shelf pipeline

    SciTech Connect (OSTI)

    Seymour, E.V.; Craze, D.J.; Ruinen, W.

    1984-05-14

    Details of the construction of Australia's North West Shelf gas pipeline cover the pipelaying operation, trunkline-to-riser tie-in, posttrenching, backfilling, slugcatcher construction, connection with the shore terminal, and hydrostatic testing.

  8. Cathodic protection of pipelines in discontinuous permafrost

    SciTech Connect (OSTI)

    Mitchell, C.J.; Wright, M.D.; Waslen, D.W.

    1997-10-01

    There are many unknowns and challenges in providing cathodic protection (CP) for a pipeline located in discontinuous permafrost areas. Preliminary pipe-to-soil data indicates that CP coverage was achieved in these regions without needing local anodes. Work is required to verify whether this conclusion can be extended over the course of an annual freeze-thaw cycle.

  9. New system pinpoints leaks in ethylene pipeline

    SciTech Connect (OSTI)

    Hamande, A.; Condacse, V.; Modisette, J.

    1995-04-01

    A model-based leak detection, PLDS, developed by Modisette Associates, Inc., Houston has been operating on the Solvay et Cie ethylene pipeline since 1989. The 6-in. pipeline extends from Antwerp to Jemeppe sur Sambre, a distance of 73.5 miles and is buried at a depth of 3 ft. with no insulation. Except for outlets to flares, located every 6 miles for test purposes, there are no injections or deliveries along the pipeline. Also, there are block valves, which are normally open, at each flare location. This paper reviews the design and testing procedures used to determine the system performance. These tests showed that the leak system was fully operational and no false alarms were caused by abrupt changes in inlet/outlet flows of the pipeline. It was confirmed that leaks larger than 2 tonnes/hr. (40 bbl/hr) are quickly detected and accurately located. Also, maximum leak detection sensitivity is 1 tonne/hr. (20 bbl/hr) with a detection time of one hour. Significant operational, configuration, and programming issues also were found during the testing program. Data showed that temperature simulations needed re-examining for improvement since accurate temperature measurements are important. This is especially true for ethylene since its density depends largely on temperature. Another finding showed the averaging period of 4 hrs. was too long and a 1 to 2 hr. interval was better.

  10. Computer Science and Information Technology Student Pipeline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Information Technology Student Pipeline Program Description Los Alamos National Laboratory's High Performance Computing and Information Technology Divisions recruit and hire promising undergraduate and graduate students in the areas of Computer Science, Information Technology, Management Information Systems, Computer Security, Software Engineering, Computer Engineering, and Electrical Engineering. Students are provided a mentor and challenging projects to demonstrate their

  11. Longitudinal review of state-level accident statistics for carriers of interstate freight

    SciTech Connect (OSTI)

    Saricks, C.; Kvitek, T.

    1994-03-01

    State-level accident rates by mode of freight transport have been developed and refined for application to the US Department of Energy`s (DOE`s) environmental mitigation program, which may involve large-quantity shipments of hazardous and mixed wastes from DOE facilities. These rates reflect multi-year data for interstate-registered highway earners, American Association of Railroads member carriers, and coastal and internal waterway barge traffic. Adjustments have been made to account for the share of highway combination-truck traffic actually attributable to interstate-registered carriers and for duplicate or otherwise inaccurate entries in the public-use accident data files used. State-to-state variation in rates is discussed, as is the stability of rates over time. Computed highway rates have been verified with actual carriers of high- and low-level nuclear materials, and the most recent truck accident data have been used, to ensure that the results are of the correct order of magnitude. Study conclusions suggest that DOE use the computed rates for the three modes until (1) improved estimation techniques for highway combination-truck miles by state become available; (2) continued evolution of the railroad industry significantly increases the consolidation of interstate rail traffic onto fewer high-capacity trunk lines; or (3) a large-scale off-site waste shipment campaign is imminent.

  12. DETECTION OF UNAUTHORIZED CONSTRUCTION EQUIPMENT IN PIPELINE RIGHT-OF-WAYS

    SciTech Connect (OSTI)

    James E. Huebler

    2002-04-26

    Natural gas transmission companies mark the right-of-way areas where pipelines are buried with warning signs to prevent accidental third-party damage. Nevertheless, pipelines are sometimes damaged by third-party construction equipment. A single incident can be devastating, causing death and millions of dollars of property loss. This damage would be prevented if potentially hazardous construction equipment could be detected, identified, and an alert given before the pipeline was damaged. The Gas Technology Institute (GTI) is developing a system to solve this problem by using an optical fiber as a distributed sensor and interrogating the fiber with an optical time domain reflectometer. Key issues are the ability to detect encroachment and the ability to discriminate among potentially hazardous and benign encroachments. The work performed in the second quarter of the project includes design of the instrument, selection of the key components, and beginning programming of the custom optical time domain reflectometer. Work included an assessment of two other approaches to measuring strain and vibrations in an extended optical fiber sensor.

  13. DETECTION OF UNAUTHORIZED CONSTRUCTION EQUIPMENT IN PIPELINE RIGHT-OF-WAYS

    SciTech Connect (OSTI)

    James E. Huebler

    2004-07-26

    Natural gas transmission companies mark the right-of-way areas where pipelines are buried with warning signs to prevent accidental third-party damage. Nevertheless, pipelines are sometimes damaged by third-party construction equipment. A single incident can be devastating, causing death and millions of dollars of property loss. This damage would be prevented if potentially hazardous construction equipment could be detected, identified, and an alert given before the pipeline was damaged. The Gas Technology Institute (GTI) is developing a system to solve this problem by using an optical fiber as a distributed sensor and interrogating the fiber with a custom optical time domain reflectometer. Key issues are the ability to detect encroachment and the ability to discriminate among potentially hazardous and benign encroachments. The work continues on improving the signal-to-noise ratio of the technique. We are now able to detect weights sitting on the Hergalite fiber of as low as 0.2 pound. A brighter diode laser increased our sensitivity by a factor of ten. Detection of load fluctuations with frequencies greater than 5 Hertz is also possible. The next step is beginning measurements at the field site.

  14. DETECTION OF UNAUTHORIZED CONSTRUCTION EQUIPMENT IN PIPELINE RIGHT-OF-WAYS

    SciTech Connect (OSTI)

    James E. Huebler

    2004-04-12

    Natural gas transmission companies mark the right-of-way areas where pipelines are buried with warning signs to prevent accidental third-party damage. Nevertheless, pipelines are sometimes damaged by third-party construction equipment. A single incident can be devastating, causing death and millions of dollars of property loss. This damage would be prevented if potentially hazardous construction equipment could be detected, identified, and an alert given before the pipeline was damaged. The Gas Technology Institute (GTI) is developing a system to solve this problem by using an optical fiber as a distributed sensor and interrogating the fiber with a custom optical time domain reflectometer. Key issues are the ability to detect encroachment and the ability to discriminate among potentially hazardous and benign encroachments. The work continues on improving the signal-to-noise ratio of the technique. We are now able to detect weights sitting on the Hergalite fiber of as low as 0.2 pound. Detection of load fluctuations with frequencies greater than 1 Hertz is also possible. We have also purchased a brighter diode laser for use with the multimode fibers that should improve our sensitivity by a factor of ten.

  15. DETECTION OF UNAUTHORIZED CONSTRUCTION EQUIPMENT IN PIPELINE RIGHT-OF-WAYS

    SciTech Connect (OSTI)

    James E. Huebler

    2002-01-31

    Natural gas transmission companies mark the right-of-way areas where pipelines are buried with warning signs to prevent accidental third-party damage. Nevertheless, pipelines are sometimes damaged by third-party construction equipment. A single incident can be devastating, causing death and millions of dollars of property loss. This damage could be prevented if potentially hazardous construction equipment could be detected and identified before the pipeline was damaged. The Gas Technology Institute (GTI) is developing a system to solve this problem by using an optical fiber as a distributed sensor and interrogating the fiber with an optical time domain reflectometer. Key issues are the ability to detect encroachment and the ability to discriminate among potentially hazardous and benign encroachment. The work performed in the first quarter of the project includes development of the Research Management Plan, writing a paper assessing of the state-of-the-art in encroachment and third party damage detection, and development of factors for selecting the optical fiber sensors.

  16. DETECTION OF UNAUTHORIZED CONSTRUCTION EQUIPMENT IN PIPELINE RIGHT-OF-WAYS

    SciTech Connect (OSTI)

    James E. Huebler

    2003-07-17

    Natural gas transmission companies mark the right-of-way areas where pipelines are buried with warning signs to prevent accidental third-party damage. Nevertheless, pipelines are sometimes damaged by third-party construction equipment. A single incident can be devastating, causing death and millions of dollars of property loss. This damage would be prevented if potentially hazardous construction equipment could be detected, identified, and an alert given before the pipeline was damaged. The Gas Technology Institute (GTI) is developing a system to solve this problem by using an optical fiber as a distributed sensor and interrogating the fiber with a custom optical time domain reflectometer. Key issues are the ability to detect encroachment and the ability to discriminate among potentially hazardous and benign encroachments. The work continues on improving the signal-to-noise ratio of the custom OTDR. An avalanche photo-detector, was purchased. It was able to detect weights on the Hergalite fiber as low as one pound. We are also investigating a brighter laser for use with the multimode fibers.

  17. EIA-812, Monthly Product Pipeline Report

    U.S. Energy Information Administration (EIA) Indexed Site

    ... reporting company. Enter the Doing Business As "DBA" name if appropriate. Enter ... error greater than 5 percent of the true value is discovered by a respondent or if ...

  18. Buried gas pipelines under vehicular crossings

    SciTech Connect (OSTI)

    Oey, H.S.; Greggerson, V.L.; Womack, D.P.

    1984-03-01

    This paper describes and evaluates the various methods used in the analysis and design of buried pipelines under vehicular crossings extracted from a vast number of literature. It was found that a unified treatment of the subject is currently not available and additional work is required. The study shows that there are sufficient data and technical information that can be integrated to produce sound design. Theoretical as well as empirical formulas are scrutinized and incorporated in their appropriate places. Design examples are presented, complete with the detail calculations. Where applicable nomographs and graphs are adapted as design aids. A brief review of the current safety codes pertaining to natural gas pipeline design is also presented.

  19. Structural monitoring helps assess deformations in Arctic pipelines

    SciTech Connect (OSTI)

    Nyman, K.J.; Lara, P.F.

    1986-11-10

    Advanced structural monitoring systems can play an important role in the evaluation of arctic pipeline distortions along the alignment. These systems can influence pipeline design requirements, reduce capital costs, and improve operating reliability. Differential soil movements resulting from terrain instabilities are the main features which threaten a pipeline's structural integrity and affect the design of buried pipeline systems in the Arctic. Economic, aesthetic, and safety concerns make conventional buried construction an optimum design choice for an arctic crude-oil or gas-pipeline transportation system. However, variable frozen and thawed soil conditions underlying the pipeline along a discontinuous permafrost corridor pose a challenge to the design and operation of such systems. Crude-oil pipelines which must operate at elevated temperatures can be installed in unfrozen soils or in permafrost soils where initially frozen segments will exhibit limited settlement under the thawed conditions imposed by pipeline construction and operation. Ice-rich portions of the frozen alignment may have an unacceptable settlement potential for a warm buried pipeline. In contrast, natural-gas pipelines can be operated cold to increase throughput capability and to prevent the problems associated with thawing permafrost.

  20. EIA - Natural Gas Pipeline Network - Regional Definitions

    U.S. Energy Information Administration (EIA) Indexed Site

    Definitions Map About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Regional Definitions The regions defined in the above map are based upon the 10 Federal Regions of the U.S. Bureau of Labor Statistics. The State groupings are as follows: Northeast Region - Federal Region 1: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont. Federal Region 2: New Jersey, and New York. Federal Region 3:Delaware, District of

  1. Natural Gas Pipeline Network: Changing and Growing

    Reports and Publications (EIA)

    1996-01-01

    This chapter focuses upon the capabilities of the national natural gas pipeline network, examining how it has expanded during this decade and how it may expand further over the coming years. It also looks at some of the costs of this expansion, including the environmental costs which may be extensive. Changes in the network as a result of recent regional market shifts are also discussed.

  2. Drag reduction in coal log pipelines

    SciTech Connect (OSTI)

    Marrero, T.R.; Liu, H.

    1996-12-31

    It is well-known that solutions of dissolved long-chain macromolecules produce lower friction or drag losses than with the solvent alone. In coal log pipeline (CLP), water is the conveying medium. Synthetic polymers such as poly(ethylene oxide) have been dissolved in water and tested for their extent of drag reduction as a function of concentration and other variables. Lab-scale experimental results for CLP indicate substantial drag reduction at low concentration levels of polymer. But, the macromolecules exhibit degradation under mechanical shear stresses. The large molecules break into smaller units. This degradation effect causes a loss of drag reduction. However, high levels of drag reduction can be maintained as follows: (1) by injecting polymer into the CLP at several locations along the pipeline, (2) by injecting polymer of different particle sizes, (3) by using more robust types of polymers, or (4) by using polymer-fiber mixtures. This report presents the value of drag-reducing agents in terms of pumping power net cost savings. In addition, this report outlines the environmental impact of drag reduction polymers, and end-of-pipeline water treatment processes. For an operating CLP, hundreds of miles in length, the use of poly(ethylene oxide) as a drag reducing agent provides significant pumping power cost savings at a minimal materials cost.

  3. Hydrogen pipeline compressors annual progress report.

    SciTech Connect (OSTI)

    Fenske, G. R.; Erck, R. A.

    2011-07-15

    The objectives are: (1) develop advanced materials and coatings for hydrogen pipeline compressors; (2) achieve greater reliability, greater efficiency, and lower capital in vestment and maintenance costs in hydrogen pipeline compressors; and (3) research existing and novel hydrogen compression technologies that can improve reliability, eliminate contamination, and reduce cost. Compressors are critical components used in the production and delivery of hydrogen. Current reciprocating compressors used for pipeline delivery of hydrogen are costly, are subject to excessive wear, have poor reliability, and often require the use of lubricants that can contaminate the hydrogen (used in fuel cells). Duplicate compressors may be required to assure availability. The primary objective of this project is to identify, and develop as required, advanced materials and coatings that can achieve the friction, wear, and reliability requirements for dynamically loaded components (seal and bearings) in high-temperature, high-pressure hydrogen environments prototypical of pipeline and forecourt compressor systems. The DOE Strategic Directions for Hydrogen Delivery Workshop identified critical needs in the development of advanced hydrogen compressors - notably, the need to minimize moving parts and to address wear through new designs (centrifugal, linear, guided rotor, and electrochemical) and improved compressor materials. The DOE is supporting several compressor design studies on hydrogen pipeline compression specifically addressing oil-free designs that demonstrate compression in the 0-500 psig to 800-1200 psig range with significant improvements in efficiency, contamination, and reliability/durability. One of the designs by Mohawk Innovative Technologies Inc. (MiTi{reg_sign}) involves using oil-free foil bearings and seals in a centrifual compressor, and MiTi{reg_sign} identified the development of bearings, seals, and oil-free tribological coatings as crucial to the successful

  4. Company Level Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Company Level Imports With Data for June 2016 | Release Date: August 31, 2016 | Next Release Date: September 30, 2016 | XLS Previous Issues Month: June 2016 May 2016 April 2016 March 2016 February 2016 January 2016 December 2015 November 2015 October 2015 September 2015 August 2015 July 2015 June 2015 prior issues Go June 2016 Import Highlights Monthly data on the origins of crude oil imports in June 2016 show that two countries, Canada and Saudi Arabia, exported more than one million barrels

  5. Coors Ceramics Company,

    Office of Legacy Management (LM)

    ,' Coors Ceramics Company, _' 600 Ninth Street ,# Golden. Colorado 80401 ' ., February 1, 1995 ,,/. Mr. James W. Wagoner II, Director 8. \ Off-SitelSavannah River Program Division i Office of Eastern Area Programs : Office of Environmental Restoration ., Department of Energy Washington, D.C.. 20585 Dear Mr. Wagoner: ' , : -, ' .' In discussionswith Mr. Marvin Kay, Mayor of the City of Golden, it is appropriate that I respond to yourtetter to him of January 24, 1995. Thank you for the

  6. Benham Companies ESCO Qualification Sheet

    Office of Energy Efficiency and Renewable Energy (EERE)

    Document outlines the energy service company (ESCO) qualifications for Leidos Engineering (part of Benham Companies) in relation to the U.S. Department of Energy's (DOE) energy savings performance contracts (ESPC).

  7. Virtual Pipeline System Testbed to Optimize the U.S. Natural Gas Transmission Pipeline System

    SciTech Connect (OSTI)

    Kirby S. Chapman; Prakash Krishniswami; Virg Wallentine; Mohammed Abbaspour; Revathi Ranganathan; Ravi Addanki; Jeet Sengupta; Liubo Chen

    2005-06-01

    The goal of this project is to develop a Virtual Pipeline System Testbed (VPST) for natural gas transmission. This study uses a fully implicit finite difference method to analyze transient, nonisothermal compressible gas flow through a gas pipeline system. The inertia term of the momentum equation is included in the analysis. The testbed simulate compressor stations, the pipe that connects these compressor stations, the supply sources, and the end-user demand markets. The compressor station is described by identifying the make, model, and number of engines, gas turbines, and compressors. System operators and engineers can analyze the impact of system changes on the dynamic deliverability of gas and on the environment.

  8. Materials Solutions for Hydrogen Delivery in Pipelines | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Objective: Develop materials technologies to minimize embrittlement of steels used for high-pressure transport of hydrogen pipeline_group_das_ms.pdf (1.14 MB) More Documents & Publications Materials Solutions for Hydrogen Delivery in Pipelines American Society of Mechanical Engineers/Savannah River National Laboratory (ASME/SRNL) Materials and Components for Hydrogen Infrastructure Codes and Standards Workshop and the DOE Hydrogen Pipeline Working Group Workshop Summary Testing

  9. New construction era reflected in East Texas LPG pipeline

    SciTech Connect (OSTI)

    Mittler, T.J. )

    1990-04-02

    Installation of 240 miles of 6, 10, and 12-in. LPG pipelines from Mont Belvieu to Tyler, Tex., has provided greater feedstock-supply flexibility to a petrochemical plant in Longview, Tex. The project, which took place over 18 months, included tie-ins with metering at four Mont Belvieu suppliers. The new 10 and 12-in. pipelines now transport propane while the new and existing parts of a 6-in. pipeline transport propylene.

  10. World`s developing regions provide spark for pipeline construction

    SciTech Connect (OSTI)

    Koen, A.D.; True, W.R.

    1996-02-05

    This paper reviews the proposed construction of oil and gas pipelines which are underway or proposed to be started in 1996. It breaks down the projects by region of the world, type of product to be carried, and diameter of pipeline. It also provides mileage for each category of pipeline. Major projects in each region are more thoroughly discussed giving details on construction expenditures, construction problems, and political issues.

  11. Microsoft Word - Rockies Pipelines and Prices.doc

    Gasoline and Diesel Fuel Update (EIA)

    07 1 September 2007 Short-Term Energy Outlook Supplement: Natural Gas in the Rocky Mountains: Developing Infrastructure 1 Highlights * Recent natural gas spot market volatility in the Rocky Mountain States of Colorado, Utah, and Wyoming has been the result of increased production while consumption and pipeline export capacity have remained limited. This Supplement analyzes current natural gas production, pipeline and storage infrastructure in the Rocky Mountains, as well as prospective pipeline

  12. EIA - Natural Gas Pipeline Network - Region To Region System Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    Levels Interregional Capacity About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Interregional Natural Gas Transmission Pipeline Capacity, Close of 2008 (Million cubic feet per day) Map of Interregional Natural Gas Transmission Pipeline Capacity in 2008 The EIA has determined that the informational map displays here do not raise security concerns, based on the application of the Federal Geographic Data Committee's Guidelines for

  13. DOE - Office of Legacy Management -- Los Alamos Underground Med Pipelines -

    Office of Legacy Management (LM)

    NM 02 Los Alamos Underground Med Pipelines - NM 02 FUSRAP Considered Sites Site: Los Alamos Underground Med Pipelines ( NM.02 ) Eliminated - Remedial action being performed by the Los Alamos Area Office of the DOE Albuquerque Operations Office Designated Name: Not Designated Alternate Name: Los Alamos County Industrial Waste Lines NM.02-1 Location: Los Alamos , New Mexico NM.02-1 Evaluation Year: 1986 NM.02-1 Site Operations: From 1952 to 1965, underground pipelines or industrial waste lines

  14. Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Embrittlement of Pipeline Steels: Causes and Remediation P. Sofronis, I. M. Robertson, D. D. Johnson University of Illinois at Urbana-Champaign Hydrogen Pipeline Working Group Workshop Augusta, GA, August 30, 2005 Funding and Duration * Timeline - Project start date: 7/20/05 - Project end date: 7/19/09 - Percent complete: 0.1% * Budget: Total project funding: 300k/yr * DOE share: 75% * Contractor share: 25% * Barriers - Hydrogen embrittlement of pipelines and remediation (mixing with water

  15. Refiners react to changes in the pipeline infrastructure

    SciTech Connect (OSTI)

    Giles, K.A.

    1997-06-01

    Petroleum pipelines have long been a critical component in the distribution of crude and refined products in the U.S. Pipelines are typically the most cost efficient mode of transportation for reasonably consistent flow rates. For obvious reasons, inland refineries and consumers are much more dependent on petroleum pipelines to provide supplies of crude and refined products than refineries and consumers located on the coasts. Significant changes in U.S. distribution patterns for crude and refined products are reshaping the pipeline infrastructure and presenting challenges and opportunities for domestic refiners. These changes are discussed.

  16. EIA - Natural Gas Pipeline Network - Salt Cavern Storage Reservoir...

    U.S. Energy Information Administration (EIA) Indexed Site

    Salt Cavern Storage Reservoir Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Salt Cavern ...

  17. EIA - Natural Gas Pipeline Network - Expansion Process Flow Diagram

    U.S. Energy Information Administration (EIA) Indexed Site

    Development & Expansion > Development and Expansion Process Figure About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates ...

  18. EIA - Natural Gas Pipeline Network - Aquifer Storage Reservoir...

    U.S. Energy Information Administration (EIA) Indexed Site

    Aquifer Storage Reservoir Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Aquifer Underground ...

  19. EIA - Natural Gas Pipeline Network - Depleted Reservoir Storage...

    U.S. Energy Information Administration (EIA) Indexed Site

    Depleted Reservoir Storage Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Depleted Production ...

  20. EIA - Analysis of Natural Gas Imports/Exports & Pipelines

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    trends, offshore production shut-ins caused by infrastructure problems and hurricanes, imports and exports of pipeline and liquefied natural gas, and the above-average...

  1. EnSys Energy Report on Keystone XL Pipeline

    Broader source: Energy.gov [DOE]

    As part of ongoing analysis, the Department of Energy's Office of Policy and International Affairs commissioned a report on the proposed Keystone XL pipeline project.

  2. EIS-0517: Port Arthur Liquefaction Project and Port Arthur Pipeline...

    Broader source: Energy.gov (indexed) [DOE]

    natural gas marine terminal along the Sabine-Neches ship channel (Jefferson County, Texas), about 35 miles of new pipeline, and associated facilities. DOE, Office of Fossil...

  3. Hydrogen permeability and Integrity of hydrogen transfer pipelines...

    Broader source: Energy.gov (indexed) [DOE]

    Presentation by 03-Babu for the DOE Hydrogen Pipeline R&D Project Review Meeting held ... More Documents & Publications Hydrogen Permeability and Integrity of Hydrogen Delivery ...

  4. Blending Hydrogen into Natural Gas Pipeline Networks: A Review...

    Broader source: Energy.gov (indexed) [DOE]

    This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building ...

  5. Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines...

    Broader source: Energy.gov (indexed) [DOE]

    Project Objectives: To gain basic understanding of hydrogen permeation behavior and its impact on hydrogen embrittlement of pipeline steels under high gaseous pressures relevant to ...

  6. Ogilby, CA Natural Gas Imports by Pipeline from Mexico

    Gasoline and Diesel Fuel Update (EIA)

    1,953 22,503 454 0 23 0 2007-2014 Pipeline Prices 2.83 4.76 3.65 -- 3.59

  7. ,"Total Crude Oil and Petroleum Products Net Receipts by Pipeline...

    U.S. Energy Information Administration (EIA) Indexed Site

    Net Receipts by Pipeline, Tanker, Barge and Rail between PAD Districts" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

  8. Enter the Post-Doc: The Untapped Sourcing Pipeline

    SciTech Connect (OSTI)

    Boscow, Ryan B.

    2011-07-30

    This article addresses the potential formulation and utilization of an industry-based Post-Doc program in order to create workforce candidate pipelines with targeted universities.

  9. ,"Alamo, TX Natural Gas Pipeline Imports From Mexico (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Alamo, TX Natural Gas Pipeline Imports From Mexico (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data...

  10. ,"Detroit, MI Natural Gas Pipeline Imports From Canada (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Detroit, MI Natural Gas Pipeline Imports From Canada (MMcf)",1,"Annual",2014 ,"Release...

  11. Evaluation of Trenchless Technologies for Installation of Pipelines...

    Office of Scientific and Technical Information (OSTI)

    for Installation of Pipelines in Radioactive Environments - 10249 Citation Details In-Document Search Title: Evaluation of Trenchless Technologies for Installation of ...

  12. ,"U.S. Natural Gas Pipeline Imports From Canada (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet ... Natural Gas Pipeline Imports From Canada (MMcf)",1,"Monthly","42016" ,"Release ...

  13. ,"U.S. Intrastate Natural Gas Pipeline Systems"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Co","Kinder Morgan Energy Partners LP ... Gas Storage LLC","Intrastate",100,30,"Midwest","MI",,,... "Cardinal Pipeline System","Quicksilver ...

  14. ,"Rhode Island Natural Gas Pipeline and Distribution Use Price...

    U.S. Energy Information Administration (EIA) Indexed Site

    ies","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","9...

  15. ,"New Jersey Natural Gas Pipeline and Distribution Use Price...

    U.S. Energy Information Administration (EIA) Indexed Site

    eries","Frequency","Latest Data for" ,"Data 1","New Jersey Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","9...

  16. ,"North Carolina Natural Gas Pipeline and Distribution Use Price...

    U.S. Energy Information Administration (EIA) Indexed Site

    s","Frequency","Latest Data for" ,"Data 1","North Carolina Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","9...

  17. ,"North Dakota Natural Gas Pipeline and Distribution Use Price...

    U.S. Energy Information Administration (EIA) Indexed Site

    ies","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","9...

  18. ,"New Hampshire Natural Gas Pipeline and Distribution Use Price...

    U.S. Energy Information Administration (EIA) Indexed Site

    es","Frequency","Latest Data for" ,"Data 1","New Hampshire Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","9...

  19. ,"New Mexico Natural Gas Pipeline and Distribution Use Price...

    U.S. Energy Information Administration (EIA) Indexed Site

    eries","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","9...

  20. ,"New York Natural Gas Pipeline and Distribution Use Price (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","9...

  1. Structural Genomics of Minimal Organisms: Pipeline and Results...

    Office of Scientific and Technical Information (OSTI)

    The former has fewer than 500 genes and the latter has fewer than 700 genes. A semiautomated structural genomics pipeline was set up from target selection, cloning, expression, ...

  2. EIS-0517: Port Arthur Liquefaction Project and Port Arthur Pipeline...

    Energy Savers [EERE]

    Counties, Texas, and Cameron Parish, Louisiana EIS-0517: Port Arthur Liquefaction Project and Port Arthur Pipeline Project; Jefferson and Orange Counties, Texas, and Cameron ...

  3. New Materials for Hydrogen Pipelines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Barriers to Hydrogen Delivery: Existing steel pipelines are subject to hydrogen embrittlement and are inadequate for widespread H2 distribution. hpwgwcodesmith.pdf (755.61 KB) ...

  4. Comparing Existing Pipeline Networks with the Potential Scale of Future U.S. CO2 Pipeline Networks

    SciTech Connect (OSTI)

    Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

    2008-02-29

    There is growing interest regarding the potential size of a future U.S. dedicated CO2 pipeline infrastructure if carbon dioxide capture and storage (CCS) technologies are commercially deployed on a large scale. In trying to understand the potential scale of a future national CO2 pipeline network, comparisons are often made to the existing pipeline networks used to deliver natural gas and liquid hydrocarbons to markets within the U.S. This paper assesses the potential scale of the CO2 pipeline system needed under two hypothetical climate policies and compares this to the extant U.S. pipeline infrastructures used to deliver CO2 for enhanced oil recovery (EOR), and to move natural gas and liquid hydrocarbons from areas of production and importation to markets. The data presented here suggest that the need to increase the size of the existing dedicated CO2 pipeline system should not be seen as a significant obstacle for the commercial deployment of CCS technologies.

  5. Brad Thompson Company | Open Energy Information

    Open Energy Info (EERE)

    Thompson Company Jump to: navigation, search Logo: Brad Thompson Company Name: Brad Thompson Company Address: 12517 131st Ct NE Place: Kirkland, Washington Zip: 98034 Region:...

  6. Emery Energy Company | Open Energy Information

    Open Energy Info (EERE)

    Energy Company Jump to: navigation, search Name: Emery Energy Company Place: Salt Lake City, Utah Zip: 84101 Product: Emery Energy Company is a developer and owner of advanced...

  7. Leaf Clean Energy Company | Open Energy Information

    Open Energy Info (EERE)

    Clean Energy Company Jump to: navigation, search Logo: Leaf Clean Energy Company Name: Leaf Clean Energy Company Place: London, United Kingdom Website: www.leafcleanenergy.com...

  8. Southwestern Public Service Company | Open Energy Information

    Open Energy Info (EERE)

    Southwestern Public Service Company Place: AMARILLO, Texas Zip: 79101 Product: Xcel's regulated operating company. References: Southwestern Public Service Company1 This article...

  9. Advanced Energy Company | Open Energy Information

    Open Energy Info (EERE)

    Company Jump to: navigation, search Name: Advanced Energy Company Place: Japan Product: Established March 19, 2010, Advanced Energy Company (AEC) aims to install EV power stations...

  10. PENSION ACTUARIAL APPLICATION, Bechtel Jacobs Company, LLC |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PENSION ACTUARIAL APPLICATION, Bechtel Jacobs Company, LLC PENSION ACTUARIAL APPLICATION, Bechtel Jacobs Company, LLC PENSION ACTUARIAL APPLICATION, Bechtel Jacobs Company, LLC PDF ...

  11. Corsicana Chemical Company | Open Energy Information

    Open Energy Info (EERE)

    Corsicana Chemical Company Jump to: navigation, search Name: Corsicana Chemical Company Place: Corsicana, Texas Zip: 75110 Product: Chemical company and biodiesel producer in...

  12. The Hydrogen Company | Open Energy Information

    Open Energy Info (EERE)

    Company Jump to: navigation, search Name: The Hydrogen Company Abbreviation: HydroGen Address: The Hydrogen Company, HydroGen Engineering and Consulting, Head Office, 9...

  13. Pipeline bottoming cycle study. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    The technical and economic feasibility of applying bottoming cycles to the prime movers that drive the compressors of natural gas pipelines was studied. These bottoming cycles convert some of the waste heat from the exhaust gas of the prime movers into shaft power and conserve gas. Three typical compressor station sites were selected, each on a different pipeline. Although the prime movers were different, they were similar enough in exhaust gas flow rate and temperature that a single bottoming cycle system could be designed, with some modifications, for all three sites. Preliminary design included selection of the bottoming cycle working fluid, optimization of the cycle, and design of the components, such as turbine, vapor generator and condensers. Installation drawings were made and hardware and installation costs were estimated. The results of the economic assessment of retrofitting bottoming cycle systems on the three selected sites indicated that profitability was strongly dependent upon the site-specific installation costs, how the energy was used and the yearly utilization of the apparatus. The study indicated that the bottoming cycles are a competitive investment alternative for certain applications for the pipeline industry. Bottoming cycles are technically feasible. It was concluded that proper design and operating practices would reduce the environmental and safety hazards to acceptable levels. The amount of gas that could be saved through the year 2000 by the adoption of bottoming cycles for two different supply projections was estimated as from 0.296 trillion ft/sup 3/ for a low supply projection to 0.734 trillion ft/sup 3/ for a high supply projection. The potential market for bottoming cycle equipment for the two supply projections varied from 170 to 500 units of varying size. Finally, a demonstration program plan was developed.

  14. Materials Solutions for Hydrogen Delivery in Pipelines

    SciTech Connect (OSTI)

    Ningileri, Shridas T.; Boggess, Todd A; Stalheim, Douglas

    2013-01-02

    The main objective of the study is as follows: Identify steel compositions/microstructures suitable for construction of new pipeline infrastructure and evaluate the potential use of the existing steel pipeline infrastructure in high pressure gaseous hydrogen applications. The microstructures of four pipeline steels were characterized and tensile testing was conducted in gaseous hydrogen and helium at pressures of 5.5 MPa (800 psi), 11 MPa (1600 psi) and 20.7 MPa (3000 psi). Based on reduction of area, two of the four steels that performed the best across the pressure range were selected for evaluation of fracture and fatigue performance in gaseous hydrogen at 5.5 MPa (800 psi) and 20.7 MPa (3000 psi). The basic format for this phase of the study is as follows: Microstructural characterization of volume fraction of phases in each alloy; Tensile testing of all four alloys in He and H{sub 2} at 5.5 MPa (800 psi), 11 MPa (1600 psi), and 20.7 MPa (3000 psi). RA performance was used to choose the two best performers for further mechanical property evaluation; Fracture testing (ASTM E1820) of two best tensile test performers in H{sub 2} at 5.5 MPa (800 psi) and 20.7 MPa (3000 psi); Fatigue testing (ASTM E647) of two best tensile test performers in H2 at 5.5 MPa (800 psi) and 20.7 MPa (3000 psi) with frequency =1.0 Hz and R-ratio=0.5 and 0.1.

  15. Praxair extending hydrogen pipeline in Southeast Texas

    SciTech Connect (OSTI)

    Not Available

    1992-08-24

    This paper reports that Praxair Inc., an independent corporation created by the spinoff of Union Carbide Corp.'s Linde division, is extending its high purity hydrogen pipeline system from Channelview, Tex., to Port Arthur, Tex. The 70 mile, 10 in. extension begins at a new pressure swing adsorption (PSA) purification unit next to Lyondell Petrochemical Co.'s Channelview plant. The PSA unit will upgrade hydrogen offgas from Lyondell's methanol plant to 99.99% purity hydrogen. The new line, advancing at a rate of about 1 mile/day, will reach its first customer, Star Enterprise's 250,000 b/d Port Arthur refinery, in September.

  16. EIS-0410: Keystone Oil Pipeline Project

    Broader source: Energy.gov [DOE]

    This environmental impact statement (EIS) analyzes the environmental impacts of the TransCanada Keystone Oil Pipeline Project. The U.S. Department of State (DOS) was the lead agency. The U.S. Department of Energy's (DOE's) Western Power Administration (Western) participated as a cooperating agency in the preparation of this EIS in order to address Western's proposed response to interconnection requests from Minnkota Power Cooperative, Central Power Electric Cooperative, and East River Electric Power Cooperative requiring modification of three existing Western substation facilities and construction of one new tap facility. DOE adopted the DOS Final EIS as DOE/EIS-0410 on January 21, 2009.

  17. Cathodic protection of pipelines in discontinuous permafrost

    SciTech Connect (OSTI)

    Mitchell, C.J.; Wright, M.D.; Waslen, D.W.

    1997-08-01

    This paper discusses the challenges in providing cathodic protection for a pipeline located in an area with discontinuous permafrost. Specific challenges included: unknown time for the permafrost to melt out, unpredictable current distribution characteristics and wet, inaccessible terrain. Based on preliminary pipe-to-soil data, it appears that cathodic protection coverage was achieved in discontinuous permafrost regions without the need of local anodes. Future work is required to verify whether this conclusion can be extended over the course of an annual freeze-thaw cycle.

  18. MACHINE AND FOUNDRY COMPANY

    Office of Legacy Management (LM)

    MACHINE AND FOUNDRY COMPANY kt '- : :'~ ENGINEERING DIVISIOJ ---. Cl FIELD iRIP ,REP@?T ,' ~ i;~:z;~zy~ MEETING REPORT : .I.-.-' ~Y ::,:I :. &, .I7 ENGINEERING REPORT- : $T, ~ suBJ:m~i-c n-..*~~.~n~ 9r.1 _ P,Y.~.I~ ADDRESS: :'~.'"I .- .._ c. Plans for - ,:, ..-; .:.j s ,PERSON CONTACTED . . .' ., I : /LV cliq 22: PLPCZS w: - American Machine & Fouudq Co., i3ue Termlual. Office ;s& $' PRI?sI?,NT: S. P~:Chartland - DuPont D. B. Craxford - AW ..x.i "7.7, J. J* Crata - LHF 1, .

  19. Bridging legal and economic perspectives on interstate municipal solid waste disposal in the US

    SciTech Connect (OSTI)

    Longo, Christine; Wagner, Jeffrey

    2011-01-15

    Research highlights: {yields} Legal and economic opinions of free interstate trade of MSW in the US are reviewed. {yields} Economic theory of landfill space as the article of commerce can align opinions. {yields} Waste management policies implied by this economic theory are compared/contrasted. - Abstract: Managing municipal solid waste (MSW) within and across regions is a complex public policy problem. One challenge regards conceptualizing precisely what commodity is to be managed across space and time. The US Supreme Court view is that waste disposal is the article of commerce per se. Some justices, however, have argued that while waste disposal is the article of commerce, its interstate flow could be impeded by states on the grounds that they have the authority to regulate natural resource quality within their boundaries. The argument in this paper is that adopting the economic theory view of the article of commerce as landfill space brings the majority and dissenting US Supreme Court views-and the resulting sides of the public policy dispute-into closer alignment. We discuss waste management policy tools that emerge from this closer alignment that are more likely to both withstand judicial scrutiny and achieve economic efficiency.

  20. Company Template (Fixed Support) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Company Template (Fixed Support) Company Template (Fixed Support) Company Fixed Support.doc (157.5 KB) More Documents & Publications Company Template (Expenditure-Based) Consortium Template (Expenditure-Based) Consortium Support (Fixed Support)

  1. UNEP-Risoe CDM/JI Pipeline Analysis and Database | Open Energy...

    Open Energy Info (EERE)

    Risoe CDMJI Pipeline Analysis and Database (Redirected from UNEP Risoe CDMJI Pipeline Analysis and Database) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: UNEP Risoe...

  2. EIS-0519: Rio Grande LNG Project and Rio Bravo Pipeline Project...

    Office of Environmental Management (EM)

    19: Rio Grande LNG Project and Rio Bravo Pipeline Project; Kleberg, Kenedy, Willacy, and Cameron Counties, Texas EIS-0519: Rio Grande LNG Project and Rio Bravo Pipeline Project; ...

  3. Penitas, TX Natural Gas Imports by Pipeline from Mexico

    Gasoline and Diesel Fuel Update (EIA)

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 1996 1998 1999 2000 2001 2002 View History Pipeline Volumes 253 40 NA NA NA NA 1996-2002 Pipeline Prices 1.72 2.04 1996-1998

  4. Alamo, TX Natural Gas Imports by Pipeline from Mexico

    Gasoline and Diesel Fuel Update (EIA)

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013 2014 View History Pipeline Volumes 13,279 4,685 0 0 0 0 1998-2014 Pipeline Prices 4.10 4.30 -- -- -- -- 1998-2014

  5. El Paso, TX Natural Gas Imports by Pipeline from Mexico

    Gasoline and Diesel Fuel Update (EIA)

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 1998 1999 2000 2001 2002 View History Pipeline Volumes 996 NA NA NA NA 1998-2002 Pipeline Prices 2.09 1998-1998

  6. Hidalgo, TX Natural Gas Imports by Pipeline from Mexico

    Gasoline and Diesel Fuel Update (EIA)

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013 2014 View History Pipeline Volumes 284 62 0 0 0 0 1996-2014 Pipeline Prices 4.40 4.21 -- -- -- -- 1996-2014

  7. Ultrasonic corrosion inspection of crude oil pipeline

    SciTech Connect (OSTI)

    Kondo, Munetaka; Kobayashi Motoi; Kurashima, Mineo

    1999-07-01

    An ultrasonic in-line inspection tool has successfully inspected a crude oil pipeline, which is 48-inches in diameter and 1,287 kms in length. This is one of the biggest crude oil pipeline systems in the world. The longest distance of a single inspection run is 1,055 km. The survey runs have been carried out total eight times from 1989 to 1998. The ultrasonic instruments were upgraded and the new ultrasonic tool was built in 1995. The new ultrasonic tool has 512 ultrasonic transducers and the firing interval of each transducer is 1.6 ms (625 Hz). The specified criterion for the grading of the data collected by the ultrasonic tool is single transducer grading. This criterion requires that corrosion will be reported when a single transducer detects a metal loss. The data observation software for personal computers is supplied to show inspection results and measured data collected by the ultrasonic tool. This paper describes the ultrasonic corrosion inspection technology of the ultrasonic tool applied for this project.

  8. Leak detection on an ethylene pipeline

    SciTech Connect (OSTI)

    Hamande, A.; Condacse, V.; Modisette, J.

    1995-12-31

    A model-based leak detection system has been in operation on the Solvay et Cie ethylene pipeline from Antwerp to Jemeppe on Sambre since 1989. The leak detection system, which is the commercial product PLDS of Modisette Associations, Inc., was originally installed by the supplier. Since 1991, all system maintenance and configuration changes have been done by Solvay et Cie personnel. Many leak tests have been performed, and adjustments have been made in the configuration and the automatic tuning parameters. The leak detection system is currently able to detect leaks of 2 tonnes/hour in 11 minutes with accurate location. Larger leaks are detected in about 2 minutes. Leaks between 0.5 and 1 tonne per hour are detected after several hours. (The nominal mass flow in the pipeline is 15 tonnes/hour, with large fluctuations.) Leaks smaller than 0.5 tonnes per hour are not detected, with the alarm thresholds set at levels to avoid false alarms. The major inaccuracies of the leak detection system appear to be associated with the ethylene temperatures.

  9. Savvas Zafeiratos Company | Open Energy Information

    Open Energy Info (EERE)

    Company Jump to: navigation, search Name: Savvas Zafeiratos & Company Place: Greece Zip: 15342 Sector: Buildings Product: Conducting technical projects, constructs...

  10. Gulf of Mexico pipelines heading into deeper waters

    SciTech Connect (OSTI)

    True, W.R.

    1987-06-08

    Pipeline construction for Gulf of Mexico federal waters is following drilling and production operations into deeper waters, according to U.S. Department of Interior (DOI) Minerals Management Service (MMS) records. Review of MMS 5-year data for three water depth categories (0-300 ft, 300-600 ft, and deeper than 600 ft) reveals this trend in Gulf of Mexico pipeline construction. Comparisons are shown between pipeline construction applications that were approved by the MMS during this period and projects that have been reported to the MMS as completed. This article is the first of annual updates of MMS gulf pipeline data. Future installments will track construction patterns in water depths, diameter classifications, and mileage. These figures will also be evaluated in terms of pipeline-construction cost data.

  11. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Info (EERE)

    operates a number of power stations including the largest coal fired power station in the world as well as the Koeberg nuclear power station Esmeralda Energy Company Esmeralda...

  12. Pipeline in-service relocation engineering manual. Final report

    SciTech Connect (OSTI)

    Rosenfeld, M.J.

    1994-12-31

    When pipeline relocation is necessary, it is a common practice for pipeline operators to move the line while it contains gas or liquid product under pressure in order to avoid taking the line out of service. Reasons for this practice include lowering to accommodate a new crossing, raising for repair or recoating, or moving to avoid encroachment. Such operations increase the longitudinal stresses in the relocated section of pipeline. Usually, this has not caused significant problems. However, at least four pipeline failures have been associated with the movement of pipelines over the years. On October 22, 1991, the DOT Office of Pipeline Safety issued an `Alert Notice` to US pipeline operators urging them to conduct analyses prior to moving a pipeline, regardless of whether the line is in service during the operation or not; to determine the extent to which a pipeline may be safely moved, considering the material toughness as a factor; and specific procedures for the operation. The notice resulted from recommendations by the National Transportation Safety Board following their investigation of the North Blenheim failure. This document in intended to be a reasonably comprehensive manual for engineering a safe relocation of an operating pipeline in service. The major elements of the desired guidelines were perceived to already exist in various industry guidelines, standards, proceedings, and research reports. Those sources were compiled, compared and distilled into recommendations for designing a safe line relocation. This manual supplements existing guidelines such as API RP-1117 rather than superseding them; indeed, the user of this document would benefit by referring to them as well. Observance of recommendations made herein should satisfy the nominal requirements and concerns of regulators. However, this document could not possibly address every conceivable situation which might arise in line relocation, nor is it a substitute for independent engineering judgement.

  13. Broin Companies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A proposal from the Broin Companies that demonstrates the benefits of integrating an innovative corn waste to ethanol biochemical process into an existing dry corn mill ...

  14. Benjamin Company | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Benjamin Company Address: 3575 East Oak lLke Road Place: Port Clinton, Ohio Zip: 43452 Sector: Biomass, Carbon, Renewable Energy, Wind energy...

  15. Comparing Existing Pipeline Networks with the Potential Scale of Future U.S. CO2 Pipeline Networks

    SciTech Connect (OSTI)

    Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

    2009-04-20

    There is growing interest regarding the potential size of a future U.S. dedicated carbon dioxide (CO2) pipeline infrastructure if carbon dioxide capture and storage (CCS) technologies are commercially deployed on a large scale within the United States. This paper assesses the potential scale of the CO2 pipeline system needed under two hypothetical climate policies (so called WRE450 and WRE550 stabilization scenarios) and compares this to the extant U.S. pipeline infrastructures used to deliver CO2 for enhanced oil recovery (EOR), and to move natural gas and liquid hydrocarbons from areas of production and importation to markets. The analysis reveals that between 11,000 and 23,000 additional miles of dedicated CO2 pipeline might be needed in the U.S. before 2050 across these two cases. While that is a significant increase over the 3,900 miles that comprise the existing national CO2 pipeline infrastructure, it is critically important to realize that the demand for additional CO2 pipeline capacity will unfold relatively slowly and in a geographically dispersed manner as new dedicated CCS-enabled power plants and industrial facilities are brought online. During the period 2010-2030, the growth in the CO2 pipeline system is on the order of a few hundred to less than a thousand miles per year. In comparison during the period 1950-2000, the U.S. natural gas pipeline distribution system grew at rates that far exceed these projections in growth in a future dedicated CO2 pipeline system. This analysis indicates that the need to increase the size of the existing dedicated CO2 pipeline system should not be seen as a major obstacle for the commercial deployment of CCS technologies in the U.S. Nevertheless, there will undoubtedly be some associated regulatory and siting issues to work through but these issues should not be unmanageable based on the size of infrastructure requirements alone.

  16. HANFORD SITE LOW EXPOSURE PIPELINE REPAIR USING A NON-METALLIC COMPOSITE SYSTEM

    SciTech Connect (OSTI)

    HUTH RJ

    2009-11-12

    At the Department of Energy, Richland Operations (DOE-RL) Hanford site in eastern Washington, a 350 mm (14 inch) diameter high density polyethylene (HDPE) pump recirculation pipeline failed at a bonded joint adjacent to a radiologically and chemically contaminated groundwater storage basin. The responsible DOE-RL contractor, CH2MHill Plateau Remediation Company, applied a fiberglass reinforced plastic (composite) field repair system to the failed joint. The system was devised specifically for the HDPE pipe repair at the Hanford site, and had not been used on this type of plastic piping previously. This paper introduces the pipe failure scenario, describes the options considered for repair and discusses the ultimate resolution of the problem. The failed pipeline was successfully returned to service with minimal impact on waste water treatment plant operating capacity. Additionally, radiological and chemical exposures to facility personnel were maintained as low as reasonably achievable (ALARA). The repair is considered a success for the near term, and future monitoring will prove whether the repair can be considered for long term service and as a viable alternative for similar piping failures at the Hanford site.

  17. Maine Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Price (Dollars per Thousand Cubic Feet) Maine Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.42 1980's 2.63 3.20 4.92 4.60 5.40 4.36 3.88 2.24 4.60 3.41 1990's 3.73 3.59 3.97 3.91 3.50 5.50 -- 2000's 4.65 3.69 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  18. Hidalgo, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Dollars per Thousand Cubic Feet) Hidalgo, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.26 2.31 2.03 2.09 2000's 5.85 4.61 2.26 -- -- 8.10 5.53 6.23 5.55 4.40 2010's 4.21 -- -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016

  19. South Dakota Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) South Dakota Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,910 2,805 6,020 2000's 6,269 5,774 6,065 6,318 6,217 5,751 5,421 5,690 4,686 3,240 2010's 5,806 6,692 6,402 6,888 5,221 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages:

  20. Techniques for preventing accidental damage to pipelines

    SciTech Connect (OSTI)

    Lothon, A.; Akel, S.

    1996-12-31

    Following a survey of all of the techniques capable of preventing third-party damage to its gas transmission pipelines, Gaz de France has selected two of them, Electromagnetic Detection and Positioning by Satellite. The first technique is based on detection of the magnetic field existing around transmission pipes excited by a driving current. A receiver is mounted on the excavation equipment to detect the magnetic field, thereby preventing any risk of hitting the pipe. The second technique consists in locating excavators by satellite. Each excavator needs to be equipped with a GPS beacon to know its position. Using the map of the transmission network stored in data-base form, i.e., digitized, the system calculates the position of the excavator relative to the pipes buried in its vicinity so as to avoid any accidental contact. The main features, advantages and drawbacks of the two techniques are presented in this paper.

  1. Structural integrity of offshore pipelines in seismic conditions

    SciTech Connect (OSTI)

    Bruschi, R.; Marchesani, F.; Vitali, L.; Gudmestad, O.T.

    1996-12-01

    An international consensus on seismic design criteria for on land pipelines has been established during the last thirty years. The need to formulate seismic design criteria for offshore pipelines has not been similarly addressed. However, for offshore pipelines crossing seismically active areas, there is a need to establish criteria and measures in order to ensure the structural integrity of the pipeline in such environments. The need to converge efforts to formulate international design guidelines is becoming increasingly urgent in light of upcoming projects envisaged for the second half of the 90`s. In this paper, the geotechnical hazards for a pipeline routed across marine slopes and irregular terrains affected by earthquakes, is assessed. The response of the pipeline to direct excitation from the soil is discussed. The approach to assess the stability of both natural support from the seabed and artificial support from gravel sleepers (often discontinuous and either regularly or sparsely distributed), is also discussed. Some applications are given to highlight topical aspects for offshore pipelines crossing seismically active seabeds.

  2. Clean Air Interstate Rule: Changes and Modeling in AEO2010 (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01

    On December 23, 2008, the D.C. Circuit Court remanded but did not vacate the Clean Air Interstate Rule (CAIR), overriding its previous decision on February 8, 2008, to remand and vacate CAIR. The December decision, which is reflected in Annual Energy Outlook 2010 (AEO) , allows CAIR to remain in effect, providing time for the Environmental Protection Agency to modify the rule in order to address objections raised by the Court in its earlier decision. A similar rule, referred to as the Clean Air Mercury Rule (CAMR), which was to set up a cap-and-trade system for reducing mercury emissions by approximately 70%, is not represented in the AEO2010 projections, because it was vacated by the D.C. Circuit Court in February 2008.

  3. U.S. Natural Gas International & Interstate Deliveries (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Deliveries (Million Cubic Feet) U.S. Natural Gas International & Interstate Deliveries (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 52,425,748 1990's 52,911,554 51,844,587 55,198,462 53,138,328 58,604,178 61,813,651 63,643,603 61,873,174 55,758,142 57,984,679 2000's 59,330,570 66,722,998 64,436,165 67,122,148 65,776,430 64,215,521 63,074,138 68,142,526 71,681,271 73,403,878 2010's 76,240,152 76,241,511 71,817,737 65,724,268

  4. U.S. Natural Gas International & Interstate Receipts (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Receipts (Million Cubic Feet) U.S. Natural Gas International & Interstate Receipts (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 149,032 1980's 148,910 144,249 147,888 147,172 1990's 55,348,260 61,081,540 64,500,580 66,427,622 64,741,721 58,773,312 61,392,733 2000's 62,797,780 70,290,945 67,993,634 70,468,088 69,271,464 67,925,925 66,564,057 71,921,405 74,671,042 76,068,752 2010's 78,835,235 78,241,063 73,393,413 67,088,737

  5. Hidalgo, TX Natural Gas Imports by Pipeline from Mexico

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0 2,506 9,227 14,862 8,817 1996-2015 Pipeline Prices -- -- 3.47 3.92 4.68 2.28 1996

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013 2014 View History Pipeline Volumes 284 62 0 0 0 0 1996-2014 Pipeline Prices 4.40 4.21 -- -- -- -- 1996-2014

  6. Massena, NY Natural Gas Imports by Pipeline from Canada

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    161,486 164,984 135,278 86,609 63,987 28,825 1982-2014 Import Price 5.90 4.86 4.77 3.69 5.49 8.00 198

    2011 2012 2013 2014 View History Pipeline Volumes 0 472 0 0 2011-2014 Pipeline Prices -- 2.96 -- -- 2011-2014

    5,595 3,965 3,992 4,147 3,819 3,049 1996-2015 Pipeline Prices 6.48 6.55 5.75 6.04 7.34 5.65

  7. Technoeconomic Analysis of Biomethane Production from Biogas and Pipeline Delivery (Presentation)

    SciTech Connect (OSTI)

    Jalalzadeh-Azar, A.

    2010-10-18

    This presentation summarizes "A Technoeconomic Analysis of Biomethane Production from Biogas and Pipeline Delivery".

  8. Letter to Unsuccessful Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unsuccessful Company Letter to Unsuccessful Company Document features a template and sample to help federal agencies inform energy service companies (ESCOs) that they were not selected for a project. Download the Letter to Unsuccessful Company. (58.06 KB) More Documents & Publications ESPC ENABLE Preliminary Letter to Unsuccessful ESCO Offerors Guide and Template Letter to Successful Company Notice of Intent to Award Letter

  9. EIA - Natural Gas Pipeline Network - Natural Gas Supply Basins...

    Gasoline and Diesel Fuel Update (EIA)

    Corridors About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates U.S. Natural Gas Supply Basins Relative to Major Natural ...

  10. EIA - Natural Gas Pipeline Network - Aquifer Storage Reservoir

    U.S. Energy Information Administration (EIA) Indexed Site

    Configuration Aquifer Storage Reservoir Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Aquifer Underground Natural Gas Storage Reservoir Configuration Aquifer Underground Natural Gas Well

  11. EIA - Natural Gas Pipeline Network - Depleted Reservoir Storage

    U.S. Energy Information Administration (EIA) Indexed Site

    Configuration Depleted Reservoir Storage Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Depleted Production Reservoir Underground Natural Gas Storage Well Configuration Depleted Production Reservoir Storage

  12. EIA - Natural Gas Pipeline Network - Natural Gas Transmission Path Diagram

    U.S. Energy Information Administration (EIA) Indexed Site

    Transmission Path Diagram About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Transmission Path Natural Gas Transmission Path

  13. EIA - Natural Gas Pipeline Network - Regional Overview and Links

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    These systems enter the region at the New Mexico-Arizona and Nevada-Utah state lines. The rest of the pipeline capacity into the region enters from Wyoming andor from Canada at ...

  14. U.S. LPG pipeline begins deliveries to Pemex terminal

    SciTech Connect (OSTI)

    Bodenhamer, K.C.

    1997-08-11

    LPG deliveries began this spring to the new Mendez LPG receiving terminal near Juarez, State of Chihuahua, Mexico. Supplying the terminal is the 265-mile, 8-in. Rio Grande Pipeline that includes a reconditioned 217-mile, 8-in. former refined-products pipeline from near Odessa, Texas, and a new 48-mile, 8-in. line beginning in Hudspeth County and crossing the US-Mexico border near San Elizario, Texas. Capacity of the pipeline is 24,000 b/d. The LPG supplied to Mexico is a blend of approximately 85% propane and 15% butane. Before construction and operation of the pipeline, PGPB blended the propane-butane mix at a truck dock during loading. Demand for LPG in northern Mexico is strong. Less than 5% of the homes in Juarez have natural gas, making LPG the predominant energy source for cooking and heating in a city of more than 1 million. LPG also is widely used as a motor fuel.

  15. ,"U.S. Natural Gas Pipeline Imports From Mexico (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"01292016 9:45:31 AM" "Back to Contents","Data 1: U.S. Natural Gas Pipeline Imports From Mexico (MMcf)" "Sourcekey","N9102MX2" "Date","U.S. Natural Gas...

  16. Pipelines following exploration in deeper Gulf of Mexico

    SciTech Connect (OSTI)

    True, W.R.

    1988-07-04

    Gulf of Mexico pipeline construction has been falling of sharply to shallow-water (less than 300 ft) areas, while construction for middle depth (300 - 600 ft) and deepwater (600 + ft) areas as been holding steady. These trends are evident from analyses of 5-year data compiled by the U.S. Department of Interior (DOI) Minerals Management Service (MMS). This article continues a series of updates based on MMS gulf pipeline data (OGJ, June 8, 1987, p. 50). These installments track construction patterns in water depths, diameter classifications, and mileage. The figures are also evaluated in terms of pipeline-construction cost data published in Oil and Gas Journal's annual Pipeline Economics Reports.

  17. Calexico, CA Natural Gas Pipeline Exports to Mexico (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Calexico, CA Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 565 544 592 557 600 586 592 ...

  18. Penitas, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Penitas, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 252 1,324 824 1,017 871 770 ...

  19. Ogilby Mesa, CA Natural Gas Pipeline Imports From Mexico (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Ogilby Mesa, CA Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 78 376 2013 16 7 - No ...

  20. Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 12 40 77 59 55 47 43 41 ...

  1. Nogales, AZ Natural Gas Pipeline Exports to Mexico (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Nogales, AZ Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 39 24 19 15 18 16 15 16 16 18 ...

  2. Otay Mesa, CA Natural Gas Pipeline Imports from Mexico (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    from Mexico (Million Cubic Feet) Otay Mesa, CA Natural Gas Pipeline Imports from Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 236 86 93 110 ...

  3. Galvan Ranch, TX Natural Gas Imports by Pipeline from Mexico

    Gasoline and Diesel Fuel Update (EIA)

    225 501 314 1,046 1,426 933 2007-2015 Pipeline Prices 3.52 3.12 1.87 2.66 3.45 1.71 2007

  4. Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation...

    Energy Savers [EERE]

    Presentation by 09-Sofronis to DOE Hydrogen Pipeline R&D Project Review Meeting held January 5-6, 2005 at Oak Ridge National Laboratory in Oak Ridge, Tennessee. ...

  5. Evaluation of Natural Gas Pipeline Materials for Hydrogen Science...

    Broader source: Energy.gov (indexed) [DOE]

    04-Adams to DOE Hydrogen Pipeline R&D Project Review Meeting held January 5-6, 2005 at Oak Ridge National Laboratory in Oak Ridge, Tennessee. 04adamsnatgas.pdf (9.97 MB) More ...

  6. Slurry Retrieval, Pipeline Transport & Plugging and Mixing Workshop

    Office of Environmental Management (EM)

    Gary L. Smith - Office of Waste Processing (EM-21) Slurry Retrieval, Pipeline Transport & Plugging and Mixing Workshop 1 Dr. Gary L. Smith - Office of Waste Processing (EM-21) Dr. ...

  7. Assessing Steel Pipeline and Weld Susceptibility to Hydrogen Embrittlement Webinar

    Broader source: Energy.gov [DOE]

    Access the recording and download the presentation slides from the Fuel Cell Technologies Office webinar "Assessing Steel Pipeline and Weld Susceptibility to Hydrogen Embrittlement" held on January 12, 2016.

  8. Hydrogen permeability and Integrity of hydrogen transfer pipelines

    Broader source: Energy.gov [DOE]

    Presentation by 03-Babu for the DOE Hydrogen Pipeline R&D Project Review Meeting held January 5th and 6th, 2005 at Oak Ridge National Laboratory in Oak Ridge, Tennessee.

  9. Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation

    Broader source: Energy.gov [DOE]

    Presentation by 09-Sofronis to DOE Hydrogen Pipeline R&D Project Review Meeting held January 5-6, 2005 at Oak Ridge National Laboratory in Oak Ridge, Tennessee.

  10. El Paso, TX Natural Gas Pipeline Imports From Mexico (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) El Paso, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's ...

  11. El Paso, TX Natural Gas Pipeline Imports From Mexico (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dollars per Thousand Cubic Feet) El Paso, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  12. New Hampshire Natural Gas Pipeline and Distribution Use (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Million Cubic Feet) New Hampshire Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 ...

  13. New Hampshire Natural Gas Pipeline and Distribution Use Price...

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet) New Hampshire Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  14. Pipeline issues shape southern FSU oil, gas development

    SciTech Connect (OSTI)

    1995-05-22

    To future production from southern republics of the former Soviet Union (FSU), construction and revitalization of pipelines are as important as the supply of capital. Export capacity will limit production and slow development activity in the region until new pipelines are in place. Plenty of pipeline proposals have come forward. The problem is politics, which for every proposal so far complicates routing or financing or both. Russia has made clear its intention to use pipeline route decisions to retain influence in the region. As a source of external pressure, it is not alone. Iran and Turkey also have made strong bids for the southern FSU`s oil and gas transport business. Diplomacy thus will say as much as commerce does about how transportation issues are settled and how quickly the southern republics move toward their potentials to produce oil and gas. The paper discusses possible routes and the problems with them, the most likely proposal, and future oil flows.

  15. North Troy, VT Natural Gas Pipeline Imports From Canada (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) North Troy, VT Natural Gas Pipeline Imports From Canada (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's ...

  16. North Troy, VT Natural Gas Pipeline Imports From Canada (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dollars per Thousand Cubic Feet) North Troy, VT Natural Gas Pipeline Imports From Canada (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  17. Blending Hydrogen into Natural Gas Pipeline Networks: A Review...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Addition of water involves a humidification system, while pipeline gases have to be dry. ... offers a high density of sulfur capturing and a very low slip rate from the scrubber. ...

  18. Advanced Manufacturing pipeline brings NSC and Minority Serving

    National Nuclear Security Administration (NNSA)

    Institutions together | National Nuclear Security Administration | (NNSA) Advanced Manufacturing pipeline brings NSC and Minority Serving Institutions together Thursday, August 27, 2015 - 4:41pm In an ongoing effort to build a sustainable STEM pipeline between DOE's sites/labs and historically black colleges and universities, the National Security Campus (NSC) helped form the Advanced Manufacturing Consortium under the Minority Serving Institutes Partnership Program (MSIPP). This year MSIPP

  19. EIA - Natural Gas Pipeline Network - Network Configuration & System Design

    U.S. Energy Information Administration (EIA) Indexed Site

    Network Configuration & System Design About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Network Configuration and System Design Overview | Transmission/Storage | Design Criteria | Importance of Storage| Overall Pipeline System Configuration Overview A principal requirement of the natural gas transmission system is that it be capable of meeting the peak demand of its shippers who have contracts for firm service. To meet this

  20. Report to Congress: Dedicated Ethanol Pipeline Feasability Study - Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Independence and Security Act of 2007 Section 243 | Department of Energy Report to Congress: Dedicated Ethanol Pipeline Feasability Study - Energy Independence and Security Act of 2007 Section 243 Report to Congress: Dedicated Ethanol Pipeline Feasability Study - Energy Independence and Security Act of 2007 Section 243 This study was prepared by the U.S. Department of Energy (DOE) in response to Section 243 of the Energy Independence and Security Act of 2007 (EISA). Section 243 directs DOE

  1. Survey of state water laws affecting coal slurry pipeline development

    SciTech Connect (OSTI)

    Rogozen, M.B.

    1980-11-01

    This report summarizes state water laws likely to affect the development of coal slurry pipelines. It was prepared as part of a project to analyze environmental issues related to energy transportation systems. Coal slurry pipelines have been proposed as a means to expand the existing transportation system to handle the increasing coal shipments that will be required in the future. The availability of water for use in coal slurry systems in the coal-producing states is an issue of major concern.

  2. Universities Provide Pipeline of Talent, Ideas, and Innovation | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Universities Provide Pipeline of Talent, Ideas, and Innovation Universities Provide Pipeline of Talent, Ideas, and Innovation February 17, 2016 - 11:07am Addthis Hyliion from Carnegie Mellon University won the 2015 top student DOE cleantech entrepreneur prize. Who will win in 2016? Hyliion from Carnegie Mellon University won the 2015 top student DOE cleantech entrepreneur prize. Who will win in 2016? Tomorrow marks the beginning of a very exciting collegiate season. No we aren't

  3. Marysville, MI Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History Pipeline Volumes 5,694 9,946 8,099 2,337 4,650 1,961 1996-2015 Pipeline Prices 4.44 4.42 2.99 4.15 6.86 2.73 1996-2015

  4. EIA - Natural Gas Pipeline Network - Transportation Process & Flow

    U.S. Energy Information Administration (EIA) Indexed Site

    Process and Flow About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Transportation Process and Flow Overview | Gathering System | Processing Plant | Transmission Grid | Market Centers/Hubs | Underground Storage | Peak Shaving Overview Transporting natural gas from the wellhead to the final customer involves several physical transfers of custody and multiple processing steps. A natural gas pipeline system begins at the natural gas

  5. Hydrogen permeability and Integrity of hydrogen transfer pipelines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    permeability and Integrity of hydrogen transfer pipelines Team: Sudarsanam Suresh Babu, Z. Feng, M. L. Santella and S. A. David (Oak Ridge National Laboratory, M&C Division - Steels, Welding & Computational Mechanics) J. G. Blencoe and Larry. M. Anovitz (Oak Ridge National Laboratory, Chemical Sciences Division - High Pressure Permeation Testing) P. S. Korinko (Savannah River National Laboratory - Low Pressure Permeation Testing) Hydrogen Pipeline R&D, Project Review Meeting Oak

  6. The unusual construction aspects of China`s Yacheng 13-1 gas pipeline -- The world`s second longest subsea pipeline

    SciTech Connect (OSTI)

    Woolgar, A.F.; Wilburn, J.S.; Zhao, X.

    1996-12-31

    There are many unusual construction aspects relating to China`s Yacheng 13-1 Pipeline. Initially planned as an onshore pipeline it was later to become Asia`s longest subsea pipeline. The route chosen resulted in an offshore pipeline requiring many unique and innovative construction techniques as well as unusual pipeline installation constraints. The pipeline was installed in two phases. The first phase of 707 km was to be the longest pipeline ever constructed within one lay season and with one lay vessel in a continuous program. Upon completion of the second phase of pipelay works, the world`s longest ever subsea pipeline flooding in one run of 778 kms was to follow. The Yacheng 13-1 construction requirements for pipelay and post installation works, including testing and commissioning were extremely demanding. This paper details how these requirements were met. It covers route selection constraints, construction techniques utilized and the demanding pigging and pre-commissioning operations performed.

  7. Oil and Gas Company Oil and Gas Company Address Place Zip Website

    Open Energy Info (EERE)

    Oil and Gas Company Address Place Zip Website Abu Dhabi National Oil Company Abu Dhabi National Oil Company Abu http www adnoc ae default aspx Al Furat Petroleum Company Al Furat...

  8. Mutual Insurance Company of West

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Step : On the right side of the homepage under "Identity The Protection," click on "Create Member Account." Once you log in, create an additional username and password to For more information call - - or visit ARAGLegalCenter.com. Limitations and exclusions apply. Insurance products are underwritten by ARAG Insurance Company of Des Moines, Iowa, GuideOne ® Mutual Insurance Company of West Des Moines, Iowa or GuideOne Specialty Mutual Insurance Company of West Des Moines,

  9. Robust pipeline construction plans threatened by spreading Asian crisis

    SciTech Connect (OSTI)

    True, W.R.

    1998-02-09

    Prospects for worldwide pipeline construction, viewed by operators as 1998 began, were very bright. But as the Asian financial crisis spreads and becomes more entrenched, it casts doubts on previously bullish petroleum and natural gas demand forecasts. These forecasts underpin pipeline operators` plans for new construction. Plans for petroleum (oil, condensate, and NGL) and natural gas pipeline installation during the year show a 27% jump over those announced a year ago for 1997 alone. Plans for construction beyond 1998, however, are off from what was envisioned a year ago, by nearly 17%. More than 67,000 miles of crude oil, product, and natural gas pipeline are planned for 1998 and beyond. The latest Oil and Gas Journal pipeline construction data indicate these trends. The data are derived from a survey of world pipeline operators, industry sources, and published information. But the data behind these trends were submitted before the full effects of the Asian financial crisis had begun to emerge. And, at presstime, industry forecasts for oil and gas demand among formerly booming Asian economies were being trimmed.

  10. Pipeline integrity design for differential settlement in discontinuous permafrost areas

    SciTech Connect (OSTI)

    Zhou, Z.J.; Boivin, R.P.; Glover, A.G.; Kormann, P.J.

    1996-12-31

    The NOVA Gas Transmission Ltd. (NGTL) gas pipeline system is expanding northwards as the producers search for and find new gas reserves. This growth has taken the system into the discontinuous permafrost zone, and also into new design problems. One such problem is the structural integrity of a pipeline subjected to the settlement differentials that occur between frozen and unfrozen soils. Adequate integrity design for differential settlement is required by design codes, such as CSA Z662, but the procedures and criteria must be established by the pipeline designers. This paper presents the methodology of pipeline integrity design for differential settlements used on a number of pipeline projects in Northwest Alberta. Outlined in the paper are the procedures, rationales and models used to: (a) locate discontinuous permafrost; (b) quantify the potential differential settlement; (c) predict pipeline stresses and strains; (d) establish strain limits; and (e) determine the pipe wall thickness to withstand those potential differential settlements. Several design options are available and are briefly discussed. For the projects mentioned, the heavy wall pipe option was identified as a cost effective design for medium to large differential settlements.

  11. INTERNAL REPAIR OF PIPELINES REVIEW & EVALUATION OF INTERNAL PIPELINE REPAIR TRIALS REPORT

    SciTech Connect (OSTI)

    Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; George Ritter; Bill Mohr; Matt Boring; Nancy Porter; Mike Sullivan; Chris Neary

    2004-09-01

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is generally ineffective at restoring the pressure containing capabilities of pipelines. Failure pressure for pipe repaired with carbon fiber-reinforced composite liner was greater than that of the un-repaired pipe section with damage, indicating that this type of liner is effective at restoring the pressure containing capability of pipe. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. Development of a comprehensive test plan for this process is recommended for use in the next phase of this project.

  12. National Iranian Oil Company | Open Energy Information

    Open Energy Info (EERE)

    National Iranian Oil Company is located in Tehran, Iran About The NIOC is one the largest oil companies in the world. Currently, the company estimates 137 billion barrels of liquid...

  13. Eastern Kodak Company

    SciTech Connect (OSTI)

    Y.S. Tyan

    2009-06-30

    Lighting consumes more than 20% of electricity generated in the United States. Solid state lighting relies upon either inorganic or organic light-emitting diodes (OLEDs). OLED devices because of their thinness, fast response, excellent color, and efficiency could become the technology of choice for future lighting applications, provided progress is made to increase power efficiency and device lifetime and to develop cost-effective manufacturing processes. As a first step in this process, Eastman Kodak Company has demonstrated an OLED device architecture having an efficacy over 50 lm/W that exceeds the specifications of DOE Energy Star Program Requirements for Solid State Lighting. The project included work designed to optimize an OLED device, based on a stacked-OLED structure, with performance parameters of: low voltage; improved light extraction efficiency; improved internal quantum efficiency; and acceptable lifetime. The stated goal for the end of the project was delivery of an OLED device architecture, suitable for development into successful commercial products, having over 50 lum/W power efficiency and 10,000 hours lifetime at 1000 cd/m{sup 2}. During the project, Kodak developed and tested a tandem hybrid IES device made with a fluorescent blue emitter, a phosphorescent yellow emitter, and a phosphorescent red emitter in a stacked structure. The challenge was to find low voltage materials that do not absorb excessive amounts of emitted light when the extraction enhancement structure is applied. Because an extraction enhancement structure forces the emitted light to travel several times through the OLED layers before it is emitted, it exacerbates the absorption loss. A variety of ETL and HTL materials was investigated for application in the low voltage SSL device structure. Several of the materials were found to successfully yield low operating device voltages without incurring excessive absorption loss when the extraction enhancement structure was applied

  14. Mutual Insurance Company of West

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    call 800-247-4184 or visit ARAGLegalCenter.com. Limitations and exclusions apply. Insurance products are underwritten by ARAG Insurance Company of Des Moines, Iowa, GuideOne ...

  15. PP-230 International Transmission Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    International Transmission Company PP-230 International Transmission Company Presidential permit authorizing International Transmission Company to construct, operate, and maintain ...

  16. Independent Oversight Special Review, Bechtel Jacobs Company...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bechtel Jacobs Company, LLC - July 2011 Independent Oversight Special Review, Bechtel Jacobs Company, LLC - July 2011 July 2011 Special Review of the SuspectCounterfeit Items ...

  17. Diablo Research Company | Open Energy Information

    Open Energy Info (EERE)

    Research Company Jump to: navigation, search Name: Diablo Research Company Place: Silicon Valley, California Sector: Services Product: Silicon Valley-based, high-technology...

  18. Yemen Petroleum Company | Open Energy Information

    Open Energy Info (EERE)

    Logo: Yemen Petroleum Company Name: Yemen Petroleum Company Place: Yemen Product: marketing petroleum products in the local market. Year Founded: 1961 Website: www.ypcye.com...

  19. Raton Public Service Company | Open Energy Information

    Open Energy Info (EERE)

    Raton Public Service Company Jump to: navigation, search Name: Raton Public Service Company Place: New Mexico Phone Number: (575) 445-8723 Outage Hotline: (575) 445-8723...

  20. Mianyang Taidu Enviroment Energy Technical Development Company...

    Open Energy Info (EERE)

    Mianyang Taidu Enviroment Energy Technical Development Company Ltd Jump to: navigation, search Name: Mianyang Taidu Enviroment Energy Technical Development Company Ltd. Place:...

  1. First Hydro Company | Open Energy Information

    Open Energy Info (EERE)

    Company Jump to: navigation, search Name: First Hydro Company Place: Flintshire, England, United Kingdom Zip: CH5 3XJ Sector: Renewable Energy Product: Flintshire-based renewable...

  2. The Small Hydro Company | Open Energy Information

    Open Energy Info (EERE)

    Hydro Company Jump to: navigation, search Name: The Small Hydro Company Place: Oxfordshire, United Kingdom Product: Privately-held owner, developer and operator of assets....

  3. The Electric Vehicle Company | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: The Electric Vehicle Company Product: Holding company of battery-powered electric automobile manufacturers. References: The Electric Vehicle...

  4. Exelon Enterprises Company LLC | Open Energy Information

    Open Energy Info (EERE)

    Exelon Enterprises Company LLC Jump to: navigation, search Name: Exelon Enterprises Company, LLC Place: Chicago, Illinois Zip: Illinois 60680-5398 Sector: Services Product:...

  5. Green Automotive Company Inc | Open Energy Information

    Open Energy Info (EERE)

    Company Inc Jump to: navigation, search Name: Green Automotive Company Inc Place: Texas Zip: 75001 Product: Texas-based electric vehicle manufacturer. References: Green Automotive...

  6. Center Ethanol Company LLC | Open Energy Information

    Open Energy Info (EERE)

    LLC Jump to: navigation, search Name: Center Ethanol Company LLC Place: Illinois Product: Illinois based company building a 54m gallon ethanol plant in Sauget, IL. References:...

  7. Ethanol Management Company | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Management Company Place: Colorado Product: Biofuel blender located in Denver, Colorado. References: Ethanol Management Company1 This article is a stub. You can help...

  8. Western Ethanol Company LLC | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Company LLC Jump to: navigation, search Name: Western Ethanol Company LLC Place: Placentia, California Zip: 92871 Product: California-based fuel ethanol distribution and...

  9. Maan Development Company | Open Energy Information

    Open Energy Info (EERE)

    Company Jump to: navigation, search Name: Maan Development Company Place: Anman, Jordan Zip: 11195 Sector: Solar Product: Jordan-based developer of the Maan Development Area...

  10. FHP Manufacturing Company Geothermal | Open Energy Information

    Open Energy Info (EERE)

    FHP Manufacturing Company Geothermal Jump to: navigation, search Name: FHP Manufacturing Company: Geothermal Place: Florida Sector: Geothermal energy Product: FHP Manufacturing...

  11. The Social Carbon Company | Open Energy Information

    Open Energy Info (EERE)

    Social Carbon Company Jump to: navigation, search Name: The Social Carbon Company Place: Brasilia, Distrito Federal (Brasilia), Brazil Zip: CEP 70610-440 Sector: Carbon, Services...

  12. Ipnatchiaq Electric Company | Open Energy Information

    Open Energy Info (EERE)

    Ipnatchiaq Electric Company Jump to: navigation, search Name: Ipnatchiaq Electric Company Place: Alaska Phone Number: (907) 363-2157 Outage Hotline: (907) 363-2157 References: EIA...

  13. Redlands Water & Power Company | Open Energy Information

    Open Energy Info (EERE)

    Redlands Water & Power Company Jump to: navigation, search Name: Redlands Water & Power Company Place: Colorado Website: www.redlandswaterandpower.com Outage Hotline: 970-243-2173...

  14. Northeast Biodiesel Company LLC | Open Energy Information

    Open Energy Info (EERE)

    Company LLC Jump to: navigation, search Name: Northeast Biodiesel Company, LLC Place: Massachusetts Zip: 1301 Product: Massachusetts-based biodiesel producer and project developer....

  15. Winslow Management Company LLC | Open Energy Information

    Open Energy Info (EERE)

    Management Company LLC Jump to: navigation, search Name: Winslow Management Company LLC Place: Boston, Massachusetts Zip: 2110 Product: Boston-based, environmentally focused...

  16. Wuhan Rixin Technology Company | Open Energy Information

    Open Energy Info (EERE)

    Technology Company Jump to: navigation, search Name: Wuhan Rixin Technology Company Place: Wuhan, Hubei Province, China Zip: 430074 Product: Manufacturer of silicon-based and a-Si...

  17. Modern Electric Water Company | Open Energy Information

    Open Energy Info (EERE)

    Modern Electric Water Company Jump to: navigation, search Name: Modern Electric Water Company Address: 904 North Pines Road Place: Spokane Valley, WA Zip: 99206 Phone Number: (509)...

  18. Parkland Light & Water Company | Open Energy Information

    Open Energy Info (EERE)

    Parkland Light & Water Company Jump to: navigation, search Name: Parkland Light & Water Company Place: Washington Phone Number: (253) 531-5666 Website: www.plw.coop Outage...

  19. Lockwood Water & Light Company | Open Energy Information

    Open Energy Info (EERE)

    Lockwood Water & Light Company Jump to: navigation, search Name: Lockwood Water & Light Company Place: Missouri Phone Number: 417-232-4221 Outage Hotline: 417-232-4221 References:...

  20. HL Power Company | Open Energy Information

    Open Energy Info (EERE)

    Sector: Biomass Product: A power company located in California, the company main focus of energy is directed to biomass production. Coordinates: 40.293339, -79.687036...

  1. The Solar Storage Company | Open Energy Information

    Open Energy Info (EERE)

    Company Place: Palo Alto, California Zip: 1704 Product: US-based start-up developing energy production and storage systems. References: The Solar Storage Company1 This...

  2. Xiaogushan Hydropower Company | Open Energy Information

    Open Energy Info (EERE)

    Xiaogushan Hydropower Company Jump to: navigation, search Name: Xiaogushan Hydropower Company Place: Zhangye, Gansu Province, China Sector: Hydro Product: Developer of Hydropower...

  3. Xinjiang Wind Energy Company | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Company Jump to: navigation, search Name: Xinjiang Wind Energy Company Place: Urumqi, Xinjiang Autonomous Region, China Zip: 830000 Sector: Wind energy Product: Backed...

  4. Saudi Electricity Company | Open Energy Information

    Open Energy Info (EERE)

    Electricity Company Jump to: navigation, search Name: Saudi Electricity Company Place: Riyadh, Saudi Arabia Zip: 11416 Sector: Solar Product: Riyahd-based utility, 80% state-owned...

  5. Green Mountain Energy Company | Open Energy Information

    Open Energy Info (EERE)

    Company Jump to: navigation, search Name: Green Mountain Energy Company Place: Texas Website: www.greenmountainenergy.com Twitter: @GreenMtnEnergy Facebook: https:...

  6. Shanghai Green Environmental Protection Energy Company Ltd |...

    Open Energy Info (EERE)

    Green Environmental Protection Energy Company Ltd Jump to: navigation, search Name: Shanghai Green Environmental Protection Energy Company Ltd Place: Shanghai, Shanghai...

  7. Esmeralda Energy Company | Open Energy Information

    Open Energy Info (EERE)

    Company Jump to: navigation, search Name: Esmeralda Energy Company Place: Nevada Sector: Geothermal energy Product: Nevada-based developer of geothermal power projects. References:...

  8. Vidler Water Company Inc | Open Energy Information

    Open Energy Info (EERE)

    Vidler Water Company Inc Jump to: navigation, search Name: Vidler Water Company Inc Place: Carson City, Nevada Zip: 89703 Sector: Solar Product: Nevada-based water and land...

  9. Vulcan Power Company | Open Energy Information

    Open Energy Info (EERE)

    Vulcan Power Company Jump to: navigation, search Name: Vulcan Power Company Place: Bend, Oregon Zip: 97702 Sector: Geothermal energy Product: Oregon-based geothermal power plant...

  10. Hydroenergy Company Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hydroenergy Company Ltd Jump to: navigation, search Name: Hydroenergy Company Ltd Place: 2700 Blagoevgrad, Bulgaria Sector: Hydro, Renewable Energy, Solar Product: Invests in,...

  11. TEST UTILITY COMPANY | Open Energy Information

    Open Energy Info (EERE)

    TEST UTILITY COMPANY Jump to: navigation, search Name: Test Utility Company Place: West Virginia References: Energy Information Administration.1 EIA Form 861 Data Utility Id...

  12. Chevron Hydrogen Company LLC | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Company LLC Jump to: navigation, search Name: Chevron Hydrogen Company LLC Place: California Sector: Hydro, Hydrogen Product: California-based, subsidairy of Chevron...

  13. Renewable Development Company RDC | Open Energy Information

    Open Energy Info (EERE)

    Development Company RDC Jump to: navigation, search Name: Renewable Development Company (RDC) Place: Mold, United Kingdom Zip: CH7 4ED Sector: Wind energy Product: Wind farm...

  14. Kurt J Lesker Company | Open Energy Information

    Open Energy Info (EERE)

    Kurt J Lesker Company Jump to: navigation, search Name: Kurt J Lesker Company Place: Clairton, Pennsylvania Zip: 15025-2700 Product: US manufacturer of vacuum technology, including...

  15. Alten Products Company | Open Energy Information

    Open Energy Info (EERE)

    Alten Product Company Name: Alten Product Company Address: 2423 Old Middlefield Way Suite J Place: Mountain View, California Country: United States Zip: 94043-2348 Region: Bay Area...

  16. Huadian Hongli Hydropower Investment Development Company | Open...

    Open Energy Info (EERE)

    Hongli Hydropower Investment Development Company Jump to: navigation, search Name: Huadian Hongli Hydropower Investment Development Company Place: Huadian City, Jilin Province,...

  17. Shanghai Haiwan Investment Company | Open Energy Information

    Open Energy Info (EERE)

    Haiwan Investment Company Jump to: navigation, search Name: Shanghai Haiwan Investment Company Place: Shanghai, Shanghai Municipality, China Product: Member of a consortium...

  18. Otto H Rosentreter Company | Open Energy Information

    Open Energy Info (EERE)

    Company Jump to: navigation, search Name: Otto H. Rosentreter Company Place: Santa Fe Springs, California Zip: 90670 Product: Firm specialising in fuel cell installation...

  19. Hemphill Power Light Company | Open Energy Information

    Open Energy Info (EERE)

    Power Light Company Jump to: navigation, search Name: Hemphill Power & Light Company Place: Springfield, New Hampshire Sector: Biomass Product: Owner and operator of a 16MW...

  20. Light Electric Vehcles Company | Open Energy Information

    Open Energy Info (EERE)

    Electric Vehcles Company Jump to: navigation, search Name: Light Electric Vehcles Company Place: Eugene, Oregon Zip: 97440-1316 Sector: Vehicles Product: LightEVs expects to offer...